WO2022213933A1 - 一种信息指示方法以及装置 - Google Patents

一种信息指示方法以及装置 Download PDF

Info

Publication number
WO2022213933A1
WO2022213933A1 PCT/CN2022/085092 CN2022085092W WO2022213933A1 WO 2022213933 A1 WO2022213933 A1 WO 2022213933A1 CN 2022085092 W CN2022085092 W CN 2022085092W WO 2022213933 A1 WO2022213933 A1 WO 2022213933A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
field
resource set
type
tpmi
Prior art date
Application number
PCT/CN2022/085092
Other languages
English (en)
French (fr)
Inventor
刘显达
杨育波
纪刘榴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022213933A1 publication Critical patent/WO2022213933A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to an information indicating method and apparatus.
  • the terminal device When the terminal device sends data to the network device on the physical uplink shared channel (PUSCH), the terminal device can use different orthogonal frequency division multiplexing (OFDM) symbols in different time domains.
  • OFDM orthogonal frequency division multiplexing
  • the precoding matrix sends data to multiple different network devices respectively. By cooperatively receiving data sent by the terminal device on the PUSCH through multiple different network devices, the uplink performance of the terminal device can be improved.
  • the network device preconfigures multiple SRS resource sets, and the terminal device generates a transmission beam based on the SRS resource sets for transmitting the PUSCH.
  • dynamic selection of an appropriate SRS resource set cannot be supported. Since the channel quality is time-varying, a certain SRS resource set may not be suitable for generating a sending beam for sending PUSCH. If the sending beam is still generated based on multiple SRS resource sets, it will cause waste of network resources, and an effective indication is used to generate a sending beam.
  • the number of SRS resource sets required to adapt to the current transmission channel conditions is an urgent problem to be solved.
  • the present application provides an information indication method and apparatus.
  • a terminal device can determine the number of resource sets according to the DCI, and then transmit data on the PUSCH using one or more transmit beams corresponding to the resource sets. In this method, the terminal device transmits data according to the resource set suitable for generating the transmission beam, which saves network resources and improves communication efficiency.
  • a first aspect of the present application provides an information indication method.
  • a terminal device receives downlink control information DCI sent by a network device.
  • the DCI includes a first sounding reference signal indication SRI field and a second SRI field.
  • the first SRI field The value of the SRI field includes a first-type field value and a second-type field value, the value of the second SRI field includes a third-type field value, and the first-type field value and the third-type field value are used to indicate the resource set
  • the identification of the sounding reference signal (Sounding Reference Signal, SRS) included in the second type of field value is used to indicate the identification of the resource set; the terminal device uses a physical uplink shared channel PUSCH according to the DCI. or multiple transmit beams corresponding to the resource sets to transmit data.
  • Sounding Reference Signal Sounding Reference Signal
  • the DCI received by the terminal device includes the first SRI field and the second SRI field
  • the value of the first SRI field includes the first type field value and the second type field value
  • the value of the second SRI field includes the third type field value
  • the field value, the first type of field value and the third type of field value may be used to indicate the identity of the SRS included in the resource set
  • the second type of field value is used to indicate the identity of the resource set.
  • the terminal device may determine the number of resource sets according to the DCI, and then transmit data on the PUSCH by using the transmit beams corresponding to one or more resource sets. In this method, the terminal device transmits data according to the resource set suitable for generating the transmission beam, which saves network resources and improves communication efficiency.
  • the resource set includes a first resource set and a second resource set, and if the value of the first SRI field is the value of the first type of field, the first The value of the class field is used to indicate the identifier of the SRS in the first resource set, and the value of the third class field is used to indicate the identifier of the SRS in the second resource set.
  • the terminal device can confirm that the terminal device needs to select the resources in the SRS resource set 0 and the SRS resource set 1 to transmit uplink data on the PUSCH, that is, the uplink data transmitted by the terminal device on the PUSCH.
  • the data is jointly received by the network device 1 and the network device 2, so as to realize the uplink diversity gain and further improve the communication quality of the terminal device.
  • the resource set includes a first resource set and a second resource set
  • the second type field value includes a first value and a second value
  • the first SRI The value of the field is the first value
  • the value of the third type field is used to indicate the identifier of the SRS in the first resource set. If the value of the first SRI field is the second value, the first SRI field value is the second value.
  • the three types of field values indicate the identifier of the SRS in the second resource set.
  • the value of the first SRI field when the value of the first SRI field is the first value, it means that the first SRI field indicates SRS resource set 0.
  • the third type field value in the second SRI field indicates SRS resource 0 and SRS resource 1 in SRS resource set 0, respectively.
  • the terminal device selects SRS resource set 0 corresponding to network device 1 according to the first SRI field, and selects SRS resource 0 or SRS resource 1 in SRS resource set 0 according to the second SRI field to transmit uplink data to network device 1 .
  • the value of the first SRI field is the second value, it means that the first SRI field indicates SRS resource set 1.
  • the third type field value in the second SRI field indicates SRS resource 0 and SRS resource 1 in SRS resource set 1, respectively.
  • the terminal device selects SRS resource set 1 corresponding to network device 2 according to the first SRI field, and selects SRS resource 0 or SRS resource 1 in SRS resource set 1 according to the second SRI field to transmit uplink data to network device 2 .
  • the network device can flexibly instruct the terminal device to transmit uplink data through a suitable network device, which prevents a network device not suitable for data transmission from receiving uplink data sent by the terminal device, and improves the utilization rate of network resources.
  • a second aspect of the present application provides an information indication method.
  • a terminal device receives downlink control information DCI sent by a network device, where the DCI includes a first transmission precoding matrix indication TPMI field and a second TPMI field, and the first TPMI The field includes a first-type field value and a second-type field value, the second TPMI field includes a third-type field value, and the first-type field value and the third-type field value are used to indicate the resources in the resource set
  • the second type of field value is used to instruct the terminal device to transmit data on the physical uplink shared channel PUSCH using a transmission beam corresponding to a resource set; the terminal device uses one or more on the PUSCH according to the DCI. Sending beams corresponding to multiple resource sets transmit data.
  • the DCI received by the terminal device includes a first TPMI field and a second TPMI field
  • the DCI includes a first TPMI field
  • the first TPMI field includes a first type field value and a second type field value
  • the second TPMI field Including the third type of field value, the first type of field value and the third type of field value are used to indicate the TPMI corresponding to the resource in the resource set
  • the second type of field value is used to indicate that the terminal device uses a resource on the physical uplink shared channel PUSCH
  • the corresponding transmit beams are aggregated to transmit data. Since the resource sets are in one-to-one correspondence with network devices, the terminal device can determine the number of resource sets according to the DCI, and then transmit data to one or more network devices using the transmit beams corresponding to one or more resource sets on the PUSCH.
  • the resource set includes a first resource set and a second resource set, and if the value of the first TPMI field is the value of the first type of field, the first resource set
  • the value of the class field is used to indicate the TPMI corresponding to the resource in the first resource set
  • the value of the third class field is used to indicate the TPMI corresponding to the resource in the second resource set.
  • the terminal device can confirm that the terminal device needs to select the resources in the SRS resource set 0 and the SRS resource set 1 to transmit uplink data on the PUSCH, that is, the uplink data transmitted by the terminal device on the PUSCH.
  • the data is jointly received by the network device 1 and the network device 2, so as to realize the uplink diversity gain and further improve the communication quality of the terminal device.
  • the resource set includes a first resource set and a second resource set, and if the value of the first TPMI field is the value of the second type of field, the SRI field or the TPC The field is used to determine the identifier of the one resource set, and the value of the third type field indicates the TPMI corresponding to the resource in the one resource set.
  • the first TPMI field indicates that the terminal device only uses the transmission corresponding to one SRS resource set.
  • the beam sends upstream data to a network device.
  • Which SRS resource set is selected specifically can interpret the SRI field or the transmission power command (Transmission Power Command, TPC) field.
  • TPC Transmission Power Command
  • the network device can flexibly instruct the terminal device to transmit uplink data through a suitable network device, which prevents a network device not suitable for data transmission from receiving uplink data sent by the terminal device, and improves the utilization rate of network resources.
  • the third type field value is further used to indicate the number of transmission layers of the PUSCH.
  • the first TPMI field when it is indicated by the first TPMI field that the terminal device sends uplink data to the network device through one or more resource sets, in order to save network resources, the first TPMI field may only indicate the TPMI but not the transport layer.
  • the third type field value in the second TPMI field may indicate the number of transport layers and TPMI (rank+TPMI) at the same time, and the rank of the first TPMI field follows the indication of the second TPMI. For example, if the second TPMI field indicates 1 layer (layer), the TPMI indicated by the first TPMI field is also 1 layer.
  • the reason why the first TPMI field is selected to indicate that the terminal device sends uplink data to the network device through one or more resource sets is because the second TPMI field may include an indication of rank+TPMI, while the first TPMI field only includes indication of TPMI.
  • a third aspect of the present application provides an information indication method.
  • a network device determines downlink control information DCI, where the DCI includes a first sounding reference signal indication SRI field and a second SRI field, and the value of the first SRI field includes the first SRI field.
  • a type of field value and a second type of field value, the value of the second SRI field includes a third type of field value, the first type of field value and the third type of field value are used to indicate the SRS included in the resource set.
  • the identifier of the second type of field is used to indicate the identifier of the resource set.
  • the network device sends the DCI to the terminal device.
  • the DCI sent by the network device includes the first SRI field and the second SRI field
  • the value of the first SRI field includes the first type field value and the second type field value
  • the value of the second SRI field includes the third type field value
  • the field value, the first type of field value and the third type of field value may be used to indicate the identity of the SRS included in the resource set
  • the second type of field value is used to indicate the identity of the resource set.
  • the terminal device may determine the number of resource sets according to the DCI, and then transmit data on the PUSCH by using the transmit beams corresponding to one or more resource sets. In this method, the terminal device transmits data according to the resource set suitable for generating the transmission beam, which saves network resources and improves communication efficiency.
  • the resource set includes a first resource set and a second resource set, and if the value of the first SRI field is the value of the first type of field, the first The value of the class field is used to indicate the identifier of the SRS in the first resource set, and the value of the third class field is used to indicate the identifier of the SRS in the second resource set.
  • the terminal device can confirm that the terminal device needs to select the resources in the SRS resource set 0 and the SRS resource set 1 to transmit uplink data on the PUSCH, that is, the uplink data transmitted by the terminal device on the PUSCH.
  • the data is jointly received by the network device 1 and the network device 2, so as to realize the uplink diversity gain and further improve the communication quality of the terminal device.
  • the resource set includes a first resource set and a second resource set
  • the second type field value includes a first value and a second value
  • the first SRI The value of the field is the first value
  • the value of the third type field is used to indicate the identifier of the SRS in the first resource set. If the value of the first SRI field is the second value, the first SRI field value is the second value.
  • the three types of field values indicate the identifier of the SRS in the second resource set.
  • the value of the first SRI field when the value of the first SRI field is the first value, it means that the first SRI field indicates SRS resource set 0.
  • the third type field value in the second SRI field indicates SRS resource 0 and SRS resource 1 in SRS resource set 0, respectively.
  • the terminal device selects SRS resource set 0 corresponding to network device 1 according to the first SRI field, and selects SRS resource 0 or SRS resource 1 in SRS resource set 0 according to the second SRI field to transmit uplink data to network device 1 .
  • the value of the first SRI field is the second value, it means that the first SRI field indicates SRS resource set 1.
  • the third type field value in the second SRI field indicates SRS resource 0 and SRS resource 1 in SRS resource set 1, respectively.
  • the terminal device selects SRS resource set 1 corresponding to network device 2 according to the first SRI field, and selects SRS resource 0 or SRS resource 1 in SRS resource set 1 according to the second SRI field to transmit uplink data to network device 2 .
  • the network device can flexibly instruct the terminal device to transmit uplink data through a suitable network device, which prevents a network device not suitable for data transmission from receiving uplink data sent by the terminal device, and improves the utilization rate of network resources.
  • a fourth aspect of the present application provides an information indication method.
  • a network device determines downlink control information DCI, where the DCI includes a first transmission precoding matrix indication TPMI field, where the first TPMI field includes a first type field value and a first TPMI field value.
  • Type II field value the second TPMI field includes a third type field value, the first type field value and the third type field value are used to indicate the TPMI corresponding to the resources in the resource set, the second type field value
  • the field value is used to instruct the terminal device to transmit data using a transmit beam corresponding to a resource set on the physical uplink shared channel PUSCH; the network device sends the DCI to the terminal device.
  • the DCI sent by the network device includes a first TPMI field and a second TPMI field
  • the DCI includes a first TPMI field
  • the first TPMI field includes a first type field value and a second type field value
  • the second TPMI field Including the third type of field value, the first type of field value and the third type of field value are used to indicate the TPMI corresponding to the resource in the resource set
  • the second type of field value is used to indicate that the terminal device uses a resource on the physical uplink shared channel PUSCH
  • the corresponding transmit beams are aggregated to transmit data. Since the resource sets are in one-to-one correspondence with network devices, the terminal device can determine the number of resource sets according to the DCI, and then transmit data to one or more network devices using the transmit beams corresponding to one or more resource sets on the PUSCH.
  • the resource set includes a first resource set and a second resource set, and if the value of the first TPMI field is the value of the first type of field, the first resource set The value of the class field is used to indicate the TPMI corresponding to the resource in the first resource set, and the value of the third class field is used to indicate the TPMI corresponding to the resource in the second resource set.
  • the terminal device can confirm that the terminal device needs to select the resources in the SRS resource set 0 and the SRS resource set 1 to transmit uplink data on the PUSCH, that is, the uplink data transmitted by the terminal device on the PUSCH.
  • the data is jointly received by the network device 1 and the network device 2, so as to realize the uplink diversity gain and further improve the communication quality of the terminal device.
  • the resource set includes a first resource set and a second resource set, and if the value of the first TPMI field is the value of the second type field, the sounding reference signal indicates The SRI field or the TPC field is used to determine the identifier of the one resource set, and the value of the third type field indicates the TPMI corresponding to the resources in the one resource set.
  • the value of the first SRI field when the value of the first SRI field is the first value, it means that the first SRI field indicates SRS resource set 0.
  • the third type field value in the second SRI field indicates SRS resource 0 and SRS resource 1 in SRS resource set 0, respectively.
  • the terminal device selects SRS resource set 0 corresponding to network device 1 according to the first SRI field, and selects SRS resource 0 or SRS resource 1 in SRS resource set 0 according to the second SRI field to transmit uplink data to network device 1 .
  • the value of the first SRI field is the second value, it means that the first SRI field indicates SRS resource set 1.
  • the third type field value in the second SRI field indicates SRS resource 0 and SRS resource 1 in SRS resource set 1, respectively.
  • the terminal device selects SRS resource set 1 corresponding to network device 2 according to the first SRI field, and selects SRS resource 0 or SRS resource 1 in SRS resource set 1 according to the second SRI field to transmit uplink data to network device 2 .
  • the network device can flexibly instruct the terminal device to transmit uplink data through a suitable network device, which prevents a network device not suitable for data transmission from receiving uplink data sent by the terminal device, and improves the utilization rate of network resources.
  • the third type field value is further used to indicate the number of transmission layers of the PUSCH.
  • the first TPMI field when it is indicated by the first TPMI field that the terminal device sends uplink data to the network device through one or more resource sets, in order to save network resources, the first TPMI field may only indicate the TPMI but not the transport layer.
  • the third type field value in the second TPMI field may indicate the number of transport layers and TPMI (rank+TPMI) at the same time, and the rank of the first TPMI field follows the indication of the second TPMI. For example, if the second TPMI field indicates 1 layer, the TPMI indicated by the first TPMI field is also 1 layer.
  • the reason why the first TPMI field is selected to indicate that the terminal device sends uplink data to the network device through one or more resource sets is because the second TPMI field may include an indication of rank+TPMI, while the first TPMI field only includes indication of TPMI.
  • a fifth aspect of the present application provides a communication apparatus, the communication apparatus includes at least one processor, the processor is configured to execute the instruction, and when executed by the processor, the instruction causes the terminal device to execute the above-mentioned first aspect or the first aspect The method in any possible implementation manner of the second aspect, or the terminal device is caused to execute the above-mentioned second aspect or the method in any possible implementation manner of the second aspect.
  • a sixth aspect of the present application provides a communication apparatus, the communication apparatus includes at least one processor, and the processor is configured to execute the instruction, and when executed by the processor, the instruction causes the network device to execute the above-mentioned third aspect or the third aspect The method in any possible implementation manner of , or, causing the network device to execute the above fourth aspect or the method in any possible implementation manner of the fourth aspect.
  • a seventh aspect of the present application provides a computer-readable storage medium, where a program is stored in the computer-readable storage medium, and the program enables the terminal device to execute the method in the first aspect or any possible implementation manner of the first aspect , or, causing the terminal device to execute the method in the second aspect or any possible implementation manner of the second aspect, or, causing the network device to execute the third aspect or any possible implementation manner of the third aspect above method, or, causing the network device to execute the above fourth aspect or the method in any possible implementation manner of the fourth aspect.
  • An eighth aspect of the present application provides a computer program product that stores one or more computer-executable instructions.
  • the processor executes the first aspect or any one of the first aspects. or, the processor executes the second aspect or any of the possible implementations of the second aspect, or the processor executes the third aspect or any of the possible implementations of the third aspect.
  • the method of the implementation manner, or the processor executes the fourth aspect or the method of any possible implementation manner of the fourth aspect.
  • a ninth aspect of the present application provides a chip, the chip includes a processor and a communication interface, the processor is coupled to the communication interface, and the processor is configured to read an instruction to execute the first aspect or any one of the first aspect
  • the method of possible implementations, or, the method for implementing the second aspect or any one of the possible implementations of the second aspect, or, the method for implementing the third aspect or any one of the possible implementations of the third aspect, or, the implementation of the above The fourth aspect or the method of any possible implementation manner of the fourth aspect.
  • a tenth aspect of the present application provides a communication device, which is characterized in that it includes at least one logic circuit and an input/output interface, the input/output interface is used for communicating with other devices, and the logic circuit is used for: performing the above-mentioned first aspect Or the method of any possible implementation of the first aspect, or, to perform the above-mentioned second aspect or any of the possible implementations of the second aspect, or to perform the above-mentioned third aspect or any one of the possible implementations of the third aspect method, or, a method for performing the fourth aspect or any one possible implementation manner of the fourth aspect.
  • An eleventh aspect of the present application is an information indication system.
  • the system includes the terminal device described in the first aspect or any possible implementation manner of the first aspect, and includes the third aspect or any one of the third aspect. It is possible to implement the network device described in the mode.
  • a twelfth aspect of the present application is an information indication system, the system includes the terminal device described in the second aspect or any possible implementation manner of the second aspect, and includes the fourth aspect or any one of the fourth aspect It is possible to implement the network device described in the mode.
  • the embodiments of the present application have the following advantages:
  • the present application provides an information indication method and related equipment.
  • the DCI received by the terminal equipment includes a first SRI field and a second SRI field, and the value of the first SRI field includes a first type field value and a second type field value.
  • the value of the second SRI field includes the third type field value, the first type field value and the third type field value may be used to indicate the identifier of the SRS included in the resource set, and the second type field value is used to indicate the identifier of the resource set.
  • the terminal device may determine the number of resource sets according to the DCI, and then transmit data on the PUSCH by using the transmit beams corresponding to one or more resource sets. In this method, the terminal device transmits data according to the resource set suitable for generating the transmission beam, which saves network resources and improves communication efficiency.
  • FIG. 1 is a schematic diagram of an application of an information indication system provided by the present application.
  • FIG. 2 is a schematic diagram of an application of an information indication method provided by the present application.
  • FIG. 3 is a schematic diagram of an application of an information indication method provided by the present application.
  • FIG. 4 is a schematic structural diagram of a terminal device provided by the application.
  • FIG. 5 is another schematic structural diagram of a terminal device provided by the application.
  • FIG. 6 is a schematic structural diagram of a network device provided by the present application.
  • FIG. 7 is another schematic structural diagram of a network device provided by the present application.
  • FIG. 8 is another schematic structural diagram of a terminal device provided by the application.
  • FIG. 9 is another schematic structural diagram of a network device provided by this application.
  • At least one (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • the terminal device When the terminal device sends data to the network device on the physical uplink shared channel (PUSCH), the terminal device can use different orthogonal frequency division multiplexing (OFDM) symbols in different time domains.
  • OFDM orthogonal frequency division multiplexing
  • the precoding matrices are sent to multiple different network devices respectively. By cooperatively receiving data sent by the terminal device on the PUSCH through multiple different network devices, the uplink performance of the terminal device can be improved.
  • the network device preconfigures multiple SRS resource sets, and the terminal device generates a transmission beam based on the SRS resource sets for transmitting the PUSCH.
  • dynamic selection of an appropriate SRS resource set cannot be supported. Since the channel quality is time-varying, a certain SRS resource set may not be suitable for generating a sending beam for sending PUSCH. If the sending beam is still generated based on multiple SRS resource sets, it will cause waste of network resources, and an effective indication is used to generate a sending beam.
  • the number of SRS resource sets required to adapt to the current transmission channel conditions is an urgent problem to be solved.
  • the DCI received by the terminal equipment includes a first SRI field and a second SRI field, and the value of the first SRI field includes the first type of SRI field.
  • the field value and the second type of field value, the value of the second SRI field includes the third type of field value, the first type of field value and the third type of field value can be used to indicate the identifier of the SRS included in the resource set, the second type of field value
  • the value is used to indicate the identity of the resource collection.
  • the terminal device may determine the number of resource sets according to the DCI, and then transmit data on the PUSCH by using the transmit beams corresponding to one or more resource sets. In this method, the terminal device transmits data according to the resource set suitable for generating the transmission beam, which saves network resources and improves communication efficiency.
  • the present application also provides an information indication system, which can be applied to a homogeneous network or a heterogeneous network.
  • the information indicates that the system can be applied to a frequency division duplexing (FDD) system or a time division duplex system.
  • FDD frequency division duplexing
  • This information indicates that the system can be applied to low-frequency scenarios (sub 6G) or high-frequency scenarios (above 6G).
  • the information indicates that the system can be applied to 4G, 5G or future mobile communication systems. There is no specific limitation here.
  • FIG. 1 is an application schematic diagram of an information indication system provided by the present application.
  • the information indication system provided by this application includes a terminal device 101 , a network device 102 and/or a network device 103 .
  • the terminal device 101 can transmit uplink data to the network device 102 and/or the network device 103.
  • There are two uplink transmission modes when the terminal device transmits the uplink data namely codebook-based uplink transmission and codebook-based uplink transmission.
  • codebook-based uplink transmission For the non-codebook uplink transmission, the following two transmission modes are introduced respectively.
  • the non-codebook-based uplink transmission process is described by taking the terminal device 101 sending uplink data to the network device 102 as an example.
  • the network device 102 allocates a resource set A to the terminal device 101, the resource set A corresponds to the network device 102 one-to-one, and the terminal device 101 uses the SRS in the resource set A to send a message to the network device 102.
  • the network device 102 performs channel measurement according to the SRS sent by the terminal device, and selects the optimal SRS to generate SRI and TPMI.
  • the SRI indicates the index value of the optimal SRS resource
  • the TPMI indicates the precoding matrix used when transmitting the SRS corresponding to the transmitting antenna on the optimal SRS resource for transmitting uplink data, that is, the uplink data
  • the transmit beam for transmission is jointly determined based on the SRI and TPMI indication information.
  • the terminal device 101 may transmit uplink data to the network device 102 on the PUSCH according to the index value indicated in the SRI and the precoding matrix indicated in the TPMI. At this time, we can say that the PUSCH or the transmission beam of the PUSCH corresponds to the SRS resource indicated by the SRI.
  • the non-codebook-based uplink transmission process is described by taking the terminal device 101 sending uplink data to the network device 103 as an example.
  • the non-codebook-based uplink transmission utilizes the mutuality between the uplink and downlink channels, and there is no predefined codebook when the terminal device 101 transmits the uplink data to the network device 103 .
  • the terminal device 101 measures the downlink signal sent by the network device 103 to determine at least one candidate precoding. Assuming that the network device 103 allocates the resource set B to the terminal device 101, the terminal device 101 uses the SRS in the resource set B to send a message to the network device 103 through multiple candidate precodings.
  • One SRS corresponds to one candidate precoding
  • the network device 103 selects the optimal SRS from the received multiple SRSs, and indicates the index value of the optimal SRS to the terminal device 101 through the SRI.
  • the terminal device 101 can determine the index value of the optimal SRS and the transmission precoding matrix corresponding to the optimal SRS according to the SRI, and then send uplink data to the network device 103 on the PUSCH.
  • the terminal device 101 may receive the DCI sent by the network device 102 and/or the network device 103 .
  • the DCI may include a first sounding reference signal indication SRI field and a second SRI field, the value of the first SRI field includes the first type field value and the second type field value, and the value of the second SRI field includes the third type.
  • the class field value, the first class field value and the third class field value are used to indicate the identifier of the SRS included in the SRS resource set, and the second class field value is used to indicate the identifier of the resource set.
  • the DCI may include a first transmission precoding matrix indication (Transmission Precoding Matrix Indication, TPMI) field and a second TPMI field.
  • TPMI Transmission Precoding Matrix Indication
  • the first TPMI field includes a first-type field value and a second-type field value
  • the second TPMI field includes a third-type field value
  • the first-type field value and the third-type field value are used to indicate the resources corresponding to the resources in the SRS resource set.
  • the second type of field value is used to instruct the terminal device to transmit data on the PUSCH using a transmit beam corresponding to an SRS resource set.
  • the terminal device 101 may determine the number of resource sets used by the terminal device according to the DCI, and further, the terminal device 101 may use the transmission beams corresponding to one or more resource sets on the PUSCH to the network device 102 and/or the network device 102 according to the DCI.
  • the network device 103 transmits data.
  • FIG. 1 only takes one terminal device and two network devices as an example for schematic illustration.
  • the information indication system provided by the present application may further include more terminal devices and network devices than those shown in FIG. 1 , and the present application does not limit the number of terminal devices and network devices.
  • the network device mentioned in the information indication system in the above example may be any device with a wireless transceiver function.
  • the network device includes a base station (BS), which may be a device deployed in a wireless access network and capable of wirelessly communicating with terminal devices.
  • Base stations may have various forms, such as macro base stations, micro base stations, relay stations, and access points.
  • the base station involved in the embodiments of the present application may be a base station in a 5G system or a base station in an LTE system, where the base station in a 5G system may also be referred to as a transmission reception point (transmission reception point, TRP) or a next generation Node B (generation B).
  • TRP transmission reception point
  • generation B generation B
  • Node B, gNB or gNodeB next generation Node B
  • the device for realizing the function of the network device may be a network device; it may also be a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device or used in combination with the network device .
  • the technical solutions provided by the embodiments of the present application are described by taking the device for realizing the function of the network device being a network device as an example.
  • the terminal device mentioned in the information indication system in the above example may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem .
  • Terminal devices may be mobile terminals, such as mobile phones (or "cellular" phones) and computers with mobile terminals, for example, may be portable, pocket-sized, hand-held, computer-built, or vehicle-mounted mobile devices, which are connected to a network Devices exchange language and/or data.
  • PCS personal communication service
  • SIP Session Initiation Protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • Terminal equipment may also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point, Remote terminal, access terminal, user agent, user device, or user equipment, user station, remote station, terminal equipment (TE) ), terminals, wireless communication devices, and user agents or user equipment.
  • the terminal device may also be a chip system for implementing UE functions. There is no specific limitation here.
  • the DCI received by the terminal device includes the first SRI field and the second SRI field
  • the value of the first SRI field includes the first type field value and the second type field value
  • the value of the second SRI field includes a third type field value
  • the first type field value and the third type field value may be used to indicate the identity of the SRS included in the resource set
  • the second type field value is used to indicate the identity of the resource set.
  • the terminal device may determine the number of resource sets according to the DCI, and then transmit data to one or more network devices by using the transmit beams corresponding to one or more resource sets on the PUSCH, saving network resources.
  • FIG. 2 is an application schematic diagram of an information indication method provided by the present application.
  • a method example of the information indication method provided by this application includes steps 201 to 202 .
  • the terminal device receives the downlink control information DCI sent by the network device.
  • the network device may allocate multiple resource sets to the terminal device.
  • Each SRS resource set includes at least one SRS resource, and the network device can select the SRS received in the resource set to instruct the terminal device to send data to the network device with a sending beam. It should be understood that the transmission beams used for PUSCH transmission corresponding to different SRS resource sets are different.
  • the terminal device receives the DCI sent by the network device, and each SRI field included in the DCI may indicate an index value of an SRS in a resource set, and the SRI may also indicate an identifier of the resource set.
  • each SRS resource set corresponds to a network device, that is, the network device will receive and measure the SRS sent on the specific SRS resource set corresponding to it. Further, the network device will receive the PUSCH transmission corresponding to the transmission beam generated according to the corresponding specific SRS resource set.
  • different SRS resource sets correspond to different SRS transmission power control parameters.
  • the transmission power control parameter is used to enable the terminal device to determine the SRS transmission power.
  • the terminal device can determine the number of SRS resource sets corresponding to the transmission beam on the PUSCH according to the SRI indication.
  • the number of SRS resource sets corresponding to the transmit beam on the PUSCH is 2
  • the number of SRS resource sets corresponding to the transmission beam on the PUSCH is 1, and the SRS resource set corresponding to the transmission beam is determined according to the indication of the second type field value.
  • the DCI includes the first sounding reference signal indication SRI field and the second SRI field
  • the value of the first SRI field includes the first type field value and the second type field value
  • the value of the second SRI field includes the third type field value
  • the field value, the first type of field value and the third type of field value are used to indicate the identity of the SRS included in the resource set
  • the second type of field value is used to indicate the identity of the resource set.
  • the first type field value in the first SRI field corresponds to the first SRS resource set
  • the SRS resource set corresponding to the third type field value in the second SRI field is determined according to the field value indicated by the first SRI field, when The first SRI field indicates the first type field value
  • the third type field value corresponds to the second SRS resource set.
  • the third type field value corresponds to the first SRS Resource set
  • the first SRI field indicates the field value 2 in the second type of field value
  • the third type of field value corresponds to the second SRS resource set.
  • the first TPMI field and the first TPC field correspond to the first SRS resource set
  • the second TPMI field and the second TPC field correspond to the second SRS resource set.
  • the third type field value corresponds to the second SRS resource set
  • the first TPMI field, the first TPC field and the second TPMI field and the second TPC field are all valid
  • the first SRI field The field indicates the field value 1 in the second type field value, the first SRS resource set corresponding to the third type field value, and the first TPMI field and the first TPC field are valid
  • the first SRI field indicates the second type field value in the The field value is 2
  • the second TPMI field and the second TPC field are valid.
  • the number of SRS resources configured in each SRS resource set is a specific number, for example, the number of SRS resources configured in each SRS resource set is a power of 2.
  • Table 1 is an application schematic table of a first SRI field provided by this application.
  • the network device allocates two SRS resource sets to the terminal device, which are SRS resource set 0 and SRS resource set 1 respectively.
  • the SRS resource set 0 corresponds to the network device 1
  • the SRS resource set 1 corresponds to the network device 2, that is, the network device 1 receives the SRS resource set 0, and the network device 2 receives the SRS resource set 1.
  • Both SRS resource set 0 and SRS resource set 1 include two resources, SRS resource 0 and SRS resource 1 .
  • the first SRI field includes the first type field value and the second type field value.
  • the first type of field value refers to the index value 0 and the index value 1 in FIG. 3 , and the index value 0 indicates the SRS resource 0 in the SRS resource set 0.
  • An index value of 1 indicates SRS resource 1 in SRS resource set 1 .
  • the second type of field value refers to the index value 2 and the index value 3 in FIG. 3 , and the index value 2 indicates the SRS resource set 0.
  • An index value of 1 indicates SRS resource set 1 .
  • the second type of field value may indicate index value 0 and index value 1
  • the first type of field value may indicate index value 2 and index value 3
  • the first SRI field may also use other indication methods, The specific instruction method is not limited here.
  • the form of the first SRI field is described only by taking as an example that the network device allocates two SRS resource sets to the terminal device, and the SRS resource set 0 includes two SRS resources.
  • the network device may allocate more SRS resource sets to the terminal device, and the SRS resource set may also include more SRS resources, which is not specifically limited here.
  • Table 2 is an application schematic table of a second SRI field provided by this application.
  • the third type of field values indicate index value 0 and index value 1
  • index value 0 and index value 1 indicate SRS resource 0 and SRS resource 1 respectively.
  • SRS resource 0 Which SRS resource set the SRS resource 1 belongs to needs to be confirmed according to the first SRI field.
  • the terminal device transmits data on the physical uplink shared channel PUSCH by using the transmit beams corresponding to one or more resource sets according to the DCI.
  • one resource set may correspond to a group of transmit beams, and one resource set may also correspond to multiple sets of transmit beams, which is not specifically limited here.
  • transmitting data using a transmit beam corresponding to one SRS resource set can be understood as a single-station receiving mode or a single-antenna panel receiving mode, and using two SRS resource sets corresponding to transmitting beam transmitting data can be understood as a multi-station receiving mode or a multi-station receiving mode.
  • Antenna panel receive mode can be understood as a single-station receiving mode or a single-antenna panel receiving mode, and using two SRS resource sets corresponding to transmitting beam transmitting data.
  • the PUSCH transmission occupies the first time-frequency resource and the second time-frequency resource.
  • the first time-frequency resource corresponds to the first sending beam
  • the second time-frequency resource corresponds to the first sending beam
  • the time-frequency resource corresponds to the second transmit beam.
  • the first time-frequency resource and the second time-frequency resource may also be the first spatial/beam domain resource and the second spatial/beam domain resource, or the first time-frequency resource and the second time-frequency resource may also be the first code domain resource and the second code domain resource.
  • the DCI received by the terminal device includes the first SRI field and the second SRI field
  • the value of the first SRI field includes the first type field value and the second type field value
  • the value of the second SRI field The value includes a third type field value
  • the first type field value and the third type field value may be used to indicate the identity of the SRS included in the resource set
  • the second type field value is used to indicate the identity of the resource set.
  • the terminal device may determine, according to the indication information of the first SRI field, to transmit data to one or more network devices by using the transmit beams corresponding to one or more resource sets on the PUSCH. Therefore, the network device can dynamically switch the single-station receiving mode and the multi-station receiving mode.
  • the terminal device when the terminal device confirms according to DCI that one or more transmission beams corresponding to resource sets are used to transmit data, there is a specific judgment method, which will be described in detail in the following embodiments.
  • Scenario 1 Data is transmitted using transmit beams corresponding to multiple resource sets.
  • the resource set includes a first resource set and a second resource set. If the value of the first SRI field is the value of the first type field, the first type field value is used to indicate the identifier of the SRS in the first resource set, and the first type field value is used to indicate the identifier of the SRS in the first resource set. Three types of field values are used to indicate the identifier of the SRS in the second resource set. Then, the terminal equipment uses the corresponding transmit beams of the multiple resource sets to transmit data according to the DCI confirmation.
  • the network device configures SRS resource set 0 and SRS resource set 1 to the terminal device.
  • the SRS resource set 0 corresponds to the network device 1
  • the SRS resource set 1 corresponds to the network device 2.
  • the first SRI field may select and indicate one SRS resource from SRS resource set 0, and the first SRI field may also indicate SRS resource set 0 or SRS resource set 1.
  • the second SRI field indicates one SRS resource selected from SRS resource set 0 or SRS resource set 1.
  • the terminal device can confirm that the terminal device needs to select the resources in the SRS resource set 0 and the SRS resource set 1 to transmit uplink data on the PUSCH, that is, the uplink data transmitted by the terminal device on the PUSCH.
  • the data is jointly received by the network device 1 and the network device 2, so as to realize the uplink diversity gain.
  • Scenario 2 Data is transmitted using a transmit beam corresponding to a single resource set.
  • the resource set includes a first resource set and a second resource set
  • the value of the second type of field includes a first value and a second value. If the value of the first SRI field is the first value, the value of the third type of field is used for Indicates the identifier of the SRS in the first resource set. If the value of the first SRI field is the second value, the value of the third type field indicates the identifier of the SRS in the second resource set.
  • the network device configures SRS resource set 0 and SRS resource set 1 to the terminal device.
  • the SRS resource set 0 corresponds to the network device 1
  • the SRS resource set 1 corresponds to the network device 2.
  • the first SRI field may select and indicate one SRS resource from SRS resource set 0, and the first SRI field may also indicate SRS resource set 0 or SRS resource set 1.
  • the second SRI field indicates one SRS resource selected from SRS resource set 0 or SRS resource set 1.
  • the second type of field value includes a first value (2) and a second value (3)
  • the first value (2) indicates SRS resource set 0
  • the second value (3) Indicates SRS resource set 1. Which resource set the SRS resource selected by the third type field value in the second SRI field belongs to is determined by the value of the first SRI field.
  • the terminal device selects SRS resource set 0 corresponding to network device 1 according to the first SRI field, and selects SRS resource 0 or SRS resource 1 in SRS resource set 0 according to the second SRI field to transmit uplink data to network device 1 .
  • the terminal device selects SRS resource set 1 corresponding to network device 2 according to the first SRI field, and selects SRS resource 0 or SRS resource 1 in SRS resource set 1 according to the second SRI field to transmit uplink data to network device 2 .
  • Table 3 is another application schematic diagram of the first SRI field provided by this application.
  • Table 4 is another application schematic diagram of the second SRI field provided by this application.
  • the two SRI indications respectively include a state (reserved) for indicating the network device.
  • the first three states in the index values of the first SRI field and the second SRI field respectively indicate three SRS resources, and one state is used to indicate that the terminal equipment does not use
  • the resource set corresponding to the SRI field sends uplink data.
  • both of the two SRI fields indicate the first three states, it implicitly indicates that it is currently being received by a multi-network device.
  • the SRS resource indicated by the first SRI field is the SRS resource selected in the SRS resource set 0.
  • the three states of are used to indicate the selection of SRS resources from SRS resource set 1; when there is one SRI field in the two SRI fields to indicate the last state, it implicitly indicates that it is currently received by a single network device.
  • the SRI field and the SRS resource set may be considered to have a one-to-one correspondence, the first SRI field corresponds to the first SRS resource set, and the second SRI field corresponds to the second SRS resource set.
  • the SRI field and the network device may be considered to have a one-to-one correspondence, the first SRI field corresponds to the first network device, and the second SRI field corresponds to the second network device.
  • FIG. 3 is an application schematic diagram of an information indication method provided by the present application.
  • a method example of another information indicating method provided by this application includes steps 301 to 302 .
  • the terminal device receives the downlink control information DCI sent by the network device.
  • the network device may allocate multiple resource sets to the terminal device.
  • Each SRS resource set includes at least one SRS resource, and the network device can select the SRS received in the resource set to instruct the terminal device to send data to the network device with a sending beam.
  • the terminal device receives the DCI sent by the network device, and the DCI includes an SRI field, a TPMI field and a TPC field, and each SRS resource set corresponds to an SRI field, a TPMI field and a TPC field.
  • the SRI field indicates the change of the optimal SRS resource
  • the TPMI will select the precoding matrix based on the indication of the SRI
  • the TPC will indicate the corresponding power adjustment value.
  • the DCI includes a first transmission precoding matrix indication TPMI field
  • the first TPMI field includes a first-type field value and a second-type field value
  • the second TPMI field includes a third-type field value
  • the first-type field value The value of the third type of field is used to indicate the TPMI corresponding to the resource in the resource set
  • the value of the second type of field is used to instruct the terminal device to transmit data on the physical uplink shared channel PUSCH using a transmit beam corresponding to one resource set.
  • each SRS resource set corresponds to a network device, that is, the network device will receive and measure the SRS sent on the specific SRS resource set corresponding to it. Further, the network device will receive the PUSCH transmission corresponding to the transmission beam generated according to the corresponding specific SRS resource set.
  • different SRS resource sets correspond to different SRS transmission power control parameters.
  • the transmission power control parameter is used to enable the terminal device to determine the SRS transmission power.
  • the terminal device can determine the number of SRS resource sets corresponding to the transmission beam on the PUSCH according to the TPMI indication.
  • the number of SRS resource sets corresponding to the transmit beam on the PUSCH is 2
  • the number of SRS resource sets corresponding to the transmission beam on the PUSCH is 1
  • the SRS resource set corresponding to the transmission beam is a preset SRI field or a TPC field. instructions are confirmed.
  • the second TPMI field, the second SRI field and the second TPC field all correspond to the first SRS resource set; when the preset first SRI field/first TPC field indicates the second SRS resource set, then, the second TPMI field, the second SRI field and the second TPC field all correspond to the second SRS resource set.
  • the number of SRS resources configured in each SRS resource set is a specific number, for example, the number of SRS resources configured in each SRS resource set is a power of 2.
  • Table 5 is an application schematic table of a first TPMI field provided by this application.
  • the network device allocates two SRS resource sets to the terminal device, which are SRS resource set 0 and SRS resource set 1 respectively.
  • the SRS resource set 0 corresponds to the network device 1
  • the SRS resource set 1 corresponds to the network device 2 .
  • the first TPMI field includes the value of the first type of field and the value of the second type of field.
  • the value of the first type of field refers to the index value 0, the index value 1 and the index value 2 in Table 5.
  • the index value 0 and the index value 1 indicate that the transmission layer number is 1 layer (1 layer). Coding matrix
  • the index value 2 indicates a precoding matrix with 2 layers of transmission layers.
  • the value of the second type of field refers to the index value 3 in Table 5, and the index value 3 indicates that the terminal device transmits data using a transmit beam corresponding to a resource set on the physical uplink shared channel PUSCH.
  • the first type field value in the first TPMI field corresponds to the first SRS resource set
  • the SRS resource set corresponding to the third type field value in the second TPMI field is determined according to the field value indicated by the first TPMI field, when The first TPMI field indicates the first type field value
  • the third type field value corresponds to the second SRS resource set.
  • the first TPMI field indicates the field value 1 in the second type field value
  • the third type field value corresponds to the first SRS resource set.
  • Resource set when the first TPMI field indicates the field value 2 in the second type of field value
  • the third type of field value corresponds to the second SRS resource set.
  • the second type field value may also indicate index value 0, index value 1 or index value 2.
  • the first TPMI field may also adopt other indication methods, and the specific indication methods are not limited here.
  • the terminal device transmits data on the PUSCH by using the transmit beams corresponding to one or more resource sets according to the DCI.
  • the form of the first TPMI field is described only by taking as an example that the network device allocates two SRS resource sets to the terminal device and the first TPMI field includes three types of field values of the first type.
  • the network device may allocate more SRS resource sets to the terminal device, and the first TPMI field may include more first type field values, which are not specifically limited here.
  • Table 6 is a schematic diagram of the application of a second TPMI field provided by this application.
  • the third type field value indicates index value 0 and index value 1, and index value 0 and index value 1 respectively indicate that the number of transmission layers is 1 layer (1 layer) two different precoding matrices.
  • Scenario 1 Data is transmitted using transmit beams corresponding to multiple resource sets.
  • the resource set includes a first resource set and a second resource set. If the value of the first TPMI field is a value of the first type of field, the value of the first type of field is used to indicate the precoding matrix corresponding to the first resource set, The third type of field value is used to indicate the precoding matrix corresponding to the second resource set. Then, the terminal device confirms according to the DCI that data is transmitted by using the transmit beams corresponding to the multiple resource sets.
  • the network device configures SRS resource set 0 and SRS resource set 1 to the terminal device.
  • the SRS resource set 0 corresponds to the network device 1
  • the SRS resource set 1 corresponds to the network device 2.
  • the value of the first TPMI field is the first type field value (0, 1 or 2), that is, the first TPMI field indicates a precoding matrix corresponding to one SRS resource in the SRS resource set 0
  • the value of the second TPMI field is The value is a third-type field value (0 or 1), and the third-type field value indicates a precoding matrix corresponding to one SRS resource in the SRS resource set 1.
  • the terminal device can confirm that the terminal device needs to select the resources in the SRS resource set 0 and the SRS resource set 1 to transmit uplink data on the PUSCH, that is, the uplink data transmitted by the terminal device on the PUSCH.
  • the data is jointly received by the network device 1 and the network device 2, so as to realize the uplink diversity gain.
  • Scenario 2 Data is transmitted using a transmit beam corresponding to a single resource set.
  • the resource set includes a first resource set and a second resource set. If the value of the first TPMI field is the value of the second type of field, the SRI field or the TPC field is used to determine the identifier of a resource set, and the value of the third type of field Indicates the TPMI corresponding to a resource in a resource set.
  • the network device configures SRS resource set 0 and SRS resource set 1 to the terminal device.
  • the SRS resource set 0 corresponds to the network device 1
  • the SRS resource set 1 corresponds to the network device 2.
  • the first TPMI field indicates that the terminal device only uses the transmit beam corresponding to one SRS resource set to one network device Send upstream data. Which SRS resource set is selected specifically can interpret the SRI field or the TPC field.
  • Table 7 is another application schematic diagram of the first SRI field provided by this application.
  • Table 8 is another application schematic diagram of the second SRI field provided by this application.
  • the second TPMI field corresponds to the SRS Resource set 0 (network device 1)
  • the number of the SRI resource indicated by the second SRI field corresponds to SRS resource set 0 (network device 1). It can be seen that the set of SRS resources used by the terminal device when sending uplink data is determined according to the indications of the first TPMI field and the first SRI field.
  • Table 9 is an application schematic table of the first TPC field provided by this application.
  • Table 10 is another application schematic diagram of the second TPC field provided by this application.
  • the second TPMI field corresponds to SRS Resource set 0 (network device 1)
  • the second TPC field corresponds to SRS resource set 0 (network device 1). It can be seen that the SRS resource set corresponding to the second TPMI field and the SRS resource set corresponding to the first SRI field are determined according to the indications of the first TPMI field and the first TPC field.
  • the value of the third type of field is also used to indicate the number of transmission layers of the PUSCH.
  • the following table 11 shows the first TPMI field
  • the first type field value includes bit values 0-6,
  • the second type field value includes bit value 7
  • the following table 12 shows the second TPMI field
  • the third The class field value includes bit values 0-14.
  • the first TPMI field indicates a value from 0 to 6
  • the first TPMI field corresponds to the first SRS resource set
  • the second TPMI field corresponds to the second SRS resource set
  • the bit value of the first TPMI field is 7,
  • the SRS resource set corresponding to the second TPMI field is determined according to a preset SRI field or TPC field.
  • the second TPMI field corresponds to the first SRS resource
  • the preset SRI field/TPC field indicates a bit value of 1
  • the second TPMI field corresponds to the first SRS resource.
  • the following table 14 shows the first TPMI field
  • the first type field value includes bit values 0-2
  • the second type field value includes bit value 3
  • the following table 15 shows the second TPMI field
  • the third The class field value includes bit values 0-3.
  • a preset SRI field/TPC field is used to indicate the SRS resource set index value.
  • the first SRI field is directed to non-codebook transmission, as shown in Table 17 below is the first SRI field, the first type field value includes bit values 0-2, and the second type field value includes bit value 3, as shown in Table 18 below
  • the second SRI field is shown, and the third type of field value includes bit values 0-5.
  • the bit value of the first SRI field is one of 0-2
  • the first SRI field corresponds to the first SRS resource set
  • the second SRI field corresponds to the second SRS resource set
  • the SRS resource set corresponding to the second SRI field is determined according to a preset TPC field.
  • Table 16 when the preset bit value of the TPC field is 0, the second SRI field corresponds to the first SRS resource, and when the preset bit value of the TPC field is 1, the second SRI field corresponds to the second SRS resource.
  • the first TPMI field may only indicate TPMI without indicating the number of transport layers (rank), and the second TPMI field
  • the third type of field value in can indicate the number of transport layers and TPMI at the same time (rank+TPMI), and the rank of the first TPMI field follows the indication of the second TPMI. For example, if the second TPMI field indicates 1 layer (bit 0 or 1), the TPMI indicated by the first TPMI field is also 1 layer.
  • the reason why the first TPMI field is selected to indicate that the terminal device sends uplink data to the network device through one or more resource sets is because the second TPMI field may include an indication of rank+TPMI, while the first TPMI field only includes indication of TPMI. Therefore, the first TPMI field may carry additional indication information for indicating whether the terminal device sends uplink data to the network device through one or more SRS resource sets.
  • the two information indication methods provided in this application can be applied to switching scenarios.
  • the network device When the network device is switched from single-station reception to multi-station reception, the network device can send a DCI indication similar to the DCI described in scenario 1 to the terminal device.
  • the terminal device sends uplink data to multiple network devices on the PUSCH.
  • the network device may send a DCI similar to the DCI described in scenario 2 to the terminal device to instruct the terminal device to send uplink data to a single network device on the PUSCH.
  • the bit values of the SRI field, the TPMI field and/or the TPC field mentioned in the above method examples may be other values than those shown in the above table.
  • the bit values included in each field have no order relation.
  • the bit value of the SRI field in Table 1 may be other values than 0, 1, 2, and 3, such as other values such as 5, 8, 12, and 6, which are not specifically limited here.
  • the DCI received by the terminal device includes a first TPMI field and a second TPMI field
  • the DCI includes a first transmission precoding matrix indication TPMI field
  • the first TPMI field includes the first type field value and The second type of field value
  • the second TPMI field includes the third type of field value
  • the first type of field value and the third type of field value are used to indicate the TPMI corresponding to the resource in the resource set
  • the second type of field value is used to indicate the terminal equipment.
  • On the physical uplink shared channel PUSCH data is transmitted using a transmit beam corresponding to a resource set.
  • the terminal device may determine the number of resource sets according to the DCI, and then transmit data on the PUSCH by using the transmit beams corresponding to one or more resource sets. In this method, the terminal device transmits data according to the resource set suitable for generating the transmission beam, which saves network resources and improves communication efficiency.
  • the above examples provide different implementations of an information indication method.
  • the following provides an information indication apparatus 40.
  • the information indication apparatus 40 is configured to perform the steps performed by the terminal device in the above examples.
  • the steps and the corresponding beneficial effects can be understood by referring to the above-mentioned corresponding examples, which will not be repeated here.
  • the information indicating device 40 includes:
  • a receiving unit 401 is configured to receive downlink control information DCI sent by a network device, where the DCI includes a first sounding reference signal indication SRI field and a second SRI field, and a value of the first SRI field includes a first type field value and a second SRI field.
  • the processing unit 402 is configured to transmit data by using one or more beams corresponding to the resource sets on the physical uplink shared channel PUSCH according to the DCI.
  • the resource set includes a first resource set and a second resource set, and if the value of the first SRI field is the value of the first type of field, the value of the first type of field is used for Indicates the identifier of the SRS in the first resource set, and the third type field value is used to indicate the identifier of the SRS in the second resource set.
  • the resource set includes a first resource set and a second resource set
  • the second type field value includes a first value and a second value
  • the third type field value is used to indicate the identifier of the SRS in the first resource set
  • the third type field value indicates The identifier of the SRS in the second resource set.
  • the above examples provide different implementations of the information indicating apparatus 40, and the following provides an information indicating apparatus 50, as shown in FIG. 5, the information indicating apparatus 50 is used to execute the steps performed by the terminal device in the above The execution steps and the corresponding beneficial effects can be understood with reference to the above-mentioned corresponding examples, which will not be repeated here.
  • the information indicating device 50 includes:
  • a receiving unit 501 configured to receive downlink control information DCI sent by a network device, the DCI includes a first precoding matrix TPMI field, the first TPMI field includes a first type field value and a second type field value, the The second TPMI field includes a third-type field value, the first-type field value and the third-type field value are used to indicate the TPMI corresponding to the resource in the resource set, and the second-type field value is used to indicate the terminal device Use a beam corresponding to a resource set to transmit data on the physical uplink shared channel PUSCH;
  • a processing unit 502 configured to transmit data on the PUSCH by using beams corresponding to one or more resource sets according to the DCI.
  • the resource set includes a first resource set and a second resource set, and if the value of the first TPMI field is the value of the first type of field, the value of the first type of field is used for Indicates the TPMI corresponding to the resource in the first resource set, and the third type field value is used to indicate the TPMI corresponding to the resource in the second resource set.
  • the resource set includes a first resource set and a second resource set, and if the value of the first TPMI field is the value of the second type of field, the SRI field or the TPC field is used to determine the The identifier of the one resource set, the third type field value indicates the TPMI corresponding to the resource in the one resource set.
  • the value of the third type field is also used to indicate the number of transmission layers of the PUSCH.
  • the above examples provide different implementations of the information indicating apparatus 50, and the following provides an information indicating apparatus 60, as shown in FIG. 6, the information indicating apparatus 60 is configured to execute the steps performed by the network device in the above The execution steps and the corresponding beneficial effects can be understood by referring to the above-mentioned corresponding examples, which will not be repeated here.
  • the information indicating device 60 includes:
  • a processing unit 601 configured to determine downlink control information DCI, where the DCI includes a first sounding reference signal indication SRI field and a second SRI field, and the value of the first SRI field includes a first-type field value and a second-type field value, the value of the second SRI field includes a third type field value, the first type field value and the third type field value are used to indicate the identifier of the SRS included in the resource set, the second type field value The value is used to indicate the identity of the resource set.
  • a sending unit 602 configured to send the DCI to the terminal device.
  • the resource set includes a first resource set and a second resource set, and if the value of the first SRI field is the value of the first type of field, the value of the first type of field is used for Indicates the identifier of the SRS in the first resource set, and the third type field value is used to indicate the identifier of the SRS in the second resource set.
  • the resource set includes a first resource set and a second resource set
  • the second type field value includes a first value and a second value
  • the third type field value is used to indicate the identifier of the SRS in the first resource set
  • the third type field value indicates The identifier of the SRS in the second resource set.
  • the above examples provide different implementations of the information indicating apparatus 60, and the following provides an information indicating apparatus 70, as shown in FIG. 7, the information indicating apparatus 70 is used to execute the steps performed by the network device in the above The execution steps and the corresponding beneficial effects can be understood with reference to the above-mentioned corresponding examples, which will not be repeated here.
  • the information indicating device 70 includes:
  • a processing unit 701 configured to determine downlink control information DCI, where the DCI includes a first precoding matrix TPMI field, the first TPMI field includes a first-type field value and a second-type field value, and the second TPMI field It includes a third type of field value, the first type of field value and the third type of field value are used to indicate the TPMI corresponding to the resource in the resource set, and the second type of field value is used to indicate that the terminal device is physically Use a beam corresponding to a resource set to transmit data on the uplink shared channel PUSCH;
  • a sending unit 702 configured to send the DCI to the terminal device.
  • the resource set includes a first resource set and a second resource set, and if the value of the first TPMI field is the value of the first type of field, the value of the first type of field is used for Indicates the TPMI corresponding to the resource in the first resource set, and the third type field value is used to indicate the TPMI corresponding to the resource in the second resource set.
  • the resource set includes a first resource set and a second resource set, and if the value of the first TPMI field is the value of the second type of field, the sounding reference signal indicates the SRI field or the TPC field. It is used to determine the identifier of the one resource set, and the value of the third type field indicates the TPMI corresponding to the resources in the one resource set.
  • the value of the third type field is also used to indicate the number of transmission layers of the PUSCH.
  • the embodiment of the present application further provides a communication apparatus 800, where the communication apparatus 800 may be a terminal device or a chip.
  • the communication apparatus 800 may be configured to perform the operations performed by the terminal device in the foregoing method embodiments.
  • FIG. 8 shows a schematic diagram of the internal structure of modules included in a terminal device. Easy to understand and easy to illustrate.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control terminal equipment, execute software programs, and process data of software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit with a transceiver function may be regarded as a transceiver unit of the terminal device, and the processor with a processing function may be regarded as a processing unit of the terminal device.
  • the terminal device includes a transceiver unit 801 and a processing unit 802 .
  • the transceiver unit 801 may also be referred to as a transceiver, a transceiver, a transceiver, or the like.
  • the processing unit 802 may also be referred to as a processor, a processing board, a processing module, a processing device, or the like.
  • the device for implementing the receiving function in the transceiver unit 801 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 801 may be regarded as a transmitting unit, that is, the transceiver unit 801 includes a receiving unit and a transmitting unit.
  • the transceiver unit may also sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the transceiver unit 801 is configured to perform a receiving operation of a terminal device.
  • the processing unit 802 is configured to perform processing actions on the terminal device side.
  • FIG. 8 is only an example and not a limitation, and the above-mentioned terminal device including a transceiver unit and a processing unit may not depend on the structure shown in FIG. 8 .
  • the chip When the communication device 800 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor or a microprocessor or an integrated circuit integrated on the chip.
  • the input circuit can be an input pin, the output circuit can be an output pin, and the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver, the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by a transmitter, and the input circuit and output
  • the circuits can be different circuits or the same circuit, in which case the circuit is used as an input circuit and an output circuit respectively at different times.
  • the network device 900 includes: a processor 902 , a communication interface 903 , and a memory 901 .
  • a bus 904 may be included.
  • the communication interface 903, the processor 902 and the memory 901 can be connected to each other through a bus 904;
  • the bus 904 can be a Peripheral Component Interconnect (PCI) bus or an extended industry standard architecture (EISA) bus etc.
  • PCI Peripheral Component Interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 9, but it does not mean that there is only one bus or one type of bus.
  • the network device 900 can implement the functions of the information indicating device 60 or the information indicating device 70 in the example shown in FIG. 6 or FIG. 7 .
  • the processor 902 and the communication interface 903 can perform corresponding operations of the network device in the above method examples.
  • the memory 901 may be a volatile memory (volatile memory), such as random-access memory (RAM); or a non-volatile memory (non-volatile memory), such as a read-only memory (read-only memory).
  • volatile memory such as random-access memory (RAM); or a non-volatile memory (non-volatile memory), such as a read-only memory (read-only memory).
  • ROM read-only memory
  • flash memory flash memory
  • HDD hard disk drive
  • solid-state drive solid-state drive
  • the processor 902 is the control center of the controller, which can be a central processing unit (CPU), a specific integrated circuit (application specific integrated circuit, ASIC), or is configured to implement the examples provided in this application.
  • One or more integrated circuits such as: one or more digital signal processors (digital signal processors, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA).
  • the communication interface 903 is used to communicate with other devices.
  • the processor 902 may perform the operations performed by the information indicating device 60 or the information indicating device 70 in the examples shown in the foregoing FIG. 6 and FIG. 7 , and details are not repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, read-only memory), random access memory (RAM, random access memory), magnetic disk or optical disk and other media that can store program codes .
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, read-only memory), random access memory (RAM, random access memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请中提供了一种信息指示方法以及相关设备,终端设备接收的DCI中包括第一SRI字段和第二SRI字段,第一SRI字段的值包括第一类字段值和第二类字段值,第二SRI字段的值包括第三类字段值,第一类字段值和第三类字段值可以用于指示资源集合中包括的SRS的标识,第二类字段值用于指示资源集合的标识。终端设备可以根据DCI确定资源集合的数量,进而,在PUSCH上使用一个或多个资源集合对应的发送波束传输数据。该方法中,终端设备根据适合生成发送波束的资源集合传输数据,节约了网络资源,提升了通信效率。

Description

一种信息指示方法以及装置
本申请要求于2021年4月6日提交中国国家知识产权局、申请号为202110369029.7、发明名称为“一种信息指示方法以及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种信息指示方法以及装置。
背景技术
终端设备在物理上行共享通道(physical uplink shared channel,PUSCH)上向网络设备发送数据时,终端设备可以在不同时域的正交频分复用技术(orthogonalfrequency division multiplexing,OFDM)符号上采用不同的预编码矩阵分别向多个不同的网络设备发送数据。通过多个不同的网络设备协作接收终端设备在PUSCH上发送的数据,可以提升终端设备的上行性能。
网络设备预先配置多个SRS资源集合,终端设备基于SRS资源集合生成发送波束用于发送PUSCH。现有技术中,无法支持动态选择适当的SRS资源集合。由于信道质量是时变的,某个SRS资源集合可能不适合生成发送波束用于发送PUSCH,若仍然基于多个SRS资源集合生成发送波束,会造成网络资源的浪费,有效指示用于生成发送波束的SRS资源集合的数量以适配当前传输信道条件是一个亟待解决的问题。
发明内容
本申请提供了一种信息指示方法以及装置,终端设备可以根据DCI确定资源集合的数量,进而,在PUSCH上使用一个或多个资源集合对应的发送波束传输数据。该方法中,终端设备根据适合生成发送波束的资源集合传输数据,节约了网络资源,提升了通信效率。
本申请第一方面提供了一种信息指示方法,终端设备接收网络设备发送的下行控制信息DCI,所述DCI中包括第一探测参考信号指示SRI字段和第二SRI字段,所述第一SRI字段的值包括第一类字段值和第二类字段值,所述第二SRI字段的值包括第三类字段值,所述第一类字段值和所述第三类字段值用于指示资源集合中包括的探测参考信号(Sounding Reference Signal,SRS)的标识,所述第二类字段值用于指示所述资源集合的标识;所述终端设备根据所述DCI在物理上行共享通道PUSCH上使用一个或多个所述资源集合对应的发送波束传输数据。
本申请中,终端设备接收的DCI中包括第一SRI字段和第二SRI字段,第一SRI字段的值包括第一类字段值和第二类字段值,第二SRI字段的值包括第三类字段值,第一类字段值和第三类字段值可以用于指示资源集合中包括的SRS的标识,第二类字段值用于指示资源集合的标识。终端设备可以根据DCI确定资源集合的数量,进而,在PUSCH上使用一个或多个资源集合对应的发送波束传输数据。该方法中,终端设备根据适合生成发送波束 的资源集合传输数据,节约了网络资源,提升了通信效率。
在第一方面的一种可能的实现方式中,所述资源集合包括第一资源集合和第二资源集合,若所述第一SRI字段的值为所述第一类字段值,所述第一类字段值用于指示所述第一资源集合中的SRS的标识,所述第三类字段值用于指示所述第二资源集合中SRS的标识。
该种可能的实现方式中,若第一SRI字段的取值为第一类字段值,即第一SRI字段指示SRS资源集合0中的一个SRS资源时,第二SRI字段的取值为第三类字段值,第三类字段值指示了SRS资源集合1中的一个SRS资源。终端设备根据DCI中的第一SRI字段和第二SRI字段可以确认终端设备需要选择SRS资源集合0和SRS资源集合1中的资源在PUSCH上传输上行数据,即该终端设备在PUSCH上传输的上行数据由网络设备1和网络设备2共同接收,以便于实现上行分集增益,进一步提升终端设备的通信质量。
在第一方面的一种可能的实现方式中,所述资源集合包括第一资源集合和第二资源集合,所述第二类字段值包括第一值和第二值,若所述第一SRI字段的值为所述第一值,所述第三类字段值用于指示所述第一资源集合中SRS的标识,若所述第一SRI字段的值为所述第二值,所述第三类字段值指示所述第二资源集合中SRS的标识。
该种可能的实现方式中,当第一SRI字段的值为第一值时,代表第一SRI字段指示了SRS资源集合0。此时,第二SRI字段中的第三类字段值分别指示了SRS资源集合0中的SRS资源0和SRS资源1。终端设备根据第一SRI字段选择了与网络设备1对应的SRS资源集合0,根据第二SRI字段选择了SRS资源集合0中的SRS资源0或SRS资源1向网络设备1传输上行数据。当第一SRI字段的值为第二值时,代表第一SRI字段指示了SRS资源集合1。此时,第二SRI字段中的第三类字段值分别指示了SRS资源集合1中的SRS资源0和SRS资源1。终端设备根据第一SRI字段选择了与网络设备2对应的SRS资源集合1,根据第二SRI字段选择了SRS资源集合1中的SRS资源0或SRS资源1向网络设备2传输上行数据。该种可能的实现方式中,网络设备可以灵活地指示终端设备通过合适的网络设备传输上行数据,避免了不适合传输数据的网络设备接收终端设备发送的上行数据,提高了网络资源的利用率。
本申请第二方面提供了一种信息指示方法,终端设备接收网络设备发送的下行控制信息DCI,所述DCI中包括第一传输预编码矩阵指示TPMI字段和第二TPMI字段,所述第一TPMI字段包括第一类字段值和第二类字段值,所述第二TPMI字段包括第三类字段值,所述第一类字段值和所述第三类字段值用于指示资源集合中的资源对应的TPMI,所述第二类字段值用于指示终端设备在物理上行共享通道PUSCH上使用一个资源集合对应的发送波束传输数据;所述终端设备根据所述DCI在所述PUSCH上使用一个或多个资源集合对应的发送波束传输数据。
本申请中,终端设备接收的DCI中包括第一TPMI字段和第二TPMI字段,DCI中包括第一TPMI字段,第一TPMI字段包括第一类字段值和第二类字段值,第二TPMI字段包括第三类字段值,第一类字段值和第三类字段值用于指示资源集合中的资源对应的TPMI,第二类字段值用于指示终端设备在物理上行共享通道PUSCH上使用一个资源集合对应的发送波束传输数据。由于资源集合与网络设备一一对应,终端设备便可以根据DCI确定资源 集合的数量,进而,在PUSCH上使用一个或多个资源集合对应的发送波束向一个或多个网络设备传输数据。
在第二方面的一种可能的实现方式中,所述资源集合包括第一资源集合和第二资源集合,若所述第一TPMI字段的值为所述第一类字段值,所述第一类字段值用于指示所述第一资源集合中的资源对应的TPMI,所述第三类字段值用于指示所述第二资源集合中的资源对应的TPMI。
该种可能的实现方式中,若第一TPMI字段的取值为第一类字段值,即第一TPMI字段指示与SRS资源集合0中的一个SRS资源对应的预编码矩阵,第二TPMI字段的取值为第三类字段值,第三类字段值指示了SRS资源集合1中的一个SRS资源对应的预编码矩阵。终端设备根据DCI中的第一TPMI字段和第二TPMI字段可以确认终端设备需要选择SRS资源集合0和SRS资源集合1中的资源在PUSCH上传输上行数据,即该终端设备在PUSCH上传输的上行数据由网络设备1和网络设备2共同接收,以便于实现上行分集增益,进一步提升终端设备的通信质量。
在第二方面的一种可能的实现方式中,所述资源集合包括第一资源集合和第二资源集合,若所述第一TPMI字段的值为所述第二类字段值,SRI字段或TPC字段用于确定所述一个资源集合的标识,所述第三类字段值指示所述一个资源集合中的资源对应的TPMI。
该种可能的实现方式中,若第一TPMI字段的取值为第二类字段值,第一TPMI字段的取值指示reserved,则第一TPMI字段指示终端设备只使用一个SRS资源集合对应的发送波束向一个网络设备发送上行数据。具体选择哪一个SRS资源集合可以解读SRI字段或发送功率指令(Transmission Power Command,TPC)字段。该种可能的实现方式中,网络设备可以灵活地指示终端设备通过合适的网络设备传输上行数据,避免了不适合传输数据的网络设备接收终端设备发送的上行数据,提高了网络资源的利用率。
在第二方面的一种可能的实现方式中,所述第三类字段值还用于指示所述PUSCH的传输层数。
该种可能的实现方式中,通过第一TPMI字段指示终端设备是通过一个或多个资源集合向网络设备发送上行数据时,为了节约网络资源,第一TPMI字段可以仅指示TPMI而不指示传输层数(rank),第二TPMI字段中的第三类字段值可以同时指示传输层数和TPMI(rank+TPMI),且第一TPMI字段的rank遵从第二TPMI的指示。例如,若第二TPMI字段指示了1层(layer),则第一TPMI字段指示的TPMI也是1 layer。本申请中,之所以选择第一TPMI字段指示终端设备是通过一个或多个资源集合向网络设备发送上行数据,是因为第二TPMI字段可以包括rank+TPMI的指示,而第一TPMI字段仅包括TPMI的指示。
本申请第三方面提供了一种信息指示方法,网络设备确定下行控制信息DCI,所述DCI中包括第一探测参考信号指示SRI字段和第二SRI字段,所述第一SRI字段的值包括第一类字段值和第二类字段值,所述第二SRI字段的值包括第三类字段值,所述第一类字段值和所述第三类字段值用于指示资源集合中包括的SRS的标识,所述第二类字段值用于指示所述资源集合的标识。所述网络设备向所述终端设备发送所述DCI。
本申请中,网络设备发送的DCI中包括第一SRI字段和第二SRI字段,第一SRI字段 的值包括第一类字段值和第二类字段值,第二SRI字段的值包括第三类字段值,第一类字段值和第三类字段值可以用于指示资源集合中包括的SRS的标识,第二类字段值用于指示资源集合的标识。终端设备可以根据DCI确定资源集合的数量,进而,在PUSCH上使用一个或多个资源集合对应的发送波束传输数据。该方法中,终端设备根据适合生成发送波束的资源集合传输数据,节约了网络资源,提升了通信效率。
在第三方面的一种可能的实现方式中,所述资源集合包括第一资源集合和第二资源集合,若所述第一SRI字段的值为所述第一类字段值,所述第一类字段值用于指示所述第一资源集合中的SRS的标识,所述第三类字段值用于指示所述第二资源集合中SRS的标识。
该种可能的实现方式中,若第一SRI字段的取值为第一类字段值,即第一SRI字段指示SRS资源集合0中的一个SRS资源时,第二SRI字段的取值为第三类字段值,第三类字段值指示了SRS资源集合1中的一个SRS资源。终端设备根据DCI中的第一SRI字段和第二SRI字段可以确认终端设备需要选择SRS资源集合0和SRS资源集合1中的资源在PUSCH上传输上行数据,即该终端设备在PUSCH上传输的上行数据由网络设备1和网络设备2共同接收,以便于实现上行分集增益,进一步提升终端设备的通信质量。
在第三方面的一种可能的实现方式中,所述资源集合包括第一资源集合和第二资源集合,所述第二类字段值包括第一值和第二值,若所述第一SRI字段的值为所述第一值,所述第三类字段值用于指示所述第一资源集合中SRS的标识,若所述第一SRI字段的值为所述第二值,所述第三类字段值指示所述第二资源集合中SRS的标识。
该种可能的实现方式中,当第一SRI字段的值为第一值时,代表第一SRI字段指示了SRS资源集合0。此时,第二SRI字段中的第三类字段值分别指示了SRS资源集合0中的SRS资源0和SRS资源1。终端设备根据第一SRI字段选择了与网络设备1对应的SRS资源集合0,根据第二SRI字段选择了SRS资源集合0中的SRS资源0或SRS资源1向网络设备1传输上行数据。当第一SRI字段的值为第二值时,代表第一SRI字段指示了SRS资源集合1。此时,第二SRI字段中的第三类字段值分别指示了SRS资源集合1中的SRS资源0和SRS资源1。终端设备根据第一SRI字段选择了与网络设备2对应的SRS资源集合1,根据第二SRI字段选择了SRS资源集合1中的SRS资源0或SRS资源1向网络设备2传输上行数据。该种可能的实现方式中,网络设备可以灵活地指示终端设备通过合适的网络设备传输上行数据,避免了不适合传输数据的网络设备接收终端设备发送的上行数据,提高了网络资源的利用率。
本申请第四方面提供了一种信息指示方法,网络设备确定下行控制信息DCI,所述DCI中包括第一传输预编码矩阵指示TPMI字段,所述第一TPMI字段包括第一类字段值和第二类字段值,所述第二TPMI字段包括第三类字段值,所述第一类字段值和所述第三类字段值用于指示资源集合中的资源对应的TPMI,所述第二类字段值用于指示所述终端设备在物理上行共享通道PUSCH上使用一个资源集合对应的发送波束传输数据;所述网络设备向所述终端设备发送所述DCI。
本申请中,网络设备发送的DCI中包括第一TPMI字段和第二TPMI字段,DCI中包括第一TPMI字段,第一TPMI字段包括第一类字段值和第二类字段值,第二TPMI字段包括 第三类字段值,第一类字段值和第三类字段值用于指示资源集合中的资源对应的TPMI,第二类字段值用于指示终端设备在物理上行共享通道PUSCH上使用一个资源集合对应的发送波束传输数据。由于资源集合与网络设备一一对应,终端设备便可以根据DCI确定资源集合的数量,进而,在PUSCH上使用一个或多个资源集合对应的发送波束向一个或多个网络设备传输数据。
在第四方面的一种可能的实现方式中,所述资源集合包括第一资源集合和第二资源集合,若所述第一TPMI字段的值为所述第一类字段值,所述第一类字段值用于指示所述第一资源集合中的资源对应的TPMI,所述第三类字段值用于指示所述第二资源集合中的资源对应的TPMI。
该种可能的实现方式中,若第一TPMI字段的取值为第一类字段值,即第一TPMI字段指示与SRS资源集合0中的一个SRS资源对应的预编码矩阵,第二TPMI字段的取值为第三类字段值,第三类字段值指示了SRS资源集合1中的一个SRS资源对应的预编码矩阵。终端设备根据DCI中的第一TPMI字段和第二TPMI字段可以确认终端设备需要选择SRS资源集合0和SRS资源集合1中的资源在PUSCH上传输上行数据,即该终端设备在PUSCH上传输的上行数据由网络设备1和网络设备2共同接收,以便于实现上行分集增益,进一步提升终端设备的通信质量。
在第四方面的一种可能的实现方式中,所述资源集合包括第一资源集合和第二资源集合,若所述第一TPMI字段的值为所述第二类字段值,探测参考信号指示SRI字段或TPC字段用于确定所述一个资源集合的标识,所述第三类字段值指示所述一个资源集合中的资源对应的TPMI。
该种可能的实现方式中,当第一SRI字段的值为第一值时,代表第一SRI字段指示了SRS资源集合0。此时,第二SRI字段中的第三类字段值分别指示了SRS资源集合0中的SRS资源0和SRS资源1。终端设备根据第一SRI字段选择了与网络设备1对应的SRS资源集合0,根据第二SRI字段选择了SRS资源集合0中的SRS资源0或SRS资源1向网络设备1传输上行数据。当第一SRI字段的值为第二值时,代表第一SRI字段指示了SRS资源集合1。此时,第二SRI字段中的第三类字段值分别指示了SRS资源集合1中的SRS资源0和SRS资源1。终端设备根据第一SRI字段选择了与网络设备2对应的SRS资源集合1,根据第二SRI字段选择了SRS资源集合1中的SRS资源0或SRS资源1向网络设备2传输上行数据。该种可能的实现方式中,网络设备可以灵活地指示终端设备通过合适的网络设备传输上行数据,避免了不适合传输数据的网络设备接收终端设备发送的上行数据,提高了网络资源的利用率。
在第四方面的一种可能的实现方式中,所述第三类字段值还用于指示所述PUSCH的传输层数。
该种可能的实现方式中,通过第一TPMI字段指示终端设备是通过一个或多个资源集合向网络设备发送上行数据时,为了节约网络资源,第一TPMI字段可以仅指示TPMI而不指示传输层数(rank),第二TPMI字段中的第三类字段值可以同时指示传输层数和TPMI(rank+TPMI),且第一TPMI字段的rank遵从第二TPMI的指示。例如,若第二TPMI字段 指示了1 layer,则第一TPMI字段指示的TPMI也是1 layer。本申请中,之所以选择第一TPMI字段指示终端设备是通过一个或多个资源集合向网络设备发送上行数据,是因为第二TPMI字段可以包括rank+TPMI的指示,而第一TPMI字段仅包括TPMI的指示。
本申请第五方面提供一种通信装置,该通信装置包括至少一个处理器,处理器用于执行该指令,该指令在被处理器执行时,使得所述终端设备执行上述第一方面或第一方面的任意可能的实现方式中的方法,或,使得所述终端设备执行上述第二方面或第二方面的任意可能的实现方式中的方法。
本申请第六方面提供一种通信装置,该通信装置包括至少一个处理器,处理器用于执行该指令,该指令在被处理器执行时,使得所述网络设备执行上述第三方面或第三方面的任意可能的实现方式中的方法,或,使得所述网络设备执行上述第四方面或第四方面的任意可能的实现方式中的方法。
本申请第七方面提供了一种计算机可读存储介质,该计算机可读存储介质存储有程序,该程序使得所述终端设备执行上述第一方面或第一方面的任意可能的实现方式中的方法,或,使得所述终端设备执行上述第二方面或第二方面的任意可能的实现方式中的方法,或,使得所述网络设备执行上述第三方面或第三方面的任意可能的实现方式中的方法,或,使得所述网络设备执行上述第四方面或第四方面的任意可能的实现方式中的方法。
本申请第八方面提供一种存储一个或多个计算机执行指令的计算机程序产品,当所述计算机执行指令被所述处理器执行时,所述处理器执行上述第一方面或第一方面任意一种可能实现方式的方法,或,所述处理器执行上述第二方面或第二方面任意一种可能实现方式的方法,或,所述处理器执行上述第三方面或第三方面任意一种可能实现方式的方法,或,所述处理器执行上述第四方面或第四方面任意一种可能实现方式的方法。
本申请第九方面提供一种芯片,该芯片包括处理器和通信界面,所述处理器与所述通信界面耦合,所述处理器用于读取指令执行上述第一方面或第一方面任意一种可能实现方式的方法,或,执行上述第二方面或第二方面任意一种可能实现方式的方法,或,执行上述第三方面或第三方面任意一种可能实现方式的方法,或,执行上述第四方面或第四方面任意一种可能实现方式的方法。
本申请第十方面提供一种通信装置,其特征在于,包括至少一个逻辑电路和输入输出接口,所述输入输出接口用于与其他设备进行通信,所述逻辑电路用于:执行上述第一方面或第一方面任意一种可能实现方式的方法,或,执行上述第二方面或第二方面任意一种可能实现方式的方法,或,执行上述第三方面或第三方面任意一种可能实现方式的方法,或,执行上述第四方面或第四方面任意一种可能实现方式的方法。
本申请第十一方面一种信息指示系统,该系统包括上述第一方面或第一方面任意一种可能实现方式中所述的终端设备,以及,包括上述第三方面或第三方面任意一种可能实现方式中所述的网络设备。
本申请第十二方面一种信息指示系统,该系统包括上述第二方面或第二方面任意一种可能实现方式中所述的终端设备,以及,包括上述第四方面或第四方面任意一种可能实现方式中所述的网络设备。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请中提供了一种信息指示方法以及相关设备,终端设备接收的DCI中包括第一SRI字段和第二SRI字段,第一SRI字段的值包括第一类字段值和第二类字段值,第二SRI字段的值包括第三类字段值,第一类字段值和第三类字段值可以用于指示资源集合中包括的SRS的标识,第二类字段值用于指示资源集合的标识。终端设备可以根据DCI确定资源集合的数量,进而,在PUSCH上使用一个或多个资源集合对应的发送波束传输数据。该方法中,终端设备根据适合生成发送波束的资源集合传输数据,节约了网络资源,提升了通信效率。
附图说明
图1为本申请提供的一种信息指示系统的一种应用示意图;
图2为本申请提供的一种信息指示方法的一种应用示意图;
图3为本申请提供的一种信息指示方法的一种应用示意图;
图4为本申请提供的一种终端设备的一种结构示意图;
图5为本申请提供的一种终端设备的另一种结构示意图;
图6为本申请提供的一种网络设备的一种结构示意图;
图7为本申请提供的一种网络设备的另一种结构示意图;
图8为本申请提供的一种终端设备的另一种结构示意图;
图9为本申请提供的一种网络设备的另一种结构示意图。
具体实施方式
下面结合附图,对本申请提供的示例进行描述,显然,所描述的示例仅仅是本申请一部分的示例,而不是全部的示例。本领域普通技术人员可知,随着技术的发展和新场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的示例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
终端设备在物理上行共享信道(physical uplink shared channel,PUSCH)上向网络设备发送数据时,终端设备可以在不同时域的正交频分复用技术(orthogonal frequency division multiplexing,OFDM)符号上采用不同的预编码矩阵分别向多个不同的网络设备发送数据。通过多个不同的网络设备协作接收终端设备在PUSCH上发送的数据,可以提升终端设备的上行性能。
网络设备预先配置多个SRS资源集合,终端设备基于SRS资源集合生成发送波束用于发送PUSCH。现有技术中,无法支持动态选择适当的SRS资源集合。由于信道质量是时变的,某个SRS资源集合可能不适合生成发送波束用于发送PUSCH,若仍然基于多个SRS资源集合生成发送波束,会造成网络资源的浪费,有效指示用于生成发送波束的SRS资源集合的数量以适配当前传输信道条件是一个亟待解决的问题。
为了解决上述方案中存在的问题,本申请中提供了一种信息指示方法以及相关设备,终端设备接收的DCI中包括第一SRI字段和第二SRI字段,第一SRI字段的值包括第一类字段值和第二类字段值,第二SRI字段的值包括第三类字段值,第一类字段值和第三类字段值可以用于指示资源集合中包括的SRS的标识,第二类字段值用于指示资源集合的标识。终端设备可以根据DCI确定资源集合的数量,进而,在PUSCH上使用一个或多个资源集合对应的发送波束传输数据。该方法中,终端设备根据适合生成发送波束的资源集合传输数据,节约了网络资源,提升了通信效率。
本申请还提供了一种信息指示系统,该信息指示系统可以应用于同构网络或异构网络。该信息指示系统可以应用于频分双工(frequency division duplexing,FDD)系统或者时分双工系统。该信息指示系统可以应用于低频场景(sub 6G),也可以用于高频场景(6G以上)。该信息指示系统可以应用于4G、5G或未来的移动通信系统。具体此处不做限定。
图1为本申请提供的一种信息指示系统的应用示意图。
请参阅图1,本申请提供的信息指示系统包括终端设备101、网络设备102和/或网络设备103。
本申请提供的信息指示系统中,终端设备101可以向网络设备102和/或网络设备103传输上行数据,终端设备传输上行数据时有两种上行传输方式,分别是基于码本的上行传输与基于非码本的上行传输,下面对两种传输方式分别进行介绍。
(1)基于码本的上行传输。
本申请中,以终端设备101向网络设备102发送上行数据为例来阐述基于非码本的上行传输过程。首先,假设网络设备102向终端设备101分配了资源集合A,资源集合A与网络设备102一一对应,终端设备101采用资源集合A中的SRS向网络设备102发送消息。网络设备102根据终端设备发送的SRS进行信道测量,选择出其中最优的SRS生成SRI与TPMI。该SRI指示了该最优的SRS资源的索引值,该TPMI指示了该最优的SRS资源上传输SRS对应的发送天线用于传输上行数据时所使用的预编码矩阵,也就是说,上行数据传输的发送波束是基于SRI和TPMI指示信息联合确定的。终端设备101可以根据该SRI中指示的索引值以及TPMI中指示的预编码矩阵在PUSCH上向网络设备102传输上行数据。 此时,我们可以说,该PUSCH或者该PUSCH的发送波束对应了SRI指示的SRS资源。
(2)基于非码本的上行传输。
本申请中,以终端设备101向网络设备103发送上行数据为例来阐述基于非码本的上行传输过程。基于非码本的上行传输利用了上下行信道之间的互异性,终端设备101向网络设备103传输上行数据时没有预定义码本。终端设备101对网络设备103发送的下行信号进行测量,确定至少一个候选的预编码。假设网络设备103向终端设备101分配了资源集合B,终端设备101采用资源集合B中的SRS通过多个候选的预编码向网络设备103发送消息。其中,一个SRS对应一个候选预编码,网络设备103从接收到的多个SRS中选择出最优的SRS,并通过SRI将该最优的SRS的索引值指示给终端设备101。终端设备101根据SRI可以确定出该最优的SRS的索引值以及与该最优的SRS对应的发送预编码矩阵,进而在PUSCH上向网络设备103发送上行数据。
本申请中,该终端设备101可以接收网络设备102和/或网络设备103发送的DCI。可选的,DCI中可以包括第一探测参考信号指示SRI字段和第二SRI字段,第一SRI字段的值包括第一类字段值和第二类字段值,第二SRI字段的值包括第三类字段值,第一类字段值和第三类字段值用于指示SRS资源集合中包括的SRS的标识,第二类字段值用于指示资源集合的标识。可选的,DCI中可以包括第一传输预编码矩阵指示(Transmission Precoding Matrix Indication,TPMI)字段和第二TPMI字段。第一TPMI字段包括第一类字段值和第二类字段值,第二TPMI字段包括第三类字段值,第一类字段值和第三类字段值用于指示SRS资源集合中的资源对应的TPMI,第二类字段值用于指示终端设备在PUSCH上使用一个SRS资源集合对应的发送波束传输数据。本申请中,终端设备101可以根据DCI确定终端设备所使用的资源集合的数量,进而,终端设备101可以根据DCI在PUSCH上使用一个或多个资源集合对应的发送波束向网络设备102和/或网络设备103传输数据。
本申请中,可选的,图1仅以一个终端设备和两个网络设备为例进行示意性说明。实际应用中,本申请提供的信息指示系统还可以包括比图1中所示的更多的终端设备和网络设备,本申请对终端设备以及网络设备的数目不进行限定。
本申请中,上述示例中信息指示系统中所提及的网络设备可以是任意一种具有无线收发功能的设备。网络设备包括基站(base station,BS),可以是一种部署在无线接入网中能够和终端设备进行无线通信的设备。基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。本申请实施例涉及到的基站可以是5G系统中的基站或LTE系统中的基站,其中,5G系统中的基站还可以称为发送接收点(transmission reception point,TRP)或下一代节点B(generation Node B,gNB或gNodeB)。本申请中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中或者和网络设备匹配使用。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请中,上述示例中信息指示系统中所提及的终端设备可以是指向用户提供语音和 /或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。终端设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与网络设备交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端(remote terminal)、接入终端(access terminal)、用户代理(user agent)、用户设备(user device)、或用户装备(user equipment)、用户站、远方站、用户终端(terminal equipment,TE)、终端、无线通信设备以及用户代理或用户装置。另外,终端设备也可以是用于实现UE功能的芯片系统。具体此处不做限定。
本申请提供的信息指示系统中,终端设备接收的DCI中包括第一SRI字段和第二SRI字段,第一SRI字段的值包括第一类字段值和第二类字段值,第二SRI字段的值包括第三类字段值,第一类字段值和第三类字段值可以用于指示资源集合中包括的SRS的标识,第二类字段值用于指示资源集合的标识。终端设备可以根据DCI确定资源集合的数量,进而,在PUSCH上使用一个或多个资源集合对应的发送波束向一个或多个网络设备传输数据,节约了网络资源。
基于图1所描述的系统,对本申请提供的第一种信息指示方法进行描述。
图2为本申请提供的一种信息指示方法的应用示意图。
请参阅图2,本申请提供的信息指示方法的一个方法示例包括步骤201至步骤202。
终端设备接收网络设备发送的下行控制信息DCI。
本申请中,网络设备可以向终端设备分配多个资源集合。每个SRS资源集合中包括至少一个SRS资源,网络设备可以选择该资源集合中接收到的SRS指示终端设备向网络设备发送数据时的发送波束。应理解的,不同SRS资源集合对应的用于PUSCH传输的发送波束不同。终端设备接收网络设备发送的DCI,DCI中包括的每个SRI字段可以指示一个资源集合中的SRS的索引值,此外,SRI还可以指示资源集合的标识。
可选的,每一个SRS资源集合与一个网络设备相对应,即,网络设备会接收与之对应的特定SRS资源集合上发送的SRS并做测量。进一步的,网络设备会接收根据与之对应的特定SRS资源集合生成的发送波束对应的PUSCH传输。
可选的,不同的SRS资源集合对应了不同的SRS发送功率控制参数。其中,发送功率控制参数用于使终端设备确定SRS发送功率。
通过本申请方案,终端设备可以根据SRI指示确定PUSCH上发送波束对应的SRS资源集合的数量。当第一SRI字段和第二SRI字段分别指示了第一类字段值和第三类字段值时,PUSCH上发送波束对应的SRS资源集合的数量为2,当第一SRI字段和第二SRI字段分别指示了第二类字段值和第三类字段值时,PUSCH上发送波束对应的SRS资源集合的数量为1,且发送波束对应的SRS资源集合是根据第二类字段值的指示确定的。
本申请中,DCI中包括第一探测参考信号指示SRI字段和第二SRI字段,第一SRI字段的值包括第一类字段值和第二类字段值,第二SRI字段的值包括第三类字段值,第一类字段值和第三类字段值用于指示资源集合中包括的SRS的标识,第二类字段值用于指示资源集合的标识。
可选的,第一SRI字段中的第一类字段值对应第一SRS资源集合,第二SRI字段中的第三类字段值对应的SRS资源集合根据第一SRI字段指示的字段值确定,当第一SRI字段指示第一类字段值,第三类字段值对应第二SRS资源集合,当第一SRI字段指示第二类字段值中的字段值1,第三类字段值对应的第一SRS资源集合,当第一SRI字段指示第二类字段值中的字段值2,第三类字段值对应的第二SRS资源集合。
可选的,第一TPMI字段和第一TPC字段对应第一SRS资源集合,第二TPMI字段和第二TPC字段对应第二SRS资源集合。当第一SRI字段指示第一类字段值,第三类字段值对应第二SRS资源集合,第一TPMI字段、第一TPC字段和第二TPMI字段、第二TPC字段均生效;当第一SRI字段指示第二类字段值中的字段值1,第三类字段值对应的第一SRS资源集合,且第一TPMI字段、第一TPC字段生效;当第一SRI字段指示第二类字段值中的字段值2,第三类字段值对应的第二SRS资源集合,且第二TPMI字段、第二TPC字段生效。
可选的,每个SRS资源集合中配置的SRS资源为特定数量时,例如,每个SRS资源集合中配置的SRS资源数量为2的幂次方。
表1为本申请提供的一种第一SRI字段的应用示意表。
请参阅表1,示例性的,假设网络设备向终端设备分配了两个SRS资源集合,分别是SRS资源集合0与SRS资源集合1。其中,SRS资源集合0对应网络设备1,SRS资源集合1对应网络设备2,也就是,网络设备1接收SRS资源集合0,网络设备2接收SRS资源集合1。SRS资源集合0和SRS资源集合1中均包括SRS资源0和SRS资源1两个资源。
SRI比特值 SRI(s)
0 SRS资源0(SRS资源集合0)
1 SRS资源1(SRS资源集合0)
2 SRS资源集合0
3 SRS资源集合1
表1
本申请中,第一SRI字段中包括第一类字段值和第二类字段值。第一类字段值便是指图3中的索引值0和索引值1,索引值0指示了SRS资源集合0中的SRS资源0。索引值1指示了SRS资源集合1中的SRS资源1。第二类字段值便是指图3中的索引值2和索引值3,索引值2指示了SRS资源集合0。索引值1指示了SRS资源集合1。
本申请中,可选的,也可以是第二类字段值指示索引值0和索引值1,第一类字段值指示索引值2和索引值3,第一SRI字段还可以采用其他指示方式,具体的指示方式此处不做限定。
本申请中,仅以网络设备向终端设备分配两个SRS资源集合、以及SRS资源集合0中 包括两个SRS资源为例进行说明第一SRI字段的形式。可选的,网络设备可以向终端设备分配更多的SRS资源集合,SRS资源集合中也可以包括更多的SRS资源,具体此处不做限定。
表2为本申请提供的一种第二SRI字段的应用示意表。
请参阅表2,示例性的,第二SRI字段中,第三类字段值指示索引值0和索引值1,索引值0和索引值1分别指示SRS资源0与SRS资源1,具体SRS资源0和SRS资源1属于哪一个SRS资源集合则需要根据第一SRI字段进行确认。
Figure PCTCN2022085092-appb-000001
表2
202、终端设备根据DCI在物理上行共享信道PUSCH上使用一个或多个资源集合对应的发送波束传输数据。
本申请中,可选的,一个资源集合可以对应一组发送波束,一个资源集合也可以对应多组发送波束,具体此处不做限定。
可选的,使用一个SRS资源集合对应的发送波束传输数据可以理解为单站接收模式或者单天线面板接收模式,使用两个SRS资源集合对应的发送波束传输数据可以理解为多站接收模式或者多天线面板接收模式。
可选的,PUSCH传输占用了第一时频资源和第二时频资源,当PUSCH上使用两个SRS资源集合对应的发送波束传输数据时,第一时频资源对应第一发送波束,第二时频资源对应第二发送波束。第一时频资源和第二时频资源还可以是第一空域/波束域资源和第二空域/波束域资源,或者第一时频资源和第二时频资源还可以是第一码域资源和第二码域资源。
本申请提供的信息指示方法中,终端设备接收的DCI中包括第一SRI字段和第二SRI字段,第一SRI字段的值包括第一类字段值和第二类字段值,第二SRI字段的值包括第三类字段值,第一类字段值和第三类字段值可以用于指示资源集合中包括的SRS的标识,第二类字段值用于指示资源集合的标识。通过本申请,终端设备可以根据第一SRI字段的指示信息确定在PUSCH上使用一个或多个资源集合对应的发送波束向一个或多个网络设备传输数据。从而,使得网络设备可以动态切换单站接收模式和多站接收模式。
本申请中,终端设备根据DCI确认使用一个还是多个资源集合对应的发送波束传输数据时,存在具体的判断方式,该种具体的判断方式将在下面的实施例中进行详细说明。
场景1:采用多个资源集合对应的发送波束传输数据。
本申请中,资源集合包括第一资源集合和第二资源集合,若第一SRI字段的值为第一类字段值,第一类字段值用于指示第一资源集合中的SRS的标识,第三类字段值用于指示第二资源集合中SRS的标识。则终端设备根据DCI确认使用多个资源集合对应的发送波束 传输数据。
示例性的,请参阅图3和图4,网络设备向终端设备配置SRS资源集合0和SRS资源集合1。其中,SRS资源集合0与网络设备1对应,SRS资源集合1与网络设备2对应。第一SRI字段可以从SRS资源集合0中选择指示一个SRS资源,第一SRI字段也可以指示SRS资源集合0或SRS资源集合1。第二SRI字段从SRS资源集合0或SRS资源集合1中选择指示一个SRS资源。
若第一SRI字段的取值为第一类字段值(0或1),即第一SRI字段指示SRS资源集合0中的一个SRS资源时,第二SRI字段的取值为第三类字段值(0或1),第三类字段值指示了SRS资源集合1中的一个SRS资源。终端设备根据DCI中的第一SRI字段和第二SRI字段可以确认终端设备需要选择SRS资源集合0和SRS资源集合1中的资源在PUSCH上传输上行数据,即该终端设备在PUSCH上传输的上行数据由网络设备1和网络设备2共同接收,以便于实现上行分集增益。
场景2:采用单个资源集合对应的发送波束传输数据。
本申请中,资源集合包括第一资源集合和第二资源集合,第二类字段值包括第一值和第二值,若第一SRI字段的值为第一值,第三类字段值用于指示第一资源集合中SRS的标识,若第一SRI字段的值为第二值,第三类字段值指示第二资源集合中SRS的标识。
示例性的,请参阅图3和图4,网络设备向终端设备配置SRS资源集合0和SRS资源集合1。其中,SRS资源集合0与网络设备1对应,SRS资源集合1与网络设备2对应。第一SRI字段可以从SRS资源集合0中选择指示一个SRS资源,第一SRI字段也可以指示SRS资源集合0或SRS资源集合1。第二SRI字段从SRS资源集合0或SRS资源集合1中选择指示一个SRS资源。
若第一SRI字段的取值为第二类字段值,第二类字段值包括第一值(2)和第二值(3),第一值(2)指示SRS资源集合0,第二值(3)指示SRS资源集合1。第二SRI字段中的第三类字段值所选择的SRS资源属于哪一个资源集合由第一SRI字段的值决定。
当第一SRI字段的值为第一值(2)时,代表第一SRI字段指示了SRS资源集合0。此时,第二SRI字段中的第三类字段值(0和1)分别指示了SRS资源集合0中的SRS资源0和SRS资源1。终端设备根据第一SRI字段选择了与网络设备1对应的SRS资源集合0,根据第二SRI字段选择了SRS资源集合0中的SRS资源0或SRS资源1向网络设备1传输上行数据。
当第一SRI字段的值为第二值(3)时,代表第一SRI字段指示了SRS资源集合1。此时,第二SRI字段中的第三类字段值(0和1)分别指示了SRS资源集合1中的SRS资源0和SRS资源1。终端设备根据第一SRI字段选择了与网络设备2对应的SRS资源集合1,根据第二SRI字段选择了SRS资源集合1中的SRS资源0或SRS资源1向网络设备2传输上行数据。
表3为本申请提供的第一SRI字段的另一种应用示意表。
表4为本申请提供的第二SRI字段的另一种应用示意表。
请参阅表3和表4,本申请中,可选的,当每个SRS资源集合中配置的SRS资源为特 定数量时,例如,每个SRS资源集合中配置的SRS资源数量不为2的幂次方,两个SRI指示中分别包括一个状态(reserved)用于指示网络设备。具体如图5所示,当配置了三个SRS资源,第一SRI字段和第二SRI字段的索引值中前三个状态分别指示三个SRS资源,还包括一个状态用于指示终端设备不使用该SRI字段对应的资源集合发送上行数据。当两个SRI字段均指示到前三个状态时,隐含表明当前为多网络设备接收,此时第一SRI字段指示的SRS资源为SRS资源集合0中选择的SRS资源,第二SRI字段中的三个状态用于指示从SRS资源集合1中选择SRS资源;当两个SRI字段中存在一个SRI字段指示到最后一个状态时,隐含表明当前为单网络设备接收。此时,SRI字段和SRS资源集合可以认为是一一对应的,第一SRI字段与第一SRS资源集合对应,第二SRI字段与第二SRS资源集合对应。此时,SRI字段和网络设备可以认为是一一对应的,第一SRI字段与第一网络设备对应,第二SRI字段与第二网络设备对应。
SRI比特值 SRI(s)
0 SRS资源0(SRS资源集合0)
1 SRS资源1(SRS资源集合0)
2 SRS资源2(SRS资源集合0)
3 reserved
表3
SRI比特值 SRI(s)
0 SRS资源0(SRS资源集合1)
1 SRS资源1(SRS资源集合1)
2 SRS资源2(SRS资源集合1)
3 reserved
表4
基于图1所描述的系统,对本申请提供的第二种信息指示方法进行描述。
图3为本申请提供的一种信息指示方法的应用示意图。
请参阅图3,本申请提供的另一种信息指示方法的一个方法示例包括步骤301至步骤302。
301、终端设备接收网络设备发送的下行控制信息DCI。
本申请中,网络设备可以向终端设备分配多个资源集合。每个SRS资源集合中包括至少一个SRS资源,网络设备可以选择该资源集合中接收到的SRS指示终端设备向网络设备发送数据时的发送波束。应理解的,不同SRS资源集合对应的用于PUSCH传输的发送波束不同。终端设备接收网络设备发送的DCI,DCI中包括SRI字段、TPMI字段和TPC字段,每一个SRS资源集合对应一个SRI字段、TPMI字段和TPC字段。SRI字段指示最优的SRS资源的变化,TPMI会基于SRI的指示选择预编码矩阵,TPC会指示相应的功率调整值。
本申请中,DCI中包括第一传输预编码矩阵指示TPMI字段,第一TPMI字段包括第一 类字段值和第二类字段值,第二TPMI字段包括第三类字段值,第一类字段值和第三类字段值用于指示资源集合中的资源对应的TPMI,第二类字段值用于指示终端设备在物理上行共享信道PUSCH上使用一个资源集合对应的发送波束传输数据。
可选的,每一个SRS资源集合与一个网络设备相对应,即,网络设备会接收与之对应的特定SRS资源集合上发送的SRS并做测量。进一步的,网络设备会接收根据与之对应的特定SRS资源集合生成的发送波束对应的PUSCH传输。
可选的,不同的SRS资源集合对应了不同的SRS发送功率控制参数。其中,发送功率控制参数用于使终端设备确定SRS发送功率。
通过本申请方案,终端设备可以根据TPMI指示确定PUSCH上发送波束对应的SRS资源集合的数量。当第一TPMI字段和第二TPMI字段分别指示了第一类字段值和第三类字段值时,PUSCH上发送波束对应的SRS资源集合的数量为2,当第一TPMI字段和第二TPMI字段分别指示了第二类字段值和第三类字段值时,PUSCH上发送波束对应的SRS资源集合的数量为1,且发送波束对应的SRS资源集合是根据预设的一个SRI字段或者一个TPC字段的指示确定的。
可选的,当预设的第一SRI字段/第一TPC字段指示了第一SRS资源集合,则,第二TPMI字段、第二SRI字段和第二TPC字段均对应第一SRS资源集合;当预设的第一SRI字段/第一TPC字段指示了第二SRS资源集合,则,第二TPMI字段、第二SRI字段和第二TPC字段均对应第二SRS资源集合。
可选的,每个SRS资源集合中配置的SRS资源为特定数量时,例如,每个SRS资源集合中配置的SRS资源数量为2的幂次方。
表5为本申请提供的一种第一TPMI字段的应用示意表。
请参阅表5,示例性的,假设网络设备向终端设备分配了两个SRS资源集合,分别是SRS资源集合0与SRS资源集合1。其中,SRS资源集合0对应网络设备1,SRS资源集合1对应网络设备2。
TPMI比特值 非相干码本
0 1 layer:TPMI=0
1 1 layer:TPMI=1
2 2 layer:TPMI=0
3 reserved
表5
本申请中,第一TPMI字段中包括第一类字段的值和第二类字段的值。第一类字段的值便是指表5中的索引值0、索引值1和索引值2,索引值0、索引值1指示了传输层数为1层(1 layer)的两种不同的预编码矩阵,索引值2指示了传输层数为2层(2 layer)的一种预编码矩阵。第二类字段的值便是指表5中的索引值3,索引值3指示了终端设备在物理上行共享信道PUSCH上使用一个资源集合对应的发送波束传输数据。
可选的,第一TPMI字段中的第一类字段值对应第一SRS资源集合,第二TPMI字段中的第三类字段值对应的SRS资源集合根据第一TPMI字段指示的字段值确定,当第一TPMI 字段指示第一类字段值,第三类字段值对应第二SRS资源集合,当第一TPMI字段指示第二类字段值中的字段值1,第三类字段值对应的第一SRS资源集合,当第一TPMI字段指示第二类字段值中的字段值2,第三类字段值对应的第二SRS资源集合。
本申请中,可选的,也可以是第二类字段值指示索引值0、索引值1或索引值2,第一TPMI字段还可以采用其他指示方式,具体的指示方式此处不做限定。
302、终端设备根据DCI在PUSCH上使用一个或多个资源集合对应的发送波束传输数据。
本申请中,仅以网络设备向终端设备分配两个SRS资源集合、以及第一TPMI字段包括三种第一类字段值为例进行说明第一TPMI字段的形式。可选的,网络设备可以向终端设备分配更多的SRS资源集合,第一TPMI字段可以包括更多第一类字段值,具体此处不做限定。
表6为本申请提供的一种第二TPMI字段的应用示意图。
请参阅表6,示例性的,第二TPMI字段中,第三类字段值指示索引值0和索引值1,索引值0和索引值1分别指示指示了传输层数为1层(1 layer)的两种不同的预编码矩阵。
Figure PCTCN2022085092-appb-000002
表6
场景1:采用多个资源集合对应的发送波束传输数据。
本申请中,资源集合包括第一资源集合和第二资源集合,若第一TPMI字段的值为第一类字段值,第一类字段值用于指示与第一资源集合对应的预编码矩阵,第三类字段值用于指示与第二资源集合对应的预编码矩阵。则终端设备根据DCI确认使用多个资源集合对应的发送波束传输数据。
示例性的,请参阅表5和表6,网络设备向终端设备配置SRS资源集合0和SRS资源集合1。其中,SRS资源集合0与网络设备1对应,SRS资源集合1与网络设备2对应。
若第一TPMI字段的取值为第一类字段值(0、1或2),即第一TPMI字段指示与SRS资源集合0中的一个SRS资源对应的预编码矩阵,第二TPMI字段的取值为第三类字段值(0或1),第三类字段值指示了SRS资源集合1中的一个SRS资源对应的预编码矩阵。终端设备根据DCI中的第一TPMI字段和第二TPMI字段可以确认终端设备需要选择SRS资源集合0和SRS资源集合1中的资源在PUSCH上传输上行数据,即该终端设备在PUSCH上传输的上行数据由网络设备1和网络设备2共同接收,以便于实现上行分集增益。
场景2:采用单个资源集合对应的发送波束传输数据。
本申请中,资源集合包括第一资源集合和第二资源集合,若第一TPMI字段的值为第二类字段值,SRI字段或TPC字段用于确定一个资源集合的标识,第三类字段值指示一个资源集合中的资源对应的TPMI。
示例性的,请参阅表5和表6,网络设备向终端设备配置SRS资源集合0和SRS资源集合1。其中,SRS资源集合0与网络设备1对应,SRS资源集合1与网络设备2对应。
若第一TPMI字段的取值为第二类字段值,第一TPMI字段的取值为3(reserved),则第一TPMI字段指示终端设备只使用一个SRS资源集合对应的发送波束向一个网络设备发送上行数据。具体选择哪一个SRS资源集合可以解读SRI字段或TPC字段。
表7为本申请提供的第一SRI字段的另一种应用示意表。
表8为本申请提供的第二SRI字段的另一种应用示意表。
如表7、表8所示,可选的,若第一SRI字段指示的比特0,表明当前终端设备使用SRS资源集合0对应的波束向网络设备1发送上行数据,则第二TPMI字段对应SRS资源集合0(网络设备1),第二SRI字段指示的SRI资源的编号对应SRS资源集合0(网络设备1)。由此可见,终端设备发送上行数据时所采用的SRS资源集合是根据第一TPMI字段和第一SRI字段的指示确定的。
SRI比特值 SRI
0 SRS资源0
1 SRS资源1
表7
SRI比特值 SRI
0 SRS资源集合1
1 SRS资源集合2
表8
表9为本申请提供的第一TPC字段的一种应用示意表。
表10为本申请提供的第二TPC字段的另一种应用示意表。
如表9、表10所示,可选的,若第一TPC字段指示的比特0,表明当前终端设备使用SRS资源集合0对应的波束向网络设备1发送上行数据,则第二TPMI字段对应SRS资源集合0(网络设备1),第二TPC字段对应SRS资源集合0(网络设备1)。由此可见,第二TPMI字段对应的SRS资源集合以及第一SRI字段对应的SRS资源集合是根据第一TPMI字段和第一TPC字段的指示确定的。
Figure PCTCN2022085092-appb-000003
表9
TPC比特值 累计功率/绝对功率值[dB]
0 SRS资源集合1
1 SRS资源集合2
2 -
3 -
表10
本申请中,可选的,第三类字段值还用于指示所述PUSCH的传输层数。
示例性的,如下表11所示为第一TPMI字段,第一类字段值包括比特值0-6,第二类字段值包括比特值7,如下表12所示为第二TPMI字段,第三类字段值包括比特值0-14。具体的,当第一TPMI字段指示0-6中的一个值,第一TPMI字段对应第一SRS资源集合,第二TPMI字段对应第二SRS资源集合;当第一TPMI字段的比特值为7,第二TPMI字段对应的SRS资源集合根据一个预设的SRI字段或者TPC字段确定。比如表13所示,当预设的SRI字段/TPC字段指示比特值0,第二TPMI字段对应第一SRS资源,当预设的SRI字段/TPC字段指示比特值1,第二TPMI字段对应第二SRS资源。
比特值 非相干码本
0 2 layers:TPMI=0
1 2 layer:TPMI=1
6 2 layer:TPMI=6
7 Reserved
表11 第一TPMI字段示例
比特值 非相干码本
0 1 layer:TPMI=0
1 1 layer:TPMI=1
3 1 layer:TPMI=3
4 2 layers:TPMI=0
9 2 layers:TPMI=5
10 3 layers:TPMI=0
11 4 layers:TPMI=0
12 1 layer:TPMI=13
13 2 layer:TPMI=6
14 3 layer:TPMI=1
15 Reserved
表12 第二TPMI字段示例
比特值  
0 第一SRS资源集合
1 第二SRS资源集合
表13 第一SRI字段/第一TPC字段示例
又一示例,如下表14所示为第一TPMI字段,第一类字段值包括比特值0-2,第二类字段值包括比特值3,如下表15所示为第二TPMI字段,第三类字段值包括比特值0-3。如下表16所示为预设的一个SRI字段/TPC字段,用于指示SRS资源集合索引值。
比特值 非相干码本
0 1 layers:TPMI=0
1 1 layer:TPMI=1
2 1 layer:TPMI=2
3 Reserved
表14 第一TPMI字段示例
比特值 非相干码本
0 1 layers:TPMI=0
1 1 layer:TPMI=1
2 2 layer:TPMI=0
3 1 layer:TPMI=2
表15 第二TPMI字段示例
比特值  
0 第一SRS资源集合
1 第二SRS资源集合
表16 第一SRI字段/第一TPC字段示例
本申请中的又一实施例针对非码本传输,如下表17所示为第一SRI字段,第一类字段值包括比特值0-2,第二类字段值包括比特值3,如下表18所示为第二SRI字段,第三类字段值包括比特值0-5。具体的,当第一SRI字段的比特值为0-2中的一个值,第一SRI字段对应第一SRS资源集合,第二SRI字段对应第二SRS资源集合;当第一SRI字段的比特值为3,第二SRI字段对应的SRS资源集合根据一个预设的TPC字段确定。比如表16所示,当预设的TPC字段的比特值0,第二SRI字段对应第一SRS资源,当预设的TPC字段的比特值1,第二SRI字段对应第二SRS资源。
Figure PCTCN2022085092-appb-000004
表17 第一SRI字段
比特值 SRI,配置的SRS资源数量N=3
0 SRS资源0
1 SRS资源1
2 SRS资源2
3 SRS资源0,1
4 SRS资源0,2
5 SRS资源1,2
6 Reserved
表18 第二SRI字段
通过第一TPMI字段指示终端设备是通过一个或多个资源集合向网络设备发送上行数据时,为了节约资源,第一TPMI字段可以仅指示TPMI而不指示传输层数(rank),第二TPMI字段中的第三类字段值可以同时指示传输层数和TPMI(rank+TPMI),且第一TPMI字段的rank遵从第二TPMI的指示。例如,若第二TPMI字段指示了1 layer(比特0或者1),则第一TPMI字段指示的TPMI也是1 layer。本申请中,之所以选择第一TPMI字段指示终端设备是通过一个或多个资源集合向网络设备发送上行数据,是因为第二TPMI字段可以包括rank+TPMI的指示,而第一TPMI字段仅包括TPMI的指示。从而,第一TPMI字段可以携带额外的指示信息用于指示终端设备是通过一个还是多个SRS资源集合向网络设备发送上行数据。本申请提供的两种信息指示方法可以应用与切换场景中,当网络设备由单站接收切换为多站接收时,网络设备可以向终端设备发送与场景1中所描述的DCI相类似的DCI指示终端设备在PUSCH上向多个网络设备发送上行数据。当网络设备由多站接收切换为单站接收时,网络设备可以向终端设备发送与场景2中所描述的DCI相类似的DCI指示终端设备在PUSCH上向单个网络设备发送上行数据。
本申请中,可选的,上述方法示例中提及的SRI字段、TPMI字段和/或TPC字段的比特值可以选择除上述表格中展示之外的其他值。且各字段中包括的比特值并没有顺序关系。例如,请参阅表19,表1中SRI字段的比特值可以是0、1、2、3之外的其他值,比如5、8、12、6等其他值,具体此处不做限定。
SRI比特值 SRI(s)
5 SRS资源0(SRS资源集合0)
12 SRS资源1(SRS资源集合0)
8 SRS资源集合0
6 SRS资源集合1
表19
本申请提供的信息指示系统中,终端设备接收的DCI中包括第一TPMI字段和第二TPMI字段,DCI中包括第一传输预编码矩阵指示TPMI字段,第一TPMI字段包括第一类字段值和第二类字段值,第二TPMI字段包括第三类字段值,第一类字段值和第三类字段值用于指示资源集合中的资源对应的TPMI,第二类字段值用于指示终端设备在物理上行共享信道PUSCH上使用一个资源集合对应的发送波束传输数据。终端设备可以根据DCI确定资源集合的数量,进而,在PUSCH上使用一个或多个资源集合对应的发送波束传输数据。该方法中,终端设备根据适合生成发送波束的资源集合传输数据,节约了网络资源,提升了通信效率。
上述示例提供了一种信息指示方法的不同的实施方式,下面提供了一种信息指示装置40,如图4所示,该信息指示装置40用于执行上述示例中终端设备执行的步骤,该执行步骤以及相应的有益效果具体请参照上述相应的示例进行理解,此处不再赘述,该信息指示装置40包括:
接收单元401,用于接收网络设备发送的下行控制信息DCI,所述DCI中包括第一探测参考信号指示SRI字段和第二SRI字段,所述第一SRI字段的值包括第一类字段值和第二类字段值,所述第二SRI字段的值包括第三类字段值,所述第一类字段值和所述第三类字段值用于指示资源集合中包括的SRS的标识,所述第二类字段值用于指示所述资源集合的标识;
处理单元402,用于根据所述DCI在物理上行共享通道PUSCH上使用一个或多个所述资源集合对应的波束传输数据。
一种可能的实现方式中,所述资源集合包括第一资源集合和第二资源集合,若所述第一SRI字段的值为所述第一类字段值,所述第一类字段值用于指示所述第一资源集合中的SRS的标识,所述第三类字段值用于指示所述第二资源集合中SRS的标识。
一种可能的实现方式中,所述资源集合包括第一资源集合和第二资源集合,所述第二类字段值包括第一值和第二值,若所述第一SRI字段的值为所述第一值,所述第三类字段值用于指示所述第一资源集合中SRS的标识,若所述第一SRI字段的值为所述第二值,所述第三类字段值指示所述第二资源集合中SRS的标识。
需要说明的是,上述信息指示装置40的各模块之间的信息交互、执行过程等内容,由于与本申请方法示例基于同一构思,其执行步骤与上述方法步骤的详细内容一致,可参见上述方法示例处的描述。
上述示例提供了一种信息指示装置40的不同的实施方式,下面提供了一种信息指示装置50,如图5所示,该信息指示装置50用于执行上述示例中终端设备执行的步骤,该 执行步骤以及相应的有益效果具体请参照上述相应的示例进行理解,此处不再赘述,该信息指示装置50包括:
接收单元501,用于接收网络设备发送的下行控制信息DCI,所述DCI中包括第一预编码矩阵TPMI字段,所述第一TPMI字段包括第一类字段值和第二类字段值,所述第二TPMI字段包括第三类字段值,所述第一类字段值和所述第三类字段值用于指示资源集合中的资源对应的TPMI,所述第二类字段值用于指示终端设备在物理上行共享通道PUSCH上使用一个资源集合对应的波束传输数据;
处理单元502,用于根据所述DCI在所述PUSCH上使用一个或多个资源集合对应的波束传输数据。
一种可能的实现方式中,所述资源集合包括第一资源集合和第二资源集合,若所述第一TPMI字段的值为所述第一类字段值,所述第一类字段值用于指示所述第一资源集合中的资源对应的TPMI,所述第三类字段值用于指示所述第二资源集合中的资源对应的TPMI。
一种可能的实现方式中,所述资源集合包括第一资源集合和第二资源集合,若所述第一TPMI字段的值为所述第二类字段值,SRI字段或TPC字段用于确定所述一个资源集合的标识,所述第三类字段值指示所述一个资源集合中的资源对应的TPMI。
一种可能的实现方式中,所述第三类字段值还用于指示所述PUSCH的传输层数。
需要说明的是,上述信息指示装置50的各模块之间的信息交互、执行过程等内容,由于与本申请方法示例基于同一构思,其执行步骤与上述方法步骤的详细内容一致,可参见上述方法示例处的描述。
上述示例提供了一种信息指示装置50的不同的实施方式,下面提供了一种信息指示装置60,如图6所示,该信息指示装置60用于执行上述示例中网络设备执行的步骤,该执行步骤以及相应的有益效果具体请参照上述相应的示例进行理解,此处不再赘述,该信息指示装置60包括:
处理单元601,用于确定下行控制信息DCI,所述DCI中包括第一探测参考信号指示SRI字段和第二SRI字段,所述第一SRI字段的值包括第一类字段值和第二类字段值,所述第二SRI字段的值包括第三类字段值,所述第一类字段值和所述第三类字段值用于指示资源集合中包括的SRS的标识,所述第二类字段值用于指示所述资源集合的标识。
发送单元602,用于向所述终端设备发送所述DCI。
一种可能的实现方式中,所述资源集合包括第一资源集合和第二资源集合,若所述第一SRI字段的值为所述第一类字段值,所述第一类字段值用于指示所述第一资源集合中的SRS的标识,所述第三类字段值用于指示所述第二资源集合中SRS的标识。
一种可能的实现方式中,所述资源集合包括第一资源集合和第二资源集合,所述第二类字段值包括第一值和第二值,若所述第一SRI字段的值为所述第一值,所述第三类字段值用于指示所述第一资源集合中SRS的标识,若所述第一SRI字段的值为所述第二值,所述第三类字段值指示所述第二资源集合中SRS的标识。
需要说明的是,上述信息指示装置60的各模块之间的信息交互、执行过程等内容,由于与本申请方法示例基于同一构思,其执行步骤与上述方法步骤的详细内容一致,可参 见上述方法示例处的描述。
上述示例提供了一种信息指示装置60的不同的实施方式,下面提供了一种信息指示装置70,如图7所示,该信息指示装置70用于执行上述示例中网络设备执行的步骤,该执行步骤以及相应的有益效果具体请参照上述相应的示例进行理解,此处不再赘述,该信息指示装置70包括:
处理单元701,用于确定下行控制信息DCI,所述DCI中包括第一预编码矩阵TPMI字段,所述第一TPMI字段包括第一类字段值和第二类字段值,所述第二TPMI字段包括第三类字段值,所述第一类字段值和所述第三类字段值用于指示资源集合中的资源对应的TPMI,所述第二类字段值用于指示所述终端设备在物理上行共享通道PUSCH上使用一个资源集合对应的波束传输数据;
发送单元702,用于向所述终端设备发送所述DCI。
一种可能的实现方式中,所述资源集合包括第一资源集合和第二资源集合,若所述第一TPMI字段的值为所述第一类字段值,所述第一类字段值用于指示所述第一资源集合中的资源对应的TPMI,所述第三类字段值用于指示所述第二资源集合中的资源对应的TPMI。
一种可能的实现方式中,所述资源集合包括第一资源集合和第二资源集合,若所述第一TPMI字段的值为所述第二类字段值,探测参考信号指示SRI字段或TPC字段用于确定所述一个资源集合的标识,所述第三类字段值指示所述一个资源集合中的资源对应的TPMI。
一种可能的实现方式中,所述第三类字段值还用于指示所述PUSCH的传输层数。
需要说明的是,上述信息指示装置70的各模块之间的信息交互、执行过程等内容,由于与本申请方法示例基于同一构思,其执行步骤与上述方法步骤的详细内容一致,可参见上述方法示例处的描述。
本申请实施例还提供一种通信装置800,该通信装置800可以是终端设备也可以是芯片。该通信装置800可以用于执行上述方法实施例中由终端设备所执行的操作。当该通信装置800为终端设备时,图8示出了一种终端设备包括的模块的内部结构示意图。便于理解和图示方便。如图8所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图8中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存 储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
终端设备包括收发单元801和处理单元802。收发单元801也可以称为收发器、收发机、收发装置等。处理单元802也可以称为处理器,处理单板,处理模块、处理装置等。
可选地,可以将收发单元801中用于实现接收功能的器件视为接收单元,将收发单元801中用于实现发送功能的器件视为发送单元,即收发单元801包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,收发单元801用于执行终端设备的接收操作。处理单元802用于执行终端设备侧的处理动作。
应理解,图8仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图8所示的结构。
当该通信装置800为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入/输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是不同的电路,也可以是同一电路,这种情况下该电路在不同的时刻分别用作输入电路和输出电路。
需要说明的是,上述实施例提供的通信设备800的各模块之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其带来的技术效果与本发明方法实施例相同,具体内容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
参阅图9所示,为本申请提供一种网络设备900的结构示意图,该网络设备900包括:处理器902、通信接口903、存储器901。可选的,可以包括总线904。其中,通信接口903、处理器902以及存储器901可以通过总线904相互连接;总线904可以是外围部件互连标准(Peripheral Component Interconnect,PCI)总线或扩充工业标准体系结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。该网络设备900可以实现图6或图7所示的示例中的信息指示装置60或信息指示装置70的功能。处理器902和通信接口903可以执行上述方法示例中网络设备相应的操作。
下面结合9对网络设备的各个构成部件进行具体的介绍:
其中,存储器901可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);或者非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk  drive,HDD)或固态硬盘(solid-state drive,SSD);或者上述种类的存储器的组合,用于存储可实现本申请方法的程序代码、配置文件或其他内容。
处理器902是控制器的控制中心,可以是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请提供的示例的一个或多个集成电路,例如:一个或多个数字信号处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
通信接口903用于与其他设备进行通信。
该处理器902可以执行前述图6和图7所示示例中信息指示装置60或信息指示装置70所执行的操作,具体此处不再赘述。
需要说明的是,上述网络设备900的各模块之间的信息交互、执行过程等内容,由于与本申请方法示例基于同一构思,其执行步骤与上述方法步骤的详细内容一致,可参见上述方法示例处的描述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其他的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些界面,装置或单元的间接耦合或通信连接,可以是电性,机械或其他的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,read-only memory)、随机存取存储器(RAM,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,read-only memory)、随机存取存储器(RAM,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (33)

  1. 一种信息指示方法,其特征在于,包括:
    终端设备接收网络设备发送的下行控制信息DCI,所述DCI中包括第一探测参考信号指示SRI字段和第二SRI字段,所述第一SRI字段的值包括第一类字段值和第二类字段值,所述第二SRI字段的值包括第三类字段值,所述第一类字段值和所述第三类字段值用于指示资源集合中包括的SRS的标识,所述第二类字段值用于指示所述资源集合的标识;
    所述终端设备根据所述DCI在物理上行共享通道PUSCH上使用一个或多个所述资源集合对应的发送波束传输数据。
  2. 根据权利要求1所述的信息指示方法,其特征在于,所述资源集合包括第一资源集合和第二资源集合,若所述第一SRI字段的值为所述第一类字段值,所述第一类字段值用于指示所述第一资源集合中的SRS的标识,所述第三类字段值用于指示所述第二资源集合中SRS的标识。
  3. 根据权利要求1所述的信息指示方法,其特征在于,所述资源集合包括第一资源集合和第二资源集合,所述第二类字段值包括第一值和第二值,若所述第一SRI字段的值为所述第一值,所述第三类字段值用于指示所述第一资源集合中SRS的标识,若所述第一SRI字段的值为所述第二值,所述第三类字段值指示所述第二资源集合中SRS的标识。
  4. 一种信息指示方法,其特征在于,包括:
    终端设备接收网络设备发送的下行控制信息DCI,所述DCI中包括第一传输预编码矩阵指示TPMI字段和第二TPMI字段,所述第一TPMI字段包括第一类字段值和第二类字段值,所述第二TPMI字段包括第三类字段值,所述第一类字段值和所述第三类字段值用于指示资源集合中的资源对应的TPMI,所述第二类字段值用于指示终端设备在物理上行共享通道PUSCH上使用一个资源集合对应的发送波束传输数据;
    所述终端设备根据所述DCI在所述PUSCH上使用一个或多个资源集合对应的发送波束传输数据。
  5. 根据权利要求4所述的信息指示方法,其特征在于,所述资源集合包括第一资源集合和第二资源集合,若所述第一TPMI字段的值为所述第一类字段值,所述第一类字段值用于指示所述第一资源集合中的资源对应的TPMI,所述第三类字段值用于指示所述第二资源集合中的资源对应的TPMI。
  6. 根据权利要求4所述的信息指示方法,其特征在于,所述资源集合包括第一资源集合和第二资源集合,若所述第一TPMI字段的值为所述第二类字段值,SRI字段或TPC字段用于确定所述一个资源集合的标识,所述第三类字段值指示所述一个资源集合中的资源对应的TPMI。
  7. 根据权利要求4至6所述的信息指示方法,其特征在于,所述第三类字段值还用于指示所述PUSCH的传输层数。
  8. 一种信息指示方法,其特征在于,包括:
    网络设备确定下行控制信息DCI,所述DCI中包括第一探测参考信号指示SRI字段和第二SRI字段,所述第一SRI字段的值包括第一类字段值和第二类字段值,所述第二SRI 字段的值包括第三类字段值,所述第一类字段值和所述第三类字段值用于指示资源集合中包括的SRS的标识,所述第二类字段值用于指示所述资源集合的标识;
    所述网络设备向所述终端设备发送所述DCI。
  9. 根据权利要求8所述的信息指示方法,其特征在于,所述资源集合包括第一资源集合和第二资源集合,若所述第一SRI字段的值为所述第一类字段值,所述第一类字段值用于指示所述第一资源集合中的SRS的标识,所述第三类字段值用于指示所述第二资源集合中SRS的标识。
  10. 根据权利要求8所述的信息指示方法,其特征在于,所述资源集合包括第一资源集合和第二资源集合,所述第二类字段值包括第一值和第二值,若所述第一SRI字段的值为所述第一值,所述第三类字段值用于指示所述第一资源集合中SRS的标识,若所述第一SRI字段的值为所述第二值,所述第三类字段值指示所述第二资源集合中SRS的标识。
  11. 一种信息指示方法,其特征在于,包括:
    网络设备确定下行控制信息DCI,所述DCI中包括第一传输预编码矩阵指示TPMI字段,所述第一TPMI字段包括第一类字段值和第二类字段值,所述第二TPMI字段包括第三类字段值,所述第一类字段值和所述第三类字段值用于指示资源集合中的资源对应的TPMI,所述第二类字段值用于指示所述终端设备在物理上行共享通道PUSCH上使用一个资源集合对应的发送波束传输数据;
    所述网络设备向所述终端设备发送所述DCI。
  12. 根据权利要求11所述的信息指示方法,其特征在于,所述资源集合包括第一资源集合和第二资源集合,若所述第一TPMI字段的值为所述第一类字段值,所述第一类字段值用于指示所述第一资源集合中的资源对应的TPMI,所述第三类字段值用于指示所述第二资源集合中的资源对应的TPMI。
  13. 根据权利要求11所述的信息指示方法,其特征在于,所述资源集合包括第一资源集合和第二资源集合,若所述第一TPMI字段的值为所述第二类字段值,探测参考信号指示SRI字段或TPC字段用于确定所述一个资源集合的标识,所述第三类字段值指示所述一个资源集合中的资源对应的TPMI。
  14. 根据权利要求11至13所述的信息指示方法,其特征在于,所述第三类字段值还用于指示所述PUSCH的传输层数。
  15. 一种信息指示装置,其特征在于,包括:
    接收单元,用于接收网络设备发送的下行控制信息DCI,所述DCI中包括第一探测参考信号指示SRI字段和第二SRI字段,所述第一SRI字段的值包括第一类字段值和第二类字段值,所述第二SRI字段的值包括第三类字段值,所述第一类字段值和所述第三类字段值用于指示资源集合中包括的SRS的标识,所述第二类字段值用于指示所述资源集合的标识;
    处理单元,用于根据所述DCI在物理上行共享通道PUSCH上使用一个或多个所述资源集合对应的发送波束传输数据。
  16. 根据权利要求15所述的信息指示装置,其特征在于,所述资源集合包括第一资源 集合和第二资源集合,若所述第一SRI字段的值为所述第一类字段值,所述第一类字段值用于指示所述第一资源集合中的SRS的标识,所述第三类字段值用于指示所述第二资源集合中SRS的标识。
  17. 根据权利要求15所述的信息指示装置,其特征在于,所述资源集合包括第一资源集合和第二资源集合,所述第二类字段值包括第一值和第二值,若所述第一SRI字段的值为所述第一值,所述第三类字段值用于指示所述第一资源集合中SRS的标识,若所述第一SRI字段的值为所述第二值,所述第三类字段值指示所述第二资源集合中SRS的标识。
  18. 一种信息指示装置,其特征在于,包括:
    接收单元,用于接收网络设备发送的下行控制信息DCI,所述DCI中包括第一传输预编码矩阵指示TPMI字段,所述第一TPMI字段包括第一类字段值和第二类字段值,所述第二TPMI字段包括第三类字段值,所述第一类字段值和所述第三类字段值用于指示资源集合中的资源对应的TPMI,所述第二类字段值用于指示终端设备在物理上行共享通道PUSCH上使用一个资源集合对应的发送波束传输数据;
    处理单元,用于根据所述DCI在所述PUSCH上使用一个或多个资源集合对应的发送波束传输数据。
  19. 根据权利要求18所述的信息指示装置,其特征在于,所述资源集合包括第一资源集合和第二资源集合,若所述第一TPMI字段的值为所述第一类字段值,所述第一类字段值用于指示所述第一资源集合中的资源对应的TPMI,所述第三类字段值用于指示所述第二资源集合中的资源对应的TPMI。
  20. 根据权利要求18所述的信息指示装置,其特征在于,所述资源集合包括第一资源集合和第二资源集合,若所述第一TPMI字段的值为所述第二类字段值,SRI字段或TPC字段用于确定所述一个资源集合的标识,所述第三类字段值指示所述一个资源集合中的资源对应的TPMI。
  21. 根据权利要求18至20所述的信息指示装置,其特征在于,所述第三类字段值还用于指示所述PUSCH的传输层数。
  22. 一种信息指示装置,其特征在于,包括:
    处理单元,用于确定下行控制信息DCI,所述DCI中包括第一探测参考信号指示SRI字段和第二SRI字段,所述第一SRI字段的值包括第一类字段值和第二类字段值,所述第二SRI字段的值包括第三类字段值,所述第一类字段值和所述第三类字段值用于指示资源集合中包括的SRS的标识,所述第二类字段值用于指示所述资源集合的标识;
    发送单元,用于向所述终端设备发送所述DCI。
  23. 根据权利要求22所述的信息指示装置,其特征在于,所述资源集合包括第一资源集合和第二资源集合,若所述第一SRI字段的值为所述第一类字段值,所述第一类字段值用于指示所述第一资源集合中的SRS的标识,所述第三类字段值用于指示所述第二资源集合中SRS的标识。
  24. 根据权利要求22所述的信息指示装置,其特征在于,所述资源集合包括第一资源集合和第二资源集合,所述第二类字段值包括第一值和第二值,若所述第一SRI字段的值 为所述第一值,所述第三类字段值用于指示所述第一资源集合中SRS的标识,若所述第一SRI字段的值为所述第二值,所述第三类字段值指示所述第二资源集合中SRS的标识。
  25. 一种信息指示装置,其特征在于,包括:
    处理单元,用于确定下行控制信息DCI,所述DCI中包括第一传输预编码矩阵指示TPMI字段,所述第一TPMI字段包括第一类字段值和第二类字段值,所述第二TPMI字段包括第三类字段值,所述第一类字段值和所述第三类字段值用于指示资源集合中的资源对应的TPMI,所述第二类字段值用于指示所述终端设备在物理上行共享通道PUSCH上使用一个资源集合对应的发送波束传输数据;
    发送单元,用于向所述终端设备发送所述DCI。
  26. 根据权利要求25所述的信息指示装置,其特征在于,所述资源集合包括第一资源集合和第二资源集合,若所述第一TPMI字段的值为所述第一类字段值,所述第一类字段值用于指示所述第一资源集合中的资源对应的TPMI,所述第三类字段值用于指示所述第二资源集合中的资源对应的TPMI。
  27. 根据权利要求25所述的信息指示装置,其特征在于,所述资源集合包括第一资源集合和第二资源集合,若所述第一TPMI字段的值为所述第二类字段值,探测参考信号指示SRI字段或TPC字段用于确定所述一个资源集合的标识,所述第三类字段值指示所述一个资源集合中的资源对应的TPMI。
  28. 根据权利要求25至27所述的信息指示装置,其特征在于,所述第三类字段值还用于指示所述PUSCH的传输层数。
  29. 一种通信装置,其特征在于,包括:处理器,所述处理器用于读取存储器中存储的指令,使得所述通信装置执行如权利要求1至3中任一项所述的方法,或,使得所述通信装置执行如权利要求4至7中任一项所述的方法。
  30. 一种通信装置,其特征在于,包括:处理器,所述处理器用于读取存储器中存储的指令,使得所述通信装置执行如权利要求8至10中任一项所述的方法,或,使得所述通信装置执行如权利要求10至14中任一项所述的方法。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上执行时,使得所述计算机执行如权利要求1至3中任一项所述的方法,或,使得所述计算机执行如权利要求4至7中任一项所述的方法,或,使得所述计算机执行如权利要求8至10中任一项所述的方法,或,使得所述计算机执行如权利要求10至14中任一项所述的方法。
  32. 一种芯片,其特征在于,包括处理器,所述处理器用于读取指令执行如权利要求1至3中任一项所述的方法,或,执行如权利要求4至7中任一项所述的方法,或,执行如权利要求8至10中任一项所述的方法,或,执行如权利要求10至14中任一项所述的方法。
  33. 一种计算机程序产品,其特征在于,包括计算机程序,当所述程序被计算机运行时,实现权利要求1-14中任一项所述的方法。
PCT/CN2022/085092 2021-04-06 2022-04-02 一种信息指示方法以及装置 WO2022213933A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110369029.7 2021-04-06
CN202110369029.7A CN115190614A (zh) 2021-04-06 2021-04-06 一种信息指示方法以及装置

Publications (1)

Publication Number Publication Date
WO2022213933A1 true WO2022213933A1 (zh) 2022-10-13

Family

ID=83511248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085092 WO2022213933A1 (zh) 2021-04-06 2022-04-02 一种信息指示方法以及装置

Country Status (2)

Country Link
CN (1) CN115190614A (zh)
WO (1) WO2022213933A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150439A (zh) * 2017-06-16 2019-01-04 电信科学技术研究院 一种数据传输方法、装置、网络侧设备和用户设备
WO2021029738A1 (ko) * 2019-08-15 2021-02-18 엘지전자 주식회사 무선 통신 시스템에서 상향링크 채널을 송수신 하는 방법 및 이에 대한 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150439A (zh) * 2017-06-16 2019-01-04 电信科学技术研究院 一种数据传输方法、装置、网络侧设备和用户设备
WO2021029738A1 (ko) * 2019-08-15 2021-02-18 엘지전자 주식회사 무선 통신 시스템에서 상향링크 채널을 송수신 하는 방법 및 이에 대한 장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Enhancements on multi-TRP for reliability and robustness in Rel-17", 3GPP DRAFT; R1-2102334, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177054 *
QUALCOMM INCORPORATED: "Enhancements on Multi-TRP for PDCCH, PUCCH and PUSCH", 3GPP DRAFT; R1-2101447, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051971612 *
ZTE: "Enhancements on Multi-TRP for PDCCH, PUCCH and PUSCH", 3GPP DRAFT; R1-2100286, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970901 *

Also Published As

Publication number Publication date
CN115190614A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
JP6608039B2 (ja) 端末およびその通信方法
CN110999477B (zh) 信息指示方法及相关设备
TWI679871B (zh) 資料傳輸方法、裝置、網路側設備和使用者設備
WO2018202154A1 (zh) 传输预编码矩阵的指示方法和设备
EP3977664B1 (en) Method and device for determining codebook subset, and user equipment
WO2019062681A1 (zh) 一种上行传输、配置方法、终端及基站
TWI692264B (zh) 波束管理方法、網路設備和終端
WO2019136723A1 (zh) 上行数据传输方法及相关设备
WO2018228228A1 (zh) 信息传输方法及装置
WO2018166345A1 (zh) 上行发送波束确定方法和装置
CN110138421B (zh) 信道探测方法及相关装置
US11664876B2 (en) Method and device for training downlink beams
WO2019137441A1 (zh) 一种通信方法及装置
CN104378148A (zh) 并发的蜂窝式装置间通信方法和通信系统
US20220394504A1 (en) Beam pair training method and communication apparatus
JP2023509673A (ja) フル電力アップリンク伝送の強化
WO2019029689A1 (zh) 测量报告上报方法和用户终端
WO2019129253A1 (zh) 一种通信方法及装置
WO2018171786A1 (zh) 信息的传输方法和设备
CN111436107B (zh) 上行信号的发送方法、信道质量确定方法和相关设备
WO2022213933A1 (zh) 一种信息指示方法以及装置
WO2018196518A1 (zh) 波束控制方法、基站和终端
WO2018145626A1 (zh) 一种参考信号的发送方法、接收方法及相关设备
WO2019001221A1 (zh) 一种秩指示上报方法和装置、指示方法和装置
WO2022193260A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22783999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22783999

Country of ref document: EP

Kind code of ref document: A1