WO2022213646A1 - 一种超声相控阵扇形扫描的校准块及制造和使用方法 - Google Patents
一种超声相控阵扇形扫描的校准块及制造和使用方法 Download PDFInfo
- Publication number
- WO2022213646A1 WO2022213646A1 PCT/CN2021/136928 CN2021136928W WO2022213646A1 WO 2022213646 A1 WO2022213646 A1 WO 2022213646A1 CN 2021136928 W CN2021136928 W CN 2021136928W WO 2022213646 A1 WO2022213646 A1 WO 2022213646A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phased array
- calibration block
- sector scanning
- ultrasonic phased
- block
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 238000012360 testing method Methods 0.000 claims abstract description 42
- 239000002131 composite material Substances 0.000 claims abstract description 37
- 239000000523 sample Substances 0.000 claims abstract description 21
- 239000010410 layer Substances 0.000 claims description 29
- 238000005520 cutting process Methods 0.000 claims description 16
- 238000002474 experimental method Methods 0.000 claims description 9
- 238000003801 milling Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 6
- 238000004088 simulation Methods 0.000 claims description 6
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 3
- 239000004917 carbon fiber Substances 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 239000003292 glue Substances 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 239000002344 surface layer Substances 0.000 claims description 3
- 230000006835 compression Effects 0.000 claims 1
- 238000007906 compression Methods 0.000 claims 1
- 239000011159 matrix material Substances 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 8
- 238000012795 verification Methods 0.000 abstract description 6
- 238000013461 design Methods 0.000 abstract description 4
- 238000011002 quantification Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 13
- 238000001514 detection method Methods 0.000 description 7
- 239000007769 metal material Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000805 composite resin Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/30—Arrangements for calibrating or comparing, e.g. with standard objects
Definitions
- the invention belongs to the technical field of non-destructive testing, and in particular relates to a calibration block for ultrasonic phased array sector scanning and a method for manufacturing and using the same.
- Metal materials are composed of crystal grains, and the crystal grains are randomly arranged in space.
- the overall performance of metal materials is isotropic, and the ultrasonic propagation speed is constant; while composite materials are a heterogeneous mixed-phase structure, the internal structure is complex structure.
- the fiber filaments are soaked and dried in the resin to form a prepreg fiber cloth.
- the prepreg is used for cutting, layering, and curing to form a composite material.
- the anisotropy of the composite material is significant. -Refraction and wave mode conversion may occur at the resin-heterogeneous interface, which makes the propagation characteristics more complicated, and ultrasonic waves show different propagation speeds in all directions. Therefore, the constant propagation velocity of metallic materials measured with calibrated test blocks cannot be directly applied to composite materials.
- the ultrasonic phased array sector scanning of composite materials at home and abroad is basically based on CIVA, COMSOL and other software for theoretical simulation simulation, and there is no actual composite material calibration test block for experimental verification.
- the structure and other characteristics have been widely used in various fields.
- a calibration test block for ultrasonic phased array sector scanning of composite materials can be made, which can be used for the applicability verification of ultrasonic phased array sector scanning to composite materials of different structures and thicknesses.
- the present invention proposes a calibration block for ultrasonic phased array sector scanning and a method for manufacturing and using the same. Verification of the applicability of ultrasonic phased array sector scanning to composite materials with different structures and thicknesses, measuring the incident point of the probe, measuring the deflection angle of the probe, measuring the speed of sound wave propagation, determining the ultrasonic wave pattern, and adjusting the baseline ratio during ultrasonic display. The precise positioning and quantification of defects can effectively improve the accuracy, repeatability and comparability of ultrasonic phased array sector scanning inspection results.
- the design of the calibration block is the key point, while the arc surface and the flat-bottomed hole are the difficulties in the manufacture of the calibration test block.
- the concrete realization content of the present invention is as follows:
- the invention discloses a calibration block for ultrasonic phased array sector scanning, which is used to verify the applicability of composite materials of different structures and thicknesses in the ultrasonic phased array sector scanning.
- the plate-like structure of the end head has five flat-bottomed holes radially arranged on the semi-circular arc-shaped surface of the semi-circular arc-shaped end with an angle of 90°.
- the centers of the heads are respectively set at 15°, 30°, 45°, 60° and 75° of the semicircular arc surface and are arranged radially in a line.
- the calibration block includes 200 sheets of composite material prepreg with a thickness of 0.125mm, and the length and width of the calibration block are respectively 80mm; At a distance of 25mm from the left/right side of the block, the center of the semi-circular arc end is taken as the center of the circle, and the radial distribution is in a line;
- the radius of the semicircular arc end of the calibration block is 25mm;
- the diameter of the flat-bottomed hole is 3 mm, and the hole depth is 5 mm.
- the composite material prepreg is a carbon fiber resin-based composite material with a heterogeneous mixed-phase structure with a laminate-resin heterogeneous interface.
- the invention also discloses a method for manufacturing a calibration block for sectoral scanning of ultrasonic phased array, which is used for manufacturing the above-mentioned calibration block for sectoral scanning of ultrasonic phased array.
- the specific operation of the manufacturing method is as follows: selecting 200 single sheets The composite material prepreg with the size of 100mm ⁇ 100mm ⁇ 0.125mm is successively laminated, assembled, formed and cured in an autoclave to form a 100mm ⁇ 100mm ⁇ 25mm test block board; then the 100mm ⁇ 100mm ⁇ 25mm test block board is carried out.
- the specific operation of laying up is: dividing 200 sheets of composite material prepregs into two groups of 100 sheets of composite material prepregs, for a group of 100 sheets of composite material prepregs
- the dipping material is cross-stacked at 0° and 90° vertically to obtain a 100-layer board, and finally the two stacked 100-layer boards are stacked again to obtain a 200-layer board.
- vacuum pre-pressing is performed once every 10 layers of cross-lamination.
- the assembling operation is as follows: place a thermocouple on the bottom layer, the middle layer and the surface layer of the center position of the stacked 200-layer board respectively, and then package it into a vacuum bag;
- the intermediate layer is between two 100-layer boards.
- the specific operation of the cutting is as follows: removing peripheral auxiliary materials, grinding and cleaning the residual glue on the surface, and unilaterally cutting the edge of the 100mm ⁇ 100mm ⁇ 25mm test block with an amount of 10mm. Cut to obtain a test block plate of 80mm ⁇ 80mm ⁇ 25mm.
- the specific operation of milling one end of the test block plate of 80mm ⁇ 80mm ⁇ 25mm is as follows: firstly, the test block is clamped and aligned by the method of overlapping the pressure plate, and the test block is set high.
- the thickness of the pressure plate is less than or equal to 50mm, the width is less than or equal to 60mm, and the depth of the pressed test block is less than or equal to 20mm; the position of the pressure plate is centered; then the arc surface contour processing of "rough and fine milling" is carried out, and the cutting tool is used for processing: GXIPJ4G/20 ⁇ 15 ⁇ 30R5 , Knife set: HSK63, E9304, 5803, 20100, working length: 30min, simulation time: 15min, the cutting method adopts the row cutting method.
- the invention also discloses a method for using a calibration block for ultrasonic phased array sector scanning.
- a phased array probe is used to carry out a phased array experiment on the calibration block.
- the phased array probe is placed on the calibration block. The position corresponding to the center of the semi-circular arc end and the center of the five flat-bottomed holes.
- the present invention has the following advantages and beneficial effects:
- the calibration block and the method for manufacturing and using the calibration block provided by the invention break through the bottleneck of the research on the sound propagation characteristics of the ultrasonic phased array of composite materials, realize the transition from theoretical simulation to experimental verification, from complex problems to single problems, and have great engineering applications value.
- the invention provides a manufacturing method of the calibration block, from pre-extraction and solidification molding of composite materials to CNC precise milling, the obtained circular arc surface and flat-bottomed hole, the roughness, flatness and size of the flat-bottomed hole bottom fully meet the requirements of design drawings, To avoid misjudgment caused by processing errors, the calibration test block can be made repeatedly; the acoustic impedance of the flat-bottomed hole is consistent with that of natural defects, which can more truly and effectively verify the deflection angle measurement, propagation velocity measurement, and wave pattern of ultrasonic phased array sector scanning sound propagation.
- the flat-bottomed holes are distributed at different angles and radially staggered, which can respectively verify the detection capabilities of different detection equipment for defects in different directions, effectively improving the ultrasonic wave. Accuracy, repeatability and comparability of phased array sector scan detection results.
- 1 is a schematic diagram of the structural design of a calibration block of the present invention
- FIG. 2 is a schematic diagram of the distribution of flat-bottomed holes on the semicircular arc surface of the calibration block of the present invention
- FIG. 3 is a schematic diagram of a three-dimensional structure model of the calibration block CATIA of the present invention.
- FIG. 4 is a schematic diagram of a CATIA three-dimensional structure model from another perspective of the calibration block of the present invention.
- Fig. 5 is the schematic diagram of the waveform verification test result of the calibration block of the present invention.
- FIG. 6 is a schematic diagram of the present invention using a phased array probe
- Figure 7 is a schematic diagram of the results of the propagation velocity test
- Fig. 8 is the schematic diagram of the test result of the flat bottom hole sound path SA after baseline adjustment
- Fig. 9 is the test result schematic diagram of the arc bottom SA of the semi-circular arc-shaped end after the time base is adjusted;
- Fig. 10 is the schematic diagram of the test result of measuring the deflection angle to be 29°
- Fig. 11 is the schematic diagram of the test result of measuring the deflection angle to be 42°;
- FIG. 13 is a schematic diagram of another three-dimensional structure of the actual calibration block of the present invention.
- the terms “arranged”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be mechanical connection or electrical connection; it can also be directly connected, or it can be indirectly connected through an intermediate medium, and it can be internal communication between two components.
- the specific meanings of the above terms in the present invention can be understood in specific situations.
- This embodiment proposes a calibration block for ultrasonic phased array sector scanning, which is used to verify the applicability of composite materials of different structures and thicknesses in ultrasonic phased array sector scanning, as shown in Figure 1, Figure 2, and Figure 3 , Figure 4, Figure 12, Figure 13, the calibration block 1 is a plate-like structure with a semi-circular arc end 2 at one end, and the semi-circular arc end 2 is 90° on the semi-circular arc-shaped surface.
- the flat-bottomed holes 3 are spaced at 15° intervals, and are respectively arranged at 15°, 30°, 45°, 60° of the semi-circular arc-shaped surface around the center of the semi-circular arc-shaped end 2 and 75° and are radially arranged in a line.
- the calibration block 1 includes 200 sheets of composite material prepregs with a thickness of 0.125 mm, and the length and width of the calibration block 1 are respectively 80 mm; the flat-bottomed holes 3 are distributed in the distance The calibrating block 1 is radially distributed along a line at a distance of 25 mm from the left/right side of the calibration block 1, taking the center of the semi-circular arc end 2 as the center of the circle;
- the radius of the semicircular arc end 2 of the calibration block 1 is 25mm;
- the hole diameter of the flat bottom hole 3 is 3mm, and the hole depth is 5mm.
- the composite material prepreg is a carbon fiber resin-based composite material with a heterogeneous mixed-phase structure with a layer-resin heterogeneous interface, and has anisotropy, which is different from each isotropic metallic materials.
- FIG. 12 and FIG. 13 are the actual scanning images of the calibration block 1 of the present application, which are only shown here, and do not have any substantial impact on the technical solutions described in the present application. Therefore, if the scanning operation light, etc. The unclear place of the question does not affect the technical content of this application.
- the unit of the numerical value 80 recorded in Figure 1 is mm, which means that the length and width of the calibration block 1 are 80 mm, and the units of 25 and R25 are also mm, which respectively represent that the thickness of the calibration block 1 is 25 mm and the radius is 25 mm.
- ⁇ 3 represents the aperture of 3mm
- the unit of 25 is mm, which means that the flat bottom hole 3 is 25mm from the edge
- the unit of 80 is also mm, which means the width of the calibration block 1 is 80mm.
- This embodiment proposes a method for manufacturing a calibration block for ultrasonic phased array sector scanning, which is used to manufacture the above-mentioned calibration block for ultrasonic phased array sector scanning, as shown in FIG. 1 , FIG. 2 , FIG. 3 , FIG. 4 , and FIG. 12.
- the specific operation of the manufacturing method shown in FIG. 1 FIG. 1 , FIG. 2 , FIG. 3 , FIG. 4 , and FIG. 12.
- 13 is as follows: select 200 composite material prepregs with a single sheet size of 100mm ⁇ 100mm ⁇ 0.125mm, and sequentially use layup, assembly, autoclave molding and curing to generate 100mm ⁇ 100mm ⁇ 25mm test block board; then cut the 100mm ⁇ 100mm ⁇ 25mm test block board to obtain 80mm ⁇ 80mm ⁇ 25mm test block board, and then mill one end of 80mm ⁇ 80mm ⁇ 25mm, by compiling arc Surface-specific program and calling program to generate semi-circular arc-shaped end 2 with a radius of 25mm; finally, on the semi-circular arc-shaped end 2 at an interval of 15°, the center of the semi-circular arc surface is the center of the circle.
- a flat-bottomed hole with a hole depth of 3 mm and a hole depth of 5 mm completes the manufacture of the calibration block 1.
- the specific operation of laying up is: dividing 200 sheets of composite material prepregs into two groups of 100 sheets of composite material prepregs, for a group of 100 sheets of composite material prepregs
- the dipping material is cross-stacked at 0° and 90° vertically to obtain a 100-layer board, and finally the two stacked 100-layer boards are stacked again to obtain a 200-layer board.
- vacuum pre-pressing is performed once every 10 layers of cross-lamination.
- the assembling operation is as follows: place a thermocouple on the bottom layer, the middle layer and the surface layer of the center position of the stacked 200-layer board respectively, and then package it into a vacuum bag;
- the intermediate layer is between two 100-layer boards.
- the specific operation of the cutting is as follows: removing peripheral auxiliary materials, grinding and cleaning the residual glue on the surface, and unilaterally cutting the edge of the 100mm ⁇ 100mm ⁇ 25mm test block with an amount of 10mm. Cut to obtain a test block plate of 80mm ⁇ 80mm ⁇ 25mm.
- the specific operation of milling one end of the test block plate of 80mm ⁇ 80mm ⁇ 25mm is as follows: firstly, the test block is clamped and aligned by the method of overlapping the pressure plate, and the test block is set high.
- the thickness of the pressure plate is less than or equal to 50mm, the width is less than or equal to 60mm, and the depth of the pressed test block is less than or equal to 20mm; the position of the pressure plate is centered; then the arc surface contour processing of "rough and fine milling" is carried out, and the cutting tool is used for processing: GXIPJ4G/20 ⁇ 15 ⁇ 30R5 , Knife set: HSK63, E9304, 5803, 20100, working length: 30min, simulation time: 15min, the cutting method adopts the row cutting method.
- This embodiment proposes a method for using a calibration block for ultrasonic phased array sector scanning.
- a phased array probe 4 is used to carry out a phased array experiment on the calibration block 1. During the specific experiment, the phased array probe 4 is placed on the The position on the calibration block 1 corresponds to the center of the semi-circular arc end 2 and the center of the five flat-bottomed holes 3 .
- this embodiment is further used as shown in FIG. 1 , FIG. 2 , FIG. 3 , FIG. 4 , FIG. 5 , FIG. 6 , FIG. 12 , and FIG.
- the operation of the phased array probe to determine the ultrasonic wave pattern is as follows: place the phased array probe at the center of the circular arc surface, and use the circular arc surface of the calibration block to carry out the phased array experiment.
- the phased array sector scanning experiment results are shown in Figure 5.
- the place indicated by the arrow is the primary bottom wave.
- the droplet method is used to indirectly verify that the amplitude of the primary bottom wave jumps. Based on only the longitudinal wave energy propagating in the liquid, the wave pattern is determined to be longitudinal wave.
- This embodiment is based on any one of the above-mentioned embodiments 3-4, as shown in Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 7, Fig. 8, Fig. 9, Fig. 12, Fig. 13, using a calibration block 1
- the specific operation of measuring the propagation velocity and the baseline ratio adjustment at 1:1 in combination with the phased array probe 4 is as follows: place the phased array probe at the center of the circular arc surface, and use the circular arc surface of the calibration test block and a 45° flat bottom hole to carry out In the phased array experiment, the anisotropy of the composite material is significant.
- the ultrasonic waves show different propagation in all directions.
- the speed of propagation in the direction of the main sound beam was measured for the first time using a calibration test block.
- the propagation velocity is measured as 2387m/s.
- the propagation velocity is calibrated and displayed in the form of a box in Figure 7, as shown in Figure 8 and Figure 9.
- the depth is 20.2mm
- the R25 arc bottom shows 50mm
- the time-to-baseline ratio is 1:1.
- the time-to-baseline ratio is 1:1, which can accurately locate the found defects, and is useful for designers to evaluate and develop damage tolerance.
- the next project will deal with the designated direction.
- the sound path SA of the flat-bottom hole is calibrated in the form of a box in the figure.
- This embodiment is based on any of the above-mentioned embodiments 1-5, as shown in Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 10, Fig. 11, Fig. 12, Fig. 13, using the calibration block 1 combined with the phase
- the operation of measuring the deflection angle of the phased array probe 4 is as follows: place the phased array probe at the center of the axis of the flat-bottom hole on the arc surface, as shown in Figure 10 and Figure 11, within the detection range of the fan scan, two flat-bottom hole echoes are found. They are 42° and 29° respectively. In comparison, the echo amplitude of the 42° flat-bottom hole is higher than that of the 29° echo, so the deflection angle of the main sound beam is 42°. 42° is the main sound beam deflection angle of the combination of 5MHz probe and 39° physical angle wedge. In the 42° direction, the ultrasonic energy of the main sound beam is high and the defect sensitivity is high.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
一种超声相控阵扇形扫描的校准块(1)及制造和使用方法,通过设计制造用于复合材料超声相控阵扇形扫描的校准块(1),用于超声相控阵扇形扫描对不同结构、不同厚度复合材料的适用性验证,测定探头的入射点、测定探头的偏转角度、声波传播速度测定、超声波波型确定、超声显示时基线比例调节,从而实现缺陷的精确定位定量,有效提高超声相控阵扇形扫描检测结果的准确性、可重复性、可比性。校准块(1)的设计是重点,而圆弧面、平底孔(3)则是校准块(1)制作的难点所在。
Description
本发明属于无损检测技术领域,具体地说,涉及一种超声相控阵扇形扫描的校准块及制造和使用方法。
金属材料是由晶粒构成,晶粒在空间方位上排列是无规则的,金属材料整体表现为各向同性,超声传播速度恒定;而复合材料是一种非均质的混合相结构,内部组织结构复杂。纤维丝在树脂里浸润烘干后形成预浸料纤维布,利用预浸料进行裁剪、层层铺叠、固化后形成复合材料,复合材料各向异性显著,超声波传播过程中可能会在铺层-树脂异质界面可能发生折射,波型转换,使得传播特性较为复杂,超声在各个方向上显现出不同的传播速度。因此,金属材料采用校准试块测定的恒定传播速度,无法直接应用于复合材料。
现阶段,国内外复合材料超声相控阵扇形扫描基本上基于CIVA、COMSOL等软件进行理论仿真模拟,无实际复合材料校准试块进行实验验证,复合材料具有重量轻、耐腐蚀、易制作成复杂结构等特点在各大领域得到广泛应用,制作一种用于复合材料超声相控阵扇形扫描的校准试块,可以用于超声相控阵扇形扫描对不同结构、不同厚度复合材料的适用性验证,测定探头的入射点、测定探头的偏转角度、声波传播速度测定、超声波波型确定、超声显示时基线比例调节,从而实现缺陷的精确定位定量,有效提高超声相控阵扇形扫描检测结果的准确性、可重复性、可比性。
发明内容
本发明针对现有技术的上述缺陷及需求,提出了一种超声相控阵扇形扫描的校准块及制造和使用方法,通过设计制造用于复合材料超声相控阵扇形扫描的校准块,用于超声相控阵扇形扫描对不同结构、不同厚度复合材料的适用性验证,测定探头的入射点、测定探头的偏转角度、声波传播速度测定、超声波波型确定、超声显示时基线比例调节,从而实现缺陷的精确定位定量,有效提高超声相控阵扇形扫描检测结果的准确性、可重复性、可比性。在本发明中,校准块的设计是重点,而圆弧面、平底孔则是校准试块制作的难点所在。
本发明具体实现内容如下:
本发明公开了一种超声相控阵扇形扫描的校准块,用于在超声相控阵扇形扫描中对不同结构、不同厚度的复合材料进行适用性验证,所述校准块为一端设置半圆弧形端头的板状结构,在所述半圆弧形端头角度为90°的半圆弧形面上径向排布有五个平底孔,所述平底孔 以15°为间隔,绕半圆弧形端头的圆心分别设置在半圆弧形面的15°、30°、45°、60°和75°的位置处并呈一线径向排布。
为了更好地实现本发明,进一步地,所述校准块包括200张厚度为0.125mm的复合材料预浸料,且校准块的长度和宽度分别为80mm;所述平底孔分布在离所述校准块左/右侧25mm距离处以半圆弧形端头的圆心为圆心呈一线径向分布;
所述校准块的半圆弧形端头的半径为25mm;
所述平底孔的孔径为3mm,孔深为5mm。
为了更好地实现本发明,进一步地,所述复合材料预浸料为具有铺层-树脂异质界面的非均质的混合相结构的碳纤维树脂基复合材料。
本发明还公开了一种超声相控阵扇形扫描的校准块的制造方法,用于制造上述一种超声相控阵扇形扫描的校准块,所述制造方法的具体操作为:选取200张单张尺寸为100mm×100mm×0.125mm的复合材料预浸料,依次采用铺叠、组装、热压罐成型固化生成100mm×100mm×25mm的试块板;然后对100mm×100mm×25mm的试块板进行切割得到80mm×80mm×25mm的试块板,再对80mm×80mm×25mm的一端头进行铣切,生成半径为25mm的半圆弧形端头;最后在半圆弧形端头上以15°为间隔,以半圆弧形面的圆心为圆心,分别在半圆弧形端头的半圆弧形面上距离校准头侧边25mm处的15°、30°、45°、60°、75°处钻5个一线径向分布的孔,然后进行铣孔得到五个孔径3mm、孔深5mm的平底孔,完成校准块的制造。
为了更好地实现本发明,进一步地,所述铺叠的具体操作为:将200张复合材料预浸料分为两组100张的复合材料预浸料,对于一组100张的复合材料预浸料,采用0°和90°垂直的方式交叉叠合得到一个100层板,最后将两个叠合得到的100层板再叠合得到一个200层板。
为了更好地实现本发明,进一步地,在进行100层板交叉叠合的时候,每交叉叠合10层,就进行一次真空预压。
为了更好地实现本发明,进一步地,所述组装的操作为:分别在叠合的200层板的中心位置的底层、中间层和表层放置一根热电偶,然后再封装入真空袋;所述中间层为两个100层板之间。
为了更好地实现本发明,进一步地,所述切割的具体操作为:去除周边辅助材料,打磨清理表面余胶,对100mm×100mm×25mm的试块板的边缘进行单边切割量为10mm的切割,得到80mm×80mm×25mm的试块板。
为了更好地实现本发明,进一步地,对80mm×80mm×25mm的试块板的一端头进行铣切的具体操作为:首先采用搭压板方式进行试块装夹并找正,试块垫高≥400mm,其中压板厚度≤50mm,宽度≤60mm,压入试块深度≤20mm;压板位置居中;然后进行“粗精铣”的圆弧面轮廓加工,加工采用刀具:GXIPJ4G/20×15×30R5,刀套:HSK63、E9304、5803、20100,工作长度:30min,仿真时间:15min,走刀采用行切方式。
本发明还公开了一种超声相控阵扇形扫描的校准块的使用方法,使用相控阵探头对所述校准块开展相控阵实验,在具体实验时,将相控阵探头放置在校准块上与半圆弧形端头的圆心及五个平底孔的圆心相对应的位置。
本发明与现有技术相比具有以下优点及有益效果:
本发明提供的校准块及其制造和使用的方法,突破了复合材料超声相控阵声传播特性研究瓶颈,实现了从理论仿真走向实验验证,从复杂问题转向单一问题,具有极大的工程应用价值。本发明给出校准块的制作方法,从复合材料预抽固化成型,到数控精确铣切,所得到圆弧面和平底孔,平底孔底粗糙度、平整度及尺寸,完全符合设计图纸要求,避免加工误差带来的误判,校准试块可重复制作;平底孔与自然缺陷声阻抗一致,可以更加真实有效地验证超声相控阵扇形扫描声传播中偏转角测定、传播速度测定、波型确定等以及各类检测设备、各种复合材料检测对象的检测能力有效性;平底孔在不同角度径向错层分布,可以分别验证不同检测设备对不同方位上缺陷的检出能力,有效提高超声相控阵扇形扫描检测结果的准确性、可重复性、可比性。
图1为本发明校准块结构设计示意图;
图2为本发明校准块的半圆弧形面上的平底孔分布示意图;
图3为本发明校准块CATIA立体结构模型示意图;
图4为本发明校准块另一视角的CATIA立体结构模型示意图;
图5为本发明校准块波形验证试验结果示意图;
图6为本发明使用相控阵探头的示意图;
图7为传播速度试验结果示意图;
图8为时基线调节后的平底孔声程SA的试验结果示意图;
图9为时基线调节后的半圆弧形端头的弧底SA的试验结果示意图;
图10为测定偏转角度为29°的试验结果示意图;
图11为测定偏转角度为42°的试验结果示意图;
图12为本发明校准块的实物立体结构示意图;
图13为本发明校准块的实物另一个立体结构示意图。
其中:1、校准块,2、半圆弧形端头,3、平底孔,4、相控阵探头。
为了更清楚地说明本发明实施例的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,应当理解,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例,因此不应被看作是对保护范围的限定。基于本发明中的实施例,本领域普通技术工作人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“设置”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;也可以是直接相连,也可以是通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1:
本实施例提出了一种超声相控阵扇形扫描的校准块,用于在超声相控阵扇形扫描中对不同结构、不同厚度的复合材料进行适用性验证,如图1、图2、图3、图4、图12、图13所示,所述校准块1为一端设置半圆弧形端头2的板状结构,在所述半圆弧形端头2角度为90°的半圆弧形面上径向排布有五个平底孔3,所述平底孔3以15°为间隔,绕半圆弧形端头2的圆心分别设置在半圆弧形面的15°、30°、45°、60°和75°的位置处并呈一线径向排布。
为了更好地实现本发明,进一步地,所述校准块1包括200张厚度为0.125mm的复合材料预浸料,且校准块1的长度和宽度分别为80mm;所述平底孔3分布在离所述校准块1左/右侧25mm距离处以半圆弧形端头2的圆心为圆心呈一线径向分布;
所述校准块1的半圆弧形端头2的半径为25mm;
所述平底孔3的孔径为3mm,孔深为5mm。
为了更好地实现本发明,进一步地,所述复合材料预浸料为具有铺层-树脂异质界面的非均质的混合相结构的碳纤维树脂基复合材料,具有各向异性,不同于各向同性金属材料。
需要注意的是图12和图13为本申请校准块1的实物扫描图,在此处仅作为展示, 其并不对本申请所记载的技术方案有任何实质的影响,故若因扫描操作光线等问题存在不清楚的地方也不对本申请技术内容造成影响。
图1中记载的数值80的单位均为mm,代表校准块1的长和宽为80mm,25和R25的单位也为mm,分别代表校准块1的厚度为25mm和半径为25mm。图2中Φ3代表孔径为3mm,25的单位为mm,代表平底孔3距离边缘25mm;80的单位也为mm,代表校准块1的宽度为80mm。
实施例2:
本实施例提出了一种超声相控阵扇形扫描的校准块的制造方法,用于制造上述一种超声相控阵扇形扫描的校准块,如图1、图2、图3、图4、图12、图13所示所述制造方法的具体操作为:选取200张单张尺寸为100mm×100mm×0.125mm的复合材料预浸料,依次采用铺叠、组装、热压罐成型固化生成100mm×100mm×25mm的试块板;然后对100mm×100mm×25mm的试块板进行切割得到80mm×80mm×25mm的试块板,再对80mm×80mm×25mm的一端头进行铣切,通过编制圆弧面专用程序和调用程序,生成半径为25mm的半圆弧形端头2;最后在半圆弧形端头2上以15°为间隔,以半圆弧形面的圆心为圆心,分别在半圆弧形端头2的半圆弧形面上距离校准头1侧边25mm处的15°、30°、45°、60°、75°处钻5个一线径向分布的孔,然后进行铣孔得到五个孔径3mm、孔深5mm的平底孔,完成校准块1的制造。
为了更好地实现本发明,进一步地,所述铺叠的具体操作为:将200张复合材料预浸料分为两组100张的复合材料预浸料,对于一组100张的复合材料预浸料,采用0°和90°垂直的方式交叉叠合得到一个100层板,最后将两个叠合得到的100层板再叠合得到一个200层板。
为了更好地实现本发明,进一步地,在进行100层板交叉叠合的时候,每交叉叠合10层,就进行一次真空预压。
为了更好地实现本发明,进一步地,所述组装的操作为:分别在叠合的200层板的中心位置的底层、中间层和表层放置一根热电偶,然后再封装入真空袋;所述中间层为两个100层板之间。
为了更好地实现本发明,进一步地,所述切割的具体操作为:去除周边辅助材料,打磨清理表面余胶,对100mm×100mm×25mm的试块板的边缘进行单边切割量为10mm的切割,得到80mm×80mm×25mm的试块板。
为了更好地实现本发明,进一步地,对80mm×80mm×25mm的试块板的一端头进 行铣切的具体操作为:首先采用搭压板方式进行试块装夹并找正,试块垫高≥400mm,其中压板厚度≤50mm,宽度≤60mm,压入试块深度≤20mm;压板位置居中;然后进行“粗精铣”的圆弧面轮廓加工,加工采用刀具:GXIPJ4G/20×15×30R5,刀套:HSK63、E9304、5803、20100,工作长度:30min,仿真时间:15min,走刀采用行切方式。
实施例3:
本实施例提出了一种超声相控阵扇形扫描的校准块的使用方法,使用相控阵探头4对所述校准块1开展相控阵实验,在具体实验时,将相控阵探头4放置在校准块1上与半圆弧形端头2的圆心及五个平底孔3的圆心相对应的位置。
实施例4:
本实施例在上述实施例3的基础上,为了更好的实现本发明,进一步地,如图1、图2、图3、图4、图5、图6、图12、图13所示使用相控阵探头确定超声波波型的操作为:将相控阵探头放置于圆弧面的圆心处,采用校准试块圆弧面开展相控阵实验,相控阵扇形扫描实验结果如图5所示,图5中以箭头指示的地方即为一次底波,采用液滴法间接验证,一次底波幅值有跳动,基于仅纵波能在液体中传播,确定波型为纵波。
本实施例的其他部分与上述实施例3相同,故不再赘述。
实施例5:
本实施例在上述实施例3-4任一项的基础上,如图1、图2、图3、图4、图7、图8、图9、图12、图13所示,使用校准块1结合相控阵探头4测定传播速度和1:1时基线比例调节的具体操作为:将相控阵探头放置于圆弧面的圆心处,采用校准试块圆弧面和45°平底孔开展相控阵实验,复合材料各向异性显著,超声波传播过程中可能会在铺层-树脂异质界面可能发生折射,波型转换,使得传播特性较为复杂,超声在各个方向上显现出不同的传播速度,采用校准试块首次测得主声束方向的传播速度。如图7所示传播速度测定为2387m/s,为了方便查看,在图7中以方框的形式将传播速度标定展示,如图8和图9所示,时基线比例调节验证,平底孔孔深20.2mm,R25弧底显示50mm,时基线比例为1:1,在工程应用中,时基线比例为1:1,可以对发现的缺陷进行精确定位,对于设计人员对损伤容限评估并开展下一步工程处置指名方向。为了方便查看,在图中以方框的形式对平底孔声程SA以方框的形式进行标定。
本实施例的其他部分与上述实施例1-4任一项相同,故不再赘述。
实施例6:
本实施例在上述实施例1-5任一项的基础上,如图1、图2、图3、图4、图10、图11、图 12、图13所示,使用校准块1结合相控阵探头4测定偏转角度的操作为:将相控阵探头放置于圆弧面的平底孔轴线圆心处,如图10和图11所示,扇扫检测范围内发现2个平底孔回波,分别是42°与29°,相比较而言,42°平底孔回波高于29°回波幅值,因此主声束偏转角为42°。42°是5MHz探头及39°物理角度楔块组合的主声束偏转角,在42°方向主声束超声能量高发现缺陷灵敏度高。
工作原理:
本实施例的其他部分与上述实施例1-5任一项相同,故不再赘述。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化,均落入本发明的保护范围之内。需要说明的是,图5、图7、图8、图9、图10、图11仅为试验数据的计算机界面截图,在此仅仅作为效果的展示,其并不对本申请方法的实质内容造成影响。
Claims (10)
- 一种超声相控阵扇形扫描的校准块,用于在超声相控阵扇形扫描中对不同结构、不同厚度的复合材料进行适用性验证,其特征在于,所述校准块(1)为一端设置半圆弧形端头(2)的板状结构,在所述半圆弧形端头(2)角度为90°的半圆弧形面上径向排布有五个平底孔(3),所述平底孔(3)以15°为间隔,绕半圆弧形端头(2)的圆心分别设置在半圆弧形面的15°、30°、45°、60°和75°的位置处并呈一线径向排布。
- 如权利要求1所述的一种超声相控阵扇形扫描的校准块,其特征在于,所述校准块(1)包括200张厚度为0.125mm的复合材料预浸料,且校准块(1)的长度和宽度分别为80mm;所述平底孔(3)分布在离所述校准块(1)左/右侧25mm距离处以半圆弧形端头(2)的圆心为圆心呈一线径向分布;所述校准块(1)的半圆弧形端头(2)的半径为25mm;所述平底孔(3)的孔径为3mm,孔深为5mm。
- 如权利要求2所述的一种超声相控阵扇形扫描的校准块,其特征在于,所述复合材料预浸料为具有铺层-树脂异质界面的非均质的混合相结构的碳纤维树脂基复合材料。
- 一种超声相控阵扇形扫描的校准块的制造方法,用于制造如权利要求2或3所述的一种超声相控阵扇形扫描的校准块,其特征在于,具体操作为:选取200张单张尺寸为100mm×100mm×0.125mm的复合材料预浸料,依次采用铺叠、组装、热压罐成型固化生成100mm×100mm×25mm的试块板;然后对100mm×100mm×25mm的试块板进行切割得到80mm×80mm×25mm的试块板,再对80mm×80mm×25mm的一端头进行铣切,生成半径为25mm的半圆弧形端头(2);最后在半圆弧形端头(2)上以15°为间隔,以半圆弧形面的圆心为圆心,分别在半圆弧形端头(2)的半圆弧形面上距离校准头(1)侧边25mm处的15°、30°、45°、60°、75°处钻5个一线径向分布的孔,然后进行铣孔得到五个孔径3mm、孔深5mm的平底孔,完成校准块(1)的制造。
- 如权利要求4所述的一种超声相控阵扇形扫描的校准块的制造方法,其特征在于,所述铺叠的具体操作为:将200张复合材料预浸料分为两组100张的复合材料预浸料,对于一组100张的复合材料预浸料,采用0°和90°垂直的方式交叉叠合得到一个100层板,最后将两个叠合得到的100层板再叠合得到一个200层板。
- 如权利要求5所述的一种超声相控阵扇形扫描的校准块的制造方法,其特征在于,在进行100层板交叉叠合的时候,每交叉叠合10层,就进行一次真空预压。
- 如权利要求5所述的一种超声相控阵扇形扫描的校准块的制造方法,其特征在于,所述组装的操作为:分别在叠合的200层板的中心位置的底层、中间层和表层放置一根热电偶, 然后再封装入真空袋;所述中间层为两个100层板之间。
- 如权利要求4所述的一种超声相控阵扇形扫描的校准块的制造方法,其特征在于,所述切割的具体操作为:去除周边辅助材料,打磨清理表面余胶,对100mm×100mm×25mm的试块板的边缘进行单边切割量为10mm的切割,得到80mm×80mm×25mm的试块板。
- 如权利要求4所述的一种超声相控阵扇形扫描的校准块的制造方法,其特征在于,对80mm×80mm×25mm的试块板的一端头进行铣切的具体操作为:首先采用搭压板方式进行试块装夹并找正,试块垫高≥400mm,其中压板厚度≤50mm,宽度≤60mm,压入试块深度≤20mm;压板位置居中;然后进行“粗精铣”的圆弧面轮廓加工,加工采用刀具:GXIPJ4G/20×15×30R5,刀套:HSK63、E9304、5803、20100,工作长度:30min,仿真时间:15min,走刀采用行切方式。
- 一种超声相控阵扇形扫描的校准块的使用方法,基于权利要求2或3所述的一种超声相控阵扇形扫描的校准块,其特征在于,使用相控阵探头(4)对所述校准块(1)开展相控阵实验,在具体实验时,将相控阵探头(4)放置在校准块(1)上与半圆弧形端头(2)的圆心及五个平底孔(3)的圆心相对应的位置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110369788.3 | 2021-04-07 | ||
CN202110369788.3A CN112763583B (zh) | 2021-04-07 | 2021-04-07 | 一种超声相控阵扇形扫描的校准块及制造和使用方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022213646A1 true WO2022213646A1 (zh) | 2022-10-13 |
Family
ID=75691381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/136928 WO2022213646A1 (zh) | 2021-04-07 | 2021-12-10 | 一种超声相控阵扇形扫描的校准块及制造和使用方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112763583B (zh) |
WO (1) | WO2022213646A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112763583B (zh) * | 2021-04-07 | 2021-08-03 | 成都飞机工业(集团)有限责任公司 | 一种超声相控阵扇形扫描的校准块及制造和使用方法 |
CN113866279B (zh) * | 2021-08-19 | 2023-11-10 | 中车唐山机车车辆有限公司 | 曲面双轴肩搅拌摩擦焊缝的超声波相控阵检测方法 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101475299A (zh) * | 2008-12-03 | 2009-07-08 | 中国兵器工业集团第五三研究所 | 一种纤维增强玻璃基复合材料制备工艺 |
CN102085739A (zh) * | 2010-11-18 | 2011-06-08 | 西安超码科技有限公司 | 一种二维炭纤维复合材料板材的铺层方法 |
US20120130653A1 (en) * | 2010-11-23 | 2012-05-24 | Olympus Ndt, Inc. | System and method of conducting refraction angle verification for phased array probes using standard calibration blocks |
CN202583136U (zh) * | 2012-03-31 | 2012-12-05 | 南车戚墅堰机车车辆工艺研究所有限公司 | 一种超声波探伤探头性能检定试块 |
CN202916247U (zh) * | 2012-10-29 | 2013-05-01 | 哈电集团(秦皇岛)重型装备有限公司 | 超声波检测多功能试块 |
CN204008571U (zh) * | 2014-03-13 | 2014-12-10 | 河北省电力建设调整试验所 | 一种多方位检测用超声波试块 |
CN105911144A (zh) * | 2016-05-17 | 2016-08-31 | 上海卫星装备研究所 | 碳纤维复合材料桁架胶接缺陷超声相控阵检测装置及方法 |
CN205720115U (zh) * | 2016-04-26 | 2016-11-23 | 中国海洋石油总公司 | 相控阵超声波检测装置的校准试块 |
CN106525985A (zh) * | 2016-10-27 | 2017-03-22 | 中国海洋石油总公司 | 双金属复合材料相控阵超声波检测校准试块的设置方法 |
CN208366915U (zh) * | 2018-04-26 | 2019-01-11 | 安徽津利能源科技发展有限责任公司 | 一种用于相控阵超声仪器和探头的系统性能校准a型试块 |
CN109668966A (zh) * | 2018-12-28 | 2019-04-23 | 哈尔滨焊接研究院有限公司 | 发动机转子组件惯性摩擦焊缝超声检测用校准试块 |
CN110007003A (zh) * | 2019-04-10 | 2019-07-12 | 上海船舶工艺研究所(中国船舶工业集团公司第十一研究所) | 用于声速非均匀金属厚板焊缝相控阵超声检测的分区方法 |
CN110682559A (zh) * | 2019-09-19 | 2020-01-14 | 中航复合材料有限责任公司 | 一种芳纶纤维复合材料中心筒的成型方法 |
CN212514423U (zh) * | 2020-06-23 | 2021-02-09 | 西安热工研究院有限公司 | 一种超声相控阵小角度纵波探头用校准/对比试块 |
CN112763583A (zh) * | 2021-04-07 | 2021-05-07 | 成都飞机工业(集团)有限责任公司 | 一种超声相控阵扇形扫描的校准块及制造和使用方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2341147Y (zh) * | 1997-11-17 | 1999-09-29 | 北京电力科学研究院 | 小径管焊接超声探伤用试块装置 |
CN201207045Y (zh) * | 2008-03-12 | 2009-03-11 | 河北省电力研究院 | 一种超声波探伤试块 |
CN201788174U (zh) * | 2010-07-28 | 2011-04-06 | 南车戚墅堰机车车辆工艺研究所有限公司 | 一种探头性能检定试块 |
CN202066835U (zh) * | 2011-05-18 | 2011-12-07 | 马鞍山十七冶工程科技有限责任公司 | 金属焊缝超声波探伤检测用简易试块 |
JP6300225B2 (ja) * | 2013-12-03 | 2018-03-28 | 東芝エネルギーシステムズ株式会社 | タービン翼の検査装置及びその検査方法 |
CN203894199U (zh) * | 2014-04-02 | 2014-10-22 | 深圳市泰克尼林科技发展有限公司 | 一种pe超声检测校准试块 |
CN106124638B (zh) * | 2016-06-15 | 2018-10-02 | 中国航空工业集团公司北京航空材料研究院 | R角结构超声相控阵检测用曲面线阵探头的声场测量方法 |
CN106404920A (zh) * | 2016-06-15 | 2017-02-15 | 中国航空工业集团公司北京航空材料研究院 | 一种复合材料r角结构超声检测用对比试块 |
CN205749406U (zh) * | 2016-06-22 | 2016-11-30 | 成都飞机工业(集团)有限责任公司 | 一种用于飞机进气道套环铆钉的超声波检测试块 |
CN206489123U (zh) * | 2016-12-29 | 2017-09-12 | 上海船舶工程质量检测有限公司 | 一种斜入射平底孔反射灵敏度定量试块 |
CN109406629A (zh) * | 2018-10-15 | 2019-03-01 | 成都飞机工业(集团)有限责任公司 | 一种用于复合材料结构超声检测的r角试块及制作方法 |
CN208897748U (zh) * | 2018-10-30 | 2019-05-24 | 广东华路交通科技有限公司 | 一种超声波测厚仪校准标准厚度块的存储装置 |
CN109668967B (zh) * | 2019-01-08 | 2024-02-02 | 中国机械总院集团哈尔滨焊接研究所有限公司 | 发动机转子组件惯性摩擦焊缝超声相控阵检测用对比试块 |
CN210803374U (zh) * | 2019-10-29 | 2020-06-19 | 中航通飞华南飞机工业有限公司 | 一种碳纤维复合材料“r”角结构超声检测的对比试块 |
CN211426385U (zh) * | 2019-11-06 | 2020-09-04 | 海洋石油工程股份有限公司 | 海洋工程超声仪器和探头组合性能测试通用试块 |
CN212134587U (zh) * | 2019-12-05 | 2020-12-11 | 山东电力工业锅炉压力容器检验中心有限公司 | 测量铝合金横波声程与探头入射点误差关系的试块 |
CN111272868A (zh) * | 2019-12-31 | 2020-06-12 | 中国航空制造技术研究院 | 一种用于复合材料超声检测的曲率系数的确定方法 |
CN212780653U (zh) * | 2020-07-30 | 2021-03-23 | 广东汕头超声电子股份有限公司 | 一种用于探轮校准及静态测试的组合试块 |
CN112213399A (zh) * | 2020-09-29 | 2021-01-12 | 中国航发动力股份有限公司 | 一种胶接质量的检测方法 |
-
2021
- 2021-04-07 CN CN202110369788.3A patent/CN112763583B/zh active Active
- 2021-12-10 WO PCT/CN2021/136928 patent/WO2022213646A1/zh active Application Filing
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101475299A (zh) * | 2008-12-03 | 2009-07-08 | 中国兵器工业集团第五三研究所 | 一种纤维增强玻璃基复合材料制备工艺 |
CN102085739A (zh) * | 2010-11-18 | 2011-06-08 | 西安超码科技有限公司 | 一种二维炭纤维复合材料板材的铺层方法 |
US20120130653A1 (en) * | 2010-11-23 | 2012-05-24 | Olympus Ndt, Inc. | System and method of conducting refraction angle verification for phased array probes using standard calibration blocks |
CN202583136U (zh) * | 2012-03-31 | 2012-12-05 | 南车戚墅堰机车车辆工艺研究所有限公司 | 一种超声波探伤探头性能检定试块 |
CN202916247U (zh) * | 2012-10-29 | 2013-05-01 | 哈电集团(秦皇岛)重型装备有限公司 | 超声波检测多功能试块 |
CN204008571U (zh) * | 2014-03-13 | 2014-12-10 | 河北省电力建设调整试验所 | 一种多方位检测用超声波试块 |
CN205720115U (zh) * | 2016-04-26 | 2016-11-23 | 中国海洋石油总公司 | 相控阵超声波检测装置的校准试块 |
CN105911144A (zh) * | 2016-05-17 | 2016-08-31 | 上海卫星装备研究所 | 碳纤维复合材料桁架胶接缺陷超声相控阵检测装置及方法 |
CN106525985A (zh) * | 2016-10-27 | 2017-03-22 | 中国海洋石油总公司 | 双金属复合材料相控阵超声波检测校准试块的设置方法 |
CN208366915U (zh) * | 2018-04-26 | 2019-01-11 | 安徽津利能源科技发展有限责任公司 | 一种用于相控阵超声仪器和探头的系统性能校准a型试块 |
CN109668966A (zh) * | 2018-12-28 | 2019-04-23 | 哈尔滨焊接研究院有限公司 | 发动机转子组件惯性摩擦焊缝超声检测用校准试块 |
CN110007003A (zh) * | 2019-04-10 | 2019-07-12 | 上海船舶工艺研究所(中国船舶工业集团公司第十一研究所) | 用于声速非均匀金属厚板焊缝相控阵超声检测的分区方法 |
CN110682559A (zh) * | 2019-09-19 | 2020-01-14 | 中航复合材料有限责任公司 | 一种芳纶纤维复合材料中心筒的成型方法 |
CN212514423U (zh) * | 2020-06-23 | 2021-02-09 | 西安热工研究院有限公司 | 一种超声相控阵小角度纵波探头用校准/对比试块 |
CN112763583A (zh) * | 2021-04-07 | 2021-05-07 | 成都飞机工业(集团)有限责任公司 | 一种超声相控阵扇形扫描的校准块及制造和使用方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112763583B (zh) | 2021-08-03 |
CN112763583A (zh) | 2021-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022213646A1 (zh) | 一种超声相控阵扇形扫描的校准块及制造和使用方法 | |
US7320241B2 (en) | Ultrasonic inspection reference standard for composite materials | |
JP5795651B2 (ja) | 任意の表面輪郭を有する部材の超音波浸漬検査 | |
US7216544B2 (en) | Ultrasonic inspection reference standard for composite Materials | |
CN112763578B (zh) | 在役整体复材r区检测方法、对比试块及试块制造方法 | |
Croënne et al. | Negative refraction of longitudinal waves in a two-dimensional solid-solid phononic crystal | |
US20210208104A1 (en) | A flexible sensor with piezoelectric array applied for weld defect detection based on feature guided waves and its testing method | |
CN105044213B (zh) | 一种纤维增强树脂基复合材料相控阵超声检测晶片延迟法则优化方法 | |
WO2023185140A1 (zh) | 一种纤维树脂基复合材料弹性常数的测量方法 | |
CN106124638B (zh) | R角结构超声相控阵检测用曲面线阵探头的声场测量方法 | |
CN111579646B (zh) | 石质文物裂隙的原位、无损检测方法 | |
CN114994177B (zh) | 复合板材超声缺陷检测方法及装置和复合板材 | |
CN103604869A (zh) | 基于数值反演的无损检测模拟试块缺陷参数的识别方法 | |
CN208155946U (zh) | 一种用于发电机护环检测的试块 | |
CA3225643A1 (en) | Non-destructive testing of composite components | |
CN108692806A (zh) | 固体中功率超声强度分布的测量方法 | |
JP7170982B2 (ja) | 構造体状態測定方法、品質管理方法、経時変化モニター方法、および構造体の製造方法 | |
CN217739092U (zh) | 一种用于非金属复合材料超声检测系统性能校准的试块 | |
CN115774051B (zh) | 自聚焦相控阵探头、制造工艺及参数确定方法 | |
Hsu et al. | Characterization of CFRP Laminates’ layups using through-Transmitting ultrasound waves | |
Hervin et al. | Directionally Dependent Guided Wave Scattering for the Monitoring of Anisotropic Composite Structures | |
CN118671194A (zh) | Cfrp复合材料中分层损伤的超声相控阵合成孔径聚焦成像方法 | |
Murat et al. | Guided waves for the detection and classification of impact damage in composites | |
CN212514425U (zh) | 一种不锈钢复合板对接焊缝超声检测对比试块 | |
CN114324575B (zh) | 一种基于压电纤维传感器阵列的复合材料板裂纹定位方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21935862 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21935862 Country of ref document: EP Kind code of ref document: A1 |