WO2022214038A1 - 一种混合物及其在光电领域的应用 - Google Patents

一种混合物及其在光电领域的应用 Download PDF

Info

Publication number
WO2022214038A1
WO2022214038A1 PCT/CN2022/085637 CN2022085637W WO2022214038A1 WO 2022214038 A1 WO2022214038 A1 WO 2022214038A1 CN 2022085637 W CN2022085637 W CN 2022085637W WO 2022214038 A1 WO2022214038 A1 WO 2022214038A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
groups
perovskite
atoms
organic
Prior art date
Application number
PCT/CN2022/085637
Other languages
English (en)
French (fr)
Inventor
潘君友
谭甲辉
Original Assignee
浙江光昊光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江光昊光电科技有限公司 filed Critical 浙江光昊光电科技有限公司
Priority to CN202280026670.3A priority Critical patent/CN117157378A/zh
Publication of WO2022214038A1 publication Critical patent/WO2022214038A1/zh
Priority to US18/483,385 priority patent/US20240090316A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D11/107Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • the present invention relates to the technical field of organic electronic materials and devices, in particular to a mixture and composition, an organic thin film comprising or prepared from the same, and its application in the field of optoelectronics.
  • the display device made of the red, green and blue three primary colors of light with narrow half-peak width has a large color gamut, a real picture and good picture quality.
  • the display device actively emits light of three primary colors of red, green and blue, typically such as RGB-OLED display; the current mature technology is to use a fine metal mask It is difficult to achieve high-resolution display of more than 600ppi by vacuum evaporation to produce three-color light-emitting devices.
  • the second is to use a color converter to convert a single color light emitted by a light-emitting device into multiple color lights to achieve full-color display, such as Samsung's blue OLED plus red and green quantum dot (QD) films as color converters.
  • QD quantum dot
  • the light-emitting device in this method has a simple process and high yield, and the color converter can be realized by different technologies such as evaporation, inkjet printing, transfer printing, photolithography, etc., and can be applied to display products with different resolution requirements.
  • the resolution can reach more than 3000ppi.
  • quantum dots are nanoparticles of inorganic semiconductor materials (InP, CdSe, CdS, ZnSe, etc.) with diameters ranging from 2 to 8 nm. (especially quantum dots).
  • quantum dots are nanoparticles of inorganic semiconductor materials (InP, CdSe, CdS, ZnSe, etc.) with diameters ranging from 2 to 8 nm. (especially quantum dots).
  • the half-peak width of the luminescence peak of Cd-containing quantum dots is currently 25-40nm, the color purity can meet the display requirements of NTSC, and the half-peak width of Cd-free quantum dots is between 35-75nm .
  • perovskite-based luminescent materials which have narrower half-widths of luminescence peaks but still low extinction coefficients.
  • the object of the present invention is to provide a mixture and composition, an organic thin film comprising or prepared therefrom and its application in the field of optoelectronics.
  • the present invention provides a mixture comprising an organic compound H and a perovskite emitter E, characterized in that 1) the emission spectrum of the organic compound H is in the range of the absorption spectrum of the perovskite emitter E one side of the short wavelength, and at least partially overlap each other; 2) the perovskite light-emitting body E is a perovskite light-emitting material composed of A, B and X, wherein: A is a perovskite crystal Monovalent cations located at each vertex of the hexahedron centered on B in the structure; X represents the anion located at each vertex of the octahedron centered on B in the perovskite crystal structure; B is the perovskite crystal structure.
  • the perovskite emitter E is selected from compounds having any one of a three-dimensional structure, a two-dimensional structure, and a quasi-two-dimensional structure, and any combination thereof, and a compound having a three-dimensional structure
  • the composition formula of the perovskite emitter E is represented by ABX (3+ ⁇ )
  • the composition formula of the perovskite emitter E with a two-dimensional or quasi-two-dimensional structure is represented by A 2 BX (4+ ⁇ ) , where: ⁇ is a number that varies according to the charge balance of B, and -0.7 ⁇ 0.7.
  • At least one organic resin is further included.
  • the present invention also provides a composition comprising a mixture as described above and at least one solvent.
  • the present invention also provides an organic functional material film, comprising a mixture as described above.
  • the present invention also provides an optoelectronic device comprising the above-mentioned mixture or organic functional material thin film.
  • the present invention also provides an organic light-emitting device, comprising a substrate, a first electrode, an organic light-emitting layer, a second electrode, a color conversion layer and an encapsulation layer in sequence from bottom to top, the second electrode is at least partially transparent, and It is characterized in that: 1) the color conversion layer comprises an organic compound H and a perovskite light-emitting body E; 2) the color conversion layer can at least partially absorb the light emitted by the above organic light-emitting layer through the second electrode. light; 3) the emission spectrum of the organic compound H is on the short wavelength side of the absorption spectrum of the perovskite emitter E, and at least partially overlaps each other.
  • the organic compound H has a larger extinction coefficient
  • the perovskite emitter E has a higher luminous efficiency and a narrower luminescence half-peak width
  • the organic compound H and the perovskite The energy conversion efficiency between the mineral luminophores E is high, so as to realize the separation optimization of absorption and emission functions, and it is convenient to prepare high-efficiency color converters with thin thickness for realizing displays with high color gamut; in addition, the organic compound H Compounds that are easier to synthesize can be selected, and the specific gravity is higher, which can greatly reduce the cost.
  • FIG. 1 is a schematic diagram of a display device with three colors of red, green and blue.
  • host material In the present invention, host material, matrix material, Host material and Matrix material have the same meaning and can be interchanged.
  • metal organic complexes metal organic complexes, metal organic complexes, and organometallic complexes have the same meaning and can be interchanged.
  • composition printing ink, ink, and ink have the same meaning and are interchangeable.
  • the present invention provides a mixture comprising an organic compound H and a perovskite emitter E, 1) the emission spectrum of the organic compound H is at one of the short wavelengths of the absorption spectrum of the perovskite emitter E 2)
  • the perovskite light-emitting body E is a perovskite light-emitting material composed of A, B and X, wherein: A is located in the perovskite crystal structure B is a monovalent cation at each vertex of the hexahedron with B as the center; X represents an anion located at each vertex of the octahedron with B as the center in the perovskite crystal structure; B is the perovskite crystal structure.
  • the width at half maximum (FWHM) of the emission spectrum of the perovskite emitter E is less than or equal to 45 nm, preferably less than or equal to 40 nm, more preferably less than or equal to 35 nm, more preferably less than or equal to 30 nm, most preferably is ⁇ 25nm.
  • the perovskite emitter E has a fluorescence quantum efficiency (PLQY) ⁇ 60%, preferably ⁇ 65%, more preferably ⁇ 70%, and most preferably ⁇ 80%.
  • PLQY fluorescence quantum efficiency
  • the perovskite emitter E is selected from compounds having any one of three-dimensional structure, two-dimensional structure, quasi-two-dimensional structure and any combination thereof, and has three-dimensional structure
  • the composition formula of the perovskite emitter E with the structure is represented by ABX (3+ ⁇ )
  • the composition formula of the perovskite emitter E with a two-dimensional or quasi-two-dimensional structure is represented by A 2 BX (4+ ⁇ ) , wherein : ⁇ is a number that varies according to the charge balance of B, and ⁇ 0.7 ⁇ 0.7.
  • the perovskite emitter is a nano emitter.
  • the average particle size of the perovskite nano-emitter is in the range of about 1 to 1000 nm. In certain preferred embodiments, the average particle size of the perovskite nanoluminophores is about 1 to 100 nm. In certain preferred embodiments, the average particle size of the perovskite nanoluminophores is about 1 to 20 nm, preferably 1 to 10 nm.
  • A in the perovskite emitter E, A, as a monovalent cation, can be selected from cesium ion, organic ammonium ion, or amidinium ion.
  • the perovskite emitter E when A is a cesium ion, an organic ammonium ion with 3 or less carbon atoms, or an amidinium ion with 3 or less carbon atoms, the perovskite
  • the mineral luminophore E has a three-dimensional structure represented by ABX (3+ ⁇ ) .
  • A is preferably a cesium ion or an organic ammonium ion.
  • the organic ammonium ions are selected from cations having the following general formula (I).
  • R 11 to R 14 are independently selected from H, D, or straight-chain alkyl, haloalkyl, alkoxy, thioalkoxy groups with 1 to 20 C atoms, or groups with 3 to 20 C atoms.
  • a branched or cyclic alkyl group, a haloalkyl group, an alkoxy group, a thioalkoxy group or a silyl group of one C atom, and R 11 to R 14 do not become H or D at the same time.
  • R 11 to R 14 are alkyl groups
  • the number of carbon atoms is each independently usually preferably more preferably More preferably, it is 1.
  • R 11 to R 14 are cycloalkyl groups
  • the number of carbon atoms is each independently usually preferably more preferably
  • the number of carbon atoms also includes the number of carbon atoms of the substituent.
  • R 11 to R 14 are each independently a hydrogen atom or an alkyl group.
  • a perovskite-type compound having a part or all of two-dimensional and/or quasi-2D can be obtained. If the two-dimensional perovskite-type crystal structure is infinitely stacked, it is equivalent to the three-dimensional perovskite-type crystal structure (reference: P.P.Boix etc., J.Phys.Chem.Lett.2015, 6, 898-907).
  • the total number of carbon atoms contained in the alkyl groups represented by R 11 to R 14 is preferably The total number of carbon atoms contained in the cycloalkyl group represented by R 11 to R 14 is preferably More preferably, one of R 11 to R 14 is the number of carbon atoms
  • the alkyl group has 3 hydrogen atoms.
  • alkyl group of R 11 to R 14 methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, 1-methylbutyl, n-hexyl, 2-methylpentyl, 3-methylpentyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl base, n-heptyl, 2-methylhexyl, 3-methylhexyl, 2,2-dimethylpentyl, 2,3-dimethylpentyl, 2,4-dimethylpentyl, 3, 3-dimethylpentyl, 3-ethylpentyl, 2,2,3-trimethylbutyl, n-octyl, isooctyl, 2-ethylhexyl, nony
  • the cycloalkyl group of R 11 to R 14 may be cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, norbornyl, and isobornyl group, 1-adamantyl, 2-adamantyl, tricyclodecyl, etc.
  • CH 3 NH 3 + (also referred to as methylammonium ion), C 2 H 5 NH 3 + (also referred to as ethylammonium ion.) or C 3 H 7 NH 3 + is preferable (It is also called propylammonium ion.), more preferably CH 3 NH 3 + or C 2 H 5 NH 3 + , further preferably CH 3 NH 3 + .
  • A is selected from amidinium ions represented by the following general formula (II):
  • R 15 to R 18 are independently selected from H, D, or straight-chain alkyl, haloalkyl, alkoxy, thioalkoxy groups with 1 to 20 C atoms, or groups with 3 to 20 C atoms.
  • the alkyl groups represented by R 15 to R 18 may each independently be linear or branched, and may have an amino group as a substituent.
  • R 15 to R 18 are alkyl groups
  • the number of carbon atoms is each independently usually preferably more preferably
  • R 15 to R 18 are cycloalkyl groups
  • the number of carbon atoms is each independently usually preferably more preferably
  • the number of carbon atoms also includes the number of carbon atoms of the substituent.
  • R 15 to R 18 are each independently a hydrogen atom or an alkyl group.
  • alkyl group for R 15 to R 18 are the same as the alkyl groups exemplified for R 11 to R 14 .
  • cycloalkyl group for R 15 to R 18 are the same as the cycloalkyl groups exemplified for R 11 to R 14 .
  • a perovskite-type compound having a part or all of two-dimensional and/or quasi-2D can be obtained. If the two-dimensional perovskite-type crystal structure is infinitely stacked, it is equivalent to the three-dimensional perovskite-type crystal structure (reference: P.P.Boix etc., J.Phys.Chem.Lett.2015, 6, 898-907).
  • the total number of carbon atoms contained in the alkyl groups represented by R 15 to R 18 is preferably The total number of carbon atoms contained in the cycloalkyl groups represented by R 15 to R 18 is preferably More preferably R 15 is the number of carbon atoms of the alkyl group, R 16 to R 18 are hydrogen atoms.
  • B is a component located in the center of the hexahedron having A at the vertex and the octahedron having X at the vertex in the above-mentioned perovskite crystal structure, and is a metal ion.
  • the metal ion as B may be selected from one or more of monovalent metal ions, divalent metal ions, and trivalent metal ions.
  • B preferably contains divalent metal ions, more preferably lead and tin ions.
  • X represents an anion located at each vertex of an octahedron centered on B in the above-mentioned perovskite-type crystal structure, and is preferably selected from a halide ion and a thiogenate ion.
  • X is selected from the group consisting of chloride, bromide, fluoride, iodide and thiocyanate.
  • X can be appropriately selected according to the desired emission wavelength.
  • the content ratio of the halide ions can be appropriately selected according to the emission wavelength, for example, a combination of bromide ions and chloride ions, or a combination of bromide ions and iodide ions can be used.
  • the perovskite emitter E has a three-dimensional structure, it has a three-dimensional network of common vertex octahedrons represented by BX 6 with B as the center and X as the vertex.
  • the perovskite emitter E has a two-dimensional structure
  • the octahedron represented by BX 6 with B as the center and X as the vertex shares four vertices X of the same plane, thereby forming a two-dimensional connection.
  • B is a metal cation that may have octahedral coordination with respect to X.
  • the perovskite emitter E is an organic-inorganic perovskite.
  • the organic-inorganic perovskite is an ionic compound containing at least an organic cation, a divalent metal ion, and a halogen ion, and may contain other ions such as a monovalent cation. Other ions may be organic ions or inorganic ions.
  • the organic-inorganic perovskite includes an inorganic semiconductor layer and an organic component, and can be any one of two-dimensional, quasi-two-dimensional, and three-dimensional perovskite; preferably two-dimensional perovskite and quasi-two Perovskite; more preferably quasi-two-dimensional perovskite.
  • the two-dimensional perovskite has an inorganic semiconductor layer formed by two-dimensionally arranging the inorganic framework corresponding to the octahedral part of the perovite-type structure, and an organic layer in which the organic cations are arranged with cationic groups toward the side of the inorganic semiconductor layer
  • the quasi-two Perovite has an inorganic semiconductor layer and an organic layer corresponding to two-dimensional perovskite, respectively, and has two or more two-dimensional array structures in the inorganic semiconductor layer and is in the cubic crystal of the perovite-type structure.
  • Monovalent cations are arranged at positions corresponding to each vertex.
  • the perovskite emitter E is a quasi-two-dimensional organic-inorganic perovskite, which is a compound represented by the following general formula (III).
  • R represents a monovalent organic cation
  • A, B, and X are as defined above.
  • n is an integer of 2 or more.
  • Two Rs, a plurality of Bs, and a plurality of Xs may be the same or different from each other.
  • A may be the same or different from each other.
  • the lattice represented by A n-1 B n X 3n+1 constitutes the inorganic semiconductor layer
  • the monovalent organic cation represented by R constitutes the organic layer.
  • n corresponds to the number of laminations of the two-dimensional array structure in the inorganic semiconductor layer, and is preferably an integer of 2 to 100.
  • the monovalent organic cation represented by R preferably contains an aromatic ring, more preferably contains an ananylene group and an aromatic ring, more preferably contains a structure in which an alkylene group and an aromatic ring are linked, and still more preferably contains a structure in which an alkylene group and an aromatic ring are linked
  • the ammonium of the structure is particularly preferably an ammonium represented by the following general formula (IV).
  • Ar represents an aromatic ring
  • n1 is any integer of 1-20.
  • the aromatic ring possessed by the organic cation may be an aromatic hydrocarbon or an aromatic heterocyclic ring, but is preferably an aromatic hydrocarbon.
  • a nitrogen atom, an oxygen atom, a sulfur atom, etc. are mentioned as a hetero atom of an aromatic heterocyclic ring.
  • a benzene ring and a condensed polycyclic hydrocarbon having a structure in which a plurality of benzene rings are condensed are preferable, and a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring,
  • the ring, tetracene, and perylene ring are preferably a harmless ring and a naphthalene ring, and more preferably a harmless ring.
  • a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, a pyrrole ring, a thiophene ring, a furan ring, a carbazole ring, and a triazine ring are preferable, and a pyridine ring, a pyrazine ring, and a pyrimidine ring are more preferable.
  • the aromatic ring possessed by the organic cation can be substituted by any one, such as being substituted by a substituent having an alkyl group, an aryl group, a halogen atom (preferably a fluorine atom), etc.
  • the hydrogen atom in the substituent may also be a deuterium atom.
  • the monovalent cation represented by the above-mentioned A may be an organic cation or an inorganic cation.
  • Examples of the monovalent cation include formamide, ammonium, cesium, and the like, and formamide is preferred.
  • the above-mentioned divalent metal ion represented by B can be selected from Cu 2+ , Ni 2+ , Mn 2+ , Fe 2+ , Co 2+ , Pd 2+ , Ge 2+ , Sn 2+ , Pb 2+ and Eu 2+ and the like, preferably Sn 2+ , Pb 2+ , and more preferably Pb 2+ .
  • the halide ion represented by the above-mentioned X may be selected from each ion of fluorine, chlorine, bromine, and hydrino. All the halide ions represented by a plurality of X may be the same, or may be a combination of two or three kinds of halide ions.
  • Preferred examples of the compound represented by the general formula (IV) are compounds represented by the following general formulae (V) and (VI).
  • PEA represents phenethylammonium
  • FA represents formamide
  • MA represents methylammonium
  • n is an integer of 2 or more.
  • the crystal structure of the perovskite emitter E can be confirmed by an X-ray diffraction pattern.
  • a preferred perovskite emitter E with a three-dimensional structure is CsPbBr 3 , CsPbBr (3-y) Iy (0 ⁇ y ⁇ 3).
  • perovskite emitter E with a two-dimensional structure represented by A 2 BX (4+ ⁇ ) are as follows, but not limited to: (C 4 H 9 NH 3 ) 2 PbBr 4 , (C 4 H 9 NH 3 ) ) 2 PbCl 4 , (C 4 H 9 NH 3 ) 2 PbI 4 , (C 7 H 15 NH 3 ) 2 PbBr 4 , (C 7 H 15 NH 3 ) 2 PbCl 4 , (C 7 H 15 NH 3 ) 2 PbI 4 ,(C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4+ ⁇ ) (0 ⁇ a ⁇ 0.7,-0.7 ⁇ 0),(C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4+ ⁇ ) (0 ⁇ a ⁇ 0.7,-0.7 ⁇ 0),(C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br (4+ ⁇ ) (0 ⁇ a ⁇ 0.7,-0.7 ⁇ 0),(C
  • the perovskite emitter E emits light in the visible light wavelength range.
  • the perovskite emitter E can usually emit a wavelength range of 480 nm or more, preferably 500 nm or more, more preferably 510 nm or more, and usually 700 nm or less, preferably 600 nm or less, and more preferably 580 nm or less. Fluorescence with a peak of maximum luminescence intensity.
  • the perovskite emitter E can usually emit light in a wavelength range of 480 nm to 700 nm, preferably 500 nm to 600 nm, more preferably 510 nm to 580 nm. Fluorescence with a peak of maximum luminescence intensity.
  • the perovskite emitter E can usually emit a wavelength range of 520 nm or more, preferably 530 nm or more, more preferably 540 nm or more, and usually 800 nm or less, preferably 750 nm or less, and more preferably 730 nm or less. Fluorescence with a peak of maximum luminescence intensity.
  • the perovskite emitter E can usually emit light in the wavelength region of 520 nm or more and 800 nm or less, preferably 530 nm or more and 750 nm or less, more preferably 540 nm or more and 730 nm or less. Fluorescence with the maximum luminescence intensity peak in the range.
  • the perovskite emitter E can usually emit a wavelength range of 300 nm or more, preferably 310 nm or more, more preferably 330 nm or more, and usually 600 nm or less, preferably 580 nm or less, and more preferably 550 nm or less. Fluorescence with a peak of maximum luminescence intensity.
  • the perovskite emitter E can usually emit light in the wavelength range of 300 nm or more and 600 nm, preferably 310 nm or more and 580 nm or less, more preferably 330 nm or more and 550 nm or less. Fluorescence at the peak of maximum luminescence intensity.
  • Extinction coefficient also known as Molar Extinction Coefficient, refers to the absorption coefficient when the concentration is 1 mol/L, expressed by the symbol ⁇ , unit: Lmol -1 cm -1 , the preferred extinction coefficient: ⁇ 1*10 3 ; more preferred: ⁇ 1*10 4 ; particularly preferred: ⁇ 5*10 4 ; most preferred: ⁇ 1*10 5 .
  • the extinction coefficient refers to the extinction coefficient at the wavelength corresponding to the absorption peak.
  • the organic compound H has an absorption spectrum between 380nm-500nm.
  • the emission spectrum of the organic compound H is between 440nm-500nm.
  • the wavelength corresponding to the peak of the emission spectrum of the organic compound H is less than 500 nm.
  • the emission spectrum of the organic compound H is between 500nm-580nm.
  • triplet energy level (T1) and singlet energy level (S1), HOMO, LUMO and resonance factor intensity f have important influences on its optoelectronic properties and stability. The following describes the determination of these parameters.
  • HOMO and LUMO energy levels can be measured by the photoelectric effect, such as XPS (X-ray Photoelectron Spectroscopy) and UPS (Ultraviolet Photoelectron Spectroscopy) or by Cyclic Voltammetry (hereafter CV).
  • XPS X-ray Photoelectron Spectroscopy
  • UPS Ultraviolet Photoelectron Spectroscopy
  • CV Cyclic Voltammetry
  • the triplet energy level T1 of organic materials can be measured by low-temperature time-resolved luminescence spectroscopy, or obtained by quantum simulation calculation (such as by Time-dependent DFT), such as by commercial software Gaussian 03W (Gaussian Inc.), the specific simulation method is as follows mentioned above.
  • the singlet energy level S1 of organic materials can be determined by absorption spectrum or emission spectrum, or obtained by quantum simulation calculation (such as Time-dependent DFT); the resonance factor intensity f can also be calculated by quantum simulation (such as Time-dependent DFT) DFT) obtained.
  • the absolute values of HOMO, LUMO, T1 and S1 depend on the measurement method or calculation method used, and even for the same method, different evaluation methods, such as onset and peak point on the CV curve, can give different HOMO /LUMO value. Therefore, reasonably meaningful comparisons should be made using the same measurement method and the same evaluation method.
  • the values of HOMO, LUMO, T1 and S1 are based on the simulation of Time-dependent DFT, but do not affect the application of other measurement or calculation methods.
  • the organic compound H according to the present invention has a relatively large (S1-T1), generally (S1-T1) ⁇ 0.70 eV, preferably ⁇ 0.80 eV, more preferably ⁇ 0.90 eV, more preferably ⁇ 1.00eV, preferably ⁇ 1.10eV.
  • (HOMO-1) is defined as the second highest occupied orbital energy level, (HOMO-2) as the third highest occupied orbital energy level, and so on.
  • (LUMO+1) is defined as the second lowest unoccupied orbital energy level, (LUMO+2) as the third lowest occupied orbital energy level, and so on; these energy levels can be determined by the following simulation method.
  • the organic compound H has a larger resonance factor f(Sn) (n ⁇ 1); generally f(S1) ⁇ 0.20eV, preferably ⁇ 0.30eV, more preferably ⁇ 0.40 eV, more preferably ⁇ 0.50eV, preferably ⁇ 0.60eV;
  • the organic compound H has a lower HOMO, typically ⁇ -5.0 eV, preferably ⁇ -5.1 eV, more preferably ⁇ -5.2 eV, more preferably ⁇ -5.3 eV, most preferably is ⁇ -5.4eV.
  • the organic compound H has a higher LUMO, generally ⁇ -3.0 eV, preferably ⁇ -2.9 eV, more preferably ⁇ -2.8 eV, more preferably ⁇ -2.7 eV, most preferably is -2.6eV.
  • Suitable organic compounds H can be selected from small organic molecules, macromolecules or metal complexes.
  • the organic compound H can be selected from compounds containing ring aromatic hydrocarbons, such as benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, phenanthrene, phenanthrene, fluorene, pyrene, , perylene, azulene; aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolecarb azole, pyridine indole, pyrrole dipyridine, pyrazole, imidazole, triazole, isoxazole, thiazole, oxadiazole, oxtriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine
  • the organic compound H may be selected from compounds comprising at least one of the following groups:
  • the organic compound H has the structure shown in one of the chemical formulae (1)-(5):
  • n1 and o1 are independently selected from natural numbers from 1 to 8
  • m1 and p1 are independently selected from natural numbers from 1 to 10, and r is 0 or 1
  • L 1 and L 2 Each occurrence is independently selected from a single bond, a substituted or unsubstituted aromatic group or a heteroaromatic group having 6 to 30 ring atoms.
  • the organic compound H is selected from systems with longer conjugated pi electrons.
  • styrylamine and its derivatives disclosed in JP2913116B and WO2001021729A1 disclose many examples
  • indenofluorenes and its derivatives disclosed in WO2008/006449 and WO2007/140847 disclose many examples.
  • the organic compound H can be selected from mono-styrylamine, di-styrylamine, tri-styrylamine, quaternary styrylamine, styryl phosphine, styryl ether and aromatic amine .
  • a monostyrylamine means a compound containing an unsubstituted or substituted styryl group and at least one amine, preferably an aromatic amine.
  • a dibasic styrylamine refers to a compound containing two unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a tristyrylamine refers to a compound containing three unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a quaternary styrylamine refers to a compound containing four unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a preferred styrene is stilbene, which may be further substituted.
  • the corresponding phosphines and ethers are defined similarly to amines.
  • Arylamine or aromatic amine refers to a compound containing three unsubstituted or substituted aromatic or heterocyclic ring systems directly attached to nitrogen. At least one of these aromatic or heterocyclic ring systems is preferably a fused ring system and preferably has at least 14 aromatic ring atoms. Preferred examples of these are aromatic anthraceneamines, aromatic anthracene diamines, aromatic pyrene amines, aromatic pyrene diamines, aromatic drolidines and aromatic dridodiamines.
  • aromatic anthraceneamine refers to a compound in which a diarylamine group is attached directly to the anthracene, preferably in the 9 position.
  • aromatic anthracene diamine refers to a compound in which two diarylamine groups are attached directly to the anthracene, preferably in the 9,10 positions.
  • Aromatic pyreneamines, aromatic pyrene diamines, aryl pyrene amines and aryl pyrene diamines are similarly defined, with the divalent arylamine group preferably attached to the 1 or 1,6 position of the pyrene.
  • Examples of organic compounds H based on vinylamines and aromatic amines can be found in the following patent documents: WO 2006/000388, WO 2006/058737, WO 2006/000389, WO 2007/065549, WO 2007/115610, US 7250532 B2, DE 102005058557 A1, CN 1583691 A, JP 08053397 A, US 6251531 B1, US 2006/210830 A, EP 1957606 A1 and US 2008/0113101 A1.
  • the entire contents of the above-listed patent documents are hereby incorporated by reference.
  • organic compounds H based on stilbene and its derivatives are US 5121029.
  • organic compounds H can be selected from indenofluorene-amines and indenofluorene-diamines, as disclosed in WO 2006/122630, benzoindenofluorene-amines and benzoindenofluorene-diamines, such as Dibenzoindenofluorene-amines and dibenzoindenofluorene-diamines are disclosed in WO2008/006449, as disclosed in WO2007/140847.
  • polycyclic aromatic hydrocarbon compounds especially derivatives of the following compounds: anthracene such as 9,10-bis(2-naphthanthracene), naphthalene, tetraphenyl, xanthene, phenanthrene, pyrene (such as 2,5,8,11-tetra-t-butylperylene), indenopyrene, phenylene such as (4,4'-bis(9-ethyl-3-carbazolylvinyl)-1,1 '-biphenyl), bisindenopyrene, decacycloene, hexabenzone, fluorene, spirobifluorene, arylpyrene (such as US20060222886), arylene vinylene (such as US5121029, US5130603), cyclopentadiene such as Tetraphenylcyclopentadiene, rubrene, coumarin, rho
  • the organic compound H contains at least one alcohol-soluble or water-soluble group; preferably at least two alcohol-soluble or water-soluble groups, preferably at least three alcohol-soluble or water-soluble groups Water-soluble group; as disclosed in patent document No. CNxxxxxxxx, the entire contents of which are hereby incorporated by reference herein.
  • the organic compound H contains at least one crosslinkable group; preferably at least two crosslinkable groups; preferably at least three crosslinkable groups; as in As disclosed in the patent document with application number CNxxxxxxxx, the entire contents of this patent document are hereby incorporated by reference.
  • the half-peak width (FWHM) of the emission spectrum of the organic compound H is ⁇ 70 nm, preferably ⁇ 60 nm, more preferably ⁇ 50 nm, particularly preferably ⁇ 40 nm, most preferably ⁇ 35nm.
  • the organic compound H is a compound (a derivative of Bodipy) having the following structural formula:
  • R 41 -R 49 are each independently selected from hydrogen, alkyl, cycloalkyl, heterocyclyl, alkenyl, cycloalkenyl, alkynyl, hydroxyl, mercapto, alkoxy , alkylthio, aryl ether, aryl sulfide, aryl, heteroaryl, halogen, cyano, aldehyde, carbonyl, carboxyl, oxycarboxyl, carbamoyl, amino, nitro, methyl
  • a silyl group, a siloxane group, a boranyl group, a oxiranyl group, and R 41 to R 49 can form a condensed ring or an aliphatic ring with the adjacent substituents.
  • R 49 and R 48 are independently selected from electron withdrawing groups.
  • Suitable electron withdrawing groups include, but are not limited to: F, Cl, cyano, partially or perfluorinated alkyl chains, or one of the following groups:
  • m is 1, 2 or 3;
  • X 1 -X 8 are selected from CR 40 or N, and at least one of them is N;
  • M 1 , M 2 and M 3 independently represent N(R 40 ), C(R 40 , respectively.
  • R 40 and R 50 have the same meanings as the above R 1 .
  • Bodipy derivatives are, but are not limited to,
  • the organic compound H comprises a structural unit represented by chemical formula (6) or (7),
  • Ar 1 -Ar 3 identical or different are selected from aromatic or heteroaromatic having 5-24 ring atoms;
  • the absorption spectrum of the perovskite emitter E and the emission spectrum of the organic compound H have a large overlap, and a relatively efficient energy transfer can be achieved between them ( resonance energy transfer (FRET)).
  • FRET resonance energy transfer
  • the luminescence spectrum of the mixture is entirely derived from the perovskite emitter E, ie, complete energy transfer between the perovskite emitter E and the organic compound H is achieved.
  • the mixture contains more than 2 organic compounds H.
  • the weight ratio of the organic compound H and the perovskite emitter E is from 50:50 to 99:1, preferably from 60:40 to 98:2 , preferably from 70:30 to 97:3, preferably from 80:20 to 95:5.
  • the mixture further comprises an organic resin.
  • the organic resin refers to a resin prepolymer or a resin formed after crosslinking or curing thereof.
  • the mixture comprises two or more organic resins.
  • Organic resins suitable for the present invention include but are not limited to: polystyrene, polyacrylate, polymethacrylate, polycarbonate, polyurethane, polyvinylpyrrolidone, polyvinyl acetate, polyvinyl chloride, polybutene, Polyethylene glycol, polysiloxane, polyacrylate, epoxy resin, polyvinyl alcohol, polyacrylonitrile, polyvinylidene chloride (PVDC), polystyrene-acrylonitrile (SAN), polyterephthalic acid Butylene Glycol (PBT), Polyethylene Terephthalate (PET), Polyvinyl Butyrate (PVB), Polyvinyl Chloride (PVC), Polyamide, Polyoxymethylene, Polyimide, Polyether imide or mixtures thereof.
  • organic resins suitable for the present invention include, but are not limited to, the following monomers (resin prepolymers) formed by homopolymerization or copolymerization: styrene derivatives, acrylate derivatives, acrylonitrile derivatives, acrylamide derivatives, Vinyl ester derivatives, vinyl ether derivatives, maleimide derivatives, conjugated diene derivatives.
  • styrene derivatives are: alkylstyrenes such as ⁇ -methylstyrene, o-, m-, p-methylstyrene, p-butylstyrene, especially p-tert-butylstyrene, alkane Oxystyrene such as p-methoxystyrene, p-butoxystyrene, p-tert-butoxystyrene.
  • alkylstyrenes such as ⁇ -methylstyrene, o-, m-, p-methylstyrene, p-butylstyrene, especially p-tert-butylstyrene, alkane Oxystyrene such as p-methoxystyrene, p-butoxystyrene, p-tert-butoxystyrene.
  • acrylate derivatives are: methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-propyl acrylate, n-propyl methacrylate, isopropyl acrylate, isopropyl methacrylate ester, n-butyl acrylate, n-butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, sec-butyl acrylate, sec-butyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate, 3-hydroxypropyl methacrylate, 2-hydroxypropyl acrylate -Hydroxybutyl, 2-hydroxybutyl methacrylate, 3-hydroxyprop
  • acrylonitrile derivatives are: acrylonitrile, methacrylonitrile, alpha-chloroacrylonitrile, and vinylidene cyanide.
  • acrylamide derivatives are: acrylamide, methacrylamide, alpha-chloroacrylamide, N-2-hydroxyethylacrylamide and N-2-hydroxyethylmethacrylamide.
  • vinyl ester derivatives are: vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate.
  • vinyl ether derivatives are: vinyl methyl ether, vinyl ethyl ether and allyl glycidyl ether.
  • maleimide derivatives are: maleimide, benzylmaleimide, N-phenylmaleimide and N-cyclohexylmaleimide.
  • conjugated diene derivatives are: 1,3-butadiene, isoprene and chloroprene.
  • Said homopolymers or copolymers can be prepared, for example, by free radical polymerization, cationic polymerization, anionic polymerization or organometallic catalyzed polymerization (eg Ziegler-Natta catalysis).
  • the polymerization process can be suspension polymerization, emulsion polymerization, solution polymerization or bulk polymerization.
  • Said organic resin generally has an average molar mass Mn (determined by GPC) of 10 000-1 000 000 g/mol, preferably 20 000-750 000 g/mol, more preferably 30 000-500 000 g/mol.
  • the organic resin is a thermosetting resin or an ultraviolet (UV) curable resin. In some embodiments, the organic resin is cured in a method that facilitates roll-to-roll processing.
  • UV ultraviolet
  • thermosetting resin is epoxy resin, phenolic resin, vinyl resin, melamine resin, urea-formaldehyde resin, unsaturated polyester resin, polyurethane resin, allyl resin, acrylic resin, polyamide resin, polyamide - imide resins, phenolamine polycondensation resins, urea melamine polycondensation resins or combinations thereof.
  • the thermoset resin is an epoxy resin. Epoxies cure easily and do not emit volatiles or by-products from a wide range of chemicals. Epoxies are also compatible with most substrates and tend to wet surfaces easily. See Boyle, M.A. et al., "Epoxy Resins", Composites, Vol. 21, ASM Handbook, pages 78-89 (2001).
  • the organic resin is a silicone thermoset resin.
  • the silicone thermoset resin is OE6630A or OE6630B (Dow Corning Corporation (Auburn, MI)).
  • thermal initiators are used.
  • the thermal initiator is AIBN [2,2'-azobis(2-methylpropionitrile)] or benzoyl peroxide.
  • UV curable resins are polymers that will cure and harden rapidly when exposed to specific wavelengths of light.
  • the UV curable resin is a resin having radical polymerizable groups, cationically polymerizable groups as functional groups, such as (meth)acryloyloxy groups, vinyl groups an oxy group, a styryl group or a vinyl group; the cationically polymerizable group is, for example, an epoxy group, a thioepoxy group, a vinyloxy group or an oxetane alkyl group.
  • the UV curable resin is polyester resin, polyether resin, (meth)acrylic resin, epoxy resin, polyurethane resin, alkyd resin, spiroacetal resin, polybutadiene resin, or sulfur Alkene resin.
  • the UV curable resin is selected from the group consisting of urethane acrylates, allyloxylated cyclohexyl diacrylate, bis(acryloyloxyethyl)hydroxyisocyanurate, bis(acryloyloxy) Neopentyl glycol) adipate, bisphenol A diacrylate, bisphenol A dimethacrylate, 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate , 1,3-butanediol diacrylate, 1,3-butanediol dimethacrylate, dicyclopentyl diacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate , dipentaerythritol hexaacrylate, dipentaerythritol monohydroxypentaacrylate, bis(trimethylolpropane) tetraacrylate, triethylene glycol dimethacrylate, glycerol me
  • the UV curable resin is a thiol functional compound that can be crosslinked with isocyanates, epoxy resins, or unsaturated compounds under UV curing conditions.
  • the thiol-functional compound is a polythiol.
  • the polythiol is pentaerythritol tetrakis(3-mercaptopropionate) (PETMP); trimethylolpropane tris(3-mercaptopropionate) (TMPMP); ethylene glycol bis(3-mercaptopropionate) propionate) (GDMP); tris[25-(3-mercapto-propionyloxy)ethyl]isocyanurate (TEMPIC); dipentaerythritol hexa(3-mercaptopropionate) (Di-PETMP) ; Ethoxylated trimethylolpropane tris(3-mercaptopropionate) (ETTMP 1300 and ETTMP 700); Polycaprolactone tetrakis(3-mercaptopropionate) (PCL4MP1350); Pentaerythritol tetramercaptoacetate (PETMA); Trimethylolpropane Trimercaptoacetate
  • the UV curable resin further includes a photoinitiator.
  • the photoinitiator will initiate a crosslinking and/or curing reaction of the photosensitive material during exposure to light.
  • the photoinitiator is acetophenone-based, benzoin-based, or thioxanthone-based.
  • the UV curable resin comprises a thiol functional compound and a methacrylate, acrylate, isocyanate, or combination thereof. In some embodiments, the UV curable resin includes a polythiol and a methacrylate, acrylate, isocyanate, or combination thereof.
  • the photoinitiator is MINS-311RM (Minuta Technology Co., Ltd (Korea)).
  • the photoinitiator is or (BASF Corporation (Wyandotte, Michigan)).
  • the photoinitiator is TPO (2,4,6-trimethylbenzoyl-diphenyl-oxyphenone) or MBF (methyl benzoylformate).
  • the organic resin is from about 20% to about 99%, about 20% to about 95%, about 20% to about 90%, about 20% to about 20% by weight of the composition (weight/weight) 85%, about 20% to about 80%, about 20% to about 70%, about 20% to about 60%, about 40% to about 99%, about 40% to about 95%, about 40% to about 90% , about 40% to about 85%, about 40% to about 80%, about 40% to about 70%, about 70% to about 99%, about 70% to about 95%, about 70% to about 90%, about 70% to about 85%, about 70% to about 80%, about 80% to about 99%, about 80% to about 95%, about 80% to about 90%, about 80% to about 85%, about 85% to about 99%, about 85% to about 95%, about 85% to about 90%, about 90% to about 99%, about 90% to about 95%, or between about 95% to about 99%.
  • the present invention also relates to a composition
  • a composition comprising a mixture as described above, and at least one solvent.
  • the composition according to the present invention is a solution.
  • composition according to the present invention is a suspension.
  • composition in the embodiment of the present invention may include 0.01 to 20 wt % of the perovskite emitter E, preferably 0.1 to 30 wt %, more preferably 0.2 to 20 wt %, and most preferably 2 to 15 wt % Perovskite emitter E.
  • the color conversion layer can be formed by methods such as inkjet printing, transfer printing, photolithography, etc.
  • the compound ie, the color conversion material
  • the mass concentration of the compound of the present invention (ie, the color conversion material) in the ink is not less than 0.1% wt.
  • the color conversion capability of the color conversion layer can be improved by adjusting the concentration of the color conversion material in the ink and the thickness of the color conversion layer. In general, the higher the concentration or thickness of the color conversion material, the higher the color conversion rate of the color conversion layer.
  • the solvent is selected from water, alcohol, ester, aromatic ketone or aromatic ether, aliphatic ketone or aliphatic ether, or inorganic ester compounds such as borate or phosphate, or A mixture of two or more solvents.
  • suitable and preferred solvents are aliphatic, cycloaliphatic or aromatic hydrocarbons, amines, thiols, amides, nitriles, esters, ethers, polyethers, alcohols, glycols or polyols.
  • alcohols represent the appropriate class of solvents.
  • Preferred alcohols include alkylcyclohexanols, especially methylated aliphatic alcohols, naphthols, and the like.
  • Suitable alcoholic solvents are: dodecanol, phenyltridecanol, benzyl alcohol, ethylene glycol, ethylene glycol methyl ether, glycerol, propylene glycol, propylene glycol ethyl ether, and the like.
  • Said solvent can be used alone or as a mixture of two or more organic solvents.
  • organic solvents include (but are not limited to): methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, Toluene, ortho-xylene, meta-xylene, para-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene, 1,1 ,1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydronaphthalene , decalin, indene and/or mixtures thereof.
  • organic solvent is selected from aromatic or heteroaromatic, ester, aromatic ketone or aromatic ether, aliphatic ketone or aliphatic ether, Alicyclic or olefin compounds, or inorganic ester compounds such as boronic esters or phosphoric acid esters, or a mixture of two or more solvents.
  • aromatic or heteroaromatic based solvents are, but are not limited to: 1-tetralone, 3-phenoxytoluene, acetophenone, 1-methoxynaphthalene, p-diisopropyl Benzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethylnaphthalene, 3-isopropylbiphenyl, p-cymene, dipentylbenzene, o-diethylbenzene, m- Diethylbenzene, p-diethylbenzene, 1,2,3,4-tetratoluene, 1,2,3,5-tetratoluene, 1,2,4,5-tetratoluene, butylbenzene, dodecylbenzene , 1-methylnaphthalene, 1,2,4-trichloro
  • suitable and preferred solvents are aliphatic, cycloaliphatic or aromatic hydrocarbons, amines, thiols, amides, nitriles, esters, ethers, polyethers.
  • the solvent may be a naphthenic hydrocarbon such as decalin.
  • a composition according to the present invention comprises at least 50wt% alcohol solvent; preferably at least 80wt% alcohol solvent; particularly preferably at least 90wt% alcohol solvent.
  • solvents particularly suitable for the present invention are those having a Hansen solubility parameter in the following range:
  • ⁇ d (dispersion force) is in the range of 17.0-23.2 MPa 1/2 , especially in the range of 18.5-21.0 MPa 1/2 .
  • ⁇ p (polar force) is in the range of 0.2-12.5 MPa 1/2 , especially in the range of 2.0-6.0 MPa 1/2 .
  • ⁇ h (hydrogen bonding force) is in the range of 0.9-14.2 MPa 1/2 , especially in the range of 2.0-6.0 MPa 1/2 .
  • the boiling point parameter of the organic solvent should be taken into consideration when selecting the organic solvent.
  • the boiling point of the organic solvent is ⁇ 150°C; preferably ⁇ 180°C; more preferably ⁇ 200°C; more preferably ⁇ 250°C; most preferably ⁇ 275°C or ⁇ 300°C. Boiling points within these ranges are beneficial for preventing nozzle clogging of ink jet print heads.
  • the organic solvent can be evaporated from the solvent system to form a thin film containing functional materials.
  • compositions according to the present invention 1) have a viscosity @ 25°C in the range of 1 cPs to 100 cPs, and/or 2) have a surface tension @ 25°C in the range of 19 dyne/cm to 50 dyne/cm .
  • the resin (prepolymer) or the organic solvent is selected in consideration of its surface tension parameter.
  • Appropriate surface tension parameters are suitable for specific substrates and specific printing methods.
  • the surface tension of the resin (prepolymer) or organic solvent at 25°C is about 19 dyne/cm to 50 dyne/cm; more preferably 22 dyne/cm cm to 35 dyne/cm range; optimally in the 25 dyne/cm to 33 dyne/cm range.
  • the composition according to the present invention has a surface tension at 25°C in the range of about 19 dyne/cm to 50 dyne/cm; more preferably 22 dyne/cm to 35 dyne/cm; most preferably 25 dyne/cm /cm to 33dyne/cm range.
  • the resin (prepolymer) or the organic solvent is selected considering the viscosity parameter of the ink.
  • the viscosity can be adjusted by different methods, such as by the selection of suitable resins (prepolymers) or organic solvents and the concentration of functional materials in the ink.
  • the viscosity of the resin (prepolymer) or organic solvent is lower than 100 cps; more preferably lower than 50 cps; and most preferably 1.5 to 20 cps.
  • the viscosity here refers to the viscosity at the ambient temperature during printing, which is generally 15-30°C, preferably 18-28°C, more preferably 20-25°C, and most preferably 23-25°C. Compositions so formulated would be particularly suitable for ink jet printing.
  • the composition according to the present invention has a viscosity at 25°C in the range of about 1 cps to 100 cps; more preferably in the range of 1 cps to 50 cps; most preferably in the range of 1.5 cps to 20 cps.
  • the ink obtained from the resin (prepolymer) or organic solvent satisfying the above-mentioned boiling point and surface tension parameters and viscosity parameters can form a functional material film with uniform thickness and compositional properties.
  • the present invention further relates to an organic functional material thin film, which is prepared by using the above-mentioned composition.
  • the present invention also provides a method for preparing the organic functional material film, comprising the following steps:
  • the method of printing or coating is selected from ink jet printing, jet printing (Nozzle Printing), letterpress printing, silk screen Printing, dip coating, spin coating, blade coating, roll printing, twist roll printing, offset printing, flexographic printing, rotary printing, spray coating, brush coating or pad printing, slot extrusion coating;
  • the thickness of the organic functional material film is generally 50nm-200mm, preferably 100nm-150mm, more preferably 500nm-100mm, more preferably 1mm-50mm, and most preferably 1mm-20mm.
  • the present invention also provides the application of the above mixture and organic functional material thin film in optoelectronic devices.
  • the optoelectronic device can be selected from organic light emitting diodes (OLED), organic photovoltaic cells (OPV), organic light emitting cells (OLEEC), organic light emitting field effect transistors, and organic lasers.
  • OLED organic light emitting diodes
  • OCV organic photovoltaic cells
  • OLED organic light emitting cells
  • OLED organic light emitting cells
  • OLED organic light emitting field effect transistors
  • organic lasers organic lasers.
  • the present invention provides an optoelectronic device comprising the above-mentioned mixture or organic functional material thin film.
  • the optoelectronic device is an electroluminescent device, such as an organic light emitting diode (OLED), an organic light emitting cell (OLEEC), an organic light emitting field effect transistor, a perovskite light emitting diode (PeLED), and a quantum dot light emitting diode ( QD-LED), wherein a functional layer includes one of the above organic functional material thin films.
  • the functional layer can be selected from a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, a light emitting layer, and a cathode passivation layer (CPL).
  • the optoelectronic device is an electroluminescent device, comprising two electrodes, wherein the functional layer is located on the same side of the two electrodes.
  • the optoelectronic device comprises a light-emitting unit and a color conversion layer (functional layer), wherein the color conversion layer comprises one of the above-mentioned mixtures or thin films of organic functional materials.
  • the color conversion layer absorbs 95% and above, preferably 97% and above, more preferably 99% and above, and most preferably 99.9% and above of the light of the light-emitting unit.
  • the light-emitting unit is selected from solid state light-emitting devices.
  • the solid state light-emitting device is preferably selected from LED, organic light-emitting diode (OLED), organic light-emitting cell (OLEEC), organic light-emitting field effect transistor, perovskite light-emitting diode (PeLED), quantum dot light-emitting diode (QD-LED) and Nanorod LEDs (nanorod LEDs, see DOI: 10.1038/srep28312).
  • the light-emitting unit emits blue light, which is converted into green light or red light by the color conversion layer.
  • the present invention further relates to a display, which includes at least three kinds of pixels of red, green and blue.
  • the blue light pixel is packaged with a blue light emitting unit
  • the red and green light pixel includes a blue light emitting unit and a corresponding red and green color conversion layer. .
  • the present invention further relates to an organic light-emitting device, comprising a substrate, a first electrode, an organic light-emitting layer, a second electrode, a color conversion layer and an encapsulation layer in sequence from bottom to top, the second electrode is at least partially transparent, 1 ) the color conversion layer comprises an organic compound H and a perovskite emitter E; 2) the color conversion layer can absorb 50% or more of the light emitted by the organic light-emitting layer and transmitted through the second electrode 3)
  • the emission spectrum of the organic compound H is on the short wavelength side of the absorption spectrum of the perovskite emitter E, and at least partially overlaps each other.
  • the width at half maximum (FWHM) of the emission spectrum of the perovskite emitter E is less than or equal to 45 nm.
  • the color conversion layer further comprises a resin or resin prepolymer. Suitable and preferred resins or resin prepolymers are described above.
  • the goal is to obtain multi-colored light
  • the color conversion layer absorbs 30% or more, preferably 40% or more, and most preferably 50% or more of the light emitted by the organic light-emitting layer. light transmitted through the second electrode.
  • the goal is to obtain monochromatic light of high color purity, the color conversion layer absorbing 95% and above, preferably 97% and above, more preferably 99% and above, and most Preferably, 99.9% or more of the light emitted by the organic light-emitting layer transmits through the second electrode.
  • the thickness of the color conversion layer is between 100nm-5mm, preferably between 150nm-4mm, more preferably between 200nm-3mm, most preferably between 200nm-2mm between.
  • the organic light-emitting device is an organic electroluminescent device.
  • the organic light emitting device is an OLED.
  • the first electrode is the anode and the second electrode is the cathode.
  • the organic light-emitting device is a top emission (Top Emission) OLED.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to fabricate a transparent light-emitting device. See, eg, Bulovic et al. Nature 1996, 380, p29, and Gu et al., Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass.
  • Preferably the substrate has a smooth surface. Substrates free of surface defects are particularly desirable.
  • the substrate is flexible, optionally a polymer film or plastic, with a glass transition temperature Tg above 150°C, preferably above 200°C, more preferably above 250°C, most preferably over 300°C. Examples of suitable flexible substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • the anode may comprise a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into the hole injection layer (HIL) or hole transport layer (HTL) or light emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the absolute value of the difference between the work function of the anode and the HOMO level or valence band level of the emitter in the light-emitting layer or the p-type semiconductor material as HIL or HTL or electron blocking layer (EBL) It is less than 0.5eV, preferably less than 0.3eV, most preferably less than 0.2eV.
  • anode materials include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum doped zinc oxide (AZO), and the like.
  • suitable anode materials are known and can be readily selected for use by those of ordinary skill in the art.
  • the anode material may be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is pattern-structured. Patterned ITO conductive substrates are commercially available and can be used to fabricate devices according to the present invention.
  • the cathode may include a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the emissive layer.
  • the work function of the cathode and the LUMO level of the emitter in the emissive layer or the n-type semiconductor material as electron injection layer (EIL) or electron transport layer (ETL) or hole blocking layer (HBL)
  • the absolute value of the difference in conduction band level is less than 0.5eV, preferably less than 0.3eV, most preferably less than 0.2eV.
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference in conduction band level is less than 0.5eV, preferably less than 0.3eV, most preferably less than 0.2eV.
  • all materials that can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode materials include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF /Al, MgAg alloys, BaF2/Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the transmittance of the cathode in the range of 400nm-680nm is ⁇ 40%, preferably ⁇ 45%, more preferably ⁇ 50%, most preferably ⁇ 60%.
  • 10-20nm Mg:Ag alloy can be used as a translucent cathode, and the ratio of Mg:Ag can be from 2:8 to 0.5:9.5.
  • the light-emitting layer preferably includes a blue-light fluorescent host and a blue-light fluorescent guest; in another preferred embodiment, the light-emitting layer includes a blue-light phosphorescent host and a blue-light phosphorescent guest; the OLED may also include other Functional layers such as hole injection layer (HIL), hole transport layer (HTL), electron blocking layer (EBL), electron injection layer (EIL), electron transport layer (ETL), hole blocking layer (HBL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the organic electroluminescent device further includes a cathode capping layer (Capping layer, CPL for short).
  • a cathode capping layer Capping layer, CPL for short.
  • the CPL is located between the second electrode and the color conversion layer.
  • the CPL is located on the color conversion layer.
  • Materials used for CPL generally need to have a high refractive index n, such as n ⁇ 1.95@460nm, n ⁇ 1.90@520nm, n ⁇ 1.85@620nm. Examples of materials used for CPL are:
  • the color conversion layer includes one of the above-mentioned CPL materials.
  • the above organic electroluminescent device wherein the encapsulation layer is thin film encapsulation (TFE).
  • TFE thin film encapsulation
  • the present invention also relates to a display panel, wherein at least one pixel includes the above-mentioned organic electroluminescent device.
  • the organic compound H as the host material has the structure shown by H1-H10:
  • Perovskite emitters E1-E4 where E1 is a green three-dimensional perovskite emitter, E2 is a red three-dimensional perovskite emitter, E3 is a green quasi-two-dimensional perovskite emitter, and E4 is a red quasi-two-dimensional perovskite emitter Mineral light.
  • These perovskite emitters are commercially available, such as Autocrystal Technology (Beijing) Co., Ltd. All perovskite emitters E1-E4 have FWHMs less than 40 nm.
  • PMMA polymethyl methacrylate
  • Hx color conversion host material
  • E1-E4 perovskite emitter Ex
  • the above-mentioned color-converting host materials Hx(H1-H10) and perovskite emitters Ex(E1-E4) can also be pre-prepared with resin prepolymers, such as a combination of methyl methacrylate, styrene or methyl styrene.
  • resin prepolymers such as a combination of methyl methacrylate, styrene or methyl styrene.
  • 1-5wt% photoinitiator such as TPO (diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, 97%, CAS: 75980-60-8)
  • TPO diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, 97%, CAS: 75980-60-8
  • the film is formed by coating or coating, and then cured under the irradiation of ultraviolet light (such as a peak 365nm or 390nm ultraviolet LED lamp) to form a color conversion film.
  • the above green color conversion film can be placed on a blue self-luminous device, and the blue self-luminous device emits blue light with a luminescence peak between 400-490nm; the blue light passes through the green color converter and emits a luminescence peak between 490-550nm green light in between. The blue light passes through the red color converter and emits red light with a luminescence peak between 600-680 nm.
  • Example 3 Preparation of light-emitting device based on top-emission (Top-Emission) OLED
  • Preparation of Ink1 Preparation of prepolymer: Weigh n-butyl acetate (42wt%): methyl methacrylate (MMA) (50wt%), hydroxypropyl acrylate (HPA) (3wt%), diphenyl peroxide Formyl (BPO) (5wt%), mixed and stirred at 125°C for 50 minutes to obtain a prepolymer; the above prepolymer (67wt%) + n-butyl acetate (30wt%) + color conversion host material (H8) ( 2.5wt%) + green perovskite emitter E1 (0.5wt%), stirring to obtain a clear solution Ink1.
  • MMA methyl methacrylate
  • HPA hydroxypropyl acrylate
  • BPO diphenyl peroxide Formyl
  • Evaporation move the substrate into the vacuum vapor deposition equipment, under high vacuum (1 ⁇ 10 -6 mbar), control the ratio of PD and HT-1 to 3:100 to form a 10nm hole injection layer ( HIL), then compound HT-1 was evaporated on the hole injection layer to form a hole transport layer (HTL) of 120 nm, and then compound HT-2 was evaporated on the hole transport layer to form a hole adjustment layer of 10 nm.
  • HIL hole injection layer
  • HTL hole transport layer
  • compound HT-2 was evaporated on the hole transport layer to form a hole adjustment layer of 10 nm.
  • As the light-emitting layer a light-emitting layer thin film of 25 nm was formed in a ratio of 100:3 with BH:BD.
  • a 35nm ET:LiQ (1:1) film was formed as an electron transport layer, placed in different evaporation units, and co-deposited at a ratio of 50% by weight to obtain a second electron transport layer, followed by deposition of 1.5nm
  • the Yb is used as an electron injection layer, and then a Mg:Ag (1:9) alloy with a thickness of 16 nm is deposited on the electron injection layer as a cathode;
  • Encapsulation The device is encapsulated with UV-curable resin in a nitrogen glove box.
  • Green light emitting device 2 a, b, d steps are the same as above-mentioned green light emitting device 1, and c steps are as follows:
  • Hayes Electronics IJDAS310 printer FUJIFILM Dimatix DMC-11610
  • Ink2 to obtain a color conversion layer with a thickness of 1-2mm.
  • Green light-emitting device 3 Steps a, b, and c are the same as the above-mentioned green light-emitting device 1, and steps d and e are as follows:
  • the device is encapsulated with UV-curable resin in a nitrogen glove box.
  • Green light-emitting device 4 Steps a, b, and c are the same as the above-mentioned green light-emitting device 2, and steps d and e are as follows:
  • the device is encapsulated with UV-curable resin in a nitrogen glove box.
  • the above green light-emitting devices 1-4 all have high color purity, and the FWHM of the emission lines are all below 35 nm. Green and red light-emitting devices prepared with other host materials and perovskite emitters can also be fabricated in a similar way.

Abstract

本发明公开了一种混合物及其在光电领域的应用。所述混合物包含一种作为主体材料的有机化合物H、一种钙钛矿发光体E,优选进一步包含一种有机树脂;所述有机树脂便于用印刷或涂布的方法形成薄膜,且通过加热固化或紫外固化;所述有机化合物H吸收激发光源的光,并将能量转移给钙钛矿发光体E;所述钙钛矿发光体E的光致发光光谱具有较窄的半峰宽,其可以吸收有机化合物H的能量,然后发射出半峰宽较窄的出射光,且该钙钛矿发光体E,其光致发光光谱的波峰位置可通过组分及大小来调节,从而能分别发射不同颜色的光谱。利用有机化合物H高的消光系数,便于制备较波的颜色转换层。基于些的不同颜色的窄半峰宽发光器件可以制造具有高色域的显示器件。

Description

一种混合物及其在光电领域的应用 技术领域
本发明涉及有机电子材料和器件技术领域,特别是涉及一种混合物和组合物,包含其或由其制备的有机薄膜及其在光电领域的应用。
背景技术
根据色度学原理,射入人眼的光的半峰宽越窄,色纯度越高,颜色越鲜艳。用这种半峰宽窄的红绿蓝三原色光制作的显示装置,显示的色域大,画面真实,画质好。
当前主流的全彩显示实现的方法不外乎两种,第一种,显示器件主动发射红、绿、蓝三原色的光,典型的如RGB-OLED显示;目前成熟的技术是利用精细金属掩膜的真空蒸镀制作三种颜色的发光器件,工艺复杂,成本高,难以实现超过600ppi的高分辨率显示。第二种是采用色转换器将发光器件发射的单一色光转换成多种色光,从而实现全彩显示,如三星公司的蓝光OLED加红绿量子点(QD)薄膜作为颜色转换器。这种方法中的发光器件工艺简单,良率高,而且颜色转换器可以通过蒸镀、喷墨打印、转印、光刻等不同技术实现,可以应用在不同分辨率要求的显示产品上,低如大尺寸电视,只有50ppi,高如硅基微型显示,分辨率可达3000ppi以上。
目前颜色转换器中使用的最有希望的颜色转换材料是无机纳米晶,俗称量子点,这是一类直径介于2-8nm的无机半导体材料(InP,CdSe,CdS,ZnSe等)的纳米颗粒(特别是量子点)。限于当前的量子点合成和分离技术,目前含Cd的量子点发光峰的半峰宽在25-40nm,色纯度可以满足NTSC的显示要求,无Cd量子点的半峰宽在35-75nm之间。然而,由于量子点的消光系数普遍较低,需要较厚的膜,典型的10微米以上的膜才能实现蓝光的完全吸收,这对量产工艺,特别是三星公司的蓝光OLED加红绿量子点的技术方案是个很大的挑战。
另一种较有希望的颜色转换材料是基于钙钛矿的发光材料,其发光峰的半峰宽较窄,但消光系数仍然较低。
因此从产业角度,迫切希望找到一种既能保持窄的发光谱的特点,同时又能降低膜的厚度的颜色转换器的材料解决方案。
发明内容
基于此,本发明的目的是提供一种混合物和组合物,包含其或由其制备的有机薄膜及其在光电领域中的应用。
具体技术方案如下:
本发明提供一种混合物,包含一种有机化合物H和一种钙钛矿发光体E,其特征在于,1)所述有机化合物H的发光谱在所述钙钛矿发光体E的吸收谱的短波长的一侧,且至少部分相互重叠;2)所述的钙钛矿发光体E是以A、B和X为构成成分的钙钛矿发光材料,其中:A是在钙钛矿型晶体结构中位于以B为中心的六面体的各顶点的1价阳离子;X表示在钙钛矿型晶体结构中位于以B为中心的八面体的各顶点的阴离子;B是在钙钛矿型晶体结构中位于将A配置在顶点的六面体以及将X配置在顶点的八面体的中心金属阳离子;优选的,所述钙钛矿发光体E的发光谱的半峰宽(FWHM)小于或等于45nm。
在上述的混合物中,所述的钙钛矿发光体E选自具有三维结构、二维结构、准二维结构中的任一种结构的化合物及它们的任一组合,并且,具有三维结构的钙钛矿发光体E的组成式用ABX (3+δ)表示,具有二维或准二维结构的钙钛矿发光体E的组成式用A 2BX (4+δ)表示,其中:δ是根据B的电荷平衡而变的数,且-0.7≤δ≤0.7。
在上述的混合物中,进一步包含至少一种有机树脂。
本发明还提供一种组合物,包含一种如上所述的混合物和至少一种溶剂。
本发明还提供一种有机功能材料薄膜,包含一种如上所述的混合物。
本发明还提供一种光电器件,包含一种如上所述的混合物或有机功能材料薄膜。
本发明还提供一种有机发光器件,自下而上依次包含一基板、第一电极、一有机发光层、第二电极、一颜色转换层及一封装层,第二电极至少是部分透明,其特征在于:1)所述颜色转换层包含一种有机化合物H和一种钙钛矿发光体E;2)所述颜色转换层能至少部分吸收以上有机发光层所发的透过第二电极的光;3)所述有机化合物H的发光谱在所述钙钛矿发光体E的吸收谱的短波长的一侧,且至少部分相互重叠。
有益效果:按照本发明的一种混合物,其中有机化合物H具有较大的消光系数,钙钛矿发光体E具有较高的发光效率和较窄的发光半峰宽,而且有机化合物H和钙钛矿发光体E之间的能量转换效率较高,从而实现吸收和发光功能的分离优化,便于制备厚度较薄的高效率颜色转换器,用于实现具有高色域的显示器;另外,有机化合物H可以选择较易合成的化合物,且比重较高,可以较大的降低成本。
附图说明
图1:一种红绿蓝三色的显示装置示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反的,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在本发明中,主体材料、基质材料、Host材料和Matrix材料具有相同的含义,可以互换。
在本发明中,金属有机络合物,金属有机配合物,有机金属配合物具有相同的含义,可以互换。
在本发明中,组合物、印刷油墨、油墨、和墨水具有相同的含义,可以互换。
本发明提供一种混合物,包含一种有机化合物H、一种钙钛矿发光体E,1)所述有机化合物H的发光谱在所述钙钛矿发光体E的吸收谱的短波长的一侧,且至少部分相互重叠;2)所述的钙钛矿发光体E是以A、B和X为构成成分的钙钛矿发光材料,其中:A是在钙钛矿型晶体结构中位于以B为中心的六面体的各顶点的1价阳离子;X表示在钙钛矿型晶体结构中位于以B为中心的八面体的各顶点的阴离子;B是在钙钛矿型晶体结构中位于将A配置在顶点的六面体以及将X配置在顶点的八面体的中心金属阳离子。
在一个优先的实施例中,所述钙钛矿发光体E的发光谱的半峰宽(FWHM)≤45nm,较好是≤40nm,更好是≤35nm,更更好是≤30nm,最好是≤25nm。
在另一个优先的实施例中,所述钙钛矿发光体E,其荧光量子效率(PLQY)≥60%,较好是≥65%,更好是≥70%,最好是≥80%。
在某些优选的实施例中,所述钙钛矿发光体E选自具有三维结构、二维结构、准二维结构中的任一种结构的化合物及它们的任一组合,并且,具有三维结构的钙钛矿发光体E的组成式用ABX (3+δ)表示,具有二维或准二维结构的钙钛矿发光体E的组成式用A 2BX (4+δ)表示,其中:δ是根据B的电荷平衡而变的数,且-0.7≤δ≤0.7。
在一个优先的实施例中,所述的钙钛矿发光体是纳米发光体。
在某些实施例中,所述的钙钛矿纳米发光体的平均粒径约在1到1000nm范围内。在某些较好的实施例中,钙钛矿纳米发光体的平均粒径约在1到100nm。在某些更好的实施例中,钙钛矿纳米发光体的平均粒径约在1到20nm,最好从1到10nm。
在某些优选的实施例中,在钙钛矿发光体E中,A作为1价的阳离子,可以选自铯离子、有机铵离子、或脒鎓离子。
在一些优选的实施例中,在钙钛矿发光体E中,A为铯离子、碳原子数为3以下的有机铵离子、或碳原子数为3以下的脒鎓离子时,所述钙钛矿发光体E具有ABX (3+δ)表示的三维结构。
在一个优先的实施例中,A优选铯离子或有机铵离子。
在一个优先的实施例中,所述有机铵离子选自具有下述通式(I)所示的阳离子。
Figure PCTCN2022085637-appb-000001
其中,R 11~R 14分别独立选自H、D,或具有1至20个C原子的直链的烷基、卤代烷基、烷氧基、硫代烷氧基基团,或具有3至20个C原子的支链或环状的烷基、卤代烷基、烷氧基、硫代烷氧基基团或甲硅烷基基团,并且,R 11~R 14不同时成为H或D。
当R 11~R 14为烷基时,碳原子数各自独立地通常为
Figure PCTCN2022085637-appb-000002
优选为
Figure PCTCN2022085637-appb-000003
更优选为
Figure PCTCN2022085637-appb-000004
进一步优选为1。
当R 11~R 14为环烷基时,碳原子数各自独立地通常为
Figure PCTCN2022085637-appb-000005
优选为
Figure PCTCN2022085637-appb-000006
更优选为
Figure PCTCN2022085637-appb-000007
碳原子数也包括取代基的碳原子数。
R 11~R 14优选各自独立的为氢原子或烷基。
通过减少通式(I)所含的烷基和环烷基的数量,以及通过减少烷基和环烷基的碳原子数,可以得到具有发光强度高的三维结构的钙钛矿化合物。
当烷基或环烷基的碳原子数为4以上时,可以得到部分或全部具有二维和/或准二维(quasi-2D)的钙钛矿型化合物。如果二维钙钛矿型晶体结构无限大地层叠,则与三维钙钛矿型晶体结构同等(参考文献:P.P.Boix etc.,J.Phys.Chem.Lett.2015,6,898-907)。
由R 11~R 14表示的烷基中所含的碳原子数的总数优选为
Figure PCTCN2022085637-appb-000008
由R 11~R 14表示的环烷基中所含的碳原子数的总数优选为
Figure PCTCN2022085637-appb-000009
更优选R 11~R 14中,1个为碳原子数
Figure PCTCN2022085637-appb-000010
的烷基,3个为氢原子。
作为R 11~R 14的烷基,可以是甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、新戊基、叔戊基、1-甲基丁基、正己基、2-甲基戊基、3-甲基戊基、2,2-二甲基丁基、2,3-二甲基丁基、正庚基、2-甲基己基、3-甲基己基、2,2-二甲基戊基、2,3-二甲基戊基、2,4-二甲基戊基、3,3-二甲基戊基、3-乙基戊基、2,2,3-三甲基丁基、正辛基、异辛基、2-乙基己基、壬基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、十八烷基、十九烷基、二十烷基。
作为R 11~R 14的环烷基,可以是环丙基、环丁基、环戊基、环己基、环庚基、环辛基、环壬基、环癸基、降冰片基、异冰片基、1-金刚烷基、2-金刚烷基、三环癸基等。
作为由A表示的有机铵离子,优选CH 3NH 3 +(也称为甲基铵离子)、C 2H 5NH 3 +(也称为乙基铵离子。)或C 3H 7NH 3 +(也称为丙基铵离子。),更优选CH 3NH 3 +或C 2H 5NH 3 +,进一步优选CH 3NH 3 +
在另一个优先的实施例中,A选自下述通式(II)所示的脒鎓离子:
(R 15R 16N=CH-NR 17R 18) +     (II)
其中,R 15~R 18分别独立选自H、D,或具有1至20个C原子的直链的烷基、卤代烷基、烷氧 基、硫代烷氧基基团,或具有3至20个C原子的支链或环状的烷基、卤代烷基、烷氧基、硫代烷氧基基团或甲硅烷基基团。
由R 15~R 18表示的烷基可以各自独立地为直链状,也可以为支链状,也可以具有氨基作为取代基。
当R 15~R 18为烷基时,碳原子数各自独立地通常为
Figure PCTCN2022085637-appb-000011
优选为
Figure PCTCN2022085637-appb-000012
更优选为
Figure PCTCN2022085637-appb-000013
当R 15~R 18为环烷基时,碳原子数各自独立地通常为
Figure PCTCN2022085637-appb-000014
优选为
Figure PCTCN2022085637-appb-000015
更优选为
Figure PCTCN2022085637-appb-000016
碳原子数也包括取代基的碳原子数。
R 15~R 18优选各自独立的为氢原子或烷基。
作为R 15~R 18的烷基的具体例子同R 11~R 14中例示的烷基。
作为R 15~R 18的环烷基的具体例子同R 11~R 14中例示的环烷基。
通过减少通式(II)中所含的烷基和环烷基的数量,以及通过减少烷基和环烷基的碳原子数,可以得到发光强度高的三维结构的钙钛矿化合物。
当烷基或环烷基的碳原子数为4以上时,可以得到部分或全部具有二维和/或准二维(quasi-2D)的钙钛矿型化合物。如果二维钙钛矿型晶体结构无限大地层叠,则与三维钙钛矿型晶体结构同等(参考文献:P.P.Boix etc.,J.Phys.Chem.Lett.2015,6,898-907)。
另外,由R 15~R 18表示的烷基中所含的碳原子数的合计数优选为
Figure PCTCN2022085637-appb-000017
由R 15~R 18表示的环烷基中所含的碳原子数的合计数优选为
Figure PCTCN2022085637-appb-000018
更优选R 15为碳原子数
Figure PCTCN2022085637-appb-000019
的烷基,R 16~R 18为氢原子。
在钙钛矿发光体E中,B是在上述钙钛矿型晶体结构中位于将A配置在顶点的六面体和将X配置在顶点的八面体的中心的成分,是金属离子。作为B的金属离子可以选自1种或多种1价金属离子、2价金属离子和3价金属离子。B优选含有2价金属离子,更优选铅和锡离子。
在钙钛矿发光体E中,X表示在上述钙钛矿型晶体结构中位于以B为中心的八面体的各顶点的阴离子,优选自卤素离子和硫氤酸根离子。在一个优先的实施例中,X选自由氯离子、溴离子、氟离子、碘离子和硫氤酸根离子。
X可以根据所希望的发光波长适当选择。
在X为2种以上的卤素离子的情况下,上述卤化物离子的含有比率可以根据发光波长适当选择,例如,可以是溴离子和氯离子的组合、或者溴离子和碘离子的组合。
在钙钛矿发光体E为三维结构的情况下,具有以B为中心、以X为顶点的、由BX 6表示的共顶点八面体的三维网络。
在钙钛矿发光体E为二维结构的情况下,以B为中心、X为顶点的、由BX 6表示的八面体共有同一平面的4个顶点的X,由此形成由二维连接的BX 6构成的层和由A构成的层交替层叠的结构。
B是相对于X可取八面体配位的金属阳离子。
在一个较为优选的实施例中,所述的钙铁矿发光体E为有机无机钙铁矿。
有机无机钙铁矿为至少包含有机阳离子、2价的金属离子及卤素离子的离子化合物,除此以外,也可以包含1价的阳离子等其他离子。其他离子可以为有机离子,也可以为无机离子。所述的有机无机钙铁矿包含无机半导体层和有机成分,可以为二维钙铁矿、准二维钙铁矿、三维钙铁矿中的任一个;优选为二维钙铁矿及准二维钙铁矿;更优选为准二维钙铁矿。其中,二维钙铁矿具有相当于钙铁矿型结构的八面体部分的无机骨架二维地排列形成的无机半导体层及有机阳离子将阳离子性基朝向无机半导体层侧排列的有机层,准二维钙铁矿分别具有相当于二维钙铁矿的无机半导体层及有机层的层,并在无机半导体层中具有2层以上的二维排列结构且在与其钙铁矿型结构的立方晶体的各顶点对应的位置上配置有1价的阳离子。
在一个优选的实施例中,所述的钙铁矿发光体E是准二维的有机无机钙铁矿,为具有 下述通式(III)所表示的化合物。
R 2A n-1B nX 3n+1  (III)
其中,R表示1价的有机阳离子,A,B,X的定义如上述。n为2以上的整数。2个R、多个B、多个X彼此可以分别相同也可以不同。在A存在多个时,A彼此可以相同也可以不同。
通式(III)所表示的化合物中,A n-1B nX 3n+1所表示的晶格构成无机半导体层,R所表示的1价的有机阳离子构成有机层。n与无机半导体层中的二维排列结构的层叠数对应,且优选为2~100的整数。
R所表示的1价的有机阳离子优选包含芳香环,更优选包含亚皖基和芳香环,进一步优选包含亚烷基与芳香环连结的结构,更进一步优选为包含亚烷基与芳香环连结的结构的铵,尤其优选下述通式(IV)所表示的铵。
Ar(CH 2) n1NH 3 +   (IV)
其中,Ar表示芳香环,n1为1~20的任一整数。
有机阳离子所具有的芳香环可以为芳香烃,也可以为芳香族杂环,但是优选为芳香烃。作为芳香族杂环的杂原子,可以是氮原子、氧原子及硫原子等。作为芳香烃,优选为苯环及具有多个苯环缩合的结构的缩合多环烃,优选为苯环、萘环、菲环、蒽环、
Figure PCTCN2022085637-appb-000020
环、并四苯、苝环,优选为笨环、萘环,进一步优选为笨环。作为芳香族杂环,优选为吡啶环、吡嗪环、嘧啶环、哒嗪环、吡咯环、噻吩环、呋喃环、咔唑环、三嗪环,更优选为吡啶环、吡嗪环、嘧啶环、哒嗪环,进一步优选为吡啶环。有机阳离子所具有的芳得香环可以被任一取代,如被具有烷基、芳基、卤素原子(优选为氟原子)等取代基取代,并且,存在于芳香环或与芳香环健结的取代基中的氢原子也可以为氘原子。
上述的A所表示的1价的阳离子可以为有机阳离子,也可以为无机阳离子。作为1价的阳离子,可以举出甲酰胺、铵及铯等,优选为甲酰胺。
上述的B所表示的2价的金属离子,可以选自Cu 2+,Ni 2+,Mn 2+,Fe 2+、Co 2+、Pd 2+、Ge 2+、Sn 2+、Pb 2+及Eu 2+等,优选为Sn 2+、Pb 2+,更优选为Pb 2+
上述的X所表示的卤素离子,可以选自氟、氯、溴及腆的各离子。多个X所表示的卤素离子可以全部相同,也可以为2种或3种卤素离子的组合。
具有通式(IV)所表示的化合物的优选例子为下述通式(V)和(VI)所表示的化合物。
PEA 2FA n-1Pb nBr 3n+1(V)
PEA 2MA n-1Pb nBr 3n+1(VI)
其中,PEA表示苯乙铵,FA表示甲酰胺,MA表示甲基铵,n为2以上的整数。
在本发明中,钙钛矿发光体E的晶体结构可以通过X射线衍射图来确认。
在具有上述三维结构的钙钛矿发光体E的情况下,在X射线衍射图中,通常在2θ=12-18°的位置确认到来自(hkl)=(001)的峰,或者在2θ=18-25°的位置确认到来自(hkl)=(110)的峰。更优选在
Figure PCTCN2022085637-appb-000021
的位置上确认到来自(hkl)=(001)的峰,或者在2θ=20-23°的位置上确认到来自(hkl)=(110)的峰。
在具有上述二维结构的钙钛矿型晶体结构的钙钛矿发光体E的情况下,更优选在X射线衍射图中,通常在2θ=1-10°的位置上确认到来自(hkl)=(002)的峰,在2θ=2-8°的位置上确认到来自(hkl)=(002)的峰。
由ABX (3+δ)所示的具有三维结构的钙钛矿型晶体结构的钙钛矿发光体E的具体例子如下,但不限于:CH 3NH 3PbBr 3,CH 3NH 3PbC1 3,CH 3NH 3PbI 3,CH 3NH 3PbBr (3-y)I y(0<y<3),CH 3NH 3PbBr (3- y)Cl y(0<y<3),(H 2N=CH-NH 2)PbBr 3,(H 2N=CH-NH 2)PbCl 3,(H 2N=CH-NH 2)Pbl 3,CH 3NH 3Pb (1- a)Ca aBr 3(0<a 0.7),CH 3NH 3Pb (1-a)Sr aBr 3(0<a 0.7),CH 3NH 3Pb (1-a)La aBr (3+δ)(0<a 0.7,0<δ 0.7),CH 3NH 3Pb (1-a)Ba aBr 3(0<a≤0.7),CH 3NH 3Pb (1-a)Dy aBr( 3+δ)(0<a≤0.7,0<δ≤0.7),CH 3NH 3Pb( 1- a)Na aB r(3+δ)(0<a≤0.7,-0.7≤δ<0),CH 3NH 3Pb( 1- a)Li aBr( 3+δ)(0<a≤0.7,-0.7≤δ<0),CsPb (1-a)Na aBr( 3+δ)(0<a≤0.7,-0.7≤δ<0),CsPb( 1-a)Li aBr( 3+δ)(0<a≤0.7,-0.7≤δ<0),CH 3NH 3Pb (1-a)Na aBr (3+δ-y)I y(0<a≤0.7,-0.7≤δ<0,0<y<3),CH 3NH 3Pb (1-a)Li aBr (3+δ-y)I y(0<a≤0.7,-0.7≤δ<0,0<y<3),CH 3NH 3Pb (1- a)Na aBr( 3+δ- y)Cl y(0<a≤0.7,-0.7≤δ<0,0<y<3),CH 3NH 3Pb (1-a)Li aBr (3+δ-y)Cl y(0<a≤0.7,-0.7≤δ<0,0<y<3),(H 2N=CH-NH 2)Pb (1-a)Na aBr (3+δ)(0<a≤0.7,-0.7≤δ<0),(H 2N=CH-NH 2)Pb (1-a)Li aBr (3+δ)(0<a≤0.7,-0.7≤δ<0),(H 2N=CH-NH 2)Pb (1-a)Na aBr (3+δ-y)I y((0<a≤0.7,-0.7≤δ<0,0<y<3),(H 2N=CH-NH 2)Pb (1-a)Na aBr (3+δ-y)Cl y(0<a≤0.7,-0.7≤δ<0,0<y<3),CsPbBr 3,CsPbC1 3,CsPbl3,CsPbBr (3- y)I y(0<y<3),CsPbBr( 3- y)Cl y(0<y<3),CH 3NH 3PbBr (3-y)Cl y(0<y<3),CH 3NH 3Pb (1-a)Zn aBr 3(0<a≤0.7),CH 3NH 3Pb (1-a)Al aBr (3+δ)(0<a≤0.7,0≤δ≤0.7),CH 3NH 3Pb (1-a)Co aBr 3(0<a≤0.7),CH 3NH 3Pb (1- a)Mn aBr 3(0<a≤0.7),CH 3NH 3Pb (1-a)Mg aBr 3(0<a≤0.7),CsPb (1-a)Zn aBr 3 0<a≤0.7),CsPb( 1- a)Al aBr (3+δ)(0<a≤0.7,0≤δ≤0.7),CsPb (1-a)Co aBr 3(0<a≤0.7),CsPb (1-a)Mn aBr 3(0<a≤0.7),CsPb (1- a)Mg aBr 3(0<a≤0.7),CH 3NH 3Pb (1-a)Zn aBr (3-y)I y(0<a≤0.7,0<y<3),CH 3NH 3Pb (1-a)Al aB r(3+δ-y)I y(0<a≤0.7,0<δ≤0.7,0<y<3),CH 3NH 3Pb (1-a)Co aBr (3-y)I y(0<a≤0.7,0<y<3),CH 3NH 3Pb (1-a)Mn aBr (3- y)I y(0<a≤0.7,0<y<3),CH 3NH 3Pb (1-a)Mg aBr (3-y)I y(0<a≤0.7,0<y<3),CH 3NH 3Pb (1-a)Zn aBr (3-y)Cl y(0<a≤0.7,0<y<3),CH 3NH 3Pb( 1- a)Al aB r(3+δ-y)Cl y(0<a≤0.7,0<δ≤0.7,0<y<3),CH 3NH 3Pb (1- a)Co aBr (3+δ-y)Cl y(0<a≤0.7,0<y<3),CH 3NH 3Pb (1-a)Mn aBr (3-y)Cl y(0<a≤0.7,0<y<3),CH 3NH 3Pb (1- a)Mg aBr (3-y)Cl y(0<a≤0.7,0<y<3),(H 2N=CH-NH 2)Zn aBr 3(0<a≤0.7),(H 2N=CH-NH2)Mg aBr 3(0<a≤0.7),(H 2N=CH-NH 2)Pb (1-a)Zn aBr (3-y)I y(0<a≤0.7,0<y<3),(H 2N=CH-NH 2)Pb (1-a)Zn aBr (3-y)Cl y(0<a≤0.7,0<y<3)等。
优选的具有三维结构的钙钛矿发光体E为CsPbBr 3,CsPbBr (3-y)Iy(0<y<3)。
由A 2BX (4+δ)表示的具有二维结构的钙钛矿发光体E的具体例子如下,但不限于:(C 4H 9NH 3) 2PbBr 4,(C 4H 9NH 3) 2PbCl 4,(C 4H 9NH 3) 2PbI 4,(C 7H 15NH 3) 2PbBr 4,(C 7H 15NH 3) 2PbCl 4,(C 7H 15NH 3) 2PbI 4,(C 4H 9NH 3) 2Pb (1-a)Li aBr (4+δ)(0<a≤0.7,-0.7≤δ≤0),(C 4H 9NH 3) 2Pb (1-a)Na aBr (4+δ)(0<a≤0.7,-0.7≤δ≤0),(C 4H 9NH 3) 2Pb (1-a)Rb aBr (4+δ)(0<a≤0.7,-0.7≤δ≤0),(C 7H 15NH 3) 2Pb (1-a)Na aBr (4+δ)(0<a≤0.7,-0.7≤δ≤0),(C 7H 15NH 3) 2Pb (1-a)Li aBr (4+δ)(0<a≤0.7,-0.7≤δ≤0),(C 7H 15NH 3) 2Pb (1-a)Rb aBr (4+δ)(0<a≤0.7,-0.7≤δ≤0),(C 4H 9NH 3) 2Pb (1-a)Na aBr (4+δ-y)I y(0<a≤0.7,-0.7≤δ≤0,0<y<4),(C 4H 9NH 3) 2Pb (1-a)Li aBr (4+δ-y)I y(0<a≤0.7,-0.7≤δ≤0,0<y<4),(C 4H 9NH 3) 2Pb (1-a)Rb aBr (4+δ-y)I y(0<a≤0.7,-0.7≤δ≤0,0<y<4),(C 4H 9NH 3) 2Pb (1-a)Na aBr (4+δ-y)Cl y(0<a≤0.7,-0.7≤δ≤0,0<y<4),(C 4H 9NH 3) 2Pb (1-a)Li aBr (4+δ-y)Cl y(0<a≤0.7,-0.7≤δ≤0,0<y<4),(C 4H 9NH 3) 2Pb (1-a)Rb aBr (4+δ-y)Cl y(0<a≤0.7,-0.7≤δ≤0,0<y<4),(C 4H 9NH 3) 2PbBr 4,(C 7H 15NH 3) 2PbBr 4,(C 4H 9NH 3) 2PbB r(4-y)Cl y(0<y<4),(C 4H 9NH 3) 2PbBr (4-y)I y(0<y<4),(C 4H 9NH 3) 2Pb (1-a)Zn aBr 4(0<a≤0.7),(C 4H 9NH 3) 2Pb(i- a)Mg aBr 4(0<a M 0.7),(C 4H 9NH 3) 2Pb( 1- a)Co aBr 4(0<a≤0.7),(C 4H 9NH 3) 2Pb (1-a)Mn aBr 4(0<a≤0.7),(C 7H 15NH 3) 2Pb (1-a)Zn aBr 4(0<a≤0.7),(C 7H 15NH 3) 2Pb (1-a)Mg aBr 4(0<a≤0.7),(C 7H 15NH 3) 2Pb (1- a)Co aBr 4(0<a≤0.7),(C 7H 15NH 3) 2Pb (1-a)Mn aBr 4(0<a≤0.7),(C 4H 9NH 3) 2Pb (1-a)Zn aBr (4-y)I y(0<a≤0.7,0<y<4),(C 4H 9NH 3) 2Pb (1-a)Mg aBr (4-y)I y(0<a≤0.7,0<y<4),(C 4H 9NH 3) 2Pb (1-a)Co aBr (4-y)I y(0<a≤0.7,0<y<4),(C 4H 9NH 3) 2Pb (1-a)Mn aBr (4-y)I y(0<a≤0.7,0<y<4),(C 4H 9NH 3) 2Pb (1-a)Zn aBr (4-y)Cl y(0<a≤0.7,0<y<4),(C 4H 9NH 3) 2Pb (1- a)Mg aBr (4-y)Cl y(0<a≤0.7,0<y<4),(C 4H 9NH 3) 2Pb (1-a)Co aBr (4-y)Cl y(0<a≤0.7,0<y<4),(C 4H 9NH 3) 2Pb (1- a)Mn aBr (4-y)Cl y(0<a≤0.7,0<y<4)等。
优选的,所述钙钛矿发光体E在可见光波长范围发光的发光体。
X为溴离子时,钙钛矿发光体E通常可以发出在480nm以上、优选为500nm以上、更优选为510nm以上,并且,通常在700nm以下、优选为600nm以下、更优选为580nm以下的波长范 围内具有最大发光强度峰值的荧光。
作为本发明的另一方面,在X为溴离子的情况下,钙钛矿发光体E通常可以发出在480nm以上700nm以下、优选为500nm以上600nm以下、更优选为510nm以上580nm以下的波长范围内具有最大发光强度峰值的荧光。
X为碘离子时,钙钛矿发光体E通常可以发出在520nm以上、优选为530nm以上、更优选为540nm以上,并且,通常在800nm以下、优选为750nm以下、更优选为730nm以下的波长范围内具有最大发光强度峰值的荧光。
作为本发明的另一方面,在X为碘离子的情况下,钙钛矿发光体E通常可以发出在520nm以上800nm以下、优选为530nm以上750nm以下、更优选为540nm以上730nm以下的波长区域的范围内具有最大发光强度峰值的荧光。
X为氯离子时,钙钛矿发光体E通常可以发出在300nm以上、优选为310nm以上、更优选为330nm以上,并且,通常在600nm以下、优选为580nm以下、更优选为550nm以下的波长范围内具有最大发光强度峰值的荧光。
作为本发明的另一方面,在X为氯离子的情况下,钙钛矿发光体E通常可以发出在300nm以上600nm、优选为310nm以上580nm以下、更优选为330nm以上550nm以下的波长范围内具有最大发光强度峰值的荧光。
其他对本发明有用有关钙钛矿材料的材料合成,工艺和器件技术,应用和信息,在以下专利文献中有所描述,CN112029493A,CN113784925A,CN113748088A,CN111417643A,CN110799626A,CN110088231A,CN107924933A,CN107743530A,CN108473865A,特此将上述列出的专利文件中的全部内容并入本文作为参考。
按照本发明的混合物,其中有机化合物H具有较高的消光系数。消光系数也称摩尔吸光系数(Molar Extinction Coefficient),是指浓度为1摩尔/升时的吸光系数,用符号ε表示,单位:Lmol -1cm -1,优选的消光系数:ε≥1*10 3;更优选的:ε≥1*10 4;特别优选的:ε≥5*10 4;最优选的:ε≥1*10 5。优选的,所述的消光系数是指在吸收峰对应的波长时的消光系数。
在某些实施例中,有机化合物H的吸收光谱在380nm-500nm之间。
在一些优选的实施例中,有机化合物H的发光光谱在440nm-500nm之间。
在一个优选的实施例中,有机化合物H的发光光谱的峰值对应的波长小于500nm。
在另一些优选的实施例中,有机化合物H的发光光谱在500nm-580nm之间。
在本发明中,对于有机材料的能级结构,三线态能级(T1)及单线态能级(S1)、HOMO、LUMO和谐振因子强度f对其光电性能及稳定性有着重要的影响。以下对这些参数的确定作一介绍。
HOMO和LUMO能级可以通过光电效应进行测量,例如XPS(X射线光电子光谱法)和UPS(紫外光电子能谱)或通过循环伏安法(以下简称CV)。最近,量子化学方法,例如密度泛函理论(以下简称DFT),也成为行之有效的计算分子轨道能级的方法。
有机材料的三线态能级T1可通过低温时间分辨发光光谱来测量,或通过量子模拟计算(如通过Time-dependent DFT)得到,如通过商业软件Gaussian 03W(Gaussian Inc.),具体的模拟方法如下面所述。
有机材料的单线态能级S1,可通过吸收光谱,或发射光谱来确定,也可通过量子模拟计算(如Time-dependent DFT)得到;谐振因子强度f也可通过量子模拟计算(如Time-dependent DFT)得到。
应该注意,HOMO、LUMO、T1及S1的绝对值取决于所用的测量方法或计算方法,甚至对于相同的方法,不同评价的方法,例如在CV曲线上起始点和峰点可给出不同的HOMO/LUMO值。因此,合理有意义的比较应该用相同的测量方法和相同的评价方法进行。本发明实施例的描述 中,HOMO、LUMO、T1及S1的值是基于Time-dependent DFT的模拟,但不影响其他测量或计算方法的应用。
优先的,按照本发明的有机化合物H具有较大的(S1-T1),一般的(S1-T1)≥0.70eV,较好是≥0.80eV,更好是≥0.90eV,更更好是≥1.00eV,最好是≥1.10eV。
在一个优先的实施例中,有机化合物H具有较大的ΔHOMO和/或ΔLUMO,一般的≥0.50eV,较好是≥0.60eV,更好是≥0.70eV,更更好是≥0.80eV,最好是≥0.90eV;其中ΔHOMO=HOMO-(HOMO-1),ΔLUMO=(LUMO+1)-LUMO。
出于本发明的目的,(HOMO-1)定义为第二高的占有轨道能级,(HOMO-2)为第三高的占有轨道能级,以此类推。(LUMO+1)定义为第二低的未占有轨道能级,(LUMO+2)为第三低的占有轨道能级,以此类推;这些能级都可以通过下述的模拟方法确定。
在一个较为优先的实施例中,有机化合物H具有较大的谐振因子f(Sn)(n≥1);一般的f(S1)≥0.20eV,较好是≥0.30eV,更好是≥0.40eV,更更好是≥0.50eV,最好是≥0.60eV;
在某些实施例中,有机化合物H具有较低的HOMO,一般是≤-5.0eV,较好是≤-5.1eV,更好是≤-5.2eV,更更好是≤-5.3eV,最好是≤-5.4eV。
在另一些实施例中,有机化合物H具有较高的LUMO,一般是≥-3.0eV,较好是≥-2.9eV,更好是≥-2.8eV,更更好是≥-2.7eV,最好是-2.6eV。
合适的有机化合物H可以选自有机小分子、高分子或金属配合物。
在某些优选的实施例中,所述的有机化合物H可选自含有环芳香烃化合物,如苯、联苯、三苯基、苯并、萘、蒽、萉、菲、芴、芘、屈、苝、薁;芳香杂环化合物,如二苯并噻吩、二苯并呋喃、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、吲哚咔唑、吡啶吲哚、吡咯二吡啶、吡唑、咪唑、三氮唑、异恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、吲哚嗪、苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、噌啉、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、苯并呋喃吡啶、呋喃二吡啶、苯并噻吩吡啶、噻吩二吡啶、苯并硒吩吡啶和硒吩二吡啶;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。
在一个优先的实施例中,所述有机化合物H可选于包含至少一个以下基团的化合物:
Figure PCTCN2022085637-appb-000022
其中:Ar 11是芳基或杂芳基;X 3-X 10选于CR 1或N;X 11和X 12选于CR 1R 2或NR 1或O;R 1和R 2分别独立选自H、D,或具有1至20个C原子的直链的烷基、卤代烷基、烷氧基、硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、卤代烷基、烷氧基、硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异 氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,NO 2,CF 3基团,Cl,Br,F,I,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或具有5至40个环原子的芳胺基或杂芳胺基基团,以上基团任意位置的二取代单元或这些基团的组合,其中一个或多个基团可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
在另一个优先的实施例中,所述的有机化合物H具有化学式(1)-(5)之一所示的结构:
Figure PCTCN2022085637-appb-000023
其中:n1、o1独立选自1到8的自然数,m1、p1独立选自1到10的自然数,r是0或1;R 1-R 4是取代基,可相同或不同的选自具有1至20个C原子的直链的烷基、卤代烷基、烷氧基、硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、卤代烷基、烷氧基、硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团,氨基甲酰基基团,卤甲酰基基团,甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,NO 2,CF 3,Cl,Br,F,I,可交联的基团,或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或具有5至40个环原子的芳胺基或杂芳胺基基团,以上取代基任意位置的二取代单元或这些取代基的组合;Ar 1-Ar 4在每次出现时,相互独立选自具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或是具有5至40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合;L 1和L 2在每次出现时,相互独立选自单键,取代或未取代环原子数为6~30的芳香基团或杂芳香基团。
在另一些实施例中,所述的有机化合物H选自具有较长的共轭π电子系统。迄今,已有许多例子,例如在JP2913116B和WO2001021729A1中公开的苯乙烯胺及其衍生物,和在WO2008/006449和WO2007/140847中公开的茚并芴及其衍生物。
在一个优先的实施例中,所述的有机化合物H可选自一元苯乙烯胺,二元苯乙烯胺,三元苯乙烯胺,四元苯乙烯胺,苯乙烯膦,苯乙烯醚和芳胺。
一个一元苯乙烯胺是指一化合物,它包含一个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个二元苯乙烯胺是指一化合物,它包含二个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个三元苯乙烯胺是指一化合物,它包含三个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个四元苯乙烯胺是指一化合物,它包含四个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个优选的苯乙烯是二苯乙烯,其可能会进一步被取代。相应的膦类和醚类的定义与胺类相似。芳基胺或芳香胺是指一种化合物,包含三个直接联接氮的无取代或取代的芳香环或杂环系统。这些芳香族或杂环的环系统中至少有一个优先选于稠环系统,并最好有至少14个芳香环原子。其中优选的例子有芳香蒽胺,芳香蒽二胺,芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺。一个芳香蒽胺是指一化合物,其中一个二元芳基胺基团直接联到蒽上,最好是在9的位置上。一个芳香蒽二胺是指一化合物,其中二个二元芳基胺基团直接联到蒽上,最好是在9,10的位置上。芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺的定义类似,其中二元芳基胺基团最好联到芘的1或1,6位置上。
基于乙烯胺及芳胺的有机化合物H的例子,可在下述专利文件中找到:WO 2006/000388,WO 2006/058737,WO 2006/000389,WO 2007/065549,WO 2007/115610,US 7250532 B2,DE 102005058557 A1,CN 1583691 A,JP 08053397 A,US 6251531 B1,US 2006/210830 A,EP 1957606 A1和US 2008/0113101 A1。特此上述列出的专利文件中的全部内容并入本文作为参考。
基于均二苯乙烯极其衍生物的有机化合物H的例子有US 5121029。
进一步的优选的有机化合物H可选于茚并芴-胺和茚并芴-二胺,如WO 2006/122630所公开的,苯并茚并芴-胺和苯并茚并芴-二胺,如WO2008/006449所公开的,二苯并茚并芴-胺和二苯并茚并芴-二胺,如WO2007/140847所公开的。
其他可用作有机化合物H的材料有多环芳烃化合物,特别是如下化合物的衍生物:蒽如9,10-二(2-萘并蒽),萘,四苯,氧杂蒽,菲,芘(如2,5,8,11-四-t-丁基苝),茚并芘,苯撑如(4,4’-双(9-乙基-3-咔唑乙烯基)-1,1’-联苯),二茚并芘,十环烯,六苯并苯,芴,螺二芴,芳基芘(如US20060222886),亚芳香基乙烯(如US5121029,US5130603),环戊二烯如四苯基环戊二烯,红荧烯,香豆素,若丹明,喹吖啶酮,吡喃如4(二氰基亚甲基)-6-(4-对二甲氨基苯乙烯基-2-甲基)-4H-吡喃(DCM),噻喃,双(吖嗪基)亚胺硼化合物(US 2007/0092753A1),双(吖嗪基)亚甲基化合物,carbostyryl化合物,噁嗪酮,苯并恶唑,苯并噻唑,苯并咪唑及吡咯并吡咯二酮。一些单重态发光体的材料可在下述专利文件中找到:US 20070252517 A1,US 4769292,US 6020078,US 2007/0252517 A1,US 2007/0252517 A1。特此将上述列出的专利文件中的全部内容并入本文作为参考。
以上出现的有机功能材料出版物为公开的目的以参考方式并入本申请。
在一个优先的实施例中,所述的有机化合物H包含至少一个醇溶性或水溶性基团;较好是包含至少两个醇溶性或水溶性基团,最好是包含至少三个醇溶性或水溶性基团;如在申请号为CNxxxxxxxx的专利文件所公开的,特此将此专利文件中的全部内容并入本文作为参考。
在另一些实施例中,所述的有机化合物H包含至少一个可交联基团;较好是包含至少两个可交联基团;最好是包含至少三个可交联基团;如在申请号为CNxxxxxxxx的专利文件所公开的,特此将此专利文件中的全部内容并入本文作为参考。
在下面列出一些合适的有机化合物H的例子(但不限于),其可进一步被任意取代:
Figure PCTCN2022085637-appb-000024
Figure PCTCN2022085637-appb-000025
Figure PCTCN2022085637-appb-000026
Figure PCTCN2022085637-appb-000027
Figure PCTCN2022085637-appb-000028
Figure PCTCN2022085637-appb-000029
Figure PCTCN2022085637-appb-000030
在一个较为优先的实施例中,所述的有机化合物H的发光谱的半峰宽(FWHM)≤70nm,较好是≤60nm,更好是≤50nm,特别好是≤40nm,最好是≤35nm。
在另一个优先的实施例中,所述的有机化合物H是具有如下的结构式的化合物(氟硼吡咯(Bodipy)的衍生物):
Figure PCTCN2022085637-appb-000031
其中:X为CR 47或N;R 41-R 49各自独立地选自氢、烷基、环烷基、杂环基、链烯基、环烯基、炔基、羟基、巯基、烷氧基、烷基硫基、芳基醚基、芳基硫醚基、芳基、杂芳基、卤素、氰基、醛基、羰基、羧基、氧基羧基、氨基甲酰基、氨基、硝基、甲硅烷基、硅氧烷基、硼烷基、氧化麟基,R 41-R 49可与相邻取代基之间形成稠环及脂肪族环。
在一个优选的实施例中,R 49和R 48独立选自吸电子基团。合适的吸电子基团包括但不限于:F,Cl,氰基,部分或全氟化的烷基链,或如下基团中的一种:
Figure PCTCN2022085637-appb-000032
其中,m为1、2或3;X 1-X 8选于CR 40或N,并且至少有一个是N;M 1、M 2、M 3分别独立表示N(R 40)、C(R 40R 50)、Si(R 40R 50)、O、C=N(R 40)、C=C(R 40R 50)、P(R 40)、P(=O)R 40、S、S=O、SO 2或无;R 40、R 50的含义同上述R 1
合适的Bodipy的衍生物的例子有,但不限于,
Figure PCTCN2022085637-appb-000033
在另一个优先的实施例中,所述的有机化合物H包含有化学式(6)或(7)所示的结构单元,
Figure PCTCN2022085637-appb-000034
其中使用的符号与标记具有以下含义:Ar 1-Ar 3相同或不同的选自具有5-24个环原子的芳香族或杂芳香族;Ar 4-Ar 5相同或不同的选自空或具有5-24个环原子的芳香族或杂芳香族;当Ar 4-Ar 5不为空时,X a,X b选自N、C(R 9)、Si(R 9);Y a,Y b选自B、P=O、C(R 9)、Si(R 9);当Ar 4-Ar 5为空时,Y a选自B、P=O、C(R 9)、Si(R 9);X b选自N、C(R 9)、Si(R 9);X a或Y b选自N(R 9)、C(R 9R 10)、Si(R 9R 10)、C=O、O、C=N(R 9)、C=C(R 9R 10)、P(R 9)、P(=O)R 9、S、S=O或SO 2;X 1、X 2是空或一个桥接基团;R 4-R 10含义同R 1所述。
在一个较为优先的实施例中,R 4-R 10分别独立选自H、D,具有1至10个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至10个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至10个C原子的取代的酮基基团,或具有2至10个C原子的烷氧基羰基基团,或具有7至10个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH 2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团或者具有5至20个环原子的取代或未取代的芳族或杂芳族环系,或具有5至20个环原子的芳氧基或杂芳氧基基团,或这些基团的组合,其中一个或多个基团可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
按照化学式(6)或(7)的有机化合物H的优选方案可以参考与本发明同期申报的三个中国专利申请,其申请号分别为CN202110370910.9,CNCN202110370866.1,CN202110370884.X。特将以上专利文件中的全部内容并入本文作为参考。
按照本发明的混合物,所述钙钛矿发光体E的吸收光谱光谱和有机化合物H的发射光谱都有较大的重叠,相互之间可以实现较为高效的能量转移(
Figure PCTCN2022085637-appb-000035
resonance energy transfer(FRET))。
在某些优先的实施例中,所述的混合物,其发光光谱完全来自钙钛矿发光体E,即钙钛矿发光体E和有机化合物H之间实现完全的能量转移。
在某些实施例中,所述的混合物包含2种以上的有机化合物H。
在一个优选的实施例中,所述的混合物中,所述的有机化合物H和钙钛矿发光体E重量比为从50:50到99:1,较好是从60:40到98:2,更好是从70:30到97:3,最好是从80:20到95:5。
在一种特别优先的实施例中,所述的混合物还包含一种有机树脂。出于本发明的目的,所述的有机树脂是指树脂预聚体或其交联或固化后形成的树脂。
在一个优先的实施例中,所述的混合物包含两种及以上的有机树脂。
适合本发明的有机树脂,包括但不限制于:聚苯乙烯、聚丙烯酸酯、聚甲基丙烯酸酯、聚碳酸酯、聚胺酯、聚乙烯吡咯烷酮、聚乙酸乙烯酯、聚氯乙烯、聚丁烯、聚乙二醇、聚硅氧烷、聚丙烯酸酯、环氧树脂、聚乙烯醇、聚丙烯腈、聚偏二氯乙烯(PVDC)、聚苯乙烯-丙烯腈(SAN)、聚对苯二甲酸丁二醇酯(PBT)、聚对苯二甲酸乙二醇酯(PET)、聚丁酸乙烯酯(PVB)、聚氯乙烯(PVC)、聚酰胺、聚甲醛、聚酰亚胺、聚醚酰亚胺或其混合物。
进一步,适合本发明的有机树脂,包含但不限制于由以下单体(树脂预聚体)均聚或共聚形成:苯乙烯衍生物、丙烯酸酯衍生物、丙烯腈衍生物、丙烯酰胺衍生物、乙烯酯衍生物、乙烯醚衍生物、马来酰亚胺衍生物、共轭二烯烃衍生物。
苯乙烯衍生物的例子有:烷基苯乙烯,如α-甲基苯乙烯,邻-、间-、对-甲基苯乙烯,对丁基苯乙烯,尤其是对叔丁基苯乙烯,烷氧基苯乙烯如对甲氧基苯乙烯、对丁氧基苯乙烯、对叔丁氧基苯乙烯。
丙烯酸酯衍生物的例子有:丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸乙酯、丙烯酸正丙酯、甲基丙烯酸正丙酯、丙烯酸异丙酯、甲基丙烯酸异丙酯、丙烯酸正丁酯、甲基丙烯酸正丁酯、丙烯酸异丁酯、甲基丙烯酸异丁酯、丙烯酸仲丁酯、甲基丙烯酸仲丁酯、丙烯酸叔丁酯、甲基丙烯酸叔丁酯、丙烯酸2-羟基乙酯、甲基丙烯酸2-羟基乙酯、丙烯酸2-羟基丙酯、甲基丙烯酸2-羟基丙酯、丙烯酸3-羟基丙酯、甲基丙烯酸3-羟基丙酯、丙烯酸2-羟基丁酯、甲基丙烯酸2-羟基丁酯、丙烯酸3-羟基丁酯、甲基丙烯酸3-羟基丁酯、丙烯酸4-羟基丁酯、甲基丙烯酸4-羟基丁酯、丙烯酸烯丙酯、甲基丙烯酸烯丙酯、丙烯酸苄酯、甲基丙烯酸苄酯、丙烯酸环己酯、甲基丙烯酸环己酯、丙烯酸苯酯、甲基丙烯酸苯酯、丙烯酸2-甲氧基乙酯、甲基丙烯酸2-甲氧基乙酯、丙烯酸2-苯氧基乙酯、甲基丙烯酸2-苯氧基乙酯、甲氧基二甘醇丙烯酸酯、甲氧基二甘醇甲基丙烯酸酯、甲氧基三甘醇丙烯酸酯、甲氧基三甘醇甲基丙烯酸酯、甲氧基丙二醇丙烯酸酯、甲氧基丙二醇甲基丙烯酸酯、甲氧基二丙二醇丙烯酸酯、甲氧基二丙二醇甲基丙烯酸酯、丙烯酸异冰片酯、甲基丙烯酸异冰片酯、丙烯酸双环戊二烯酯、甲基丙烯酸双环戊二烯酯、(甲基)丙烯酸金刚烷酯、(甲基)丙烯酸降冰片酯、丙烯酸2-羟基-3-苯氧基丙酯、甲基丙烯酸2-羟基-3-苯氧基丙酯、单丙烯酸甘油酯和单甲基丙烯酸甘油酯;丙烯酸2-氨基乙酯、甲基丙烯酸2-氨基乙酯、丙烯酸2-二甲基氨基乙酯、甲基丙烯酸2-二甲基氨基乙酯、N,N-二甲基氨基乙基(甲基)丙烯酸、N,N-二乙基氨基乙基(甲基)丙烯酸酯、丙烯酸2-氨基丙酯、甲基丙烯酸2-氨基丙酯、丙烯酸2-二甲基氨基丙酯、甲基丙烯酸2-二甲基氨基丙酯、丙烯酸3-氨基丙酯、甲基丙烯酸3-氨基丙酯、N,N-二甲基-1,3-丙二胺(甲基)丙烯酸苄酯、丙烯酸3-二甲基氨基丙酯和甲基丙烯酸3-二甲基氨基丙酯;丙烯酸缩水甘油酯和甲基丙烯酸缩水甘油酯。
丙烯腈衍生物的例子有:丙烯腈、甲基丙烯腈、α-氯丙烯腈和偏二氰基乙烯。
丙烯酰胺衍生物的例子有:丙烯酰胺、甲基丙烯酰胺、α-氯丙烯酰胺、N-2-羟乙基丙烯酰胺和N-2-羟乙基甲基丙烯酰胺。
乙烯酯衍生物的例子有:乙酸乙烯酯、丙酸乙烯酯、丁酸乙烯酯和苯甲酸乙烯酯。
乙烯醚衍生物的例子有:乙烯基甲基醚、乙烯基乙基醚和烯丙基缩水甘油基醚。
马来酰亚胺衍生物的例子有:马来酰亚胺、苄基马来酰亚胺、N-苯基马来酰亚胺和N-环己基马来酰亚胺。
共轭二烯烃衍生物的例子有:1,3-丁二烯、异戊二烯和氯丁二烯。
所述的均聚物或共聚物可以通过例如自由基聚合、阳离子聚合、阴离子聚合或有机金属催化聚合(例如Ziegler-Natta催化)进行制备。聚合的工艺可以是悬浮聚合、乳液聚合、溶液聚合或本体聚合。
所述的有机树脂通常具有10 000-1 000 000g/mol,优选20 000-750000g/mol,更优选30 000-500 000g/mol的平均摩尔质量Mn(由GPC测定)。
在一些优先的实施例中,有机树脂为热固性树脂或紫外(UV)可固化树脂。在一些实施例中,用促进卷对卷加工的方法固化有机树脂。
热固性树脂需要固化,在固化中它们会经历不可逆的分子交联过程,这使得树脂不可熔化。在一些实施例中,热固性树脂为环氧树脂、酚醛树脂、乙烯基树脂、三聚氰胺树脂、脲醛树脂、不饱和聚酯树脂、聚氨酯树脂、烯丙基树脂、丙烯酸类树脂、聚酰胺树脂、聚酰胺-酰亚胺树 脂、酚胺缩聚树脂、脲三聚氰胺缩聚树脂或其组合。
在一些实施例中,热固性树脂为环氧树脂。环氧树脂易于固化,不会放出挥发物或因广泛的化学品而生成副产物。环氧树脂也可与大多数基板相容并往往易于润湿表面。参见Boyle,M.A.等人,“Epoxy Resins”,Composites,Vol.21,ASM Handbook,pages 78-89(2001)。
在一些实施例中,有机树脂为有机硅热固性树脂。在一些实施例中,有机硅热固性树脂为0E6630A或0E6630B(Dow Corning Corporation(密歇根州奥本市))。
在一些实施例中,使用热引发剂。在一些实施例中,热引发剂为AIBN[2,2’-偶氮双(2-甲基丙腈)]或过氧化苯甲酰。
UV可固化树脂是在暴露于特定波长的光时将固化并快速硬化的聚合物。在一些实施例中,UV可固化树脂为具有自由基聚合基团、阳离子可聚合基团作为官能团的树脂,所述自由基聚合基团为例如(甲基)丙烯酰氧基基团、乙烯基氧基基团、苯乙烯基基团或乙烯基基团;所述阳离子可聚合基团为例如环氧基基团、硫代环氧基基团、乙烯基氧基基团或氧杂环丁烷基基团。在一些实施例中,UV可固化树脂为聚酯树脂、聚醚树脂、(甲基)丙烯酸类树脂、环氧树脂、聚氨酯树脂、醇酸树脂、螺缩醛树脂、聚丁二烯树脂或硫代烯树脂。
在一些实施例中,UV可固化树脂选自聚氨酯丙烯酸酯、烯丙氧基化的二丙烯酸环己酯、双(丙烯酰氧基乙基)羟基异氰脲酸酯、双(丙烯酰氧基新戊基二醇)己二酸酯、双酚A二丙烯酸酯、双酚A二甲基丙烯酸酯、1,4-丁二醇二丙烯酸酯、1,4-丁二醇二甲基丙烯酸酯、1,3-丁二醇二丙烯酸酯、1,3-丁二醇二甲基丙烯酸酯、二环戊基二丙烯酸酯、二乙二醇二丙烯酸酯、二乙二醇二甲基丙烯酸酯、二季戊四醇六丙烯酸酯、二季戊四醇单羟基五丙烯酸酯、二(三羟甲基丙烷)四丙烯酸酯、三乙二醇二甲基丙烯酸酯、甲基丙烯酸甘油酯、1,6-己二醇二丙烯酸酯、新戊二醇二甲基丙烯酸酯、新戊二醇羟基新戊酸二丙烯酸酯、季戊四醇三丙烯酸酯、季戊四醇四丙烯酸酯、磷酸二甲基丙烯酸酯、聚乙二醇二丙烯酸酯、聚丙二醇二丙烯酸酯、四乙二醇二丙烯酸酯、四溴双酚A二丙烯酸酯、三乙二醇二乙烯基醚、二丙烯酸三甘油酯、三羟甲基丙烷三丙烯酸酯、三丙二醇二丙烯酸酯、三(丙烯酰氧基乙基)异氰脲酸酯、磷酸三丙烯酸酯、磷酸二丙烯酸酯、丙烯酸焕丙基酯、乙烯基封端聚二甲基硅氧烷、乙烯基封端二苯基硅氧烷-二甲基硅氧烷共聚物、乙烯基封端聚苯基甲基硅氧烷、乙烯基封端二氟甲基硅氧烷-二甲基硅氧烷共聚物、乙烯基封端二乙基硅氧烷-二甲基硅氧烷共聚物、乙烯基甲基硅氧烷、单甲基丙烯酰氧基丙基封端聚二甲基硅氧烷、单乙烯基封端聚二甲基硅氧烷、单烯丙基-单三甲基甲硅烷氧基封端聚环氧乙烷及其组合。
在一些实施例中,UV可固化树脂为巯基官能化合物,其可在UV固化条件下与异氰酸酯、环氧树脂或不饱和化合物交联。在一些实施例中,巯基官能化合物为多硫醇。在一些实施例中,多硫醇为季戊四醇四(3-巯基丙酸酯)(PETMP);三羟甲基丙烷三(3-巯基丙酸酯)(TMPMP);乙二醇二(3-巯基丙酸酯)(GDMP);三[25-(3-巯基-丙酰氧基)乙基]异氰尿酸酯(TEMPIC);二季戊四醇六(3-巯基丙酸酯)(Di-PETMP);乙氧基化三羟甲基丙烷三(3-巯基丙酸酯)(ETTMP 1300和ETTMP 700);聚己内酯四(3-巯基丙酸酯)(PCL4MP1350);季戊四醇四巯基乙酸酯(PETMA);三羟甲基丙烷三巯基乙酸酯(TMPMA);或乙二醇二巯基乙酸酯(GDMA)。这些化合物由Bruno Bock(德国马尔沙赫特)以商品名
Figure PCTCN2022085637-appb-000036
出售。
在一些实施例中,UV可固化树脂还包含光引发剂。光引发剂将在暴露于光的过程中引发光敏材料的交联和/或固化反应。在一些实施例中,光引发剂是基于苯乙酮的、基于安息香的或基于噻吨酮的。
在一些实施例中,UV可固化树脂包含巯基官能化合物和甲基丙烯酸酯、丙烯酸酯、异氰酸酯或其组合。在一些实施例中,UV可固化树脂包括多硫醇和甲基丙烯酸酯、丙烯酸酯、异氰酸酯或其组合。
在一些实施例中,光引发剂为MINS-311RM(Minuta Technology Co.,Ltd(韩国))。
在一些实施例中,光引发剂为
Figure PCTCN2022085637-appb-000037
Figure PCTCN2022085637-appb-000038
Figure PCTCN2022085637-appb-000039
Figure PCTCN2022085637-appb-000040
(BASF Corporation(密歇根州怀恩多特))。
在一些实施例中,光引发剂为TPO(2,4,6-三甲基苯甲酰-二苯基-氧化麟)或MBF(苯甲酰甲酸甲酯)。
在一些实施例中,有机树脂按组合物的重量百分数(重量/重量)计在约20%至约99%、约20%至约95%、约20%至约90%、约20%至约85%、约20%至约80%、约20%至约70%、约20%至约60%、约40%至约99%、约40%至约95%、约40%至约90%、约40%至约85%、约40%至约80%、约40%至约70%、约70%至约99%、约70%至约95%、约70%至约90%、约70%至约85%、约70%至约80%、约80%至约99%、约80%至约95%、约80%至约90%、约80%至约85%、约85%至约99%、约85%至约95%、约85%至约90%、约90%至约99%、约90%至约95%、或约95%至约99%之间。
本发明还涉及一种组合物,包含一种如上所述的混合物,和至少一种溶剂。
在一个优选的实施例中,按照本发明的组合物是一溶液。
在另一个优选的实施例中,按照本发明的组合物是一悬浮液。
本发明实施例中的组合物中可以包括0.01至20wt%的钙钛矿发光体E,较好的是0.1至30wt%,更好的是0.2至20wt%,最好的是2至15wt%的钙钛矿发光体E。
按照本发明的组合物,可以使用喷墨打印、转印、光刻等方法来形成颜色转换层,此时,需将所述的化合物(即颜色转换材料)单独或与其他材料一起溶解在树脂(预聚体)和/或有机溶剂中,形成油墨。本发明所述的化合物(即颜色转换材料)在油墨中的质量浓度不低于0.1%wt。可以通过调节油墨中颜色转换材料的浓度和颜色转换层的厚度来改善颜色转换层的颜色转换能力。一般而言,颜色转换材料的浓度越高或厚度越厚,颜色转换层的颜色转换率越高。
在一些优先的实施例中,所述的溶剂选自水,醇,酯、芳族酮或芳族醚、脂肪族酮或脂肪族醚、或硼酸酯或磷酸酯等无机酯类化合物,或两种及两种以上溶剂的混合物。
在另一些实施例中,适当的和优选的溶剂是脂肪族、脂环族或芳烃族,胺,硫醇,酰胺,腈,酯,醚,聚醚,醇,二醇或多元醇。
在另一些实施例中,醇代表适当类别的溶剂。优选的醇包括烷基环己醇,特别是甲基化的脂肪族醇,萘酚等。
另外适当的醇类溶剂的例子有:十二醇,苯基十三醇,苯甲醇,乙二醇,乙二醇甲醚,丙三醇,丙二醇,丙二醇乙醚等。
所述的溶剂可以是单独使用,也可以是作为两种或多种有机溶剂的混合物使用。
进一步,有机溶剂的例子,包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
在一些优先的实施例中,按照本发明的一种组合物,其中所述的有机溶剂选自芳族或杂芳族、酯、芳族酮或芳族醚、脂肪族酮或脂肪族醚、脂环族或烯烃类化合物,或硼酸酯或磷酸酯等无机酯类化合物,或两种及两种以上溶剂的混合物。
按照本发明的基于芳族或杂芳族溶剂的例子有,但不限于:1-四氢萘酮、3-苯氧基甲苯、 苯乙酮、1-甲氧基萘、对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、1-甲基萘、1,2,4-三氯苯、1,3-二丙氧基苯、4,4-二氟二苯甲烷、二苯醚、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚、N-甲基二苯胺、4-异丙基联苯、α,α-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、二苄醚等。
在另一些实施例中,适当的和优选的溶剂是脂肪族、脂环族或芳烃族,胺,硫醇,酰胺,腈,酯,醚,聚醚。
所述的溶剂可以是环烷烃,例如十氢化萘。
在另一些优先的实施例中,按照本发明的一种组合物,其中包含至少50wt%的醇类溶剂;优选至少80wt%的醇类溶剂;特别优选至少90wt%的醇类溶剂。
一些优选的实施例中,特别适合本发明的溶剂是汉森(Hansen)溶解度参数在以下范围内的溶剂:
δ d(色散力)在17.0-23.2MPa 1/2的范围,尤其是在18.5-21.0MPa 1/2的范围。
δ p(极性力)在0.2-12.5MPa 1/2的范围,尤其是在2.0-6.0MPa 1/2的范围。
δ h(氢键力)在0.9-14.2MPa 1/2的范围,尤其是在2.0-6.0MPa 1/2的范围。
按照本发明的组合物,其中有机溶剂在选取时需考虑其沸点参数。本发明中,所述的有机溶剂的沸点≥150℃;优选为≥180℃;较优选为≥200℃;更优为≥250℃;最优为≥275℃或≥300℃。这些范围内的沸点对防止喷墨印刷头的喷嘴堵塞是有益的。所述的有机溶剂可从溶剂体系中蒸发,以形成包含功能材料薄膜。
在一些优先的实施例中,按照本发明的组合物,1)其粘度@25℃,在1cPs到100cPs范围,和/或2)其表面张力@25℃,在19dyne/cm到50dyne/cm范围。
按照本发明的组合物,其中树脂(预聚体)或有机溶剂在选取时需考虑其表面张力参数。合适的表面张力参数适合于特定的基板和特定的印刷方法。例如对喷墨印刷,在一个优选的实施例中,所述的树脂(预聚体)或有机溶剂在25℃下的表面张力约在19dyne/cm到50dyne/cm范围;更优为在22dyne/cm到35dyne/cm范围;最优为在25dyne/cm到33dyne/cm范围。
在一个优选的实施例中,按照本发明的组合物在25℃下的表面张力约在19dyne/cm到50dyne/cm范围;更好是在22dyne/cm到35dyne/cm范围;最好是在25dyne/cm到33dyne/cm范围。
按照本发明的组合物,其中树脂(预聚体)或有机溶剂在选取时需考虑其油墨的粘度参数。粘度可以通过不同的方法调节,如通过合适的树脂(预聚体)或有机溶剂的选取和油墨中功能材料的浓度。在一个优选的实施例中,所述的树脂(预聚体)或有机溶剂的粘度低于100cps;更优为低于50cps;最优为1.5到20cps。这里的粘度是指在印刷时的环境温度下的粘度,一般在15-30℃,较好的是18-28℃,更好是20-25℃,最好是23-25℃。如此配制的组合物将特别适合于喷墨印刷。
在一个优选的实施例中,按照本发明的组合物,在25℃下的粘度约在1cps到100cps范围;更好是在1cps到50cps范围;最好是在1.5cps到20cps范围。
满足上述沸点及表面张力参数及粘度参数的树脂(预聚体)或有机溶剂获得的油墨能够形成具有均匀厚度及组成性质的功能材料薄膜。
本发明进一步涉及一种有机功能材料薄膜,所述的有机功能材料薄膜利用一种如上所述的组合物制备而成。
本发明还提供一种所述的有机功能材料薄膜的制备方法,包含如下步骤:
1)制备一种按照本发明所述的混合物或组合物;
2)用印刷或涂布的方法将所述的组合物涂布于一基板上形成一薄膜,其中印刷或涂布的方法选于喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布;
3)将所得的薄膜在至少50℃加热或加上紫外光照,使之发生交联反应,固化薄膜。
所述的有机功能材料薄膜厚度一般为50nm-200mm,较好为100nm-150mm,更好为500nm-100mm,更更好为1mm-50mm,最好为1mm-20mm。
本发明还提供上述混合物及有机功能材料薄膜在光电器件中的应用。
在某些实施例中,所述光电器件可选于有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机发光场效应管、有机激光器。
更进一步,本发明提供一种光电器件,包含一种上述的混合物或有机功能材料薄膜。
优先的,所述的光电器件是电致发光器件,如有机发光二极管(OLED)、有机发光电池(OLEEC)、有机发光场效应管、钙钛矿发光二极管(PeLED)、及量子点发光二极管(QD-LED),其中一功能层中包含一种上述的有机功能材料薄膜。所述的功能层可以选自空穴注入层,空穴传输层,电子注入层,电子传输层,发光层,及阴极钝化层(CPL)。
在一个优先的实施例中,所述的光电器件是电致发光器件,包含两个电极,其特征在于,所述的功能层位于所述的两个电极的同一侧。
在另一个优先的实施例中,所述的光电器件包含一发光单元和一颜色转换层(功能层),其中所述的颜色转换层包含一种上述的混合物或有机功能材料薄膜。
在一个优先的实施例中,所述的颜色转换层吸收掉95%及以上,较好是97%及以上,更好是99%及以上,最好是99.9%及以上发光单元的光。
在某些优先的实施例中,所述的发光单元选自固体发光器件。所述的固体发光器件优先选自LED、机发光二极管(OLED)、有机发光电池(OLEEC)、有机发光场效应管、钙钛矿发光二极管(PeLED)、量子点发光二极管(QD-LED)及纳米棒LED(nanorod LED,参见DOI:10.1038/srep28312)。
在一个优先的实施例中,所述的发光单元发射蓝光,通过颜色转换层转换成绿光或红光。
本发明进一步涉及一种显示器,包含至少红绿蓝三种像素,如附图1所示,蓝光像素包好一个蓝光发光单元,红绿光像素包含一蓝光发光单元和相应的红绿颜色转换层。
本发明进一步涉及一种有机发光器件,自下而上依次包含一基板、第一电极、一有机发光层、第二电极、一颜色转换层及一封装层,第二电极至少是部分透明,1)所述的颜色转换层包含一种有机化合物H和一种钙钛矿发光体E;2)所述的颜色转换层能吸收50%及以上有机发光层所发的透过第二电极的光;3)所述有机化合物H的发光谱在所述钙钛矿发光体E的吸收谱的短波长的一侧,且至少部分相互重叠。优先的,所述的钙钛矿发光体E的发光谱的半峰宽(FWHM)小于或等于45nm。
所述的有机化合物H和钙钛矿发光体E及其优选实施例如上所述。
在一个优选的实施例中,所述的颜色转换层进一步包含一树脂或树脂预聚体。合适及优选的树脂或树脂预聚体如上所述。
在某些的实施例中,目标是得到多色的光,所述的颜色转换层吸收掉30%及以上,较好是40%及以上,最好是50%及以上有机发光层所发的透过第二电极的光。
在一个优先的实施例中,目标是得到单色的高色纯度的光,所述的颜色转换层吸收掉95%及以上,较好是97%及以上,更好是99%及以上,最好是99.9%及以上有机发光层所发的透过第二电极的光。
在某些实施例中,所述的颜色转换层的厚度在100nm-5mm之间,较好是在150nm-4mm之间,更好是在200nm-3mm之间,最好是在200nm-2mm之间。
在某些实施例中,所述的有机发光器件是有机电致发光器件。在一个优先的实施例中,所述的有机发光器件是OLED。更优先的,第一电极是阳极,第二电极是阴极。特别优先的,所述的有机发光器件是顶发射(Top Emission)OLED。
基片可以是不透明或透明。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施例中,基片是柔性的,可选于聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的柔性基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包括一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个优先的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包括但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包括一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个优先的实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包括但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF 2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。在一个优先的实施例中,所述的阴极在400nm-680nm范围的透光度≥40%,较好是≥45%,更好是≥50%,最好是≥60%。通常10-20nm的Mg:Ag合金可以用来做半透明阴极,Mg:Ag的比例可以从2:8到0.5:9.5。
所述有机电致发光器件中,发光层优选包含一蓝光荧光主体和一蓝光荧光客体;在另一个优选的实施例中,发光层包含一蓝光磷光主体和一蓝光磷光客体;OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层中的材料在上面及在WO2010135519A1、US20090134784A1和WO2011110277A1中有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。
进一步,所述有机电致发光器件还包括一个阴极覆盖层(Capping layer,简称CPL)。
在一个优先的实施例中,所述的CPL位于第二电极和所述的颜色转换层之间。
在另一个优先的实施例中,所述的CPL位于所述的颜色转换层之上。
用于CPL的材料一般需要有较高的折射率n,如n≥1.95@460nm,n≥1.90@520nm,n≥1.85@620nm。用于CPL材料的例子有:
Figure PCTCN2022085637-appb-000041
更多的进一步的CPL材料的例子可以在如下的专利文献中找到:KR20140128653A,KR20140137231A,KR20140142021A,KR20140142923A,KR20140143618A,KR20140145370A,KR20150004099A,KR20150012835A,US9496520B2,US2015069350A1,CN103828485B,CN104380842B,CN105576143A,TW201506128A,CN103996794A,CN103996795A,CN104744450A,CN104752619A,CN101944570A,US2016308162A1,US9095033B2,US2014034942A1,WO2017014357A1;特将以上专利文献并入此文作为参考。
在一个较为优选的实施例中,颜色转换层中包含一种上述的CPL材料。
优先的,上述的有机电致发光器件,其中所述的封装层薄膜封装(TFE)。
本发明还涉及一显示面板,其中至少有一个像素包含上述的有机电致发光器件。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
具体实施例
作为主体材料的有机化合物H为H1-H10所示的结构:
Figure PCTCN2022085637-appb-000042
主体材料H1-H3合成按照在申请号为CN202110370887.3的专利申请中所公开的;H4-H7合成按照在申请号为CNxxxxxxxx的同期专利申请中所公开的;H8-H10合成按照在申请号为CNxxxxxxxx的同期专利申请中所公开的。
钙钛矿发光体E1-E4,其中E1为绿色三维钙钛矿发光体,E2为红色三维钙钛矿发光体,E3为绿色准二维钙钛矿发光体,E4为红色准二维钙钛矿发光体。这些钙钛矿发光体可商业购得,如自致晶科技(北京)有限公司。所有的钙钛矿发光体E1-E4,其FWHM都小于40nm。
实施例1:包含聚合物的组合物及有机功能材料薄膜的制备
分别称取100mg聚甲基丙烯酸甲酯(PMMA)、50mg颜色转换主体材料Hx(H1-H10)、5mg钙 钛矿发光体Ex(E1-E4),然后将以上物质一起溶解在1ml乙酸正丁酯中,得到澄清溶液,即组合物或印刷油墨。使用KW-4a匀胶机,在石英玻璃表面旋涂以上溶液,形成厚度均匀的薄膜,得有机功能材料薄膜,即颜色转换薄膜。以上所得的颜色转换薄膜在大多的厚度小于6μm时,其光密度(Optical Density,即OD)可达到≥3。
实施例2:包含树脂预聚体的组合物及有机功能材料薄膜的制备
上述的颜色转换主体材料Hx(H1-H10)和钙钛矿发光体Ex(E1-E4)也可以和树脂预聚体,如甲基丙烯酸甲酯,苯乙烯或甲基苯乙烯的组合物预混,在加1-5wt%的光引发剂,如TPO(二苯基(2,4,6-三甲基苯甲酰基)氧化膦,97%,CAS:75980-60-8),用旋涂或涂布等的方法成膜,然后在紫外光(如峰值365nm或390nm紫外LED灯)的照射下固化,形成颜色转换薄膜。
以上的绿色颜色转换薄膜可以放置在蓝色自发光器件,该蓝色自发光器件发射出发光峰在400-490nm之间的蓝光;蓝光经过绿色颜色转换器,发射出发光峰在490-550nm之间的绿光。蓝光经过红色颜色转换器,发射出发光峰在600-680nm之间的红光。
实施例3:基于顶发射(Top-Emission)OLED发光器件的制备
制备顶发射OLED所要用到的材料:
Figure PCTCN2022085637-appb-000043
Ink1的制备:配取预聚物:称取乙酸正丁酯(42wt%):甲基丙烯酸甲酯(MMA)(50wt%)、丙烯酸羟丙酯(HPA)(3wt%),过氧化二苯甲酰(BPO)(5wt%),混合并在125℃搅拌50分钟,得到预聚物;以上预聚物(67wt%)+乙酸正丁酯(30wt%)+颜色转换主体材料(H8)(2.5wt%)+绿色钙钛矿发光体E1(0.5wt%),搅拌得到澄清溶液Ink1。
Ink2的制备:分别称取50mg颜色转换主体材料(H8)、10mg绿色钙钛矿发光体E1,然后将以上物质一起溶解在1ml乙酸正丁酯中,得到澄清溶液Ink2。
1.绿光发光器件1
a、含有Ag的发射层ITO(氧化铟锡)top基片的清洗:依次使用strip液,纯水,异丙醇超声清洗,然后烘干后进行Ar臭氧处理;
b、蒸镀:将基片移入真空气相沉积设备中,在高真空(1×10 -6毫巴)下,控制PD和HT-1的比例为3:100,形成10nm的空穴注入层(HIL),随后在空穴注入层上蒸镀化合物HT-1形成120nm的空穴传输层(HTL),紧接着在空穴传输层上蒸镀化合物HT-2形成10nm的空穴调整层。作为发光层,以BH:BD按照100:3的比例形成25nm的发光层薄膜。接下来作为电子传输层形成35nm的ET:LiQ(1:1)薄膜,置于不同的蒸发单元,使其分别以50重量%的比例进行共沉积,得到第二电子传输层,随后沉积1.5nm的Yb作为电子注入层,再在所述电子注入层上沉积厚度为16nm的Mg:Ag(1:9)合金作为阴极;
c、在阴极上,用海斯电子IJDAS310(喷头FUJIFILM Dimatix DMC-11610)打印Ink1,然后在峰值390nm紫外LED灯的照射下固化,得到厚度2-3mm的颜色转换层;
d、封装:器件在氮气手套箱中用紫外线硬化树脂封装。
2.绿光发光器件2:a、b、d步骤同上述的绿光发光器件1,c步骤如下:
c、在阴极上,用海斯电子IJDAS310(喷头FUJIFILM Dimatix DMC-11610)打印Ink2,得到厚度1-2mm的颜色转换层。
3.绿光发光器件3:a、b、c步骤同上述的绿光发光器件1,d、e步骤如下:
d、在颜色转换层上蒸镀厚度为70nm CPL作为光学覆盖层;
e、封装:器件在氮气手套箱中用紫外线硬化树脂封装。
4.绿光发光器件4:a、b、c步骤同上述的绿光发光器件2,d、e步骤如下:
d、在颜色转换层上蒸镀厚度为70nm CPL作为光学覆盖层;
e、封装:器件在氮气手套箱中用紫外线硬化树脂封装。
以上绿光发光器件1-4都具有较高的色纯度,其发光谱线的FWHM都在35nm以下。用其他主体材料和钙钛矿发光体制备的绿光和红光发光器件也可以类似的方法制得。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种混合物,包含一种有机化合物H、一种钙钛矿发光体E,其特征在于,1)所述有机化合物H的发光谱在所述钙钛矿发光体E的吸收谱的短波长的一侧,且至少部分相互重叠;2)所述的钙钛矿发光体E是以A、B和X为构成成分的钙钛矿发光材料,其中:A是在钙钛矿型晶体结构中位于以B为中心的六面体的各顶点的1价阳离子;X表示在钙钛矿型晶体结构中位于以B为中心的八面体的各顶点的阴离子;B是在钙钛矿型晶体结构中位于将A配置在顶点的六面体以及将X配置在顶点的八面体的中心金属阳离子;3)所述钙钛矿发光体E的发光谱的半峰宽(FWHM)小于或等于45nm。
  2. 根据权利要求1所述的混合物,其特征在于,所述钙钛矿发光体E选自具有三维结构、二维结构、准二维结构中的任一种结构的化合物及它们的任一组合,并且,具有三维结构的钙钛矿发光体E的组成式用ABX (3+δ)表示,具有二维或准二维结构的钙钛矿发光体E的组成式用A 2BX (4+δ)表示,其中:δ是根据B的电荷平衡而变的数,且-0.7≤δ≤0.7。
  3. 根据权利要求1或2所述的混合物,其特征在于,
    1)A在多个出现时可相同或不同的选自铯离子、或具有下述通式(I)或(II)所示的阳离子,
    Figure PCTCN2022085637-appb-100001
    其中,R 11~R 18分别独立选自H、D,或具有1至20个C原子的直链的烷基、卤代烷基、烷氧基、硫代烷氧基基团,或具有3至20个C原子的支链或环状的烷基、卤代烷基、烷氧基、硫代烷氧基基团或甲硅烷基基团,并且,R 11~R 14不同时成为H或D;
    和/或2)B在多个出现时可相同或不同的选自Cu 2+,Ni 2+,Mn 2+,Fe 2+、Co 2+、Pd 2+、Ge 2+、Sn 2+、Pb 2+及Eu 2+等,优选为Sn 2+、Pb 2+,更优选为Pb 2+
    和/或3)X在多个出现时可相同或不同的选自卤素离子和硫氤酸根离子。
  4. 根据权利要求1至3任意一项所述的混合物,其特征在于,所述有机化合物H选自包含至少一个以下基团的化合物:
    Figure PCTCN2022085637-appb-100002
    其中:
    Ar 11是芳基或杂芳基;
    X 3-X 10选于CR 1或N;
    X 11和X 12选于CR 1R 2或NR 1或O;
    R 1和R 2分别独立选自H、D,或具有1至20个C原子的直链的烷基、卤代烷基、烷氧基、硫代烷氧基基团,或具有3至20个C原子的支链或环状的烷基、卤代烷基、烷氧基、硫代烷 氧基基团或甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团,氨基甲酰基基团,卤甲酰基基团,甲酰基基团,异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,NO 2,CF 3,Cl,Br,F,I,可交联的基团,或具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或具有5至40个环原子的芳胺基或杂芳胺基基团,以上基团任意位置的二取代单元或这些基团的组合,其中一个或多个基团可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
  5. 根据权利要求1至4任意一项所述的混合物,其特征在于,所述有机化合物H具有化学式(1)-(5)之一所示的结构:
    Figure PCTCN2022085637-appb-100003
    其中:
    n1、o1独立选自1到8的自然数,m1、p1独立选自1到10的自然数,r是0或1;
    R 1-R 4是取代基,可相同或不同的选自具有1至20个C原子的直链的烷基、卤代烷基、烷氧基、硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、卤代烷基、烷氧基、硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团,氨基甲酰基基团,卤甲酰基基团,甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,NO 2,CF 3,Cl,Br,F,I,可交联的基团,或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或具有5至40个环原子的芳胺基或杂芳胺基基团,以上取代基任意位置的二取代单元或这些取代基的组合;
    Ar 1-Ar 4在每次出现时,相互独立选自具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或是具有5至40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合;
    L 1和L 2在每次出现时,相互独立选自单键,取代或未取代环原子数为6~30的芳香基团或杂芳香基团。
  6. 根据权利要求1至5任意一项所述的混合物,其特征在于,所述混合物还包含至少一种有机树脂。
  7. 根据权利要求6所述的混合物,其特征在于,至少一种所述有机树脂为热固性树脂或UV可固化树脂。
  8. 一种组合物,包含一种如权利要求1-7中任一项所述的混合物,和至少一种溶剂。
  9. 根据权利要求8所述的组合物,其特征在于,所述溶剂选自水,醇,酯、芳族酮或芳族醚、脂肪族酮或脂肪族醚、或硼酸酯或磷酸酯等无机酯类化合物,或两种及两种以上溶剂的混合物。
  10. 一种有机功能材料薄膜,包含一种如权利要求1-7中任一项所述的混合物。
  11. 一种光电器件,包含一种如权利要求1-7中任一项所述的混合物或一种如权利要求10所述的有机功能材料薄膜。
  12. 一种有机发光器件,自下而上依次包含一基板、第一电极、一有机发光层、第二电极、一颜色转换层及一封装层,第二电极至少是部分透明,其特征在于:1)所述颜色转换层包含一种有机化合物H和一种钙钛矿发光体E;2)所述颜色转换层能吸收50%及以上有机发光层所发的透过第二电极的光;3)所述有机化合物H的发光谱在所述钙钛矿发光体E的吸收谱的短波长的一侧,且至少部分相互重叠。
PCT/CN2022/085637 2021-04-07 2022-04-07 一种混合物及其在光电领域的应用 WO2022214038A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280026670.3A CN117157378A (zh) 2021-04-07 2022-04-07 一种混合物及其在光电领域的应用
US18/483,385 US20240090316A1 (en) 2021-04-07 2023-10-09 Mixtures and applications thereof in optoelectronic field

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110370819.7 2021-04-07
CN202110370819 2021-04-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/483,385 Continuation US20240090316A1 (en) 2021-04-07 2023-10-09 Mixtures and applications thereof in optoelectronic field

Publications (1)

Publication Number Publication Date
WO2022214038A1 true WO2022214038A1 (zh) 2022-10-13

Family

ID=83545084

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/085637 WO2022214038A1 (zh) 2021-04-07 2022-04-07 一种混合物及其在光电领域的应用
PCT/CN2022/085578 WO2022214031A1 (zh) 2021-04-07 2022-04-07 一种混合物及其在光电领域的应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085578 WO2022214031A1 (zh) 2021-04-07 2022-04-07 一种混合物及其在光电领域的应用

Country Status (3)

Country Link
US (2) US20240049494A1 (zh)
CN (2) CN117242157A (zh)
WO (2) WO2022214038A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060222886A1 (en) * 2005-04-04 2006-10-05 Raymond Kwong Arylpyrene compounds
US20070252517A1 (en) * 2006-04-27 2007-11-01 Eastman Kodak Company Electroluminescent device including an anthracene derivative
CN105679807A (zh) * 2016-04-15 2016-06-15 深圳市华星光电技术有限公司 Oled显示器件及其制作方法
CN107154462A (zh) * 2017-05-08 2017-09-12 武汉华星光电技术有限公司 一种oled器件及oled器件的制作方法
CN108346751A (zh) * 2017-08-21 2018-07-31 广东聚华印刷显示技术有限公司 电致发光器件及其发光层和应用
CN109311692A (zh) * 2016-06-24 2019-02-05 住友化学株式会社 组合物及化合物
CN110518153A (zh) * 2019-08-14 2019-11-29 北京交通大学 钙钛矿-有机发光层的制备方法及有机发光二极管
CN110799626A (zh) * 2017-06-23 2020-02-14 住友化学株式会社 组合物、膜、层叠结构体、发光装置、显示器及组合物的制造方法
CN111066167A (zh) * 2017-08-24 2020-04-24 国立大学法人九州大学 主体材料、膜及有机发光元件
CN111384302A (zh) * 2018-12-28 2020-07-07 南京理工大学 纤维状无机钙钛矿量子点发光二极管的全溶液制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5882318B2 (ja) * 2010-07-26 2016-03-09 メルク パテント ゲーエムベーハー デバイスにおけるナノ結晶
JP6271442B2 (ja) * 2012-01-30 2018-01-31 メルク パテント ゲーエムベーハー ファイバー上のナノ結晶
WO2016091218A1 (zh) * 2014-12-11 2016-06-16 广州华睿光电材料有限公司 一种显示器件及其制备方法
KR102404622B1 (ko) * 2015-09-29 2022-06-02 도레이 카부시키가이샤 형광체 조성물, 형광체 시트 및 그들을 사용한 형성물, led 칩, led 패키지, 발광 장치, 백라이트 유닛, 디스플레이 및 led 패키지의 제조 방법
EP3779529B1 (en) * 2018-03-26 2024-01-03 Toray Industries, Inc. Color conversion composition, color conversion sheet, and light source unit, display and lighting device each comprising same
CN112174864A (zh) * 2019-07-05 2021-01-05 Tcl集团股份有限公司 一种发光材料及其制备方法和发光二极管

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060222886A1 (en) * 2005-04-04 2006-10-05 Raymond Kwong Arylpyrene compounds
US20070252517A1 (en) * 2006-04-27 2007-11-01 Eastman Kodak Company Electroluminescent device including an anthracene derivative
CN105679807A (zh) * 2016-04-15 2016-06-15 深圳市华星光电技术有限公司 Oled显示器件及其制作方法
CN109311692A (zh) * 2016-06-24 2019-02-05 住友化学株式会社 组合物及化合物
CN107154462A (zh) * 2017-05-08 2017-09-12 武汉华星光电技术有限公司 一种oled器件及oled器件的制作方法
CN110799626A (zh) * 2017-06-23 2020-02-14 住友化学株式会社 组合物、膜、层叠结构体、发光装置、显示器及组合物的制造方法
CN108346751A (zh) * 2017-08-21 2018-07-31 广东聚华印刷显示技术有限公司 电致发光器件及其发光层和应用
CN111066167A (zh) * 2017-08-24 2020-04-24 国立大学法人九州大学 主体材料、膜及有机发光元件
CN111384302A (zh) * 2018-12-28 2020-07-07 南京理工大学 纤维状无机钙钛矿量子点发光二极管的全溶液制备方法
CN110518153A (zh) * 2019-08-14 2019-11-29 北京交通大学 钙钛矿-有机发光层的制备方法及有机发光二极管

Also Published As

Publication number Publication date
WO2022214031A1 (zh) 2022-10-13
CN117157378A (zh) 2023-12-01
US20240090316A1 (en) 2024-03-14
US20240049494A1 (en) 2024-02-08
CN117242157A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
CN109790460B (zh) 含硼有机化合物及应用、有机混合物、有机电子器件
US11512039B2 (en) Aromatic amine derivatives, preparation methods therefor, and uses thereof
WO2017118137A1 (zh) 咔唑衍生物、高聚物、混合物、组合物、有机电子器件及其应用
US11518723B2 (en) Fused ring compound, high polymer, mixture, composition and organic electronic component
US20190330152A1 (en) Fused ring compound, high polymer, mixture, composition, and organic electronic component
US20230363257A1 (en) Organic mixtures and applications thereof in organic electronic devices
WO2022078429A1 (zh) 一种发光器件以及其在显示中的应用
WO2022214038A1 (zh) 一种混合物及其在光电领域的应用
US20230250112A1 (en) Organic compounds and applications thereof in optoelectronic field
WO2018095383A1 (zh) 氘代芳香胺衍生物及其制备方法和用途
WO2022213993A1 (zh) 组合物及其在光电领域的应用
WO2018099433A1 (zh) 稠环化合物及其应用、混合物、有机电子器件
WO2020022211A1 (ja) 電荷輸送性組成物
WO2022078432A1 (zh) 组合物及其在光电领域的应用
WO2018099431A1 (zh) 芘类有机化合物及其制备方法和应用
WO2019069780A1 (ja) インクおよび発光素子
WO2022078434A1 (zh) 有机化合物及其在光电领域的应用
WO2022078456A1 (zh) 一种高聚物、包含其的组合物、有机光电器件及应用
WO2023189399A1 (ja) ポリマーおよびその利用
US20230365857A1 (en) Organic mixtures and applications thereof in organic electronic devices
WO2022024896A1 (ja) 有機機能膜付き基板の製造方法
CN117777133A (zh) 一种有机化合物及其用途
CN116888223A (zh) 电荷传输性墨组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784104

Country of ref document: EP

Kind code of ref document: A1