WO2022213946A1 - 复合设备的控制方法、装置、系统及存储介质 - Google Patents

复合设备的控制方法、装置、系统及存储介质 Download PDF

Info

Publication number
WO2022213946A1
WO2022213946A1 PCT/CN2022/085139 CN2022085139W WO2022213946A1 WO 2022213946 A1 WO2022213946 A1 WO 2022213946A1 CN 2022085139 W CN2022085139 W CN 2022085139W WO 2022213946 A1 WO2022213946 A1 WO 2022213946A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
composite
working mode
ultrasonic
composite device
Prior art date
Application number
PCT/CN2022/085139
Other languages
English (en)
French (fr)
Inventor
韩一顺
邵金华
孙锦
Original Assignee
无锡海斯凯尔医学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡海斯凯尔医学技术有限公司 filed Critical 无锡海斯凯尔医学技术有限公司
Publication of WO2022213946A1 publication Critical patent/WO2022213946A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation

Definitions

  • the present application relates to the technical field of automatic control, and in particular, to a control method, device, system, electronic device and storage medium of a composite device.
  • the elasticity of biological tissues is closely related to the biological characteristics of lesions, and has important reference value for the diagnosis process of diseases.
  • traditional medical imaging modalities including X-ray imaging, ultrasound imaging, magnetic resonance imaging (MRI), computed tomography (CT), etc.
  • CT computed tomography
  • elastography technology has been developed rapidly. This technology can obtain quantitative information of elastic distribution inside the tissue, which makes up for the deficiency of traditional medical imaging modality, and has very important clinical value and broad application prospects.
  • Elastography is a new imaging modality that reflects the elasticity information of biological tissues.
  • this technology is only a beneficial supplement to the traditional medical imaging modality, and there is no statistical difference between the differential diagnosis of pathological tissue by using elastography alone and traditional medical imaging.
  • using this technology alone cannot know the tissue structure information of the detection site, especially the two-dimensional structure information of the tissue, so that when the elasticity test is performed, if the detection position contains large blood vessels, cysts or ascites, etc., it will affect the accuracy of the elasticity test results.
  • the image imaging device and the elasticity detection device are designed as two separate devices, and the two separate devices are independent of each other at the corresponding software system level, and the image imaging device is in the Under the support of its corresponding image imaging software system, image operation positioning (ie, detection area positioning) is performed, and the elasticity detection equipment is supported by its corresponding elastic detection software system for elastic quantitative detection (ie, tissue elasticity detection).
  • the inventor found at least the following problems: when it is necessary to switch two devices in separate states, the operator needs to manually realize the switching operation, which requires high operating skills of the operator, and the operation is inconvenient. , there are problems such as detection position deviation due to manual switching action.
  • Embodiments of the present application provide a control method, device, system, electronic device, and storage medium for a composite device, which are used to solve the problem that manual switching of the ultrasonic imaging device and the elasticity detection device requires high operating skills in the prior art.
  • the operation is inconvenient, and there are problems such as deviation of detection position due to manual switching action.
  • an embodiment of the present application provides a control method for a composite device, where the composite device includes: a composite probe, an ultrasonic imaging function module and an elasticity detection function module respectively connected to the composite probe, wherein the composite probe includes an ultrasound An array element assembly for performing ultrasonic imaging under the control of the ultrasonic imaging functional module or performing elasticity detection under the control of the elasticity detection functional module, the method comprising:
  • the composite device is switched from the current working mode to the target working mode; wherein, if the current working mode is the ultrasonic imaging mode, the target working mode is the elasticity detection mode; wherein, if If the current working mode is the elasticity detection mode, the target working mode is the ultrasound imaging mode;
  • the ultrasonic imaging function module is used to control the ultrasonic array element component in the composite probe to transmit ultrasonic signals, receive and process ultrasonic echo signals, and form ultrasonic images;
  • the elastic detection function module is used to control the vibration of the ultrasonic array element assembly in the composite probe, and to control the ultrasonic array element assembly to transmit and receive ultrasonic signals, so as to obtain the propagation of the vibration in the tissue The movement information, and then the tissue elasticity information.
  • the switching condition includes at least one of the following:
  • the duration of the current working mode reaches a preset duration threshold
  • the current working mode meets preset working requirements.
  • the switching condition is that the current working mode satisfies a preset working requirement, then:
  • the working requirement is to complete the detection area positioning based on the composite probe
  • the work requirement is to complete the tissue elasticity detection based on the composite probe.
  • the composite device is changed from the current operating mode to the current operating mode according to a preset switching condition. Switching the working mode to the target working mode includes:
  • the composite device is switched from the ultrasonic imaging mode to the elasticity detection mode.
  • Target work modes include:
  • the composite device According to the motion information of the vibration propagating in the tissue, it is determined that the composite device has completed the tissue elasticity detection;
  • the method further includes:
  • the composite device is controlled to enter the ultrasound imaging mode.
  • the method before the controlling the composite device to enter the ultrasound imaging mode, the method comprises:
  • controlling the composite device to enter the ultrasonic imaging mode includes: if the storage of the attribute information is completed, controlling the composite device to enter the ultrasonic imaging mode.
  • the method further includes:
  • the respective corresponding images are controlled to be displayed on the same screen.
  • an embodiment of the present application provides a control device for a composite device, where the composite device includes: an ultrasonic imaging function module and an elasticity detection function module that share a composite probe, wherein the composite probe includes an ultrasonic array element Performing ultrasonic imaging under the control of the ultrasonic imaging functional module or performing elasticity detection under the control of the elasticity detection functional module, the device includes:
  • a determination module for determining the current working mode of the composite device
  • a switching module configured to switch the composite device from the current working mode to a target working mode according to a preset switching condition; wherein, if the current working mode is an ultrasound imaging mode, the target working mode is an elasticity detection mode; If the current working mode is the elasticity detection mode, the target working mode is the ultrasound imaging mode;
  • the ultrasonic imaging function module is used to control the ultrasonic array element component in the composite probe to transmit ultrasonic signals, receive and process ultrasonic echo signals, and form ultrasonic images;
  • the elastic detection function module is used to control the vibration of the ultrasonic array element assembly in the composite probe, and to control the ultrasonic array element assembly to transmit and receive ultrasonic signals, so as to obtain the propagation of the vibration in the tissue The movement information, and then the tissue elasticity information.
  • the switching condition includes at least one of the following:
  • the duration of the current working mode reaches a preset duration threshold
  • the current working mode meets preset working requirements.
  • the switching condition is that the current working mode satisfies a preset working requirement, then:
  • the work requirement is to complete the detection area positioning based on the composite probe
  • the work requirement is to complete the tissue elasticity detection based on the composite probe.
  • the switching module is used to determine the relative movement between the composite probe and the tissue, if the The relative movement between the composite probe and the tissue is less than a preset speed threshold, and the pressure value applied by the composite probe is obtained. If the pressure value meets the preset pressure range, it is determined that the composite probe has completed the detection area positioning, and Switching the composite device from the ultrasound imaging mode to the elasticity detection mode.
  • the switching module is configured to receive the elasticity detection function module based on the vibration of the composite probe in the tissue According to the motion information propagated in the tissue by the vibration, it is determined that the composite device has completed tissue elasticity detection, and the composite device is switched from the elasticity detection mode to the ultrasonic imaging mode.
  • the apparatus further includes:
  • a monitoring module for monitoring startup information of the composite device
  • a first control module configured to control the composite device to enter the ultrasound imaging mode if it is determined according to the start-up information that the composite device has been started up.
  • the monitoring module is configured to monitor and store the input attribute information of the user if it is determined according to the startup information that the composite device has completed startup;
  • the first control module is configured to, if the storage of the attribute information is completed, control the composite device to enter the ultrasound imaging mode.
  • the apparatus further includes:
  • a generating module for generating images corresponding to the current working mode and the target working mode
  • the second control module is configured to control the respective corresponding images to be displayed on the same screen.
  • an embodiment of the present application provides a control system for a composite device, the system comprising:
  • a composite device the composite device includes: an ultrasonic imaging functional module and an elasticity detection functional module that share a composite probe.
  • an embodiment of the present application provides an electronic device, including: a memory, and a processor;
  • the memory for storing instructions executable by the processor
  • the processor when executing the instructions in the memory, the processor is configured to implement the method described in any of the above embodiments.
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the method described in any of the foregoing embodiments.
  • Embodiments of the present application provide a control method, device, system, electronic device, and storage medium for a composite device, where the composite device includes: a composite probe, an ultrasonic imaging function module and an elasticity detection function module respectively connected to the composite probe, wherein the composite probe An ultrasonic array element assembly is included, which is used to perform ultrasonic imaging under the control of the ultrasonic imaging functional module or perform elasticity detection under the control of the elasticity detection functional module.
  • the method includes: determining the current working mode of the composite device, and according to preset switching conditions , switch the composite device from the current working mode to the target working mode, wherein, if the current working mode is the ultrasound imaging mode, the target working mode is the elasticity detection mode; if the current working mode is the elasticity detection mode, the target working mode is the ultrasound imaging mode, In the ultrasonic imaging mode, the ultrasonic imaging function module is used to control the ultrasonic array element components in the composite probe to transmit ultrasonic signals, receive and process the ultrasonic echo signals, and form an ultrasonic image.
  • the elasticity detection function module is used to control The ultrasonic array element assembly in the composite probe vibrates, and controls the ultrasonic array element assembly to transmit and receive ultrasonic signals to obtain the motion information of the vibration propagating in the tissue, and then obtain the tissue elasticity information, and switch the current working mode to the target based on the switching conditions.
  • the working mode realizes the switching of different working modes of the automatic control compound equipment, and avoids the high labor cost caused by manual switching between two separate devices in the related art, and is easily caused by the influence of human factors.
  • the problem of low switching accuracy realizes the automation and flexibility of switching, and improves the accuracy and reliability of switching.
  • FIG. 1 is a schematic diagram of an application scenario of a control method for a composite device according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a control method for a composite device according to an embodiment of the application
  • FIG. 3 is a schematic flowchart of a control method for a composite device according to another embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a control method for a composite device according to another embodiment of the present application.
  • FIG. 5 is a schematic diagram of a control device of a composite device according to an embodiment of the application.
  • FIG. 6 is a schematic diagram of a control device of a composite device according to another embodiment of the present application.
  • FIG. 7 is a block diagram of an electronic device according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of a control method for a composite device according to an embodiment of the present application.
  • the application scenario includes: a power supply device 100 , an ultrasonic imaging function module 200 , an elasticity detection function module 300 , a composite probe 400 , a host computer 500 and a display device 600 .
  • the power supply device 100 provides power for the ultrasonic imaging function module 200 , the elasticity detection function module 300 , the composite probe 400 , the host computer 500 and the display device 600 respectively.
  • the composite probe 400 includes an ultrasonic array element assembly, which is used to perform ultrasonic imaging under the control of the ultrasonic imaging functional module 200 , or perform elasticity detection under the control of the elasticity detection functional module 300 .
  • the ultrasonic imaging function module 200 is used for positioning and evaluating the tissue to be tested based on the composite probe 400 to obtain the location of the detection area. For example, if the tissue to be tested is the liver, the ultrasonic imaging functional module 200 can be determined based on the composite probe 400 for liver detection. position to obtain an ultrasound image. Specifically, the ultrasonic image function module 200 transmits ultrasonic signals by controlling the ultrasonic array element components in the composite probe 400, receives and processes the ultrasonic echo signals, and forms an ultrasonic image.
  • the elasticity detection function module 300 is used to perform elasticity detection on the tissue to be tested based on the composite probe 400 . Specifically, the elasticity detection function module 300 obtains the motion information of the vibration propagating in the tissue by controlling the vibration of the ultrasonic array element assembly in the composite probe 400 and controlling the ultrasonic array element assembly to transmit and receive ultrasonic signals, thereby obtaining tissue elasticity information.
  • the upper computer 500 is configured to provide a software operating system supporting the ultrasound image function module 200 and the elasticity detection function module 300, and to analyze and process the ultrasound image or tissue elasticity information.
  • the display device 600 is used for displaying ultrasound images and tissue elasticity information. Also, the display device 600 can be used to characterize a device for displaying video, such as a liquid crystal display (LCD), a light emitting diode (LED) display, and an organic light emitting (Organic Light Emitting Display, OLED) display, etc., which are not limited in the embodiments of the present application.
  • a liquid crystal display LCD
  • LED light emitting diode
  • OLED Organic Light Emitting Display
  • FIG. 1 is only used to exemplarily illustrate an application scenario to which the embodiments of the present application may be applicable, and should not be construed as a limitation on each element in the application scenario.
  • other elements can also be added, such as auxiliary equipment used for auxiliary power supply equipment to provide stable power supply, printing equipment, and other auxiliary equipment; for another example, in other embodiments, as shown in FIG. 1
  • the application scenario shown can also integrate multiple elements to obtain an integrated element, such as integrating a host computer and a display device into one computer, and so on.
  • the ultrasonic imaging functional module and the elasticity detection functional module are two separate devices, and the two separate devices are independent of each other at the level of their corresponding software systems, and the ultrasonic imaging functional module is in the corresponding software system.
  • the elasticity detection function module Under the support of image operation positioning (ie detection area positioning), the elasticity detection function module performs shear wave elasticity detection (ie tissue elasticity detection) under the support of its corresponding software system.
  • the inventor of the present application has obtained the inventive concept of the present application: to construct a composite device including an ultrasonic imaging functional module and an elasticity detection functional module that share a composite probe, and automatically operate in a working mode completed by the ultrasonic imaging functional module. Switches between the working modes done by the elasticity detection function module.
  • the composite device in the embodiment of the present application may include: an ultrasonic imaging function module and an elasticity detection function module (which may include a composite probe) that share a composite probe, and may also include a composite probe as shown in FIG. 1 on this basis.
  • the power supply device may also include a host computer as shown in FIG. 1 on this basis, and may also include a display device as shown in FIG. 1 on this basis, etc., which are not limited in this application.
  • the embodiments of the present application provide a method for controlling a composite device.
  • FIG. 2 is a schematic flowchart of a control method for a composite device according to an embodiment of the present application.
  • the method includes:
  • S101 Determine the current working mode of the composite device.
  • the execution body of this embodiment may be a control device of a composite device, and the control device of the composite device may be a server, a processor, a chip, etc., which is not limited in this embodiment.
  • control method of the composite device in this embodiment when the control method of the composite device in this embodiment is applied to the application scenario shown in FIG. 1 , the execution subject of this embodiment may be the upper computer as shown in FIG. 1 .
  • the control device of the composite device in order to avoid tedious and redundant descriptions, is taken as an example for an exemplary description.
  • the composite device includes: a composite probe, an ultrasonic imaging functional module and an elasticity detection functional module respectively connected to the composite probe, wherein the composite probe includes an ultrasonic array element assembly, which is used for ultrasonic imaging under the control of the ultrasonic imaging functional module or in The elasticity detection is performed under the control of the elasticity detection function module, and the composite probe can be included in the composite device.
  • the composite device can also include power supply equipment, host computer and display equipment.
  • the current working mode is used to represent the working mode being executed by the composite device, and since the composite device includes an ultrasonic imaging function module and an elasticity detection function module that share a composite probe, the current working mode can be either the ultrasonic imaging mode or the elasticity mode. detection mode.
  • this step may specifically include: the upper computer may monitor the currently working device in the composite device, and determine the current working mode based on the currently working device. For example, if the upper computer monitors that the currently working device in the composite device is an ultrasonic imaging function module, the upper computer can determine that the current working mode is the ultrasonic imaging mode; if the upper computer monitors that the currently working device in the composite device is the elasticity detection function module , the host computer can determine that the current working mode is the elastic detection mode.
  • S102 Switch the composite device from the current working mode to the target working mode according to the preset switching condition.
  • the target working mode is the elasticity detection mode; if the current working mode is the elasticity detection mode, the target working mode is the ultrasound imaging mode.
  • the ultrasonic imaging function module is used to control the ultrasonic array element components in the composite probe to transmit ultrasonic signals, receive and process ultrasonic echo signals, and form ultrasonic images.
  • the elasticity detection function module is used to control the vibration of the ultrasonic array element component in the composite probe, and to control the ultrasonic array element component to transmit and receive ultrasonic signals, so as to obtain the motion information of the vibration propagating in the tissue, and then obtain the elasticity of the tissue. information.
  • the switching conditions can be used to characterize the conditions that trigger the host computer to switch between two different working modes (ie, the current working mode and the target working mode).
  • the setting is not limited in this embodiment.
  • the host computer can automatically switch the current working mode to the target working mode according to the switching conditions. For example, the host computer automatically switches the ultrasonic imaging mode to the elasticity detection mode, or the host computer automatically detects the elasticity.
  • the mode is automatically switched to the ultrasonic imaging mode, and the upper computer controls the switching between the ultrasonic imaging mode and the elasticity detection mode of the composite device, which can avoid the labor cost caused by manual switching between the two separate devices in the related art. It is relatively high, and it is easy to cause the problem of low switching accuracy due to the influence of human factors, which realizes the automation and flexibility of switching, and improves the accuracy and reliability of switching.
  • an embodiment of the present application provides a method for controlling a composite device.
  • the composite device includes: a composite probe, an ultrasonic imaging function module and an elasticity detection function module respectively connected to the composite probe, wherein the composite probe includes an ultrasonic array element an assembly for performing ultrasonic imaging under the control of the ultrasonic imaging functional module or performing elasticity detection under the control of the elasticity detection functional module, the method includes: determining the current working mode of the composite device, and according to preset switching conditions, the composite device Switch from the current working mode to the target working mode, wherein, if the current working mode is the ultrasound imaging mode, the target working mode is the elasticity detection mode; if the current working mode is the elasticity detection mode, the target working mode is the ultrasound imaging mode, In the ultrasonic imaging mode, the ultrasonic imaging function module is used to control the ultrasonic array element components in the composite probe to transmit ultrasonic signals, receive and process the ultrasonic echo signals, and form an ultrasonic image.
  • the elasticity detection function module is used to control The ultrasonic array element assembly in the composite probe vibrates, and controls the ultrasonic array element assembly to transmit and receive ultrasonic signals to obtain the motion information of the vibration propagating in the tissue, and then obtain the tissue elasticity information, and switch the current working mode to the target based on the switching conditions.
  • the working mode realizes the switching of different working modes of the automatic control compound equipment, and avoids the high labor cost caused by manual switching between two separate devices in the related art, and is easily caused by the influence of human factors.
  • the problem of low switching accuracy realizes the automation and flexibility of switching, and improves the accuracy and reliability of switching.
  • control device of the composite device can realize the switching of the composite device between different working modes.
  • control method of the composite device according to the embodiment of the present application is now described with reference to FIG. 3 .
  • FIG. 3 is a schematic flowchart of a control method for a composite device according to another embodiment of the present application.
  • the method includes:
  • S201 Monitor startup information of the composite device.
  • the startup information can be used to represent the relevant information when the composite device is started, and the startup information can include soft startup information and/or hard startup information, and the soft startup information can be used by the host computer to trigger the software application set on it to start the composite device.
  • the information of the device, the hard start information can be the information that the upper computer receives the information that the staff starts the composite device by displaying the device or pressing the button.
  • the attribute information can be used to characterize the user's identity information and health information.
  • This step may specifically include: the host computer determines whether the composite device has completed the startup according to the startup information, and if so, monitors whether there is attribute information input, and if so, stores the input attribute information.
  • the host computer determines that the composite device has been started, it can monitor whether attribute information is input. If the monitoring staff inputs attribute information through the display device, the host computer stores the attribute information.
  • This step may specifically include: the host computer judges whether the attribute information has been input, and if so, judges whether the attribute information has been stored, and if so, the host computer controls the composite device to enter the ultrasound imaging mode.
  • the method for the host computer to determine whether the input of the attribute information has ended may include: if the host computer does not receive the attribute information within a preset duration, the host computer determines that the input of the attribute information has ended, and the duration can be determined by the host computer based on requirements, History records and tests, etc. are set.
  • the host computer can control the display device to display the "Complete” icon, the staff can click the "Complete” icon when completing the input of the attribute information, and the host computer determines the attribute in response to the "Complete” icon being clicked. The information has been entered.
  • the switching condition includes at least one of the following:
  • the duration of the current working mode reaches the preset duration threshold
  • the current work mode meets the preset work requirements.
  • the switching condition may be at least one of the following:
  • the duration of the ultrasound imaging mode reaches the duration threshold
  • the ultrasonic imaging function module has completed the detection area positioning based on the composite probe.
  • the duration threshold can be set by the host computer based on requirements, historical records and tests, etc., and the duration threshold corresponding to the ultrasonic imaging mode and the duration threshold corresponding to the elasticity detection mode can be different thresholds;
  • the input switching instruction can be , an instruction input by the staff for switching between the ultrasound imaging mode and the elasticity detection mode based on the display device can also be implemented by using a "switch" icon similar to that in the above-mentioned embodiment.
  • this step may specifically include:
  • the upper computer can acquire the movement time and movement displacement of the composite probe, and determine the relative movement between the composite probe and the tissue according to the movement time and movement displacement.
  • the preset threshold value of the relative motion can be set by the host computer based on requirements, historical records, and experiments. For example, a velocity threshold can be set that characterizes how fast the composite probe moves relative to the tissue, ie the composite probe should barely move relative to the tissue. Other thresholds that can characterize relative motion can also be set, which are not limited in this application.
  • this step may specifically include: the host computer determines whether the moving speed of the composite probe relative to the tissue is less than the speed threshold, and if so, obtains the pressure value. It is worth noting that when the moving speed is small, that is, when the composite probe hardly moves, it means that the detection position may have been determined, and the upper computer acquires the pressure value.
  • the pressure threshold can be set by the host computer based on requirements, historical records and tests.
  • This step may specifically include: the upper computer determines whether the pressure value reaches the pressure threshold, and if so, the upper computer controls the composite device to switch from the ultrasonic imaging mode to the elasticity detection mode.
  • the host computer automatically controls the composite device to switch from the ultrasonic imaging mode to the elasticity detection mode by combining the moving speed and the pressure value, which can improve the automation and reliability of the switching.
  • the work requirement is to complete the tissue elasticity detection based on the composite probe. That is to say, if the host computer switches the composite device from the elastic detection mode to the ultrasonic imaging mode, the switching condition can be at least one of the following:
  • the duration of the elastic detection mode reaches the duration threshold
  • Shear wave imaging equipment has completed tissue elasticity testing based on composite probes.
  • switching the composite device from the current working mode to the target working mode includes:
  • the composite probe completes the tissue elasticity detection, and the composite device is switched from the elasticity detection mode to the ultrasonic imaging mode.
  • S205 Generate images corresponding to each of the ultrasound imaging mode and the elasticity detection mode.
  • the host computer can generate images corresponding to the ultrasonic imaging mode, and can generate images corresponding to the elasticity detection mode, and display the images corresponding to the two working modes on the same screen.
  • the host computer can control the display device to display the images corresponding to the two working modes respectively, such as the left and right screen display, and the upper and lower screen display.
  • the upper computer may generate the same detection report sheet according to the images corresponding to the two working modes, that is, the detection sheet includes the detection results of the two dimensions corresponding to the two working modes.
  • FIG. 4 is a schematic flowchart of a control method for a composite device according to another embodiment of the present application.
  • the method includes:
  • the power supply device supplies power to the host computer, the ultrasound imaging function module, the elasticity detection function module, and the display device based on a preset power-on sequence.
  • the host computer, the ultrasonic imaging function module, the elasticity detection function module and the display device power supply respectively receive the power provided by the power supply device, and perform startup and self-checking, etc., to ensure the normal operation of each device.
  • the host computer starts the soft start after receiving the power provided by the power supply device, and loads the drivers of the ultrasonic imaging function module and the elasticity detection function module respectively, and identifies the ultrasonic imaging function module and the elasticity detection function module, and can detect the ultrasonic image.
  • Functional modules and resilience detect if functional modules can work properly.
  • the upper computer receives the attribute information of the user input by the staff based on the display device.
  • the host computer stores the attribute information and controls the display device to display the attribute information.
  • the display device displays the attribute information.
  • S304 The upper computer controls the ultrasonic imaging function module to enter a working mode (ie, an ultrasonic imaging mode).
  • the ultrasonic imaging function module performs the detection area positioning based on the composite probe, and sends the image result obtained by the detection area positioning to the upper computer.
  • the upper computer receives the image result obtained by the location of the detection area sent by the ultrasonic image function module.
  • S306 The upper computer receives the pressure information generated on the composite probe.
  • the staff can apply pressure to the composite probe to indicate the position to be detected.
  • the pressure threshold can be set by the host computer based on requirements, historical records and tests.
  • This step may specifically include: the upper computer determines the pressure value based on the pressure information, determines whether the pressure value reaches the pressure threshold, and if so, controls the elasticity detection function module to operate in a working mode (ie, elasticity detection mode).
  • the elasticity detection function module performs tissue elasticity detection based on the composite probe, and sends the image result obtained by the tissue elasticity detection to the upper computer.
  • the upper computer receives the image result obtained by the tissue elasticity detection sent by the ultrasonic image function module.
  • the host computer controls the display device to display the image result obtained by positioning the detection area and the image result obtained by the tissue elasticity detection.
  • the display device displays the image result obtained by positioning the detection area and the image result obtained by the tissue elasticity detection.
  • the host computer generates a detection report including the image results obtained by positioning the detection area and the image results obtained by tissue elasticity detection.
  • the embodiments of the present application further provide a control apparatus for a composite device, which is configured to execute the method described in any of the foregoing embodiments, such as executing any of the embodiments in FIG. 2 to FIG. 4 .
  • the composite device includes: a composite probe, an ultrasonic imaging functional module and an elasticity detection functional module respectively connected to the composite probe, wherein the composite probe includes an ultrasonic array element assembly, which is used in the ultrasonic imaging functional module.
  • Ultrasonic imaging is performed under the control of the device or elasticity detection is performed under the control of the elasticity detection function module.
  • FIG. 5 is a schematic diagram of a control device of a composite device according to an embodiment of the present application.
  • the device includes:
  • a determination module 11 for determining the current working mode of the composite device
  • a switching module 12 configured to switch the composite device from the current working mode to the target working mode according to a preset switching condition
  • the target working mode is the elasticity detection mode; if the current working mode is the elasticity detection mode, the target working mode is the ultrasound imaging mode.
  • the ultrasonic imaging function module is used to control the ultrasonic array element component in the composite probe to transmit ultrasonic signals, receive and process ultrasonic echo signals, and form ultrasonic images;
  • the elastic detection function module is used to control the vibration of the ultrasonic array element assembly in the composite probe, and to control the ultrasonic array element assembly to transmit and receive ultrasonic signals, so as to obtain the propagation of the vibration in the tissue The movement information, and then the tissue elasticity information.
  • the switching condition includes at least one of the following:
  • the duration of the current working mode reaches a preset duration threshold
  • the current working mode meets preset working requirements.
  • the switching condition is that the current working mode satisfies a preset working requirement, then:
  • the working requirement is to complete the detection area positioning based on the composite probe
  • the work requirement is to complete the tissue elasticity detection based on the composite probe.
  • the switching module 12 is used to determine the relative movement between the composite probe and the tissue, if the The relative movement between the composite probe and the tissue is less than a preset speed threshold, and the pressure value applied by the composite probe is obtained. If the pressure value satisfies the preset pressure range, it is determined that the composite probe has completed the detection area positioning, and switching the composite device from the ultrasonic imaging mode to the elasticity detection mode.
  • the switching module 12 is configured to receive the elasticity detection function module based on the vibration of the composite probe propagated in the tissue The motion information, according to the motion information of the vibration propagating in the tissue, determines that the composite device completes the tissue elasticity detection, and switches the composite device from the elasticity detection mode to the ultrasonic imaging mode.
  • the apparatus further includes:
  • a monitoring module 13 configured to monitor startup information of the composite device
  • the first control module 14 is configured to control the composite device to enter the ultrasound imaging mode if it is determined according to the start-up information that the composite device has been started up.
  • the monitoring module 13 is configured to monitor and store the input attribute information of the user if it is determined according to the startup information that the composite device has completed startup;
  • the first control module 14 is configured to, if the storage of the attribute information is completed, control the composite device to enter the ultrasound imaging mode.
  • the apparatus further includes:
  • a generating module 15 configured to generate the respective images corresponding to the current working mode and the target working mode
  • the second control module 16 is configured to control the respective corresponding images to be displayed on the same screen.
  • the embodiments of the present application further provide a control system for a composite device, the system comprising:
  • a composite device the composite device includes: an ultrasonic imaging functional module and an elasticity detection functional module that share a composite probe.
  • the embodiments of the present application further provide an electronic device, including: a memory, and a processor;
  • memory for storing processor-executable instructions
  • the processor when executing the instructions in the memory, the processor is configured to implement the method described in any of the above embodiments, such as to implement the control method of the composite device shown in any of the embodiments in FIG. 2 to FIG. 4 .
  • FIG. 7 is a block diagram of an electronic device according to an embodiment of the present application.
  • the electronic device is intended to represent various forms of digital computers, such as laptops, desktops, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers.
  • Electronic devices may also represent various forms of mobile devices, such as personal digital processors, cellular phones, smart phones, wearable devices, and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions are by way of example only, and are not intended to limit implementations of the embodiments of the present application described and/or claimed herein.
  • the electronic device includes: one or more processors 101 , a memory 102 , and interfaces for connecting various components, including a high-speed interface and a low-speed interface.
  • the various components are interconnected using different buses and may be mounted on a common motherboard or otherwise as desired.
  • the processor may process instructions executed within the electronic device, including instructions stored in or on memory to display graphical information of the GUI on an external input/output device, such as a display device coupled to the interface.
  • multiple processors and/or multiple buses may be used with multiple memories, if desired.
  • multiple electronic devices may be connected, each providing some of the necessary operations (eg, as a server array, a group of blade servers, or a multiprocessor system).
  • a processor 101 is taken as an example in FIG. 7 .
  • the memory 102 is the non-transitory computer-readable storage medium provided by the embodiment of the present application.
  • the memory stores instructions executable by at least one processor, so that the at least one processor executes the method for controlling a composite device provided by the embodiment of the present application.
  • the non-transitory computer-readable storage medium of the embodiments of the present application stores computer instructions, where the computer instructions are used to make the computer execute the control method of the composite device provided by the embodiments of the present application.
  • the memory 102 can be used to store non-transitory software programs, non-transitory computer-executable programs, and modules, such as program instructions/modules in the embodiments of the present application.
  • the processor 101 executes various functional applications and data processing of the server by running the non-transitory software programs, instructions and modules stored in the memory 102, ie, implements the control method of the composite device in the above method embodiments.
  • the memory 102 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the electronic device, and the like. Additionally, memory 102 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device. In some embodiments, memory 102 may optionally include memory located remotely relative to processor 101, which may be connected to the electronic device via a network. Examples of the above network include, but are not limited to, the Internet, an intranet, a local area network, a Blockchain-based Service Network (BSN), a mobile communication network, and combinations thereof.
  • BSN Blockchain-based Service Network
  • the electronic device may further include: an input device 103 and an output device 104 .
  • the processor 101 , the memory 102 , the input device 103 and the output device 104 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 7 .
  • the input device 103 can receive input numerical or character information, and generate key signal input related to user settings and function control of the electronic device, such as a touch screen, keypad, mouse, trackpad, touchpad, pointing stick, one or more Input devices such as mouse buttons, trackballs, joysticks, etc.
  • the output device 104 may include a display device, auxiliary lighting devices (eg, LEDs), haptic feedback devices (eg, vibration motors), and the like.
  • the display device may include, but is not limited to, a liquid crystal display (LCD), a light emitting diode (LED) display, and a plasma display. In some implementations, the display device may be a touch screen.
  • Various implementations of the systems and techniques described herein can be implemented in digital electronic circuitry, integrated circuit systems, application specific ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpretable on a programmable system including at least one programmable processor that The processor, which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • the processor which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • the systems and techniques described herein may be implemented on a computer having a display device (eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user ); and a keyboard and pointing device (eg, a mouse or trackball) through which a user can provide input to the computer.
  • a display device eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor
  • a keyboard and pointing device eg, a mouse or trackball
  • Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (eg, visual feedback, auditory feedback, or tactile feedback); and can be in any form (including acoustic input, voice input, or tactile input) to receive input from the user.
  • the systems and techniques described herein may be implemented on a computing system that includes back-end components (eg, as a data server), or a computing system that includes middleware components (eg, an application server), or a computing system that includes front-end components (eg, a user computer having a graphical user interface or web browser through which a user may interact with implementations of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (LANs), Blockchain-based Service Networks (BSNs), Wide Area Networks (WANs), and the Internet.
  • a computer system can include clients and servers.
  • Clients and servers are generally remote from each other and usually interact through a communication network.
  • the relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.
  • computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC. Alternatively, the ASIC may be located in the user equipment.
  • the processor and storage medium may also exist in the communication device as discrete components.
  • the aforementioned program can be stored in a computer-readable storage medium.
  • the steps including the above method embodiments are executed; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种复合设备的控制方法、装置、系统、电子设备及存储介质,复合设备包括:复合探头(400)、分别与复合探头(400)相连的超声影像功能模块(200)、弹性检测功能模块(300),复合探头(400)包括超声阵元组件,用于在超声影像功能模块(200)的控制下进行超声成像或者在弹性检测功能模块(300)的控制下进行弹性检测,方法包括:确定复合设备的当前工作模式(S101),根据预先设置的切换条件,将复合设备由当前工作模式切换至目标工作模式(S102),若当前工作模式为超声成像模式则目标工作模式为弹性检测模式;若当前工作模式为弹性检测模式则目标工作模式为超声成像模式,通过基于切换条件将当前工作模式切换至目标工作模式,实现了切换的自动化和灵活性,且提高了切换的准确性和可靠性。

Description

复合设备的控制方法、装置、系统及存储介质 技术领域
本申请涉及自动控制技术领域,尤其涉及一种复合设备的控制方法、装置、系统、电子设备及存储介质。
背景技术
生物组织的弹性与病灶的生物学特性紧密相关,对于疾病的诊断过程具有重要的参考价值。然而,包括X射线成像、超声成像、磁共振成像(MRI)、计算机断层扫描(CT)等在内的传统医学成像模态都不能直接提供弹性这一组织的基本力学属性的信息。近年来,弹性成像(Elastography)技术得到了迅速的发展,该技术能够获得组织内部的弹性分布的定量信息,弥补了传统医学成像模态的不足,具有非常重要的临床价值和广阔的应用前景。
弹性成像技术是一种新的成像模式,它反映了生物组织的弹性信息。但是,该技术只是传统医学成像模态的一种有益补充,单纯应用弹性成像技术对病理组织的鉴别诊断与传统医学成像差异并无统计学意义。并且,单独使用该技术无法知道检测部位的组织结构信息,尤其是组织二维结构信息,从而导致在进行弹性检测时,如果检测位置处含有大血管、囊肿或腹水等影响弹性检测结果准确性的因素时,将产生检测误差;而且,对于一个特定的检测位置,如果检测者抓握探头的方向不对,也会造成检测误差;此外,对于弹性检测结果异常的情况,因为弹性成像技术无法显示内部结构信息,检查者也无法评估内部是否有组织结构病变;故,单纯的弹性成像技术不能保证检测结果的准确性和可靠性。
在现有技术中,由于原理上的差异,影像成像设备和弹性检测设备会设计为两个分离状态的设备,且两个分离状态的设备在各自对应的软件系统层面相互独立,影像成像设备在其对应的影像成像软件系统的支持下进行影像操作定位(即检测区域定位),弹性检测设备则在其对应的弹性检测 软件系统的支持下进行弹性定量检测(即组织弹性检测)。
发明人在实现本申请的过程中,发现至少存在以下问题:当需要对两个分离状态的设备进行切换时,需要操作人员手动实现切换操作,存在对操作人员的操作技能要求高,操作不方便,存在由于人工切换动作可能导致检测位置偏差等问题。
发明内容
本申请实施例提供一种复合设备的控制方法、装置、系统、电子设备及存储介质,用于解决现有技术中通过人为方式对超声影像成像设备和弹性检测设备切换存在对操作技能要求高,操作不便,存在由于人工切换动作可能导致检测位置偏差等问题。
第一方面,本申请实施例提供一种复合设备的控制方法,所述复合设备包括:复合探头、分别与复合探头相连的超声影像功能模块、弹性检测功能模块,其中,所述复合探头包括超声阵元组件,用于在所述超声影像功能模块的控制下进行超声成像或者在所述弹性检测功能模块的控制下进行弹性检测,所述方法包括:
确定复合设备的当前工作模式;
根据预先设置的切换条件,将所述复合设备由所述当前工作模式切换至目标工作模式;其中,若所述当前工作模式为超声成像模式则所述目标工作模式为弹性检测模式;其中,若所述当前工作模式为弹性检测模式则所述目标工作模式为超声成像模式;
在超声成像模式下,所述超声影像功能模块用于控制所述复合探头中的超声阵元组件发射超声波信号,接收并处理超声回波信号,形成超声影像;
在弹性检测模式下,所述弹性检测功能模块用于控制所述复合探头中的超声阵元组件振动,并控制所述超声阵元组件发射和接收超声波信号,以获取所述振动在组织中传播的运动信息,进而得到组织弹性信息。
在一些实施例中,所述切换条件包括下述至少一种:
所述当前工作模式的时长达到预先设置的时长阈值;
输入的切换指示;
所述当前工作模式满足预先设置的工作需求。
在一些实施例中,若所述切换条件为所述当前工作模式满足预先设置的工作需求,则:
若当前工作模式为超声成像模式,则所述工作需求为基于所述复合探头完成检测区域定位;
若当前工作模式为弹性检测模式,则所述工作需求为基于所述复合探头完成组织弹性检测。
在一些实施例中,若所述当前工作模式为所述超声成像模式,所述目标工作模式为所述弹性检测模式,则所述根据预先设置的切换条件,将所述复合设备由所述当前工作模式切换至目标工作模式包括:
判断复合探头与组织之间的相对运动情况;
若所述复合探头与组织之间相对运动小于预先设置的阈值,获取所述复合探头被施加的压力值;
若所述压力值满足预先设置的压力范围,则确定所述复合探头完成检测区域定位,并将所述复合设备由所述超声成像模式切换至所述弹性检测模式。
在一些实施例中,若当前工作模式为所述弹性检测模式,目标工作模式为所述超声成像模式,则所述根据预先设置的切换条件,将所述复合设备由所述当前工作模式切换至目标工作模式包括:
接收所述弹性检测功能模块基于所述复合探头生成的振动在组织中传播的运动信息;
根据所述振动在组织中传播的运动信息,从而确定所述复合设备完成组织弹性检测;
将所述复合设备由所述弹性检测模式切换至所述超声成像模式。
在一些实施例中,所述方法还包括:
监测所述复合设备的启动信息;
若根据所述启动信息确定所述复合设备完成启动,则控制所述复合设备进入所述超声成像模式。
在一些实施例中,在所述控制所述复合设备进入所述超声成像模式之前,所述方法包括:
若根据所述启动信息确定所述复合设备完成启动,则监测并存储输入的用户的属性信息;
以及,所述控制所述复合设备进入所述超声成像模式包括:若完成对所述属性信息的存储,则控制所述复合设备进入所述超声成像模式。
在一些实施例中,所述方法还包括:
生成所述当前工作模式和目标工作模式各自对应的图像;
控制所述各自对应的图像同屏显示。
第二方面,本申请实施例提供一种复合设备的控制装置,所述复合设备包括:共用复合探头的超声影像功能模块和弹性检测功能模块,其中,所述复合探头包括超声阵元组件,用于在所述超声影像功能模块的控制下进行超声成像或者在所述弹性检测功能模块的控制下进行弹性检测,所述装置包括:
确定模块,用于确定复合设备的当前工作模式;
切换模块,用于根据预先设置的切换条件,将所述复合设备由所述当前工作模式切换至目标工作模式;其中,若当前工作模式为超声成像模式则所述目标工作模式为弹性检测模式;若当前工作模式为弹性检测模式则所述目标工作模式为超声成像模式;
在超声成像模式下,所述超声影像功能模块用于控制所述复合探头中的超声阵元组件发射超声波信号,接收并处理超声回波信号,形成超声影像;
在弹性检测模式下,所述弹性检测功能模块用于控制所述复合探头中的超声阵元组件振动,并控制所述超声阵元组件发射和接收超声波信号,以获取所述振动在组织中传播的运动信息,进而得到组织弹性信息。
在一些实施例中,所述切换条件包括下述至少一种:
所述当前工作模式的时长达到预先设置的时长阈值;
输入的切换指示;
所述当前工作模式满足预先设置的工作需求。
在一些实施例中,若所述切换条件为所述当前工作模式满足预先设置的工作需求,则:
若当前工作模式为超声成像模式,则所述工作需求为基于所述复 合探头完成检测区域定位;
若当前工作模式为弹性检测模式,则所述工作需求为基于所述复合探头完成组织弹性检测。
在一些实施例中,若当前工作模式为所述超声成像模式,目标工作模式为所述弹性检测模式,则所述切换模块用于,判断复合探头与组织之间的相对运动情况,若所述复合探头与组织之间相对运动小于预先设置的速度阈值,获取所述复合探头被施加的压力值,若所述压力值满足预先设置的压力范围,则确定所述复合探头完成检测区域定位,并将所述复合设备由所述超声成像模式切换至所述弹性检测模式。
在一些实施例中,若当前工作模式为所述弹性检测模式,目标工作模式为所述超声成像模式,则所述切换模块用于,接收所述弹性检测功能模块基于所述复合探头振动在组织中传播的运动信息,根据所述振动在组织中传播的运动信息,从而确定所述复合设备完成组织弹性检测,并将所述复合设备由所述弹性检测模式切换至所述超声成像模式。
在一些实施例中,所述装置还包括:
监测模块,用于监测所述复合设备的启动信息;
第一控制模块,用于若根据所述启动信息确定所述复合设备完成启动,则控制所述复合设备进入所述超声成像模式。
在一些实施例中,所述监测模块用于,若根据所述启动信息确定所述复合设备完成启动,则监测并存储输入的用户的属性信息;
以及,所述第一控制模块用于,若完成对所述属性信息的存储,则控制所述复合设备进入所述超声成像模式。
在一些实施例中,所述装置还包括:
生成模块,用于生成所述当前工作模式和目标工作模式各自对应的图像;
第二控制模块,用于控制所述各自对应的图像同屏显示。
第三方面,本申请实施例提供一种复合设备的控制系统,所述系统包括:
如上任一实施例所述的装置;
复合设备,所述复合设备包括:共用复合探头的超声影像功能模 块和弹性检测功能模块。
第四方面,本申请实施例提供一种电子设备,包括:存储器,处理器;
所述存储器用于存储所述处理器可执行指令的存储器;
其中,当执行所述存储器中的指令时,所述处理器被配置为实现上述任一实施例所述的方法。
第五方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所述的方法。
本申请实施例提供一种复合设备的控制方法、装置、系统、电子设备及存储介质,复合设备包括:复合探头、分别与复合探头相连的超声影像功能模块、弹性检测功能模块,其中,复合探头包括超声阵元组件,用于在超声影像功能模块的控制下进行超声成像或者在弹性检测功能模块的控制下进行弹性检测,该方法包括:确定复合设备的当前工作模式,根据预先设置的切换条件,将复合设备由当前工作模式切换至目标工作模式,其中,若当前工作模式为超声成像模式则目标工作模式为弹性检测模式;若当前工作模式为弹性检测模式则目标工作模式为超声成像模式,在超声成像模式下,超声影像功能模块用于控制复合探头中的超声阵元组件发射超声波信号,接收并处理超声回波信号,形成超声影像,在弹性检测模式下,弹性检测功能模块用于控制复合探头中的超声阵元组件振动,并控制超声阵元组件发射和接收超声波信号,以获取振动在组织中传播的运动信息,进而得到组织弹性信息,通过基于切换条件将当前工作模式切换至目标工作模式,实现了自动控制复合设备的不同工作模式的切换,避免了相关技术中由人工的方式在两个分离状态的设备之间切换造成的人工成本较高,且容易由于人为因素的影响造成切换的准确性偏低的问题,实现了切换的自动化和灵活性,且提高了切换的准确性和可靠性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来 讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例的复合设备的控制方法的应用场景示意图;
图2为本申请一个实施例的复合设备的控制方法的流程示意图;
图3为本申请另一实施例的复合设备的控制方法的流程示意图;
图4为本申请另一实施例的复合设备的控制方法的流程示意图;
图5为本申请一个实施例的复合设备的控制装置的示意图;
图6为本申请另一实施例的复合设备的控制装置的示意图;
图7为本申请实施例的电子设备的框图。
通过上述附图,已示出本公开明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本公开构思的范围,而是通过参考特定实施例为本领域技术人员说明本公开的概念。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
请参阅图1,图1为本申请实施例的复合设备的控制方法的应用场景示意图。
如图1所示,该应用场景中包括:电源设备100、超声影像功能模块200、弹性检测功能模块300、复合探头400、上位机500及显示设备 600。
其中,电源设备100分别为超声影像功能模块200、弹性检测功能模块300、复合探头400、上位机500及显示设备600提供电源。
所述复合探头400包括超声阵元组件,用于在超声影像功能模块200的控制下进行超声成像,或者在弹性检测功能模块300的控制下进行弹性检测。
超声影像功能模块200,用于基于复合探头400对待测组织进行定位评估,得到检测区域定位,例如,若待测组织为肝脏,则超声影像功能模块200可以基于复头探头400确定用于肝脏检测的位置,得到超声影像。具体地,超声影像功能模块200通过控制复合探头400中的超声阵元组件发射超声波信号,接收并处理超声回波信号,形成超声影像。
弹性检测功能模块300,用于基于复合探头400对待测组织进行弹性检测,例如,若待测组织为肝脏,则弹性检测功能模块300可以基于复合探头400检测肝脏的弹性信息。具体地,弹性检测功能模块300通过控制复合探头400中的超声阵元组件振动,并控制超声阵元组件发射和接收超声波信号,以获取振动在组织中传播的运动信息,进而得到组织弹性信息。
上位机500,用于提供支持超声影像功能模块200和弹性检测功能模块300的软件操作系统,对超声影像或组织弹性信息进行分析和处理。
显示设备600,用于对超声影像和组织弹性信息进行显示。且,显示设备600可以用于表征对视频进行显示的设备,如液晶显示器(Liquid Crystal Display,LCD)、发光二极管(Light Emitting Diode,LED)显示器及有机发光(Organic Light Emitting Display,OLED)显示器,等等,本申请实施例不做限定。
应该理解的是,图1只是用于示范性地说明本申请实施例可能适用的应用场景,而不能理解为对应用场景中各元素的限定,例如,在一些实施例中,如图1中所示的应用场景还可以增加其它元素,如用于辅助电源设备提供稳定电源的辅助设备,也可以为打印设备,也可以为其它辅助设备;又如,在另一些实施例中,如图1中所示的应用场景还可以将多个元素进行集成,得到集成后的一个元素,如将上位机和显示设备集成为一体机,等等。
在相关技术中,超声影像功能模块和弹性检测功能模块为两个分 离状态的设备,且两个分离状态的设备在各自对应的软件系统层面相互独立,超声影像功能模块在其对应的软件系统的支持下进行影像操作定位(即检测区域定位),弹性检测功能模块在其对应的软件系统的支持下进行剪切波弹性检测(即组织弹性检测)。
采用相关技术中的方案,需要通过人工的方式对超声影像功能模块和弹性检测功能模块为两个分离状态的设备进行切换,可能造成人工成本高,且可靠性偏低的技术问题。
本申请的发明人经过创造性地劳动之后,得到了本申请的发明构思:构建包括共用复合探头的超声影像功能模块和弹性检测功能模块的复合设备,并自动在由超声影像功能模块完成的工作模式和由弹性检测功能模块完成的工作模式之间进行切换。
值得说明的是,本申请实施例中的复合设备可以包括:共用复合探头的超声影像功能模块和弹性检测功能模块(可以包括复合探头),也可以在此基础上包括如图1中所示的电源设备,也可以在此基础上包括如图1中所示的上位机,也可以在此基础上包括如图1中所示的显示设备,等等,本申请不做限定。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
根据本申请实施例的一个方面,本申请实施例提供了一种复合设备的控制方法。
请参阅图2,图2为本申请一个实施例的复合设备的控制方法的流程示意图。
如图2所示,该方法包括:
S101:确定复合设备的当前工作模式。
其中,本实施例的执行主体可以为复合设备的控制装置,且该复合设备的控制装置可以为服务器、处理器及芯片等,本实施例不做限定。
例如,当本实施例的复合设备的控制方法应用于如图1所示的应用场景时,本实施例的执行主体可以为如图1中所示的上位机。在本申请实 施例中,为了避免繁琐的赘述,以复合设备的控制设备为上位机为例进行示范性地说明。
其中,复合设备包括:复合探头、分别与复合探头相连的超声影像功能模块、弹性检测功能模块,其中,复合探头包括超声阵元组件,用于在超声影像功能模块的控制下进行超声成像或者在弹性检测功能模块的控制下进行弹性检测,且复合探头可以被包含于复合设备中,且基于上述分析可知,复合设备还可以包括电源设备、上位机及显示设备等。
其中,当前工作模式用于表征复合设备正在执行的工作模式,且由于复合设备包括共用复合探头的超声影像功能模块和弹性检测功能模块,因此,当前工作模式可以为超声成像模式,也可以为弹性检测模式。
在一些可能实现的方式中,该步骤可以具体包括:上位机可以监测复合设备中当前工作的设备,并基于当前工作的设备确定当前工作模式。例如,如果上位机监测到复合设备中当前工作的设备为超声影像功能模块,则上位机可以确定当前工作模式为超声成像模式;如果上位机监测到复合设备中当前工作的设备为弹性检测功能模块,则上位机可以确定当前工作模式为弹性检测模式。
S102:根据预先设置的切换条件,将复合设备由当前工作模式切换至目标工作模式。
其中,若当前工作模式为超声成像模式,则目标工作模式为弹性检测模式;若当前工作模式为弹性检测模式,则目标工作模式为超声成像模式。
其中,在超声成像模式下,超声影像功能模块用于控制复合探头中的超声阵元组件发射超声波信号,接收并处理超声回波信号,形成超声影像。
在弹性检测模式下,弹性检测功能模块用于控制复合探头中的超声阵元组件振动,并控制超声阵元组件发射和接收超声波信号,以获取振动在组织中传播的运动信息,进而得到组织弹性信息。
其中,切换条件可以用于表征,触发上位机在两种不同工作模式(即当前工作模式和目标工作模式)之间进行切换的条件,该切换条件可以由上位机基于需求、历史记录和试验等进行设置,本实施例不做限定。
值得说明地是,在本实施例中,上位机可以根据切换条件,将当前工作模式自动切换至目标工作模式,如上位机将超声成像模式自动切换至弹性检测模式,或者,上位机将弹性检测模式自动切换至超声成像模式,通过上位机控制复合设备在超声成像模式和弹性检测模式之间的切换,可以避免相关技术中由人工的方式在两个分离状态的设备之间切换造成的人工成本较高,且容易由于人为因素的影响造成切换的准确性偏低的问题,实现了切换的自动化和灵活性,且提高了切换的准确性和可靠性。
基于上述分析可知,本申请实施例提供了一种复合设备的控制方法,复合设备包括:复合探头、分别与复合探头相连的超声影像功能模块、弹性检测功能模块,其中,复合探头包括超声阵元组件,用于在超声影像功能模块的控制下进行超声成像或者在弹性检测功能模块的控制下进行弹性检测,该方法包括:确定复合设备的当前工作模式,根据预先设置的切换条件,将复合设备由所述当前工作模式切换至目标工作模式,其中,若当前工作模式为超声成像模式,则目标工作模式为弹性检测模式;若当前工作模式为弹性检测模式,则目标工作模式为超声成像模式,在超声成像模式下,超声影像功能模块用于控制复合探头中的超声阵元组件发射超声波信号,接收并处理超声回波信号,形成超声影像,在弹性检测模式下,弹性检测功能模块用于控制复合探头中的超声阵元组件振动,并控制超声阵元组件发射和接收超声波信号,以获取振动在组织中传播的运动信息,进而得到组织弹性信息,通过基于切换条件将当前工作模式切换至目标工作模式,实现了自动控制复合设备的不同工作模式的切换,避免了相关技术中由人工的方式在两个分离状态的设备之间切换造成的人工成本较高,且容易由于人为因素的影响造成切换的准确性偏低的问题,实现了切换的自动化和灵活性,且提高了切换的准确性和可靠性。
基于上述实施例可知,复合设备的控制装置可以实现复合设备在不同的工作模式之间的切换,为使读者更加深刻地理解切换的原理,现结合图3对本申请实施例的复合设备的控制方法进行更为详细地阐述。其中,图3为本申请另一实施例的复合设备的控制方法的流程示意图。
如图3所示,该方法包括:
S201:监测复合设备的启动信息。
其中,启动信息可以用于表征,复合设备被启动时的相关信息,且启动信息可以包括软启动信息和/或硬启动信息,软启动信息可以为上位机触发其上设置的软件应用而启动复合设备的信息,硬启动信息可以为上位机接收到工作人员通过显示设备或者按键而启动复合设备的信息。
S202:若根据启动信息确定复合设备完成启动,则监测并存储输入的用户的属性信息。
其中,属性信息可以用于表征用户的身份信息和健康信息等。
该步骤可以具体包括:上位机根据启动信息判断复合设备是否完成启动,若是,则监测是否有属性信息输入,若有,则对输入的属性信息进行存储。
例如,若上位机确定复合设备完成启动,则可以监测是否有属性信息被输入,如监测工作人员通过显示装置输入属性信息,则上位机将属性信息进行存储。
S203:若完成对属性信息的存储,则控制复合设备进入超声成像模式。
该步骤可以具体包括:上位机判断属性信息是否已经输入结束,若是,则判断属性信息是否已经存储结束,若是,则上位机控制复合设备进入超声成像模式。
其中,上位机判断属性信息是否已经输入结束的方法可以包括:若在预先设置的时长内上位机没有收到属性信息,则上位机确定属性信息已经输入结束,该时长可以由上位机基于需求、历史记录及试验等进行设置。
在另一可能的实现中,上位机可以控制显示设备显示“完成”图标,工作人员在完成属性信息的输入时,可以点击“完成”图标,上位机响应于“完成”图标被点击,确定属性信息已经输入结束。
S204:根据切换条件,将复合设备由超声成像模式切换至弹性检测模式。
其中,切换条件包括下述至少一种:
当前工作模式的时长达到预先设置的时长阈值;
输入的切换指示;
当前工作模式满足预先设置的工作需求。
也就是说,在本实施例中,切换条件可以为下述至少一种:
超声成像模式的时长达到时长阈值;
输入的切换指示;
超声影像功能模块已经基于复合探头完成检测区域定位。
值得说明的是,时长阈值可以由上位机基于需求、历史记录及试验等进行设置,且超声成像模式对应的时长阈值与弹性检测模式对应的时长阈值可以为不同的阈值;输入的切换指示可以为,工作人员基于显示设备输入的用于在超声成像模式与弹性检测模式之间切换的指示,也可以采用如类似于上述实施例中“切换”图标实现。
在一些实施例中,该步骤可以具体包括:
S2041:判断复合探头与组织之间的相对运动情况。
例如,上位机可以获取复合探头的移动时间和移动位移,并根据移动时间和移动位移确定复合探头与组织之间的相对运动情况。
S2042:若复合探头与组织之间相对运动小于预先设置的阈值,获取复合探头被施加的压力值。
同理,所述相对运动的预设阈值可以由上位机基于需求、历史记录及试验等进行设置。例如,可以设置速度阈值,表征复合探头相对于组织的移动速度,即复合探头应相对于组织几乎不移动。也可以设置其他能够表征相对运动的阈值,本申请在此不做限制。
以速度阈值为例,该步骤可以具体包括:上位机判断复合探头相对于组织的移动速度是否小于速度阈值,若是,则获取压力值。值得说明的是,当移动速度较小时,即当复合探头几乎不移动时,则说明可能已经确定出了检测的位置,则上位机对压力值进行获取。
S2043:若压力值满足预先设置的压力范围,则确定复合探头完成检测区域定位,并将复合设备由超声成像模式切换至弹性检测模式。
同理,压力阈值可以由上位机基于需求、历史记录及试验等进行设置。
该步骤可以具体包括:上位机判断压力值是否达到压力阈值,若是,则上位机控制复合设备由超声成像模式切换至弹性检测模式。
在本实施例中,上位机通过结合移动速度和压力值自动地控制复 合设备由超声成像模式切换至弹性检测模式,可以提高切换的自动化和可靠性。
在一些实施例中,若当前工作模式为弹性检测模式,则工作需求为基于复合探头完成组织弹性检测。也就是说,若是上位机将复合设备由弹性检测模式切换至超声成像模式,则切换条件可以为下述至少一种:
弹性检测模式的时长达到时长阈值;
输入的切换指示;
剪切波影像设备已经基于复合探头完成组织弹性检测。
且,在一些实施例中,若当前工作模式为弹性检测模式,目标工作模式为超声成像模式,则根据预先设置的切换条件,将复合设备由当前工作模式切换至目标工作模式包括:
接收弹性检测功能模块基于复合探头振动在组织中传播的运动信息;
根据振动在组织中传播的运动信息,从而确定复合探头完成组织弹性检测,并将复合设备由弹性检测模式切换至超声成像模式。
S205:生成超声成像模式和弹性检测模式各自对应的图像。
S206:控制各自对应的图像同屏显示。
也就是说,上位机可以生成超声成像模式对应的图像,且可以生成弹性检测模式对应的图像,并将两种工作模式各自对应的图像在同一屏幕上进行显示。
结合如图1所示的应用场景,上位机可以控制显示设备对两种工作模式各自对应的图像分别进行显示,如左右屏显示,又如上下屏显示。
在本实施例中,通过将两种工作模式各自对应的图像在同一屏幕上进行显示,可以提高可读性和调整的便捷性。
在一些实施例中,上位机可以根据两种工作模式各自对应的图像生成同一检测报告单,即该检测单中包括两种工作模式对应的两个维度的检测结果。
现结合如图1所示的应用场景,并结合图4对本申请实施例的复合设备的控制方法进行更为详细地阐述。其中,图4为本申请另一实施例的复合设备的控制方法的流程示意图。
如图4所示,该方法包括:
S301:电源设备基于预先设置的上电时序为上位机、超声影像功能模块、弹性检测功能模块及显示设备供电。
相应的,上位机、超声影像功能模块、弹性检测功能模块及显示设备供电分别接收电源设备提供的电源,并执行启动和自检等,以确保各设备的正常运行。
例如,上位机在接收电源设备提供的电源后开启软启动,并分别加载超声影像功能模块和弹性检测功能模块的驱动,并对超声影像功能模块和弹性检测功能模块进行识别,且可以检测超声影像功能模块和弹性检测功能模块是否可以正常工作。
S302:上位机接收工作人员基于显示设备输入的用户的属性信息。
S303:上位机对属性信息进行存储并控制显示设备对属性信息进行显示。
相应的,显示设备对属性信息进行显示。
S304:上位机控制超声影像功能模块进入工作模式(即超声成像模式)。
S305:超声影像功能模块基于复合探头进行检测区域定位,并向上位机发送检测区域定位得到的影像结果。
相应的,上位机接收超声影像功能模块发送的检测区域定位得到的影像结果。
S306:上位机接收在复合探头上产生的压力信息。
其中,工作人员可以对复合探头施加压力,用于指示待检测的位置。
S307:上位机确定压力信息对应压力值达到预先设置的压力阈值时(即超声影像功能模块基于复合探头完成检测区域定位),控制弹性检测功能模块进入工作模式(即弹性检测模式)。
同理,压力阈值可以由上位机基于需求、历史记录及试验等进行设置。
该步骤可以具体包括:上位机基于压力信息确定压力值,判断压力值是否达到压力阈值,若是,则控制弹性检测功能模块进行工作模式(即 弹性检测模式)。
S308:弹性检测功能模块基于复合探头进行组织弹性检测,并向上位机发送组织弹性检测得到的影像结果。
相应的,上位机接收超声影像功能模块发送的组织弹性检测得到的影像结果。
S309:上位机控制显示设备对检测区域定位得到的影像结果和组织弹性检测得到的影像结果进行显示。
相应的,显示设备对检测区域定位得到的影像结果和组织弹性检测得到的影像结果进行显示。
S310:上位机生成包括检测区域定位得到的影像结果和组织弹性检测得到的影像结果的检测报告单。
根据本申请实施例的另一个方面,本申请实施例还提供了一种复合设备的控制装置,用于执行上述任一实施例所述的方法,如执行如图2至图4中任一实施例所示的方法,其中,所述复合设备包括:复合探头、分别与复合探头相连的超声影像功能模块、弹性检测功能模块,其中,复合探头包括超声阵元组件,用于在超声影像功能模块的控制下进行超声成像或者在弹性检测功能模块的控制下进行弹性检测。
请参阅图5,图5为本申请一个实施例的复合设备的控制装置的示意图。
如图5所示,所述装置包括:
确定模块11,用于确定复合设备的当前工作模式;
切换模块12,用于根据预先设置的切换条件,将所述复合设备由所述当前工作模式切换至目标工作模式;
其中,若当前工作模式为超声成像模式则所述目标工作模式为弹性检测模式;若当前工作模式为弹性检测模式则所述目标工作模式为超声成像模式。
在超声成像模式下,所述超声影像功能模块用于控制所述复合探头中的超声阵元组件发射超声波信号,接收并处理超声回波信号,形成超声影像;
在弹性检测模式下,所述弹性检测功能模块用于控制所述复合探 头中的超声阵元组件振动,并控制所述超声阵元组件发射和接收超声波信号,以获取所述振动在组织中传播的运动信息,进而得到组织弹性信息。
在一些实施例中,所述切换条件包括下述至少一种:
所述当前工作模式的时长达到预先设置的时长阈值;
输入的切换指示;
所述当前工作模式满足预先设置的工作需求。
在一些实施例中,若所述切换条件为所述当前工作模式满足预先设置的工作需求,则:
若当前工作模式为超声成像模式,则所述工作需求为基于所述复合探头完成检测区域定位;
若当前工作模式为弹性检测模式,则所述工作需求为基于所述复合探头完成组织弹性检测。
在一些实施例中,若当前工作模式为所述超声成像模式,目标工作模式为所述弹性检测模式,则所述切换模块12用于,判断复合探头与组织之间的相对运动情况,若所述复合探头与组织之间相对运动小于预先设置的速度阈值,获取所述复合探头被施加的压力值,若所述压力值满足预先设置的压力范围,则确定所述复合探头完成检测区域定位,并将所述复合设备由所述超声成像模式切换至所述弹性检测模式。
在一些实施例中,若当前工作模式为弹性检测模式,目标工作模式为超声成像模式,则所述切换模块12用于,接收所述弹性检测功能模块基于所述复合探头振动在组织中传播的运动信息,根据所述振动在组织中传播的运动信息,从而确定所述复合设备完成组织弹性检测,并将所述复合设备由所述弹性检测模式切换至所述超声成像模式。
结合图6可知,在一些实施例中,所述装置还包括:
监测模块13,用于监测所述复合设备的启动信息;
第一控制模块14,用于若根据所述启动信息确定所述复合设备完成启动,则控制所述复合设备进入所述超声成像模式。
在一些实施例中,所述监测模块13用于,若根据所述启动信息确定所述复合设备完成启动,则监测并存储输入的用户的属性信息;
以及,所述第一控制模块14用于,若完成对所述属性信息的存储, 则控制所述复合设备进入所述超声成像模式。
结合图6可知,在一些实施例中,所述装置还包括:
生成模块15,用于生成所述当前工作模式和目标工作模式各自对应的图像;
第二控制模块16,用于控制所述各自对应的图像同屏显示。
根据本申请实施例的另一个方面,本申请实施例还提供了一种复合设备的控制系统,所述系统包括:
如上任一实施例所述的装置,如图5或图6所示的装置;
复合设备,所述复合设备包括:共用复合探头的超声影像功能模块和弹性检测功能模块。
根据本申请实施例的另一个方面,本申请实施例还提供了一种电子设备,包括:存储器,处理器;
存储器用于存储处理器可执行指令的存储器;
其中,当执行存储器中的指令时,处理器被配置为实现如上任一实施例所述的方法,如实现如图2至图4中任一实施例所示的复合设备的控制方法。
请参阅图7,图7为本申请实施例的电子设备的框图。
如图7所示,电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。
电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请实施例的实现。
如图7所示,该电子设备包括:一个或多个处理器101、存储器102,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在电子设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示GUI的图形信息的指令。在其它实施方式中,若需要,可以将多个处 理器和/或多条总线与多个存储器一起使用。同样,可以连接多个电子设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器系统)。图7中以一个处理器101为例。
存储器102即为本申请实施例所提供的非瞬时计算机可读存储介质。其中,所述存储器存储有可由至少一个处理器执行的指令,以使所述至少一个处理器执行本申请实施例所提供的复合设备的控制方法。本申请实施例的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本申请实施例所提供的复合设备的控制方法。
存储器102作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,如本申请实施例中的程序指令/模块。处理器101通过运行存储在存储器102中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的复合设备的控制方法。
存储器102可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据电子设备的使用所创建的数据等。此外,存储器102可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。在一些实施例中,存储器102可选包括相对于处理器101远程设置的存储器,这些远程存储器可以通过网络连接至电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、区块链服务网络(Blockchain-based Service Network,BSN)、移动通信网及其组合。
电子设备还可以包括:输入装置103和输出装置104。处理器101、存储器102、输入装置103和输出装置104可以通过总线或者其他方式连接,图7中以通过总线连接为例。
输入装置103可接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入装置。输出装置104可以包括显示设备、辅助照明装置(例如,LED)和触觉反馈装置(例如,振动电机)等。该显示设备可以包括但不限于,液晶显 示器(LCD)、发光二极管(LED)显示器和等离子体显示器。在一些实施方式中,显示设备可以是触摸屏。
此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、专用ASIC(专用集成电路)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
这些计算机程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算机程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来 与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、区块链服务网络(Block-chain-based Service Network,BSN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
其中,计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于通信设备中。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或对其中部分或全部技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (12)

  1. 一种复合设备的控制方法,其特征在于,所述复合设备包括:复合探头、分别与复合探头相连的超声影像功能模块、弹性检测功能模块,其中,所述复合探头包括超声阵元组件,用于在所述超声影像功能模块的控制下进行超声成像或者在所述弹性检测功能模块的控制下进行弹性检测,所述方法包括:
    确定复合设备的当前工作模式;
    根据预先设置的切换条件,将所述复合设备由所述当前工作模式切换至目标工作模式;其中,若所述当前工作模式为超声成像模式则所述目标工作模式为弹性检测模式,若所述当前工作模式为弹性检测模式则所述目标工作模式为超声成像模式;
    在超声成像模式下,所述超声影像功能模块用于控制所述复合探头中的超声阵元组件发射超声波信号,接收并处理超声回波信号,形成超声影像;
    在弹性检测模式下,所述弹性检测功能模块用于控制所述复合探头中的超声阵元组件振动,并控制所述超声阵元组件发射和接收超声波信号,以获取所述振动在组织中传播的运动信息,进而得到组织弹性信息。
  2. 根据权利要求1所述的方法,其特征在于,所述切换条件包括下述至少一种:
    所述当前工作模式的时长达到预先设置的时长阈值;
    输入的切换指示;
    所述当前工作模式满足预先设置的工作需求。
  3. 根据权利要求2所述的方法,其特征在于,若所述切换条件为所述当前工作模式满足预先设置的工作需求,则:
    若当前工作模式为超声成像模式,则所述工作需求为基于所述复合探头完成检测区域定位;
    若当前工作模式为弹性检测模式,则所述工作需求为基于所述复合探头完成组织弹性检测。
  4. 根据权利要求3所述的方法,其特征在于,若当前工作模式为所述超声成像模式,目标工作模式为所述弹性检测模式,则所述根据预先设置的切换条件,将所述复合设备由所述当前工作模式切换至目标工作模式包括:
    判断复合探头与组织之间的相对运动情况;
    若所述复合探头与组织之间相对运动小于预先设置的阈值,获取所述复合探头被施加的压力值;
    若所述压力值满足预先设置的压力范围,则确定所述复合探头完成检测区域定位,并将所述复合设备由所述超声成像模式切换至所述弹性检测模式。
  5. 根据权利要求3所述的方法,其特征在于,若当前工作模式为所述弹性检测模式,目标工作模式为所述超声成像模式,则所述根据预先设置的切换条件,将所述复合设备由所述当前工作模式切换至目标工作模式包括:
    接收所述弹性检测功能模块基于所述复合探头振动在组织中传播的运动信息;
    根据所述运动信息得出组织弹性信息,从而确定所述复合设备完成组织弹性检测;
    将所述复合设备由所述弹性检测模式切换至所述超声成像模式。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    监测所述复合设备的启动信息;
    若根据所述启动信息确定所述复合设备完成启动,则控制所述复合设备进入所述超声成像模式。
  7. 根据权利要求6所述的方法,其特征在于,在所述控制所述复合设备进入所述超声成像模式之前,所述方法还包括:
    若根据所述启动信息确定所述复合设备完成启动,则监测并存储输入的用户的属性信息;
    以及,所述控制所述复合设备进入所述超声成像模式包括:若完成对所述属性信息的存储,则控制所述复合设备进入所述超声成像模式。
  8. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    生成所述当前工作模式和目标工作模式各自对应的图像;
    控制所述各自对应的图像同屏显示。
  9. 一种复合设备的控制装置,其特征在于,所述复合设备包括:复合探头、分别与复合探头相连的超声影像功能模块、弹性检测功能模块,其中, 所述复合探头包括超声阵元组件,用于在所述超声影像功能模块的控制下进行超声成像或者在所述弹性检测功能模块的控制下进行弹性检测,所述装置包括:
    确定模块,用于确定复合设备的当前工作模式;
    切换模块,用于根据预先设置的切换条件,将所述复合设备由所述当前工作模式切换至目标工作模式;其中,若所述当前工作模式为超声成像模式则所述目标工作模式为弹性检测模式;若所述当前工作模式为弹性检测模式,则所述目标工作模式为超声成像模式;
    在超声成像模式下,所述超声影像功能模块用于控制所述复合探头中的超声阵元组件发射超声波信号,接收并处理超声回波信号,形成超声影像;
    在弹性检测模式下,所述弹性检测功能模块用于控制所述复合探头中的超声阵元组件振动,并控制所述超声阵元组件发射和接收超声波信号,以获取所述振动在组织中传播的运动信息,进而得到组织弹性信息。
  10. 一种复合设备的控制系统,其特征在于,所述系统包括:
    如权利要求9所述的装置;
    复合设备,所述复合设备包括:共用复合探头的超声影像功能模块和弹性检测功能模块。
  11. 一种电子设备,其特征在于,包括:存储器,处理器;
    所述存储器用于存储所述处理器可执行指令的存储器;
    其中,当执行所述存储器中的指令时,所述处理器被配置为实现如权利要求1至8中任一项所述的方法。
  12. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1至8中任一项所述方法。
PCT/CN2022/085139 2021-04-06 2022-04-02 复合设备的控制方法、装置、系统及存储介质 WO2022213946A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110369496.X 2021-04-06
CN202110369496.XA CN113081041B (zh) 2021-04-06 2021-04-06 复合设备的控制方法、装置、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2022213946A1 true WO2022213946A1 (zh) 2022-10-13

Family

ID=76674726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085139 WO2022213946A1 (zh) 2021-04-06 2022-04-02 复合设备的控制方法、装置、系统及存储介质

Country Status (2)

Country Link
CN (1) CN113081041B (zh)
WO (1) WO2022213946A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113081041B (zh) * 2021-04-06 2024-02-13 无锡海斯凯尔医学技术有限公司 复合设备的控制方法、装置、系统及存储介质
CN114271853B (zh) * 2021-12-23 2024-05-03 武汉中旗生物医疗电子有限公司 超声设备成像模式参数控制方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102283679A (zh) * 2011-08-04 2011-12-21 中国科学院深圳先进技术研究院 弹性测量的超声成像系统及测量生物组织弹性的方法
US20160220232A1 (en) * 2015-01-30 2016-08-04 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus
CN108095765A (zh) * 2018-01-18 2018-06-01 北京索瑞特医学技术有限公司 复合探头及测量系统
CN108095763A (zh) * 2018-01-18 2018-06-01 北京索瑞特医学技术有限公司 复合探头及测量系统
CN110573088A (zh) * 2018-10-18 2019-12-13 深圳迈瑞生物医疗电子股份有限公司 一种超声弹性检测方法及其系统
CN112386276A (zh) * 2019-08-14 2021-02-23 深圳迈瑞生物医疗电子股份有限公司 剪切波弹性成像方法、超声成像系统及计算机可读存储介质
CN113081041A (zh) * 2021-04-06 2021-07-09 无锡海斯凯尔医学技术有限公司 复合设备的控制方法、装置、系统及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110301938A (zh) * 2019-07-15 2019-10-08 无锡海斯凯尔医学技术有限公司 探头和组织弹性检测系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102283679A (zh) * 2011-08-04 2011-12-21 中国科学院深圳先进技术研究院 弹性测量的超声成像系统及测量生物组织弹性的方法
US20160220232A1 (en) * 2015-01-30 2016-08-04 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus
CN108095765A (zh) * 2018-01-18 2018-06-01 北京索瑞特医学技术有限公司 复合探头及测量系统
CN108095763A (zh) * 2018-01-18 2018-06-01 北京索瑞特医学技术有限公司 复合探头及测量系统
CN110573088A (zh) * 2018-10-18 2019-12-13 深圳迈瑞生物医疗电子股份有限公司 一种超声弹性检测方法及其系统
CN112386276A (zh) * 2019-08-14 2021-02-23 深圳迈瑞生物医疗电子股份有限公司 剪切波弹性成像方法、超声成像系统及计算机可读存储介质
CN113081041A (zh) * 2021-04-06 2021-07-09 无锡海斯凯尔医学技术有限公司 复合设备的控制方法、装置、系统及存储介质

Also Published As

Publication number Publication date
CN113081041A (zh) 2021-07-09
CN113081041B (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
WO2022213946A1 (zh) 复合设备的控制方法、装置、系统及存储介质
US9030437B2 (en) Probabilistic latency modeling
US10395767B2 (en) Method and apparatus for managing medical data
KR101386102B1 (ko) 초음파 영상 제공 방법 및 그를 위한 초음파 장치
JP6334983B2 (ja) 超音波診断装置及びシステム
JP7490821B2 (ja) 検出方法、検出装置、電子機器、記憶媒体およびコンピュータプログラム
US11638572B2 (en) Methods and apparatus for performing measurements on an ultrasound image
US20170209125A1 (en) Diagnostic system and method for obtaining measurements from a medical image
CN117334112A (zh) 具有改进培训模式的超声成像系统
KR102184576B1 (ko) 능동 지능형 사용자 설명서를 제공하는 초음파 진단 시스템 및 능동 지능형 사용자 설명서 제공 방법
EP2674108A1 (en) Ultrasound diagnosis method and apparatus using electrocardiogram
WO2022213948A1 (zh) 弹性检测方法及装置
US20190114812A1 (en) Method and ultrasound imaging system for emphasizing an ultrasound image on a display screen
CN106037808A (zh) 一种超声波诊断设备的操作方法及装置
JP6510762B2 (ja) 医用画像撮影装置及びその制御プログラム
JP7226128B2 (ja) 超音波診断装置及びプログラム
JP2010088698A (ja) 超音波診断装置及び超音波診断装置の故障診断方法
EP3851051A1 (en) Ultrasound diagnosis apparatus and operating method thereof
US20240241628A1 (en) Image display apparatus, image display method, and program
Kar et al. GazeVisual: A practical software tool and web application for
JP2017131487A (ja) 超音波診断装置及びその制御プログラム
US20140358001A1 (en) Ultrasound diagnosis method and apparatus using three-dimensional volume data
WO2020103103A1 (zh) 一种超声数据处理方法、超声设备及存储介质
WO2020062050A1 (zh) 超声诊断仪及超声检查模式的切换方法
CN115581478A (zh) 图像处理方法、装置、电子设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784012

Country of ref document: EP

Kind code of ref document: A1