WO2022213999A1 - 数据处理方法、装置、网络设备、存储介质及程序产品 - Google Patents

数据处理方法、装置、网络设备、存储介质及程序产品 Download PDF

Info

Publication number
WO2022213999A1
WO2022213999A1 PCT/CN2022/085365 CN2022085365W WO2022213999A1 WO 2022213999 A1 WO2022213999 A1 WO 2022213999A1 CN 2022085365 W CN2022085365 W CN 2022085365W WO 2022213999 A1 WO2022213999 A1 WO 2022213999A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
data
bearer
interface message
downlink
Prior art date
Application number
PCT/CN2022/085365
Other languages
English (en)
French (fr)
Inventor
周叶
刘爱娟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US18/553,541 priority Critical patent/US20240195578A1/en
Priority to EP22784065.9A priority patent/EP4322604A1/en
Publication of WO2022213999A1 publication Critical patent/WO2022213999A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a data processing method, apparatus, network device, storage medium and program product.
  • the service data flow in the fifth-generation mobile communication technology (5th-Generation, 5G) system is organized with the minimum granularity of quality of service flow (QoS flow) to provide different quality of service for different services.
  • QoS flow quality of service flow
  • QoS flow is identified by QFI (QoS Flow Identifier, quality of service flow identifier).
  • QoS flow is transmitted through DRB (Data Radio Bearer, data radio bearer) at the access layer.
  • DRB Data Radio Bearer, data radio bearer
  • the actual quality of service level of a QoS flow depends largely on the quality of service parameters of the DRB to which it is mapped. Therefore, in most cases , the network will map different QoS flows to different DRBs to ensure the pertinence of transmission scheduling.
  • the present application provides a data processing method, device, network device, storage medium and program product, which ensure that data on a data stream can be transmitted in a form that meets its QoS requirements.
  • the present application provides a data processing method, which is applied to a first network element in a wireless access network, including:
  • the downlink data packet includes downlink user data and an identifier of a data stream to which the downlink user data belongs;
  • sending the first interface message to the second network element in the wireless access network includes:
  • the identifier of the data stream determine whether the data stream is mapped to a bearer
  • a first interface message is sent to the second network element in the radio access network.
  • the target bearer is a bearer other than the default bearer.
  • the method further includes:
  • the downlink user data is sent to the user equipment according to the identifier of the target bearer contained in the second interface message.
  • the sending the downlink user data to the user equipment according to the identifier of the target bearer included in the second interface message includes:
  • the downlink user data is sent to the user equipment.
  • the sending the downlink user data to the user equipment based on the mapping relationship includes:
  • the downlink user data is sent to the third network element, so that the third network element sends the downlink user data to the user equipment through the target bearer.
  • the method further includes:
  • the target bearer is an existing bearer in the protocol data unit session to which the data flow belongs;
  • the determining the configuration information of the target bearer according to the identifier of the target bearer included in the second interface message includes:
  • the present application provides a data processing method, which is applied to a second network element in a wireless access network, including:
  • the method further includes:
  • the method further includes:
  • the target bearer is an existing bearer in the protocol data unit session to which the data flow belongs.
  • the method further includes:
  • the present application provides a data processing apparatus, which is applied to a first network element in a wireless access network, including:
  • a receiving module configured to receive a downlink data packet, where the downlink data packet includes downlink user data and an identifier of a data stream to which the downlink user data belongs;
  • a sending module configured to send a first interface message to a second network element in the wireless access network, where the first interface message includes an identifier of the data stream, and the first interface message is used to determine the The target bearer to which the data stream is mapped.
  • the sending module is used to:
  • the identifier of the data flow it is judged whether the data flow is mapped to a bearer; when the data flow is not mapped to a bearer or the data flow is mapped to a default bearer, it is sent to the wireless access network
  • the second network element in sends the first interface message.
  • the target bearer is a bearer other than the default bearer.
  • the receiving module is further configured to:
  • the sending module is also used for:
  • the downlink user data is sent to the user equipment according to the identifier of the target bearer contained in the second interface message.
  • the sending module is used to:
  • the configuration information of the target bearer according to the identifier of the target bearer included in the second interface message, wherein the configuration information of the target bearer includes the mapping relationship between the target bearer and the data stream; Based on the mapping relationship, the downlink user data is sent to the user equipment.
  • the sending module is further used for:
  • the downlink user data is sent to the third network element, so that the third network element sends the downlink user data to the user equipment through the target bearer.
  • the sending module is further used for:
  • the target bearer is an existing bearer in the protocol data unit session to which the data flow belongs;
  • the sending module is used for:
  • the present application provides a data processing apparatus, which is applied to a second network element in a wireless access network, including:
  • a receiving module configured to receive a first interface message sent by a first network element in the wireless access network, where the first interface message includes an identifier of a data stream of downlink user data;
  • a processing module configured to determine the target bearer of the data flow mapping according to the first interface message
  • a sending module configured to send a second interface message to the first network element, where the second interface message includes the identifier of the target bearer, so that the first network element can send the target bearer to the user equipment according to the target bearer.
  • downlink user data configured to send a second interface message to the first network element, where the second interface message includes the identifier of the target bearer, so that the first network element can send the target bearer to the user equipment according to the target bearer.
  • the sending module is further used for:
  • the receiving module is also used for:
  • the receiving module is further configured to: receive the uplink address of the target bearer sent by the first network element;
  • the sending module is further configured to send the uplink address to the third network element, so that the third network element sends uplink user data to the first network element through the uplink address.
  • the target bearer is an existing bearer in the protocol data unit session to which the data flow belongs.
  • the sending module is further used for:
  • the present application provides a network device, including a memory, a transceiver and a processor:
  • the memory for storing a computer program; the transceiver for transceiving data under the control of the processor; the processor for reading the computer program in the memory and executing the first aspect and A method as recited in any embodiment or second aspect and in any embodiment.
  • the present application provides a processor-readable storage medium, where a computer program is stored in the processor-readable storage medium, and the computer program is used to cause the processor to execute the first aspect and any one of the embodiments or The method of the second aspect and any of the embodiments.
  • the present application provides a computer program product, comprising a computer program that, when executed by a processor, implements the first aspect and any embodiment or the method described in the second aspect and any embodiment.
  • the present application provides a data processing method, device, network device, storage medium and program product.
  • a first network element in a cable access network sends a data packet to a first network element in the wireless access network.
  • the second network element sends the first interface message for requesting the second network element to determine the bearer of the data flow mapping, which ensures that the data on the data flow can be transmitted in a form that meets its QoS requirements.
  • FIG. 1 is a schematic diagram of the architecture of a 5G system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart 1 of a data processing method provided by an embodiment of the present application.
  • FIG. 3 is a second schematic flowchart of a data processing method provided by an embodiment of the present application.
  • FIG. 4 is a third schematic flowchart of a data processing method provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram 1 of a data processing apparatus according to an embodiment of the present application
  • FIG. 6 is a second schematic structural diagram of a data processing apparatus provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the term "and/or” describes the relationship between related objects, and means that there can be three relationships, for example, A and/or B, which can mean that A exists alone, A and B exist simultaneously, and B exists alone. a situation.
  • the character "/” generally indicates that the associated objects are an "or” relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar.
  • the embodiments of the present application provide a data processing method and device, so that when a user plane node in a radio access network receives downlink user data, it can notify a control plane node to trigger a bearer configuration process for the data stream, thereby ensuring the downlink user data.
  • User data can be sent to the user equipment normally.
  • the method and the device are conceived based on the same application. Since the principles of the method and the device for solving problems are similar, the embodiments of the device and the method can be referred to each other, and repeated descriptions will not be repeated.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G New Radio (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband Code Division Multiple Access
  • general packet Wireless service general packet Radio service
  • GPRS general packet Wireless service
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • time division duplex time division duplex
  • TDD Time division duplex
  • the terminal device involved in the embodiments of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • "telephone) and computers with mobile terminal equipment eg portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • Wireless terminal equipment may also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , a remote terminal device (remote terminal), an access terminal device (access terminal), a user terminal device (user terminal), a user agent (user agent), and a user device (user device), which are not limited in the embodiments of the present application.
  • the base station involved in the embodiments of the present application may include multiple cells that provide services for the terminal.
  • the base station may also be called an access point, or may be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or other names.
  • the base station involved in the embodiments of the present application may be an evolved network device (evolutional Node B, eNB or e-NodeB) in a long term evolution (long term evolution, LTE) system, a 5G network architecture (next generation system) in a 5G network architecture (next generation system)
  • the base station (gNB) may also be a Home evolved Node B (HeNB), a relay node (relay node), a home base station (femto), a pico base station (pico), etc., which are not limited in the embodiments of this application.
  • a base station may include a centralized unit (CU) node and a distributed unit (DU) node, and the centralized unit and the distributed unit may also be geographically separated.
  • CU centralized unit
  • DU distributed unit
  • One or more antennas can be used between the base station and the terminal device for multiple input multiple output (Multi Input Multi Output, MIMO) transmission, and the MIMO transmission can be single user MIMO (Single User MIMO, SU-MIMO) or multi-user MIMO ( Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO, or massive-MIMO, or diversity transmission, precoding transmission, or beamforming transmission.
  • the business data in the 5G system is firstly divided into protocol data unit sessions (Protocol Data Unit Session, PDU Session) according to parameters such as data source and slice attributes, and the data in each PDU Session is further subdivided into several QoS flows.
  • PDU Session Protocol Data Unit Session
  • QFI QoS Flow Identifier
  • the main purpose of dividing different QoS flows is to provide different quality of service for different business data.
  • the radio access network NG-RAN in the 5G system maps the QoS flow to DRB, and adopts different air interface processing methods according to the granularity of DRB, that is, the data packets belonging to the same DRB are transmitted on the air interface. The same policy applies regardless of which QoS flow the packet belongs to.
  • the DRB is uniquely identified by the DRB ID.
  • NG-RAN In order to utilize air interface resources more efficiently and in a more targeted manner, NG-RAN often chooses to map QoS flows to DRBs one-to-one.
  • the maximum number of DRBs that can be established for each UE is specified as 32.
  • each UE can establish up to 256 PDU sessions, and each PDU session can contain up to 64 QoS flows, the number of DRBs is a very small number. Therefore, if NG-RAN chooses to map QoS flows to DRBs one-to-one, it may encounter the problem of insufficient DRB IDs.
  • the industry proposes that for those QoS flows with relatively infrequent data transmission and no current data, the NG-RAN can temporarily not map them to any DRB, or only map them to the default DRB.
  • the flow specifies the DRB to which it is mapped, and then informs the user equipment through RRC signaling, and performs data transmission.
  • There is at most one default DRB on each PDU session and the default DRB is used as the default DRB of the PDU session. It is understandable that the default DRB can only be used as the default mapping of the data flow, which cannot guarantee the QoS requirements, other DRBs other than the default DRB are called non-default DRBs.
  • NG-RAN When the core network instructs NG-RAN to establish a QoS flow, it can mark some QoS flows as "more likely to have data to be transmitted", while other QoS flows are "relatively rare” QoS flows. Based on this information, NG-RAN can selectively map only a part of the QoS flows to the DRB, and temporarily do not map the remaining QoS flows, or only map to the default DRB.
  • the core network When a downlink data packet that needs to be transmitted appears on a QoS flow that is temporarily not mapped or mapped to the default DRB, the core network will not send any control plane signaling specifically for the data packet, but will directly The packet is sent to the NG-RAN over the user plane channel for this PDU session, with the QFI for this QoS flow attached.
  • the NG-RAN receives the After the packet, you can choose to establish a DRB for this QoS flow for transmission, or map it to an existing DRB for transmission.
  • the NG-RAN cannot implement the above transmission process after receiving the downlink data packet.
  • the description is combined with the 5G NR network architecture shown in Figure 1.
  • a logical NG-RAN node (NG-RAN node) can be further divided into one CU-CP, one or more CU-UPs, and one or more distributed nodes (Distributed Unit, DU) ), this structure is called CU-CP/UP split (CU-CP/UP split).
  • the NG-RAN node is an NG-RAN node using New Radio (NR) technology, that is, a gNB
  • the connection between gNB-CU-CP and gNB-DU is F1-
  • the C interface is connected, and the gNB-CU-CP and the gNB-CU-UP are connected by the E1 interface.
  • the control plane connection N2 between the gNB and the core network (5G Core, 5GC) terminates in the gNB-CU-CP, while the air interface connection between the gNB and the UE terminates in the gNB-DU.
  • 5G Core, 5GC 5G Core
  • the N3 transmission channel When there is user plane data to be transmitted, the N3 transmission channel will be established between gNB-CU-UP and 5GC, and the F1-U transmission channel will be established between gNB-DU and gNB-CU-UP.
  • the air interface control plane function that involves business organization, such as how QoS flow and DRB are mapped, since it involves both gNB-DU and gNB-CU-UP, in order to facilitate unified control and management, this part of air interface functions is passed through gNB-CU.
  • the RRC module in the CP interacts with the UE, and the exchanged signaling is called RRC signaling.
  • the downlink RRC signaling is generated by the gNB-CU-CP, and after being encapsulated into a layer 2 data packet, it is sent to the gNB-DU through F1-C, and then forwarded to the UE through the air interface.
  • the NG-RAN node is a node using the Evolved Universal Terrestrial Radio Access (E-UTRA) technology, that is, ng-eNB, the eNB-CU-CP and the eNB-
  • the DUs are connected by the W1-C interface, and the eNB-CU-CP and the eNB-CU-UP are connected by the E1 interface.
  • the control plane connection N2 between the ng-eNB and the 5GC terminates in the eNB-CU-CP, while the air interface connection between the ng-eNB and the UE terminates in the eNB-DU.
  • the N3 transmission channel will be established between the eNB-CU-UP and the 5GC, and the W1-U transmission channel will be established between the eNB-DU and the eNB-CU-UP.
  • Other functions are similar to those of the gNB described above.
  • the CU-CP Due to the separation of the CU-CP/UP, the CU-CP cannot know that the downlink data of the QoS flow arrives at the CU-UP, so it cannot trigger the subsequent remapping and other processes, thus making the downlink data Either the data cannot be sent through the air interface at all, or when it is sent through the air interface, the QoS requirements cannot be guaranteed, and the subsequent data packets on the QoS flow will also be transmitted through the air interface in a form that cannot meet the QoS requirements for the same reason.
  • the embodiment of the present application proposes that the user plane central node of the radio access network is receiving a downlink data packet, and the downlink data packet belongs to a data stream that is not mapped to any radio bearer, or belongs to a
  • the user plane center node needs to re-obtain the radio bearer to which the data stream is mapped from the control plane center node of the radio access network, so as to ensure that the downlink data packet and the Subsequent data packets on the data flow can be transmitted between the radio access network and the UE through the air interface in a form that meets its QoS requirements.
  • FIG. 2 is a schematic flowchart of a data processing method provided by an embodiment of the present application. The method is applied to the first network element and the second network element in the wireless access network.
  • the first network element is a user plane center node
  • the second network element is a control plane center node. As shown in Figure 2, the method includes:
  • a first network element receives a downlink data packet.
  • the downlink data packet includes the downlink user data and the identifier of the data stream to which the downlink user data belongs.
  • the downlink data packet received by the first network element is sent by the core network, and the first network element can determine whether the data stream to which the downlink user data in the downlink data packet belongs has been mapped to a suitable data stream according to the identifier of the data stream in the downlink data packet.
  • bear For a data flow that has been mapped to a suitable bearer, the first network element can normally transmit the downlink data packet based on the bearer, while for a data flow that has not been mapped to a suitable bearer, the first network element needs to perform subsequent steps to trigger bearer mapping for the data stream.
  • the identifier of the data stream may be QFI or other identification information that can characterize the data stream.
  • the data flow is mapped to a suitable bearer may mean that the data flow is mapped to any bearer, and the corresponding "data flow is not mapped to a suitable bearer” means that the data flow is not mapped to any bearer .
  • the data flow is mapped to a suitable bearer may mean that the data flow is mapped to a non-default bearer, and the corresponding "data flow is not mapped to a suitable bearer" means that the data flow is not mapped to a non-default bearer Non-default bearer.
  • the default bearer is the default bearer of the PDU session, and the default bearer can only be used as the default mapping bearer of the data flow, which cannot guarantee the QoS requirements of the data flow.
  • mapping relationship between the data stream and the bearer may not distinguish between the upstream and downstream data, that is, the data stream is directly mapped, or, the upstream and downstream data may also be distinguished, that is, the upstream and downstream data of the data stream.
  • the data is mapped separately.
  • the above-mentioned data flow that is not mapped to a suitable bearer may refer to the fact that the data flow is not mapped to a suitable bearer in the case of not distinguishing between uplink and downlink, or, it may also be that the data flow is not mapped to a suitable bearer in the case of distinguishing between uplink and downlink.
  • the downstream data and/or upstream data of the flow are not mapped to a suitable bearer, which is not limited in this embodiment of the present application.
  • the first network element sends a first interface message to the second network element in the wireless access network.
  • the first interface message includes an identifier of the data flow, and the first interface message is used to determine the target bearer to which the data flow is mapped.
  • the first network element determines, according to the identifier of the data stream, that the data stream to which the received downlink data packet belongs is not mapped to
  • the bearer is suitable, send a first interface message to the second network element, and carry the identifier of the data flow in the first interface message, so that the second network element can know that the first network element receives a message that is not mapped to the appropriate network element.
  • the data packet of the data stream carried by the second network element can be triggered to perform bearer mapping on the data stream.
  • the second network element determines the target bearer of the data flow mapping according to the first interface message.
  • the second network element After receiving the first interface message, the second network element maps the data flow to the target bearer according to the identifier of the data flow in the first interface message.
  • the target bearer may be a newly created bearer or a PDU to which the data flow belongs. An existing bearer in the session.
  • the target bearer is another bearer than the default bearer.
  • the second network element sends a second interface message to the first network element.
  • the second interface message includes the identifier of the target bearer, so that the first network element sends downlink user data to the user equipment according to the target bearer.
  • the second interface message may include the identifier of the data stream and the identifier of the target bearer, so that after receiving the second interface message, the first network element may, based on the identifier of the target bearer indicated in the second interface message, A target bearer corresponding to the data flow is determined, and downlink user data is sent to the user equipment based on the target bearer.
  • the first network element may send downlink user data to the user equipment through a third network element in the radio access network based on the target bearer.
  • the third network element may be a distribution node of the radio access network, and the third network element may send downlink user data to the user equipment through the target bearer.
  • the first network element may determine whether the data stream to which the downlink data packet belongs is mapped to a suitable bearer according to the identifier of the data stream in the downlink data packet.
  • the data flow mapped to the appropriate bearer the first network element sends an interface message to the second network element to trigger the second network element to remap the target bearer for the data flow, so as to ensure that the downlink data packet and the data flow on the Subsequent data packets can be transmitted between the wireless access network and the user equipment through the air interface in a form that meets its QoS requirements.
  • the target bearer is a newly created bearer, or the target bearer is an existing bearer in the PDU session, that is, the existing bearer, in both cases, the second network element sends a second interface message to the first network element After that, the subsequent processing procedures of each node in the radio access network are slightly different.
  • the target bearer is a newly created bearer
  • the first network element, the third network element and the user equipment all need to determine the corresponding configuration information of the target bearer, Therefore, in addition to sending the second interface message to the first network element to instruct the first network element to determine the configuration information of the target bearer, the second network element may also send a third interface message to the third network element.
  • the three-interface message is used to instruct the third network element and the user equipment to determine the configuration information of the target bearer and instruct the third network element to allocate the downlink address of the target bearer.
  • the configuration of the target bearer determined by the first network element and the third network element includes the mapping relationship between the target bearer and the data stream, so that the first network element can send downlink user data to the user equipment based on the mapping relationship. It can be understood that, in addition to the corresponding relationship between the target bearer and the data stream, the configuration information of the target bearer may also include other configuration information required by the target bearer to transmit data.
  • the first network element can also receive the downlink address of the target bearer sent by the third network element through the second network element, and then send a message to the third network element based on the downlink address of the target bearer.
  • the network element sends the downlink user data, so that the third network element sends the downlink user data to the user equipment through the target bearer.
  • the first network element may also send the uplink address of the target bearer to the third network element, where the uplink address is used to instruct the third network element to send uplink user data to the first network element through the uplink address.
  • the target bearer is an existing bearer in the PDU session
  • the first network element, the third network element and the user equipment already have the target bearer, that is, the corresponding configuration information of the existing bearer
  • the second network element only needs to report to the first network element.
  • the network element and the third network element may indicate the mapping relationship between the data flow and the existing bearer. Therefore, the second network element determines the existing bearer as the target bearer from the bearer of the PDU session to which the data flow belongs according to the first interface message, and sends the second interface message to the first network element, so that the first network element according to the The second interface message updates the configuration information of the existing bearer, wherein the updated configuration information of the existing bearer includes the mapping relationship between the existing bearer and the data stream.
  • the mapping relationship between the existing bearer and the data flow is added in the configuration of the existing bearer, or, there is a mapped data flow in the existing bearer.
  • the mapping relationship between the existing bearer and the data stream can be modified in the configuration of the existing bearer.
  • the second network element sends a fourth interface message to the third network element, where the fourth interface message is used to indicate to the third network element the mapping relationship between the data stream and the existing bearer, so that the third network element
  • the four-interface message updates the configuration information of the existing bearer.
  • FIG. 3 is a schematic diagram of interaction among the core network, the radio access network and the user equipment when the target bearer is a newly created bearer.
  • the gNB-CU-UP shown in FIG. 3 is the first network element in the foregoing embodiment, the gNB-CU-CP is the second network element, and the gNB-DU is the third network element.
  • the core network sends an N2 interface message to the gNB-CU-CP.
  • the N2 interface message is used to instruct the gNB-CU-CP to establish a PDU session for the UE, wherein the PDU session includes a QoS flow, the QoS flow does not need to guarantee the transmission bit rate, and its QoS parameters do not contain "this A QoS flow is indicated as having data transmission more often than other QoS flows", so this QoS flow is considered as a QoS flow with infrequent data transmission.
  • the flow identifier of this QoS flow, ie QFI is assumed to be 1.
  • the gNB-CU-CP sends an E1 interface message to the gNB-CU-UP.
  • the gNB-CU-CP determines not to map the QoS flow to any DRB for the time being. At this point, the gNB-CU-CP sends an E1 interface message to the gNB-CU-UP.
  • the E1 interface message is used to request the gNB-CU-UP to establish a corresponding context for the PDU session, including allocating the N3 channel downlink for the PDU session. transport address.
  • the E1 interface message further includes an indication requesting the gNB-CU-UP to monitor the user plane activity status.
  • the gNB-CU-UP feeds back an E1 interface message to the gNB-CU-CP.
  • the gNB-CU-UP establishes the context of the PDU session, and feeds back an E1 interface message to the gNB-CU-CP.
  • the E1 interface message includes the N3 channel downlink transmission address allocated by the gNB-CU-UP for the PDU session.
  • the core network sends a downlink data packet to the gNB-CU-UP.
  • the core network finds that there is downlink data belonging to the above QoS flow on the PDU session and needs to be transmitted to the UE. Therefore, the core network sends an N3 downlink data packet to the gNB-CU-UP through the above established N3 transmission channel , the data packet contains the downlink user data to be transmitted, and a QFI with a value of 1 is used to indicate the QoS flow to which the downlink user data belongs.
  • the gNB-CU-UP sends a first interface message to the gNB-CU-CP.
  • the gNB-CU-UP determines that the corresponding QoS flow is not mapped to any DRB, so it cannot be sent to the UE through the air interface. Therefore, the downlink data packet is buffered and the first interface message is sent to the gNB-CU-CP.
  • the interface message is an E1 interface message.
  • the first interface message includes the QFI of the QoS flow to indicate that the gNB-CU-UP has received the data packet sent by the core network, and the QoS flow to which the data packet belongs is not mapped to any DRB.
  • the gNB-CU-CP sends a bearer context modification request message to the gNB-CU-CP.
  • the gNB-CU-CP After receiving the first interface message, the gNB-CU-CP determines to create a new DRB to carry the QoS flow. Therefore, the gNB-CU-CP sends a bearer context modification request message to the gNB-gNB-CU-UP.
  • the bearer context modification request The message is an E1 interface message.
  • the bearer context modification request message is the aforementioned second interface message, which contains the identifier of the target bearer, that is, the ID of the DRB, and the DRB contains the QFI with the value of 1 to indicate the QoS flow mapping. to the DRB.
  • the bearer context modification request message further includes other configuration information of the DRB.
  • the gNB-CU-UP sends a bearer context modification response message to the gNB-CU-CP.
  • the gNB-CU-UP establishes the DRB configuration, and sends a bearer context modification response message to the gNB-CU-CP, where the bearer context modification response message is an E1 interface message.
  • the bearer context modification response message is an E1 interface message.
  • an uplink F1-U address is allocated to the DRB
  • the bearer context modification response message sent by the gNB-CU-CP includes the uplink F1-U address.
  • the gNB-CU-UP starts to process the data packet according to the DRB configuration provided by the gNB-CU-CP until the data packet is encapsulated into a layer 2 data packet that can be transmitted through the F1-U channel.
  • the gNB-CU-CP sends a user equipment context modification request message to the gNB-DU.
  • the user equipment context modification request message is sent by the gNB-CU-CP to the gNB-DU through the F1-C channel.
  • the user equipment context modification request message is used to request the gNB-DU to establish the underlying configuration of the DRB, and to request gNB-DU allocation Downstream F1-U address.
  • the user equipment context modification request message is also used to inform the gNB-DU of the uplink F1-U of the DRB. address.
  • the user equipment context modification request message also includes an encapsulated RRC reconfiguration message, and the RRC reconfiguration message is used to request the UE to establish the configuration of the DRB, so that the UE can receive data packets belonging to the Qo flow through the DRB .
  • the user equipment context modification request message may be the third interface message in the foregoing embodiment.
  • the gNB-DU sends the RRC reconfiguration message to the UE.
  • the gNB-DU After confirming that the underlying configuration of the DRB can be established, the gNB-DU further encapsulates the encapsulated RRC reconfiguration message into a form that can be sent over the air interface, and then sends it to the UE.
  • the gNB-DU feeds back a user equipment context modification response message to the gNB-CU-CP.
  • the gNB-DU establishes the underlying configuration of the DRB, assigns the downlink F1-U address of the DRB, and then feeds back the user equipment context modification response message to the gNB-CU-CP through the F1-C channel, and the user equipment context modification response message includes the Downstream F1-U address of the DRB.
  • the gNB-CU-CP sends a bearer context modification request message to the gNB-CU-UP.
  • the bearer context modification request message includes the downlink F1-U address of the DRB.
  • the bearer context modification request message is an E1 interface message.
  • the gNB-CU-UP sends a bearer context modification response message to the gNB-CU-CP.
  • the bearer context modification response message is used to indicate that the gNB-CU-UP has updated the configuration, and at the same time, the gNB-CU-UP sends the above-mentioned layer 2 data packet to the gNB-DU through the F1-U channel.
  • the bearer context modification response message is an E1 interface message.
  • the UE feeds back an RRC reconfiguration complete message to the gNB-DU.
  • the UE After receiving the RRC reconfiguration message sent by the gNB-DU in S309, the UE establishes the configuration of the DRB, and feeds back an RRC reconfiguration complete message through the air interface.
  • the gNB-DU feeds back an RRC reconfiguration complete message to the gNB-CU-CP.
  • the gNB-DU decapsulates the above RRC reconfiguration complete message sent over the air interface into an encapsulated RRC reconfiguration complete message that can be transmitted on the F1-C interface, and then sends it to the gNB-CU- CP.
  • the gNB-DU sends the downlink data packet to the UE.
  • the gNB-DU sends the layer 2 data packet to the UE through the air interface after performing bottom layer processing on the layer 2 data packet it received in S312.
  • the UE then extracts the transmitted downlink user data from the air interface data packet by using the DRB configuration established by the UE in S313.
  • the core network or the UE may send the uplink and downlink data packets belonging to the QoS flow in the future.
  • the UE performs subsequent uplink and downlink user data transmission through the DRB established in the above steps.
  • the gNB-CU-UP will send a bearer context inactive notification message to the gNB-CU-CP.
  • the gNB-CU-CP can trigger the process of letting the gNB-CU-UP, the gNB-DU and the UE release the above established DRB.
  • the specific duration and release timing of the above-mentioned longer period may be preset.
  • the NG-RAN node is a gNB as an example for description.
  • gNB-CU-CP it is only necessary to replace gNB-CU-CP in the above embodiment with eNB-CU-CP, gNB-CU-UP with eNB-CU-UP, and gNB-DU It is replaced with eNB-DU, and the F1 interface is replaced with a W1 interface, and other processes remain unchanged, which will not be repeated here.
  • S302 in FIG. 3 is illustrated by taking the gNB-CU-CP determining not to map the QoS flow to any DRB temporarily as an example. It can be understood that when the gNB-CU-CP determines to temporarily map the QoS flow to the default DRB In the following steps, when the gNB-CU-UP receives the downlink data packet of the QoS flow, the process of triggering the gNB-CU-CP to perform bearer mapping again through the first interface message is similar to the above.
  • FIG. 4 is a schematic diagram of interaction among the core network, the radio access network and the user equipment when the target bearer is an existing bearer.
  • the gNB-CU-UP shown in FIG. 4 is the first network element in the foregoing embodiment, the gNB-CU-CP is the second network element, and the gNB-DU is the third network element.
  • the core network sends an N2 interface message to the gNB-CU-CP.
  • the N2 interface message is used to instruct the gNB-CU-CP to establish a PDU session for the UE, wherein the PDU session includes a QoS flow, the QoS flow does not need to guarantee the transmission bit rate, and its QoS parameters do not contain "this A QoS flow is indicated as having data transmission more often than other QoS flows", so this QoS flow is considered as a QoS flow with infrequent data transmission.
  • the identity of the QoS flow, ie QFI is assumed to be 1.
  • the gNB-CU-CP sends an E1 interface message to the gNB-CU-UP.
  • the gNB-CU-CP determines not to map the QoS flow to any DRB for the time being.
  • the gNB-CU-CP sends an E1 interface message to the gNB-CU-UP.
  • the E1 interface message is used to request the gNB-CU-UP to establish a corresponding context for the PDU session, including allocating the N3 channel downlink for the PDU session. transport address.
  • the E1 interface message also includes an instruction requesting the gNB-CU-UP to establish at least one DRB for the PDU session.
  • the DRB may not contain any QoS flow and only operates as the default DRB of the PDU session.
  • the process of establishing at least one DRB for the PDU session here is the same as that in the related art, and will not be repeated here.
  • the gNB-CU-UP feeds back an E1 interface message to the gNB-CU-CP.
  • the gNB-CU-UP establishes the context of the PDU session, and feeds back an E1 interface message to the gNB-CU-CP.
  • the E1 interface message includes the N3 channel downlink transmission address allocated by the gNB-CU-UP for the PDU session.
  • the core network sends a downlink data packet to the gNB-CU-UP.
  • the core network finds that there is downlink data belonging to the above QoS flow on the PDU session and needs to be transmitted to the UE. Therefore, the core network sends an N3 downlink data packet to the gNB-CU-UP through the above established N3 transmission channel , the data packet contains the downlink user data to be transmitted, and a QFI with a value of 1 is used to indicate the QoS flow to which the downlink user data belongs.
  • the gNB-CU-UP sends a first interface message to the gNB-CU-CP.
  • the gNB-CU-UP determines that the corresponding QoS flow is not mapped to any DRB, so it cannot be sent to the UE through the air interface. Therefore, the downlink data packet is buffered and the first interface message is sent to the gNB-CU-CP.
  • the interface message is an E1 interface message.
  • the first interface message includes the QFI of the QoS flow to indicate that the gNB-CU-UP has received the data packet sent by the core network, and the QoS flow to which the data packet belongs is not mapped to any DRB.
  • the gNB-CU-CP sends a bearer context modification request message to the gNB-CU-CP.
  • the gNB-CU-CP After receiving the first interface message, the gNB-CU-CP determines to use an existing DRB belonging to the PDU session to bear the QoS flow. Therefore, the gNB-CU-CP sends the bearer context modification to the gNB-gNB-CU-UP. request message, the bearer context modification request message is an E1 interface message.
  • the bearer context modification request message is the aforementioned second interface message, which contains the identifier of the target bearer, that is, the ID of the DRB, and the DRB contains the QFI with the value of 1 to indicate the QoS flow. Mapped to this DRB.
  • the gNB-CU-UP sends a bearer context modification response message to the gNB-CU-CP.
  • the gNB-CU-UP sends the bearer context modification request message according to the gNB-CU-CP, updates the DRB configuration, for example, adds the mapping relationship between the DRB and the QoS flow in the DRB configuration, and sends the bearer context modification response to the gNB-CU-CP
  • the message is used to indicate that the configuration has been updated, and the bearer context modification response message is an E1 interface message.
  • the gNB-CU-UP starts to process the data packet according to the DRB configuration provided by the gNB-CU-CP, until the data packet is encapsulated into a layer 2 data packet that can be transmitted through the F1-U channel, and is passed through the F1-U channel.
  • the channel is sent to the gNB-DU.
  • the gNB-CU-CP sends a user equipment context modification request message to the gNB-DU.
  • the user equipment context modification request message is sent by the gNB-CU-CP to the gNB-DU through the F1-C channel.
  • the user equipment context modification request message is used to indicate to the gNB-DU that the QoS flow has been mapped to the DRB, and the user equipment
  • the context modification request message may be the fourth interface message in the foregoing embodiment.
  • the gNB-DU feeds back a user equipment context modification response message to the gNB-CU-CP.
  • the user equipment context modification response message is used to indicate that the aforementioned user equipment context modification request message has been received.
  • the gNB-DU sends the downlink data packet to the UE.
  • the layer 2 data packet is sent to the UE through the air interface.
  • the UE uses the previously established DRB configuration to extract the transmitted downlink user data from the air interface data packet.
  • the core network or the UE may also send downlink data packets belonging to the QoS flow in the future.
  • the DRB mapping has been completed in the above steps, gNB-CU-UP, gNB-DU and UE pass The DRB mapped in the steps performs subsequent uplink and downlink user data transmission.
  • the description is given by taking the NG-RAN node as the gNB as an example.
  • the NG-RAN node adopts ng-eNB
  • eNB-DU It is replaced with eNB-DU
  • the F1 interface is replaced with a W1 interface, and other processes remain unchanged, which will not be repeated here.
  • S402 in FIG. 4 is illustrated by taking the gNB-CU-CP determining not to map the QoS flow to any DRB temporarily for illustration. It can be understood that when the gNB-CU-CP determines to temporarily map the QoS flow to the default DRB In the following steps, when the gNB-CU-UP receives the downlink data packet of the QoS flow, the process of triggering the gNB-CU-CP to perform bearer mapping again through the first interface message is similar to the above.
  • FIG. 5 is a schematic structural diagram 1 of a data processing apparatus provided by an embodiment of the present application.
  • the data processing apparatus 500 is applied to the first network element in the wireless access network, including:
  • the receiving module 501 is configured to receive a downlink data packet, where the downlink data packet includes the downlink user data and the identifier of the data stream to which the downlink user data belongs.
  • the sending module 502 is configured to send a first interface message to a second network element in the wireless access network, where the first interface message includes an identifier of the data flow, and the first interface message is used to determine the target bearer to which the data flow is mapped.
  • the sending module 502 is used to:
  • the identifier of the data flow it is judged whether the data flow is mapped to the bearer; when the data flow is not mapped to the bearer or the data flow is mapped to the default bearer, the first interface is sent to the second network element in the wireless access network information.
  • the target bearer is another bearer than the default bearer.
  • the receiving module 501 is further configured to:
  • the sending module 502 is also used for:
  • the sending module 502 is used to:
  • the configuration information of the target bearer is determined, wherein the configuration information of the target bearer includes the mapping relationship between the target bearer and the data stream; based on the mapping relationship, the downlink user equipment is sent to the user equipment. data.
  • the sending module 502 is further configured to:
  • the downlink address of the target bearer is obtained from the third network element of the wireless access network; based on the downlink address of the target bearer, the downlink user data is sent to the third network element, so that the third network element sends the user data to the user through the target bearer.
  • the device sends downlink user data.
  • the sending module 502 is further configured to:
  • the uplink address of the target bearer is sent to the third network element, where the uplink address is used to instruct the third network element to send uplink user data to the first network element through the uplink address.
  • the target bearer is an existing bearer in the protocol data unit session to which the data flow belongs.
  • the sending module 502 is used for:
  • the configuration information of the existing bearer is updated, wherein the updated configuration information of the existing bearer includes the mapping relationship between the existing bearer and the data stream.
  • FIG. 6 is a second schematic structural diagram of a data processing apparatus according to an embodiment of the present application.
  • the data processing apparatus 600 is applied to the second network element in the wireless access network, including:
  • the receiving module 601 is configured to receive a first interface message sent by a first network element in the wireless access network, where the first interface message includes an identifier of a data stream of downlink user data.
  • the processing module 602 is configured to determine the target bearer of the data flow mapping according to the first interface message.
  • the sending module 603 is configured to send a second interface message to the first network element, where the second interface message includes the identifier of the target bearer, so that the first network element sends downlink user data to the user equipment according to the target bearer.
  • the sending module 603 is further configured to:
  • the receiving module 601 is also used for:
  • the downlink address sent by the third network element is received, and the downlink address is sent to the first network element, so that the first network element sends downlink user data to the third network element according to the downlink address.
  • the receiving module 601 is further configured to: receive the uplink address of the target bearer sent by the first network element.
  • the sending module 603 is further configured to send the uplink address to the third network element, so that the third network element sends the uplink user data to the first network element through the uplink address.
  • the target bearer is an existing bearer in the protocol data unit session to which the data flow belongs.
  • the sending module 603 is further configured to:
  • a fourth interface message is sent to the third network element in the radio access network, where the fourth interface message is used to indicate the mapping relationship between the data flow and the target bearer.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated units are implemented in the form of software functional units and sold or used as independent products, they may be stored in a processor-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the base station 700 includes a memory 701 , a transceiver 702 and a processor 703 .
  • the memory 701 is used to store computer programs; the transceiver 702 is used to send and receive data under the control of the processor 703 .
  • the processor 703 is configured to read the computer program in the memory 701 and perform the following operations:
  • a first interface message is sent to the second network element in the wireless access network, where the first interface message includes an identifier of the data flow, and the first interface message is used to determine the target bearer to which the data flow is mapped.
  • the processor 703 is configured to perform:
  • the identifier of the data stream determine whether the data stream is mapped to the bearer
  • the first interface message is sent to the second network element in the radio access network.
  • the target bearer is another bearer than the default bearer.
  • the processor 703 is configured to perform:
  • the processor 703 is configured to perform:
  • downlink user data is sent to the user equipment.
  • the processor 703 is configured to perform:
  • the downlink user data is sent to the third network element, so that the third network element sends the downlink user data to the user equipment through the target bearer.
  • the processor 703 is configured to perform:
  • the uplink address of the target bearer is sent to the third network element, where the uplink address is used to instruct the third network element to send uplink user data to the first network element through the uplink address.
  • the target bearer is an existing bearer in the protocol data unit session to which the data flow belongs;
  • Processor 703 is used to execute:
  • the configuration information of the existing bearer is updated, wherein the updated configuration information of the existing bearer includes the mapping relationship between the existing bearer and the data stream.
  • the processor 703 is configured to read the computer program in the memory 701 and perform the following operations:
  • a second interface message is sent to the first network element, where the second interface message includes the identifier of the target bearer, so that the first network element sends downlink user data to the user equipment according to the target bearer.
  • the processor 703 is configured to perform:
  • the downlink address sent by the third network element is received, and the downlink address is sent to the first network element, so that the first network element sends downlink user data to the third network element according to the downlink address.
  • the processor 703 is configured to perform:
  • the uplink address is sent to the third network element, so that the third network element sends the uplink user data to the first network element through the uplink address.
  • the target bearer is an existing bearer in the protocol data unit session to which the data flow belongs.
  • the processor 703 is configured to perform:
  • a fourth interface message is sent to the third network element in the radio access network, where the fourth interface message is used to indicate the mapping relationship between the data flow and the target bearer.
  • the bus architecture may include any number of interconnected buses and bridges, specifically, one or more processors represented by processor 703 and various circuits of memory represented by memory 701 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 702 may be multiple elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 703 is responsible for managing the bus architecture and general processing, and the memory 701 may store data used by the processor 703 in performing operations.
  • the processor 703 can be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the above-mentioned network device can implement all the method steps implemented by the first network element or the second network element in the above method embodiments, and can achieve the same technical effect, which is not repeated here.
  • the same parts and beneficial effects in this embodiment as those in the method embodiment will be described in detail.
  • Embodiments of the present application further provide a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the first network element or the second network element in the foregoing method embodiment. method.
  • a processor-readable storage medium can be any available medium or data storage device that can be accessed by a processor, including but not limited to magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (eg, CD, DVD, BD, HVD, etc.), and semiconductor memory (eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)), etc.
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage eg, CD, DVD, BD, HVD, etc.
  • semiconductor memory eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)
  • Embodiments of the present application further provide a computer program product, including a computer program, when the computer program is executed by a processor, the method executed by the first network element or the second network element in the foregoing method embodiments is implemented.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means including the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据处理方法、装置、网络设备、存储介质及程序产品,该方法应用于无线接入网中的第一网元,包括:接收下行数据包,所述下行数据包中包括下行用户数据和所述下行用户数据所属的数据流的标识;向所述无线接入网中的第二网元发送第一接口消息,所述第一接口消息中包括所述数据流的标识,所述第一接口消息用于确定所述数据流映射到的目标承载。从而,保证了数据流上的数据能够以满足其QoS需求的形式进行传输。

Description

数据处理方法、装置、网络设备、存储介质及程序产品
本申请要求于2021年4月7日提交中国专利局、申请号为202110373435.0、申请名称为“数据处理方法、装置、网络设备、存储介质及程序产品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据处理方法、装置、网络设备、存储介质及程序产品。
背景技术
第五代移动通信技术(5th-Generation,5G)系统中的业务数据流以服务质量流(Quality of Service flow,QoS flow)为最小颗粒度进行组织,以针对不同业务提供不同的服务质量。
QoS flow以QFI(QoS Flow Identifier,服务质量流标识)进行标识。QoS flow在接入层通过DRB(Data Radio Bearer,数据无线承载)进行传输,某个QoS flow实际上的服务质量水平很大程度上取决于其所映射的DRB的服务质量参数,因此多数情况下,网络会将不同的QoS flow映射为不同的DRB,以保证传输调度的针对性。
发明内容
本申请提供一种数据处理方法、装置、网络设备、存储介质及程序产品,保证了数据流上的数据能够以满足其QoS需求的形式进行传输。
第一方面,本申请提供一种数据处理方法,应用于无线接入网中的第一网元,包括:
接收下行数据包,所述下行数据包中包括下行用户数据和所述下行用户数据所属的数据流的标识;
向所述无线接入网中的第二网元发送第一接口消息,所述第一接口消息中包括所述数据流的标识,所述第一接口消息用于确定所述数据流映射到的目标承载。
在一种实施方式中,向所述无线接入网中的第二网元发送第一接口消息,包括:
根据所述数据流的标识,判断所述数据流是否被映射到承载;
若所述数据流未被映射到承载或所述数据流被映射到缺省承载,则向所述无线接入网中的第二网元发送第一接口消息。
在一种实施方式中,若所述数据流被映射至缺省承载,所述目标承载是除了所述缺省 承载之外的其他承载。
在一种实施方式中,所述方法还包括:
接收所述第二网元发送的第二接口消息,所述第二接口消息包括目标承载的标识;
根据所述第二接口消息中包含的目标承载的标识,向用户设备发送所述下行用户数据。
在一种实施方式中,所述根据所述第二接口消息中包含的目标承载的标识,向用户设备发送所述下行用户数据,包括:
根据所述第二接口消息中包含的目标承载的标识,确定所述目标承载的配置信息,其中,所述目标承载的配置信息中包含所述目标承载与所述数据流之间的映射关系;
基于所述映射关系,向用户设备发送所述下行用户数据。
在一种实施方式中,所述基于所述映射关系,向用户设备发送所述下行用户数据,包括:
基于所述映射关系,从所述无线接入网中的第三网元中获取所述目标承载的下行地址;
基于所述目标承载的下行地址,向所述第三网元发送所述下行用户数据,以使所述第三网元通过所述目标承载向所述用户设备发送所述下行用户数据。
在一种实施方式中,所述方法还包括:
向所述第三网元发送所述目标承载的上行地址,所述上行地址用于指示所述第三网元通过所述上行地址向所述第一网元发送上行用户数据。
在一种实施方式中,所述目标承载为所述数据流所属的协议数据单元会话中的已有承载;
所述根据所述第二接口消息中包含的目标承载的标识,确定所述目标承载的配置信息,包括:
根据所述第二接口消息中包含的已有承载的标识,更新所述已有承载的配置信息,其中,更新后的所述已有承载的配置信息中包含所述已有承载和所述数据流之间的映射关系。
第二方面,本申请提供一种数据处理方法,应用于无线接入网中的第二网元,包括:
接收所述无线接入网中的第一网元发送的第一接口消息,所述第一接口消息包括下行用户数据的数据流的标识;
根据所述第一接口消息,确定所述数据流映射的目标承载;
向所述第一网元发送第二接口消息,所述第二接口消息包括所述目标承载的标识,以便于所述第一网元根据所述目标承载向用户设备发送所述下行用户数据。
在一种实施方式中,所述方法还包括:
向所述无线接入网中的第三网元发送第三接口消息,所述第三接口消息用于指示所述 第三网元和用户设备确定所述目标承载的配置信息,以及,用于指示所述第三网元分配所述目标承载的下行地址;
接收所述第三网元发送的所述下行地址,并向所述第一网元发送所述下行地址,以使所述第一网元根据所述下行地址向所述第三网元发送所述下行用户数据。
在一种实施方式中,所述方法还包括:
接收所述第一网元发送的所述目标承载的上行地址;
将所述上行地址发送给所述第三网元,以使所述第三网元通过所述上行地址向所述第一网元发送上行用户数据。
在一种实施方式中,所述目标承载为所述数据流所属的协议数据单元会话中的已有承载。
在一种实施方式中,所述方法还包括:
向所述无线接入网中的第三网元发送第四接口消息,所述第四接口消息用于指示所述数据流和目标承载之间的映射关系。
第三方面,本申请提供一种数据处理装置,应用于无线接入网中的第一网元,包括:
接收模块,用于接收下行数据包,所述下行数据包中包括下行用户数据和所述下行用户数据所属的数据流的标识;
发送模块,用于向所述无线接入网中的第二网元发送第一接口消息,所述第一接口消息中包括所述数据流的标识,所述第一接口消息用于确定所述数据流映射到的目标承载。
在一种实施方式中,所述发送模块用于:
根据所述数据流的标识,判断所述数据流是否被映射到承载;在所述数据流未被映射到承载或所述数据流被映射到缺省承载时,则向所述无线接入网中的第二网元发送第一接口消息。
在一种实施方式中,若所述数据流被映射至缺省承载,所述目标承载是除了所述缺省承载之外的其他承载。
在一种实施方式中,所述接收模块还用于:
接收所述第二网元发送的第二接口消息,所述第二接口消息包括目标承载的标识;
所述发送模块还用于:
根据所述第二接口消息中包含的目标承载的标识,向用户设备发送所述下行用户数据。
在一种实施方式中,所述发送模块用于:
根据所述第二接口消息中包含的目标承载的标识,确定所述目标承载的配置信息,其中,所述目标承载的配置信息中包含所述目标承载与所述数据流之间的映射关系;基于所 述映射关系,向用户设备发送所述下行用户数据。
在一种实施方式中,所述发送模块还用于:
基于所述映射关系,从所述无线接入网的第三网元中获取所述目标承载的下行地址;
基于所述目标承载的下行地址,向所述第三网元发送所述下行用户数据,以使所述第三网元通过所述目标承载向所述用户设备发送所述下行用户数据。
在一种实施方式中,所述发送模块还用于:
向所述第三网元发送所述目标承载的上行地址,所述上行地址用于指示所述第三网元通过所述上行地址向所述第一网元发送上行用户数据。
在一种实施方式中,所述目标承载为所述数据流所属的协议数据单元会话中的已有承载;
所述发送模块用于:
根据所述第二接口消息中包含的已有承载的标识,更新所述已有承载的配置信息,其中,更新后的所述已有承载的配置信息中包含所述已有承载和所述数据流之间的映射关系。
第四方面,本申请提供一种数据处理装置,应用于无线接入网中的第二网元,包括:
接收模块,用于接收所述无线接入网中的第一网元发送的第一接口消息,所述第一接口消息包括下行用户数据的数据流的标识;
处理模块,用于根据所述第一接口消息,确定所述数据流映射的目标承载;
发送模块,用于向所述第一网元发送第二接口消息,所述第二接口消息包括所述目标承载的标识,以便于所述第一网元根据所述目标承载向用户设备发送所述下行用户数据。
在一种实施方式中,所述发送模块还用于:
向所述无线接入网中的第三网元发送第三接口消息,所述第三接口消息用于指示所述第三网元和用户设备确定所述目标承载的配置信息,以及,用于指示所述第三网元分配所述目标承载的下行地址;
所述接收模块还用于:
接收所述第三网元发送的所述下行地址,并向所述第一网元发送所述下行地址,以使所述第一网元根据所述下行地址向所述第三网元发送所述下行用户数据。
在一种实施方式中,所述接收模块还用于:接收所述第一网元发送的所述目标承载的上行地址;
所述发送模块,还用于将所述上行地址发送给所述第三网元,以使所述第三网元通过所述上行地址向所述第一网元发送上行用户数据。
在一种实施方式中,所述目标承载为所述数据流所属的协议数据单元会话中的已有承 载。
在一种实施方式中,所述发送模块还用于:
向所述无线接入网中的第三网元发送第四接口消息,所述第四接口消息用于指示所述数据流和目标承载之间的映射关系。
第五方面,本申请提供一种网络设备,包括存储器,收发机和处理器:
所述存储器,用于存储计算机程序;所述收发机,用于在所述处理器的控制下收发数据;所述处理器,用于读取所述存储器中的计算机程序并执行第一方面以及任一实施方式或第二方面以及任一实施方式中所述的方法。
第六方面,本申请提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行第一方面以及任一实施方式或第二方面以及任一实施方式中所述的方法。
第七方面,本申请提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现第一方面以及任一实施方式或第二方面以及任一实施方式中所述的方法。
本申请提供一种数据处理方法、装置、网络设备、存储介质及程序产品,该方法中,网线接入网中的第一网元在接收到下行数据包后,向无线接入网中的第二网元发送第一接口消息,用于向第二网元请求确定数据流映射的承载,保证了数据流上的数据能够以满足其QoS需求的形式进行传输。
应当理解,上述发明内容部分中所描述的内容并非旨在限定本申请的实施例的关键或重要特征,亦非用于限制本申请的范围。本申请的其它特征将通过以下的描述变得容易理解。
附图说明
图1为本申请实施例提供的5G系统的架构示意图;
图2为本申请实施例提供的数据处理方法的流程示意图一;
图3为本申请实施例提供的数据处理方法的流程示意图二;
图4为本申请实施例提供的数据处理方法的流程示意图三;
图5为本申请实施例提供的数据处理装置的结构示意图一
图6为本申请实施例提供的数据处理装置的结构示意图二;
图7为本申请实施例提供的网络设备的结构示意图。
具体实施方式
本申请中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了数据处理方法及装置,使得无线接入网中的用户平面节点在接收到下行用户数据时,可以通知控制平面节点以触发对该数据流的承载配置过程,进而保证该下行用户数据能够正常发送至用户设备。其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施例可以相互参见,重复之处不再赘述。
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。 例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。例如,本申请实施例涉及的基站可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。在一些网络结构中,基站可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
基站与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
以下首先对5G系统中业务数据的传输进行介绍。
5G系统中的业务数据首先根据数据源、切片属性等参数划分为协议数据单元会话(Protocol Data Unit Session,PDU Session),而每个PDU Session之中的数据则进一步细分为若干个QoS flow,在PDU Session之内,QoS flow由服务质量流标识(QoS Flow Identifier,QFI)所唯一标识。其中,划分不同QoS flow的主要目的在于为不同的业务数据提供不同的服务质量。
由于传输信道的特性所限,对服务质量影响最大的链路通常在于空口,因而不同的服务质量往往表现为不同的空口处理方法,例如不同的调度优先级。在具体处理上,5G系统之中的无线接入网NG-RAN将QoS flow映射为DRB,并以DRB的粒度采用不同的空口处理方法,亦即,属于同一个DRB的数据包在空口传输上会采用相同的策略,无论该数 据包属于哪一个QoS flow。针对每一个UE,DRB以DRB ID所唯一标识。5G系统中允许将多个属于同一个PDU会话的QoS flow映射到同一个DRB上,但这也就意味着这些QoS flow不得不采用相同的空口处理方法进行传输。QoS flow到DRB的映射关系是通过无线资源控制(Radio Resource Control,RRC)信令告知UE的。
为了更有效、更具针对性地利用空口资源,NG-RAN时常会选择将QoS flow一对一映射为DRB。但是,由于底层资源有限,为了避免DRB ID占用过多比特,因此针对每个UE所能建立的DRB的最大数量规定为32。相比于非接入层每个UE最多能建立256个PDU会话,以及每个PDU会话之中最多能包含64个QoS flow来说,DRB的数量是一个很小的数目。因此,如果NG-RAN选择将QoS flow一对一映射为DRB,就有可能遇到DRB ID数量不足的问题。
有鉴于此,业界提出针对那些数据传输相对不频繁,且当前无数据的QoS flow,NG-RAN可以暂时不将其映射到任何DRB上,或者仅将其映射至缺省DRB上,在该QoS flow有数据需要进行传输的时候再指定其所映射的DRB,然后通过RRC信令告知用户设备,并进行数据传输。其中,每个PDU会话上最多只有一个缺省DRB,缺省DRB作为该PDU会话的默认DRB,可以理解的是,缺省DRB可以仅作为数据流的默认映射运行,其不能保证所有数据流的QoS需求,缺省DRB之外的其他DRB则称作非缺省DRB。
核心网在指示NG-RAN建立QoS flow的时候,可以标记某些QoS flow为“更容易出现有数据需要传输的情况”,相对地,另一些QoS flow则为“相对罕见”的QoS flow。NG-RAN可以根据这一信息,有选择地仅将一部分QoS flow映射到DRB上,而对余下的QoS flow暂时不做映射,或仅映射至缺省DRB。当某个暂时不做映射或映射至缺省DRB的QoS flow上出现了需要传输的下行数据包时,核心网并不会针对该数据包特地发送任何控制平面信令,而是会直接将该数据包通过针对该PDU会话的用户平面通道发送至NG-RAN,并附有该QoS flow的QFI。在NG-RAN的控制平面中心节点(Central Unit-Control Plane,即CU-CP)和用户平面中心节点(Central Unit-User Plane,即CU-UP)不分离的情况下,NG-RAN在收到该数据包之后,可以选择为该QoS flow建立一个DRB以进行传输,或将其映射到一个既有的DRB上进行传输。
然而,针对NG-RAN的CU-CP和CU-UP分离的情况,NG-RAN在收到下行数据包之后,无法实现上述传输过程。结合如图1所示的5G NR网络架构进行说明。
在NG-RAN之中,一个逻辑上的NG-RAN节点(NG-RAN node)可以进一步划分为一个CU-CP,一个或多个CU-UP,以及一个或多个分布节点(Distributed Unit,DU),这种结构称作CU-CP/UP分离(CU-CP/UP split)。
如图1所示,在该NG-RAN节点为采用新空口(New Radio,NR)技术的NG-RAN节点,也就是gNB的情况下,gNB-CU-CP与gNB-DU之间以F1-C接口连接,而gNB-CU-CP与gNB-CU-UP之间以E1接口连接。gNB与核心网(5G Core,5GC)的控制面连接N2终止于gNB-CU-CP,而gNB与UE的空口连接则终止于gNB-DU。
当有用户平面数据需要传输时,gNB-CU-UP与5GC之间将建立N3传输通道,而gNB-DU与gNB-CU-UP之间则建立F1-U传输通道。对于涉及业务组织,例如QoS flow与DRB如何映射的空口控制平面功能,由于其既会牵涉gNB-DU也会牵涉gNB-CU-UP,为了便于统一控制与管理,这部分空口功能通过gNB-CU-CP之中的RRC模块与UE交互,所交互的信令称为RRC信令。特别地,下行RRC信令均由gNB-CU-CP生成,在封装为层2数据包之后,通过F1-C发送至gNB-DU,然后由其通过空口转发至UE。
类似的,在该NG-RAN节点为采用演进的全球陆地无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA)技术的节点,也就是ng-eNB的情况下,eNB-CU-CP与eNB-DU之间以W1-C接口连接,而eNB-CU-CP与eNB-CU-UP之间以E1接口连接。ng-eNB与5GC的控制面连接N2终止于eNB-CU-CP,而ng-eNB与UE的空口连接则终止于eNB-DU。
当有用户平面数据需要传输时,eNB-CU-UP与5GC之间将建立N3传输通道,而eNB-DU与eNB-CU-UP之间则建立W1-U传输通道。其他功能与上述gNB的情况类似。
通过对以上架构的介绍可以看出,针对某一QoS flow,在CU-CP决定暂时不将其映射到任何DRB上,或仅映射至缺省DRB上的情况下,如果属于该QoS flow的下行数据从核心网抵达CU-UP,由于CU-CP/UP分离,CU-CP并不能获知该QoS flow的下行数据抵达CU-UP,因此也就无法触发后续的重新映射等过程,进而使得该下行数据或者完全无法通过空口发送,或者其通过空口发送时,QoS需求无法保证,而该QoS flow上的后续数据包也会由于相同原因,不能以满足QoS需求的形式通过空口传递。
为了解决上述问题,本申请实施例提出,无线接入网的用户平面中心节点在接收到一个下行数据包,且该下行数据包属于一个并未被映射至任何无线承载的数据流,或属于一个仅映射至缺省无线承载的数据流的情况下,用户平面中心节点需要重新从无线接入网的控制平面中心节点获取该数据流被映射到的无线承载,进而保证该下行数据包,以及该数据流上后续的数据包能够以满足其QoS需求的形式通过空口在无线接入网与UE之间传输。
下面,将通过具体的实施例对本申请提供的数据处理方法进行详细地说明。可以理解的是,下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图2为本申请实施例提供的数据处理方法的流程示意图。该方法应用于无线接入网中的第一网元和第二网元,示例的,第一网元为用户平面中心节点,第二网元为控制平面中心节点。如图2所示,该方法包括:
S201、第一网元接收下行数据包。
其中,下行数据包中包括下行用户数据和下行用户数据所属的数据流的标识。
第一网元接收的下行数据包由核心网发送,第一网元根据下行数据包中的数据流的标识可以确定该下行数据包中的下行用户数据所属的数据流是否已经被映射至合适的承载。对于已经被映射至合适的承载的数据流,第一网元可以基于该承载正常传输该下行数据包,而对于未被映射至合适的承载的数据流,第一网元则需要执行后续的步骤以触发对该数据流进行承载映射。数据流的标识可以是QFI或其他可以表征数据流的标识信息。
在一种实施方式中,“数据流被映射至合适的承载”可以指数据流被映射至任何承载,相应的“数据流未被映射至合适的承载”是指数据流未被映射至任何承载。
在另一种实施方式中,“数据流被映射至合适的承载”可以指数据流被映射至非缺省承载,相应的“数据流未被映射至合适的承载”是指数据流未映射到非缺省承载。缺省承载是PDU会话的默认承载,缺省承载可以仅作为数据流的默认映射承载,其不能保证数据流的QoS需求。
此外,还需要说明的是,数据流与承载之间的映射关系,可以不区分上下行数据,即直接对数据流进行映射,或者,也可以区分上下行数据,即将数据流的上行数据和下行数据分别进行映射。上述的未被映射至合适的承载的数据流可以是指在不区分上下行的情况下,该数据流未被映射至合适的承载,或者,也可以是在区分上下行的情况下,该数据流的下行数据和/或上行数据未被映射至合适的承载,本申请实施例对此不作限定。
S202、第一网元向无线接入网中的第二网元发送第一接口消息。
其中,第一接口消息包括数据流的标识,第一接口消息用于确定数据流映射到的目标承载。
由于数据流和承载之间的映射关系由第二网元确定,因此,本申请实施例中,第一网元在根据数据流的标识确定接收到的下行数据包所属的数据流未被映射到合适的承载时,向第二网元发送第一接口消息,并在该第一接口消息中携带该数据流的标识,以使得第二网元可以获知第一网元接收到了未被映射至合适的承载的数据流的数据包,从而可以触发第二网元对该数据流进行承载映射。
S203、第二网元根据第一接口消息,确定数据流映射的目标承载。
第二网元在接收到第一接口消息后,根据第一接口消息中的数据流的标识将该数据流 映射至目标承载,目标承载可以是新建的承载,也可以是该数据流所属的PDU会话中的已有承载。可选的,在数据流被映射至缺省承载的场景中,目标承载是缺省承载之外的其他承载。
S204、第二网元向第一网元发送第二接口消息。
其中,该第二接口消息包括目标承载的标识,以便于第一网元根据目标承载向用户设备发送下行用户数据。
示例的,第二接口消息中可以包括上述数据流的标识以及目标承载的标识,从而,第一网元在接收到第二接口消息后,可以基于第二接口消息中指示的目标承载的标识,确定与数据流对应的目标承载,并基于目标承载向用户设备发送下行用户数据。
示例的,第一网元可以基于目标承载,通过无线接入网中的第三网元向用户设备发送下行用户数据。第三网元可以为无线接入网的分布节点,第三网元可以通过目标承载将下行用户数据发送至用户设备。
本申请实施例提供的数据处理方法中,第一网元在接收到下行数据包后,可以根据其中的数据流的标识确定该下行数据包所属的数据流是否被映射至合适的承载,对于未被映射至合适的承载的数据流,第一网元向第二网元发送接口消息,以触发第二网元重新为该数据流映射目标承载,从而保证该下行数据包,以及该数据流上后续的数据包能够以满足其QoS需求的形式通过空口在无线接入网与用户设备之间传输。
在上述实施例的基础上,针对目标承载为新建承载,或者目标承载为PDU会话中已有的承载即现有承载,这两种情况,第二网元向第一网元发送第二接口消息后,无线接入网中的各个节点的后续处理过程略有不同。
在目标承载为新建承载的情况下,在第二网元确定了将数据流映射至一个目标承载后,第一网元、第三网元和用户设备均需要确定该目标承载的相应配置信息,因此,第二网元除了向第一网元发送第二接口消息以指示第一网元确定目标承载的配置信息之外,第二网元还可以向第三网元发送第三接口消息,第三接口消息用于指示第三网元和用户设备确定目标承载的配置信息以及指示第三网元分配目标承载的下行地址。第一网元和第三网元确定的目标承载的配置中均包括了目标承载和数据流之间的映射关系,从而第一网元可以基于映射关系,向用户设备发送下行用户数据。可以理解的是,目标承载的配置信息除了包含目标承载和数据流之间的对应关系之外,还可以包含目标承载传输数据所需要的其他配置信息。
第一网元除了根据第二接口消息确定目标承载的配置信息之外,还可以接收第三网元通过第二网元发送的目标承载的下行地址,再基于目标承载的下行地址,向第三网元发送 下行用户数据,以使第三网元通过目标承载向用户设备发送下行用户数据。可选的,第一网元还可以向第三网元发送目标承载的上行地址,上行地址用于指示第三网元通过上行地址向第一网元发送上行用户数据。
在目标承载为PDU会话中的已有承载的情况下,第一网元、第三网元和用户设备已经具有目标承载即该已有承载的相应配置信息,第二网元仅需要向第一网元和第三网元指示数据流和该已有承载之间的映射关系即可。因此,第二网元根据第一接口消息,从数据流所属的PDU会话的承载中确定该已有承载作为目标承载后,向第一网元发送第二接口消息,以使第一网元根据第二接口消息更新该已有承载的配置信息,其中,更新后的该已有承载的配置信息中包含已有承载和数据流之间的映射关系。示例的,该已有承载中没有已映射的其他数据流,则在该已有承载的配置中增加该已有承载和数据流之间的映射关系,或者,该已有承载中有已映射的其他数据流,则可以在该已有承载的配置中修改该已有承载与数据流之间的映射关系。此外,第二网元向第三网元发送第四接口消息,第四接口消息用于向第三网元指示数据流和该已有承载之间的映射关系,以使第三网元根据第四接口消息更新该已有承载的配置信息。
以下结合具体实施例对上述两种情况进行更详细地说明。
图3为目标承载为新建承载时,核心网、无线接入网以及用户设备之间的交互示意图。如图3中所示的gNB-CU-UP为前述实施例中的第一网元,gNB-CU-CP为第二网元,gNB-DU为第三网元。
S301、核心网向gNB-CU-CP发送N2接口消息。
该N2接口消息用于指示gNB-CU-CP为UE建立一个PDU会话,其中,该PDU会话中包括有一个QoS流,该QoS流不需要保证传输比特率,其QoS参数中也没有包含“该QoS流比其他QoS流更常有数据传输”的指示,因而该QoS流被视作一个不常有数据传输的QoS流。该QoS流的流标识,即QFI,假设为1。
S302、gNB-CU-CP向gNB-CU-UP发送E1接口消息。
考虑到DRB ID数量有限,且该QoS流为一个不常有数据传输的QoS流,gNB-CU-CP确定暂时不将该QoS流映射到任何DRB上。此时,gNB-CU-CP向gNB-CU-UP发送一条E1接口消息,该E1接口消息用于请求gNB-CU-UP为该PDU会话建立相应的上下文,包括为该PDU会话分配N3通道下行传输地址。可选的,该E1接口消息之中还包括请求gNB-CU-UP监控用户平面活跃状况的指示。
S303、gNB-CU-UP向gNB-CU-CP反馈一条E1接口消息。
gNB-CU-UP建立PDU会话的上下文,并向gNB-CU-CP反馈一条E1接口消息,E1 接口消息中包括了gNB-CU-UP为该PDU会话分配的N3通道下行传输地址。
S304、核心网向gNB-CU-UP发送下行数据包。
在某一时刻,核心网发现该PDU会话上存在属于上述QoS流的下行数据需要传输给UE,因此,核心网通过上述已经建立的N3传输通道向gNB-CU-UP发送了一个N3下行数据包,该数据包中包含需要传输的下行用户数据,以及一个值为1的QFI用于指示下行用户数据所属的QoS流。
S305、gNB-CU-UP向gNB-CU-CP发送第一接口消息。
gNB-CU-UP根据QFI确定对应的QoS流未映射到任何DRB上,因而无法通过空口发送给UE,因此,缓存该下行数据包并向gNB-CU-CP发送第一接口消息,该第一接口消息为E1接口消息。该第一接口消息中包括QoS流的QFI,以表示gNB-CU-UP接收到了核心网发送的数据包,且该数据包所属的QoS流未被映射到任何DRB上。
S306、gNB-CU-CP向gNB-CU-CP发送承载上下文修改请求消息。
gNB-CU-CP接收到第一接口消息后,确定新建一个DRB以承载该QoS流,因此,gNB-CU-CP向gNB-gNB-CU-UP发送承载上下文修改请求消息,该承载上下文修改请求消息为E1接口消息。可选的,该承载上下文修改请求消息即为前述的第二接口消息,其中包含目标承载的标识,即DRB的ID,并且该DRB之中包含该值为1的QFI,以表示该QoS流映射到该DRB上。可选的,该承载上下文修改请求消息中还包含该DRB的其他配置信息。
S307、gNB-CU-UP向gNB-CU-CP发送承载上下文修改响应消息。
gNB-CU-UP建立DRB的配置,并向gNB-CU-CP发送承载上下文修改响应消息,该承载上下文修改响应消息为E1接口消息。可选的,gNB-CU-UP建立DRB的配置时为该DRB分配上行F1-U地址,则gNB-CU-CP发送的承载上下文修改响应消息中包括该上行F1-U地址。同时,gNB-CU-UP开始按照gNB-CU-CP所提供的DRB配置处理该数据包,直至将该数据包封装为一个可以通过F1-U通道传输的层2数据包。
S308、gNB-CU-CP向gNB-DU发送用户设备上下文修改请求消息。
该用户设备上下文修改请求消息,由gNB-CU-CP通过F1-C通道向gNB-DU发送,该用户设备上下文修改请求消息用于请求gNB-DU建立该DRB的底层配置,请求gNB-DU分配下行F1-U地址。可选的,在前述gNB-CU-CP发送的承载上下文修改响应消息中包括上行F1-U地址的情况下,该用户设备上下文修改请求消息还用于告知gNB-DU该DRB的上行F1-U地址。此外,用户设备上下文修改请求消息中还包括一个封装后的RRC重配消息,该RRC重配消息用于请求UE建立该DRB的配置,以使UE可以通过该DRB接收属 于该Qo流的数据包。用户设备上下文修改请求消息可以为前述实施例中的第三接口消息。
S309、gNB-DU将RRC重配消息发送给UE。
gNB-DU在确认可以建立该DRB的底层配置后,将封装后的RRC重配消息进一步封装为可供空口发送的形式,然后发送至UE。
S310、gNB-DU向gNB-CU-CP反馈用户设备上下文修改响应消息。
gNB-DU建立该DRB的底层配置,分配该DRB的下行F1-U地址,然后通过F1-C通道向gNB-CU-CP反馈用户设备上下文修改响应消息,该用户设备上下文修改响应消息中包括该DRB的下行F1-U地址。
S311、gNB-CU-CP向gNB-CU-UP发送承载上下文修改请求消息。
其中,该承载上下文修改请求消息包含该DRB的下行F1-U地址。该承载上下文修改请求消息为E1接口消息。
S312、gNB-CU-UP向gNB-CU-CP发送承载上下文修改响应消息。
该承载上下文修改响应消息用于表示gNB-CU-UP已经更新配置,同时,gNB-CU-UP将上述层2数据包通过F1-U通道发送至gNB-DU。该承载上下文修改响应消息为E1接口消息。
S313、UE向gNB-DU反馈RRC重配完成消息。
UE在接收到S309之中gNB-DU所发送的RRC重配消息后,建立该DRB的配置,并通过空口反馈一条RRC重配完成消息。
S314、gNB-DU向gNB-CU-CP反馈RRC重配完成消息。
gNB-DU将上述通过空口发送的RRC重配完成消息解封为可在F1-C接口上传输的封装后的RRC重配完成消息,然后将其通过上行RRC消息传输消息发送给gNB-CU-CP。
S315、gNB-DU将下行数据包发送给UE。
在S312和S313均完成之后,gNB-DU针对其在S312所接收的层2数据包进行底层处理之后,将该层2数据包通过空口发送至UE。UE则利用其在S313之中所建立的DRB的配置从这个空口数据包之中解出所传输的下行用户数据。
S316、后续上下行用户数据。
在上述下行数据包之后,核心网或UE后续还有可能发送属于该QoS流的上下行数据包,在上述步骤已经完成DRB的映射和配置的基础上,gNB-CU-UP、gNB-DU与UE通过上述步骤中所建立的DRB进行后续的上下行用户数据的传输。
S317、释放DRB。
若该DRB上有较长时间没有数据,gNB-CU-UP会向gNB-CU-CP发送一条承载上下 文不活跃通知消息。当时机合适时,gNB-CU-CP可以触发让gNB-CU-UP、gNB-DU与UE释放上述所建立的DRB的过程。其中,上述较长时间的具体时长以及释放的时机可以预先设置。
需要说明的是,图3中是以NG-RAN节点为gNB为例进行说明。在NG-RAN节点采用ng-eNB的情况下,只需要将上述实施例中的gNB-CU-CP替换为eNB-CU-CP,gNB-CU-UP替换为eNB-CU-UP,gNB-DU替换为eNB-DU,将其中的F1接口替换为W1接口,其他过程不变,此处不再赘述。
此外,图3中S302是以gNB-CU-CP确定暂时不将QoS流映射到任何DRB上为例进行说明,可以理解的是,在gNB-CU-CP确定暂时将QoS流映射到缺省DRB的情况下,后续步骤中gNB-CU-UP在接收到该QoS流的下行数据包时,通过第一接口消息触发gNB-CU-CP重新进行承载映射的过程与上述类似。
图4为目标承载为已有承载时,核心网、无线接入网以及用户设备之间的交互示意图。如图4所示的gNB-CU-UP为前述实施例中的第一网元,gNB-CU-CP为第二网元,gNB-DU为第三网元。
S401、核心网向gNB-CU-CP发送N2接口消息。
该N2接口消息用于指示gNB-CU-CP为UE建立一个PDU会话,其中,该PDU会话中包括有一个QoS流,该QoS流不需要保证传输比特率,其QoS参数中也没有包含“该QoS流比其他QoS流更常有数据传输”的指示,因而该QoS流被视作一个不常有数据传输的QoS流。该QoS流的标识,即QFI,假设为1。
S402、gNB-CU-CP向gNB-CU-UP发送E1接口消息。
考虑到DRB ID数量有限,且该QoS流为一个不常有数据传输的QoS流,gNB-CU-CP确定暂时不将该QoS流映射到任何DRB上。此时,gNB-CU-CP向gNB-CU-UP发送一条E1接口消息,该E1接口消息用于请求gNB-CU-UP为该PDU会话建立相应的上下文,包括为该PDU会话分配N3通道下行传输地址。此外,该E1接口消息中还包含请求gNB-CU-UP为该PDU会话建立至少一个DRB的指示,该DRB之中可以不包含任何QoS流,仅作为该PDU会话的默认DRB运作。此处为PDU会话建立至少一个DRB的过程与相关技术中相同,此处不再赘述。
S403、gNB-CU-UP向gNB-CU-CP反馈一条E1接口消息。
gNB-CU-UP建立PDU会话的上下文,并向gNB-CU-CP反馈一条E1接口消息,E1接口消息中包括了gNB-CU-UP为该PDU会话分配的N3通道下行传输地址。
S404、核心网向gNB-CU-UP发送下行数据包。
在某一时刻,核心网发现该PDU会话上存在属于上述QoS流的下行数据需要传输给UE,因此,核心网通过上述已经建立的N3传输通道向gNB-CU-UP发送了一个N3下行数据包,该数据包中包含需要传输的下行用户数据,以及一个值为1的QFI用于指示下行用户数据所属的QoS流。
S405、gNB-CU-UP向gNB-CU-CP发送第一接口消息。
gNB-CU-UP根据QFI确定对应的QoS流未映射到任何DRB上,因而无法通过空口发送给UE,因此,缓存该下行数据包并向gNB-CU-CP发送第一接口消息,该第一接口消息为E1接口消息。该第一接口消息中包括QoS流的QFI,以表示gNB-CU-UP接收到了核心网发送的数据包,且该数据包所属的QoS流未被映射到任何DRB上。
S406、gNB-CU-CP向gNB-CU-CP发送承载上下文修改请求消息。
gNB-CU-CP接收到第一接口消息后,确定采用一个属于该PDU会话的现有的DRB来承载该QoS流,因此,gNB-CU-CP向gNB-gNB-CU-UP发送承载上下文修改请求消息,该承载上下文修改请求消息为E1接口消息。可选的,该承载上下文修改请求消息即为前述的第二接口消息,其中包含目标承载的标识,即该DRB的ID,并且该DRB之中包含该值为1的QFI,以表示该QoS流映射到该DRB上。
S407、gNB-CU-UP向gNB-CU-CP发送承载上下文修改响应消息。
gNB-CU-UP按照gNB-CU-CP发送承载上下文修改请求消息,更新DRB的配置,例如在DRB的配置中增加DRB与QoS流的映射关系,并向gNB-CU-CP发送承载上下文修改响应消息,用于表示配置已更新,该承载上下文修改响应消息为E1接口消息。同时,gNB-CU-UP开始按照gNB-CU-CP所提供的DRB配置处理该数据包,直至将该数据包封装为一个可以通过F1-U通道传输的层2数据包,并通过F1-U通道发送至gNB-DU。
S408、gNB-CU-CP向gNB-DU发送用户设备上下文修改请求消息。
该用户设备上下文修改请求消息,由gNB-CU-CP通过F1-C通道向gNB-DU发送,该用户设备上下文修改请求消息用于指示gNB-DU该QoS流已经映射到该DRB,该用户设备上下文修改请求消息可以为前述实施例中的第四接口消息。
S409、gNB-DU向gNB-CU-CP反馈用户设备上下文修改响应消息。
该用户设备上下文修改响应消息用于表示前述的用户设备上下文修改请求消息已经收到。
S410、gNB-DU将下行数据包发送给UE。
gNB-DU针对其于S407中所接收的层2数据包进行底层处理之后,将该层2数据包通过空口发送至UE。UE则利用先前已经建立的DRB的配置从这个空口数据包之中解出所 传输的下行用户数据。
S411、后续上下行数据包。
在上述下行数据包之后,核心网或UE后续还有可能发送属于该QoS流的下行数据包,在上述步骤已经完成DRB的映射的基础上,gNB-CU-UP、gNB-DU与UE通过上述步骤中所映射的DRB进行后续的上下行用户数据的传输。
需要说明的是,图4中是以NG-RAN节点为gNB为例进行说明。在NG-RAN节点采用ng-eNB的情况下,只需要将上述实施例中的gNB-CU-CP替换为eNB-CU-CP,gNB-CU-UP替换为eNB-CU-UP,gNB-DU替换为eNB-DU,将其中的F1接口替换为W1接口,其他过程不变,此处不再赘述。
此外,图4中S402是以gNB-CU-CP确定暂时不将QoS流映射到任何DRB上为例进行说明,可以理解的是,在gNB-CU-CP确定暂时将QoS流映射到缺省DRB的情况下,后续步骤中gNB-CU-UP在接收到该QoS流的下行数据包时,通过第一接口消息触发gNB-CU-CP重新进行承载映射的过程与上述类似。
图5为本申请实施例提供的数据处理装置的结构示意图一。该数据处理装置500应用于无线接入网中的第一网元,包括:
接收模块501,用于接收下行数据包,下行数据包中包括下行用户数据和下行用户数据所属的数据流的标识。
发送模块502,用于向无线接入网中的第二网元发送第一接口消息,第一接口消息中包括数据流的标识,第一接口消息用于确定数据流映射到的目标承载。
在一种实施方式中,发送模块502用于:
根据数据流的标识,判断数据流是否被映射到承载;在数据流未被映射到承载或数据流被映射到缺省承载时,则向无线接入网中的第二网元发送第一接口消息。
在一种实施方式中,若数据流被映射至缺省承载,目标承载是除了缺省承载之外的其他承载。
在一种实施方式中,接收模块501还用于:
接收第二网元发送的第二接口消息,第二接口消息包括目标承载的标识;
发送模块502还用于:
根据第二接口消息中包含的目标承载的标识,向用户设备发送下行用户数据。
在一种实施方式中,发送模块502用于:
根据第二接口消息中包含的目标承载的标识,确定目标承载的配置信息,其中,目标承载的配置信息中包含目标承载与数据流之间的映射关系;基于映射关系,向用户设备发 送下行用户数据。
在一种实施方式中,发送模块502还用于:
基于映射关系,从无线接入网的第三网元中获取目标承载的下行地址;基于目标承载的下行地址,向第三网元发送下行用户数据,以使第三网元通过目标承载向用户设备发送下行用户数据。
在一种实施方式中,发送模块502还用于:
向第三网元发送目标承载的上行地址,上行地址用于指示第三网元通过上行地址向第一网元发送上行用户数据。
在一种实施方式中,目标承载为数据流所属的协议数据单元会话中的已有承载。
发送模块502用于:
根据第二接口消息中包含的已有承载的标识,更新已有承载的配置信息,其中,更新后的已有承载的配置信息中包含已有承载和数据流之间的映射关系。
在此需要说明的是,本申请提供的上述装置,能够实现上述方法实施例中第一网元所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图6为本申请实施例提供的数据处理装置的结构示意图二。该数据处理装置600应用于无线接入网中的第二网元,包括:
接收模块601,用于接收无线接入网中的第一网元发送的第一接口消息,第一接口消息包括下行用户数据的数据流的标识。
处理模块602,用于根据第一接口消息,确定数据流映射的目标承载。
发送模块603,用于向第一网元发送第二接口消息,第二接口消息包括目标承载的标识,以便于第一网元根据目标承载向用户设备发送下行用户数据。
在一种实施方式中,发送模块603还用于:
向无线接入网中的第三网元发送第三接口消息,第三接口消息用于指示第三网元和用户设备确定目标承载的配置信息,以及,用于指示第三网元分配目标承载的下行地址。
接收模块601还用于:
接收第三网元发送的下行地址,并向第一网元发送下行地址,以使第一网元根据下行地址向第三网元发送下行用户数据。
在一种实施方式中,接收模块601还用于:接收第一网元发送的目标承载的上行地址。
发送模块603,还用于将上行地址发送给第三网元,以使第三网元通过上行地址向第一网元发送上行用户数据。
在一种实施方式中,目标承载为数据流所属的协议数据单元会话中的已有承载。
在一种实施方式中,发送模块603还用于:
向无线接入网中的第三网元发送第四接口消息,第四接口消息用于指示数据流和目标承载之间的映射关系。
在此需要说明的是,本申请提供的上述装置,能够实现上述方法实施例中第二网元所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
图7为本申请实施例提供的网络设备的结构示意图。如图7所示,基站700包括存储器701,收发机702和处理器703。
存储器701,用于存储计算机程序;收发机702,用于在处理器703的控制下收发数据。
处理器703,用于读取存储器701中的计算机程序并执行以下操作:
接收下行数据包,下行数据包中包括下行用户数据和下行用户数据所属的数据流的标识;
向无线接入网中的第二网元发送第一接口消息,第一接口消息中包括数据流的标识,第一接口消息用于确定数据流映射到的目标承载。
在一种实施方式中,处理器703用于执行:
根据数据流的标识,判断数据流是否被映射到承载;
若数据流未被映射到承载或数据流被映射到缺省承载,则向无线接入网中的第二网元发送第一接口消息。
在一种实施方式中,若数据流被映射至缺省承载,目标承载是除了缺省承载之外的其他承载。
在一种实施方式中,处理器703用于执行:
接收第二网元发送的第二接口消息,第二接口消息包括目标承载的标识;
根据第二接口消息中包含的目标承载的标识,向用户设备发送下行用户数据。
在一种实施方式中,处理器703用于执行:
根据第二接口消息中包含的目标承载的标识,确定目标承载的配置信息,其中,目标承载的配置信息中包含目标承载与数据流之间的映射关系;
基于映射关系,向用户设备发送下行用户数据。
在一种实施方式中,处理器703用于执行:
基于映射关系,从无线接入网中的第三网元中获取目标承载的下行地址;
基于目标承载的下行地址,向第三网元发送下行用户数据,以使第三网元通过目标承载向用户设备发送下行用户数据。
在一种实施方式中,处理器703用于执行:
向第三网元发送目标承载的上行地址,上行地址用于指示第三网元通过上行地址向第一网元发送上行用户数据。
在一种实施方式中,目标承载为数据流所属的协议数据单元会话中的已有承载;
处理器703用于执行:
根据第二接口消息中包含的已有承载的标识,更新已有承载的配置信息,其中,更新后的已有承载的配置信息中包含已有承载和数据流之间的映射关系。
或者,
处理器703,用于读取存储器701中的计算机程序并执行以下操作:
接收无线接入网中的第一网元发送的第一接口消息,第一接口消息包括下行用户数据的数据流的标识;
根据第一接口消息,确定数据流映射的目标承载;
向第一网元发送第二接口消息,第二接口消息包括目标承载的标识,以便于第一网元根据目标承载向用户设备发送下行用户数据。
在一种实施方式中,处理器703用于执行:
向无线接入网中的第三网元发送第三接口消息,第三接口消息用于指示第三网元和用 户设备确定目标承载的配置信息,以及,用于指示第三网元分配目标承载的下行地址;
接收第三网元发送的下行地址,并向第一网元发送下行地址,以使第一网元根据下行地址向第三网元发送下行用户数据。
在一种实施方式中,处理器703用于执行:
接收第一网元发送的目标承载的上行地址;
将上行地址发送给第三网元,以使第三网元通过上行地址向第一网元发送上行用户数据。
在一种实施方式中,目标承载为数据流所属的协议数据单元会话中的已有承载。
在一种实施方式中,处理器703用于执行:
向无线接入网中的第三网元发送第四接口消息,第四接口消息用于指示数据流和目标承载之间的映射关系。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器703代表的一个或多个处理器和存储器701代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机702可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器703负责管理总线架构和通常的处理,存储器701可以存储处理器703在执行操作时所使用的数据。
处理器703可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
在此需要说明的是,本申请提供的上述网络设备,能够实现上述方法实施例中第一网元或第二网元所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本申请实施例还提供一种处理器可读存储介质,处理器可读存储介质存储有计算机程序,计算机程序用于使处理器执行上述方法实施例中第一网元或第二网元执行的方法。
处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本申请实施例还提供一种计算机程序产品,包括计算机程序,计算机程序被处理器执行时实现上述方法实施例中第一网元或第二网元执行的方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (19)

  1. 一种数据处理方法,其中,应用于无线接入网中的第一网元,包括:
    接收下行数据包,所述下行数据包中包括下行用户数据和所述下行用户数据所属的数据流的标识;
    向所述无线接入网中的第二网元发送第一接口消息,所述第一接口消息中包括所述数据流的标识,所述第一接口消息用于确定所述数据流映射到的目标承载。
  2. 根据权利要求1所述的方法,其中,向所述无线接入网中的第二网元发送第一接口消息,包括:
    根据所述数据流的标识,判断所述数据流是否被映射到承载;
    若所述数据流未被映射到承载或所述数据流被映射到缺省承载,则向所述无线接入网中的第二网元发送第一接口消息。
  3. 根据权利要求2所述的方法,其中,若所述数据流被映射至缺省承载,所述目标承载是除了所述缺省承载之外的其他承载。
  4. 根据权利要求1-3任一项所述的方法,其中,所述方法还包括:
    接收所述第二网元发送的第二接口消息,所述第二接口消息包括目标承载的标识;
    根据所述第二接口消息中包含的目标承载的标识,向用户设备发送所述下行用户数据。
  5. 根据权利要求4所述的方法,其中,所述根据所述第二接口消息中包含的目标承载的标识,向用户设备发送所述下行用户数据,包括:
    根据所述第二接口消息中包含的目标承载的标识,确定所述目标承载的配置信息,其中,所述目标承载的配置信息中包含所述目标承载与所述数据流之间的映射关系;
    基于所述映射关系,向用户设备发送所述下行用户数据。
  6. 根据权利要求5所述的方法,其中,所述基于所述映射关系,向用户设备发送所述下行用户数据,包括:
    基于所述映射关系,从所述无线接入网的第三网元中获取所述目标承载的下行地址;
    基于所述目标承载的下行地址,向所述第三网元发送所述下行用户数据,以使所述第三网元通过所述目标承载向所述用户设备发送所述下行用户数据。
  7. 根据权利要求6所述的方法,其中,所述方法还包括:
    向所述第三网元发送所述目标承载的上行地址,所述上行地址用于指示所述第三网元通过所述上行地址向所述第一网元发送上行用户数据。
  8. 根据权利要求5所述的方法,其中,所述目标承载为所述数据流所属的协议数据 单元会话中的已有承载;
    所述根据所述第二接口消息中包含的目标承载的标识,确定所述目标承载的配置信息,包括:
    根据所述第二接口消息中包含的已有承载的标识,更新所述已有承载的配置信息,其中,更新后的所述已有承载的配置信息中包含所述已有承载和所述数据流之间的映射关系。
  9. 一种数据处理方法,应用于无线接入网中的第二网元,其中,包括:
    接收所述无线接入网中的第一网元发送的第一接口消息,所述第一接口消息包括下行用户数据的数据流的标识;
    根据所述第一接口消息,确定所述数据流映射的目标承载;
    向所述第一网元发送第二接口消息,所述第二接口消息包括所述目标承载的标识,以便于所述第一网元根据所述目标承载向用户设备发送所述下行用户数据。
  10. 根据权利要求9所述的方法,其中,所述方法还包括:
    向所述无线接入网中的第三网元发送第三接口消息,所述第三接口消息用于指示所述第三网元和用户设备确定所述目标承载的配置信息,以及,用于指示所述第三网元分配所述目标承载的下行地址;
    接收所述第三网元发送的所述下行地址,并向所述第一网元发送所述下行地址,以使所述第一网元根据所述下行地址向所述第三网元发送所述下行用户数据。
  11. 根据权利要求10所述的方法,其中,所述方法还包括:
    接收所述第一网元发送的所述目标承载的上行地址;
    将所述上行地址发送给所述第三网元,以使所述第三网元通过所述上行地址向所述第一网元发送上行用户数据。
  12. 一种数据处理装置,应用于无线接入网中的第一网元,其中,包括:
    接收模块,用于接收下行数据包,所述下行数据包中包括下行用户数据和所述下行用户数据所属的数据流的标识;
    发送模块,用于向所述无线接入网中的第二网元发送第一接口消息,所述第一接口消息中包括所述数据流的标识,所述第一接口消息用于确定所述数据流映射到的目标承载。
  13. 根据权利要求12所述的装置,其中,所述发送模块用于:
    根据所述数据流的标识,判断所述数据流是否被映射到承载;
    在所述数据流未被映射到承载或所述数据流被映射到缺省承载时,则向所述无线接入网中的第二网元发送第一接口消息。
  14. 根据权利要求12或13所述的装置,其中,所述接收模块还用于:
    接收所述第二网元发送的第二接口消息,所述第二接口消息包括目标承载的标识;
    所述发送模块还用于:
    根据所述第二接口消息中包含的目标承载的标识,向用户设备发送所述下行用户数据。
  15. 根据权利要求14所述的装置,其中,所述发送模块用于:
    根据所述第二接口消息中包含的目标承载的标识,确定所述目标承载的配置信息,其中,所述目标承载的配置信息中包含所述目标承载与所述数据流之间的映射关系;
    基于所述映射关系,向用户设备发送所述下行用户数据。
  16. 一种数据处理装置,应用于无线接入网中的第二网元,其中,包括:
    接收模块,用于接收所述无线接入网中的第一网元发送的第一接口消息,所述第一接口消息包括下行用户数据的数据流的标识;
    处理模块,用于根据所述第一接口消息,确定将所述数据流映射至目标承载;
    发送模块,用于向所述第一网元发送第二接口消息,所述第二接口消息包括所述目标承载的标识,以便于所述第一网元根据所述目标承载向用户设备发送所述下行用户数据。
  17. 一种网络设备,包括存储器,收发机和处理器:
    所述存储器,用于存储计算机程序;所述收发机,用于在所述处理器的控制下收发数据;所述处理器,用于读取所述存储器中的计算机程序并执行权利要求1-8或9-11中任一项所述的方法。
  18. 一种处理器可读存储介质,其中,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1-8或9-11中任一项所述的方法。
  19. 一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现权利要求1-8或9-11中任一项所述的方法。
PCT/CN2022/085365 2021-04-07 2022-04-06 数据处理方法、装置、网络设备、存储介质及程序产品 WO2022213999A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/553,541 US20240195578A1 (en) 2021-04-07 2022-04-06 Data processing method and apparatus, network device, storage medium and program product
EP22784065.9A EP4322604A1 (en) 2021-04-07 2022-04-06 Data processing method and apparatus, and network device, storage medium and program product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110373435.0 2021-04-07
CN202110373435.0A CN115190655A (zh) 2021-04-07 2021-04-07 数据处理方法、装置、网络设备、存储介质及程序产品

Publications (1)

Publication Number Publication Date
WO2022213999A1 true WO2022213999A1 (zh) 2022-10-13

Family

ID=83511890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085365 WO2022213999A1 (zh) 2021-04-07 2022-04-06 数据处理方法、装置、网络设备、存储介质及程序产品

Country Status (4)

Country Link
US (1) US20240195578A1 (zh)
EP (1) EP4322604A1 (zh)
CN (1) CN115190655A (zh)
WO (1) WO2022213999A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110312282A (zh) * 2018-09-28 2019-10-08 华为技术有限公司 数据传输的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108430077B (zh) * 2017-02-14 2021-09-14 中国移动通信有限公司研究院 一种业务质量标识的方法及无线接入网元设备
CN117676720A (zh) * 2017-08-10 2024-03-08 北京三星通信技术研究有限公司 一种数据流的操作控制的方法及设备
CN111294982B (zh) * 2018-12-10 2022-05-24 华为技术有限公司 通信方法和通信装置
CN111629450B (zh) * 2019-02-28 2022-06-24 华为技术有限公司 一种数据传输方法、相关设备以及存储介质

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110312282A (zh) * 2018-09-28 2019-10-08 华为技术有限公司 数据传输的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS INC. ET AL.: ""Bearer Context Modification Required procedure"", 3GPP TSG-RAN WG3 #100 R3-182844, 11 May 2018 (2018-05-11), XP051527024 *
SAMSUNG, HUAWEI, LGU+, CHINA TELECOM, INTEL CORPORATION: "Correction of intra-system HO in CP-UP separation scenario", 3GPP DRAFT; R3-211260, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 5 February 2021 (2021-02-05), XP051978539 *

Also Published As

Publication number Publication date
CN115190655A (zh) 2022-10-14
US20240195578A1 (en) 2024-06-13
EP4322604A1 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
WO2018201506A1 (zh) 一种通信方法及相关装置
CN111328140B (zh) 侧链通信方法和装置
US20200008250A1 (en) Wireless Connection Establishment Method And Apparatus
WO2022083484A1 (zh) 数据传输控制方法、装置及存储介质
WO2022028041A1 (zh) 用户终端与网络进行通信的方法、终端、网络设备及装置
WO2022148154A1 (zh) 一种通信方法、装置、设备和可读存储介质
CN114071805B (zh) 业务处理方法、信息指示方法、终端和网络设备
WO2023078339A1 (zh) 一种数据传输的方法、卫星基站、信关站及存储介质
CN114390619B (zh) 传输方法及设备
WO2022161210A1 (zh) 资源配置方法、装置、设备以及存储介质
WO2022152092A1 (zh) 数据传输控制方法和装置
WO2022156439A1 (zh) 信息传输方法、装置、基站及介质
WO2022213999A1 (zh) 数据处理方法、装置、网络设备、存储介质及程序产品
WO2022206678A1 (zh) 数据传输方法、装置及存储介质
WO2023040881A1 (zh) 一种信息处理方法、装置、终端设备及网络设备
WO2023116627A1 (zh) 信息处理方法、装置及可读存储介质
WO2023020276A1 (zh) 组播广播业务数据传输方法、装置、设备以及存储介质
WO2022218157A1 (zh) 信道处理方法、装置及存储介质
WO2023005887A1 (zh) QoS参数配置方法、设备、装置及存储介质
CN115604733A (zh) 数据处理方法、装置及存储介质
WO2023066034A1 (zh) 路径回退方法、装置及存储介质
WO2023116622A1 (zh) 信息传输、资源配置方法、装置、终端设备及网络设备
WO2023024930A1 (zh) 信道调度方法、设备、装置及存储介质
WO2022206360A1 (zh) 一种降低时延的方法、装置、终端及设备
WO2023011411A1 (zh) 重配失败的处理方法、装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784065

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18553541

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022784065

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022784065

Country of ref document: EP

Effective date: 20231107