WO2022213919A1 - 移相器及基站天线 - Google Patents

移相器及基站天线 Download PDF

Info

Publication number
WO2022213919A1
WO2022213919A1 PCT/CN2022/085029 CN2022085029W WO2022213919A1 WO 2022213919 A1 WO2022213919 A1 WO 2022213919A1 CN 2022085029 W CN2022085029 W CN 2022085029W WO 2022213919 A1 WO2022213919 A1 WO 2022213919A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
line
shifting
phase shifter
feeder
Prior art date
Application number
PCT/CN2022/085029
Other languages
English (en)
French (fr)
Inventor
王陈宇
原睿智
曾骏
郭才雄
曾进荣
Original Assignee
摩比天线技术(深圳)有限公司
摩比科技(深圳)有限公司
摩比通讯技术(吉安)有限公司
摩比科技(西安)有限公司
深圳市晟煜智慧科技网络有限公司
西安摩比天线技术工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 摩比天线技术(深圳)有限公司, 摩比科技(深圳)有限公司, 摩比通讯技术(吉安)有限公司, 摩比科技(西安)有限公司, 深圳市晟煜智慧科技网络有限公司, 西安摩比天线技术工程有限公司 filed Critical 摩比天线技术(深圳)有限公司
Publication of WO2022213919A1 publication Critical patent/WO2022213919A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array

Definitions

  • the present invention relates to the technical field of mobile communication, and in particular, to a phase shifter and a base station antenna.
  • the beam downtilt angle of the base station antenna is usually adjusted.
  • the beam downtilt angle can be downtilted mechanically or electrically, but the mechanical downtilt consumes manpower and material resources, so the downtilt can be adjusted electrically.
  • the ESC antenna is becoming more and more popular, and the phase shifter is the most core component in the ESC antenna.
  • phase shifters For multi-beam antennas, at least two phase shifters corresponding to different polarization directions should be provided, but there are slope differences and shift differences between each phase shifter. It is necessary to adjust cables or add phase balance lines to achieve phase compensation, and then Design the corresponding phase balance board circuit and place the phase balance board circuit into the feeder network.
  • Existing phase shifters usually use phase-balanced circuit boards and feed networks in a stacked or side-by-side layout, resulting in a larger space occupied by the overall phase shifter, which is not conducive to the compact layout design inside the antenna.
  • the circuit of the phase balance board is placed alone, the structure is relatively fragile, and a separate mounting support needs to be configured for fixed welding, which is not conducive to the overall trimming, and also occupies a large space and has poor structural stability.
  • the purpose of the present invention is to provide a phase shifter and a base station antenna, which are not only conducive to the overall phase trimming and structural stability, but also occupy a small space and configure the phase flexibly.
  • phase shifter comprising:
  • each of the phase-shifting components includes a base plate, a phase-shifting plate, a main feeder line and a sub-feeder line, and the phase-shifting plate, the main feeder line and the sub-feeder line are all provided in the On the substrate, the main feeder line is correspondingly provided with a main feeder port, the sub-feeder line includes at least one arc-shaped line, and two ends of the arc-shaped line are respectively provided with a sub-feeder port, at least one of the A phase balance board circuit is arranged between the arc-shaped circuit and the feeder port at one or both ends;
  • a fixing component, the at least two phase shifting components are respectively fixed on the fixing component.
  • a microstrip extension line is provided between the at least one arc-shaped line and the feeder port at one or both ends thereof, and the phase balance board circuit is not provided.
  • the microstrip extension line is provided between the main feeder line and the main feeder port.
  • At least one fin structure extends outward from the middle of the microstrip extension line.
  • the phase balance board line includes a trunk line, two ends of the trunk line are respectively connected to the arc-shaped line and its corresponding one of the feeder ports, and the trunk line There is at least one open-circuit branch thereon.
  • the trunk line is provided with at least a pair of the open-circuit branches that are symmetrically distributed, and each of the open-circuit branches includes a first line segment and a second line connected to each other in a bent shape. line segment; in a pair of the open-circuit branches, the outer ends of two of the first line segments are connected to the trunk line and are perpendicular to the trunk line, and the outer ends of one of the second line segments are open-circuited and connected to the trunk line
  • the main line is parallel, and the outer end of the other second line segment is provided with the via hole and is parallel to the main line.
  • two sides of the substrate are respectively provided with a plurality of pads of predetermined size at a predetermined distance, and the pads are in one-to-one correspondence with the sub-feed port and the main feed port.
  • the phase shifter includes two of the phase shift components, the phase shift plate of the phase shift component is rotatably connected to the substrate through a rotating shaft, and the phase shifter The circuit on the board is connected with the main feeder at the rotating shaft;
  • the fixed assembly includes:
  • a fixing seat the top surface and the bottom surface of the fixing seat are respectively provided with fixing grooves for accommodating and fixing the phase-shifting component
  • a compression assembly comprising an upper compression member located on the upper side of one of the phase-shifting assemblies, and a lower compression member located at the lower side of the other phase-shifting assembly, the upper compression member and the lower compression member
  • the other ends away from the rotating shaft are connected to each other through a snap ring, and the upper pressing member and the lower pressing member respectively drive the two phase-shifting plates to rotate synchronously relative to the two base plates.
  • the two sides of the fixing base are respectively provided with a plurality of cable threading holes at a predetermined distance, and the cable threading holes correspond to the feeder ports and the main feeder ports one-to-one.
  • At least one side surface of the fixing base is provided with a plurality of fulcrum fixing structures, and the bottom of the fulcrum fixing structures extends beyond the bottom surface of the fixing base;
  • Each of the fulcrum fixing structures is detachably connected with a support piece, and the bottom ends of the support pieces are arranged on the same horizontal plane.
  • the phase shifter further includes a chassis, the chassis is fixedly connected to the bottom surface of the fixed seat, and the chassis is used to store all the components accommodated on the bottom surface of the fixed seat. the phase-shifting assembly in the fixing groove is closed; and/or
  • the fixing assembly further includes two insulating spacers, and the two insulating spacers are respectively arranged between the two phase shifting assemblies and the fixing seat.
  • the present invention also provides a base station antenna, which includes the phase shifter as described above.
  • the phase shifter of the present invention includes a fixed component and at least two phase shift components arranged on the fixed component, each phase shift component includes a base plate, a phase shift plate, a main feed line and a sub-feed line.
  • the main feeder line has a main feeder port
  • the sub-feeder line includes an arc-shaped line, two ends of the arc-shaped line are respectively provided with a sub-feeder port, and at least one of the arc-shaped line and one or both ends of the sub-feeder port is between
  • the phase shifter of the present invention integrates the phase balance board circuit and the traditional phase shifter feeding network, which is not only beneficial to the overall phase trimming and the stability of the structure, but also occupies a small space and configures the phase flexibly.
  • a microstrip extension line is provided between the arc-shaped circuit and the feeder port at one or both ends; and/or, the main feeder line is connected to the main feeder line.
  • a microstrip extension line is arranged between the feeder ports, and the microstrip extension line is used for calculating and compensating for the corresponding phase, so as to obtain a line that satisfies the predetermined phase of the base station antenna.
  • the phase shifter of the present invention can realize iterative optimization of the standing wave of the overall phase shifter through the design of the standing wave debugging pad and the convex fin structure arranged on the microstrip extension line, so as to precisely adjust the standing wave.
  • FIG. 1 is a perspective view of a preferred phase shifter provided by an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of a preferred phase shifter provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a phase shifting component of a preferred phase shifter provided by an embodiment of the present invention.
  • FIG. 4 is a perspective view of a fixed seat of a preferred phase shifter provided by an embodiment of the present invention.
  • FIG. 5 is a perspective view of a chassis of a preferred phase shifter provided by an embodiment of the present invention.
  • Phase shifter 100 Phase shifting component 10; Substrate 11;
  • Main feeder line 12 Main feeder port 121; Sub-feeder line 13;
  • Fixing component 20 Fixing seat 21; Fixing slot 211;
  • Cable threading hole 212 Pivot fixing structure 213; Compression assembly 22;
  • references in this specification to "one embodiment”, “an embodiment”, “example embodiment”, etc. mean that the described embodiment may include specific features, structures or characteristics, but not every Embodiments must contain these specific features, structures or characteristics. Furthermore, such expressions are not referring to the same embodiment. Further, when a particular feature, structure or characteristic is described in conjunction with an embodiment, whether or not explicitly described, it has been shown that it is within the knowledge of those skilled in the art to incorporate such feature, structure or characteristic into other embodiments .
  • FIGS. 1 to 5 show a preferred structure of a phase shifter in an embodiment provided by the present invention.
  • the phase shifter 100 includes at least two phase shifting components 10 and a fixing component 20.
  • the at least two phase shifting components 10 They are respectively fixed on the fixing components 20 .
  • the phase shifter 100 preferably includes two phase shifting components 10 , the two phase shifting components 10 are respectively fixed on the top surface and the bottom surface of the fixing component 20 , and the upper and lower phase shifting components 10 are in a mirror image relationship.
  • the number of the phase shifting components 10 in the present invention is not limited, and can be arbitrarily set according to actual needs.
  • each phase-shifting assembly 10 may include a substrate 11 , a phase-shifting plate (not shown in the figure), a main feeder line 12 and a sub-feeder line 13 , the phase-shift plate, the main feeder line 12 and the sub-feeder line 13
  • the main feeder line 12 is provided with a main feeder port 121 correspondingly, and the main feeder port 121 is also arranged on the substrate 11 and is mainly used for signal input, and the main feeder line 12 can be connected with a grounding line .
  • the sub-feed line 13 includes at least one arc-shaped line 132, two ends of the arc-shaped line 132 are respectively provided with a sub-feed port 131, and the sub-feed port 131 is also arranged on the substrate 11 and is mainly used for signal output.
  • the phase balance board circuit 30 is provided between at least one arc-shaped circuit 132 in the phase-shifting assembly 10 and the feeder port 131 at one or both ends of the arc-shaped circuit 132 . In this way, after the signal passes through the phase balance board circuit 30, the propagation path is changed, and the electromagnetic wave will generate a phase difference.
  • the phase shifter 100 of the present invention integrates the phase balance board circuit 30 and the traditional phase shifter feeding network, which is not only beneficial to the overall phase balance and structural stability, but also occupies a small space and configures the phase flexibly .
  • the main feeder 12 and the branch feeder 13 of the phase shifter 100 are located on the same side of the substrate 11 , and there are one main feeder 12 and three branch feeders 13 in total.
  • One main feeder line 12 corresponds to one main feeder port 121
  • two ends of the three sub-feeder lines 13 correspond to six sub-feeder ports 131 in total.
  • the three sub-feeding lines 13 are all arc-shaped lines 132, and the arc-shaped line 132 includes a plurality of bending units, and the bending units are connected in sequence to form an arc shape coaxial with the rotating shaft 15 of the phase-shifting plate , the shape of the bending unit includes any one of S-shaped, V-shaped or bow-shaped.
  • the sub-feeder lines 13 are not necessarily all arc-shaped lines 132 , and part of the sub-feeder lines 13 may also be arc-shaped lines 132 .
  • the three arc-shaped circuits 132 of the phase shifter 100 are all symmetrical in structure and have the same axis of symmetry, so the three arc-shaped circuits 132 together form a fan shape.
  • the substrate 11 is also Has a fan-shaped structure.
  • the three arc-shaped lines 132 are all connected by arcuate bending units to form a whole, that is, the arc-shaped lines 132 are approximately in a square wave shape.
  • the widths and densities of the bending units of the three arc-shaped lines 132 are different, and the width refers to the width of the arc-shaped lines 132 in the radial direction, and the density is included in the unit central angle.
  • the number of bending units, and the width and density of the arc-shaped circuit 132 are larger as the distance from the rotation axis 15 of the phase-shifting plate is greater. to obtain different phasors.
  • the width and density of the bending unit can also be adjusted to achieve the same phase shift amount under different radii, which is more beneficial to the structural layout of the phase shifter 100 and the sharing of structural components in different frequency bands.
  • the number of the sub-feeder lines 13 of the phase shifting assembly 10 of the present invention is not limited, and can be set to any number such as one, two, four, five, six, seven, etc. according to actual needs.
  • the width and density of the bending units in each arc-shaped circuit 132 may be the same or different, and the shape of the bending units in each arc-shaped circuit 132 may be the same or different.
  • the phase-shifting component 10 of the phase shifter 100 is provided with three phase balance board circuits 30 correspondingly, that is, between the uppermost arc-shaped circuit 132 and the feeder ports 131 at both ends.
  • the number of the phase balance board circuits 30 of the phase shifting assembly 10 of the present invention is not limited, and can be arbitrarily set according to actual needs.
  • a microstrip extension line 40 is provided between at least one arc-shaped circuit 132 in the phase shifter 100 and the feeder port 131 at one or both ends thereof, as shown in FIG. 3 , and no phase balance board circuit is provided. 30.
  • the microstrip extension line 40 is used to perform calculation compensation for the corresponding phase.
  • a microstrip extension line 40 is provided between the main feeder line 12 and the main feeder port 121 , as shown in FIG. 3 , the microstrip extension line 40 is used to perform calculation compensation for the corresponding phase.
  • the microstrip extension line 40 can be provided for the branch feeder port 131 or the main feeder port 121 degrees without the phase balance board line 30, that is, the microstrip extension line 40 replaces the previous connection cable, which can realize the phase more flexibly. compensation, so as to obtain a line that satisfies the predetermined phase of the base station antenna.
  • microstrip extension lines 40 are correspondingly provided in the phase shifting component 10 , that is, two microstrip lines are provided between the lowermost arc-shaped line 132 and the feeder ports 131 at both ends.
  • a microstrip extension line 40 is provided between the extension line 40, the arc-shaped line 132 in the middle and the feeder port 131 at one end, that is, in this embodiment, for all the feeder ports 131 and
  • the main feeder ports 121 are all provided with microstrip extension lines 40 .
  • microstrip extension lines 40 may also be provided at 121 degrees to both the sub-feeder ports 131 and the main feeder ports that are not provided with the phase balance board line 30 . It is worth reminding that the number of the microstrip extension lines 40 of the phase shifting assembly 10 of the present invention is not limited, and can be arbitrarily set according to actual needs.
  • At least one fin structure 41 extends outward from the middle of the microstrip extension line 40 .
  • the fin structure 41 can realize the iteration of the standing wave of the overall phase shifter 100 . Optimized to precisely adjust standing waves.
  • the phase shifter 100 of the present invention performs integrated PCB design of the phase balance board circuit 30 and the traditional phase shifter feed network. Specifically, for different ports, the phase balance board circuit 30 is designed and placed, and the phase balance board circuit 30 does not need to be placed.
  • the microstrip extension line 40 is placed on the sub-feed port 131, and the corresponding phase is calculated and compensated.
  • a microstrip extension line 40 of corresponding length is also placed, and the station of the overall phase shifter 100 is also placed. The wave is iteratively optimized, and finally a line that satisfies the predetermined phase of the base station antenna is obtained.
  • the phase balance board line 30 includes a trunk line 31 , and two ends of the trunk line 31 are respectively connected to the arc line 132 and a corresponding feeder port 131 .
  • At least one open branch 32 is provided on the main line 31 .
  • the trunk line 31 is provided with at least a pair of symmetrically distributed open-circuit branches 32, and each open-circuit branch 32 includes a first line segment 321 and a second line segment 322 that are connected to each other in a bent shape.
  • each pair of open-circuit branches 32 the outer ends of the two first line segments 321 are respectively connected to the trunk line 31 and are perpendicular to the trunk line 31, the outer ends of one second line segment 322 are open and parallel to the trunk line 31, and The outer end of the other second line segment 322 is provided with a via hole and is parallel to the main line 31 .
  • the principle of phase balancing of the phase balance board circuit 30 is as follows: the substrate 11 has a back copper foil, the phase balance board circuit 30 and the back copper foil form a microstrip line, and the signal propagates in the microstrip line and passes through a via hole similar to a tree structure. The propagation path changes after the open-circuit structure and the propagation path changes, and the electromagnetic wave will produce a phase difference.
  • two sides of the substrate 11 are respectively provided with a plurality of pads 14 of a predetermined size at a predetermined distance.
  • the cable can not only be more conveniently connected to the sub-feed port 131 and the main feed port 121, but also by adding tin to the cable core wire to connect the pad 14, the amount of tin of each solder joint of the pad 14 is controllable , to realize iterative optimization of the standing wave of the overall phase shifter 100 , so that the standing wave can be precisely adjusted.
  • the connection between the cable and the sub-feed port 131 or the main feed port 121 does not necessarily have to be connected by soldering in the form of the pad 14.
  • the sub-feed port 131 and the main feed port can be opened on the substrate 11.
  • 121 correspond to the connection holes one-to-one, and the cables pass through the connection holes and then weld with the sub-feed port 131 and the main feed port 121.
  • the invention plans optimal pad spacing and welding length to optimize and control the size of the PCB (ie length and width), so as to control the production cost and meet the requirements of welding, installation and reliability.
  • each phase shifting component 10 may include a substrate 11 , a phase shifting plate (not shown in the figure), a driving plate ( (not shown in the figure), the main feeder line 12 and the sub-feeder line 13, the drive plate is sleeved outside the phase-shifting plate, the phase-shifting plate of the phase-shifting assembly 10 is rotatably connected to the base plate 11 through the rotating shaft 15, and the phase-shifting plate
  • the line above is connected to the main feeder line 12 at the rotating shaft 15, and a coupling strip (not shown in the figure) is provided on the side of the phase-shifting plate close to the base plate 11, and the coupling strip is connected to the main feeder line at the rotating shaft 15 of the phase-shifting plate.
  • the sub-feed line 13 includes at least one arc-shaped line 132, and the coupling strip is in sliding contact with the arc-shaped line 132.
  • the distance from the main feed port 121 to the sub-feed port 131 can be changed (due to the change of the coupling band), thereby changing the phase between the main feed port 121 and the sub-feed port 131, and the arc in the sub-feed line 13
  • the shape circuit 132 adopts a bending unit, so the amount of phase shift is larger under the same size, that is, the size can be effectively reduced under the same amount of phase shift, thereby reducing the size, weight, and cost of the phase shifter 100, so as to break through the use of Due to the limitation of the electrically regulated antenna, the arc-shaped circuit 132 can also be used for easier matching, so that the phase shifter 100 is more convenient for the phase shifting operation and the adjustment of the downtilt angle of the antenna beam.
  • the fixing assembly 20 includes a fixing base 21 and a pressing assembly 22 , and a top surface and a bottom surface of the fixing base 21 are respectively provided with one for accommodating and fixing the phase shifting assembly 10 .
  • the pressing component 22 includes an upper pressing member 221 located on the upper side of one phase-shifting component 10 , and a lower pressing member 222 located on the lower side of the other phase-shifting component 10 , the upper pressing member 221 and the lower pressing member 222
  • the other ends away from the rotating shaft 15 are preferably connected to each other through a snap ring member 223 .
  • the snap ring member 223 is preferably made of insulating material such as plastic.
  • the cable threading hole 212 can function as a support point when the cable is welded, and protects the welding point from being pulled artificially, and prevents the shielding layer from breaking and affecting the electrical performance.
  • At least one side surface of the fixing base 21 is provided with a plurality of fulcrum fixing structures 213 , as shown in FIG.
  • Each fulcrum fixing structure 213 is detachably connected with a support member (not shown in the figure), and the bottom ends of each support member are disposed on the same horizontal plane.
  • the fixing base 21 can be clamped and supported on the reflection plate by the supporting member.
  • the support member is preferably made of insulating material such as plastic. It should be pointed out that, for the integrated circuit board, the present invention arranges the cable threading hole 212, the fulcrum fixing structure 213, and the fixing seat 21 structure, so as to meet the requirements of welding, installation and reliability.
  • the phase shifter 100 further includes a chassis 50 , as shown in FIG. 2 and FIG. 5 , the chassis 50 is fixedly connected to the bottom surface of the fixed seat 21 , and the chassis 50 is used to store the The phase shifting assembly 10 in the fixing groove 211 on the bottom surface is closed.
  • the chassis 50 By closing the phase shifting assembly 10 on the bottom surface of the fixed seat 21 by the chassis 50 , the rotation of the phase shifting assembly 10 on the bottom surface of the phase shifter 100 can be prevented from being hindered by cables outside the phase shifter 100 , thereby forming protection for the phase shifting assembly 10 on the bottom surface of the fixed seat 21 . .
  • the fixing assembly 20 further includes two insulating spacers 23.
  • the two insulating spacers 23 are respectively disposed between the two phase-shifting assemblies 10 and the fixing base 21, that is, one insulating spacer
  • the sheet 23 is arranged between one phase-shifting component 10 and the fixing base 21
  • the other insulating spacer 23 is arranged between the other phase-shifting component 10 and the fixing base 21 .
  • the insulating spacer 23 is used to provide better insulating performance for the phase shifting assembly 10 .
  • the present invention also provides a base station antenna, which includes any of the phase shifters 100 shown in FIGS. 1 to 5 .
  • the base station antenna is an electrically adjustable antenna, and is a multi-beam antenna, preferably a dual-beam antenna.
  • the phase shifter of the present invention includes a fixed component and at least two phase shift components disposed on the fixed component, and each phase shift component includes a substrate, a phase shift plate, a main feeder line and a sub-feeder line.
  • the main feeder line has a main feeder port
  • the sub-feeder line includes an arc-shaped line, two ends of the arc-shaped line are respectively provided with a sub-feeder port, and at least one of the arc-shaped line and one or both ends of the sub-feeder port is between
  • There is a phase balance board circuit After the signal passes through the phase balance board circuit, the propagation path changes, and the electromagnetic wave will produce a phase difference.
  • the phase shifter of the present invention integrates the phase balance board circuit and the traditional phase shifter feeding network, which is not only beneficial to the overall phase trimming and the stability of the structure, but also occupies a small space and configures the phase flexibly.
  • a microstrip extension line is provided between the arc-shaped circuit and the feeder port at one or both ends; and/or, the main feeder line is connected to the main feeder line.
  • a microstrip extension line is arranged between the feeder ports, and the microstrip extension line is used for calculating and compensating for the corresponding phase, so as to obtain a line that satisfies the predetermined phase of the base station antenna.
  • the phase shifter of the present invention can realize iterative optimization of the standing wave of the overall phase shifter through the design of the standing wave debugging pad and the convex fin structure arranged on the microstrip extension line, so as to precisely adjust the standing wave.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供了一种移相器,包括:至少两个移相组件,每个所述移相组件包括基板、移相板、主馈线路和分馈线路,所述移相板、所述主馈线路和所述分馈线路均设于所述基板上,所述主馈线路对应设有一个主馈端口,所述分馈线路包括至少一个弧形线路,所述弧形线路的两端分别对应设有一个分馈端口,至少一个所述弧形线路与其一端或两端的所述分馈端口之间设有相位平衡板线路;固定组件,所述至少两个移相组件分别固定于所述固定组件上。本发明还提供一种基站天线。借此,本发明移相器通过将相位平衡板线路和传统的移相器馈电网络进行一体化设计,不仅有利于相位的整体配平以及结构的稳定性,而且占用空间小、配置相位更灵活。

Description

移相器及基站天线 技术领域
本发明涉及移动通信技术领域,尤其涉及一种移相器及基站天线。
背景技术
随着移动通信技术的发展,5G系统已经日渐普及,随之而来的是基站密度也越来越大,为节省单个基站的天线数量,运营商多采用多波束天线,其能够高增益地覆盖较大区域。而且为了解决基站天线的覆盖问题,通常会对基站天线的波束下倾角进行调节,波束下倾角可通过机械下倾或电调下倾,但机械下倾耗费人力物力,因此能够进行电调下倾的电调天线越来越受欢迎,其中移相器是电调天线中最为核心的部件。
针对多波束天线,至少应设有两个对应不同极化方向的移相器,但各个移相器之间存在斜率差和移相差,需要通过调整电缆或增加相位配平线路来实现相位补偿,进而设计对应的相位平衡板线路,并将相位平衡板线路置入馈电网络。现有移相器通常将相位平衡线路板和馈电网络堆叠或并排布局使用,导致其整体移相器占用空间较大,不利于天线内部的紧凑布局设计。另外,相位平衡板线路单独放置时结构比较脆弱,需要单独配置安装支撑件进行固定焊接,不利于整体配平,而且占用空间大,结构稳定性较差。
综上可知,现有技术在实际使用上显然存在不便与缺陷,所以有必要加以改进。
发明内容
针对上述的缺陷,本发明的目的在于提供一种移相器及基站天线,其不仅有利于相位的整体配平以及结构的稳定性,而且占用空间小、配置相位灵活。
为了实现上述目的,本发明提供一种移相器,包括:
至少两个移相组件,每个所述移相组件包括基板、移相板、主馈线路和分馈线路,所述移相板、所述主馈线路和所述分馈线路均设于所述基板上,所述主馈线路对应设有一个主馈端口,所述分馈线路包括至少一个弧形线路,所述弧形线路的两端分别对应设有一个分馈端口,至少一个所述弧形线路与其一端 或两端的所述分馈端口之间设有相位平衡板线路;
固定组件,所述至少两个移相组件分别固定于所述固定组件上。
根据本发明所述的移相器,所述至少一个所述弧形线路与其一端或两端的所述分馈端口之间设有微带延长线,且未设有所述相位平衡板线路。
根据本发明所述的移相器,所述主馈线路与所述主馈端口之间设有所述微带延长线。
根据本发明所述的移相器,所述微带延长线的中间向外延伸设有至少一个凸片结构。
根据本发明所述的移相器,所述相位平衡板线路包括主干线路,所述主干线路的两端分别连接所述弧形线路及其对应的一个所述分馈端口,且所述主干线路上设有至少一个开路枝节。
根据本发明所述的移相器,所述主干线路上设有至少一对呈对称分布的所述开路枝节,每个所述开路枝节包括呈弯折状相互连接的第一线段和第二线段;在一对所述开路枝节中,两个所述第一线段的外端与所述主干线路连接且与所述主干线路垂直,一个所述第二线段的外端开路且与所述主干线路平行,另一个所述第二线段的外端设有所述过孔且与所述主干线路平行。
根据本发明所述的移相器,所述基板的两侧间隔预定距离分别设有若干预定尺寸的焊盘,所述焊盘与所述分馈端口及所述主馈端口一一对应。
根据本发明所述的移相器,所述移相器包括两个所述移相组件,所述移相组件的所述移相板通过转动轴与所述基板转动连接,且所述移相板上的线路在所述转动轴处与所述主馈线路连接;
所述固定组件包括:
固定座,所述固定座的顶面和底面分别设有用于容置并固定所述移相组件的固定槽;
压紧组件,包括位于一个所述移相组件上侧的上压紧件,以及位于另一所述移相组件下侧的下压紧件,所述上压紧件和所述下压紧件远离所述转动轴的另一端通过卡环件相互连接,所述上压紧件和所述下压紧件分别带动两个所述移相板相对于两个所述基板同步转动。
根据本发明所述的移相器,所述固定座的两侧间隔预定距离分别设有若干电缆穿线孔,所述电缆穿线孔与所述分馈端口及所述主馈端口一一对应。
根据本发明所述的移相器,所述固定座的至少一侧面设有若干支点固定结构,且所述支点固定结构的底部延伸出所述固定座的底面;
每个所述支点固定结构可拆卸式连接有一个支撑件,各所述支撑件的底端处于同一水平面设置。
根据本发明所述的移相器,所述移相器还包括底盘,所述底盘固定连接于所述固定座的底面上,所述底盘用于将容置于所述固定座的底面的所述固定槽中的所述移相组件进行封闭;和/或
所述固定组件还包括两个绝缘垫片,所述两个绝缘垫片分别设于所述两个移相组件与所述固定座之间。
本发明还提供一种基站天线,包括有如上述任意一项的移相器。
本发明移相器包括固定组件和设置于所述固定组件上的至少两个移相组件,每个移相组件包括基板、移相板、主馈线路和分馈线路。所述主馈线路具有主馈端口,分馈线路包括有弧形线路,所述弧形线路的两端分别具有分馈端口,至少一个所述弧形线路与其一端或两端的分馈端口之间设有相位平衡板线路,信号经过相位平衡板线路后,传播路径发生改变,电磁波就会产生相位差。借此,本发明移相器将相位平衡板线路和传统的移相器馈电网络进行一体化设计,不仅有利于相位的整体配平以及结构的稳定性,而且占用空间小、配置相位灵活。优选的是,本发明移相器中未设有相位平衡板线路的,弧形线路与其一端或两端的分馈端口之间设有微带延长线;和/或,所述主馈线路与主馈端口之间设有微带延长线,所述微带延长线用于为对应的相位进行计算补偿,从而得到满足基站天线的预定相位的线路。更好的是,本发明移相器可通过驻波调试焊盘设计和微带延长线设置的的凸片结构,实现对整体移相器的驻波进行迭代优化,从而精准调节驻波。
附图说明
图1是本发明实施例提供的优选移相器的立体图;
图2是本发明实施例提供的优选移相器的立体分解图;
图3是本发明实施例提供的优选移相器的移相组件的结构示意图;
图4是本发明实施例提供的优选移相器的固定座的立体图;
图5是本发明实施例提供的优选移相器的底盘的立体图。
附图标记
移相器100;          移相组件10;          基板11;
主馈线路12;         主馈端口121;         分馈线路13;
弧形线路131;        分馈端口132;         焊盘14;
转动轴15;           相位平衡板线路30;    主干线路31;
开路枝节32;         第一线段321;         第二线段322;
过孔33;             微带延长线40;        凸片结构41;
固定组件20;         固定座21;            固定槽211;
电缆穿线孔212;      支点固定结构213;     压紧组件22;
上压紧件221;        下压紧件222;         卡环件223;
绝缘垫片23;         底盘50。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的,本说明书中针对“一个实施例”、“实施例”、“示例实施例”等的引用,指的是描述的该实施例可包括特定的特征、结构或特性,但是不是每个实施例必须包含这些特定特征、结构或特性。此外,这样的表述并非指的是同一个实施例。进一步,在结合实施例描述特定的特征、结构或特性时,不管有没有明确的描述,已经表明将这样的特征、结构或特性结合到其它实施例中是在本领域技术人员的知识范围内的。
此外,在说明书及后续的权利要求当中使用了某些词汇来指称特定组件或部件,所属领域中具有通常知识者应可理解,制造商可以用不同的名词或术语来称呼同一个组件或部件。本说明书及后续的权利要求并不以名称的差异来作为区分组件或部件的方式,而是以组件或部件在功能上的差异来作为区分的准则。在通篇说明书及后续的权利要求书中所提及的“包括”和“包含”为一开放式的用语,故应解释成“包含但不限定于”。以外,“连接”一词在此系包含任何直接及间接的电性连接手段。间接的电性连接手段包括通过其它装置进 行连接。
图1~图5示出了本发明提供的实施例中移相器的优选结构,所述移相器100包括至少两个移相组件10和固定组件20,所述至少两个移相组件10分别固定安置于固定组件20上。在本实施例中,移相器100优选包括两个移相组件10,两个移相组件10分别固定于固定组件20的顶面和底面,且上下两个移相组件10呈镜像关系。但实际上,本发明移相组件10的个数并不受任何限制,可以根据实际需求任意设定。具体的是,每个移相组件10可包括基板11、移相板(图中未示)、主馈线路12和分馈线路13,所述移相板、主馈线路12和分馈线路13均设于基板11上,所述主馈线路12对应设有一个主馈端口121,主馈端口121也设置在基板11上,主要用于信号输入,并且主馈线路12上可连接有接地线路。分馈线路13包括至少一个弧形线路132,弧形线路132的两端分别对应设有一个分馈端口131,分馈端口131也设置在基板11上,主要用于信号输出。尤其是,移相组件10中至少有一个弧形线路132与该弧形线路132一端或两端的分馈端口131之间设有相位平衡板线路30。这样信号经过相位平衡板线路30后,传播路径发生改变,电磁波就会产生相位差。
由此,本发明移相器100将相位平衡板线路30和传统的移相器馈电网络进行一体化设计,不仅有利于相位的整体配平以及结构的稳定性,而且占用空间小、配置相位灵活。
如图1~3所示的实施例中,所述移相器100的主馈线路12和分馈线路13位于基板11的同侧,共有一个主馈线路12和三个分馈线路13。其中,一个主馈线路12对应有一个主馈端口121,三个分馈线路13的两端共对应有六个分馈端口131。优选的是,三个分馈线路13均为弧形线路132,所述弧形线路132包括若干弯折单元,所述弯折单元依次相连形成与移相板的转动轴15同轴的弧形,弯折单元的形状包括S型、V型或弓型等任意一种。当然,分馈线路13也不一定全部是弧形线路132,分馈线路13也可以部分是弧形线路132。
如图3所示的本实施例中,所述移相器100的三个弧形线路132均为对称结构且对称轴相同,因此三个弧形线路132共同形成扇形,对应的,基板11也具有扇形结构。三个弧形线路132均是由弓型的弯折单元连接形成一体,即弧形线路132近似于方波状。优选的是,三个弧形线路132的弯折单元的幅宽和密度均不同,所述幅宽是指弧形线路132的径向方向上的宽度,所述密度是单 位圆心角内包含的弯折单元的个数,且越远离移相板的转动轴15的弧形线路132的幅宽和密度越大,因此,在移相板转动相同角度的情况下可在不同的分馈端口131获得不同的移相量。当然,也可通过调整弯折单元的幅宽和密度从而实现在不同半径下获得相同的移相量,更有利于移相器100中的结构布局和不同频段共用结构件等。实际上,本发明移相组件10的分馈线路13的个数并不受限制,可以根据实际需要设置为一个、两个、四个、五个、六个、七个等任意个数。并且,每个弧形线路132中弯折单元的幅宽和密度可相同也可不同,每个弧形线路132中的弯折单元形状可相同也可不同。
如图3所示的实施例中,所述移相器100的移相组件10中对应设有三个相位平衡板线路30,即最上方的弧形线路132与两端的分馈端口131之间设有两个相位平衡板线路30,以及中间的弧形线路132与一端的分馈端口131之间设有一个相位平衡板线路30。显然,本发明移相组件10的相位平衡板线路30的个数并不受任何限制,可以根据实际需求任意设定。
优选的是,所述移相器100中至少一个弧形线路132与其一端或两端的分馈端口131之间设有微带延长线40,如图3所示,且未设有相位平衡板线路30,微带延长线40用于为对应的相位进行计算补偿。更好的是,所述主馈线路12与主馈端口121之间设有微带延长线40,如图3所示,微带延长线40用于为对应的相位进行计算补偿。本发明对于未设有相位平衡板线路30的分馈端口131或主馈端口121度均可以设置微带延长线40,即通过微带延长线40代替之前的连接电缆,能够更灵活地实现相位补偿,从而得到满足基站天线的预定相位的线路。
如图3所示的实施例中,所述移相组件10中对应设有三个微带延长线40,即最下方的弧形线路132与两端的分馈端口131之间设有两个微带延长线40,以及中间的弧形线路132与一端的分馈端口131之间设有一个微带延长线40,即本实施例中对于全部未设有相位平衡板线路30的分馈端口131和主馈端口121均设置了微带延长线40,实际上也可以对部分未设有相位平衡板线路30的分馈端口131和主馈端口121度均设置了微带延长线40。值得提醒的是,本发明移相组件10的微带延长线40的个数并不受任何限制,可以根据实际需求任意设定。
优选的是,所述微带延长线40的中间向外延伸设有至少一个凸片结构41, 如图3所示,所述凸片结构41可以实现对整体移相器100的驻波进行迭代优化,从而精准调节驻波。
本发明移相器100将相位平衡板线路30、传统移相器馈电网络进行一体化PCB设计,具体对于不同端口,进行相位平衡板线路30的设计与放置,不需要放置相位平衡板线路30的分馈端口131放置微带延长线40,对应的相位进行计算补偿,对于移相器100的主馈端口121,也放置相应长度的微带延长线40,并对整体移相器100的驻波进行迭代优化,最终得到满足基站天线的预定相位的线路。
如图3所示,本实例中相位平衡板线路30包括主干线路31,主干线路31的两端分别连接弧形线路132及其对应的一个分馈端口131。主干线路31上设有至少一个开路枝节32。更好的是,所述主干线路31上设有至少一对呈对称分布的开路枝节32,每个开路枝节32包括呈弯折状相互连接的第一线段321和第二线段322。在每一对开路枝节32中,两个第一线段321的外端均分别与主干线路31连接且与主干线路31垂直,一个第二线段322的外端开路且与主干线路31平行,而另一个第二线段322的外端设有过孔且与主干线路31平行。所述相位平衡板线路30平衡相位的原理是:基板11有背面铜箔,相位平衡板线路30与背面铜箔形成微带线,信号在微带线中传播,经过类似树状结构的过孔及其开路结构后传播路径发生改变,传播路径改变,电磁波就会产生相位差。
优选的是,所述基板11的两侧间隔预定距离分别设有若干预定尺寸的焊盘14,如图1和图3所示,焊盘14与分馈端口131及主馈端口121一一对应。通过焊盘14,电缆不仅可更加方便地与分馈端口131和主馈端口121连接,而且通过对电缆芯线加锡,连接焊盘14,该焊盘14的每个焊点锡量可控,实现对整体移相器100的驻波进行迭代优化,从而能够精准调节驻波。当然,电缆与分馈端口131或主馈端口121之间不一定非要用焊盘14的形式焊接连接,例如,在其他实施例中,基板11上可开设与分馈端口131和主馈端口121一一对应的连接孔,电缆穿过连接孔后再与分馈端口131和主馈端口121进行焊接等。本发明针对集成线路板,规划最优焊盘间距、焊接长度优化控制PCB尺寸(即长宽),从而控制生产成本,并满足焊接、安装、可靠性要求。
优选的是,所述移相器100包括两个移相组件10,如图1~3所示,每个移相组件10可包括基板11、移相板(图中未示)、驱动板(图中未示)、主馈线 路12和分馈线路13,所述驱动板套设在移相板外,移相组件10的移相板通过转动轴15与基板11转动连接,且移相板上的线路在转动轴15处与主馈线路12连接,移相板的靠近基板11一侧设置有耦合带(图中未示),耦合带在移相板的转动轴15处与主馈线路12连接。在本实施例中,耦合带与主馈线路12之间为耦合连接,驱动板转动时带动移相板转动。分馈线路13包括至少一弧形线路132,耦合带与弧形线路132滑动接触。通过转动移相板,可使主馈端口121到分馈端口131的距离改变(因耦合带变化),从而改变主馈端口121到分馈端口131之间的相位,分馈线路13中的弧形线路132采用弯折单元,因此在相同的尺寸下移相量更大,即在相同移相量下可有效减小尺寸,从而减小移相器100的尺寸、重量、成本,以突破使用电调天线的限制,采用弧形线路132也能更加容易匹配,从而使移相器100更加方便移相操作,方便了天线波束下倾角的调节。
如图1~3所示的本实施例中,固定组件20包括固定座21和压紧组件22,所述固定座21的顶面和底面分别设有一个用于容置并固定移相组件10的固定槽211。所述压紧组件22包括位于一个移相组件10上侧的上压紧件221,以及位于另一移相组件10下侧的下压紧件222,上压紧件221和下压紧件222远离转动轴15的另一端优选通过卡环件223相互连接,上压紧件221和下压紧件222分别带动两个移相板相对于两个基板11同步转动。所述卡环件223优选采用塑料等绝缘材质制成。
优选的是,所述固定座21的两侧间隔预定距离分别设有若干电缆穿线孔212,如图4所示,电缆穿线孔212与分馈端口131及主馈端口121一一对应。电缆穿线孔212在焊接电缆时可作为支撑点作用,且保护焊点不会被人为拉扯,并防止屏蔽层破裂,影响电性能。
优选的是,所述固定座21的至少一侧面设有若干支点固定结构213,如图4所示,并且支点固定结构213的底部延伸出固定座21的底面。每个支点固定结构213可拆卸式连接有一个支撑件(图中未示),各支撑件的底端处于同一水平面设置。进而,固定座21可以通过支撑件卡住支撑在反射板上。所述支撑件优选采用塑料等绝缘材质制成。需要指出的是,本发明针对集成线路板,布置电缆穿线孔212,支点固定结构213,设固定座21结构,以便满足焊接、安装、可靠性要求。
优选的是,所述移相器100还包括底盘50,如图2和图5所示,所述底盘50固定连接于固定座21的底面上,底盘50用于将容置于固定座21的底面的固定槽211中的移相组件10进行封闭。通过底盘50封闭固定座21的底面的移相组件10,可避免移相器100外部的电缆对其底面的移相组件10的转动造成阻碍,从而对固定座21底面的移相组件10形成保护。
优选的是,所述固定组件20还包括两个绝缘垫片23,如图2所示,两个绝缘垫片23分别设于两个移相组件10与固定座21之间,即一个绝缘垫片23设于一个移相组件10与固定座21之间,另一个绝缘垫片23设于另一个移相组件10与固定座21之间。绝缘垫片23用于为移相组件10提供更好的绝缘性能。
本发明还提供一种基站天线,包括有如图1~5中所示的任一项移相器100。所述基站天线为电调天线,且为多波束天线,优选为双波束天线。
综上所述,本发明移相器包括固定组件和设置于所述固定组件上的至少两个移相组件,每个移相组件包括基板、移相板、主馈线路和分馈线路。所述主馈线路具有主馈端口,分馈线路包括有弧形线路,所述弧形线路的两端分别具有分馈端口,至少一个所述弧形线路与其一端或两端的分馈端口之间设有相位平衡板线路,信号经过相位平衡板线路后,传播路径发生改变,电磁波就会产生相位差。借此,本发明移相器将相位平衡板线路和传统的移相器馈电网络进行一体化设计,不仅有利于相位的整体配平以及结构的稳定性,而且占用空间小、配置相位灵活。优选的是,本发明移相器中未设有相位平衡板线路的,弧形线路与其一端或两端的分馈端口之间设有微带延长线;和/或,所述主馈线路与主馈端口之间设有微带延长线,所述微带延长线用于为对应的相位进行计算补偿,从而得到满足基站天线的预定相位的线路。更好的是,本发明移相器可通过驻波调试焊盘设计和微带延长线设置的的凸片结构,实现对整体移相器的驻波进行迭代优化,从而精准调节驻波。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (12)

  1. 一种移相器,其特征在于,包括:
    至少两个移相组件,每个所述移相组件包括基板、移相板、主馈线路和分馈线路,所述移相板、所述主馈线路和所述分馈线路均设于所述基板上,所述主馈线路对应设有一个主馈端口,所述分馈线路包括至少一个弧形线路,所述弧形线路的两端分别对应设有一个分馈端口,至少一个所述弧形线路与其一端或两端的所述分馈端口之间设有相位平衡板线路;
    固定组件,所述至少两个移相组件分别固定于所述固定组件上。
  2. 根据权利要求1所述的移相器,其特征在于,所述至少一个所述弧形线路与其一端或两端的所述分馈端口之间设有微带延长线,且未设有所述相位平衡板线路。
  3. 根据权利要求2所述的移相器,其特征在于,所述主馈线路与所述主馈端口之间设有所述微带延长线。
  4. 根据权利要求3所述的移相器,其特征在于,所述微带延长线的中间向外延伸设有至少一个凸片结构。
  5. 根据权利要求1所述的移相器,其特征在于,所述相位平衡板线路包括主干线路,所述主干线路的两端分别连接所述弧形线路及其对应的一个所述分馈端口,且所述主干线路上设有至少一个开路枝节。
  6. 根据权利要求5所述的移相器,其特征在于,所述主干线路上设有至少一对呈对称分布的所述开路枝节,每个所述开路枝节包括呈弯折状相互连接的第一线段和第二线段;在一对所述开路枝节中,两个所述第一线段的外端与所述主干线路连接且与所述主干线路垂直,一个所述第二线段的外端开路且与所述主干线路平行,另一个所述第二线段的外端设有所述过孔且与所述主干线路平行。
  7. 根据权利要求1所述的移相器,其特征在于,所述基板的两侧间隔预定距离分别设有若干预定尺寸的焊盘,所述焊盘与所述分馈端口及所述主馈端口一一对应。
  8. 根据权利要求1~7任一项所述的移相器,其特征在于,所述移相器包括两个所述移相组件,所述移相组件的所述移相板通过转动轴与所述基板转动连 接,且所述移相板上的线路在所述转动轴处与所述主馈线路连接;
    所述固定组件包括:
    固定座,所述固定座的顶面和底面分别设有用于容置并固定所述移相组件的固定槽;
    压紧组件,包括位于一个所述移相组件上侧的上压紧件,以及位于另一所述移相组件下侧的下压紧件,所述上压紧件和所述下压紧件远离所述转动轴的另一端通过卡环件相互连接,所述上压紧件和所述下压紧件分别带动两个所述移相板相对于两个所述基板同步转动。
  9. 根据权利要求8所述的移相器,其特征在于,所述固定座的两侧间隔预定距离分别设有若干电缆穿线孔,所述电缆穿线孔与所述分馈端口及所述主馈端口一一对应。
  10. 根据权利要求8所述的移相器,其特征在于,所述固定座的至少一侧面设有若干支点固定结构,且所述支点固定结构的底部延伸出所述固定座的底面;
    每个所述支点固定结构可拆卸式连接有一个支撑件,各所述支撑件的底端处于同一水平面设置。
  11. 根据权利要求8所述的移相器,其特征在于,所述移相器还包括底盘,所述底盘固定连接于所述固定座的底面上,所述底盘用于将容置于所述固定座的底面的所述固定槽中的所述移相组件进行封闭;和/或
    所述固定组件还包括两个绝缘垫片,所述两个绝缘垫片分别设于所述两个移相组件与所述固定座之间。
  12. 一种基站天线,其特征在于,包括有如权利要求1~11中任意一项的移相器。
PCT/CN2022/085029 2021-04-06 2022-04-02 移相器及基站天线 WO2022213919A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110368622.X 2021-04-06
CN202110368622.XA CN113161701A (zh) 2021-04-06 2021-04-06 移相器及基站天线

Publications (1)

Publication Number Publication Date
WO2022213919A1 true WO2022213919A1 (zh) 2022-10-13

Family

ID=76888683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085029 WO2022213919A1 (zh) 2021-04-06 2022-04-02 移相器及基站天线

Country Status (2)

Country Link
CN (1) CN113161701A (zh)
WO (1) WO2022213919A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161701A (zh) * 2021-04-06 2021-07-23 摩比天线技术(深圳)有限公司 移相器及基站天线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017113070A1 (zh) * 2015-12-28 2017-07-06 华为技术有限公司 移相器和天线
CN209200117U (zh) * 2019-01-15 2019-08-02 摩比科技(深圳)有限公司 移相器及天线
CN210489788U (zh) * 2019-11-15 2020-05-08 广东健博通科技股份有限公司 一种超宽频高频移相器及天线
CN212277353U (zh) * 2020-06-03 2021-01-01 摩比天线技术(深圳)有限公司 移相装置及天线
CN212392361U (zh) * 2020-07-22 2021-01-22 昆山立讯射频科技有限公司 移相器
CN113161701A (zh) * 2021-04-06 2021-07-23 摩比天线技术(深圳)有限公司 移相器及基站天线
CN215911565U (zh) * 2021-04-06 2022-02-25 摩比天线技术(深圳)有限公司 移相器及基站天线

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010020022A1 (de) * 2010-05-10 2011-11-10 Valeo Schalter Und Sensoren Gmbh Fahrerassistenzeinrichtung für ein Fahrzeug, Fahrzeug und Verfahren zum Betreiben eines Radargeräts
CN106067578A (zh) * 2016-06-14 2016-11-02 中山大学 一种多路差分移相器
CN111313135A (zh) * 2018-12-12 2020-06-19 富华科精密工业(深圳)有限公司 微带线结构及包括该微带线结构的射频接头及通信设备
CN109755695A (zh) * 2019-02-22 2019-05-14 摩比科技(深圳)有限公司 一种移相器模组、移相器及天线

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017113070A1 (zh) * 2015-12-28 2017-07-06 华为技术有限公司 移相器和天线
CN209200117U (zh) * 2019-01-15 2019-08-02 摩比科技(深圳)有限公司 移相器及天线
CN210489788U (zh) * 2019-11-15 2020-05-08 广东健博通科技股份有限公司 一种超宽频高频移相器及天线
CN212277353U (zh) * 2020-06-03 2021-01-01 摩比天线技术(深圳)有限公司 移相装置及天线
CN212392361U (zh) * 2020-07-22 2021-01-22 昆山立讯射频科技有限公司 移相器
CN113161701A (zh) * 2021-04-06 2021-07-23 摩比天线技术(深圳)有限公司 移相器及基站天线
CN215911565U (zh) * 2021-04-06 2022-02-25 摩比天线技术(深圳)有限公司 移相器及基站天线

Also Published As

Publication number Publication date
CN113161701A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
US11283192B2 (en) Aperture-fed, stacked-patch antenna assembly
US20220173495A1 (en) Antenna module and electronic device
CN111403893B (zh) 一种基站天线的馈电网络,基站天线及基站
JP7210747B2 (ja) アンテナ構造及び高周波無線通信端末
US6359588B1 (en) Patch antenna
WO2016027997A1 (ko) 이동통신 서비스용 옴니 안테나
WO2018107931A1 (zh) 基站天线辐射单元及基站天线
WO2009056001A1 (en) Broadband annular dual-polarization radiation element and line shape antenna array
WO2021194832A1 (en) Radiating elements having angled feed stalks and base station antennas including same
WO2010078797A1 (zh) 双极化辐射单元及其平面振子
BRPI0302034B1 (pt) antena moldada polarizada e método de fabricação de um dipolo para uso em uma antena polarizada
CN101174729A (zh) 电调天线双侧对称弧臂移相器
WO2022213919A1 (zh) 移相器及基站天线
CN101291017A (zh) 基于罗特曼透镜原理的基片集成波导多波束天线
WO2020135537A1 (zh) 多入多出天线及基站
KR100492207B1 (ko) 내부중심급전마이크로스트립급전선을갖는로그주기다이폴안테나
CN102306872B (zh) 电调天线对称多路功分移相器
CN215911565U (zh) 移相器及基站天线
US11682815B2 (en) Phase shifter including a phase shifting member rotatable over an arc circuit section that is connected to cables secured to the phase shifter
CN214378822U (zh) 电子设备
US11870155B2 (en) Calibration device, base station antenna and a communication assembly
CN211376931U (zh) 天线组件和基站天线
US7286097B1 (en) Yagi antenna with balancing tab
US11404786B2 (en) Planar complementary antenna and related antenna array
CN219874050U (zh) 移相器及天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22783985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 20.02.2024)