WO2022213782A1 - 协作感知的方法、电子设备和可读存储介质 - Google Patents

协作感知的方法、电子设备和可读存储介质 Download PDF

Info

Publication number
WO2022213782A1
WO2022213782A1 PCT/CN2022/081272 CN2022081272W WO2022213782A1 WO 2022213782 A1 WO2022213782 A1 WO 2022213782A1 CN 2022081272 W CN2022081272 W CN 2022081272W WO 2022213782 A1 WO2022213782 A1 WO 2022213782A1
Authority
WO
WIPO (PCT)
Prior art keywords
ris
target
capability
sensing
perception
Prior art date
Application number
PCT/CN2022/081272
Other languages
English (en)
French (fr)
Inventor
庄宏成
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to US18/036,804 priority Critical patent/US20240027574A1/en
Priority to EP22783851.3A priority patent/EP4221274A4/en
Publication of WO2022213782A1 publication Critical patent/WO2022213782A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/1555Selecting relay station antenna mode, e.g. selecting omnidirectional -, directional beams, selecting polarizations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the embodiments of the present application relate to an integrated communication and perception technology, and in particular, to a collaborative perception method, an electronic device, and a readable storage medium.
  • Integrated communication and sensing means that electronic devices can both communicate with other devices and sense other devices.
  • electronic devices can sense the distance, size, and moving speed of other devices.
  • the first device in the communication between the first device and the target, if the distance of the first device sensing the target becomes farther, the first device can increase the transmit power of the signal, so that the target can smoothly receive the signal from the first device.
  • the first device can perform cooperative perception with the second device, that is, the first device can perceive the target through the second device.
  • the first device sends the sensing signal to the second device, the second device processes the sensing signal, and forwards the sensing signal to the target in the next time slot.
  • the second device can feed back the echo signal to the first device, and the first device can obtain the sensing result of the target based on the echo signal.
  • the second device takes a long time to respond to the sensing signal and can only forward the sensing signal to the target in the next time slot, resulting in a large delay for the first device to sense the target and low efficiency of cooperative sensing.
  • Embodiments of the present application provide a collaborative sensing method, an electronic device, and a readable storage medium, which can improve the efficiency of collaborative sensing.
  • an embodiment of the present application provides a method for cooperative perception
  • the second device includes a reconfigurable smart surface RIS
  • the method includes: the first device, based on the RIS capability of the second device, communicates with the second device Devices cooperate to sense goals.
  • the RIS capability is RIS reflection capability and/or RIS refractive capability.
  • the second device supports reflecting the sensing signal from the first device to the target. Compared with the prior art, the second device does not need to process the sensing signal from the first device. Instead, it is directly reflected to the target, and the perception delay is small, so the efficiency of cooperative perception can be improved.
  • the RIS capability is the RIS reflection capability and the RIS refraction capability
  • the second device supports the generation of the sensing signal, and sends the sensing signal to the target.
  • the second device does not need to respond to the first device as the first device.
  • the intermediate device that forwards the sensing signal between the device and the target, but generates the sensing signal and sends it to the target.
  • the small sensing delay can improve the efficiency of cooperative sensing.
  • the second device may be based on the RIS reflection capability, and the efficiency of cooperative perception may also be improved.
  • the RIS capability does not support RIS, and in this manner, the first device may not perform cooperative perception with the second device based on the RIS capability.
  • the following embodiments mainly describe a solution in which the first device performs cooperative perception with the second device based on the RIS capability.
  • the RIS capability of at least one second device may be stored in the first device, where the RIS capability of the second device is reported by the second device to the first device.
  • the second device needs to perform beamforming on the RIS, and the RIS can realize the RIS reflection capability and/or the RIS refraction capability.
  • the second device may use RIS parameters to beamform the RIS, and the RIS parameters are related to the RIS capability.
  • the RIS parameter is the RIS reflection parameter
  • the RIS parameter is the RIS refraction parameter
  • the RIS parameter includes the RIS reflection parameter and the RIS refraction parameter.
  • the RIS includes multiple antenna units
  • the RIS parameters may include: the phase and amplitude of each antenna unit in the RIS.
  • the first device may send control information to the second device based on the RIS capability; the second device may send control information to the second device based on the control information, perform beamforming on the RIS, and the beam of the RIS after the beamforming is directed toward the target.
  • the second device obtains a RIS parameter based on the control information, and the RIS parameter is related to the RIS capability; and the second device performs beamforming on the RIS based on the RIS parameter.
  • Manner 1 The first device obtains the RIS parameter, and carries the RIS parameter in the control information.
  • the control information includes the RIS parameter, so that the second device can obtain the RIS parameter after receiving the control information.
  • the RIS parameter in the control information is obtained by the first device based on the information of the target, and the information of the target includes the identification, orientation or position of the target. That is, before the first device sends the control information to the second device based on the RIS capability, the method includes: the first device obtains the RIS parameter based on the information of the target.
  • the second device obtains the RIS parameters.
  • the control information includes information of the target
  • the information of the target includes the identification, orientation or position of the target
  • the second device can obtain the RIS based on the information of the target parameter.
  • the second device obtains the RIS parameters.
  • the control information further includes: an identifier of the RIS capability, and the identifier of the RIS capability is used to indicate the second device.
  • the RIS reflective power and/or the RIS refractive power are used.
  • the second device may determine whether to acquire the RIS reflection parameter and/or the RIS refraction parameter based on the RIS capability identifier, and then the second device may obtain the RIS capability based on the target information and the RIS capability identifier. Describe the RIS parameters.
  • the following describes the specific process for the first device to perform cooperative perception with the second device based on the RIS capability of the second device:
  • the first device sends the sensing signal to the second device, and the second device reflects the sensing signal to the target based on the beam of the RIS.
  • an echo signal can be formed by the target reflection, and then the first device can receive the echo signal from the target, and the first device can obtain the sensing result of the target based on the echo signal. In this way, the first device can perceive the target.
  • the first device may obtain a perception result of the target based on the echo signal, and the result is It can be called the first perception result.
  • the second device can receive the echo signal from the target based on the RIS refraction capability, and the second device can obtain the second perception result of the target based on the echo signal, and sending the second sensing result to the first device. In this manner, the first device may obtain the sensing result of the target based on the first sensing result and the second sensing result.
  • the first device can fuse the perception result of the target from the second device and the perception result of the target by itself to obtain the perception result of the target, and the perception accuracy is high.
  • the first device may use the RIS reflection capability or the RIS refraction capability, and the first device may carry the RIS reflection capability or the RIS refraction capability in the control information.
  • the identification of the RIS capability used by the second device makes the use of the RIS capability more flexible.
  • the second device may generate a sensing signal, and then the second device sends the sensing signal to the target based on the beam of the RIS.
  • the second device may receive an echo signal from the target based on the RIS refractive power, the second device obtains a perception result of the target based on the echo signal, and sends the perception result to the first device .
  • the first device can obtain the perception result of the target by means of the second device.
  • the control information sent by the first device to the second device may include a perception requirement, where the perception requirement includes: a perception purpose, a perceived performance requirement, and a perception parameter .
  • the second device may generate a sensing signal based on the sensing requirement.
  • an embodiment of the present application provides a collaborative perception method, which is applied to a first device, where the second device includes a reconfigurable smart surface RIS, and the method includes: based on the RIS capability of the second device, The second device cooperates to perceive the target, the RIS capability is RIS reflection capability and/or RIS refraction capability, and the RIS reflection capability is used to characterize: the second device supports reflecting the perception signal from the first device to the target , the RIS refractive power is used to characterize that the second device supports generating the sensing signal and sending the sensing signal to the target.
  • the method before cooperating with the second device to perceive the target, the method further includes: based on the RIS capability, sending control information to the second device, where the control information is used for the second device Beamforming is performed on the RIS, and the beam of the RIS after the beamforming is directed to the target.
  • control information includes a RIS parameter
  • the RIS parameter is related to the RIS capability
  • the method further includes: The RIS parameter is obtained based on the information of the target, and the information of the target includes the identification, orientation or position of the target.
  • control information includes information of the target
  • information of the target includes the identification, orientation or position of the target.
  • the control information when the RIS capability is the RIS reflection capability and the RIS refraction capability, the control information further includes: an identifier of the RIS capability, where the identifier of the RIS capability is used to indicate the RIS capability.
  • the second device uses the RIS reflective power and/or the RIS refractive power.
  • the control information when the RIS capability is the RIS refractive capability, the control information further includes: a perception requirement, where the perception requirement includes a perception purpose, a perceived performance requirement, and a perception parameter.
  • the RIS capability includes the RIS reflection capability
  • cooperating with the second device to sense a target includes: sending the sensing signal to the second device; receiving a signal from the second device; The echo signal of the target; based on the echo signal, the perception result of the target is obtained.
  • the RIS capability further includes the RIS refractive capability
  • the method further includes: receiving a second sensing result from the second device; and obtaining, based on the echo signal, the The sensing result of the target includes: obtaining a first sensing result of the target based on the echo signal; and obtaining the sensing result based on the first sensing result and the second sensing result.
  • the RIS capability is the RIS refractive capability
  • the sensing a target in cooperation with the second device includes: receiving the sensing result from the second device.
  • the method further includes: receiving the RIS capability reported by the second device.
  • an embodiment of the present application provides a collaborative sensing method, which is applied to a second device, where the second device includes a reconfigurable smart surface RIS; the method includes: based on the RIS capability, and the first device Cooperative sensing of the target, the RIS capability is RIS reflection capability and/or RIS refraction capability, and the RIS reflection capability is used to characterize: the second device supports reflecting the sensing signal from the first device to the target, the RIS The refractive power is used to characterize that the second device supports generating the sensing signal and sending the sensing signal to the target.
  • the method before cooperating with the first device to perceive the target, the method further includes: receiving control information from the first device; and performing beamforming on the RIS based on the control information, and beamforming The beam of the shaped RIS is directed towards the target.
  • the performing beamforming on the RIS based on the control information includes: obtaining, based on the control information, a RIS parameter, where the RIS parameter is related to the RIS capability; The RIS parameter, for beamforming the RIS.
  • control information includes the RIS parameter
  • the RIS parameter is obtained by the first device based on information of the target, and the information of the target includes an identifier of the target, bearing or location.
  • control information includes information of the target
  • the information of the target includes an identifier, orientation or position of the target
  • the obtaining RIS parameters based on the control information includes: Based on the information of the target, the RIS parameters are obtained.
  • the control information when the RIS capability is the RIS reflection capability and the RIS refraction capability, the control information further includes: an identifier of the RIS capability, where the identifier of the RIS capability is used to indicate the RIS capability.
  • the second device uses the RIS reflection capability and/or the RIS refractive capability; and the obtaining the RIS parameter based on the control information includes: obtaining the RIS parameter based on the target information and the RIS capability identifier. RIS parameters.
  • the RIS capability includes the RIS reflection capability
  • cooperating with a first device to sense a target includes: receiving the sensing signal from the first device; a beam that reflects the sensing signal to the target.
  • the RIS capability further includes the RIS refractive capability, and after reflecting the sensing signal to the target, the method further includes: receiving an echo signal from the target; echo signals to obtain a second perception result of the target; and send the second perception result to the first device.
  • the RIS capability is RIS refraction capability
  • cooperating with a first device to sense a target includes: generating a sensing signal; and sending the sensing signal to the target based on a beam of the RIS ; receive an echo signal from the target; obtain a perception result of the target based on the echo signal; send the perception result to the first device.
  • the RIS capability is the RIS refraction capability
  • the control information includes: a perception requirement, where the perception requirement includes: a perception purpose, a perceived performance requirement, and a perception parameter; the generating a perception signal,
  • the method includes: generating the sensing signal based on the sensing requirement.
  • the method further includes: reporting the RIS capability to the first device.
  • an embodiment of the present application provides an apparatus for cooperative sensing, where the apparatus for cooperative sensing may be a first device or a chip in the first device.
  • the collaboratively aware apparatus may include:
  • a processing module configured to cooperate with the second device to perceive a target based on the RIS capability of the second device, where the RIS capability is RIS reflection capability and/or RIS refraction capability, and the RIS reflection capability is used to characterize: all The second device supports reflecting the sensing signal from the first device to a target, and the RIS refractive power is used to characterize that the second device supports generating the sensing signal and sending the sensing signal to the target.
  • the transceiver module is configured to send control information to the second device based on the RIS capability, where the control information is used by the second device to perform beamforming on the RIS, and the beamforming The beam of the shaped RIS is directed towards the target.
  • control information includes a RIS parameter
  • the RIS parameter is related to the RIS capability.
  • the processing module is further configured to obtain the RIS parameter based on the information of the target, where the information of the target includes the identification, orientation or position of the target.
  • control information includes information of the target
  • information of the target includes the identification, orientation or position of the target.
  • the control information when the RIS capability is the RIS refractive capability, the control information further includes: a perception requirement, where the perception requirement includes a perception purpose, a perceived performance requirement, and a perception parameter.
  • the control information when the RIS capability is the RIS reflection capability and the RIS refraction capability, the control information further includes: an identifier of the RIS capability, where the identifier of the RIS capability is used to indicate the RIS capability.
  • the second device uses the RIS reflective power and/or the RIS refractive power.
  • the RIS capability includes the RIS reflection capability.
  • the transceiver module is further configured to send the sensing signal to the second device and receive an echo signal from the target; the processing module is further configured to obtain a sensing result of the target based on the echo signal.
  • the RIS capability further includes the RIS refractive capability.
  • the transceiver module is further configured to receive the second sensing result from the second device.
  • the processing module is specifically configured to obtain a first perception result of the target based on the echo signal; and obtain the perception result based on the first perception result and the second perception result.
  • the RIS capability is RIS refractive capability.
  • the transceiver module is further configured to receive the sensing result from the second device.
  • the transceiver module is further configured to receive the RIS capability reported by the second device.
  • the cooperative sensing apparatus provided in the embodiment of the present application can perform the action of the first device in the foregoing method embodiment, and its implementation principle and technical effect are similar, and details are not described herein again.
  • an embodiment of the present application provides an apparatus for cooperative sensing, where the apparatus for cooperative sensing may be a second device or a chip in the second device.
  • the collaboratively aware apparatus may include:
  • a processing module configured to cooperate with the first device to perceive a target based on the RIS capability of the second device, where the RIS capability is RIS reflection capability and/or RIS refraction capability, and the RIS reflection capability is used to characterize: the second device Supporting reflection of a sensing signal from the first device to a target, the RIS refractive power is used to characterize that the second device supports generating the sensing signal and sending the sensing signal to the target.
  • the transceiver module is configured to receive control information from the first device; the processing module is further configured to perform beamforming on the RIS based on the control information, and after beamforming The beam of the RIS is directed towards the target.
  • the processing module is specifically configured to obtain a RIS parameter based on the control information, where the RIS parameter is related to the RIS capability; and based on the RIS parameter, perform beamforming on the RIS .
  • control information includes the RIS parameter
  • the RIS parameter is obtained by the first device based on information of the target, and the information of the target includes an identifier of the target, bearing or location.
  • control information includes information of the target.
  • the processing module is specifically configured to obtain the RIS parameter based on the information of the target, and the information of the target includes the identification, orientation or position of the target.
  • the control information further includes: an identifier of the RIS capability, where the identifier of the RIS capability is used to indicate the RIS capability.
  • the second device uses the RIS reflective power and/or the RIS refractive power.
  • the processing module is specifically configured to obtain the RIS parameter based on the information of the target and the identifier of the RIS capability.
  • the RIS capability includes the RIS reflection capability.
  • a transceiver module configured to receive the sensing signal from the first device; RIS, configured to reflect the sensing signal to the target based on the beam of the RIS.
  • the RIS capability further includes the RIS refractive capability, RIS, for receiving the echo signal from the target; the processing module is further configured to obtain the obtained echo signal based on the echo signal. The second perception result of the target. The transceiver module is further configured to send the second sensing result to the first device.
  • RIS RIS refractive capability
  • the RIS capability is RIS refractive capability.
  • the processing module is also used to generate the perception signal.
  • the RIS is also used to transmit the sensing signal to the target and receive echo signals from the target based on the beam of the RIS.
  • the processing module is further configured to obtain a perception result of the target based on the echo signal.
  • the transceiver module is further configured to send the sensing result to the first device.
  • control information includes: perception requirements, where the perception requirements include: perception purposes, perceived performance requirements, and perception parameters; and a processing module, specifically configured to generate the perception requirements based on the perception requirements perception signal.
  • the transceiver module is further configured to report the RIS capability of the second device to the first device.
  • an embodiment of the present application provides an apparatus for cooperative sensing.
  • the apparatus for cooperative sensing includes: a processor, a memory, and a transceiver; the transceiver is coupled to the processor, and the processor controls the transceiver wherein, the memory is used to store computer-executable program code, and the program code includes instructions; when the processor executes the instructions, the instructions cause the cooperatively aware device to perform the second aspect or each possible method of the second aspect. Design the collaborative-aware approach provided.
  • an embodiment of the present application provides an apparatus for cooperative sensing.
  • the apparatus for cooperative sensing includes: a processor, a memory, a transceiver, and a RIS; the transceiver is coupled to the processor, and the processor controls the wherein, the memory is used to store computer-executable program codes, and the program codes include instructions; when the processor executes the instructions, the instructions cause the cooperative sensing device to perform the third aspect or each of the third aspects.
  • Collaboration-aware approach provided by possible designs.
  • an embodiment of the present application provides a cooperative sensing system, including the cooperative sensing apparatus described in the fourth aspect or the sixth aspect, and the cooperative sensing apparatus described in the fifth aspect or the seventh aspect.
  • an embodiment of the present application provides an apparatus for cooperative sensing, including a unit, a module, or a circuit for executing the methods provided in the second and third aspects above.
  • the cooperative sensing apparatus may be the first device or the second device, or may be a module applied to the first device or the second device, for example, may be a chip applied to the first device or the second device.
  • an embodiment of the present application provides a cooperative sensing device (for example, a chip), where a computer program is stored on the cooperative sensing device, and when the computer program is executed by the cooperative sensing device, the method as described in the first The methods provided by the second and third aspects.
  • a cooperative sensing device for example, a chip
  • the embodiments of the present application provide a computer program product containing instructions, which, when executed on a computer, cause the computer to execute the methods in the second and third aspects above.
  • embodiments of the present application provide a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium runs on a computer, the computer executes the second and third aspects above. Methods.
  • Embodiments of the present application provide a collaborative sensing method, an electronic device, and a readable storage medium.
  • the second device includes a reconfigurable smart surface RIS, and the method includes: the first device communicates with the second device based on the RIS capability of the second device.
  • Cooperative perception target, RIS capability is RIS reflection capability and/or RIS refraction capability
  • RIS reflection capability is used for characterization: the second device supports the reflection of the sensing signal from the first device to the target
  • RIS refraction capability is used for characterization: the second device supports A perception signal is generated and sent to the target.
  • the second device can reflect the sensing signal from the first device to the target, without processing the sensing signal, and the sensing delay is small, or the second device can generate the sensing signal and send the sensing signal directly to the target without needing to process the sensing signal.
  • the sensing delay is small, and the cooperative sensing efficiency can be improved.
  • FIG. 1 is a schematic diagram of a system architecture to which an embodiment of the present application is applicable;
  • FIG. 2 is a schematic diagram of another system architecture to which the embodiments of the present application are applicable;
  • 3A is a schematic structural diagram of a current electronic device
  • FIG. 3B is a schematic structural diagram of a second device provided by an embodiment of the present application.
  • FIG. 4A is a schematic diagram of a RIS provided by an embodiment of the present application.
  • FIG. 4B is another schematic diagram of the RIS provided by the embodiment of the present application.
  • FIG. 4C is another schematic diagram of the RIS provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of an embodiment of a collaborative sensing method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another embodiment of a collaborative sensing method provided by an embodiment of the present application.
  • FIG. 7A is a schematic diagram illustrating the comparison of the process flow between the embodiment shown in FIG. 6 and the prior art
  • FIG. 7B is a schematic diagram of signal transmission corresponding to FIG. 6;
  • FIG. 8 is a schematic flowchart of another embodiment of a collaborative sensing method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram illustrating the comparison of the process flow between the embodiment shown in FIG. 8 and the prior art.
  • FIG. 10 is a schematic diagram of signal transmission corresponding to FIG. 8.
  • FIG. 11 is a schematic flowchart of another embodiment of a collaborative sensing method provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of signal transmission corresponding to FIG. 11;
  • FIG. 13 is a schematic structural diagram of an apparatus for cooperative sensing provided by an embodiment of the present application.
  • FIG. 14 is another schematic structural diagram of an apparatus for cooperative sensing provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a system architecture to which an embodiment of the present application is applied.
  • the system architecture may include a first device, a second device and a target.
  • the first device is used as a base station, and the second device and the target are both mobile phones as an example for description.
  • the first device and the second device are devices that integrate communication and perception, that is, the first device and the second device can communicate with other devices and can also perceive other devices.
  • the first device may use but not limited to radar, ultrasonic sensor, camera, thermal imaging sensor, etc. to sense other devices.
  • the manner in which the first device and the second device perceive the target is not limited in this embodiment of the present application.
  • the perception needs of the first device are varied. If the first device needs to perceive the target, but the distance between the first device and the target is relatively far, or there is an obstacle between the first device and the target, the first device cannot perceive the target. Or, the first device needs to perceive the target in all directions, but due to the existence of obstacles, the first device can only perceive part of the target. Or, the sensing accuracy of the first device is poor, but the first device needs a sensing result with high sensing accuracy. In order to solve the problem of the perception requirement of the first device, the first device may cooperatively perceive the target through the second device.
  • the first device can sense the target through the second device with high sensing accuracy, and then obtain a sensing result with high sensing accuracy.
  • the first device may send a sensing signal to the second device, and the second device may process the sensing signal and forward the sensing signal to the target in the next time slot.
  • the target after receiving the sensing signal, the target can feed back an echo signal to the second device, the second device can feed back the echo signal to the first device, and the first device can obtain the sensing result of the target based on the echo signal .
  • the target after receiving the sensing signal, the target may feed back an echo signal to the first device, and the first device may obtain a sensing result of the target based on the echo signal.
  • the processing of the sensing signal by the second device may be as follows: the second device parses the sensing signal to determine the target.
  • An embodiment of the present application provides a cooperative sensing method.
  • a reconfigurable intelligent surface (RIS) is integrated in a second device that cooperates with a first device to sense a target.
  • the second device can directly detect the target based on the RIS reflection capability Reflecting the sensing signal from the first device, or the second device can generate the sensing signal, and send the sensing signal to the target based on the RIS refraction capability, both can reduce the delay for the first device to sense the target and improve the efficiency of cooperative sensing.
  • the cooperative sensing method in the embodiments of the present application may be, but is not limited to, applicable to: a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code Wideband code division multiple access (WCDMA) system, general packet radio service (GPRS), long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD) system, advanced long term evolution (LTE-A) system, New Radio (NR) system, evolution system of NR system, unlicensed frequency band LTE (LTE-based access to unlicensed spectrum, LTE-U) system on the Internet, NR (NR-based access to unlicensed spectrum, NR-U) system on unlicensed frequency bands, universal mobile telecommunication system (universal mobile telecommunication system, UMTS) ), worldwide interoperability for microwave access (WiMAX) systems, wireless local area networks (WLAN), wireless fidelity (WiFi) systems, next-generation communication systems
  • GSM
  • the first device may be, but not limited to, a terminal device and a network device
  • the second device may be, but not limited to, a terminal device and a network device.
  • the second device is an RIS-integrated device.
  • the network device may be a base station (base transceiver station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolutional Node B (evolutional Node B) in an LTE system , eNB or eNodeB), or a wireless controller in a cloud radio access network (CRAN), or the network device can be a mobile switching center, relay station, access point, hub, switch, bridge, Routers, network-side devices in 5G networks, or network devices in the future evolved public land mobile network (PLMN), etc.
  • BTS base transceiver station
  • NodeB base station
  • NB base station
  • WCDMA Wideband Code Division Multiple Access
  • evolutional Node B evolutional Node B
  • LTE system Long Term Evolutional Node B
  • eNB or eNodeB evolutional Node B
  • CRAN cloud radio access network
  • the network device can be a mobile switching center, relay station
  • the network device may be a (radio access network, (R)AN) device in the NR system, and the (R)AN device in the NR system may be: non-3GPP An access network such as an access point (AP) of a WiFi network, a next-generation base station (which may be collectively referred to as a new-generation radio access network node (NG-RAN node), wherein the next-generation base station includes a new air interface base station (NR nodeB).
  • AP access point
  • NG-RAN node next-generation radio access network node
  • NR nodeB new air interface base station
  • gNB new generation evolved base station
  • CU central unit
  • DU distributed unit
  • new radio controller new radio controller, NR controller
  • remote radio module micro base station, relay (relay), transceiver point (transmission receive point, TRP), transmission point (transmission point, TP) or other nodes.
  • the terminal device can be a mobile device or a fixed device.
  • Terminal devices can be, but are not limited to, mobile phones, tablet computers, notebook computers, speakers, headphones, wearable devices, smart screens, smart home appliances, Internet of things (IoT) devices, in-vehicle devices, and other devices with antennas.
  • the terminal device may also be a personal digital assistant (PDA), a handheld device with wireless communication capability, a computing device, a virtual reality (virtual reality, VR) terminal device, a drone device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in smart homes, etc.
  • PDA personal digital assistant
  • the forms of the network device and the terminal device are not limited in the embodiments of the present application.
  • FIG. 2 is a schematic diagram of another system architecture to which the embodiment of the present application is applicable.
  • the first device in the system architecture may be an in-vehicle device
  • the second device may be a roadside device
  • the target may be another in-vehicle device.
  • the roadside device may be used to cooperatively perceive another in-vehicle device due to the obstruction of an obstacle (such as a vehicle).
  • the roadside equipment may be, but is not limited to, monitoring equipment disposed on both sides of the road. It should be understood that the embodiments of the present application do not limit the system architecture and scenarios to which the cooperative sensing method is applicable.
  • the on-board equipment is represented by a vehicle.
  • FIG. 3A is a schematic structural diagram of a current electronic device.
  • the electronic device may include: an application processor, a modem, a radio frequency integrated circuit, a radio frequency front end, and an antenna.
  • the application processor is used to send service data to the modem.
  • the service data may be video data.
  • the modem is used to perform baseband processing on service data (such as video data), and output baseband signals after coding and modulation.
  • the radio frequency integrated circuit is used to modulate the low frequency baseband signal to the high frequency frequency band to obtain the high frequency radio frequency signal.
  • the power of the radio frequency signal modulated by the radio frequency integrated circuit is small, and the radio frequency front end is used to amplify the power of the radio frequency signal.
  • the antenna is used to transmit the radio frequency signal from the radio frequency front end, that is, the electronic device transmits the signal. In the same way, the antenna can receive radio frequency signals from other devices, and in the reverse order, the radio frequency front-end, the radio frequency integrated circuit, and the modem are processed to obtain digital signals, and sent to the application processor for processing. It should be understood that for other descriptions of the application processor, the modem, the radio frequency integrated circuit, the radio frequency front end, and the antenna, reference may be made to the relevant descriptions in the prior art.
  • FIG. 3B is a schematic structural diagram of a second device provided by an embodiment of the present application.
  • the second device shown in FIG. 3B may further include a RIS.
  • RIS is an array antenna based on artificial electromagnetic surface, RIS includes multiple array elements.
  • RIS capabilities may include, but are not limited to, RIS reflective capabilities and RIS refractive capabilities.
  • the RIS refractive power may be referred to as the RIS transmission power.
  • the modem may send control information to the RIS, and the control information may include parameters such as phase and amplitude of each antenna element of the RIS.
  • the second device can adjust parameters such as phase and amplitude of each antenna unit of the RIS based on the control information, thereby realizing reflection or refraction of the sensing signal.
  • the second device has a RIS reflection capability
  • the RIS does not participate in the transmission and reception of wireless signals of the second device
  • the RIS is used to reflect the sensing signal.
  • FIG. 4A is a schematic diagram of a RIS provided by an embodiment of the present application. The shaded square in FIG. 4A represents the antenna unit in the RIS, and the RIS can reflect the sensing signal from the first device based on the RIS reflection capability.
  • the second device has the RIS refractive capability, and the RIS can assist the second device to transmit and receive sensing signals.
  • FIG. 4B is another schematic diagram of the RIS provided by the embodiment of the present application. Referring to FIG. 4B , the second device may generate a sensing signal, and transmit the sensing signal to the RIS through an antenna. RIS can refract the perception signal based on the RIS refractive power. The RIS may also receive echo signals in response to the sensed signals based on the RIS refractive power. In other words, the RIS refractive power is used to characterize that the second device supports the generation of a perception signal, and the transmission of the perception signal.
  • the second device has RIS reflective capabilities and RIS refractive capabilities.
  • FIG. 4C is another schematic diagram of the RIS provided by the embodiment of the present application. Referring to FIG. 4C , the RIS can both reflect the sensing signal from the first device, and can also receive the echo signal in response to the sensing signal, and reference can be made to the above-mentioned related descriptions in FIGS. 4A and 4B .
  • the first device may acquire the RIS capability of the second device, and then the first device may use different perception strategies based on the RIS capability of the second device to cooperate with the second device to perceive the target.
  • the second device may report the RIS capability of the second device to the first device.
  • the second device may use a layer 3 signaling (layer 3, L3) message, a layer 2 signaling (layer 2, L2) message, a layer 1 signaling (Layer 1, L1) message, or data carrying, etc. , and report the RIS capability to the first device.
  • layer 1 is the physical layer
  • layer 2 is the medium access control layer
  • layer 3 is the access layer.
  • the physical layer, the medium access control layer, and the access layer in the embodiments of the present application may also be called other names, or divided into more and fewer layers, which are not limited.
  • the first device is a base station
  • the second device is a mobile phone.
  • the second device may carry the RIS capability in radio resource control (radio resource control, RRC) signaling (layer 3 signaling) to report the RIS capability to the first device.
  • RRC radio resource control
  • the RIS capability may be carried in media access control-control element (media access control-control element, MAC CE) signaling (layer 2 signaling) to report to the first device RIS capability.
  • the second device may carry the RIS capability in signaling (layer 1 signaling) or data transmitted on the uplink channel, so as to report the RIS capability to the first device.
  • the uplink channel may include, but is not limited to, an uplink physical uplink shared channel (PUSCH) and an uplink physical control channel (physical uplink control channel, PUCCH).
  • the first device may query the second device for RIS capabilities.
  • the second device may be a user equipment (user equipment, UE) as an example, after the first device and the second device are connected, the first device may send RIS capability enquiry information (UE capability enquiry) to the second device.
  • UE capability enquiry RIS capability enquiry information
  • the second device feeds back the RIS capability of the second device to the first device through a UE capability information message (UE capability information).
  • UE capability information UE capability information
  • the RIS capability of the second device may include: a working mode supported by the RIS.
  • the working modes supported by RIS can be: no RIS support, RIS reflection support and/or RIS refraction support.
  • RIS reflection can be understood as RIS reflection ability
  • RIS refraction can be understood as RIS refraction ability.
  • the second device may use bits to represent the working modes supported by the RIS, as shown in Table 1 below:
  • the second device may also use other identifiers, for example, reflection is used to represent RIS reflection, and refraction is used to represent RIS refraction. Or characterize RIS reflection with R1 and RIS refraction with R2.
  • the embodiments of the present application do not limit the manner of characterizing the working mode supported by the RIS.
  • the RIS capability may further include: RIS maximum gain, RIS scan range, RIS operating bandwidth, and RIS size.
  • the maximum gain of RIS can be understood as: a measure of the ability of RIS to send and receive signals in a specific direction.
  • the RIS maximum gain may be 17dBi.
  • the RIS scanning range can be understood as the range that the RIS beam can cover, such as ⁇ 50°.
  • the working bandwidth of RIS can be understood as: the frequency range in which RIS works.
  • the size of the RIS can be understood as the size of the RIS, and the relevant description of the size of the antenna can be referred to.
  • the first device may store the RIS capability of the second device.
  • the first device may use different perception strategies based on the RIS capability of the second device to cooperate with the second device to perceive the target.
  • the RIS capabilities of multiple second devices may be stored in the first device, and when the first device needs the second devices to cooperatively perceive the target, the first device may select the target first device among the multiple second devices. Second equipment. The first device can cooperatively perceive the target through the target second device.
  • the first device may select the second device with the best channel quality, or the second device with the largest RIS gain, or the second device with the largest RIS scanning range, as the target second device.
  • the first device may select a second device that does not have obstacles between the target and the target as the target second device.
  • the manner in which the first device selects the target second device among the plurality of second devices is not limited.
  • the second device that performs cooperative sensing with the first device is the target second device.
  • FIG. 5 is a schematic diagram of an embodiment of a collaborative sensing method provided by an embodiment of the present application.
  • the method of cooperative perception may include:
  • the first device acquires the RIS capability of the second device.
  • S501 may refer to the above related description.
  • the first device Based on the RIS capability of the second device, the first device adopts different perception strategies to cooperate with the second device to perceive the target.
  • the second device can passively cooperate to perceive the target, that is, the second device can passively cooperate with the first device to perceive the target. If the second device has the RIS refraction capability, the second device can actively cooperate to perceive the target, that is, the second device can actively cooperate with the first device to perceive the target. If the second device has the RIS reflection capability and the RIS refraction capability, the second device and the first device mix and cooperate to perceive the target.
  • the sensing strategy may be: the second device passively cooperates to sense the target. If the second device has the RIS refraction capability, the perception strategy may be: the second device actively cooperates to perceive the target. If the second device has the RIS reflection capability and the RIS refraction capability, the sensing strategy may be: the second device and the first device mix and cooperate to sense the target.
  • the sensing strategy may be: the second device passively cooperates to sense the target. If the second device has the RIS refraction capability, the perception strategy may be: the second device actively cooperates to perceive the target. If the second device has the RIS reflection capability and the RIS refraction capability, the sensing strategy may be: the second device and the first device mix and cooperate to sense the target.
  • the first device may adopt different sensing strategies based on the RIS capability of the second device to sense the target, so as to reduce the sensing delay of the first device and improve the cooperative sensing efficiency.
  • the second device has RIS reflection capability, and the second device can passively cooperatively perceive the target. It can be understood that the second device does not participate in the generation and reception of the sensing signal, but reflects the sensing signal from the first device to the target.
  • FIG. 6 is a schematic flowchart of another embodiment of a collaborative sensing method provided by an embodiment of the present application. As shown in Figure 6, the collaborative sensing method may include:
  • the first device sends control information to the second device.
  • the control information may include a RIS parameter, and the RIS parameter is used to indicate the parameters of each antenna unit in the RIS.
  • the first device may send control information to the second device based on the RIS capability of the second device.
  • the second device has the RIS reflection capability, and the RIS parameter in the control information may be the RIS reflection parameter.
  • the RIS reflection parameters may include, but are not limited to, the phase and amplitude of each antenna element in the RIS.
  • the phase and amplitude of each antenna unit represented by the RIS parameter may be represented in the form of a matrix or in a binary form, which is not limited in this embodiment of the present application.
  • the first device may generate RIS parameters of the second device based on the information of the target, and then carry the RIS parameters in the control information.
  • the first device may use a beamforming algorithm to generate the RIS parameters of the second device.
  • the information of the target may include: the identification, orientation or location of the target.
  • the identifier of the target may be, but is not limited to, the target's international mobile equipment identity (International Mobile Equipment Identity, IMEI) or the target's mobile phone number.
  • IMEI International Mobile Equipment Identity
  • the second device may generate the RIS reflection parameter of the second device based on the identifier of the target.
  • the second device may acquire the position or orientation of the target based on the identification of the target, and then generate the RIS reflection parameter based on the position or orientation of the target.
  • the RIS reflection parameter enables the second device to reflect the sensing signal from the first device to the target, which can also be understood as: the second device can adjust the RIS beam toward the target based on the RIS reflection parameter.
  • the orientation may be referred to as a position, and the following description takes the position as an example.
  • the first device may generate the RIS reflection parameter of the second device based on the information of the target.
  • the second device adjusts the parameters of each antenna unit to the parameters of each antenna unit represented by the RIS reflection parameter, and the adjusted RIS can convert the sensing signal from the first device to reflected to the target.
  • the first device has already acquired the position of the target, and the first device's sensing requirement for the target may be the speed, size, etc. of the sensing target, not the position of the sensing target.
  • control information may include information of the target.
  • the second device may generate RIS parameters based on the control information, where the RIS parameters may be RIS reflection parameters.
  • the RIS parameters may be RIS reflection parameters.
  • reference may be made to the relevant description of the generation of the RIS parameters by the first device.
  • the second device performs beamforming on the RIS in the second device based on the control information.
  • the second device may obtain the RIS reflection parameter of the second device based on the control information.
  • the second device may perform beamforming on the RIS in the second device according to the RIS reflection parameter.
  • the beamforming of the RIS in the second device by the second device can be understood as: the second device adjusts the phase and amplitude of each antenna element in the RIS based on the phase and amplitude of each antenna element in the RIS reflection parameter. It should be understood that the beam of the RIS after the beamforming is directed towards the target, for example, when the second device receives the sensing signal from the first device, the beam can be sent to the target through the beam of the RIS.
  • the beamforming reference may also be made to the related description of the beamforming of the current antenna.
  • the first device sends a sensing signal to the second device.
  • the sensing signal may be an electromagnetic wave signal, such as a beam or an omnidirectional signal.
  • the beam can be understood as a beam transmitted by the antenna of the first device, or an ultrasonic beam, a radar beam, etc. transmitted by the first device.
  • An omnidirectional signal may be a signal transmitted by an antenna. The sensing signal is used to enable the target feedback echo signal.
  • the first device may generate a sensing signal based on the sensing requirement.
  • Perceptual requirements may include perceptual purpose, perceptual performance requirements, and perceptual parameters.
  • the sensing purpose may include, but is not limited to, ranging, sensing the size of the target, and sensing the speed of the target.
  • Perceived performance requirements may include, but are not limited to, perceptual precision and perceptual accuracy.
  • the sensing parameters may include, but are not limited to, sensing waveforms and sensing resources.
  • the sensing waveform may be a single carrier or multiple carriers, and the sensing resource may be understood as: sensing on a certain frame or a certain carrier.
  • the sensing resources may be sensing time-frequency resources.
  • the sensing signal is adapted to the sensing requirement, for example, the waveform of the sensing signal is the waveform in the sensing requirement, and the perceived resource may be the sensing resource in the sensing requirement.
  • the second device reflects the sensing signal to the target.
  • the second device because the second device has adjusted the phase and amplitude of each antenna unit based on the RIS reflection parameters, the second device can directly reflect the sensing signal through the RIS after receiving the sensing signal from the first device. to the target. It can also be understood that the second device performs beamforming on the RIS in the second device, and the second device may carry the sensing signal based on the beam generated by the RIS, and reflect the sensing signal to the target.
  • the solution in this application can be understood as: the second device can send the sensing signal to the target at the same time slot when the sensing signal is received. Therefore, compared with the technical solution in the prior art in which the second device sends the sensing signal to the target in the next time slot, the second device can send the sensing signal to the target in the same time slot when the sensing signal is received, which can improve the response and sensing of the second device. The speed of the signal, thereby reducing the time delay of the first device sensing the target, and improving the efficiency of cooperative sensing. In addition, in the prior art, the second device needs to process the sensing signal, and the power consumption of the second device is large.
  • the second device processes the sensing signal and forwards the sensing signal in the next time slot, occupying the opportunity that the second time slot can be used for sending wireless signals, reducing the communication opportunity of the second device.
  • the second device directly reflects the sensing signal, the power consumption is low, and the sensing signal is sent in almost the same time slot, which will not affect the communication of the second device.
  • the RIS equivalent to an antenna
  • the second device can enhance the sensing signal received by the target.
  • the first device receives the echo signal fed back by the target.
  • the sensing signal reflected by the second device is irradiated on the target, and can be reflected by the target to generate an echo signal. That is, the target may feed back an echo signal in response to the sensing signal reflected by the second device.
  • the first device may receive the echo signal fed back by the target.
  • the echo signal can be understood as a signal after the sensing signal is reflected by the target.
  • the sensing signal is an ultrasonic beam or a radar beam
  • the echo signal can be: an ultrasonic beam or a radar beam reflected by the target. Because the RIS can enhance the reflected perception signal to the target, the echo signal reflected by the target is also enhanced, which can improve the precision and accuracy of the perception.
  • the first device obtains a sensing result of the target based on the echo signal.
  • the first device may obtain the sensing result of the target based on the attribute of the sensing signal and the attribute of the echo signal.
  • the attributes of the echo signal may be, but are not limited to, the frequency, phase, and amplitude of the echo signal, and the moment when the first device receives the echo signal. It should be understood that the sensing requirements of the first device are different, and the sensing result of the target may be obtained based on different "sensing signal attributes and echo signal attributes".
  • the frequency change of the echo signal is related to the "relative speed between the first device and the target". Accordingly, the first device can obtain the relative speed between the target and the first device based on the change of the frequency of the echo signal, and then obtain the speed of the target based on the speed of the first device.
  • FIG. 7A is a schematic diagram illustrating the comparison of the process flow between the embodiment shown in FIG. 6 and the prior art.
  • the first device sends a sensing signal to the second device. If the second device also receives the sensing signal at time t1, the second device processes the sensing signal, and The sensing signal is forwarded to the target at time t2.
  • the first device sends a sensing signal to the second device. Assuming that the second device also receives the sensing signal at time t1, the second device can reflect the sensing signal at time t1 based on the RIS reflection capability. The signal reaches the target, thereby reducing the delay for the second device to respond to the sensing signal, and also reducing the power consumption of the second device.
  • FIG. 7B is a schematic diagram of signal transmission corresponding to FIG. 6 .
  • the first device is a base station
  • the second device and the third device are mobile phones
  • a RIS may be integrated in the second device.
  • the second device can adjust the phase and amplitude of each antenna element in the RIS.
  • the first device sends a sensing signal to the second device
  • the second device may reflect the sensing signal to the target based on the RIS reflection capability
  • the target may feed back an echo signal to the first device based on the sensing signal.
  • the first device sends control information to the second device
  • the second device may perform beamforming on the RIS in the second device based on the control information
  • the first device sends a sensing signal to the second device
  • the second device The device can reflect the sensing signal to the target, and the target can feed back the echo signal to the first device based on the sensing signal.
  • the second device does not process the sensing signal, but reflects the sensing signal to the target
  • the power consumption of the second device is small, and the speed of responding to the sensing signal is accelerated, which reduces the delay for the first device to obtain the sensing result, and improves the Collaboration-perceived efficiency.
  • the RIS in the second device can enhance the reflected perception signal to the target in real time, thereby enhancing the echo signal of the target and improving the precision and accuracy of perception.
  • An embodiment of the present application provides a method for cooperative sensing, in which a second device performing cooperative sensing actively generates a sensing signal, and a sensing result is obtained based on the echo signal fed back by the target, and then the sensing result is fed back to the first device.
  • the second device has RIS refractive capability, and the second device can actively cooperate to perceive the target. That is, when the second device has the RIS refraction capability, the second device can actively generate a sensing signal to realize the sensing target of the first device, specifically referring to the relevant description of FIG. 8 .
  • FIG. 8 is a schematic flowchart of another embodiment of a collaborative sensing method provided by an embodiment of the present application. As shown in FIG. 8 , the collaborative sensing method may include:
  • the first device sends control information to the second device.
  • the first device may send control information to the second device based on the RIS capability of the second device.
  • the second device has RIS refraction capability.
  • the control information may include a RIS parameter and a perception requirement, and the RIS parameter is a RIS refraction parameter.
  • the RIS refraction parameters may include, but are not limited to, the phase and amplitude of each antenna element in the RIS.
  • the RIS refractive power enables the second device to transmit and receive sensing signals generated by the second device.
  • the first device may generate RIS refraction parameters of the second device based on the information of the target, and then carry the RIS refraction parameters in the control information.
  • the control information may further include information of the target, and the second device may generate the RIS refraction parameter based on the information of the target.
  • the second device may obtain the RIS refraction parameter based on the control information from the first device.
  • the second device can adjust the parameters of each antenna unit based on the RIS refraction parameters to the parameters of each antenna unit represented by the RIS refraction parameters, and the adjusted RIS can send the sensing signal generated by the second device to the target, and can also receive target feedback echo signal.
  • the second device performs beamforming on the RIS in the second device based on the control information.
  • the second device may beamform the RIS in the second device based on the RIS refraction parameters.
  • the beamforming of the RIS in the second device by the second device can be understood as: the second device adjusts the phase and amplitude of each antenna element of the RIS based on the phase and amplitude of each antenna element in the RIS refraction parameters. It should be understood that the beam of the beam-formed RIS is directed toward the target, and for example, the second device may receive an echo signal from the target.
  • the second device sends a sensing signal to the target.
  • the second device may generate a sensing signal based on the sensing requirement in the control information, and reference may be made to the above description of the first device generating the sensing signal.
  • the second device may send the sensing signal to the target based on the beam bearing the sensing signal generated by the RIS.
  • the second device may send the sensing signal to the target based on the beam bearing the sensing signal generated by the RIS.
  • the second device generates a sensing signal based on the sensing requirement in the control information, and sends the sensing signal to the RIS through an antenna.
  • the RIS can refract the sensing signal toward the target based on the RIS refractive power.
  • the second device can generate a sensing signal and send the sensing signal to the target.
  • the process of processing the sensing signal by the second device is not required, so the delay of the first device for sensing the target can be reduced, and the efficiency of cooperative sensing can be improved.
  • FIG. 9 is a schematic diagram showing the comparison of the process flow between the embodiment shown in FIG. 8 and the prior art.
  • the first device sends a sensing signal to the second device. If the second device also receives the sensing signal at time t1, the second device processes the sensing signal, and sends the sensing signal to the second device at time t2.
  • the target forwards the perception signal.
  • the second device may generate a sensing signal, and send the sensing signal to the target.
  • the second device generates the sensing signal (which can offset the time when the first device generates the sensing signal), and does not need to transmit the sensing signal from the first device to the second device, and the second device processes the sensing signal.
  • the second device can send the sensing signal to the target, so the time delay for the first device to perceive the target can be reduced, and the efficiency of cooperative sensing can be improved.
  • the second device receives the echo signal fed back by the target.
  • the sensing signal refracted by the second device, irradiated on the target, can be reflected by the target to generate an echo signal, so the second device can receive the echo signal from the target.
  • the RIS in the second device may receive the echo signal from the target.
  • the second device obtains a perception result of the target based on the echo signal.
  • the second device sends the sensing result of the target to the first device.
  • the second device may send the sensing result of the target to the first device, thereby realizing the first device sensing the target.
  • FIG. 10 is a schematic diagram of signal transmission corresponding to FIG. 8 .
  • the first device is a base station
  • the second device and the third device are mobile phones
  • a RIS is integrated in the second device.
  • the second device can adjust the phase and amplitude of each antenna element in the RIS.
  • the second device may generate a sensing signal, and based on the RIS refraction capability, refract the sensing signal to the target, the target may return an echo signal based on the sensing signal, and the second device may receive the echo signal.
  • the second device may receive the echo signal from the target based on the RIS and/or the antenna.
  • the second device may receive the echo signal from the target based on the RIS as an example for description.
  • the second device obtains the sensing result of the target based on the echo signal, and can send the sensing result of the target to the first device.
  • the second device that performs cooperative sensing actively generates a sensing signal, and obtains a sensing result based on the echo signal fed back by the target, and then feeds back the sensing result to the first device, according to which the first device and the target can be resolved.
  • the first device cannot perceive the target.
  • the second device generates the sensing signal, and can send the sensing signal to the target without the transmission of the sensing signal and the processing of the sensing signal by the second device. Therefore, the delay for the first device to sense the target can be reduced, and the efficiency of cooperative sensing can be improved.
  • the embodiments of the present application also have other technical effects in the foregoing embodiments, and reference may be made to the relevant descriptions of the foregoing embodiments.
  • FIG. 11 is a schematic flowchart of another embodiment of a collaborative sensing method provided by an embodiment of the present application. As shown in Figure 11, the collaborative sensing method may include:
  • the first device sends control information to the second device.
  • control information may include a RIS parameter
  • the RIS parameter is used to indicate the parameters of each antenna unit in the RIS.
  • the first device may send control information to the second device based on the RIS capability of the second device.
  • the RIS parameters in the control information may include: RIS reflection parameters and RIS refraction parameters, and RIS reflection parameters and RIS refraction parameters may refer to the above-mentioned embodiments. related description.
  • the first device may generate RIS parameters of the second device based on the information of the target, and then carry the RIS parameters in the control information.
  • the control information may include information of the target.
  • the second device may generate RIS reflection parameters and RIS refraction parameters in response to the control information.
  • the first device may instruct the second device to use the RIS reflection capability or the RIS refractive capability.
  • the control information may include RIS reflection parameters or RIS refraction parameters, and the second device may perform beamforming on the RIS in the second device based on the RIS reflection parameters or RIS refraction parameters. Relevant description of the embodiment.
  • the control information may include information of the target and an identifier of the RIS capability, where the identifier of the RIS capability is used to instruct the second device to use the RIS reflection capability and/or the RIS refractive capability.
  • the control information may not include the RIS capability identifier.
  • the RIS capability identifier is used to indicate the first RIS capability identifier.
  • Two devices use RIS reflectivity or RIS refractive power.
  • the second device may obtain the RIS parameter based on the information of the target and the identifier of the RIS capability.
  • the second device may generate the RIS reflection parameter based on the position of the target. It should be understood that when the first device adopts the RIS reflection capability, the second device can passively cooperate to perceive the target, and when the first device adopts the RIS refraction capability, the second device can actively cooperate to perceive the target.
  • the second device performs beamforming on the RIS in the second device based on the control information.
  • some of the antenna elements in the RIS support RIS reflection, and the rest of the antenna elements support RIS refraction.
  • the beamforming of the RIS in the second device by the second device can be understood as: the second device can adjust the phase and amplitude of the antenna unit supporting RIS reflection based on the phase and amplitude of each antenna unit in the RIS reflection parameter, and the second device can The device can adjust the phase and amplitude of the antenna element supporting RIS refraction based on the phase and amplitude of each antenna element in the RIS refraction parameter.
  • the beam of the beamformed RIS is directed towards the target, for example, for example, the second device may reflect the sensing signal to the target, and may also receive echo signals from the target.
  • the first device sends a sensing signal to the second device.
  • the second device reflects the sensing signal to the target.
  • S1103-S1104 can refer to the related descriptions of S603-S604.
  • the second device may use each antenna unit in the RIS that supports RIS reflection to reflect the sensing signal to the target. Because the second device does not process the sensing signal, but directly reflects it, the speed at which the second device responds to the sensing signal can be increased, thereby reducing the time delay of the first device sensing the target, and improving the cooperative sensing efficiency.
  • the first device receives the echo signal fed back by the target.
  • S1105 can refer to the relevant description of S605.
  • the second device receives the echo signal fed back by the target.
  • S1105 and S1106 are not distinguished in order, and they can be executed at the same time. Because the RIS in the embodiment of the present application has the RIS refractive capability, the second device can receive the echo signal fed back from the target.
  • the first device obtains a first sensing result of the target based on the echo signal.
  • S1107 can refer to the relevant description of S606.
  • the second device obtains a second sensing result of the target based on the echo signal.
  • S1107 and S1108 are not distinguished in order, and they can be executed at the same time.
  • S1108 can refer to the relevant description of S805.
  • the second device sends the second sensing result to the first device.
  • S1109 may refer to the relevant description of S806.
  • the first device obtains a sensing result of the target based on the first sensing result and the second sensing result.
  • the first device may fuse the first sensing result and the second sensing result based on the preset fusion rule to obtain the sensing result of the target.
  • the preset fusion rule may be: the average of the first perception result and the second perception result is the target perception result.
  • the first device needs to sense the speed of the target, the first sensing result indicates that the speed of the target is V1, and the second sensing result indicates that the speed of the target is V2, then the first device can use the average value of V1 and V2 as the target's speed. speed.
  • the preset fusion rule may be: based on the first perception result, the weight of the first perception result, the second perception result, and the weight of the second perception result, obtain the perception result of the target.
  • the perception capability of the first device is higher than the perception capability of the second device, so the weight of the first perception result may be higher than the weight of the second perception result.
  • the first device needs to perceive the speed of the target, the first perception result indicates that the speed of the target is V1, the second perception result indicates that the speed of the target is V2, the weight of the first perception result is 0.7, and the weight of the second perception result is is 0.3, the speed of the target can be (0.7V1+0.3V2)/2.
  • the preset fusion rules are not specifically limited in the embodiments of the present application, and the above-mentioned preset fusion rules are illustrative.
  • FIG. 12 is a schematic diagram of signal transmission corresponding to FIG. 11 .
  • the first device is a base station
  • the second device and the target are a mobile phone
  • a RIS is integrated in the second device.
  • the second device can adjust the phase and amplitude of each antenna element in the RIS.
  • the first device sends a sensing signal to the second device
  • the second device may reflect the sensing signal to the target based on the RIS reflection capability, and the target may feed back an echo signal in response to the sensing signal.
  • the second device may receive the echo signal based on the RIS refractive power, and the first device may also receive the echo signal.
  • the second device may obtain the second sensing result based on the echo signal, and send the second sensing result to the first device.
  • the first device may obtain the first sensing result based on the echo signal, and then fuse the first sensing result and the second sensing result. Perception result, get the perception result of the target.
  • the second device does not need to process the sensing signal, but directly reflects the sensing signal to the target, which can improve the speed at which the second device responds to the sensing signal, thereby reducing the delay for the first device to sense the target.
  • the second device may feed back the sensing result of the target to the first device based on the echo signal, so as to realize the sensing target of the first device.
  • the first device can fuse the first perception result and the second perception result to obtain the perception result of the target, which realizes two-level perception of the first device and the second device, and can improve the accuracy of perception.
  • the embodiments of the present application also have other technical effects in the foregoing embodiments, and reference may be made to the relevant descriptions of the foregoing embodiments.
  • FIG. 13 is a schematic structural diagram of an apparatus for cooperative sensing provided by an embodiment of the present application.
  • the cooperative sensing apparatus 1300 involved in this embodiment may be the aforementioned first device, or may be a chip applied to the first device.
  • the cooperative sensing apparatus 1300 may be configured to perform the actions of the first device in the foregoing method embodiments.
  • the cooperative sensing apparatus 1300 may include: a transceiver module 1301 and a processing module 1302 . in,
  • the processing module 1302 is configured to cooperate with the second device to perceive the target based on the RIS capability of the second device, where the RIS capability is RIS reflection capability and/or RIS refraction capability, and the RIS reflection capability is used to characterize: the second device supports reflection from the first The sensing signal of the device is sent to the target, and the RIS refraction capability is used to characterize: the second device supports the generation of the sensing signal and sends the sensing signal to the target.
  • the transceiver module 1301 is configured to send control information to the second device based on the RIS capability, where the control information is used by the second device to beamform the RIS, and the beam orientation of the RIS after beamforming Target.
  • control information includes RIS parameters
  • RIS parameters are related to RIS capabilities.
  • the processing module 1302 is further configured to obtain RIS parameters based on the information of the target, where the information of the target includes the identification, orientation or position of the target.
  • control information includes information of the target
  • information of the target includes the identification, orientation or position of the target.
  • the control information further includes: an identifier of the RIS capability, and the identifier of the RIS capability is used to instruct the second device to use the RIS reflection capability and/or the RIS refraction capability. ability.
  • the control information further includes: a perception requirement, and the perception requirement includes: a perception purpose, a perceived performance requirement, and a perception parameter.
  • the RIS capabilities include RIS reflectance capabilities.
  • the transceiver module 1301 is further configured to send a sensing signal to the second device and receive an echo signal from the target; the processing module 1302 is further configured to obtain a sensing result of the target based on the echo signal.
  • the RIS capability also includes the RIS refractive capability.
  • the transceiver module 1301 is further configured to receive the second sensing result from the second device.
  • the processing module 1302 is specifically configured to obtain the first sensing result of the target based on the echo signal; and obtain the sensing result based on the first sensing result and the second sensing result.
  • the RIS capability is the RIS refractive capability.
  • the transceiver module 1301 is further configured to receive the sensing result from the second device.
  • the transceiver module 1301 is further configured to receive the RIS capability reported by the second device.
  • the cooperative sensing apparatus provided in the embodiment of the present application can perform the action of the first device in the foregoing method embodiment, and its implementation principle and technical effect are similar, and details are not described herein again.
  • FIG. 14 is a schematic structural diagram of an apparatus for cooperative sensing provided by an embodiment of the present application.
  • the cooperative sensing apparatus 1400 involved in this embodiment may be the aforementioned second device, or may be a chip applied to the second device.
  • the cooperative sensing apparatus 1400 may be configured to perform the actions of the second device in the foregoing method embodiments.
  • the cooperative sensing apparatus 1400 may include: a transceiver module 1401 , a processing module 1402 and a RIS 1403 . in,
  • the processing module 1402 is configured to cooperate with the first device to perceive the target based on the RIS capability of the second device, where the RIS capability is RIS reflection capability and/or RIS refraction capability, and the RIS reflection capability is used to characterize: the second device supports reflection from the first device The sensing signal of the device is sent to the target, and the RIS refraction capability is used to characterize: the second device supports the generation of the sensing signal and sends the sensing signal to the target.
  • the RIS capability is RIS reflection capability and/or RIS refraction capability
  • the RIS reflection capability is used to characterize: the second device supports reflection from the first device
  • the sensing signal of the device is sent to the target, and the RIS refraction capability is used to characterize: the second device supports the generation of the sensing signal and sends the sensing signal to the target.
  • the transceiver module 1401 is configured to receive control information from the first device; the processing module 1402 is further configured to perform beamforming on the RIS based on the control information, and the beam of the RIS after beamforming towards the target.
  • the processing module 1402 is specifically configured to obtain RIS parameters based on the control information, where the RIS parameters are related to the RIS capabilities; and based on the RIS parameters, beamforming is performed on the RIS.
  • control information includes a RIS parameter
  • the RIS parameter is obtained by the first device based on information of a target
  • the information of the target includes an identification, orientation or position of the target.
  • control information includes target information.
  • the processing module 1402 is specifically configured to obtain RIS parameters based on information of the target, where the information of the target includes the identification, orientation or position of the target.
  • the control information further includes: an identifier of the RIS capability, and the identifier of the RIS capability is used to instruct the second device to use the RIS reflection capability and/or the RIS refraction capability. ability.
  • the processing module 1402 is specifically configured to obtain the RIS parameter based on the target information and the identifier of the RIS capability.
  • the RIS capabilities include RIS reflectance capabilities.
  • the transceiver module 1401 is used for receiving the sensing signal from the first device; the RIS 1403 is used for reflecting the sensing signal to the target based on the RIS beam.
  • the RIS capability further includes RIS refraction capability, RIS1403, for receiving echo signals from the target; processing module 1402, further for obtaining a second perception result of the target based on the echo signals.
  • the transceiver module 1401 is further configured to send the second sensing result to the first device.
  • the RIS capability is the RIS refractive capability.
  • the processing module 1402 is further configured to generate a perception signal.
  • the RIS1403 also used for RIS-based beams, sends sensing signals to the target, and receives echo signals from the target.
  • the processing module 1402 is further configured to obtain a perception result of the target based on the echo signal.
  • the transceiver module 1401 is further configured to send the sensing result to the first device.
  • control information includes: a perception requirement, and the perception requirement includes a perception purpose, a perceived performance requirement, and a perception parameter.
  • the processing module 1402 is specifically configured to generate a perception signal based on the perception requirement.
  • the transceiver module 1401 is further configured to report the RIS capability of the second device to the first device.
  • the cooperative sensing apparatus provided in the embodiment of the present application can perform the action of the second device in the foregoing method embodiment, and its implementation principle and technical effect are similar, and details are not described herein again.
  • the above transceiver module may be a transceiver, or include a transmitter and a receiver when actually implemented.
  • the processing module can be implemented in the form of software calling through processing elements; it can also be implemented in the form of hardware.
  • the processing module may be a separately established processing element, or may be integrated into a certain chip of the above-mentioned device to be implemented, in addition, it may also be stored in the memory of the above-mentioned device in the form of program code, and a certain processing element of the above-mentioned device Call and execute the function of the above processing module.
  • all or part of these modules can be integrated together, and can also be implemented independently.
  • the processing element described here may be an integrated circuit with signal processing capability.
  • each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASIC), or one or more microprocessors (digital) signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA), etc.
  • ASIC application specific integrated circuits
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the processing element may be a general-purpose processor, such as a central processing unit (central processing unit, CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 15 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device may be the above-mentioned first device or second device.
  • the electronic device may include: a processor 1501 (for example, a CPU), a memory 1502, and a transceiver 1503; the transceiver 1503 is coupled to the processor 1501, and the processor 1501 controls the transceiver 1503 to send and receive actions;
  • the memory 1502 may Including high-speed random-access memory (RAM), and possibly non-volatile memory (NVM), such as at least one disk memory, the memory 1502 can store various instructions to use In order to complete various processing functions and realize the method steps of the present application.
  • RAM random-access memory
  • NVM non-volatile memory
  • the electronic device involved in this application may further include: a power supply 1504 , a communication bus 1505 and a communication port 1506 .
  • the transceiver 1503 may be integrated in the transceiver of the electronic device, or may be an independent transceiver antenna on the electronic device.
  • a communication bus 1505 is used to implement communication connections between elements.
  • the above-mentioned communication port 1506 is used to implement connection and communication between the electronic device and other peripheral devices.
  • the above-mentioned memory 1502 is used to store computer-executable program codes, and the program codes include instructions; when the processor 1501 executes the instructions, the instructions cause the processor 1501 of the electronic device to perform the processing of the terminal device in the foregoing method embodiments. operation, so that the transceiver 1503 performs the sending and receiving operation of the electronic device in the above method embodiments, the implementation principle and technical effect thereof are similar, and are not repeated here.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored on or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • Useful media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), among others.
  • plural refers to two or more.
  • the term “and/or” in this article is only an association relationship to describe the associated objects, indicating that there can be three kinds of relationships, for example, A and/or B, it can mean that A exists alone, A and B exist at the same time, and A and B exist independently B these three cases.
  • the character "/" in this article generally indicates that the related objects before and after are an “or” relationship; in the formula, the character "/" indicates that the related objects are a "division" relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例提供一种协作感知的方法、电子设备和可读存储介质,第二设备包括可重构智能表面RIS,该方法包括:第一设备基于第二设备的RIS能力,与第二设备协作感知目标,RIS能力为RIS反射能力和/或RIS折射能力,RIS反射能力用于表征:第二设备支持反射来自第一设备的感知信号至目标,RIS折射能力用于表征:第二设备支持生成感知信号,且向目标发送感知信号。本申请中,第二设备基于RIS能力,可以反射来自第一设备的感知信号至目标,无需处理感知信号,感知时延小,或者第二设备可以生成感知信号,直接向目标发送感知信号,无需作为第一设备和目标之间转发感知信号的中间装置,感知时延小,均可以提高协作感知效率。

Description

协作感知的方法、电子设备和可读存储介质
本申请要求于2021年04月08日提交中国专利局、申请号为202110377256.4、申请名称为“协作感知的方法、电子设备和可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信和感知一体化技术,尤其涉及一种协作感知的方法、电子设备和可读存储介质。
背景技术
通信和感知一体化(integrated communication and sensing,ICS),表示电子设备既可以与其他设备进行通信,也可以感知其他设备,如电子设备可以感知其他设备的距离、大小、移动速度等。示例性的,第一设备与目标的通信中,第一设备感知目标的距离变远,则第一设备可以提高信号的发射功率,便于目标可以顺利接收到来自第一设备的信号。
若第一设备与需要感知的目标之间的距离很远,或者第一设备与目标之间存在障碍物,则第一设备无法感知目标或感知到部分目标。目前,第一设备可以与第二设备进行协作感知,即第一设备可以通过第二设备感知目标。其中,第一设备向第二设备发送感知信号,第二设备处理感知信号,在下一时隙向目标转发感知信号。目标在接收感知信号后,可以通过第二设备向第一设备反馈回波信号,第一设备基于回波信号可以得到目标的感知结果。
目前的协助感知方案中,第二设备响应感知信号的时间长,在下一时隙才能向目标转发感知信号,导致第一设备感知目标的时延大,协作感知的效率低。
发明内容
本申请实施例提供一种协作感知的方法、电子设备和可读存储介质,可以提高协作感知的效率。
第一方面,本申请实施例提供了一种协作感知的方法,第二设备包括可重构智能表面RIS,该方法包括:第一设备基于所述第二设备的RIS能力,与所述第二设备协作感知目标。所述RIS能力为RIS反射能力和/或RIS折射能力。
当所述RIS能力为RIS反射能力时,第二设备支持反射来自所述第一设备的感知信号至目标,相较于现有技术,第二设备无需对来自第一设备的感知信号进行处理,而是直接反射至目标,感知时延小,因此可以提高协作感知效率。当所述RIS能力为RIS反射能力RIS折射能力时,第二设备支持生成所述感知信号,且向所述目标发送所述感知信号,相较于现有技术,第二设备无需对作为第一设备和目标之间转发感知信号的中间装置,而是自己生成感知信号向目标发送,感知时延小可以提高协作感知 效率。当所述RIS能力为RIS反射能力和RIS折射能力时,所述第二设备可以基于所述RIS反射能力,同样也可以提高协作感知效率。
在一种实施例中,所述RIS能力为不支持RIS,该种方式中,第一设备可以不基于RIS能力与第二设备进行协作感知。下述实施例中主要讲述第一设备基于RIS能力与第二设备进行协作感知的方案。
在一种可能的实现方式中,第一设备中可以存储至少一个第二设备的RIS能力,其中,第二设备的RIS能力是由第二设备上报至第一设备的。
其中,第二设备需要对RIS进行波束赋形,RIS能够实现RIS反射能力和/或RIS折射能力。第二设备可以采用RIS参数对RIS进行波束赋形,RIS参数与RIS能力相关。示例性的,当所述RIS能力为RIS反射能力时,所述RIS参数为RIS反射参数,当所述RIS能力为RIS折射能力时,所述RIS参数为RIS折射参数,当所述RIS能力为RIS反射能力和RIS折射能力时,所述RIS参数包括所述RIS反射参数和所述RIS折射参数。在一种实施例中,RIS中包括多个天线单元,RIS参数可以包括:RIS中各天线单元的相位和幅度。
在一种可能的实现方式中,第一设备与第二设备协作感知目标之前,第一设备可以基于所述RIS能力,向所述第二设备发送控制信息;所述第二设备基于所述控制信息,对所述RIS进行波束赋形,波束赋形后的RIS的波束朝向所述目标。其中,所述第二设备基于所述控制信息,得到RIS参数,所述RIS参数与所述RIS能力相关;所述第二设备基于所述RIS参数,对所述RIS进行波束赋形。
方式一:第一设备获取RIS参数,将RIS参数携带在控制信息中。
所述控制信息包括所述RIS参数,如此,第二设备接收到控制信息后,即可得到RIS参数。其中,控制信息中的RIS参数是由第一设备基于所述目标的信息得到的,所述目标的信息包括所述目标的标识、方位或位置。也就是说,所述第一设备基于所述RIS能力,向所述第二设备发送控制信息之前,包括:所述第一设备基于所述目标的信息,得到所述RIS参数。
方式二:第二设备获取RIS参数。在该种方式中,所述控制信息包括所述目标的信息,所述目标的信息包括所述目标的标识、方位或位置,所述第二设备可以基于所述目标的信息,得到所述RIS参数。
方式三:第二设备获取RIS参数。在该种方式中,所述RIS能力为所述RIS反射能力和所述RIS折射能力时,所述控制信息还包括:RIS能力的标识,所述RIS能力的标识用于指示所述第二设备使用所述RIS反射能力和/或所述RIS折射能力。如此,第二设备可以基于RIS能力的标识,可以确定是获取RIS反射参数和/或所述RIS折射参数,进而第二设备可以基于所述目标的信息,以及所述RIS能力的标识,得到所述RIS参数。
下述对第一设备基于第二设备的RIS能力,与第二设备进行协作感知的具体过程进行说明:
其一,当所述RIS能力包括所述RIS反射能力时,也就是说,RIS能力为所述RIS反射能力,或者RIS能力为所述RIS反射能力和所述RIS折射能力。该种方式中,所述第一设备向所述第二设备发送所述感知信号,所述第二设备基于所述RIS的波束, 反射所述感知信号至所述目标。感知信号遇到目标后,可以经目标反射形成回波信号,进而第一设备可以接收来自所述目标的回波信,第一设备可以基于所述回波信号,得到所述目标的感知结果。如此,第一设备可以感知目标。
其二,根据如上其一所述,当所述RIS能力为所述RIS反射能力和所述RIS折射能力时,第一设备可以基于所述回波信号,得到所述目标的感知结果,该结果可以称为第一感知结果。因为RIS还具有RIS折射能力,因此第二设备可以基于RIS折射能力,可以接收来自目标的所述回波信号,第二设备可以基于所述回波信号,得到所述目标的第二感知结果,且向所述第一设备发送所述第二感知结果。在该种方式中,第一设备可以基于所述第一感知结果和所述第二感知结果,得到所述目标的感知结果。
该种方式中,第一设备可以对来自第二设备的对目标的感知结果,以及自己对目标的感知结果进行融合,得到目标的感知结果,感知准确性高。
在一种可能的实现方式中,RIS能力为所述RIS反射能力和所述RIS折射能力时,第一设备可以采用RIS反射能力或所述RIS折射能力,第一设备可以在控制信息中携带第二设备的使用的RIS能力的标识,使得RIS能力的使用更具灵活性。
其三,当所述RIS能力为RIS折射能力时,所述第二设备可以生成感知信号,进而所述第二设备基于所述RIS的波束,向所述目标发送所述感知信号。第二设备可以基于RIS折射能力接收来自所述目标的回波信号,所述第二设备基于所述回波信号,得到所述目标的感知结果,且向所述第一设备发送所述感知结果。如此,第一设备可以借助第二设备得到目标的感知结果。
在该种方式中,当所述RIS能力为RIS折射能力时,第一设备向第二设备发送的控制信息中可以包括感知需求,所述感知需求包括:感知目的、感知的性能需求以及感知参数。第二设备可以基于感知需求,生成感知信号。
第二方面,本申请实施例提供了一种协作感知的方法,应用于第一设备,第二设备包括可重构智能表面RIS,该方法包括:基于所述第二设备的RIS能力,与所述第二设备协作感知目标,所述RIS能力为RIS反射能力和/或RIS折射能力,所述RIS反射能力用于表征:所述第二设备支持反射来自所述第一设备的感知信号至目标,所述RIS折射能力用于表征:所述第二设备支持生成所述感知信号,且向所述目标发送所述感知信号。
在一种可能的实现方式中,所述与所述第二设备协作感知目标之前,还包括:基于所述RIS能力,向所述第二设备发送控制信息,控制信息用于所述第二设备对所述RIS进行波束赋形,波束赋形后的RIS的波束朝向所述目标。
在一种可能的实现方式中,所述控制信息包括RIS参数,所述RIS参数与所述RIS能力相关,所述基于所述RIS能力,向所述第二设备发送控制信息之前,还包括:基于所述目标的信息,得到所述RIS参数,所述目标的信息包括所述目标的标识、方位或位置。
在一种可能的实现方式中,所述控制信息包括所述目标的信息,所述目标的信息包括所述目标的标识、方位或位置。
在一种可能的实现方式中,当所述RIS能力为所述RIS反射能力和所述RIS折射能力时,所述控制信息还包括:RIS能力的标识,所述RIS能力的标识用于指示所述 第二设备使用所述RIS反射能力和/所述RIS折射能力。
在一种可能的实现方式中,当所述RIS能力为所述RIS折射能力时,所述控制信息还包括:感知需求,所述感知需求包括:感知目的、感知的性能需求以及感知参数。
在一种可能的实现方式中,所述RIS能力包括所述RIS反射能力,所述与所述第二设备协作感知目标,包括:向所述第二设备发送所述感知信号;接收来自所述目标的回波信号;基于所述回波信号,得到所述目标的感知结果。
在一种可能的实现方式中,所述RIS能力还包括所述RIS折射能力,所述方法还包括:接收来自所述第二设备的第二感知结果;所述基于所述回波信号,得到所述目标的感知结果,包括:基于所述回波信号,得到所述目标的第一感知结果;基于所述第一感知结果和所述第二感知结果,得到所述感知结果。
在一种可能的实现方式中,所述RIS能力为RIS折射能力,所述与所述第二设备协作感知目标,包括:接收来自所述第二设备的所述感知结果。
在一种可能的实现方式中,所述方法还包括:接收所述第二设备上报的所述RIS能力。
第三方面,本申请实施例提供了一种协作感知的方法,应用于第二设备,所述第二设备包括可重构智能表面RIS;该方法包括:基于所述RIS能力,与第一设备协作感知目标,所述RIS能力为RIS反射能力和/或RIS折射能力,所述RIS反射能力用于表征:所述第二设备支持反射来自所述第一设备的感知信号至目标,所述RIS折射能力用于表征:所述第二设备支持生成所述感知信号,且向所述目标发送所述感知信号。
在一种可能的实现方式中,所述与第一设备协作感知目标之前,还包括:接收来自所述第一设备的控制信息;基于所述控制信息,对所述RIS进行波束赋形,波束赋形后的RIS的波束朝向所述目标。
在一种可能的实现方式中,所述基于所述控制信息,对所述RIS进行波束赋形,包括:基于所述控制信息,得到RIS参数,所述RIS参数与所述RIS能力相关;基于所述RIS参数,对所述RIS进行波束赋形。
在一种可能的实现方式中,所述控制信息包括所述RIS参数,所述RIS参数是所述第一设备基于所述目标的信息得到的,所述目标的信息包括所述目标的标识、方位或位置。
在一种可能的实现方式中,所述控制信息包括所述目标的信息,所述目标的信息包括所述目标的标识、方位或位置,所述基于所述控制信息,得到RIS参数,包括:基于所述目标的信息,得到所述RIS参数。
在一种可能的实现方式中,当所述RIS能力为所述RIS反射能力和所述RIS折射能力时,所述控制信息还包括:RIS能力的标识,所述RIS能力的标识用于指示所述第二设备使用所述RIS反射能力和/所述RIS折射能力;所述基于所述控制信息,得到RIS参数,包括:基于所述目标的信息,以及所述RIS能力的标识,得到所述RIS参数。
在一种可能的实现方式中,所述RIS能力包括所述RIS反射能力,所述与第一设备协作感知目标,包括:接收来自所述第一设备的所述感知信号;基于所述RIS的波束,反射所述感知信号至所述目标。
在一种可能的实现方式中,所述RIS能力还包括所述RIS折射能力,所述反射所述感知信号至所述目标之后,还包括:接收来自所述目标的回波信号;基于所述回波信号,得到所述目标的第二感知结果;向所述第一设备发送所述第二感知结果。
在一种可能的实现方式中,所述RIS能力为RIS折射能力,所述与第一设备协作感知目标,包括:生成感知信号;基于所述RIS的波束,向所述目标发送所述感知信号;接收来自所述目标的回波信号;基于所述回波信号,得到所述目标的感知结果;向所述第一设备发送所述感知结果。
在一种可能的实现方式中,所述RIS能力为RIS折射能力,所述控制信息包括:感知需求,所述感知需求包括:感知目的、感知的性能需求以及感知参数;所述生成感知信号,包括:基于所述感知需求,生成所述感知信号。
在一种可能的实现方式中,所述方法还包括:向第一设备上报所述RIS能力。
第四方面,本申请实施例提供了一种协作感知的装置,该协作感知的装置可以为第一设备或第一设备中的芯片。该协作感知的装置可以包括:
处理模块,用于基于所述第二设备的RIS能力,与所述第二设备协作感知目标,所述RIS能力为RIS反射能力和/或RIS折射能力,所述RIS反射能力用于表征:所述第二设备支持反射来自所述第一设备的感知信号至目标,所述RIS折射能力用于表征:所述第二设备支持生成所述感知信号,且向所述目标发送所述感知信号。
在一种可能的实现方式中,收发模块,用于基于所述RIS能力,向所述第二设备发送控制信息,控制信息用于所述第二设备对所述RIS进行波束赋形,波束赋形后的RIS的波束朝向所述目标。
在一种可能的实现方式中,所述控制信息包括RIS参数,所述RIS参数与所述RIS能力相关。处理模块,还用于基于所述目标的信息,得到所述RIS参数,所述目标的信息包括所述目标的标识、方位或位置。
在一种可能的实现方式中,所述控制信息包括所述目标的信息,所述目标的信息包括所述目标的标识、方位或位置。
在一种可能的实现方式中,当所述RIS能力为所述RIS折射能力时,所述控制信息还包括:感知需求,所述感知需求包括:感知目的、感知的性能需求以及感知参数。
在一种可能的实现方式中,当所述RIS能力为所述RIS反射能力和所述RIS折射能力时,所述控制信息还包括:RIS能力的标识,所述RIS能力的标识用于指示所述第二设备使用所述RIS反射能力和/所述RIS折射能力。
在一种可能的实现方式中,所述RIS能力包括所述RIS反射能力。收发模块,还用于向所述第二设备发送所述感知信号,以及接收来自所述目标的回波信号;处理模块,还用于基于所述回波信号,得到所述目标的感知结果。
在一种可能的实现方式中,所述RIS能力还包括所述RIS折射能力。收发模块,还用于接收来自所述第二设备的第二感知结果。处理模块,具体用于基于所述回波信号,得到所述目标的第一感知结果;基于所述第一感知结果和所述第二感知结果,得到所述感知结果。
在一种可能的实现方式中,所述RIS能力为RIS折射能力。收发模块,还用于接收来自所述第二设备的所述感知结果。
在一种可能的实现方式中,收发模块,还用于接收所述第二设备上报的所述RIS能力。
本申请实施例提供的协作感知的装置,可以执行上述方法实施例中第一设备的动作,其实现原理和技术效果类似,在此不再赘述。
第五方面,本申请实施例提供了一种协作感知的装置,该协作感知的装置可以为第二设备或第二设备中的芯片。该协作感知的装置可以包括:
处理模块,用于基于第二设备的RIS能力,与第一设备协作感知目标,所述RIS能力为RIS反射能力和/或RIS折射能力,所述RIS反射能力用于表征:所述第二设备支持反射来自所述第一设备的感知信号至目标,所述RIS折射能力用于表征:所述第二设备支持生成所述感知信号,且向所述目标发送所述感知信号。
在一种可能的实现方式中,收发模块,用于接收来自所述第一设备的控制信息;处理模块,还用于基于所述控制信息,对所述RIS进行波束赋形,波束赋形后的RIS的波束朝向所述目标。
在一种可能的实现方式中,处理模块,具体用于基于所述控制信息,得到RIS参数,所述RIS参数与所述RIS能力相关;基于所述RIS参数,对所述RIS进行波束赋形。
在一种可能的实现方式中,所述控制信息包括所述RIS参数,所述RIS参数是所述第一设备基于所述目标的信息得到的,所述目标的信息包括所述目标的标识、方位或位置。
在一种可能的实现方式中,所述控制信息包括所述目标的信息。处理模块,具体用于基于所述目标的信息,得到所述RIS参数,所述目标的信息包括所述目标的标识、方位或位置。
在一种可能的实现方式中,当所述RIS能力为所述RIS反射能力和所述RIS折射能力时,所述控制信息还包括:RIS能力的标识,所述RIS能力的标识用于指示所述第二设备使用所述RIS反射能力和/所述RIS折射能力。处理模块,具体用于基于所述目标的信息,以及所述RIS能力的标识,得到所述RIS参数。
在一种可能的实现方式中,所述RIS能力包括所述RIS反射能力。收发模块,用于接收来自所述第一设备的所述感知信号;RIS,用于基于所述RIS的波束,反射所述感知信号至所述目标。
在一种可能的实现方式中,所述RIS能力还包括所述RIS折射能力,RIS,用于接收来自所述目标的回波信号;处理模块,还用于基于所述回波信号,得到所述目标的第二感知结果。收发模块,还用于向所述第一设备发送所述第二感知结果。
在一种可能的实现方式中,所述RIS能力为RIS折射能力。处理模块,还用于生成感知信号。RIS,还用于基于所述RIS的波束,向所述目标发送所述感知信号,以及接收来自所述目标的回波信号。处理模块,还用于基于所述回波信号,得到所述目标的感知结果。收发模块,还用于向所述第一设备发送所述感知结果。
在一种可能的实现方式中,所述控制信息包括:感知需求,所述感知需求包括:感知目的、感知的性能需求以及感知参数;处理模块,具体用于基于所述感知需求,生成所述感知信号。
在一种可能的实现方式中,收发模块,还用于向第一设备上报第二设备的RIS能力。
第六方面,本申请实施例提供了一种协作感知的装置,协作感知的装置包括:处理器、存储器、收发器;所述收发器耦合至所述处理器,所述处理器控制所述收发器的收发动作;其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述协作感知的装置执行如第二方面或第二方面的各可能的设计所提供的协作感知方法。
第七方面,本申请实施例提供了一种协作感知的装置,协作感知的装置包括:处理器、存储器、收发器和RIS;所述收发器耦合至所述处理器,所述处理器控制所述收发器的收发动作;其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述协作感知的装置执行如第三方面或第三方面的各可能的设计所提供的协作感知方法。
第八方面,本申请实施例提供了一种协作感知系统,包括如上第四方面或第六方面所述的协作感知的装置,以及第五方面或第七方面所述的协作感知的装置。
第九方面,本申请实施例提供一种协作感知的装置,包括用于执行以上第二方面和第三方面所提供的方法的单元、模块或电路。该协作感知的装置可以为第一设备或第二设备,也可以为应用于第一设备或第二设备的一个模块,例如,可以为应用第一设备或第二设备的芯片。
第十方面,本申请实施例提供一种协作感知的装置(例如芯片),所述协作感知的装置上存储有计算机程序,在所述计算机程序被所述协作感知的装置执行时,实现如第二方面和第三方面所提供的方法。
第十一方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面和第三方面中的方法。
第十二方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面和第三方面中的方法。
上述第二方面至第十二方面的各可能的实现方式,其有益效果可以参见上述第一方面和第一方面的各可能的实现方式所带来的有益效果,在此不加赘述。
本申请实施例提供一种协作感知的方法、电子设备和可读存储介质,第二设备包括可重构智能表面RIS,该方法包括:第一设备基于第二设备的RIS能力,与第二设备协作感知目标,RIS能力为RIS反射能力和/或RIS折射能力,RIS反射能力用于表征:第二设备支持反射来自第一设备的感知信号至目标,RIS折射能力用于表征:第二设备支持生成感知信号,且向目标发送感知信号。本申请中,第二设备基于RIS能力,可以反射来自第一设备的感知信号至目标,无需处理感知信号,感知时延小,或者第二设备可以生成感知信号,直接向目标发送感知信号,无需作为第一设备和目标之间转发感知信号的中间装置,感知时延小,均可以提高协作感知效率。
附图说明
图1为本申请实施例适用的一种系统架构示意图;
图2为本申请实施例适用的另一种系统架构示意图;
图3A为目前电子设备的一种结构示意图;
图3B为本申请实施例提供的第二设备的一种结构示意图;
图4A为本申请实施例提供的RIS的一种示意图;
图4B为本申请实施例提供的RIS的另一种示意图;
图4C为本申请实施例提供的RIS的另一种示意图;
图5为本申请实施例提供的协作感知的方法的一实施例的示意图;
图6为本申请实施例提供的协作感知的方法的另一实施例的流程示意图;
图7A为图6所示的实施例与现有技术的流程对比示意图;
图7B为图6对应的信号传输的示意图;
图8为本申请实施例提供的协作感知的方法的另一实施例的流程示意图;
图9为图8所示的实施例与现有技术的流程对比示意图;
图10为图8对应的信号传输的示意图;
图11为本申请实施例提供的协作感知的方法的另一实施例的流程示意图;
图12为图11对应的信号传输的示意图;
图13为本申请实施例提供的协作感知的装置的一种结构示意图;
图14为本申请实施例提供的协作感知的装置的另一种结构示意图;
图15为本申请实施例提供的电子设备的一种结构示意图。
具体实施方式
图1为本申请实施例适用的一种系统架构示意图。如图1所示,该系统架构中可以包括第一设备、第二设备和目标。图1中以第一设备为基站,第二设备和目标均为手机为例进行说明。第一设备和第二设备为通信和感知一体化的设备,即第一设备和第二设备既可以与其他设备通信,也可以感知其他设备。在一种实施例中,以第一设备为例,第一设备可以采用但不限于雷达、超声波传感器、摄像头、热成像传感器等感知其他设备。本申请实施例中对第一设备和第二设备感知目标的方式不做限制。
第一设备的感知需求多种多样。若第一设备需要感知到目标,但第一设备和目标之间的距离较远,或者第一设备和目标之间存在障碍物,第一设备无法感知目标。或者,第一设备需要全方位感知目标,但由于障碍物的存在,第一设备只能感知部分目标。或者,第一设备的感知精度差,但第一设备需要感知精度高的感知结果。为了解决第一设备的感知需求问题,第一设备可以通过第二设备,协作感知目标。示例性的,如第一设备的感知精度差,但第一设备需要感知精度高的感知结果,则第一设备可以通过感知精度高的第二设备,感知目标,进而得到感知精度高的感知结果。
参照图1,第一设备和第二设备协作感知时,第一设备可以向第二设备发送感知信号,第二设备可以处理感知信号,并在下一时隙向目标转发感知信号。在一种实施例中,目标在接收感知信号后,可以向第二设备反馈回波信号,第二设备可以向第一设备反馈回波信号,第一设备可以基于回波信号得到目标的感知结果。在一种实施例中,目标在接收感知信号后,可以向第一设备反馈回波信号,第一设备可以基于回波信号得到目标的感知结果。其中,第二设备处理感知信号可以为:第二设备解析感知 信号,以确定目标。目前的协作感知的方案中,第二设备响应于第一设备的感知信号的时间长,第二设备在下一时隙才能向目标转发感知信号,导致第一设备得到感知结果的时延大,协作感知的效率低。
本申请实施例提供一种协作感知的方法,协作第一设备感知目标的第二设备中集成有可重构智能表面(reconfigurable intelligent surface,RIS),第二设备可以基于RIS反射能力,直接向目标反射来自第一设备的感知信号,或者第二设备可以生成感知信号,基于RIS折射能力,向目标发送感知信号,都可以减小第一设备感知目标的时延,提高协作感知的效率。
应理解,本申请实施例中的协作感知的方法可以但不限于适用于:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、无线局域网(wireless local area networks,WLAN)、无线保真(wireless fidelity,WiFi)系统、下一代通信系统或其他通信系统等。NR系统也可以称为第五代移动(5th generation mobile networks,5G)通信系统。
第一设备可以但不限于为终端设备和网络设备,第二设备可以但不限于为终端设备和网络设备。第二设备为集成有RIS的设备。
其中,网络设备可以是GSM系统或CDMA系统中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolutional Node B,eNB或eNodeB),或者是云无线接入网络(cloud radio access network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的网络设备等。当通信系统为NR系统时,该网络设备可以为NR系统中的(无线)接入网(radio access network,(R)AN)设备,NR系统中的(R)AN设备可以为:非3GPP的接入网络如WiFi网络的接入点(access point,AP)、下一代基站(可统称为新一代无线接入网节点(NG-RAN node),其中,下一代基站包括新空口基站(NR nodeB,gNB)、新一代演进型基站(NG-eNB)、中心单元(central unit,CU)和分布式单元(distributed unit,DU)分离形态的gNB等)、新无线控制器(new radio controller,NR controller)、射频拉远模块、微基站、中继(relay)、收发点(transmission receive point,TRP)、传输点(transmission point,TP)或其它节点。
终端设备可以是移动设备,也可以是固定设备。终端设备可以但不限于为:手机、平板电脑、笔记本电脑、音箱、耳机、可穿戴设备、智慧屏、智能家用电器、物联网(internet of things,IoT)设备、车载设备等具有天线的设备。可选的,终端设备还可以为个人数字处理(personal digital assistant,PDA)、具有无线通信能力的手持设备、计算设备、虚拟现实(virtual reality,VR)终端设备、无人机设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例中对网络设备、终端设备的形态不做限定。
图2为本申请实施例适用的另一种系统架构示意图。如图2所示,该系统架构中的第一设备可以为车载设备,第二设备可以为路侧设备,目标可以为另一车载设备。其中,车载设备在感知另一车载设备时,由于障碍物(如车辆)的阻挡,可以采用路侧设备协作感知另一车载设备。路侧设备可以但不限于为设置于道路两侧的监控设备。应理解,本申请实施例对协作感知的方法适用的系统架构和场景不做限制。图2中以车辆表征车载设备。
在介绍本申请实施例提供的协作感知的方法之前,先对集成有RIS的第二设备的结构,以及RIS能力进行说明。图3A为目前电子设备的一种结构示意图。参照图3A,在一种实施例中,电子设备中可以包括:应用处理器、调制解调器、射频集成电路、射频前端,以及天线。在电子设备发送信号的场景中,应用处理器,用于向调制解调器发送业务数据。示例性的,在电子设备与其他设备进行视频通话的场景中,业务数据可以为视频数据。调制解调器,用于对业务数据(如视频数据)进行基带处理,编码调制后输出基带信号。射频集成电路,用于将低频的基带信号调制到高频频段,得到高频的射频信号。经射频集成电路调制得到的射频信号的功率小,射频前端,用于放大射频信号的功率。天线,用于发射来自射频前端的射频信号,即实现电子设备发射信号。同理的,天线可以接收来自其他设备的射频信号,反向依次经过射频前端、射频集成电路、调制解调器处理得到数字信号,发送给应用处理器进行处理。应理解,应用处理器、调制解调器、射频集成电路、射频前端,以及天线的其他说明可以参照现有技术中的相关描述。
图3B为本申请实施例提供的第二设备的一种结构示意图。相较于图3A,图3B所示的第二设备中还可以包括RIS。RIS是一种基于人工电磁表面的阵列天线,RIS包括多个阵列单元。通过设计RIS单元特性以及空间排布,控制电磁波的幅度、相位、极化、波束、轨道角动量等参数,可实现电磁能量的偏折、聚焦、吸波等功能。
不同的第二设备,可以具有不同的RIS能力。RIS能力可以但不限于包括:RIS反射能力和RIS折射能力。其中,RIS折射能力可以称为RIS透射能力。在一种实施例中,调制解调器可以向RIS发送控制信息,控制信息可以包括RIS的各天线单元的相位和幅度等参数。第二设备可以基于控制信息,调整RIS的各天线单元的相位和幅度等参数,进而实现对感知信号的反射或折射。
在一种实施例中,第二设备具有RIS反射能力,RIS不参与第二设备的无线信号的收发,RIS用于反射感知信号。图4A为本申请实施例提供的RIS的一种示意图。图4A中的阴影方块表征RIS中的天线单元,RIS可以基于RIS反射能力,能够将来自第 一设备的感知信号进行反射。
在一种实施例中,第二设备具有RIS折射能力,RIS可以协助第二设备进行感知信号的收发。图4B为本申请实施例提供的RIS的另一种示意图。参照图4B,第二设备可以生成感知信号,通过天线向RIS发送感知信号。RIS可以基于RIS折射能力,将感知信号折射出去。RIS还可以基于RIS折射能力,接收响应于感知信号的回波信号。换句话说,RIS折射能力用于表征:所述第二设备支持生成感知信号,且发送该感知信号。
在一种实施例中,第二设备具有RIS反射能力和RIS折射能力。图4C为本申请实施例提供的RIS的另一种示意图。参照图4C,RIS既可以反射来自第一设备的感知信号,也可以接收响应于感知信号的回波信号,可以参照上述图4A和图4B中的相关描述。
在一种实施例中,第一设备可以获取第二设备的RIS能力,进而第一设备可以基于第二设备的RIS能力,采用不同的感知策略,与第二设备协作感知目标。
在一种实施例中,第二设备可以向第一设备上报第二设备的RIS能力。示例性的,第二设备可以通过层3信令(layer 3,L3)消息、层2信令(layer 2,L2)消息、层1信令(Layer 1,L1)消息,或者数据携带等方式,向第一设备上报RIS能力。应理解,层1为物理层,层2为媒体接入控制层,层3为接入层。应理解,本申请实施例中的物理层、媒体接入控制层,以及接入层还可以称为其他名称,或者划分为更多更少的层,对此不作限制。
示例性的,第一设备为基站,第二设备为手机。第二设备可以在接入基站时,在无线资源控制(radio resource control,RRC)信令(层3信令)中携带RIS能力,以向第一设备上报RIS能力。或者,第二设备可以在接入基站时,在媒体接入控制-控制因素(media access control-control element,MAC CE)信令(层2信令)中携带RIS能力,以向第一设备上报RIS能力。或者,第二设备可以在上行信道传输的信令(层1信令)或数据中携带RIS能力,以向第一设备上报RIS能力。上行信道可以包括但不限于为:上行物理共享信道(physical uplink shared channel,PUSCH)和上行物理控制信道(physical uplink control channel,PUCCH)。
在一种实施例中,第一设备可以查询第二设备的RIS能力。示例性的,以第二设备为用户设备(user equipment,UE)为例,第一设备和第二设备连接后,第一设备可以向第二设备发送RIS能力查询信息(UE capability enquiry),第二设备响应于该RIS能力查询信息,通过UE能力信息消息(UE capability information)向第一设备反馈第二设备的RIS能力。
在一种实施例中,第二设备的RIS能力可以包括:RIS支持的工作模式。RIS支持的工作模式可以为:不支持RIS、支持RIS反射和/或RIS折射。RIS反射可以理解为RIS反射能力,RIS折射可以理解为RIS折射能力。在一种实施例中,第二设备可以采用比特表征RIS支持的工作模式,如下表一所示:
表一
比特 RIS支持的工作模式释义
00 不支持RIS反射和RIS折射
01 RIS反射
10 RIS折射
11 支持RIS反射和RIS折射
应理解,本申请实施例中,第二设备还可以采用其他标识,如以reflection表征RIS反射,以refraction表征RIS折射。或者以R1表征RIS反射,以R2表征RIS折射。本申请实施例对表征RIS支持的工作模式的方式不做限制。
在一种实施例中,RIS能力还可以包括:RIS最大增益、RIS扫描范围、RIS的工作带宽,以及RIS的尺寸。因为RIS可以看做一种天线,则RIS最大增益可以理解为:衡量RIS朝一个特定方向收发信号的能力。示例性的,RIS最大增益可以为17dBi。RIS扫描范围,可以理解为RIS波束可覆盖的范围,如±50°。RIS的工作带宽可以理解为:RIS工作的频率范围。RIS的大小可以理解为RIS的尺寸,可以参照天线的尺寸的相关描述。
第一设备获取第二设备的RIS能力后,可以存储第二设备的RIS能力。第一设备在需要第二设备协作感知目标时,第一设备可以基于第二设备的RIS能力,采用不同的感知策略,与第二设备协作感知目标。在一种实施例中,第一设备中可以存储多个第二设备的RIS能力,第一设备在需要第二设备协作感知目标时,第一设备可以在多个第二设备中,选择目标第二设备。第一设备可以通过目标第二设备,协作感知目标。
示例性的,第一设备可以选择信道质量最好的,或者RIS最大增益最大的,或者RIS扫描范围最大的第二设备,作为目标第二设备。或者,第一设备可以选择与目标之间不存在障碍物的第二设备作为目标第二设备。本申请实施例中对第一设备在多个第二设备中选择目标第二设备的方式不做限制,下述实施例中,与第一设备进行协作感知的第二设备为目标第二设备。
图5为本申请实施例提供的协作感知的方法的一实施例的示意图。参照图5,协作感知的方法可以包括:
S501,第一设备获取第二设备的RIS能力。
S501可以参照上述的相关描述。
S502,第一设备基于第二设备的RIS能力,采用不同的感知策略,与第二设备协作感知目标。
其中,若第二设备具有RIS反射能力,则第二设备可以被动协作感知目标,即第二设备可以被动与第一设备协作感知目标。若第二设备具有RIS折射能力,则第二设备主动协作感知目标,即第二设备可以主动与第一设备协作感知目标。若第二设备具有RIS反射能力和RIS折射能力,第二设备与第一设备混合协作感知目标。
也就是说,若第二设备具有RIS反射能力,则感知策略可以为:第二设备被动协作感知目标。若第二设备具有RIS折射能力,则感知策略可以为:第二设备主动协作感知目标。若第二设备具有RIS反射能力和RIS折射能力,则感知策略可以为:第二设备与第一设备混合协作感知目标。图5所示的三种感知策略具体可以参照下述实施例的相关描述。
本申请实施例中,第一设备可以基于第二设备的RIS能力,采用不同的感知策略, 感知目标,可以达到降低第一设备的感知时延,提高协作感知效率的目的。
下面结合具体的实施例对本申请实施例提供的协作感知的方法进行说明。下面这几个实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
在一种实施例中,第二设备具有RIS反射能力,第二设备可以被动协作感知目标。可以理解为:第二设备不参与感知信号的生成与接收,而是将来自第一设备的感知信号反射至目标。图6为本申请实施例提供的协作感知的方法的另一实施例的流程示意图。如图6所示,该协作感知的方法可以包括:
S601,第一设备向第二设备发送控制信息。
在一种实施例中,控制信息可以包括RIS参数,RIS参数用于指示RIS中各天线单元的参数。第一设备可以基于第二设备的RIS能力,向第二设备发送控制信息。本申请实施例中,第二设备具有RIS反射能力,该控制信息中的RIS参数可以为RIS反射参数。RIS反射参数可以包括但不限于为:RIS中各天线单元的相位和幅度。其中,控制信息中,RIS参数表征的各天线单元的相位和幅度,可以以矩阵的形式进行表示,或者以二进制的形式进行表示,本申请实施例不做限定。
在一种实施例中,第一设备可以基于目标的信息,生成第二设备的RIS参数,进而将RIS参数携带在控制信息中。示例性的,第一设备可以采用波束赋形的算法,生成第二设备的RIS参数。目标的信息可以包括:目标的标识、方位或位置。目标的标识可以但不限于为目标的国际移动设备身份码(international mobile equipment identity,IMEI)或目标的手机号码等。其中,当目标的信息中包括目标的标识时,第二设备可以基于目标的标识,生成第二设备的RIS反射参数。示例性的,第二设备可以基于目标的标识,获取目标的位置或方位,进而基于目标的位置或方位,生成RIS反射参数。RIS反射参数使能第二设备将来自第一设备的感知信号,反射至目标,也可以理解为:第二设备基于RIS反射参数,可以调整RIS的波束朝向目标。
在一种实施例中,方位可以称为位置,下述以位置为例进行说明。其中,第一设备可以基于目标的信息,生成第二设备的RIS反射参数。换句话说,第二设备基于来自第一设备的控制信息,将各天线单元的参数调整为RIS反射参数表征的各天线单元的参数,参数调整后的RIS可以将来自第一设备的感知信号,反射至目标。应注意的是,第一设备已经获取目标的位置,第一设备对目标的感知需求可以为感知目标的速度、大小等,不为感知目标的位置。
在一种实施例中,控制信息可以包括目标的信息。第二设备可以基于控制信息,生成RIS参数,该RIS参数可以为RIS反射参数。第二设备生成RIS反射参数可以参照第一设备生成RIS参数的相关描述。
S602,第二设备基于控制信息,对第二设备中的RIS进行波束赋形。
第二设备可以基于控制信息,得到第二设备的RIS反射参数。第二设备可以根据RIS反射参数,对第二设备中的RIS进行波束赋形。其中,第二设备对第二设备中的RIS进行波束赋形可以理解为:第二设备基于RIS反射参数中的各天线单元的相位和幅度,调整RIS中各天线单元的相位和幅度。应理解,波束赋形后的RIS的波束朝向目标,示例性的,如第二设备在接收到来自第一设备的感知信号时,可以通过RIS的 波束向目标发送。波束赋形也可以参照目前天线的波束赋形的相关描述。
S603,第一设备向第二设备发送感知信号。
在一种实施例中,感知信号可以为电磁波信号,如波束或全向信号。波束可以理解为由第一设备的天线发射的波束,或者由第一设备发射的超声波波束、雷达波束等。全向信号可以为天线发射的信号。感知信号用于使能目标反馈回波信号。
在一种实施例中,第一设备可以基于感知需求,生成感知信号。感知需求可以包括感知目的、感知的性能需求以及感知参数。其中,感知目的可以包括但不限于为:测距、感知目标的大小、感知目标的速度。感知的性能需求可以包括但不限于为:感知的精度和感知的准确度。感知参数可以包括但不限于为:感知波形、感知资源。示例性的,感知波形可以为单载波或多载波,感知资源可以理解为:在某个帧或者某个载波上进行感知。可选的,感知资源可以为感知时频资源。
应理解,感知信号适配于感知需求,如感知信号的波形为感知需求中的波形,感知的资源可以为感知需求中的感知资源。
S604,第二设备反射感知信号至目标。
本申请实施例中,因为第二设备已经基于RIS反射参数,调整了各天线单元的相位和幅度,则第二设备在接收到来自第一设备的感知信号,可以通过RIS将该感知信号直接反射至目标。也可以理解为,第二设备对第二设备中的RIS进行波束赋形,第二设备可以基于RIS产生的波束承载感知信号,将感知信号反射至目标。
因为第二设备不用对感知信号进行处理,而是直接进行反射,本申请中的方案可以理解为:第二设备可以在接收到感知信号的同一时隙,向目标发送感知信号。因此相较于现有技术中第二设备在下一时隙向目标发送感知信号的技术方案,第二设备可以在接收到感知信号的同一时隙,向目标发送感知信号,可以提高第二设备响应感知信号的速度,进而减小第一设备感知目标的时延,提高协作感知效率。另外,现有技术中,第二设备需要对感知信号进行处理,第二设备的功耗大。现有技术中,第二设备对感知信号进行处理,在下一个时隙中转发该感知信号,占用了该第二时隙可以用于发送无线信号的机会,减少了第二设备的通信机会。而本申请实施例中,第二设备对感知信号直接进行反射,功耗小,且几乎在同一时隙对感知信号进行发送,不会影响第二设备的通信。另外,因为RIS(相当于天线)可以增强反射感知信号到目标,因此相较于现有技术中的协作感知方案,本申请实施例中,第二设备可以增强目标接收到的感知信号。
S605,第一设备接收目标反馈的回波信号。
第二设备反射的感知信号,照射在目标上,可以经目标反射产生回波信号。也就是说,目标可以响应于第二设备反射的感知信号,反馈回波信号。第一设备可以接收目标反馈的回波信号。
在一种实施例中,回波信号可以理解为:感知信号经目标反射后的信号。示例性的,感知信号为超声波波束或雷达波束,回波信号可以为:经目标反射的超声波波束或雷达波束。因为RIS可以增强反射感知信号到目标,因此经目标反射的回波信号也得到了增强,进而可以提高感知的精度和准确度。
S606,第一设备基于回波信号,得到目标的感知结果。
在一种实施例中,第一设备可以基于感知信号的属性和回波信号的属性,得到目标的感知结果。以回波信号为例,回波信号的属性可以但不限于为:回波信号的频率、相位、幅度以及第一设备接收到回波信号的时刻。应理解,第一设备的感知需求不同,可以基于不同的“感知信号的属性和回波信号的属性”,得到目标的感知结果。
示例性的,若第一设备需求感知目标的速度,根据多普勒效应,回波信号的频率变化与“第一设备和目标之间的相对速度”是相关的。据此,第一设备可以基于回波信号的频率的变化,得知目标与第一设备之间的相对速度,进而基于第一设备的速度,可以得到目标的速度。
图7A为图6所示的实施例与现有技术的流程对比示意图。参照图7A,现有技术中,示例性的,在t1时刻,第一设备向第二设备发送感知信号,假设第二设备在t1时刻也接收到了感知信号,则第二设备处理感知信号,且在t2时刻向目标转发感知信号。而本申请实施例中,在t1时刻,第一设备向第二设备发送感知信号,假设第二设备在t1时刻也接收到了感知信号,则第二设备可以基于RIS反射能力,在t1时刻反射感知信号至目标,进而可以减少第二设备响应感知信号的时延,还可以减少第二设备的功耗。
图7B为图6对应的信号传输的示意图。参照图7B,第一设备为基站,第二设备和第三设备为手机,第二设备中可以集成有RIS。基于上述S601-S602,第二设备可以调整RIS中各天线单元的相位和幅度。第一设备向第二设备发送感知信号,第二设备可以基于RIS反射能力,反射感知信号至目标,目标可以基于感知信号,向第一设备反馈回波信号。
本申请实施例中,第一设备向第二设备发送控制信息,第二设备可以基于控制信息,对第二设备中的RIS进行波束赋形,第一设备向第二设备发送感知信号,第二设备可以反射感知信号至目标,目标可以基于感知信号,向第一设备反馈回波信号。因为第二设备不对感知信号进行处理,而是反射感知信号至目标,因此第二设备的功耗小,且响应于感知信号的速度加快,减少了第一设备得到感知结果的时延,提高了协作感知的效率。另外,第二设备中的RIS,可以实时增强反射感知信号到目标,从而可以增强目标的回波信号,提高感知的精度和准确度。
在上述实施例中,若第一设备和目标之间存在障碍物,则第一设备接收不到目标反馈的回波信号,第一设备无法感知目标。本申请实施例中提供一种协作感知的方法,由进行协作感知的第二设备主动生成感知信号,且基于目标反馈的回波信号得到感知结果,进而将感知结果反馈给第一设备,据此可以在第一设备和目标之间存在障碍物时,不仅可以实现第一设备感知目标,且相较于现有技术中的协作感知方法,可以降低第一设备感知目标的时延,提高协作感知的效率。在一种实施例中,第二设备具有RIS折射能力,第二设备可以主动协作感知目标。也就是说,当第二设备具有RIS折射能力时,第二设备可以采用主动生成感知信号的方式,实现第一设备感知目标,具体参照图8的相关描述。
图8为本申请实施例提供的协作感知的方法的另一实施例的流程示意图。如图8所示,该协作感知的方法可以包括:
S801,第一设备向第二设备发送控制信息。
第一设备可以基于第二设备的RIS能力,向第二设备发送控制信息。本申请实施例中,第二设备具有RIS折射能力,在一种实施例中,控制信息中可以包括RIS参数和感知需求,RIS参数为RIS折射参数。RIS折射参数可以包括但不限于为:RIS中各天线单元的相位和幅度。RIS折射能力使能第二设备收发第二设备生成的感知信号。
在一种实施例中,第一设备可以基于目标的信息,生成第二设备的RIS折射参数,进而将RIS折射参数携带在控制信息中。在一种实施例中,控制信息中还可以包括目标的信息,第二设备可以基于目标的信息,生成RIS折射参数。第一设备生成RIS折射参数或者第二设备生成RIS折射参数,可以参照上述S601中的相关描述。
也就是说,第二设备可以基于来自第一设备的控制信息,得到RIS折射参数。第二设备可以基于RIS折射参数,将各天线单元的参数调整为RIS折射参数表征的各天线单元的参数,参数调整后的RIS可以发送第二设备生成的感知信号至目标,也可以接收目标反馈的回波信号。
S802,第二设备基于控制信息,对第二设备中的RIS进行波束赋形。
第二设备可以基于RIS折射参数,对第二设备中的RIS进行波束赋形。其中,第二设备对第二设备中的RIS进行波束赋形可以理解为:第二设备基于RIS折射参数中的各天线单元的相位和幅度,调整RIS的各天线单元的相位和幅度。应理解,波束赋形后的RIS的波束朝向目标,示例性的,如第二设备可以接收来自目标的回波信号。
S803,第二设备向目标发送感知信号。
第二设备可以基于控制信息中的感知需求,生成感知信号,可以参照上述第一设备生成感知信号的相关描述。
第二设备对第二设备中的RIS进行波束赋形后,第二设备可以基于RIS产生的波束承载感知信号,向目标发送感知信号。在一种实施例中,参照上述图4B,第二设备基于控制信息中的感知需求,生成感知信号,通过天线向RIS发送感知信号。RIS可以基于RIS折射能力,向目标折射感知信号。
本申请实施例中,因为第二设备可以生成感知信号,且向目标发送感知信号。相较于现有的协作感知方案,不用经过第二设备处理感知信号的过程,因此可以减少第一设备感知目标的时延,提高协作感知的效率。图9为图8所示的实施例与现有技术的流程对比示意图。现有技术中,示例性的,在t1时刻,第一设备向第二设备发送感知信号,假设第二设备在t1时刻也接收到了感知信号,则第二设备处理感知信号,且在t2时刻向目标转发感知信号。而本申请实施例中,在t1时刻,第二设备可以生成感知信号,且向目标发送感知信号。就感知信号的传输过程而言,第二设备生成感知信号(可以抵消第一设备生成感知信号的时间),且不用经过感知信号从第一设备到第二设备的传输,以及第二设备处理感知信号的过程,第二设备就可以将感知信号发送至目标,因此可以减少第一设备感知目标的时延,提高协作感知的效率。
S804,第二设备接收目标反馈的回波信号。
第二设备折射的感知信号,照射在目标上,可以经目标反射产生回波信号,因此第二设备可以接收来自目标的回波信号。在一种实施例中,参照图4B,第二设备中RIS可以接收来自目标的回波信号。
S805,第二设备基于回波信号,得到目标的感知结果。
S805可以参照S606中第一设备的相关描述,在此不做赘述。
S806,第二设备向第一设备发送目标的感知结果。
第二设备可以向第一设备发送目标的感知结果,进而实现第一设备感知目标。
图10为图8对应的信号传输的示意图。参照图10,第一设备为基站,第二设备和第三设备为手机,第二设备中集成有RIS。基于上述S801-S802,第二设备可以调整RIS中各天线单元的相位和幅度。第二设备可以生成感知信号,且基于RIS折射能力,将感知信号折射至目标,目标可以基于感知信号,返回回波信号,第二设备可以接收到回波信号。其中,第二设备可以基于RIS和/或天线接收来自目标的回波信号,图10中以第二设备可以基于RIS接收来自目标的回波信号为例进行说明。第二设备基于回波信号,得到目标的感知结果,可以向第一设备发送目标的感知结果。
本申请实施例中,由进行协作感知的第二设备主动生成感知信号,且基于目标反馈的回波信号得到感知结果,进而将感知结果反馈给第一设备,据此可以解决第一设备和目标之间存在障碍物时,第一设备无法感知目标的问题。另外,第二设备生成感知信号,不用经过感知信号的传输,以及第二设备处理感知信号,就可以将感知信号发送至目标,因此可以减少第一设备感知目标的时延,提高协作感知的效率。本申请实施例还具备上述实施例中的其他技术效果,可以参照上述实施例的相关描述。
在一种实施例中,第二设备同时具有RIS反射能力和RIS折射能力,第二设备可以与第一设备混合协作感知目标。图11为本申请实施例提供的协作感知的方法的另一实施例的流程示意图。如图11所示,该协作感知的方法可以包括:
S1101,第一设备向第二设备发送控制信息。
在一种实施例中,控制信息可以包括RIS参数,RIS参数用于指示RIS中各天线单元的参数。第一设备可以基于第二设备的RIS能力,向第二设备发送控制信息。本申请实施例中,第二设备具有RIS反射能力和RIS折射能力,则该控制信息中的RIS参数可以包括:RIS反射参数和RIS折射参数,RIS反射参数和RIS折射参数可以参照上述实施例的相关描述。
其中,第一设备可以基于目标的信息,生成第二设备的RIS参数,进而将RIS参数携带在控制信息中。在一种实施例中,控制信息可以包括目标的信息。第二设备可以响应于控制信息,生成RIS反射参数和RIS折射参数。第一设备生成RIS反射参数和RIS折射参数,以及第二设备生成RIS反射参数和RIS折射参数可以参照上述实施例的相关描述。
在一种实施例中,第二设备的能力同时具有RIS反射能力和RIS折射能力时,第一设备可以指示第二设备使用RIS反射能力或RIS折射能力。在一种可能的实现方式中,控制信息中可以包括RIS反射参数或RIS折射参数,第二设备可以基于RIS反射参数或RIS折射参数,对第二设备中的RIS进行波束赋形,可以参照上述实施例的相关描述。在一种可能的实现方式中,控制信息中可以包括目标的信息和RIS能力的标识,该RIS能力的标识用于指示第二设备使用RIS反射能力和/或RIS折射能力。在一种实施例中,当第一设备指示第二设备使用RIS反射能力和RIS折射能力时,控制信 息中可以不包括RIS能力的标识,在该实施例中,RIS能力的标识用于指示第二设备使用RIS反射能力或RIS折射能力。相应的,第二设备可以基于目标的信息,以及该所述RIS能力的标识,得到RIS参数。示例性的,该标识用于指示RIS反射能力,则第二设备可以基于目标的位置,生成RIS反射参数。应理解,第一设备采用RIS反射能力时,第二设备可以被动协作感知目标,第一设备采用RIS折射能力时,第二设备可以主动协作感知目标,具体可以参照上述实施例的相关描述。
S1102,第二设备基于控制信息,对第二设备中的RIS进行波束赋形。
在一种实施例中,RIS中的部分天线单元支持RIS反射,剩余部分天线单元支持RIS折射。第二设备对第二设备中的RIS进行波束赋形可以理解为:第二设备可以基于RIS反射参数中的各天线单元的相位和幅度,调整支持RIS反射的天线单元的相位和幅度,第二设备可以基于RIS折射参数中的各天线单元的相位和幅度,调整支持RIS折射的天线单元的相位和幅度。应理解,波束赋形后的RIS的波束朝向目标,示例性的,如第二设备可以反射感知信号至目标,也可以接收来自目标的回波信号。
S1103,第一设备向第二设备发送感知信号。
S1104,第二设备反射感知信号至目标。
S1103-S1104可以参照S603-S604的相关描述。在S1104中,第二设备可以采用RIS中支持RIS反射的各天线单元反射感知信号至目标。因为第二设备不用对感知信号进行处理,而是直接进行反射,因此可以提高第二设备响应感知信号的速度,进而减小第一设备感知目标的时延,提高协作感知效率。
S1105,第一设备接收目标反馈的回波信号。
S1105可以参照S605的相关描述。
S1106,第二设备接收目标反馈的回波信号。
S1105和S1106没有先后顺序的区分,二者可以同时执行。因为本申请实施例中的RIS具有RIS折射能力,因此第二设备可以接收来自目标反馈的回波信号。
S1107,第一设备基于回波信号,得到目标的第一感知结果。
S1107可以参照S606的相关描述。
S1108,第二设备基于回波信号,得到目标的第二感知结果。
S1107和S1108没有先后顺序的区分,二者可以同时执行。S1108可以参照S805的相关描述。
S1109,第二设备向第一设备发送第二感知结果。
S1109可以参照S806的相关描述。
S1110,第一设备基于第一感知结果和第二感知结果,得到目标的感知结果。
第一设备可以基于预设融合规则,融合第一感知结果和第二感知结果,得到目标的感知结果。
在一种实施例中,预设融合规则可以为:第一感知结果和第二感知结果的均值为目标的感知结果。示例性的,第一设备需求为感知目标的速度,第一感知结果表示目标的速度为V1,第二感知结果表示目标的速度为V2,则第一设备可以将V1和V2的均值作为目标的速度。
在一种实施例中,预设融合规则可以为:基于第一感知结果、第一感知结果的权 重、第二感知结果,以及第二感知结果的权重,得到目标的感知结果。示例性的,如第一设备的感知能力高于第二设备的感知能力,因此第一感知结果的权重可以高于第二感知结果的权重。示例性的,第一设备需求感知目标的速度,第一感知结果表示目标的速度为V1,第二感知结果表示目标的速度为V2,第一感知结果的权重为0.7,第二感知结果的权重为0.3,则目标的速度可以为(0.7V1+0.3V2)/2。
本申请实施例中不对预设融合规则进行具体限定,上述的预设融合规则为示例说明。
图12为图11对应的信号传输的示意图。参照图12,第一设备为基站,第二设备和目标为手机,第二设备中集成有RIS。基于上述S1101-S1102,第二设备可以调整RIS中各天线单元的相位和幅度。第一设备向第二设备发送感知信号,第二设备可以基于RIS反射能力,反射感知信号至目标,目标可以响应于感知信号反馈回波信号。第二设备可以基于RIS折射能力,接收回波信号,第一设备也可以接收回波信号。第二设备可以基于回波信号,得到第二感知结果,且向第一设备发送第二感知结果,第一设备可以基于回波信号,得到第一感知结果,进而融合第一感知结果和第二感知结果,得到目标的感知结果。
本申请实施例中,一方面,第二设备不用对感知信号进行处理,而是直接反射感知信号至目标,可以提高第二设备响应感知信号的速度,进而减小第一设备感知目标的时延,提高协作感知效率,可以参照上述实施例的相关描述。另一方面,在第一设备和第二设备之间存在障碍物时,第二设备可以基于回波信号,向第一设备反馈目标的感知结果,实现第一设备感知目标。另一方面,第一设备可以融合第一感知结果和第二感知结果,得到目标的感知结果,实现了第一设备和第二设备的两级感知,可以提高感知的准确性。本申请实施例还具备上述实施例中的其他技术效果,可以参照上述实施例的相关描述。
图13为本申请实施例提供的一种协作感知的装置的结构示意图。本实施例所涉及的协作感知的装置1300可以为前述所说的第一设备,也可以为应用于第一设备的芯片。该协作感知的装置1300可以用于执行上述方法实施例中第一设备的动作。如图13所示,该协作感知的装置1300可以包括:收发模块1301和处理模块1302。其中,
处理模块1302,用于基于第二设备的RIS能力,与第二设备协作感知目标,RIS能力为RIS反射能力和/或RIS折射能力,RIS反射能力用于表征:第二设备支持反射来自第一设备的感知信号至目标,RIS折射能力用于表征:第二设备支持生成感知信号,且向目标发送感知信号。
在一种可能的实现方式中,收发模块1301,用于基于RIS能力,向第二设备发送控制信息,控制信息用于第二设备对RIS进行波束赋形,波束赋形后的RIS的波束朝向目标。
在一种可能的实现方式中,控制信息包括RIS参数,RIS参数与RIS能力相关。处理模块1302,还用于基于目标的信息,得到RIS参数,所述目标的信息包括所述目标的标识、方位或位置。
在一种可能的实现方式中,控制信息包括目标的信息,所述目标的信息包括所述 目标的标识、方位或位置。
在一种可能的实现方式中,当RIS能力为RIS反射能力和RIS折射能力时,控制信息还包括:RIS能力的标识,RIS能力的标识用于指示第二设备使用RIS反射能力和/RIS折射能力。
在一种可能的实现方式中,当RIS能力为RIS折射能力时,控制信息还包括:感知需求,感知需求包括:感知目的、感知的性能需求以及感知参数。
在一种可能的实现方式中,RIS能力包括RIS反射能力。收发模块1301,还用于向第二设备发送感知信号,以及接收来自目标的回波信号;处理模块1302,还用于基于回波信号,得到目标的感知结果。
在一种可能的实现方式中,RIS能力还包括RIS折射能力。收发模块1301,还用于接收来自第二设备的第二感知结果。处理模块1302,具体用于基于回波信号,得到目标的第一感知结果;基于第一感知结果和第二感知结果,得到感知结果。
在一种可能的实现方式中,RIS能力为RIS折射能力。收发模块1301,还用于接收来自第二设备的感知结果。
在一种可能的实现方式中,收发模块1301,还用于接收第二设备上报的RIS能力。
本申请实施例提供的协作感知的装置,可以执行上述方法实施例中第一设备的动作,其实现原理和技术效果类似,在此不再赘述。
图14为本申请实施例提供的一种协作感知的装置的结构示意图。本实施例所涉及的协作感知的装置1400可以为前述所说的第二设备,也可以为应用于第二设备的芯片。该协作感知的装置1400可以用于执行上述方法实施例中第二设备的动作。如图14所示,该协作感知的装置1400可以包括:收发模块1401、处理模块1402和RIS1403。其中,
处理模块1402,用于基于第二设备的RIS能力,与第一设备协作感知目标,RIS能力为RIS反射能力和/或RIS折射能力,RIS反射能力用于表征:第二设备支持反射来自第一设备的感知信号至目标,RIS折射能力用于表征:第二设备支持生成感知信号,且向目标发送感知信号。
在一种可能的实现方式中,收发模块1401,用于接收来自第一设备的控制信息;处理模块1402,还用于基于控制信息,对RIS进行波束赋形,波束赋形后的RIS的波束朝向目标。
在一种可能的实现方式中,处理模块1402,具体用于基于控制信息,得到RIS参数,RIS参数与RIS能力相关;基于RIS参数,对RIS进行波束赋形。
在一种可能的实现方式中,控制信息包括RIS参数,RIS参数是第一设备基于目标的信息得到的,所述目标的信息包括所述目标的标识、方位或位置。
在一种可能的实现方式中,控制信息包括目标的信息。处理模块1402,具体用于基于目标的信息,得到RIS参数,所述目标的信息包括所述目标的标识、方位或位置。
在一种可能的实现方式中,当RIS能力为RIS反射能力和RIS折射能力时,控制信息还包括:RIS能力的标识,RIS能力的标识用于指示第二设备使用RIS反射能力和/RIS折射能力。处理模块1402,具体用于基于目标的信息,以及所述RIS能力的标识,得到RIS参数。
在一种可能的实现方式中,RIS能力包括RIS反射能力。收发模块1401,用于接收来自第一设备的感知信号;RIS1403,用于基于RIS的波束,反射感知信号至目标。
在一种可能的实现方式中,RIS能力还包括RIS折射能力,RIS1403,用于接收来自目标的回波信号;处理模块1402,还用于基于回波信号,得到目标的第二感知结果。收发模块1401,还用于向第一设备发送第二感知结果。
在一种可能的实现方式中,RIS能力为RIS折射能力。处理模块1402,还用于生成感知信号。RIS1403,还用于基于RIS的波束,向目标发送感知信号,以及接收来自目标的回波信号。处理模块1402,还用于基于回波信号,得到目标的感知结果。收发模块1401,还用于向第一设备发送感知结果。
在一种可能的实现方式中,控制信息包括:感知需求,感知需求包括:感知目的、感知的性能需求以及感知参数。处理模块1402,具体用于基于感知需求,生成感知信号。
在一种可能的实现方式中,收发模块1401,还用于向第一设备上报第二设备的RIS能力。
本申请实施例提供的协作感知的装置,可以执行上述方法实施例中第二设备的动作,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上收发模块实际实现时可以为收发器、或者包括发送器和接收器。而处理模块可以以软件通过处理元件调用的形式实现;也可以以硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上处理模块的功能。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个专用集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图15为本申请实施例提供的电子设备的结构示意图。该电子设备可以为上述的第一设备或第二设备。如图15所示,该电子设备可以包括:处理器1501(例如CPU)、存储器1502、收发器1503;收发器1503耦合至处理器1501,处理器1501控制收发器1503的收发动作;存储器1502可能包含高速随机存取存储器(random-access memory,RAM),也可能还包括非易失性存储器(non-volatile memory,NVM),例如至少一个磁盘存储器,存储器1502中可以存储各种指令,以用于完成各种处理功能以及实现本申请的方法步骤。可选的,本申请涉及的电子设备还可以包括:电源1504、通信总线1505以及通信端口1506。收发器1503可以集成在电子设备的收发信机中,也可以 为电子设备上独立的收发天线。通信总线1505用于实现元件之间的通信连接。上述通信端口1506用于实现电子设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器1502用于存储计算机可执行程序代码,程序代码包括指令;当处理器1501执行指令时,指令使电子设备的处理器1501执行上述方法实施例中终端设备的处理动作,使收发器1503执行上述方法实施例中电子设备的收发动作,其实现原理和技术效果类似,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本文中的术语“多个”是指两个或两个以上。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (23)

  1. 一种协作感知的方法,其特征在于,应用于第一设备,第二设备包括可重构智能表面RIS,所述方法包括:
    基于所述第二设备的RIS能力,与所述第二设备协作感知目标,所述RIS能力为RIS反射能力和/或RIS折射能力,所述RIS反射能力用于表征:所述第二设备支持反射来自所述第一设备的感知信号至目标,所述RIS折射能力用于表征:所述第二设备支持生成所述感知信号,且向所述目标发送所述感知信号。
  2. 根据权利要求1所述的方法,其特征在于,所述与所述第二设备协作感知目标之前,还包括:
    基于所述RIS能力,向所述第二设备发送控制信息,所述控制信息用于所述第二设备对所述RIS进行波束赋形,波束赋形后的RIS的波束朝向所述目标。
  3. 根据权利要求2所述的方法,其特征在于,所述控制信息包括RIS参数,所述RIS参数与所述RIS能力相关,所述基于所述RIS能力,向所述第二设备发送控制信息之前,还包括:
    基于所述目标的信息,得到所述RIS参数,所述目标的信息包括所述目标的标识、方位或位置。
  4. 根据权利要求2所述的方法,其特征在于,所述控制信息包括所述目标的信息,所述目标的信息包括所述目标的标识、方位或位置。
  5. 根据权利要求3或4所述的方法,其特征在于,当所述RIS能力为所述RIS折射能力时,所述控制信息还包括:感知需求,所述感知需求包括:感知目的、感知的性能需求以及感知参数。
  6. 根据权利要求4所述的方法,其特征在于,当所述RIS能力为所述RIS反射能力和所述RIS折射能力时,所述控制信息还包括:RIS能力的标识,所述RIS能力的标识用于指示所述第二设备使用所述RIS反射能力和/所述RIS折射能力。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述RIS能力包括所述RIS反射能力,所述与所述第二设备协作感知目标,包括:
    向所述第二设备发送所述感知信号;
    接收来自所述目标的回波信号;
    基于所述回波信号,得到所述目标的感知结果。
  8. 根据权利要求7所述的方法,其特征在于,所述RIS能力还包括所述RIS折射能力,所述方法还包括:
    接收来自所述第二设备的第二感知结果;
    所述基于所述回波信号,得到所述目标的感知结果,包括:
    基于所述回波信号,得到所述目标的第一感知结果;
    基于所述第一感知结果和所述第二感知结果,得到所述感知结果。
  9. 根据权利要求1-6中任一项所述的方法,其特征在于,所述RIS能力为RIS折射能力,所述与所述第二设备协作感知目标,包括:
    接收来自所述第二设备的所述感知结果。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述基于所述第二设备的RIS能力,与所述第二设备协作感知目标之前,还包括:
    接收所述第二设备上报的所述RIS能力。
  11. 一种协作感知的方法,其特征在于,应用于第二设备,所述第二设备包括可重构智能表面RIS;所述方法包括:
    基于所述RIS能力,与第一设备协作感知目标,所述RIS能力为RIS反射能力和/或RIS折射能力,所述RIS反射能力用于表征:所述第二设备支持反射来自所述第一设备的感知信号至目标,所述RIS折射能力用于表征:所述第二设备支持生成所述感知信号,且向所述目标发送所述感知信号。
  12. 根据权利要求11所述的方法,其特征在于,所述与第一设备协作感知目标之前,还包括:
    接收来自所述第一设备的控制信息;
    基于所述控制信息,对所述RIS进行波束赋形,波束赋形后的RIS的波束朝向所述目标。
  13. 根据权利要求12所述的方法,其特征在于,所述基于所述控制信息,对所述RIS进行波束赋形,包括:
    基于所述控制信息,得到RIS参数,所述RIS参数与所述RIS能力相关;
    基于所述RIS参数,对所述RIS进行波束赋形。
  14. 根据权利要求13所述的方法,其特征在于,所述控制信息包括所述RIS参数,所述RIS参数是所述第一设备基于所述目标的信息得到的,所述目标的信息包括所述目标的标识、方位或位置。
  15. 根据权利要求13所述的方法,其特征在于,所述控制信息包括所述目标的信息,所述目标的信息包括所述目标的标识、方位或位置,所述基于所述控制信息,得到RIS参数,包括:
    基于所述目标的信息,得到所述RIS参数。
  16. 根据权利要求15所述的方法,其特征在于,当所述RIS能力为所述RIS反射能力和所述RIS折射能力时,所述控制信息还包括:RIS能力的标识,所述RIS能力的标识用于指示所述第二设备使用所述RIS反射能力和/所述RIS折射能力;
    所述基于所述控制信息,得到RIS参数,包括:
    基于所述目标的信息,以及所述RIS能力的标识,得到所述RIS参数。
  17. 根据权利要求11-16中任一项所述的方法,其特征在于,所述RIS能力包括所述RIS反射能力,所述与第一设备协作感知目标,包括:
    接收来自所述第一设备的所述感知信号;
    基于所述RIS的波束,反射所述感知信号至所述目标。
  18. 根据权利要求17所述的方法,其特征在于,所述RIS能力还包括所述RIS折射能力,所述反射所述感知信号至所述目标之后,还包括:
    基于所述RIS折射能力接收来自所述目标的回波信号;
    基于所述回波信号,得到所述目标的第二感知结果;
    向所述第一设备发送所述第二感知结果。
  19. 根据权利要求12-16中任一项所述的方法,其特征在于,所述RIS能力为RIS折射能力,所述与第一设备协作感知目标,包括:
    生成感知信号;
    基于所述RIS的波束,向所述目标发送所述感知信号;
    基于所述RIS折射能力接收来自所述目标的回波信号;
    基于所述回波信号,得到所述目标的感知结果;
    向所述第一设备发送所述感知结果。
  20. 根据权利要求19所述的方法,其特征在于,所述控制信息包括:感知需求,所述感知需求包括:感知目的、感知的性能需求以及感知参数;
    所述生成感知信号,包括:
    基于所述感知需求,生成所述感知信号。
  21. 根据权利要求11-20中任一项所述的方法,其特征在于,所述基于所述RIS能力,与第一设备协作感知目标之前,还包括:
    向所述第一设备上报所述RIS能力。
  22. 一种电子设备,其特征在于,包括:处理器和存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1-21中任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被运行时,实现如权利要求1-21中任一项所述的方法。
PCT/CN2022/081272 2021-04-08 2022-03-16 协作感知的方法、电子设备和可读存储介质 WO2022213782A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/036,804 US20240027574A1 (en) 2021-04-08 2022-03-16 Collaborative Sensing Method, Electronic Device, and Readable Storage Medium
EP22783851.3A EP4221274A4 (en) 2021-04-08 2022-03-16 COLLABORATIVE CAPTURE METHOD, ELECTRONIC DEVICE AND READABLE STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110377256.4A CN115209383A (zh) 2021-04-08 2021-04-08 协作感知的方法、电子设备和可读存储介质
CN202110377256.4 2021-04-08

Publications (1)

Publication Number Publication Date
WO2022213782A1 true WO2022213782A1 (zh) 2022-10-13

Family

ID=83545150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081272 WO2022213782A1 (zh) 2021-04-08 2022-03-16 协作感知的方法、电子设备和可读存储介质

Country Status (4)

Country Link
US (1) US20240027574A1 (zh)
EP (1) EP4221274A4 (zh)
CN (1) CN115209383A (zh)
WO (1) WO2022213782A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116961764B (zh) * 2023-08-16 2024-02-06 中国科学院空间应用工程与技术中心 一种采用ris增强的调制反射无线光通信系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111010219A (zh) * 2019-11-28 2020-04-14 东南大学 可重构智能表面辅助的多用户mimo上行链路传输方法
CN111912409A (zh) * 2020-07-08 2020-11-10 北京大学 可编程智能反射面辅助的多移动设备定位方法及装置
CN111983560A (zh) * 2020-08-05 2020-11-24 北京理工大学 一种双可重构智能表面辅助的毫米波单基站定位方法
CN112073092A (zh) * 2020-11-11 2020-12-11 华东交通大学 一种基于ris抑制v2x通信中多普勒效应的方法
CN112100572A (zh) * 2020-08-14 2020-12-18 北京大学 人机物的无线边缘感知点云提取与识别方法与系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111010219A (zh) * 2019-11-28 2020-04-14 东南大学 可重构智能表面辅助的多用户mimo上行链路传输方法
CN111912409A (zh) * 2020-07-08 2020-11-10 北京大学 可编程智能反射面辅助的多移动设备定位方法及装置
CN111983560A (zh) * 2020-08-05 2020-11-24 北京理工大学 一种双可重构智能表面辅助的毫米波单基站定位方法
CN112100572A (zh) * 2020-08-14 2020-12-18 北京大学 人机物的无线边缘感知点云提取与识别方法与系统
CN112073092A (zh) * 2020-11-11 2020-12-11 华东交通大学 一种基于ris抑制v2x通信中多普勒效应的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4221274A4

Also Published As

Publication number Publication date
EP4221274A1 (en) 2023-08-02
US20240027574A1 (en) 2024-01-25
CN115209383A (zh) 2022-10-18
EP4221274A4 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
US11522597B2 (en) Beam information feedback method and apparatus, and configuration information feedback method and apparatus
US20200229175A1 (en) Information transmission method, terminal device, and network device
JP2022122939A (ja) New radioのためのcsiフィードバック設計
WO2022105668A1 (en) Systems and methods for ue-assisted sensing
WO2018095305A1 (zh) 一种波束训练方法及装置
JP2022539974A (ja) ビーム構成方法および装置
WO2021041859A1 (en) Deep learning aided fingerprint based beam alignment
WO2022213782A1 (zh) 协作感知的方法、电子设备和可读存储介质
KR20230043150A (ko) P-mpr 리포트의 송신, 수신 방법, 장치 및 전자 장치
US20230275639A1 (en) Precoding Method and Communication Apparatus
US11121802B2 (en) CSI obtaining method, server, terminal, and AP
US20230337163A1 (en) Coordinated transmission method and apparatus
WO2023104061A1 (zh) 通信方法以及通信设备
JP7127648B2 (ja) 通信装置及び通信方法
WO2021169831A1 (zh) 一种波束赋形方法以及相关装置
WO2020238922A1 (zh) 通信方法及装置
US11184864B2 (en) Method for wireless communication, terminal device, network device, and network node
WO2023143153A1 (zh) 管理波束的方法和装置
US20240022922A1 (en) Signal sending method, target sensing method, device and storage medium
WO2023202478A1 (zh) 波束管理的方法、通信装置以及通信系统
WO2023000256A1 (zh) 可重构表面装置、基站和用户装置
WO2024061012A1 (zh) 一种波束确定的方法和装置
EP4329213A1 (en) Apparatus, method, program products for maximizing desired multi-transmission point signal to inter-layer-group-interference via ue beam control
CN115333581B (zh) 终端天线面板信息的传输方法、终端及网络侧设备
WO2023184255A1 (en) Methods and systems for sensing-based channel reconstruction and tracking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22783851

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18036804

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022783851

Country of ref document: EP

Effective date: 20230428

NENP Non-entry into the national phase

Ref country code: DE