WO2020062050A1 - 超声诊断仪及超声检查模式的切换方法 - Google Patents

超声诊断仪及超声检查模式的切换方法 Download PDF

Info

Publication number
WO2020062050A1
WO2020062050A1 PCT/CN2018/108387 CN2018108387W WO2020062050A1 WO 2020062050 A1 WO2020062050 A1 WO 2020062050A1 CN 2018108387 W CN2018108387 W CN 2018108387W WO 2020062050 A1 WO2020062050 A1 WO 2020062050A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasound
probe
inspected
mode
host
Prior art date
Application number
PCT/CN2018/108387
Other languages
English (en)
French (fr)
Inventor
吴娜
徐志安
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
深圳迈瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 深圳迈瑞科技有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2018/108387 priority Critical patent/WO2020062050A1/zh
Priority to CN201880097278.1A priority patent/CN112654295A/zh
Publication of WO2020062050A1 publication Critical patent/WO2020062050A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • the invention relates to the technical field of ultrasound imaging equipment, and in particular, to an ultrasound diagnostic apparatus and a method for switching an ultrasound examination mode.
  • the ultrasound diagnostic instrument As an ultrasound imaging device, the ultrasound diagnostic instrument has been widely used in medicine. It uses ultrasound imaging technology to understand the physiological or tissue structure of the human body by detecting acoustic differences between different tissues or pathological tissues and normal tissues. Data and patterns to diagnose the disease.
  • the ultrasound diagnostic apparatus When the ultrasound diagnostic apparatus is working, it sends ultrasonic signals to the body's inspected part through the probe, and the ultrasonic echoes reflected by the body's inspected part are fed back to the probe, which is subsequently detected and amplified based on the relevant body information carried by the ultrasound echo. Wait for processing, and finally display the information in a preset way such as images to provide doctors with a diagnosis basis.
  • Organs in various tissue parts of the human body such as organs in the head, neck, chest, and abdomen, have different tissue structures and morphologies. Therefore, different probes are configured for organs in different parts, for example, the abdomen such as the liver and kidneys.
  • Examination of organs generally uses a convex array probe, and examinations of the breast and arteries generally use a linear array probe. In view of this, before each examination, the doctor needs to select a corresponding probe and a corresponding examination mode according to the site or organ being examined. At present, most ultrasound diagnostic instruments list all types of probes and examination modes in text and tables. Before the examination, the doctor needs to select the required probe from the probe list and then select the required probe from the examination mode list.
  • the probe list and examination mode list need to be operated multiple times to switch the probe to the required probe and the examination mode to the required examination mode.
  • the switching between the probe and the inspection mode is not intuitive, and the operation is tedious and time-consuming.
  • the invention mainly provides an ultrasonic diagnostic instrument and a method for switching the ultrasonic examination mode, so as to intuitively switch the examination mode and the ultrasonic probe of the ultrasonic diagnostic instrument.
  • an embodiment provides an ultrasound diagnostic apparatus, including: a host, a plurality of probe interfaces, and a human-computer interaction device;
  • the human-computer interaction device is connected to the host and is used to display an organization structure view.
  • the human-machine interaction device detects a click operation on the organization structure view on the display interface, outputs the click location information, and sends the click location information.
  • the host is used to send a visualized view of the organizational structure to the human-machine interactive device for display when the inspection mode needs to be selected, and to identify the part to be inspected according to the click position information sent by the human-machine interactive apparatus, and determine the applicable inspection according to the part Mode, switch the inspection mode of the ultrasound diagnostic instrument to the applicable inspection mode;
  • the multiple probe interfaces are respectively connected to the host, and are used to connect multiple ultrasound probes to the host.
  • the host is further configured to, after determining the applicable examination mode, determine, from the ultrasound probes currently connected to the ultrasound diagnostic apparatus, a to-be-used ultrasound probe that matches the applicable examination mode, and select the to-be-used ultrasound probe.
  • an embodiment provides an ultrasound diagnostic apparatus, including: a host, a plurality of probe interfaces, and a human-machine interaction device;
  • the multiple probe interfaces are respectively connected to the host, and are used to connect multiple ultrasound probes to the host;
  • the human-computer interaction device is connected to the host and is used to display an organization structure view.
  • the human-machine interaction device detects a click operation on the organization structure view on the display interface, outputs the click location information, and sends the click location information.
  • the host is used to send the visualized organization structure view to the human-machine interactive device for display, and to identify the part to be inspected according to the click position information sent by the human-computer interaction apparatus, and to determine the part to be inspected from the currently connected ultrasound probe according to the part Use an ultrasound probe and strobe the ultrasound probe to be used.
  • an embodiment provides a method for switching an ultrasound examination mode, including:
  • the click position information output by the human-computer interaction device is acquired, and the click position information is generated based on the user's click operation performed on the organizational structure view displayed on the human-computer interaction device;
  • the applicable inspection mode is determined according to the part to be inspected, and the inspection mode of the ultrasound diagnostic apparatus is switched to the applicable inspection mode.
  • the method further includes:
  • An ultrasound probe to be used that matches the applicable examination mode is determined from the ultrasound probes currently connected to the ultrasound diagnostic apparatus, and the ultrasound probe to be used is gated.
  • an embodiment provides a method for switching an ultrasound probe, including:
  • the click position information is generated based on a user's click operation performed on an organizational structure view displayed on the human-computer interaction device;
  • the to-be-used ultrasound probe is determined from the currently connected ultrasound probes according to the to-be-examined site, and the to-be-used ultrasound probe is selected.
  • the method further includes:
  • the examination mode of the ultrasound system is switched to the target examination mode.
  • the method further includes:
  • a visualized tissue structure view can be displayed on the display interface, and then the examination mode and / or the ultrasound probe can be switched according to the click operation on the tissue structure view.
  • the tissue structure view can intuitively display the part to be inspected, the user only needs to click the part to be inspected on the tissue structure view, and the ultrasound diagnostic instrument can realize the switching of the examination mode and / or the ultrasound probe, so that the examination mode and / Or the switching of the ultrasound probe is more intuitive and convenient.
  • FIG. 1 is a schematic structural diagram of an ultrasonic diagnostic apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for switching an ultrasound examination mode according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for switching an ultrasound examination mode according to a specific embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a human body structure according to a specific embodiment of the present invention.
  • FIG. 5 is a schematic diagram of highlighting a part to be inspected according to a specific embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a switching device for an ultrasound examination mode according to a specific embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an ultrasound inspection mode switching device according to another embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for switching an ultrasound examination mode according to another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an ultrasound inspection mode switching device according to another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an ultrasound inspection mode switching device according to another embodiment of the present invention.
  • an organization structure view is displayed on the display interface, and a site to be inspected is automatically identified according to a user's tap operation on the organization structure view, and then the inspection mode and The ultrasound probe to be used does not require the user to manually input or select the examination mode and / or ultrasound probe to be used from the form.
  • an organization structure view is presented to a user (for example, a doctor) very intuitively through pictures.
  • the user only needs to select a tissue site to be checked on the picture, and the ultrasound diagnostic apparatus can automatically match a suitable examination mode And / or ultrasound probe.
  • FIG. 1 is a schematic structural diagram of an ultrasound diagnostic apparatus according to an embodiment of the present invention.
  • the ultrasound diagnostic apparatus includes a host 1 and multiple probe interfaces (N probe interfaces 21 to 2N shown in FIG. 1, N is an integer greater than or equal to 2) and the human-computer interaction device 3.
  • the human-computer interaction device 3 is connected to the host computer 1 for displaying an organization structure view.
  • the human-machine interaction device 3 detects a user's click operation on the organization structure view on its display interface, and outputs the click location information. And send the selected location information to the host 1; the host 1 is used to send the visualized organizational structure view to the human-computer interaction device 3 for display when the inspection mode needs to be selected, and according to the selection sent by the human-computer interaction device 3
  • the position information identifies the part to be inspected, determines the applicable inspection mode according to the part to be inspected, and switches the inspection mode of the ultrasound diagnostic apparatus to the applicable inspection mode; multiple probe interfaces are respectively connected to the host 1 for connecting multiple ultrasound probes Host 1.
  • the host 1 may include a transmission circuit, a transmission / reception selection switch, a reception circuit, a beam combining circuit, and a processor.
  • the transmitting circuit can excite the probe to emit ultrasonic waves to the target area.
  • the receiving circuit can receive ultrasonic echo signals / data from the target area through the probe.
  • the ultrasonic echo signal / data is beam-synthesized by a beam-synthesizing circuit and sent to a processor.
  • the processor processes the ultrasound echo signal / data to obtain an ultrasound image of the target object.
  • the ultrasound images obtained by the processor may be stored in a memory, and these ultrasound images may be displayed on the interface of the human-machine interaction device 3.
  • the host 1 When an ultrasound probe is connected to the probe interface, the host 1 obtains the information of these ultrasound probes, and adds the obtained ultrasound probe information to the probe list. After the host computer 1 determines the applicable inspection mode, it will determine the ultrasonic probe to be used that matches the applicable inspection mode from the ultrasound probes currently connected to the ultrasound diagnostic apparatus, and select the ultrasonic probe to be used; specifically, the host 1 After determining the applicable examination mode, the ultrasound probe with the highest degree of matching with the applicable examination mode is queried from the probe list, and the ultrasound probe with the highest degree of matching is determined as the ultrasound probe to be used.
  • the human-computer interaction device 3 when the host 1 recognizes the site to be inspected, the human-computer interaction device 3 is further configured to highlight the site to be inspected identified by the host 1. In another embodiment, when the human-computer interaction device 3 highlights the part to be inspected identified by the host 1, it is also used to display the name of the part to be inspected.
  • an embodiment of the present application provides a method for switching an ultrasound examination mode.
  • the method for switching an ultrasound examination mode may include the following steps:
  • Step 101 Display the organizational structure view.
  • the host 1 sends the visualized organizational structure view to the human-computer interaction device 3, and the human-machine interaction device 3 displays the organizational structure view on its display interface.
  • the organizational structure view may be preset or generated by the processor of the host 1.
  • Step 102 Acquire the click location information.
  • the human-computer interaction device 3 When the human-computer interaction device 3 detects a user's click operation on the organizational structure view on the display interface, it generates corresponding click location information, and then sends the click location information to the host 1. At this time, the host 1 obtains Go to this point and select location information.
  • Step 103 Identify the part to be inspected.
  • the host computer 1 After the host computer 1 obtains the click position information output by the human-computer interaction device 3, it identifies the part to be inspected based on the click position information.
  • Step 104 Determine the applicable inspection mode.
  • each inspection mode can preset corresponding ultrasound imaging parameters, which include but are not limited to imaging depth, frequency, gain, brightness, and the like.
  • an ultrasound scan can be performed according to the ultrasound imaging parameters set in the inspection mode.
  • Step 105 Determine a matching ultrasound probe to be used.
  • the ultrasound probe to be used that matches the applicable inspection mode is determined from the ultrasound probes currently connected to the ultrasound diagnostic apparatus, and the ultrasound probe to be used is selected.
  • the determination of the ultrasound probe to be used can also be determined according to the site to be inspected.
  • the currently connected ultrasound probe that supports the inspection mode can be determined.
  • the applicable ultrasound probe is selected from the ultrasound probes that support the inspection mode. An ultrasound probe at the site to be examined.
  • the kidney examination mode After determining the kidney examination mode, if the currently connected ultrasound probe supporting the kidney examination mode includes a convex array probe and a linear array probe, you can choose to apply a convex array probe; if there is no convex array probe, you can choose to use a linear array probe. If the applicable examination mode and ultrasound probe cannot be determined according to the site to be inspected, the user may be vacant to prompt the user that no probe is available. The method of prompting a vacancy is not limited here.
  • the process of determining the applicable inspection mode by the host 1 may further include: determining the ultrasound probe to be used from the currently connected ultrasound probe according to the location to be inspected; and determining from the inspection mode supported by the ultrasound probe to be used Applies the applicable inspection mode for the part to be inspected, and switches the inspection mode of the ultrasound system to the applicable inspection mode. For example, if the site to be examined is a kidney site, if the currently connected ultrasound probe includes a convex array probe and a linear array probe, the convex array probe may be determined to be a highly matched ultrasound probe to be used according to the matching degree of the probe type applicable to the kidney site.
  • the convex array probe From the examination modes supported by the convex array probe, determine the kidney examination mode applicable to the kidney site, and switch the examination mode of the ultrasound diagnostic apparatus to the kidney examination mode. If an ultrasound probe is not currently available for this kidney site, a vacancy may be used to alert the user that no probe is available. The method of prompting a vacancy is not limited here.
  • the user can intuitively observe each tissue site through the organization structure view displayed on the human-computer interaction device.
  • the host can directly determine The applicable inspection mode corresponding to the part to be inspected, and then directly switch the inspection mode of the ultrasound diagnostic apparatus to the applicable inspection mode, and at the same time, according to the determined applicable inspection mode, directly select the relevant ultrasound probe from the ultrasound probe currently connected to the ultrasound diagnostic apparatus.
  • Applicable and stylized ultrasound probes that match the inspection mode no longer need the user to operate the probe list and inspection mode list multiple times to switch the ultrasound probe of the ultrasound diagnostic instrument to the required ultrasound probe and switch the inspection mode to the required inspection Switching between modes, inspection modes, and ultrasound probes is more intuitive and convenient.
  • the tissue structure view generated by the processor may be a view that can intuitively reflect the tissue structure, such as a human anatomy diagram or a human body structure diagram.
  • the following uses the organization structure view as a simplified diagram of the human body as an example for detailed description.
  • FIG. 3 shows a flowchart of a method for switching an ultrasound examination mode in a specific embodiment.
  • the method for switching an ultrasound examination mode may include the following specific steps:
  • Step 201 Obtain information of the ultrasound probe.
  • the host 1 will obtain the information of the ultrasound probes connected to the probe interface and add the obtained ultrasound probe information to the probe list. .
  • a linear array probe is connected to the probe interface 21 of the ultrasound diagnostic apparatus shown in FIG. 1, and a convex array probe is connected to the probe interface 22.
  • the host 1 will obtain the ultrasonic probes connected to the two probe interfaces. For example, you can obtain the type identification codes of the two ultrasound probes, and then add the type identification codes of the two ultrasound probes to the probe list.
  • the probe list can be shown in Table 1:
  • Step 202 Display a schematic diagram of a human body structure.
  • the host 1 sends the visualized human body structure diagram generated by its processor to the human-computer interaction device 3, and the human-machine interaction device 3 displays the human body structure diagram on its display interface. 4. It shows the main tissues of the human body, including thyroid 51, lung 52, heart 53, stomach 54, kidney 55, intestine 56 and liver 57.
  • Step 203 Acquire the click location information.
  • a human body structure diagram is displayed on the display interface of the human-computer interaction device 3, the user can select a part to be checked by clicking on the human body structure diagram. For example, if the user needs to check the kidney of the patient, he can click the position of the kidney 55 on the schematic diagram of the human body shown in FIG. 4. At this time, the human-computer interaction device 3 detects the click operation and generates a corresponding operation. The click location information of the user, and then send the click location information to the host 1, the host 1 obtains the user's click location information.
  • Step 204 Identify the part to be inspected.
  • the host 1 After the host 1 obtains the location information selected by the user, the host 1 identifies the part to be inspected based on the location information selected. For example, the user clicks the position of the kidney 55 on the schematic diagram of the human body shown in FIG. 4. After the host 1 obtains the click position information of the click operation, it will recognize the position to be inspected based on the click position information. "kidney”. As another example, when the user clicks on the position of the liver 57 on the schematic diagram of the human body shown in FIG. 4, after the host 1 obtains the click position information of the click operation, it will identify the pending inspection based on the click position information. The site is the "liver".
  • Step 205 Determine the inspection mode.
  • each tissue site can correspond to an applicable examination mode.
  • each tissue site can correspond to an applicable examination mode.
  • its thyroid 51, kidney 55, liver 57 and other tissue sites have their corresponding examination modes. See Table 2:
  • Tissue site Applicable inspection mode thyroid Thyroid pattern kidney Kidney mode liver Liver pattern
  • FIG. 4 also shows only some main tissue parts in the human tissue structure, which is only an example and is not intended to limit the present invention.
  • the simplified human body structure diagram may also include, for example, the abdomen, breast, and arteries. And other organizational structures, which also have their corresponding applicable inspection modes.
  • the user needs to check the kidney, and click on the position of the kidney 55 on the schematic diagram of the human body shown in FIG. 4.
  • the human-computer interaction device 3 generates the click position information according to the click operation and sends it to the host 1. Click the location information to identify the area to be tested as “kidney”, and then determine that the test mode corresponding to "kidney” is "kidney mode” according to Table 2, and then switch the test mode of the ultrasound system to "kidney mode"; when the user When it is necessary to check the thyroid, the position of the thyroid 51 can be clicked on the schematic diagram of the human body shown in FIG. 4, and the host 1 can switch the inspection mode of the ultrasound diagnostic apparatus to "thyroid mode" by the same method. In this way, the user needs to check which tissue part, as long as the part is clicked on the body structure diagram to switch the inspection mode, which is intuitive and convenient.
  • Step 206 Determine the ultrasound probe.
  • the host computer 1 determines the applicable inspection mode, it determines the ultrasound probe to be used that matches the applicable inspection mode among the ultrasound probes currently connected to the ultrasound diagnostic apparatus, and selects the ultrasound probe to be used. At this time, the user can use The ultrasonic probe to be inspected should be inspected.
  • the host 1 may query the ultrasound probe with the highest matching degree with the applicable inspection mode from the probe list, and determine the ultrasound probe with the highest matching degree as the ultrasound probe to be used.
  • the matching degree of each ultrasound probe and the examination mode can be set, and the matching degree ranking of each ultrasound probe and the examination mode can be obtained, and the matching degree ranking is added to the probe list.
  • the linear array probe is the most compatible with the thyroid pattern
  • the convex array probe is the most compatible with the kidney pattern
  • the convex array probe is the most compatible with the liver pattern.
  • the applicable inspection mode determined by the host 1 is the thyroid mode.
  • the host 1 queries from the probe list shown in Table 1 that the ultrasound probe with the highest degree of matching with the thyroid mode is an ultrasound probe with a type identification code of AA (that is, Line array probe), at this time, the host 1 determines the ultrasonic probe whose type identification code is AA as the ultrasonic probe to be used, and selects the line array probe connected to the probe interface 21 to complete the switching of the probe.
  • AA that is, Line array probe
  • the ultrasound diagnostic apparatus when the user needs to perform a thyroid examination, as long as the thyroid 51 is clicked on the human body structure diagram on the human-computer interaction device 3, the ultrasound diagnostic apparatus will automatically switch to the thyroid mode and select the linear array probe.
  • the ultrasound diagnostic apparatus When the user needs to perform a liver examination, as long as he clicks the liver 57 on the human body structure diagram on the human-computer interaction device 3, the ultrasound diagnostic apparatus will automatically switch to the liver mode and gate the convex array probe.
  • users can more familiar and intuitively select the parts to be inspected, and only need to click the parts to be inspected on the schematic diagram of the human body structure to switch between the inspection mode and the ultrasound probe, which is convenient and intuitive. It is easy to select the wrong examination mode or an inappropriate ultrasound probe.
  • the host 1 after the host 1 recognizes the part to be inspected, it can also perform the following steps at the same time:
  • Step 207 Highlight the part to be inspected.
  • the host computer 1 After the host computer 1 identifies the part to be inspected according to the selected position information, the host 1 generates highlight position information corresponding to the part to be inspected, and then sends the highlight position information to the human-computer interaction device 3. At this time, the human-computer interaction device 3 will The human body structure diagram on the display interface highlights the part to be inspected. On the other hand, the host 1 can also send the name of the part to be inspected to the human-computer interaction device 3, and the human-computer interaction device 3 can simultaneously display the name of the part to be inspected.
  • the user when the user needs to perform a liver examination, he clicks on the liver 57 on the schematic diagram of the human body structure on the human-computer interaction device 3. At this time, the color of the liver 57 part will change, and it can also be displayed at a preset position on the display interface.
  • the part to be examined is "liver" to remind the user that the liver is currently selected.
  • the effect can be seen in Fig. 5.
  • the liver 57 in Fig. 5 shows the highlighting of the color in the form of a shadow; then, the ultrasound diagnostic instrument automatically enters Liver mode, and automatically match and select the optimal ultrasound probe (ie convex array probe) from the connected ultrasound probes on the ultrasound system according to the liver mode.
  • the user can use the convex array probe pair in liver mode. Examination of the liver. At the same time, related information of the current examination mode and the gated ultrasound probe can also be displayed on the display interface shown in FIG. 5, for example, “examination mode: liver mode” and “ultrasonic probe: convex array probe” are displayed.
  • the ultrasound diagnostic apparatus can automatically convert The inspection mode is switched to the inspection mode suitable for the part to be inspected, and the optimal ultrasound probe is matched among the ultrasound probes currently connected to the ultrasound diagnostic apparatus according to the applicable inspection mode, and the ultrasound probe is gated to realize the inspection mode.
  • the process of switching between ultrasound and ultrasound probes is relatively simple; at the same time, users can more familiar and intuitively select the parts to be checked by switching between pictures, and it is not easy to choose the wrong examination mode or an inappropriate ultrasound probe. .
  • the ultrasound diagnostic apparatus may also highlight the site to be inspected on the schematic diagram of the human body structure on the display interface, and may also display the name of the site to be inspected at the same time. Prompting the user of the currently selected part to be inspected can enable the user to more intuitively determine whether the correct part to be inspected is selected.
  • the apparatus for switching an ultrasound inspection mode based on the method of the foregoing embodiment includes an acquisition module, an identification module, and an inspection mode determination module; wherein the acquisition module is configured to acquire the click location information output by the human-computer interaction device when the inspection mode needs to be selected, and the point The location selection information is generated based on the user's point-and-click operation performed on the organizational structure view displayed on the human-computer interaction device; the identification module is used to determine the location to be inspected based on the location information; the inspection mode determination module is used to identify the location to be inspected Determine the applicable inspection mode, and switch the inspection mode of the ultrasound system to the applicable inspection mode.
  • the organization structure view may be a view that can directly reflect the organization structure, such as a human anatomy diagram or a human body structure diagram.
  • FIG. 6 a schematic structural diagram of a device for switching an ultrasound examination mode can be seen in FIG. 6, which includes an acquisition module 11, an identification module 12, an examination mode determination module 13, and a probe determination module 14.
  • the acquisition module 11 is used to acquire the information of the ultrasonic probes after detecting that the ultrasonic probe is connected to the probe interface, and add the information of the ultrasonic probes to the probe list; when the inspection mode needs to be selected, the acquisition module 11 acquires the human-computer interaction device The output click position information.
  • the identification module 12 is configured to determine a part to be inspected according to the selected position information acquired by the acquisition module 11.
  • the inspection mode determination module 13 is configured to determine an applicable inspection mode according to the part to be inspected identified by the identification module 12, and switch the inspection mode of the ultrasound diagnostic apparatus to the applicable inspection mode.
  • the probe determination module 14 is configured to determine, when the examination mode determination module 13 determines an applicable examination mode, among the ultrasound probes currently connected to the ultrasound diagnostic apparatus, an ultrasound probe to be used that matches the applicable examination mode, and select the ultrasound to be used Probe.
  • the probe determination module 14 is configured to query the ultrasound probe with the highest degree of matching with the applicable inspection mode from the probe list, and determine the obtained ultrasound probe with the highest degree of matching as the ultrasound probe to be used.
  • FIG. 7 a schematic structural diagram of a device for switching an ultrasound examination mode can be seen in FIG. 7.
  • the device for switching an ultrasound examination mode shown in FIG. 7 It also includes a generating module 15 and a sending module 16.
  • the identification module 12 determines the position to be inspected according to the selected position information obtained by the acquisition module 11
  • the generating module 15 is used to generate the prominent position information corresponding to the position to be inspected
  • the sending module 16 is used to generate the The highlighted position information is sent to the human-machine interaction device, so that the human-machine interaction device highlights the portion to be inspected identified by the recognition module 12 on the body structure diagram on the display interface.
  • the sending module 16 may be further configured to send the name of the part to be inspected identified by the identification module 12 to the human-computer interaction device, so that the human-computer interaction device displays the name of the part to be inspected.
  • the host 1 may first determine the ultrasound probe to be used according to the part to be inspected, and then determine the ultrasound probe based on the to-be-used probe. Examination mode of the ultrasound system.
  • the host 1 is configured to send the visualized organizational structure view to the human-computer interaction device 3 for display, and identify the part to be inspected according to the clicked position information sent by the human-computer interaction device 3, and from the current connection, according to the part
  • the ultrasound probe to be used is determined from the ultrasound probes, and the ultrasound probe to be used is selected; the host 1 determines the applicable inspection mode applicable to the site to be inspected from the inspection modes supported by the ultrasound probe to be used according to the site to be inspected, and Switch the examination mode of the ultrasound system to the applicable examination mode.
  • the host computer 1 receives an instruction for selecting an inspection mode, and responds to the instruction for selecting the inspection mode from the to-be-used
  • the target inspection mode is determined from the inspection modes supported by the ultrasound probe, and then the inspection mode of the ultrasound diagnostic apparatus is switched to the target inspection mode.
  • FIG. 8 shows a flowchart of a method for switching the ultrasound examination mode in another specific embodiment.
  • the method for switching the ultrasound examination mode may include the following specific steps:
  • Steps 301 to 304 are the same as steps 201 to 204 described above.
  • Step 305 Determine the ultrasound probe.
  • the host computer 1 After the host computer 1 identifies the site to be inspected according to the selected position information, the host 1 determines the ultrasound probe to be used from the ultrasound probes currently connected to the ultrasound diagnostic apparatus according to the site to be inspected, and selects the ultrasound probe to be used.
  • the ultrasound probe currently connected to the host 1 is a convex array probe and a linear array probe shown in Table 1.
  • the host 1 recognizes that the part to be detected is a kidney part according to the selected position information. At this time, the host 1 uses a probe suitable for the kidney part. Type of matching degree, it can be determined that the convex array probe is the ultrasonic probe to be used with the highest matching degree, the host 1 determines the convex array probe as the ultrasonic probe to be used, and selects the convex array probe.
  • the user may be vacant to prompt the user that no probe is available. The method of prompting a vacancy is not limited here.
  • Step 306 Determine the inspection mode.
  • the host computer 1 After the host computer 1 determines the ultrasound probe to be used, the host computer 1 can receive a selection command of the inspection mode input by the user on the human-computer interaction device. Determine the target inspection mode in the inspection mode, and then switch the inspection mode of the ultrasound system to the target inspection mode.
  • the host site identified by the host 1 is a kidney site
  • the ultrasound probe to be used is a convex array probe according to the kidney site.
  • the inspection modes supported by the convex array probe include, for example, a kidney inspection mode and a liver inspection mode.
  • the selection menu of the kidney examination mode and the liver examination mode may be displayed on the display interface of the human-computer interaction device 3, and the user may select the kidney examination mode according to the part of the kidney to be examined.
  • the host 1 receives a selection instruction for the examination mode.
  • a kidney examination mode is determined from the kidney examination mode and the liver examination mode, and the examination mode of the ultrasound diagnostic apparatus is switched to the kidney examination mode.
  • the host 1 may also determine an applicable inspection mode applicable to the site to be inspected from the determined inspection modes supported by the ultrasound probe to be used according to the site to be inspected, and then Switch the examination mode of the ultrasound system to the applicable examination mode. For example, the host 1 recognizes that the part to be tested is the kidney. If the currently connected ultrasound probe includes a convex array probe and a linear array probe, the host 1 determines that the convex array probe has a high matching degree according to the matching degree of the probe type applicable to the kidney part. An ultrasound probe is to be used, and the inspection modes supported by the convex array probe include, for example, a kidney examination mode and a liver examination mode. At this time, the host 1 determines a kidney examination mode applicable to the kidney part from the kidney examination mode and the liver examination mode. And the examination mode of the ultrasound diagnostic apparatus is switched to the kidney examination mode.
  • the host 1 after the host 1 recognizes the site to be inspected, it can also highlight the site to be inspected.
  • the specific process is the same as that of step 207.
  • the ultrasound diagnostic apparatus can automatically select and apply The ultrasound probe at the site to be inspected, and the inspection mode of the ultrasound diagnostic apparatus is determined from the inspection modes supported by the ultrasound probe and switched to the inspection mode, so that the inspection mode and the ultrasound probe are switched, and the switching process is relatively simple. .
  • the form of pictures users can more familiar and intuitively select the parts to be inspected, and it is not easy to select the wrong inspection mode or an inappropriate ultrasound probe.
  • the user can more intuitively determine whether the correct site to be inspected has been selected.
  • the apparatus for switching the ultrasound examination mode includes an acquisition module, an identification module, and a probe determination module; wherein the acquisition module is used to acquire the click position information output by the human-computer interaction device, and the click position information is based on the user's Generated by the click operation performed on the organizational structure view displayed on the machine interactive device; the identification module is used to identify the part to be inspected according to the clicked position information; the probe determination module is used to connect the current to be inspected from the currently identified part according to the identification module Of the ultrasound probe to be used, and gating the ultrasound probe to be used
  • FIG. 9 a schematic structural diagram of a device for switching an ultrasound examination mode can be seen in FIG. 9, which includes an acquisition module 11, an identification module 12, an examination mode determination module 13, and a probe determination module 14.
  • the acquisition module 11 is configured to acquire the information of the ultrasonic probes after adding the ultrasonic probes to the probe interface, and add the information of the ultrasonic probes to the probe list; when performing the ultrasound inspection, the acquisition module 11 acquires the output of the human-computer interaction device Click location information.
  • the identification module 12 is configured to determine a part to be inspected according to the selected position information acquired by the acquisition module 11.
  • the probe determination module 14 is configured to determine the to-be-used ultrasound probe from the currently-connected ultrasound probes of the ultrasound diagnostic apparatus after the recognition module 12 recognizes the to-be-checked site, and select the to-be-used ultrasound probe.
  • the inspection mode determination module 13 is configured to determine an applicable inspection mode applicable to the site to be inspected from the inspection modes supported by the to-be-used ultrasound probe determined by the probe determination module 14 according to the site to be inspected identified by the identification module 12. The test mode of the system is switched to the applicable test mode.
  • FIG. 10 a schematic structural diagram of a device for switching an ultrasound examination mode can be seen in FIG. 10. Unlike the device for switching an ultrasound examination mode shown in FIG. 9, the device for switching an ultrasound examination mode shown in FIG. 10 is different.
  • a receiving module 17 is also included. After the probe determination module 14 determines the to-be-used ultrasound probe from the ultrasound probes currently connected to the ultrasound diagnostic apparatus and strobes the to-be-used ultrasound probe, the receiving module 17 is configured to receive an instruction for selecting an inspection mode, and the inspection mode determination module 13 The instruction for selecting the inspection mode determines a target inspection mode from the inspection modes supported by the ultrasound probe to be used determined by the probe determination module 14, and then switches the inspection mode of the ultrasound diagnostic apparatus to the target inspection mode.
  • the program may be stored in a computer-readable storage medium.
  • the storage medium may include: a read-only memory, a random access memory, a magnetic disk, an optical disk, a hard disk, etc.
  • the computer executes the program to realize the above functions.
  • the program is stored in the memory of the device, and when the processor executes the program in the memory, all or part of the functions described above can be implemented.
  • the program may also be stored in a storage medium such as a server, another computer, a magnetic disk, an optical disk, a flash disk, or a mobile hard disk, and saved by downloading or copying.
  • a storage medium such as a server, another computer, a magnetic disk, an optical disk, a flash disk, or a mobile hard disk, and saved by downloading or copying.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声诊断仪及超声检查模式的切换方法,超声诊断仪包括主机(1)、分别与主机连接的多个探头接口和人机交互装置(3)。在需要选择检查模式时,主机(1)将可视化的组织结构视图显示在人机交互装置(3)上;人机交互装置(3)检测在该组织结构视图上的点选操作,输出点选位置信息给主机(1);主机(1)根据该点选位置信息识别出待检部位并根据该待检部位确定超声诊断仪的检查模式和/或超声探头,实现检查模式和/或超声探头的切换。由于组织结构视图能够直观地显示出待检部位,用户只需在组织结构视图上点选所需检查的部位,超声诊断仪便可实现检查模式和/或超声探头的切换,使得检查模式和超声探头的切换更直观、方便。

Description

超声诊断仪及超声检查模式的切换方法 技术领域
本发明涉及超声影像设备技术领域,具体涉及一种超声诊断仪及超声检查模式的切换方法。
背景技术
超声诊断仪作为一种超声影像设备,在医疗中得到了广泛的应用,其利用超声影像技术,能够通过检测人体不同组织或病理组织与正常组织之间的声学差异来了解人体生理或组织结构的数据和形态,以对疾病做出诊断。超声诊断仪工作时,通过探头向人体被检查部位发送超声波信号,超声波经人体被检查部位反射后的超声回波反馈回探头,后续再根据超声回波所携带的有关人体信息,加以检测、放大等处理,最后以图像等预设的方式将该信息显示出来,为医生提供诊断依据。
人体各组织部位的器官,比如头颈部、胸部、腹部等部位的器官,均有不同的组织结构和形态,因此,针对不同部位的器官配置有不同的探头,例如,对肝脏、肾脏等腹部器官的检查一般使用凸阵探头,对乳腺、动脉等的检查一般使用线阵探头。鉴于此,医生在每次检查之前都需要根据被检查的部位或器官选择对应的探头和对应的检查模式。目前,超声诊断仪上大都是以文字和表格的方式列出所有类型的探头和检查模式,医生在检查之前需要先从探头列表中选择出需要的探头,然后从检查模式列表中选择出需要的检查模式,这样,如果医生要检查不同的部位,就需要多次操作探头列表和检查模式列表,以将探头切换至所需的探头并将检查模式切换至所需的检查模式,对医生而言,探头和检查模式的切换并不直观,操作比较繁琐且耗时较长。
发明内容
本发明主要提供一种超声诊断仪及超声检查模式的切换方法,以直观地切换超声诊断仪的检查模式和超声探头。
根据第一方面,一种实施例中提供一种超声诊断仪,包括:主机、 多个探头接口和人机交互装置;
该人机交互装置与主机连接,用于显示组织结构视图,该人机交互装置检测在显示界面上对该组织结构视图的点选操作,输出点选位置信息,并将该点选位置信息发送给主机;
该主机用于在需要选择检查模式时将可视化的组织结构视图发送到人机交互装置进行显示,并根据人机交互装置发送的点选位置信息识别出待检部位,根据待检部位确定适用检查模式,将超声诊断仪的检查模式切换至该适用检查模式;
该多个探头接口分别与主机连接,用于将多个超声探头连接到主机。
进一步的,该主机还用于在确定出适用检查模式后,在超声诊断仪当前连接的超声探头中确定出与该适用检查模式匹配的待使用超声探头,并选通该待使用超声探头。
根据第二方面,一种实施例中提供一种超声诊断仪,包括:主机、多个探头接口和人机交互装置;
该多个探头接口分别与主机连接,用于将多个超声探头连接到主机;
该人机交互装置与主机连接,用于显示组织结构视图,该人机交互装置检测在显示界面上对该组织结构视图的点选操作,输出点选位置信息,并将该点选位置信息发送给主机;
该主机用于将可视化的组织结构视图发送到人机交互装置进行显示,并根据人机交互装置发送的点选位置信息识别出待检部位,根据待检部位从当前连接的超声探头中确定待使用超声探头,并选通该待使用超声探头。
根据第三方面,一种实施例中提供一种超声检查模式的切换方法,包括:
在需要选择检查模式时,获取人机交互装置输出的点选位置信息,该点选位置信息基于用户在人机交互装置上显示的组织结构视图上进行的点选操作而产生;
根据点选位置信息识别出待检部位;
根据该待检部位确定适用检查模式,并将超声诊断仪的检查模式切换至该适用检查模式。
进一步的,在根据该待检部位确定出适用检查模式之后,该方法还包括:
在超声诊断仪当前连接的超声探头中确定出与该适用检查模式匹配的待使用超声探头,并选通该待使用超声探头。
根据第四方面,一种实施例中提供一种超声探头的切换方法,包括:
获取人机交互装置输出的点选位置信息,该点选位置信息基于用户在人机交互装置上显示的组织结构视图上进行的点选操作而产生;
根据点选位置信息识别出待检部位;
根据该待检部位从当前连接的超声探头中确定待使用超声探头,并选通该待使用超声探头。
进一步的,在确定待使用超声探头后,该方法还包括:
接收检查模式的选择指令;
响应于该检查模式的选择指令,从该待使用超声探头所支持的检查模式中确定目标检查模式;
将超声诊断仪的检查模式切换至该目标检查模式。
或者,在确定待使用超声探头后,该方法还包括:
根据该待检部位,从待使用超声探头所支持的检查模式中确定适用该待检部位的适用检查模式;
将超声诊断仪的检查模式切换至该适用检查模式。
依据上述实施例的超声诊断仪及超声检查模式的切换方法,可在显示界面上显示可视化的组织结构视图,然后根据在该组织结构视图上的点选操作实现检查模式和/或超声探头的切换。由于组织结构视图能够直观地显示出待检部位,用户只需在组织结构视图上点选所需检查的部位,超声诊断仪便可实现检查模式和/或超声探头的切换,使得检查模式和/或超声探头的切换更直观、方便。
附图说明
图1为本发明实施例的超声诊断仪的结构示意图;
图2为本发明一种实施例的超声检查模式的切换方法的流程图;
图3为本发明一种具体实施例的超声检查模式的切换方法的流程图;
图4为本发明一种具体实施例的人体结构简图的示意图;
图5为本发明一种具体实施例的突出显示待检部位的示意图;
图6为本发明一种具体实施例的超声检查模式的切换装置的结构示 意图;
图7为本发明另一种具体实施例的超声检查模式的切换装置的结构示意图;
图8为本发明另一种具体实施例的超声检查模式的切换方法的流程图;
图9为本发明又一种具体实施例的超声检查模式的切换装置的结构示意图;
图10为本发明再一种具体实施例的超声检查模式的切换装置的结构示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
在本发明实施例中,在显示界面上显示组织结构视图,根据用户在该组织结构视图上的点选操作自动识别出待检部位,进而根据该待检部位确定出超声诊断仪的检查模式和/或待使用的超声探头,不需要用户手动输入或从表格选择待使用的检查模式和/或超声探头。
本发明的这种方案,通过图片很直观地将组织结构视图呈现给用户(例如医生),用户只需要在图片上选择需要检查的组织部位即可,超声诊断仪可自动匹配出合适的检查模式和/或超声探头。
请参见图1,图1为本发明实施例提供的一种超声诊断仪的结构示意图,该超声诊断仪包括主机1、多个探头接口(图1中所示的N个探头接口21~2N,N为大于等于2的整数)和人机交互装置3。
在一种实施例中,人机交互装置3与主机1连接,用于显示组织结构视图,人机交互装置3检测用户在其显示界面上对组织结构视图的点选操作,输出点选位置信息,并将该点选位置信息发送给主机1;主机1用于在需要选择检查模式时将可视化的组织结构视图发送到人机交互装置3进行显示,并根据人机交互装置3发送的点选位置信息识别出待检部位,根据待检部位确定适用检查模式,将超声诊断仪的检查模式切换至该适用检查模式;多个探头接口分别与主机1连接,用于将多个超声探头连接到主机1。
主机1可包括发射电路、发射/接收选择开关、接收电路、波束合成电路和处理器。发射电路可以激励探头向目标区域发射超声波。接收电 路可以通过探头接收从目标区域返回的超声回波,从而获得超声回波信号/数据。该超声回波信号/数据经过波束合成电路进行波束合成处理后,送入处理器。处理器对该超声回波信号/数据进行处理,以获得目标对象的超声图像。处理器获得的超声图像可以存储于存储器中,这些超声图像可以在人机交互装置3的界面上显示。
当有超声探头连接到探头接口上时,主机1获取这些超声探头的信息,并将得到的超声探头的信息添加至探头列表。主机1在确定出适用检查模式后,会在超声诊断仪当前连接的超声探头中确定出与该适用检查模式匹配的待使用超声探头,并选通该待使用超声探头;具体的,主机1在确定出适用检查模式后,会从探头列表查询与该适用检查模式匹配度最高的超声探头,并将该匹配度最高的超声探头确定为待使用超声探头。
一个实施例中,当主机1识别出待检部位时,人机交互装置3还用于对主机1识别出的该待检部位进行突出显示。在另一实施例中,人机交互装置3在对主机1识别出的待检部位进行突出显示时,还用于显示该待检部位的名称。
基于图1所示的超声诊断仪,本申请实施例提供一种超声检查模式的切换方法,其流程图参见图2,该超声检查模式的切换方法可以包括如下步骤:
步骤101:显示组织结构视图。
在需要选择检查模式时,主机1将可视化的组织结构视图发送到人机交互装置3,人机交互装置3在其显示界面上显示该组织结构视图。该组织结构视图可以是预置的,也可以是由主机1的处理器生成的。
步骤102:获取点选位置信息。
当人机交互装置3检测到用户在显示界面上的组织结构视图上的点选操作时,产生对应的点选位置信息,然后将该点选位置信息发送给主机1,此时,主机1获取到该点选位置信息。
步骤103:识别待检部位。
主机1获取到人机交互装置3输出的点选位置信息后,根据该点选位置信息识别出待检部位。
步骤104:确定适用检查模式。
主机1识别出待检部位后,根据该待检部位确定适用检查模式,并 将超声诊断仪的检查模式切换至该适用检查模式。其中,每个检查模式可以预置相应的超声成像参数,该超声成像参数包括但不限于成像深度、频率、增益和亮度等等。待激活超声探头后,可以按检查模式所设置的超声成像参数进行超声扫描检查。
步骤105:确定匹配的待使用超声探头。
主机1确定出适用检查模式后,在超声诊断仪当前连接的超声探头中确定出与该适用检查模式匹配的待使用超声探头,并选通该待使用超声探头。待使用超声探头的确定也可以根据待检部位来确定,在确定检查模式后,可以确定出当前连接的支持该检查模式的超声探头,根据待检部位从支持该检查模式的超声探头中选择适用该待检部位的超声探头。例如在确定肾脏检查模式后,如果当前连接的支持肾脏检查模式的超声探头包括凸阵探头和线阵探头,可以选择适用凸阵探头;如果没有凸阵探头,可选择适用线阵探头。如果根据待检部位无法确定出适用的检查模式和超声探头,可采用空缺的方式提示用户无可用探头。提示空缺的方式此处不做限定。
一个实施例中,步骤104中,主机1确定适用检查模式的过程还可包括:根据待检部位从当前连接的超声探头中确定待使用超声探头;从待使用超声探头所支持的检查模式中确定适用待检部位的适用检查模式,并将超声诊断仪的检查模式切换至适用检查模式。例如,确定待检部位为肾脏部位,如果当前连接的超声探头包括凸阵探头和线阵探头,根据肾脏部位适用的探头类型的匹配度,可确定凸阵探头为高匹配度的待使用超声探头,从该凸阵探头所支持的检查模式中确定适用肾脏部位的肾脏检查模式,并将超声诊断仪的检查模式切换至该肾脏检查模式。如果当前没有适用该肾脏部位的超声探头,可采用空缺的方式提示用户无可用探头。提示空缺的方式此处不做限定。
这样,用户可以通过人机交互装置上显示的组织结构视图直观地观察到各组织部位,只要在该组织结构视图上点选需要检查的组织部位(即待检部位),主机便可直接确定出与待检部位对应的适用检查模式,然后将超声诊断仪的检查模式直接切换至该适用检查模式,同时可以根据确定出的适用检查模式直接从超声诊断仪当前连接的超声探头中选择出与该适用检查模式匹配的超声探头并选通,不再需要用户多次操作探头列表和检查模式列表,以将超声诊断仪的超声探头切换至所需的超声探头 并将检查模式切换至所需的检查模式,检查模式的切换和超声探头的切换更加地直观和方便。
在本发明实施例中,处理器生成的组织结构视图可以是人体解剖图或是人体结构简图等能够直观反映组织结构的视图。下面以组织结构视图为人体结构简图为例来进行详细的说明。
图3示出了一种具体的实施例中超声检查模式的切换方法的流程图,该超声检查模式的切换方法可以包括如下的具体步骤:
步骤201:获取超声探头的信息。
主机1上连接有多个探头接口,当有超声探头连接到探头接口上时,主机1会获取这些连接到探头接口的超声探头的信息,并将获取到的超声探头的信息添加到探头列表中。
例如,在图1所示的超声诊断仪的探头接口21上连接一线阵探头,在探头接口22上连接一凸阵探头,这时,主机1会获取这两个探头接口上连接的超声探头的信息,比如可以获取这两个超声探头的类型识别码,然后将这两个超声探头的类型识别码添加到探头列表中,探头列表比如可以如表1所示:
表1
超声探头 探头接口 类型识别码
线阵探头 21 AA
凸阵探头 22 BB
步骤202:显示人体结构简图。
在需要选择检查模式时,主机1将其处理器生成的可视化的人体结构简图发送给人机交互装置3,由人机交互装置3在其显示界面上显示该人体结构简图,可参见图4,其显示出了人体的主要组织部位,主要包括甲状腺51、肺部52、心脏53、胃54、肾脏55、肠道56和肝脏57等。
步骤203:获取点选位置信息。
人机交互装置3的显示界面上显示人体结构简图之后,用户可以在该人体结构简图上通过点选操作选择所需要检查的部位。比如,用户需要对患者的肾脏进行检查,则可以在图4所示的人体结构简图上点选肾脏55所在的位置,这时,人机交互装置3检测到该点选操作,并生成对应的点选位置信息,然后将该点选位置信息发送给主机1,主机1获取 到用户的点选位置信息。
步骤204:识别待检部位。
主机1获取到用户的点选位置信息之后,根据该点选位置信息识别出待检部位。比如,用户在图4所示的人体结构简图上点选肾脏55所在的位置,主机1获取到该点选操作的点选位置信息后,会根据该点选位置信息识别出待检部位为“肾脏”。又如,当用户在图4所示的人体结构简图上点选肝脏57所在的位置,主机1获取到该点选操作的点选位置信息后,会根据该点选位置信息识别出待检部位为“肝脏”。
步骤205:确定检查模式。
主机1根据点选位置信息识别出待检部位之后,根据该待检部位确定出适用检查模式,并将超声诊断仪的检查模式切换为该适用检查模式。实际应用中,对于每一个组织部位都可对应一适用检查模式,例如对于图4所示的人体结构简图,其甲状腺51、肾脏55、肝脏57等组织部位均有其对应的适用检查模式,可参见表2:
表2
组织部位 适用检查模式
甲状腺 甲状腺模式
肾脏 肾脏模式
肝脏 肝脏模式
需要说明的是,这里仅以人体结构简图中的部分组织结构来举例说明,图4所示人体结构简图中的肺部52、心脏53、胃54、肠道56等也有其各自对应的适用检查模式。图4也仅示出了人体组织结构中的一些主要组织部位,其仅为举例说明,并不用于限定本发明,在实际应用中,人体结构简图中也还可包括如腹部、乳腺、动脉等组织结构,其同样具有各自对应的适用检查模式。
例如,用户需要检查肾脏,在图4所示的人体结构简图上点选肾脏55所在的位置,人机交互装置3根据该点选操作生成点选位置信息发送给主机1,主机1根据该点选位置信息识别出待检部位为“肾脏”,接着根据表2确定出“肾脏”对应的检查模式为“肾脏模式”,然后将超声诊断仪的检查模式切换为“肾脏模式”;当用户需要检查甲状腺时,可在图4所示的人体结构简图上点选甲状腺51所在的位置,主机1可通过同样的方法将超声诊断仪的检查模式切换为“甲状腺模式”。这样,用户需要 检查哪个组织部位,只要在人体结构简图上点选该部位便可实现检查模式的切换,直观且方便。
实际应用中,当用户由于误操作等原因没有点选到人体结构简图上各组织部位所在的位置,或者说用户点选的位置无对应的检查模式时,可以在显示界面上显示出无对应检查模式的提示信息。
步骤206:确定超声探头。
主机1在确定出适用检查模式后,在超声诊断仪当前连接的超声探头中确定出与该适用检查模式匹配的待使用超声探头,并选通该待使用超声探头,这时,用户便可使用该待使用超声探头对待检部位进行检查。
具体的,主机1在确定出适用检查模式后,可以从探头列表查询与该适用检查模式匹配度最高的超声探头,并将匹配度最高的超声探头确定为待使用超声探头。实际应用中,对于每一检查模式,可以设置各超声探头分别与该检查模式的匹配度,得到各超声探头与该检查模式的匹配度排序,将该匹配度排序加入到探头列表中。一般的,与甲状腺模式匹配度最高的是线阵探头,与肾脏模式匹配度最高的是凸阵探头,与肝脏模式匹配度最高的也是凸阵探头。
例如,主机1确定出的适用检查模式为甲状腺模式,这时,主机1从表1所示的探头列表中查询出与甲状腺模式匹配度最高的超声探头是类型识别码为AA的超声探头(即线阵探头),此时,主机1会将类型识别码为AA的超声探头确定为待使用超声探头,并选通探头接口21上连接的线阵探头,完成探头的切换。
如此,当用户需要进行甲状腺检查时,只要在人机交互装置3上的人体结构简图上点选甲状腺51,超声诊断仪便会自动切换到甲状腺模式并选通线阵探头。当用户需要进行肝脏检查时,只要在人机交互装置3上的人体结构简图上点选肝脏57,超声诊断仪便会自动切换到肝脏模式并选通凸阵探头。这样,用户可以更熟悉且更直观的选择需要检查的部位,且只需在人体结构简图上点选需要检查的部位便可实现检查模式的切换和超声探头的切换,方便而直观,而且不容易选择到错误的检查模式或不合适的超声探头。
一个实施例中,主机1在识别出待检部位之后,还可同时执行以下的步骤:
步骤207:突出显示待检部位。
主机1在根据点选位置信息识别出待检部位之后,生成该待检部位对应的突显位置信息,然后将该突显位置信息发送给人机交互装置3,这时,人机交互装置3会在其显示界面上的人体结构简图上突出显示该待检部位。另一方面,主机1还可将该待检部位的名称也发送给人机交互装置3,人机交互装置3可同时显示该待检部位的名称。
例如,用户需要进行肝脏检查时,在人机交互装置3上的人体结构简图上点选肝脏57,这时,肝脏57部位的颜色会改变,同时也可在显示界面的预设位置处显示待检部位为“肝脏”的字样,以此来提示用户目前所选择的是肝脏,其效果可参见图5,图5中肝脏57以阴影的形式表示颜色的突显;然后,超声诊断仪自动进入肝脏模式,并根据肝脏模式从超声诊断仪上已连接的超声探头中自动匹配最优的超声探头(即凸阵探头)并选通,这时,用户便可以在肝脏模式下使用凸阵探头对肝脏进行检查。同时,也可将当前的检查模式和选通的超声探头的相关信息显示在图5所示的显示界面上,比如显示出“检查模式:肝脏模式”和“超声探头:凸阵探头”。
本发明实施例提供的超声检查模式的切换方法,在需要选择检查模式时,用户只需要在人体结构简图上点选需要检查的部位(待检部位),超声诊断仪便可自动地将其检查模式切换至适用于该待检部位的检查模式,并进一步根据该适用检查模式在超声诊断仪当前连接的超声探头中匹配出最优的超声探头,并选通该超声探头,从而实现检查模式和超声探头的切换,其切换过程比较简单;同时,通过图片的形式进行切换,用户能够更熟悉、更直观地选择需要检查的部位,且不容易选择到错误的检查模式或不合适的超声探头。进一步的,在点选待检部位之后,超声诊断仪也可以在显示界面上的人体结构简图上突出显示该待检部位,还可以将该待检部位的名称也同时显示出来,以此来提示用户目前所选的待检部位是什么,能够使用户更加直观地判断出是否选择到了正确的待检部位。
基于上述实施例方法的超声检查模式的切换装置包括获取模块、识别模块和检查模式确定模块;其中,获取模块用于在需要选择检查模式时获取人机交互装置输出的点选位置信息,该点选位置信息基于用户在人机交互装置上显示的组织结构视图上进行的点选操作而产生;识别模块用于根据点选位置信息确定出待检部位;检查模式确定模块用于根据 待检部位确定适用检查模式,并将超声诊断仪的检查模式切换至该适用检查模式。其中的组织结构视图可以是人体解剖图或人体结构简图等能够直观反映组织结构的视图。
在一种具体的实施例中,超声检查模式的切换装置的结构示意图可参见图6,其包括获取模块11、识别模块12、检查模式确定模块13和探头确定模块14。获取模块11用于在检测到探头接口上连接超声探头后,获取这些超声探头的信息,并将这些超声探头的信息添加至探头列表;在需要选择检查模式时,获取模块11获取人机交互装置输出的点选位置信息。识别模块12用于根据获取模块11获取到的点选位置信息确定出待检部位。检查模式确定模块13用于根据识别模块12识别出的待检部位确定适用检查模式,并将超声诊断仪的检查模式切换至该适用检查模式。探头确定模块14用于在检查模式确定模块13确定出适用检查模式时,在超声诊断仪当前连接的超声探头中确定出与该适用检查模式匹配的待使用超声探头,并选通该待使用超声探头。
具体的,探头确定模块14用于从探头列表查询与该适用检查模式匹配度最高的超声探头,并将得到的匹配度最高的超声探头确定为待使用超声探头。
在另一具体的实施例中,超声检查模式的切换装置的结构示意图可参见图7,与图6所示的超声检查模式的切换装置不同的是,图7所示的超声检查模式的切换装置还包括生成模块15和发送模块16。在识别模块12根据获取模块11获取到的点选位置信息确定出待检部位之后,生成模块15用于生成该待检部位对应的突显位置信息,发送模块16则用于将生成模块15生成的突显位置信息发送给人机交互装置,以使人机交互装置在显示界面上的人体结构图上突出显示识别模块12识别出的待检部位。
一个实施例中,发送模块16还可用于将识别模块12识别出的待检部位的名称发送给人机交互装置,以使人机交互装置显示该待检部位的名称。
基于图1所示的超声诊断仪,与上述实施方式不同的是,在另一种实施例中,主机1可以根据待检部位先确定出待使用超声探头,然后再根据该待使用探头确定出超声诊断仪的检查模式。具体的,主机1用于将可视化的组织结构视图发送到人机交互装置3进行显示,并根据人机 交互装置3发送的点选位置信息识别出待检部位,根据该待检部位从当前连接的超声探头中确定待使用超声探头,并选通该待使用超声探头;主机1根据该待检部位,从待使用超声探头所支持的检查模式中确定适用该待检部位的适用检查模式,并将超声诊断仪的检查模式切换至该适用检查模式。或者,主机1在根据待检部位从当前连接的超声探头中确定待使用超声探头并选通该待使用超声探头后,接收检查模式的选择指令,响应于该检查模式的选择指令,从待使用超声探头所支持的检查模式中确定目标检查模式,然后将超声诊断仪的检查模式切换至该目标检查模式。
基于此,图8示出了另一种具体的实施例中超声检查模式的切换方法的流程图,该超声检查模式的切换方法可以包括如下的具体步骤:
步骤301~步骤304与上述步骤201~步骤204相同。
步骤305:确定超声探头。
主机1根据点选位置信息识别出待检部位之后,根据该待检部位从超声诊断仪当前连接的超声探头中确定待使用超声探头,并选通该待使用超声探头。
例如,主机1当前连接的超声探头为表1所示的凸阵探头和线阵探头,主机1根据点选位置信息识别出待检部位为肾脏部位,这时,主机1根据肾脏部位适用的探头类型的匹配度,可确定凸阵探头为最高匹配度的待使用超声探头,则主机1将该凸阵探头确定为待使用超声探头,并选通该凸阵探头。实际应用中,如果主机1当前连接的超声探头中没有适用该肾脏部位的超声探头,可采用空缺的方式提示用户无可用探头。提示空缺的方式此处不做限定。
步骤306:确定检查模式。
主机1在确定出待使用超声探头后,可以接收用户在人机交互装置上输入的检查模式的选择指令,主机1响应于该检查模式的选择指令,从确定出的待使用超声探头所支持的检查模式中确定目标检查模式,然后将超声诊断仪的检查模式切换至该目标检查模式。
例如,主机1识别出的待检部位为肾脏部位,根据肾脏部位确定出待使用超声探头为凸阵探头,该凸阵探头所支持的检查模式比如包括肾脏检查模式和肝脏检查模式,这时,可以在人机交互装置3的显示界面上显示肾脏检查模式和肝脏检查模式的选择菜单,用户可以根据待检的 肾脏部位选择肾脏检查模式,此时,主机1接收到该检查模式的选择指令,然后响应于该指令,从肾脏检查模式和肝脏检查模式中确定出肾脏检查模式,并将超声诊断仪的检查模式切换至该肾脏检查模式。
一个实施例中,主机1在确定出待使用超声探头后,也可以根据该待检部位,从确定出的待使用超声探头所支持的检查模式中确定适用该待检部位的适用检查模式,然后将超声诊断仪的检查模式切换至该适用检查模式。比如,主机1识别出待检部位为肾脏部位,如果当前连接的超声探头包括凸阵探头和线阵探头,主机1会根据肾脏部位适用的探头类型的匹配度确定出凸阵探头为高匹配度的待使用超声探头,而该凸阵探头所支持的检查模式比如包括肾脏检查模式和肝脏检查模式,这时,主机1会从肾脏检查模式和肝脏检查模式中确定适用肾脏部位的肾脏检查模式,并将超声诊断仪的检查模式切换至该肾脏检查模式。
一个实施例中,主机1在识别出待检部位之后,同样还可以突出显示待检部位,其具体过程与步骤207相同。
本实施例提供的超声检查模式的切换方法,在需要选择检查模式时,用户只需要在人体结构简图上点选需要检查的部位,即待检部位,超声诊断仪便可自动地选通适用于该待检部位的超声探头,并从该超声探头所支持的检查模式中确定出超声诊断仪的检查模式并切换至该检查模式,从而实现检查模式和超声探头的切换,其切换过程比较简单。通过图片的形式进行切换,用户能够更熟悉、更直观地选择需要检查的部位,且不容易选择到错误的检查模式或不合适的超声探头。通过将待检部位突出显示,能够使用户更加直观地判断出是否选择到了正确的待检部位。
依据该实施例方法的超声检查模式的切换装置包括获取模块、识别模块和探头确定模块;其中,获取模块用于获取人机交互装置输出的点选位置信息,该点选位置信息基于用户在人机交互装置上显示的组织结构视图上进行的点选操作而产生;识别模块用于根据点选位置信息识别出待检部位;探头确定模块用于根据识别模块识别出的待检部位从当前连接的超声探头中确定待使用超声探头,并选通该待使用超声探头
在一种具体的实施例中,超声检查模式的切换装置的结构示意图可参见图9,其包括获取模块11、识别模块12、检查模式确定模块13和探头确定模块14。获取模块11用于在检测到探头接口上连接超声探头后,获取这些超声探头的信息,并将这些超声探头的信息添加至探头列 表;在进行超声检查时,获取模块11获取人机交互装置输出的点选位置信息。识别模块12用于根据获取模块11获取到的点选位置信息确定出待检部位。探头确定模块14用于在识别模块12识别出待检部位后,从超声诊断仪当前连接的超声探头中确定待使用超声探头,并选通该待使用超声探头。检查模式确定模块13用于根据识别模块12识别出的待检部位,从探头确定模块14确定出的待使用超声探头所支持的检查模式中确定适用该待检部位的适用检查模式,并将超声诊断仪的检查模式切换至该适用检查模式。
在另一具体的实施例中,超声检查模式的切换装置的结构示意图可参见图10,与图9所示的超声检查模式的切换装置不同的是,图10所示的超声检查模式的切换装置还包括接收模块17。在探头确定模块14从超声诊断仪当前连接的超声探头中确定待使用超声探头并选通该待使用超声探头之后,接收模块17用于接收检查模式的选择指令,检查模式确定模块13则响应于该检查模式的选择指令,从探头确定模块14确定出的待使用超声探头所支持的检查模式中确定目标检查模式,然后将超声诊断仪的检查模式切换至该目标检查模式。
本领域技术人员可以理解,上述实施方式中各种方法的全部或部分功能可以通过硬件的方式实现,也可以通过计算机程序的方式实现。当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器、随机存储器、磁盘、光盘、硬盘等,通过计算机执行该程序以实现上述功能。例如,将程序存储在设备的存储器中,当通过处理器执行存储器中程序,即可实现上述全部或部分功能。另外,当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序也可以存储在服务器、另一计算机、磁盘、光盘、闪存盘或移动硬盘等存储介质中,通过下载或复制保存到本地设备的存储器中,或对本地设备的系统进行版本更新,当通过处理器执行存储器中的程序时,即可实现上述实施方式中全部或部分功能。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本领域的一般技术人员,依据本发明的思想,可以对上述具体实施方式进行变化。

Claims (22)

  1. 一种超声诊断仪,其特征在于,包括:主机、多个探头接口和人机交互装置;
    所述人机交互装置与主机连接,用于显示组织结构视图,所述人机交互装置检测在显示界面上对所述组织结构视图的点选操作,输出点选位置信息,并将所述点选位置信息发送给主机;
    所述主机用于在需要选择检查模式时将可视化的组织结构视图发送到人机交互装置进行显示,并根据人机交互装置发送的点选位置信息识别出待检部位,根据待检部位确定适用检查模式,将超声诊断仪的检查模式切换至所述适用检查模式;
    所述多个探头接口分别与主机连接,用于将多个超声探头连接到主机。
  2. 如权利要求1所述的超声诊断仪,其特征在于,所述主机还用于在确定出适用检查模式后,在超声诊断仪当前连接的超声探头中确定出与所述适用检查模式匹配的待使用超声探头,并选通所述待使用超声探头。
  3. 如权利要求1所述的超声诊断仪,其特征在于,所述主机用于根据待检部位确定适用检查模式,包括:
    所述主机用于,根据所述待检部位从当前连接的超声探头中确定待使用超声探头,并选通所述待使用超声探头;
    根据所述待检部位,从所述待使用超声探头所支持的检查模式中确定适用所述待检部位的适用检查模式,并将超声诊断仪的检查模式切换至所述适用检查模式。
  4. 如权利要求2所述的超声诊断仪,其特征在于,所述主机在检测到探头接口上连接超声探头后,获取所述超声探头的信息,并将所述超声探头的信息添加至探头列表;在确定出适用检查模式后,所述主机从探头列表查询与所述适用检查模式匹配度最高的超声探头,并将所述匹配度最高的超声探头确定为待使用超声探头。
  5. 如权利要求1所述的超声诊断仪,其特征在于,所述人机交互装置还用于对主机识别出的待检部位进行突出显示。
  6. 如权利要求5所述的超声诊断仪,其特征在于,所述人机交互装置还用于显示所述待检部位的名称。
  7. 如权利要求1至6中任一项所述的超声诊断仪,其特征在于,所述组织结构视图为人体解剖图或人体结构简图。
  8. 一种超声诊断仪,其特征在于,包括:主机、多个探头接口和人机交互装置;
    所述多个探头接口分别与主机连接,用于将多个超声探头连接到主机;
    所述人机交互装置与主机连接,用于显示组织结构视图,所述人机交互装置检测在显示界面上对所述组织结构视图的点选操作,输出点选位置信息,并将所述点选位置信息发送给主机;
    所述主机用于将可视化的组织结构视图发送到人机交互装置进行显示,并根据人机交互装置发送的点选位置信息识别出待检部位,根据待检部位从当前连接的超声探头中确定待使用超声探头,并选通所述待使用超声探头。
  9. 如权利要求8所述的超声诊断仪,其特征在于,所述主机还用于:
    接收检查模式的选择指令;
    响应于所述检查模式的选择指令,从所述待使用超声探头所支持的检查模式中确定目标检查模式;
    将超声诊断仪的检查模式切换至所述目标检查模式。
  10. 如权利要求8所述的超声诊断仪,其特征在于,所述主机还用于:
    根据所述待检部位,从所述待使用超声探头所支持的检查模式中确定适用所述待检部位的适用检查模式;
    将超声诊断仪的检查模式切换至所述适用检查模式。
  11. 一种超声检查模式的切换方法,其特征在于,包括:
    在需要选择检查模式时,获取人机交互装置输出的点选位置信息,所述点选位置信息基于用户在人机交互装置上显示的组织结构视图上进行的点选操作而产生;
    根据点选位置信息识别出待检部位;
    根据所述待检部位确定适用检查模式,并将超声诊断仪的检查模式切换至所述适用检查模式。
  12. 如权利要求11所述的方法,其特征在于,在根据所述待检部位确定出适用检查模式之后,所述方法还包括:
    在超声诊断仪当前连接的超声探头中确定出与所述适用检查模式匹配的待使用超声探头,并选通所述待使用超声探头。
  13. 如权利要求11所述的方法,其特征在于,所述根据所述待检部位确定适用检查模式,包括:
    根据所述待检部位从当前连接的超声探头中确定待使用超声探头,并选通所述待使用超声探头;
    从所述待使用超声探头所支持的检查模式中确定适用所述待检部位的适用检查模式,并将超声诊断仪的检查模式切换至所述适用检查模式。
  14. 如权利要求12所述的方法,其特征在于,还包括:
    在检测到探头接口上连接超声探头后,获取所述超声探头的信息,并将所述超声探头的信息添加至探头列表。
  15. 如权利要求14所述的方法,其特征在于,所述在超声诊断仪当前连接的超声探头中确定出与所述适用检查模式匹配的待使用超声探头包括:
    从探头列表查询与所述适用检查模式匹配度最高的超声探头,并将所述匹配度最高的超声探头确定为待使用超声探头。
  16. 如权利要求11所述的方法,其特征在于,在根据点选位置信息识别出待检部位之后,所述方法还包括:
    生成所述待检部位对应的突显位置信息;
    将所述突显位置信息发送给人机交互装置,以使人机交互装置在显示界面上的组织结构视图上突出显示所述待检部位。
  17. 如权利要求16所述的方法,其特征在于,还包括:
    将所述待检部位的名称发送给人机交互装置,以使人机交互装置显示所述待检部位的名称。
  18. 如权利要求11至17中任一项所述的方法,其特征在于,所述组织结构视图为人体解剖图或人体结构简图。
  19. 一种超声探头的切换方法,其特征在于,包括:
    获取人机交互装置输出的点选位置信息,所述点选位置信息基于用户在人机交互装置上显示的组织结构视图上进行的点选操作而产生;
    根据点选位置信息识别出待检部位;
    根据所述待检部位从当前连接的超声探头中确定待使用超声探头,并选通所述待使用超声探头。
  20. 如权利要求19所述的方法,其特征在于,在所述确定待使用超声探头后,所述方法还包括:
    接收检查模式的选择指令;
    响应于所述检查模式的选择指令,从所述待使用超声探头所支持的检查模式中确定目标检查模式;
    将超声诊断仪的检查模式切换至所述目标检查模式。
  21. 如权利要求19所述的方法,其特征在于,在所述确定待使用超声探头后,所述方法还包括:
    根据所述待检部位,从所述待使用超声探头所支持的检查模式中确定适用所述待检部位的适用检查模式;
    将超声诊断仪的检查模式切换至所述适用检查模式。
  22. 一种计算机可读存储介质,其特征在于,包括程序,所述程序能够被处理器执行以实现如权利要求11至21中任一项所述的方法。
PCT/CN2018/108387 2018-09-28 2018-09-28 超声诊断仪及超声检查模式的切换方法 WO2020062050A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/108387 WO2020062050A1 (zh) 2018-09-28 2018-09-28 超声诊断仪及超声检查模式的切换方法
CN201880097278.1A CN112654295A (zh) 2018-09-28 2018-09-28 超声诊断仪及超声检查模式的切换方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108387 WO2020062050A1 (zh) 2018-09-28 2018-09-28 超声诊断仪及超声检查模式的切换方法

Publications (1)

Publication Number Publication Date
WO2020062050A1 true WO2020062050A1 (zh) 2020-04-02

Family

ID=69950987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108387 WO2020062050A1 (zh) 2018-09-28 2018-09-28 超声诊断仪及超声检查模式的切换方法

Country Status (2)

Country Link
CN (1) CN112654295A (zh)
WO (1) WO2020062050A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090112133A1 (en) * 2007-10-31 2009-04-30 Karl Deisseroth Device and method for non-invasive neuromodulation
CN102178548A (zh) * 2011-06-10 2011-09-14 无锡祥生医学影像有限责任公司 触摸屏超声诊断仪及其参数调节方法
CN102549623A (zh) * 2009-06-10 2012-07-04 皇家飞利浦电子股份有限公司 用于将图像数据集可视化的可视化设备
CN102670255A (zh) * 2012-05-10 2012-09-19 中国科学院合肥物质科学研究院 自助式超声骨强度检测系统及其使用方法
CN102961162A (zh) * 2012-11-20 2013-03-13 合肥博谐电子科技有限公司 一种可拆装式多部位超声骨强度仪
CN103298434A (zh) * 2010-10-28 2013-09-11 路易斯·莫恩 刺激装置的配置
CN104068886A (zh) * 2013-03-28 2014-10-01 上海联影医疗科技有限公司 医学摄影系统及其摄影方法
CN104519960A (zh) * 2012-08-22 2015-04-15 美敦力公司 超声诊断和治疗管理系统及相关联的方法
CN106714656A (zh) * 2014-07-28 2017-05-24 直观外科手术操作公司 用于术中分割的系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102440803A (zh) * 2011-09-17 2012-05-09 无锡祥生医学影像有限责任公司 触摸屏超声诊断仪及其预设值选择方法
CN106963421A (zh) * 2017-05-12 2017-07-21 深圳开立生物医疗科技股份有限公司 用于超声诊断设备的配置方法以及装置
CN107374674A (zh) * 2017-08-28 2017-11-24 深圳开立生物医疗科技股份有限公司 一种超声探头扫查控制方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090112133A1 (en) * 2007-10-31 2009-04-30 Karl Deisseroth Device and method for non-invasive neuromodulation
CN102549623A (zh) * 2009-06-10 2012-07-04 皇家飞利浦电子股份有限公司 用于将图像数据集可视化的可视化设备
CN103298434A (zh) * 2010-10-28 2013-09-11 路易斯·莫恩 刺激装置的配置
CN102178548A (zh) * 2011-06-10 2011-09-14 无锡祥生医学影像有限责任公司 触摸屏超声诊断仪及其参数调节方法
CN102670255A (zh) * 2012-05-10 2012-09-19 中国科学院合肥物质科学研究院 自助式超声骨强度检测系统及其使用方法
CN104519960A (zh) * 2012-08-22 2015-04-15 美敦力公司 超声诊断和治疗管理系统及相关联的方法
CN102961162A (zh) * 2012-11-20 2013-03-13 合肥博谐电子科技有限公司 一种可拆装式多部位超声骨强度仪
CN104068886A (zh) * 2013-03-28 2014-10-01 上海联影医疗科技有限公司 医学摄影系统及其摄影方法
CN106714656A (zh) * 2014-07-28 2017-05-24 直观外科手术操作公司 用于术中分割的系统和方法

Also Published As

Publication number Publication date
CN112654295A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
KR102491757B1 (ko) 초음파 시스템을 위한 에코 윈도우 아티팩트 분류 및 시각적 표시기
JP5973163B2 (ja) 無線超音波プローブにユーザ設定を自動的にロードする方法およびシステム
US11653897B2 (en) Ultrasonic diagnostic apparatus, scan support method, and medical image processing apparatus
US10121272B2 (en) Ultrasonic diagnostic apparatus and medical image processing apparatus
JP2012161353A (ja) 超音波診断装置
JP6162493B2 (ja) 超音波診断装置
US20150015612A1 (en) Medical report generating apparatus and medical image diagnosis apparatus
JP6956483B2 (ja) 超音波診断装置、及び走査支援プログラム
WO2021128310A1 (zh) 一种超声成像设备以及快速设置超声自动工作流的方法
JP2011250941A (ja) 超音波診断装置および画像情報管理装置
US20100145188A1 (en) Imaging diagnostic device, measurement point setting method, and program
JP2022545219A (ja) 超音波ガイダンスダイナミックモード切り替え
US11864883B2 (en) Acoustic wave measurement apparatus and operation method of acoustic wave measurement apparatus
JP2016002405A (ja) 超音波画像診断装置
CN112702954B (zh) 一种超声诊断设备及其快速分辨切面的方法、存储介质
CN113693627A (zh) 基于超声图像的病灶处理方法、超声成像设备、存储介质
WO2020062050A1 (zh) 超声诊断仪及超声检查模式的切换方法
JP2014036754A (ja) 超音波診断装置
JP2009106494A (ja) 超音波診断装置、及びアノテーション表示装置
JP2012143356A (ja) 超音波診断装置及びプログラム
US11844654B2 (en) Mid-procedure view change for ultrasound diagnostics
CN116135150A (zh) 一种超声成像设备及其超声检查方法
US20200008785A1 (en) Ultrasound imaging apparatus and control method thereof
JP6681778B2 (ja) 超音波画像表示装置及びその制御プログラム
WO2016190337A1 (ja) 超音波診断システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934537

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/08/2021)