WO2022213644A1 - 同步信号块ssb确定方法及相关设备 - Google Patents

同步信号块ssb确定方法及相关设备 Download PDF

Info

Publication number
WO2022213644A1
WO2022213644A1 PCT/CN2021/136485 CN2021136485W WO2022213644A1 WO 2022213644 A1 WO2022213644 A1 WO 2022213644A1 CN 2021136485 W CN2021136485 W CN 2021136485W WO 2022213644 A1 WO2022213644 A1 WO 2022213644A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
time slot
subcarrier spacing
ofdm symbols
equal
Prior art date
Application number
PCT/CN2021/136485
Other languages
English (en)
French (fr)
Inventor
周化雨
沈兴亚
潘振岗
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2022213644A1 publication Critical patent/WO2022213644A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of communications technologies, and in particular, to a method for determining an SSB of a synchronization signal block and related devices.
  • 5G New Radio, NR, commonly known as “5G”
  • 4G Long Term Evolution
  • the primary and secondary synchronization signal (Synchronization Signal, SS) of the cell and the physical broadcast channel (Physical Broadcast Channel, PBCH) are coupled to some extent in 5G, and the SS/PBCH resource block form, referred to as SSB.
  • SSB SS/PBCH resource block form
  • data channels generally use 480/960kHz subcarrier spacing. If SSB and data channels use the same subcarrier spacing, network/terminal operations can be simplified. Therefore, SSB can simplify the use of 480/960kHz subcarrier spacing.
  • Embodiments of the present application provide a method for determining the SSB of a synchronization signal block and related equipment, so as to provide a way for the terminal side to determine that the SSB is included in the time slot.
  • an embodiment of the present application provides a method for determining a synchronization signal block SSB, including:
  • the time slot contains no SSB or only one SSB.
  • L 4*p+q; where p is an integer less than 40 and greater than or equal to 0, and q is 3.
  • the L th time slot includes only one SSB includes: the L th time slot includes only the first SSB.
  • the L th time slot includes only one SSB includes: the L th time slot includes only the second SSB.
  • L 4*p+q; where p is an integer less than 40 and greater than or equal to 0, and q is 0 and/or 2.
  • the L th time slot includes only one SSB includes: the L th time slot includes only the second SSB.
  • the SSB is an SSB with a subcarrier spacing of 480 kHz.
  • L 4*p+q; where p is an integer less than 40 and greater than or equal to 0, and q is 3.
  • the L th time slot includes only one SSB includes: the L th time slot includes only the first SSB.
  • L 4*p+q; where p is an integer less than 40 and greater than or equal to 0, and q is 4.
  • the L th time slot includes only one SSB includes: the L th time slot includes only the second SSB.
  • L 4*p+q; where p is an integer less than 40 and greater than or equal to 0, and q is 3 and/or 7.
  • the L th time slot includes only one SSB includes: the L th time slot includes only the first SSB.
  • the SSB is an SSB with a subcarrier spacing of 960 kHz.
  • an embodiment of the present application provides a chip, including:
  • the determining module is used for determining that the time slot does not contain SSB or only contains one SSB.
  • the foregoing determining module is further configured to determine that only the first SSB is included in the Lth time slot.
  • the above determining module is further configured to include only one SSB in the L th time slot, including: the L th time slot includes only the second SSB.
  • the above determining module is further configured to include only one SSB in the L th time slot, including: the L th time slot includes only the second SSB.
  • the SSB is an SSB with a subcarrier spacing of 480 kHz.
  • the foregoing determining module is further configured to determine that only the first SSB is included in the Lth time slot.
  • the foregoing determining module is further configured to determine that only the second SSB is included in the Lth time slot.
  • the foregoing determining module is further configured to determine that only the first SSB is included in the Lth time slot.
  • the SSB is an SSB with a subcarrier spacing of 960 kHz.
  • an electronic device including:
  • a memory where the memory is used to store computer program codes, and the computer program codes include instructions.
  • the electronic device reads the instructions from the memory, the electronic device executes the method according to the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when it runs on a computer, causes the computer to execute the method described in the first aspect.
  • an embodiment of the present application provides a computer program, which is used to execute the method described in the first aspect when the computer program is executed by a computer.
  • the program in the fifth aspect may be stored in whole or in part on a storage medium packaged with the processor, or may be stored in part or in part in a memory not packaged with the processor
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a time slot of a 120 kHz subcarrier spacing SSB provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of a time slot of a 480 kHz subcarrier spaced SSB provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a time slot of a 960 kHz subcarrier spacing SSB provided by an embodiment of the present application;
  • 5a-5d are schematic diagrams of time-domain positions of an embodiment of mixed transmission of 120 kHz subcarrier spacing SSB and 480/960 kHz subcarrier spacing SSB provided by an embodiment of the present application;
  • FIGS. 6a-6e are schematic diagrams of time domain positions of another embodiment of mixed transmission of 120 kHz subcarrier spacing SSB and 480/960 kHz subcarrier spacing SSB provided by an embodiment of the present application;
  • FIGS. 7a-7e are schematic diagrams of time domain positions of still another embodiment of mixed transmission of 120 kHz subcarrier spacing SSB and 480/960 kHz subcarrier spacing SSB provided by an embodiment of the present application;
  • FIG. 8 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • the primary and secondary synchronization signal (Synchronization Signal, SS) of the cell and the physical broadcast channel (Physical Broadcast Channel, PBCH) are coupled to some extent in 5G, and the SS/PBCH resource block form, referred to as SSB.
  • SSB SS/PBCH resource block form
  • data channels generally use 480/960kHz subcarrier spacing. If SSB and data channels use the same subcarrier spacing, network/terminal operations can be simplified. Therefore, SSB can simplify the use of 480/960kHz subcarrier spacing.
  • SSB with 480/960kHz subcarrier spacing can be considered.
  • SSB when the data channel uses 480kHz subcarrier spacing, SSB also uses 480kHz subcarrier spacing; when data channel uses 960kHz subcarrier spacing, SSB also uses 960kHz subcarrier spacing interval.
  • the 480/960 kHz subcarrier spacing SSB is a new type of SSB.
  • an embodiment of the present application proposes a method for sending an SSB.
  • the above method can be applied to user equipment (User Equipment, UE).
  • UE User Equipment
  • a UE may also be called a terminal device, mobile terminal, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user equipment .
  • the UE can be a station (STAION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a Wireless Local Loop (WLL) station, a personal digital processor ( Personal Digital Assistant (PDA) device, handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, in-vehicle device, connected vehicle terminal, computer, laptop computer, handheld communication device, handheld computing device equipment, satellite wireless equipment, wireless modem cards, television set top boxes (STBs), customer premise equipment (CPEs) and/or other equipment for communicating over wireless systems and next generation communication systems, For example, a mobile terminal in a 5G network or a mobile terminal in
  • the UE may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to be used in conjunction with other devices such as smart phones. , such as various types of smart bracelets and smart jewelry that monitor physical signs.
  • FIG. 1 exemplarily shows a schematic structural diagram of an electronic device 100 .
  • the electronic device 100 may be the aforementioned UE.
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charge management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone jack 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194, and Subscriber identification module (subscriber identification module, SIM) card interface 195 and so on.
  • SIM Subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light. Sensor 180L, bone conduction sensor 180M, etc.
  • the structures illustrated in the embodiments of the present application do not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (neural-network processing unit, NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • baseband processor baseband processor
  • neural-network processing unit neural-network processing unit
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 110 . If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided and the latency of the processor 110 is reduced, thereby increasing the efficiency of the system.
  • the processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver (universal asynchronous transmitter) receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus that includes a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may contain multiple sets of I2C buses.
  • the processor 110 can be respectively coupled to the touch sensor 180K, the charger, the flash, the camera 193 and the like through different I2C bus interfaces.
  • the processor 110 may couple the touch sensor 180K through the I2C interface, so that the processor 110 and the touch sensor 180K communicate with each other through the I2C bus interface, so as to realize the touch function of the electronic device 100 .
  • the I2S interface can be used for audio communication.
  • the processor 110 may contain multiple sets of I2S buses.
  • the processor 110 may be coupled with the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170 .
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the I2S interface, so as to realize the function of answering calls through a Bluetooth headset.
  • the PCM interface can also be used for audio communications, sampling, quantizing and encoding analog signals.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 can also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus may be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is typically used to connect the processor 110 with the wireless communication module 160 .
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to realize the Bluetooth function.
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the UART interface, so as to realize the function of playing music through the Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193 .
  • MIPI interfaces include camera serial interface (CSI), display serial interface (DSI), etc.
  • the processor 110 communicates with the camera 193 through a CSI interface, so as to realize the photographing function of the electronic device 100 .
  • the processor 110 communicates with the display screen 194 through the DSI interface to implement the display function of the electronic device 100 .
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface may be used to connect the processor 110 with the camera 193, the display screen 194, the wireless communication module 160, the audio module 170, the sensor module 180, and the like.
  • the GPIO interface can also be configured as I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface that conforms to the USB standard specification, and may specifically be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 100, and can also be used to transmit data between the electronic device 100 and peripheral devices. It can also be used to connect headphones to play audio through the headphones.
  • the interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the electronic device 100 .
  • the electronic device 100 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive wireless charging input through a wireless charging coil of the electronic device 100 . While the charging management module 140 charges the battery 142 , it can also supply power to the electronic device through the power management module 141 .
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the display screen 194, the camera 193, and the wireless communication module 160.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, battery health status (leakage, impedance).
  • the power management module 141 may also be provided in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the electronic device 100 may be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modulation and demodulation processor, the baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed as a diversity antenna of the wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 may provide wireless communication solutions including 2G/3G/4G/5G etc. applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves from the antenna 1, filter and amplify the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modulation and demodulation processor, and then turn it into an electromagnetic wave for radiation through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the same device as at least part of the modules of the processor 110 .
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low frequency baseband signal is processed by the baseband processor and passed to the application processor.
  • the application processor outputs sound signals through audio devices (not limited to the speaker 170A, the receiver 170B, etc.), or displays images or videos through the display screen 194 .
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent of the processor 110, and may be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), global navigation satellites Wireless communication solutions such as global navigation satellite system (GNSS), frequency modulation (FM), near field communication (NFC), and infrared technology (IR).
  • WLAN wireless local area networks
  • BT Bluetooth
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared technology
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , perform frequency modulation on it, amplify it, and convert it into electromagnetic waves for radiation through the antenna 2 .
  • the antenna 1 of the electronic device 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code Division Multiple Access (WCDMA), Time Division Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (global positioning system, GPS), global navigation satellite system (global navigation satellite system, GLONASS), Beidou navigation satellite system (beidou navigation satellite system, BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite based augmentation systems (SBAS).
  • global positioning system global positioning system, GPS
  • global navigation satellite system global navigation satellite system, GLONASS
  • Beidou navigation satellite system beidou navigation satellite system, BDS
  • quasi-zenith satellite system quadsi -zenith satellite system, QZSS
  • SBAS satellite based augmentation systems
  • the electronic device 100 implements a display function through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • Display screen 194 is used to display images, videos, and the like.
  • Display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light).
  • LED diode AMOLED
  • flexible light-emitting diode flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (quantum dot light emitting diodes, QLED) and so on.
  • the electronic device 100 may include one or N display screens 194 , where N is a positive integer greater than one.
  • the electronic device 100 may implement a shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, an application processor, and the like.
  • the ISP is used to process the data fed back by the camera 193 .
  • the shutter is opened, the light is transmitted to the camera photosensitive element through the lens, the light signal is converted into an electrical signal, and the camera photosensitive element transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and skin tone.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera 193 .
  • Camera 193 is used to capture still images or video.
  • the object is projected through the lens to generate an optical image onto the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other image signals.
  • the electronic device 100 may include 1 or N cameras 193 , where N is a positive integer greater than 1.
  • a digital signal processor is used to process digital signals, in addition to processing digital image signals, it can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy and so on.
  • Video codecs are used to compress or decompress digital video.
  • the electronic device 100 may support one or more video codecs. In this way, the electronic device 100 can play or record videos of various encoding modes, such as: Moving Picture Experts Group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4, and so on.
  • MPEG Moving Picture Experts Group
  • MPEG2 Moving picture experts group
  • MPEG3 Moving Picture Experts Group
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • Applications such as intelligent cognition of the electronic device 100 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100 .
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example to save files like music, video etc in external memory card.
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the storage data area may store data (such as audio data, phone book, etc.) created during the use of the electronic device 100 and the like.
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by executing instructions stored in the internal memory 121, and/or instructions stored in a memory provided in the processor.
  • the electronic device 100 may implement audio functions through an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, an application processor, and the like. Such as music playback, recording, etc.
  • the audio module 170 is used for converting digital audio information into analog audio signal output, and also for converting analog audio input into digital audio signal. Audio module 170 may also be used to encode and decode audio signals. In some embodiments, the audio module 170 may be provided in the processor 110 , or some functional modules of the audio module 170 may be provided in the processor 110 .
  • Speaker 170A also referred to as a "speaker" is used to convert audio electrical signals into sound signals.
  • the electronic device 100 can listen to music through the speaker 170A, or listen to a hands-free call.
  • the receiver 170B also referred to as "earpiece" is used to convert audio electrical signals into sound signals.
  • the voice can be answered by placing the receiver 170B close to the human ear.
  • the microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
  • the user can make a sound by approaching the microphone 170C through a human mouth, and input the sound signal into the microphone 170C.
  • the electronic device 100 may be provided with at least one microphone 170C. In other embodiments, the electronic device 100 may be provided with two microphones 170C, which can implement a noise reduction function in addition to collecting sound signals. In other embodiments, the electronic device 100 may further be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions.
  • the earphone jack 170D is used to connect wired earphones.
  • the earphone interface 170D can be the USB interface 130, or can be a 3.5mm open mobile terminal platform (OMTP) standard interface, a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the pressure sensor 180A is used to sense pressure signals, and can convert the pressure signals into electrical signals.
  • the pressure sensor 180A may be provided on the display screen 194 .
  • the capacitive pressure sensor may be comprised of at least two parallel plates of conductive material. When a force is applied to the pressure sensor 180A, the capacitance between the electrodes changes.
  • the electronic device 100 determines the intensity of the pressure according to the change in capacitance. When a touch operation acts on the display screen 194, the electronic device 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the electronic device 100 may also calculate the touched position according to the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch position but with different touch operation intensities may correspond to different operation instructions. For example, when a touch operation whose intensity is less than the first pressure threshold acts on the short message application icon, the instruction for viewing the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold acts on the short message application icon, the instruction to create a new short message is executed.
  • the gyro sensor 180B may be used to determine the motion attitude of the electronic device 100 .
  • the angular velocity of electronic device 100 about three axes ie, x, y, and z axes
  • the gyro sensor 180B can be used for image stabilization.
  • the gyro sensor 180B detects the shaking angle of the electronic device 100, calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to offset the shaking of the electronic device 100 through reverse motion to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenarios.
  • the air pressure sensor 180C is used to measure air pressure.
  • the electronic device 100 calculates the altitude through the air pressure value measured by the air pressure sensor 180C to assist in positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the electronic device 100 can detect the opening and closing of the flip holster using the magnetic sensor 180D.
  • the electronic device 100 can detect the opening and closing of the flip according to the magnetic sensor 180D. Further, according to the detected opening and closing state of the leather case or the opening and closing state of the flip cover, characteristics such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the electronic device 100 in various directions (generally three axes).
  • the magnitude and direction of gravity can be detected when the electronic device 100 is stationary. It can also be used to identify the posture of electronic devices, and can be used in applications such as horizontal and vertical screen switching, pedometers, etc.
  • the electronic device 100 can measure the distance through infrared or laser. In some embodiments, when shooting a scene, the electronic device 100 can use the distance sensor 180F to measure the distance to achieve fast focusing.
  • Proximity light sensor 180G may include, for example, light emitting diodes (LEDs) and light detectors, such as photodiodes.
  • the light emitting diodes may be infrared light emitting diodes.
  • the electronic device 100 emits infrared light to the outside through the light emitting diode.
  • Electronic device 100 uses photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the electronic device 100 . When insufficient reflected light is detected, the electronic device 100 may determine that there is no object near the electronic device 100 .
  • the electronic device 100 can use the proximity light sensor 180G to detect that the user holds the electronic device 100 close to the ear to talk, so as to automatically turn off the screen to save power.
  • Proximity light sensor 180G can also be used in holster mode, pocket mode automatically unlocks and locks the screen.
  • the ambient light sensor 180L is used to sense ambient light brightness.
  • the electronic device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device 100 is in a pocket, so as to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the electronic device 100 can use the collected fingerprint characteristics to realize fingerprint unlocking, accessing application locks, taking pictures with fingerprints, answering incoming calls with fingerprints, and the like.
  • the temperature sensor 180J is used to detect the temperature.
  • the electronic device 100 uses the temperature detected by the temperature sensor 180J to execute a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold value, the electronic device 100 reduces the performance of the processor located near the temperature sensor 180J in order to reduce power consumption and implement thermal protection.
  • the electronic device 100 when the temperature is lower than another threshold, the electronic device 100 heats the battery 142 to avoid abnormal shutdown of the electronic device 100 caused by the low temperature.
  • the electronic device 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also called “touch device”.
  • the touch sensor 180K may be disposed on the display screen 194 , and the touch sensor 180K and the display screen 194 form a touch screen, also called a “touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to touch operations may be provided through display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the electronic device 100 , which is different from the location where the display screen 194 is located.
  • the bone conduction sensor 180M can acquire vibration signals.
  • the bone conduction sensor 180M can acquire the vibration signal of the vibrating bone mass of the human voice.
  • the bone conduction sensor 180M can also contact the pulse of the human body and receive the blood pressure beating signal.
  • the bone conduction sensor 180M can also be disposed in the earphone, combined with the bone conduction earphone.
  • the audio module 170 can analyze the voice signal based on the vibration signal of the vocal vibration bone block obtained by the bone conduction sensor 180M, so as to realize the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beat signal obtained by the bone conduction sensor 180M, and realize the function of heart rate detection.
  • the keys 190 include a power-on key, a volume key, and the like. Keys 190 may be mechanical keys. It can also be a touch key.
  • the electronic device 100 may receive key inputs and generate key signal inputs related to user settings and function control of the electronic device 100 .
  • Motor 191 can generate vibrating cues.
  • the motor 191 can be used for vibrating alerts for incoming calls, and can also be used for touch vibration feedback.
  • touch operations acting on different applications can correspond to different vibration feedback effects.
  • the motor 191 can also correspond to different vibration feedback effects for touch operations on different areas of the display screen 194 .
  • Different application scenarios for example: time reminder, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 can be an indicator light, which can be used to indicate the charging state, the change of the power, and can also be used to indicate a message, a missed call, a notification, and the like.
  • the SIM card interface 195 is used to connect a SIM card.
  • the SIM card can be contacted and separated from the electronic device 100 by inserting into the SIM card interface 195 or pulling out from the SIM card interface 195 .
  • the electronic device 100 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • the SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card and so on. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the plurality of cards may be the same or different.
  • the SIM card interface 195 can also be compatible with different types of SIM cards.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the electronic device 100 interacts with the network through the SIM card to implement functions such as call and data communication.
  • the electronic device 100 employs an eSIM, ie: an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 100 and cannot be separated from the electronic device 100 .
  • the UE can usually use the SSB with 120 kHz subcarrier spacing for initial cell selection or search, and the SSB with 120 kHz subcarrier spacing is sent by the base station to the UE within the carrier. Therefore, when the 480/960 kHz subcarrier-spaced SSB is also transmitted in the above-mentioned carrier, the 120 kHz subcarrier-spaced SSB and the 480/960 kHz subcarrier-spaced SSB coexist in this carrier.
  • the base station can simultaneously complete 120kHz subcarriers within a 5ms Transmission of spaced SSBs and transmission of 480/960 kHz subcarrier spaced SSBs. It can be understood that 1 millisecond (or referred to as one subframe) may include 8 time slots under the 120 kHz subcarrier interval, and therefore, 5 milliseconds may include 40 time slots under the 120 kHz subcarrier interval.
  • the SSB with 120kHz subcarrier spacing and the SSB with 480/960kHz subcarrier spacing can be aligned as far as possible in time, that is, try to send in the same time interval, so that the 120kHz subcarrier spacing can be
  • a gap (gap) between SSBs can be used for uplink transmission by the UE.
  • the 0/1/...th or the n/m/...th means that the index starts from 0, that is, when the * in the *th is a number or letter, it means that the index starts from 0.
  • the first/second/... means that the index starts from 1, that is, when the * in the *th is Chinese, it means that the index starts from 1.
  • FIG. 2 is a schematic diagram of the time domain position within 5 milliseconds of an SSB with a subcarrier spacing of 120 kHz. As shown in Figure 2, this 120 kHz subcarrier spacing SSB includes 40 time slots within 5 milliseconds.
  • the above-mentioned 40 time slots may be numbered, for example, the numbers may be 0-39.
  • the above 40 time slots can be divided into 4 groups, and each group contains 10 time slots. Exemplarily, the first group may contain timeslots numbered 0-9, the second group may contain timeslots numbered 10-19, the third group may contain timeslots numbered 20-29, and the fourth group may contain timeslots numbered 30 -39 timeslots.
  • the last two time slots of each group in the subframe of the above-mentioned 120 kHz subcarrier-spaced SSB do not include the 120-kHz subcarrier-spaced SSB.
  • it can be characterized by the following formula:
  • n 10*k+m; wherein, n is the number of the time slot in the subframe of the SSB with subcarrier spacing of 120 kHz, k is an integer greater than or equal to 0 and less than 4, and m is 8 or 9. That is, timeslots numbered 8 and 9 in the first group, 18 and 19 in the second group, 28 and 29 in the third group, and 38 and 39 in the fourth group do not contain 120kHz
  • the SSBs are spaced by subcarriers, so that the last two time slots in each of the above groups can be used as gaps, and the gaps can be used to transmit uplink data, thereby improving uplink transmission efficiency.
  • FIG. 3 is a schematic diagram of the time domain position of an SSB with a subcarrier spacing of 480 kHz within 5 milliseconds.
  • the 480 kHz subcarrier-spaced SSB includes 160 time slots within 5 milliseconds.
  • the above-mentioned 160 time slots may be numbered, for example, the number may be 0-159.
  • the above 160 time slots can be divided into 4 groups, and each group contains 40 time slots. Exemplarily, the first group may contain timeslots numbered 0-39, the second group may contain timeslots numbered 40-79, the third group may contain timeslots numbered 80-119, and the fourth group may contain timeslots numbered 120 -159 timeslots.
  • the last 8 time slots of each group in the above subframe may not include the SSB with the 480kHz subcarrier interval, so that the last 8 time slots of each group can be used It is used for sending uplink data, so that the efficiency of uplink transmission can be improved.
  • it can be characterized by the following formula:
  • n 40*k+m; wherein, n is the number of the time slot in the subframe, k is an integer greater than or equal to 0 and less than 4, and m is an integer of 32-39. That is, timeslots 32 and 39 in the first group, 72 and 79 in the second group, 112 and 119 in the third group, and 152 and 159 in the fourth group do not contain 480kHz sub-slots Carrier-spaced SSB.
  • FIG. 4 is a schematic diagram of the time domain position within 5 ms of SSB with 960 kHz subcarrier spacing.
  • the 5 ms of the SSB of the 960 kHz subcarrier spacing includes 320 time slots.
  • the above-mentioned 320 time slots may be numbered, for example, the numbers may be 0-319.
  • the above 320 time slots can be divided into 4 groups, and each group contains 80 time slots. Exemplarily, the first group may contain timeslots numbered 0-79, the second group may contain timeslots numbered 80-159, the third group may contain timeslots numbered 160-239, and the fourth group may contain timeslots numbered 240 -319 timeslots.
  • the last 16 time slots of each group in the above subframe may not include the SSB with the 960kHz subcarrier interval, so that the last 16 time slots of each group can be used for It is used for sending uplink data, so that the efficiency of uplink transmission can be improved.
  • it can be characterized by the following formula:
  • n 80*k+m; wherein, n is the number of the timeslot in the subframe, k is an integer greater than or equal to 0 and less than 4, and m is an integer of 64-79. That is, timeslots 64 and 79 in the first group, 144 and 159 in the second group, 224 and 239 in the third group, and 304 and 319 in the fourth group do not contain 480kHz sub-slots Carrier-spaced SSB.
  • time domain position of the time slot of the SSB with the 120 kHz subcarrier spacing can have various forms, when the SSB with the 120 kHz subcarrier spacing and the SSB with the 480/960 kHz subcarrier spacing coexist in the same carrier, there can be various forms.
  • Combination forms the following describes through different combination forms.
  • Figure 5a is a schematic time domain location diagram of one form of a time slot of an SSB with 120 kHz subcarrier spacing.
  • the above-mentioned time slot of the SSB with the subcarrier interval of 120 kHz includes 14 orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the above-mentioned 14 OFDM symbols can be arranged in sequence, respectively the first 4 OFDM symbols, the first 4 OFDM symbols can be non-SSB symbols; the middle 8 OFDM symbols, the middle 8 OFDM symbols can be SSB symbols; and The last 2 OFDM symbols may be non-SSB symbols.
  • the above-mentioned middle 8 SSB symbols may include 2 SSBs, that is, 4 SSB symbols may include 1 SSB.
  • one time slot of SSB with 120kHz subcarrier spacing can correspond to 4 time slots of SSB with 480kHz subcarrier spacing
  • one time slot of SSB with 120kHz subcarrier spacing can correspond to 8 time slots of SSB with 960kHz subcarrier spacing.
  • the four consecutive time slots 500 of the SSB with the 480 kHz subcarrier spacing may include time slot 501, time slot 502, time slot 503 and time slot 504 respectively, and the above four consecutive time slots 500 may include 56 OFDM symbol.
  • the above-mentioned 56 OFDM symbols can be arranged in sequence, respectively the first 16 non-SSB symbols, the middle 32 SSB symbols and the last 8 non-SSB symbols.
  • the above-mentioned middle 32 SSB symbols may include multiple SSBs.
  • the time slot 502 may include 2 SSBs
  • the time slot 503 may include 2 SSBs.
  • the above-mentioned middle 32 SSB symbols only exemplarily show a scenario of 4 SSBs, and do not constitute a limitation on the embodiments of the present application.
  • the above-mentioned middle 32 SSB symbols may include more of SSBs (eg, 5 SSBs).
  • the above 480 kHz subcarrier can be selected.
  • the OFDM symbols in the first 16 OFDM symbols in the 4 consecutive time slots 500 of the carrier-spaced SSB are used as gaps, so that the above-mentioned gaps can be used to transmit uplink data.
  • the first 14 OFDM symbols among the first 16 OFDM symbols in the 4 consecutive time slots 500 of the SSB with the subcarrier interval of 480 kHz can be selected as the gap, that is, the time slot 501 can be used as the gap, the SSBs with 480 kHz subcarrier spacing are not included in time slot 501 .
  • the last 8 OFDM symbols in the 4 consecutive time slots 500 of the SSB with 480 kHz subcarrier spacing and the last 2 OFDM symbols in the time slot of the SSB with 120 kHz subcarrier spacing are both non-SSB symbols, the above can be selected.
  • the last 8 OFDM symbols in the 4 consecutive time slots 500 of the SSB with the subcarrier spacing of 480 kHz are used as gaps, so that the above gaps can be used to transmit uplink data.
  • the last 8 OFDM symbols in the above-mentioned time slot 504 may be used as a gap, that is, the last 8 OFDM symbols in the above-mentioned time slot 504 do not include SSBs with a subcarrier spacing of 480 kHz.
  • the first 6 OFDM symbols in the above-mentioned time slot 504 may contain an SSB with a subcarrier spacing of 480 kHz, that is, the last 8 OFDM symbols of the time slot 504
  • the symbol can be used to transmit uplink data, and the first 6 OFDM symbols can be used to transmit SSB; the first 6 OFDM symbols in the above time slot 504 may also not include SSB with a 480kHz subcarrier interval, that is, the time slot 504 Only used to send upstream data. From this, a schematic diagram of the time domain position of the SSB with the 480 kHz subcarrier spacing as shown in Figure 5d can be obtained.
  • the SSB with the 480 kHz subcarrier spacing includes 160 time slots, that is, 40 groups of the above-mentioned 480 kHz subcarrier spacing SSB with 4 consecutive 4 time slots can be included within 5 ms.
  • the time slots that can be used for gap in the SSB with the above 480kHz subcarrier spacing can be characterized by the following formula:
  • the time slot that can be used for gap and can be used for SSB in the SSB with the above-mentioned 480kHz subcarrier interval can be characterized by the following formula:
  • the last 8 OFDM symbols in the Lth time slot do not contain SSB with 480kHz subcarrier spacing; that is, , the first 6 OFDM symbols in the Lth time slot have the first SSB with 480 kHz subcarrier spacing, and the last 8 OFDM symbols do not have the second 480 kHz subcarrier spacing SSB.
  • first SSB refers to the first SSB in the time slot
  • second SSB refers to the last SSB in the time slot.
  • the 8 consecutive time slots 510 of the SSB with the 960 kHz subcarrier spacing may respectively include time slot 511 , time slot 512 , time slot 513 , time slot 514 , time slot 515 , time slot 516 , and time slot 517
  • the above-mentioned 8 consecutive time slots 510 may include 112 OFDM symbols.
  • the above 112 OFDM symbols can be arranged in order, respectively the first 32 non-SSB symbols, the middle 64 SSB symbols, and the last 16 non-SSB symbols.
  • the above-mentioned middle 64 SSB symbols may include multiple SSBs.
  • time slot 513 may include 2 SSBs
  • time slot 514 may include 2 SSBs
  • time slot 515 may include 2 SSBs
  • time slot 516 may include 2 SSBs SSB
  • slot 517 may contain 2 SSBs.
  • the above 960 kHz subcarrier can be selected.
  • the OFDM symbols in the first 32 OFDM symbols in the 8 consecutive time slots 510 of the carrier-spaced SSB are used as gaps, so that the above-mentioned gaps can be used to transmit uplink data.
  • the first 28 OFDM symbols in the first 32 OFDM symbols in the 8 consecutive time slots 510 of the SSB with the subcarrier interval of 960 kHz can be selected as 2 gaps, that is to say, the time slot 511 and the time slot 511 and the time slot 511 can be selected.
  • the slot 512 is used as a gap, and the slot 511 and the slot 512 do not include SSBs with 960 kHz subcarrier spacing.
  • the above can be selected
  • the OFDM symbols in the last 16 OFDM symbols in the 8 consecutive time slots 510 of the SSB with the subcarrier interval of 960 kHz are used as gaps, so that the above-mentioned gaps can be used to transmit uplink data.
  • the 14 OFDM symbols in the above-mentioned time slot 518 may be used as a gap, that is, the 14 OFDM symbols in the above-mentioned time slot 518 do not include SSBs with a subcarrier spacing of 960 kHz.
  • the SSB with the 960 kHz subcarrier interval includes 320 time slots, that is to say, 40 groups of 8 consecutive time slots of the SSB with the 960 kHz subcarrier interval can be included within 5 milliseconds.
  • the time slots that can be used for gap in the SSB with the above 960kHz subcarrier spacing can be characterized by the following formula:
  • FIG. 6a is a schematic diagram of another form of time domain location of a time slot of an SSB with 120 kHz subcarrier spacing. As shown in Fig. 6a, the above-mentioned time slot of the SSB with subcarrier spacing of 120 kHz includes 14 OFDM symbols.
  • the above 14 OFDM symbols can be arranged in sequence, respectively the first 2 OFDM symbols, the first 2 OFDM symbols can be non-SSB symbols; the next 4 consecutive OFDM symbols, the 4 consecutive OFDM symbols can be SSB symbol; then the next 2 OFDM symbols, the 2 OFDM symbols can be non-SSB symbols; then the next 4 consecutive OFDM symbols, the 4 consecutive OFDM symbols can be SSB symbols; the last 2 OFDM symbols, the The 2 OFDM symbols may be non-SSB symbols.
  • the foregoing first group of 4 consecutive SSB symbols may include 1 SSB
  • the foregoing second group of 4 consecutive SSB symbols may include 1 SSB.
  • one time slot of SSB with 120kHz subcarrier spacing can correspond to 4 time slots of SSB with 480kHz subcarrier spacing
  • one time slot of SSB with 120kHz subcarrier spacing can correspond to 8 time slots of SSB with 960kHz subcarrier spacing.
  • the four consecutive time slots 600 of the SSB with the 480 kHz subcarrier spacing may include time slot 601 , time slot 602 , time slot 603 and time slot 604 respectively, and the above four consecutive time slots 600 may include 56 OFDM symbol.
  • the above 56 OFDM symbols can be arranged in sequence, namely the first 8 non-SSB symbols, the first 16 SSB symbols, the middle 8 non-SSB symbols, the last 16 SSB coincidence symbols and the last 8 non-SSB symbols.
  • the first 16 SSB symbols may include multiple SSBs, and the last 16 SSB symbols may include multiple SSBs.
  • time slot 602 may include 2 SSBs
  • time slot 603 may include 2 SSBs.
  • first 16 SSB symbols and the above-mentioned last 16 SSB symbols only exemplarily show 4 SSB scenarios, and do not constitute a limitation on the embodiments of the present application.
  • the above-mentioned first 16 SSB symbols are used.
  • SSB symbols and the last 16 SSB symbols described above may contain more SSBs (eg, 6 SSBs).
  • the above 480 kHz subcarrier can be selected.
  • the first 8 OFDM symbols in the 4 consecutive time slots 600 of the carrier-spaced SSB are used as gaps, so that the above-mentioned gaps can be used to transmit uplink data.
  • the first 8 OFDM symbols in the time slot 601 may be used as a gap, and the time slot 601 does not contain SSBs with a subcarrier interval of 480 kHz.
  • the last 8 OFDM symbols in the 4 consecutive time slots 600 of the SSB with 480 kHz subcarrier spacing and the last 2 OFDM symbols in the time slot of the SSB with 120 kHz subcarrier spacing are both non-SSB symbols, the above can be selected.
  • the last 8 OFDM symbols in the 4 consecutive time slots 600 of the SSB with the 480 kHz subcarrier spacing are used as gaps, so that the above gaps can be used to transmit uplink data.
  • the last 8 OFDM symbols in the above-mentioned time slot 604 may be used as a gap, that is, the last 8 OFDM symbols in the above-mentioned time slot 604 do not include SSBs with a subcarrier spacing of 480 kHz.
  • the last 6 OFDM symbols in the above time slot 601 may contain an SSB with a subcarrier spacing of 480 kHz, that is, the first 8 OFDM symbols of the time slot 601 The symbol can be used to transmit uplink data, and the last 6 OFDM symbols can be used to transmit SSB.
  • the last 6 OFDM symbols in the above time slot 604 can also contain an SSB with a subcarrier spacing of 480 kHz, that is, the first 8 OFDM symbols of the time slot 604 The symbol can be used to transmit uplink data, and the last 6 OFDM symbols can be used to transmit SSB. From this, a schematic diagram of the time domain position of the SSB with the 480 kHz subcarrier spacing as shown in FIG. 6d can be obtained.
  • the SSB with the 480 kHz subcarrier spacing includes 160 time slots, that is, 40 groups of the above-mentioned 480 kHz subcarrier spacing SSB with 4 consecutive 4 time slots can be included within 5 ms.
  • the time slots that can be used for gap in the SSB with the above 480kHz subcarrier spacing can be characterized by the following formula:
  • the time slot that can be used for gap and can be used for SSB in the SSB with the above-mentioned 480kHz subcarrier interval can be characterized by the following formula:
  • the OFDM symbol contains SSBs with 480kHz subcarrier spacing, and the first 8 OFDM symbols do not contain SSBs with 480kHz subcarrier spacing; that is, the first 8 OFDM symbols in the Lth slot do not have the first 480kHz subcarrier. Spaced SSB, the first 480kHz subcarrier spaced SSB exists in the last 6 OFDM symbols.
  • the 8 consecutive time slots 610 of the SSB with the 960 kHz subcarrier spacing may respectively include time slot 611, time slot 612, time slot 613, time slot 614, time slot 615, time slot 616, and time slot 617.
  • the above-mentioned 8 consecutive time slots 610 may include 112 OFDM symbols.
  • the above 112 OFDM symbols can be arranged in order, namely the first 16 non-SSB symbols, the first 32 SSB symbols, the middle 16 non-SSB symbols, the last 32 SSB symbols and the last 16 non-SSB symbols.
  • the first 32 SSB symbols and the last 32 SSB symbols may include multiple SSBs.
  • the time slot 612 may include 2 SSBs
  • the time slot 613 may include 2 SSBs
  • the time slot 616 may include 2 SSBs.
  • Slot 617 may contain 2 SSBs.
  • the above-mentioned first 32 SSB symbols and the above-mentioned last 32 SSB symbols only exemplarily show a scenario of 8 SSBs, and do not constitute a limitation on the embodiments of the present application.
  • the above-mentioned first 32 SSB symbols are The number of SSB symbols and the last 32 SSB symbols described above may contain more SSBs (eg, 10 SSBs).
  • the above 960 kHz subcarrier can be selected.
  • the OFDM symbols in the first 16 OFDM symbols in the consecutive 8 time slots 610 of the carrier-spaced SSB are used as gaps, so that the above-mentioned gaps can be used to transmit uplink data.
  • the time slot 611 can be used as a gap, and the time slot 611 does not contain SSBs with a subcarrier interval of 960 kHz.
  • the middle 16 OFDM symbols in the 8 consecutive time slots 610 of the SSB with 960 kHz subcarrier spacing and the middle 2 OFDM symbols in the time slot of the SSB with 120 kHz subcarrier spacing are both non-SSB symbols, the above-mentioned 16 OFDM symbols can be selected.
  • the OFDM symbols in the middle 16 OFDM symbols in the 8 consecutive time slots 610 of the SSB with the subcarrier interval of 960 kHz are used as gaps, so that the above-mentioned gaps can be used for transmitting uplink data.
  • the middle 16 OFDM symbols in the 8 consecutive time slots 610 of the above-mentioned 960 kHz subcarrier-spaced SSB are distributed in two time slots, for example, the time slot 614 and the time slot 615, the above can be The last 8 OFDM symbols in time slot 614 are used as a gap, and the first 8 OFDM symbols in time slot 615 are used as a gap; wherein time slot 614 and slot 615 do not contain SSB with 960 kHz subcarrier spacing.
  • the first 6 OFDM symbols in the above-mentioned time slot 614 may include an SSB with a subcarrier interval of 480 kHz, that is, the last 8 OFDM symbols of the time slot 614
  • the symbol can be used to transmit uplink data, and the first 6 OFDM symbols can be used to transmit SSB.
  • the first 8 OFDM symbols of the time slot 615 can be used to transmit uplink data, and the last 6 OFDM symbols can be used to transmit SSB. From this, a schematic diagram of the time domain position of the SSB with the subcarrier spacing of 960 kHz as shown in FIG. 6e can be obtained.
  • the above can be selected
  • the OFDM symbols in the last 16 OFDM symbols in the 8 consecutive time slots 610 of the SSB with the subcarrier interval of 960 kHz are used as gaps, so that the above-mentioned gaps can be used for transmitting uplink data.
  • the 14 OFDM symbols in the above-mentioned time slot 618 may be used as a gap, that is, the 14 OFDM symbols in the above-mentioned time slot 618 do not include SSBs with a subcarrier spacing of 960 kHz.
  • the SSB with the 960 kHz subcarrier interval includes 320 time slots, that is to say, 40 groups of 8 consecutive time slots of the SSB with the 960 kHz subcarrier interval can be included within 5 milliseconds.
  • the time slots that can be used for gap in the SSB with the above 960kHz subcarrier spacing can be characterized by the following formula:
  • the time slot that can be used for gap and can be used for SSB in the SSB with the above-mentioned 480kHz subcarrier interval can also be characterized by the following formula:
  • the OFDM symbol contains SSBs with 480kHz subcarrier spacing, and the last 8 OFDM symbols do not contain SSBs with 480kHz subcarrier spacing; that is, the first 6 OFDM symbols in the Lth time slot have the first 480kHz subcarrier spacing
  • the SSB of the second 480kHz subcarrier interval does not exist in the last 8 OFDM symbols.
  • FIG. 7a is a schematic diagram of another form of time domain location of a time slot of an SSB with 120 kHz subcarrier spacing. As shown in Fig. 7a, the above-mentioned time slot of the SSB with subcarrier spacing of 120 kHz includes 14 OFDM symbols.
  • the above 14 OFDM symbols can be arranged in sequence, respectively the first 2 OFDM symbols, the first 2 OFDM symbols can be non-SSB symbols; the next 4 consecutive OFDM symbols, the 4 consecutive OFDM symbols can be SSB symbol; the next 3 OFDM symbols, the 3 OFDM symbols can be non-SSB symbols; the next 4 consecutive OFDM symbols, the 4 consecutive OFDM symbols can be SSB symbols; the last OFDM symbol, the 1 OFDM symbol may be a non-SSB symbol.
  • the foregoing first group of 4 consecutive SSB symbols may include 1 SSB
  • the foregoing second group of 4 consecutive SSB symbols may include 1 SSB.
  • one time slot of SSB with 120kHz subcarrier spacing can correspond to 4 time slots of SSB with 480kHz subcarrier spacing
  • one time slot of SSB with 120kHz subcarrier spacing can correspond to 8 time slots of SSB with 960kHz subcarrier spacing.
  • the four consecutive time slots 700 of the SSB with the 480 kHz subcarrier spacing may respectively include time slot 701, time slot 702, time slot 703 and time slot 704, and the above four consecutive time slots 700 may include 56 OFDM symbol.
  • the above 56 OFDM symbols can be arranged in order, namely the first 8 non-SSB symbols, the first 16 SSB symbols, the middle 12 non-SSB symbols, the last 16 SSB coincidence symbols and the last 4 non-SSB symbols.
  • the first 16 SSB symbols and the last 16 SSB symbols may include multiple SSBs.
  • the time slot 702 may include one SSB
  • the time slot 703 may include one SSB.
  • the above-mentioned first 16 SSB symbols and the above-mentioned last 16 SSB symbols only exemplarily show a scenario of 2 SSBs, and do not constitute a limitation on the embodiments of the present application.
  • the above-mentioned first 16 SSB symbols are The number of SSB symbols and the last 16 SSB symbols described above may contain more SSBs (eg, 4 SSBs).
  • the above 480 kHz subcarrier can be selected.
  • the first 8 OFDM symbols in the 4 consecutive time slots 700 of the SSB of the carrier interval are used as a gap, so that the above-mentioned gap can be used for transmitting uplink data.
  • the first 8 OFDM symbols in the time slot 701 may be used as a gap, and the time slot 701 does not contain SSBs with a subcarrier interval of 480 kHz.
  • the middle 12 OFDM symbols in the 4 consecutive time slots 700 of the SSB with 480 kHz subcarrier spacing and the middle 3 OFDM symbols in the time slot of the SSB with 120 kHz subcarrier spacing are all non-SSB symbols.
  • the OFDM symbols in the middle 12 OFDM symbols in the 4 consecutive time slots 700 of the SSB with the subcarrier interval of 480 kHz are used as gaps, so that the above-mentioned gaps can be used for transmitting uplink data.
  • the first 8 OFDM symbols in the above-mentioned time slot 703 may be used as a gap, that is, the above-mentioned time slot 703 does not include SSB with a subcarrier interval of 480 kHz.
  • the last 6 OFDM symbols in the above-mentioned time slot 701 may include an SSB with a subcarrier interval of 480 kHz, that is, the first 8 OFDM symbols of the time slot 701 The symbol can be used to transmit uplink data, and the last 6 OFDM symbols can be used to transmit SSB.
  • the last 6 OFDM symbols in the above-mentioned time slot 703 may contain an SSB with a subcarrier spacing of 480 kHz, that is, the first 8 OFDM symbols of the time slot 703 It can be used to send uplink data, and the last 6 OFDM symbols can be used to send SSB. From this, a schematic diagram of the time domain position of the SSB with the 480kHz subcarrier spacing as shown in Figure 7d can be obtained.
  • the SSB with the 480 kHz subcarrier spacing includes 160 time slots, that is, 40 groups of the above-mentioned 480 kHz subcarrier spacing SSB with 4 consecutive 4 time slots can be included within 5 ms.
  • the time slots that can be used for gap in the SSB with the above 480kHz subcarrier spacing can be characterized by the following formula:
  • the time slot that can be used for gap and can be used for SSB in the SSB with the above-mentioned 480kHz subcarrier interval can be characterized by the following formula:
  • the OFDM symbol contains SSBs with 480kHz subcarrier spacing, and the first 8 OFDM symbols do not contain SSBs with 480kHz subcarrier spacing; that is, the first 8 OFDM symbols in the Lth slot do not have the first 480kHz subcarrier. Spaced SSB, the first 480kHz subcarrier spaced SSB exists in the last 6 OFDM symbols.
  • the 8 consecutive time slots 710 of the SSB with the 960 kHz subcarrier spacing may respectively include time slot 711 , time slot 712 , time slot 713 , time slot 714 , time slot 715 , time slot 716 , and time slot 717
  • the above-mentioned 8 consecutive time slots 710 may include 112 OFDM symbols.
  • the above 112 OFDM symbols can be arranged in sequence, respectively the first 16 non-SSB symbols, the first 32 SSB symbols, the middle 24 non-SSB symbols, the last 32 SSB symbols and the last 8 non-SSB symbols.
  • the first 32 SSB symbols and the last 32 SSB symbols may include multiple SSBs.
  • time slot 712 may include 2 SSBs
  • time slot 713 may include 2 SSBs
  • time slot 716 may include 2 SSBs
  • time slot 716 may include 2 SSBs.
  • Slot 717 may contain 2 SSBs.
  • the above-mentioned first 32 SSB symbols and the above-mentioned last 32 SSB symbols only exemplarily show a scenario of 8 SSBs, and do not constitute a limitation on the embodiments of the present application.
  • the above-mentioned first 32 SSB symbols are The number of SSB symbols and the last 32 SSB symbols described above may contain more SSBs (eg, 10 SSBs).
  • the above 960 kHz subcarrier can be selected.
  • the OFDM symbols in the first 16 OFDM symbols in the 8 consecutive time slots 710 of the carrier-spaced SSB are used as gaps, so that the above-mentioned gaps can be used to transmit uplink data.
  • the time slot 711 can be used as a gap, and the time slot 711 does not contain SSBs with a subcarrier spacing of 960 kHz.
  • the middle 24 OFDM symbols in the 8 consecutive time slots 710 of the SSB with the 960 kHz subcarrier spacing and the middle 3 OFDM symbols in the time slot of the SSB with the 120 kHz subcarrier spacing are all non-SSB symbols, the above can be selected.
  • the OFDM symbols in the middle 24 OFDM symbols in the 8 consecutive time slots 710 of the SSB with the subcarrier interval of 960 kHz are used as gaps, so that the above gaps can be used for transmitting uplink data.
  • time slot 714 and the time slot 715 can be The last 8 OFDM symbols in time slot 714 are used as a gap, and time slot 715 is used as a gap; wherein time slot 714 and time slot 715 do not contain SSB with 960 kHz subcarrier spacing.
  • the last 8 OFDM symbols in the 8 consecutive time slots 710 of the SSB with 960 kHz subcarrier spacing and the last 1 OFDM symbol in the time slot of the SSB with 120 kHz subcarrier spacing are both non-SSB symbols, the above can be selected
  • the last 8 OFDM symbols in the 8 consecutive time slots 710 of the SSB with the 960 kHz subcarrier spacing are used as gaps, so that the above gaps can be used to transmit uplink data.
  • the last 8 OFDM symbols in the above-mentioned time slot 718 may be used as a gap, that is, the above-mentioned time slot 718 does not include SSB with a subcarrier interval of 960 kHz.
  • the first 6 OFDM symbols in the above-mentioned time slot 714 may include an SSB with a subcarrier interval of 480 kHz, that is, the last 8 OFDM symbols of the time slot 714 The symbol can be used to transmit uplink data, and the first 6 OFDM symbols can be used to transmit SSB.
  • the first 6 OFDM symbols in the above-mentioned time slot 718 may contain an SSB with a subcarrier spacing of 480 kHz, that is, the last 8 OFDM symbols of the time slot 718 It can be used to send uplink data, and the first 6 OFDM symbols can be used to send SSB. From this, a schematic diagram of the time domain position of the SSB with the subcarrier spacing of 960 kHz as shown in FIG. 7e can be obtained.
  • the SSB with the 960 kHz subcarrier interval includes 320 time slots, that is to say, 40 groups of 8 consecutive time slots of the SSB with the 960 kHz subcarrier interval can be included within 5 milliseconds.
  • the time slots that can be used for gap in the SSB with the above 960kHz subcarrier spacing can be characterized by the following formula:
  • the time slot that can be used for gap and can be used for SSB in the SSB with the above-mentioned 480kHz subcarrier interval can be characterized by the following formula:
  • the OFDM symbol contains SSBs with 480kHz subcarrier spacing, and the last 8 OFDM symbols do not contain SSBs with 480kHz subcarrier spacing; that is, the first 6 OFDM symbols in the Lth time slot have the first 480kHz subcarrier spacing
  • the SSB of the second 480kHz subcarrier interval does not exist in the last 8 OFDM symbols.
  • FIG. 8 is a schematic structural diagram of a chip provided by an embodiment of the present application. As shown in FIG. 8 , the above-mentioned chip 800 may include: a determination module 810; wherein,
  • the determining module 810 is configured to determine that the time slot does not contain SSB or only contains one SSB.
  • the above determining module 810 is further configured to determine that only the first SSB is included in the Lth time slot.
  • the above determining module 810 is further configured to include only one SSB in the L th time slot, including: the L th time slot includes only the second SSB.
  • the above determining module 810 is further configured to include only one SSB in the L th time slot, including: the L th time slot includes only the second SSB.
  • the SSB is an SSB with a subcarrier spacing of 480 kHz.
  • the above determining module 810 is further configured to determine that only the first SSB is included in the Lth time slot.
  • the foregoing determining module 810 is further configured to determine that only the second SSB is included in the Lth time slot.
  • the above determining module 810 is further configured to determine that only the first SSB is included in the Lth time slot.
  • the SSB is an SSB with a subcarrier spacing of 960 kHz
  • each module of the chip 800 shown in FIG. 8 above is only a division of logical functions, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some modules can also be implemented in the form of software calling through processing elements, and some modules can be implemented in hardware.
  • all or part of these modules can be integrated together, and can also be implemented independently.
  • each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more specific integrated circuits (Application Specific Integrated Circuit; hereinafter referred to as: ASIC), or, one or more microprocessors Digital Singnal Processor (hereinafter referred to as: DSP), or, one or more Field Programmable Gate Array (Field Programmable Gate Array; hereinafter referred to as: FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Singnal Processor
  • FPGA Field Programmable Gate Array
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (System-On-a-Chip; hereinafter referred to as: SOC).
  • the involved processors may include, for example, a CPU, a DSP, a microcontroller or a digital signal processor, and may also include a GPU, an embedded neural-network process unit (Neural-network Process Units; hereinafter referred to as: NPU) and Image signal processor (Image Signal Processing; hereinafter referred to as: ISP), the processor may also include necessary hardware accelerators or logic processing hardware circuits, such as ASIC, or one or more integrated circuits for controlling the execution of the program of the technical solution of the present application circuit, etc. Furthermore, the processor may have the function of operating one or more software programs, which may be stored in a storage medium.
  • Embodiments of this specification provide a non-transitory computer-readable storage medium, where the non-transitory computer-readable storage medium stores computer instructions, and when the computer instructions are executed on a computer, the computer instructions cause the computer to execute The methods provided by the embodiments shown in FIGS. 1 to 7 of this specification.
  • the above-described non-transitory computer-readable storage media may employ any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • a computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or a combination of any of the above.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer readable medium may be transmitted using any suitable medium including, but not limited to, wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out the operations of this specification may be written in one or more programming languages, including object-oriented programming languages—such as Java, Smalltalk, C++, but also conventional Procedural programming language - such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or Wide Area Network (WAN), or it can Connect to an external computer (eg via the Internet using an Internet Service Provider).
  • LAN Local Area Network
  • WAN Wide Area Network
  • Internet Service Provider e.g via the Internet using an Internet Service Provider
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined. Either it can be integrated into another system, or some features can be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of this specification may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the above-mentioned integrated units implemented in the form of software functional units can be stored in a computer-readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium, and includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (Processor) to execute the methods described in the various embodiments of this specification. some steps.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (Read-Only Memory; hereinafter referred to as: ROM), Random Access Memory (Random Access Memory; hereinafter referred to as: RAM), magnetic disk or optical disk and other various A medium on which program code can be stored.

Abstract

本申请实施例提供一种同步信号块SSB确定方法及相关设备,涉及通信技术领域,该方法包括:确定时隙中不包含SSB或仅包含一个SSB。本申请实施例提供的方法,能够在480/960kHz子载波间隔的SSB中确定时域位置,由此可以提高上行发送的效率。

Description

同步信号块SSB确定方法及相关设备
本申请要求于2021年04月06日提交中国专利局、申请号为202110368442.1、申请名称为“同步信号块SSB确定方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种同步信号块SSB确定方法及相关设备。
背景技术
随着移动通信的快速发展,第五代移动通信技术(New Radio,NR,俗称“5G”)已经逐步取代第四代移动通信技术(Long Term Evolution,LTE,俗称“4G”)。5G可以比4G提供更快的速率,更高的带宽。
在目前的5G的标准协议中,5G中将小区主辅同步信号(Synchronization Signal,SS)与物理广播信道(Physical Broadcast Channel,PBCH)进行了某种程度上的耦合,以SS/PBCH资源块的形式出现,简称为SSB。在高频段非授权频谱中,一般需要支持120kHz子载波间隔的SSB,以降低终端初始接入的复杂度。在高频段非授权频谱中,数据信道一般采用480/960kHz子载波间隔,如果SSB与数据信道使用相同的子载波间隔,则可以简化网络/终端操作,因此SSB采用480/960kHz子载波间隔可以简化网络/终端操作。另外,当采用120kHz子载波间隔的SSB进行时间同步时,由于采样率较低,定时分辨率(resolution)较差,这样会导致当数据信道采用480/960kHz子载波间隔时,定时偏差甚至会超过数据信道OFDM符号的循环前缀(CP)长度,带来接收性能的下降,可以理解的是,当子载波间隔较大时,CP长度较短,因此SSB采用480/960kHz子载波间隔可以避免接收性能的下降。目前,480/960kHz子载波间隔的SSB的时域位置是待定的问题。
发明内容
本申请实施例提供了一种同步信号块SSB确定方法及相关设备,以提供一种终端侧确定时隙中包含SSB的方式。
第一方面,本申请实施例提供了一种同步信号块SSB确定方法,包括:
确定时隙中不包含SSB或仅包含一个SSB。
其中一种可能的实现方式中,确定第n个时隙内不包含SSB;其中,n=40*k+m,k为小于4且大于等于0的整数,m为大于等于32且小于等于39的整数。
其中一种可能的实现方式中,确定第n个时隙内不包含SSB;其中,n=4*p+q;其中,p为小于40且大于等于0的整数,q为0和/或3。
其中一种可能的实现方式中,确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为3。
其中一种可能的实现方式中,所述第L个时隙内仅包含一个SSB包括:所述第L个时隙内仅包含第一个SSB。
其中一种可能的实现方式中,确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为0。
其中一种可能的实现方式中,所述第L个时隙内仅包含一个SSB包括:所述第L个时隙内仅包含第二个SSB。
其中一种可能的实现方式中,确定第n个时隙内不包含SSB;其中,n=4*p+q;其中,p为小于40且大于等于0的整数,q为0和/或2。
其中一种可能的实现方式中,确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为0和/或2。
其中一种可能的实现方式中,所述第L个时隙内仅包含一个SSB包括:所述第L个时隙内仅包含第二个SSB。
其中一种可能的实现方式中,所述SSB为子载波间隔为480kHz的SSB。
其中一种可能的实现方式中,确定第n个时隙内不包含SSB;其中,n=80*k+m,k为小于4且大于等于0的整数,m为大于等于64且小于等于79的整数。
其中一种可能的实现方式中,确定第n个时隙内不包含SSB;其中,n=8*p+q;其中,p为小于40且大于等于0的整数,q为0、1和/或7。
其中一种可能的实现方式中,确定第n个时隙内不包含SSB;其中,n=8*p+q;其中,p为小于40且大于等于0的整数,q为0、3、4和/或7。
其中一种可能的实现方式中,确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为3。
其中一种可能的实现方式中,所述第L个时隙内仅包含一个SSB包括:所述第L个时隙内仅包含第一个SSB。
其中一种可能的实现方式中,确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为4。
其中一种可能的实现方式中,所述第L个时隙内仅包含一个SSB包括:所述第L个时隙内仅包含第二个SSB。
其中一种可能的实现方式中,确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为3和/或7。
其中一种可能的实现方式中,所述第L个时隙内仅包含一个SSB包括:所述第L个时隙内仅包含第一个SSB。
其中一种可能的实现方式中,其特征在于,所述SSB为子载波间隔为960kHz的SSB。
第二方面,本申请实施例提供一种芯片,包括:
确定模块,用于确定时隙中不包含SSB或仅包含一个SSB。
其中一种可能的实现方式中,上述确定模块还用于确定第n个时隙内不包含SSB;其中,n=40*k+m,k为小于4且大于等于0的整数,m为大于等于32且小于等于39的整数。
其中一种可能的实现方式中,上述确定模块还用于确定第n个时隙内不包含SSB; 其中,n=4*p+q;其中,p为小于40且大于等于0的整数,q为0和/或3。
其中一种可能的实现方式中,上述确定模块还用于确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为3。
其中一种可能的实现方式中,上述确定模块还用于确定所述第L个时隙内仅包含第一个SSB。
其中一种可能的实现方式中,上述确定模块还用于确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为0。
其中一种可能的实现方式中,上述确定模块还用于所述第L个时隙内仅包含一个SSB包括:所述第L个时隙内仅包含第二个SSB。
其中一种可能的实现方式中,上述确定模块还用于确定第n个时隙内不包含SSB;其中,n=4*p+q;其中,p为小于40且大于等于0的整数,q为0和/或2。
其中一种可能的实现方式中,上述确定模块还用于确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为0和/或2。
其中一种可能的实现方式中,上述确定模块还用于所述第L个时隙内仅包含一个SSB包括:所述第L个时隙内仅包含第二个SSB。
其中一种可能的实现方式中,所述SSB为子载波间隔为480kHz的SSB。
其中一种可能的实现方式中,上述确定模块还用于确定第n个时隙内不包含SSB;其中,n=80*k+m,k为小于4且大于等于0的整数,m为大于等于64且小于等于79的整数。
其中一种可能的实现方式中,上述确定模块还用于确定第n个时隙内不包含SSB;其中,n=8*p+q;其中,p为小于40且大于等于0的整数,q为0、1和/或7。
其中一种可能的实现方式中,上述确定模块还用于确定第n个时隙内不包含SSB;其中,n=8*p+q;其中,p为小于40且大于等于0的整数,q为0、3、4和/或7。
其中一种可能的实现方式中,上述确定模块还用于确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为3。
其中一种可能的实现方式中,上述确定模块还用于确定所述第L个时隙内仅包含第一个SSB。
其中一种可能的实现方式中,上述确定模块还用于确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为4。
其中一种可能的实现方式中,上述确定模块还用于确定所述第L个时隙内仅包含第二个SSB。
其中一种可能的实现方式中,上述确定模块还用于确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为3和/或7。
其中一种可能的实现方式中,上述确定模块还用于确定所述第L个时隙内仅包含第一个SSB。
其中一种可能的实现方式中,所述SSB为子载波间隔为960kHz的SSB。
第三方面,本申请实施例提供一种电子设备,包括:
存储器,上述存储器用于存储计算机程序代码,上述计算机程序代码包括指令,当上述电子设备从上述存储器中读取上述指令,以使得上述电子设备执行如第一方面 所述的方法。
第四方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行如第一方面所述的方法。
第五方面,本申请实施例提供一种计算机程序,当上述计算机程序被计算机执行时,用于执行第一方面所述的方法。
在一种可能的设计中,第五方面中的程序可以全部或者部分存储在与处理器封装在一起的存储介质上,也可以部分或者全部存储在不与处理器封装在一起的存储器上
附图说明
图1为本申请实施例提供的电子设备的结构示意图;
图2为本申请实施例提供的120kHz子载波间隔SSB的时隙示意图;
图3为本申请实施例提供的480kHz子载波间隔SSB的时隙示意图;
图4为本申请实施例提供的960kHz子载波间隔SSB的时隙示意图;
图5a-图5d为本申请实施例提供的120kHz子载波间隔SSB与480/960kHz子载波间隔SSB混合发送的一个实施例的时域位置示意图;
图6a-图6e为本申请实施例提供的120kHz子载波间隔SSB与480/960kHz子载波间隔SSB混合发送的另一个实施例的时域位置示意图;
图7a-图7e为本申请实施例提供的120kHz子载波间隔SSB与480/960kHz子载波间隔SSB混合发送的再一个实施例的时域位置示意图;
图8为本申请实施例提供的芯片的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在目前的5G的标准协议中,5G中将小区主辅同步信号(Synchronization Signal,SS)与物理广播信道(Physical Broadcast Channel,PBCH)进行了某种程度上的耦合,以SS/PBCH资源块的形式出现,简称为SSB。在高频段非授权频谱中,一般需要支持120kHz子载波间隔的SSB,以降低终端初始接入的复杂度。在高频段非授权频谱中,数据信道一般采用480/960kHz子载波间隔,如果SSB与数据信道使用相同的子载波间隔,则可以简化网络/终端操作,因此SSB采用480/960kHz子载波间隔可以简化网络/终端操作。另外,当采用120kHz子载波间隔的SSB进行时间同步时,由于采样率较低,定时分辨率(resolution)较差,这样会导致当数据信道采用480/960kHz子载波间隔时,定时偏差甚至会超过数据信道OFDM符号的循环前缀(CP)长度,带来接收 性能的下降,可以理解的是,当子载波间隔较大时,CP长度较短,因此SSB采用480/960kHz子载波间隔可以避免接收性能的下降。
因此,可以考虑采用480/960kHz子载波间隔的SSB,例如,当数据信道采用480kHz子载波间隔时,SSB也采用480kHz子载波间隔;当数据信道采用960kHz子载波间隔时,SSB也采用960kHz子载波间隔。可以理解的是,480/960kHz子载波间隔的SSB是新的类型的SSB。然而,对于480/960kHz子载波间隔的SSB,如何确定SSB的时域位置协议中未进行具体规范,由此会导致终端侧无法发送SSB,进而会导致终端侧和网络侧通信失败。
基于上述问题,本申请实施例提出了一种SSB发送方法。上述方法可以应用于用户设备(User Equipment,UE)。
UE也可以称为终端设备、移动终端、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。UE可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、车联网终端、电脑、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡、电视机顶盒(set top box,STB)、用户驻地设备(customer premise equipment,CPE)和/或用于在无线系统上进行通信的其它设备以及下一代通信系统,例如,5G网络中的移动终端或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的移动终端等。该UE还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,如智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
图1示例性的示出了电子设备100的结构示意图。该电子设备100可以是上述UE。
电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本申请实施例示意的结构并不构成对电子设备100的具体限定。 在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现电子设备100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线 通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现电子设备100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现电子设备100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电 磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic  light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等模式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码模式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在内部存储器121的指令,和/或存储在设置于处理 器中的存储器的指令,执行电子设备100的各种功能应用以及数据处理。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测所述触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测电子设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,电子设备100通过气压传感器 180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当电子设备100是翻盖机时,电子设备100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。当检测到不充分的反射光时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器180G检测用户手持电子设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备100对电池142加热,以避免低温导致电子设备100异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控器件”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收 血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备100中,不能和电子设备100分离。
由于,UE通常可以使用120kHz子载波间隔的SSB进行初始小区选择或搜索,而120kHz子载波间隔的SSB在载波内是由基站发送给UE。因此,当480/960kHz子载波间隔的SSB也在上述载波内被发送时,120kHz子载波间隔的SSB与480/960kHz子载波间隔的SSB共存在该载波内。
此外,为了减少SSB发送的占空比,若120kHz子载波间隔的SSB与480/960kHz子载波间隔的SSB在5毫秒内可以频分复用,则基站可以在一个5毫秒内同时完成120kHz子载波间隔的SSB的发送和480/960kHz子载波间隔的SSB的发送。可以理解的是,1毫秒(或称一个子帧)在120kHz子载波间隔下可以包含8个时隙,因此,5毫秒在120kHz子载波间隔下可以包含40个时隙。
为了提高上行发送效率,120kHz子载波间隔的SSB与480/960kHz子载波间隔的SSB在时间上可以尽量对齐,也就是说,尽量在相同的时间间隔内发送,由此可以使得120kHz子载波间隔的SSB之间的空隙(gap)可以用于UE进行上行发送。
下文通过图2-图7对上述确定同步信号块SSB的方式进行说明。下文中第0/1/…个或第n/m/…个,表示索引从0开始,即第*个中的*是数字或字母时表示索引从0开始。下文中第一/二/…个,表示索引从1开始,即第*个中的*是中文时表示索引从1开始。
图2为120kHz子载波间隔的SSB的5毫秒内的时域位置示意图。如图2所示,该 120kHz子载波间隔的SSB的5毫秒内包括40个时隙。在具体实现时,可以将上述40个时隙进行编号,例如,编号可以是0-39。上述40个时隙可以分为4组,每组包含10个时隙。示例性的,第一组可以包含编号0-9的时隙,第二组可以包含编号10-19的时隙,第三组可以包含编号20-29的时隙,第四组可以包含编号30-39的时隙。上述120kHz子载波间隔的SSB的子帧中每个组的最后两个时隙不包含120kHz子载波间隔的SSB。示例性的,可以通过如下公式表征:
n=10*k+m;其中,n为上述120kHz子载波间隔的SSB的子帧中时隙的编号,k为大于等于0、且小于4的整数,m为8或9。也就是说,第一组中的编号8和9、第二组中的编号18和19、第三组中的编号28和29及第四组中的编号38和39的时隙都不包含120kHz子载波间隔的SSB,由此可以上述每个组中的最后两个时隙都可以作为gap,该gap可以用于发送上行数据,从而可以提高上行发送效率。
图3为480kHz子载波间隔的SSB的一个5毫秒内的时域位置示意图。如图3所示,该480kHz子载波间隔的SSB的一个5毫秒内包括160个时隙。在具体实现时,可以将上述160个时隙进行编号,例如,编号可以是0-159。上述160个时隙可以分为4组,每组包含40个时隙。示例性的,第一组可以包含编号0-39的时隙,第二组可以包含编号40-79的时隙,第三组可以包含编号80-119的时隙,第四组可以包含编号120-159的时隙。此时,为了提高上行发送的效率,可以将上述子帧中每个组的最后8个时隙不包含480kHz子载波间隔的SSB,由此可以使得上述每个组的最后8个时隙可以用于发送上行数据,从而可以提高上行发送效率。示例性的,可以通过如下公式表征:
n=40*k+m;其中,n为上述子帧中时隙的编号,k为大于等于0、且小于4的整数,m为32-39的整数。也就是说,第一组中的编号32和39、第二组中的编号72和79、第三组中的编号112和119及第四组中的编号152和159时隙都不包含480kHz子载波间隔的SSB。
图4为960kHz子载波间隔的SSB的5毫秒内的时域位置示意图。如图4所示,该960kHz子载波间隔的SSB的5毫秒内包括320个时隙。在具体实现时,可以将上述320个时隙进行编号,例如,编号可以是0-319。上述320个时隙可以分为4组,每组包含80个时隙。示例性的,第一组可以包含编号0-79的时隙,第二组可以包含编号80-159的时隙,第三组可以包含编号160-239的时隙,第四组可以包含编号240-319的时隙。此时,为了提高上行发送的效率,可以将上述子帧中每个组的最后16个时隙不包含960kHz子载波间隔的SSB,由此可以使得上述每个组的最后16个时隙可以用于发送上行数据,从而可以提高上行发送效率。示例性的,可以通过如下公式表征:
n=80*k+m;其中,n为上述子帧中时隙的编号,k为大于等于0、且小于4的整数,m为64-79的整数。也就是说,第一组中的编号64和79、第二组中的编号144和159、第三组中的编号224和239及第四组中的编号304和319时隙都不包含480kHz子载波间隔的SSB。
上文通过图2-图4以时隙为维度对上述确定同步信号块SSB的方式进行说明。接着,下文通过图5-图7以符号为维度对上述确定同步信号块SSB的方式进行说明。
由于120kHz子载波间隔的SSB的时隙的时域位置可以具有多种形式,因此,当 120kHz子载波间隔的SSB与480/960kHz子载波间隔的SSB共存在一个载波中发送时,可以有多种组合形式,下文通过不同的组合形式进行说明。
图5a为120kHz子载波间隔的SSB的一个时隙的一种形式的时域位置示意图。如图5a所示,上述120kHz子载波间隔的SSB的时隙包括14个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。其中,上述14个OFDM符号可以按先后顺序排列,分别是前4个OFDM符号,该前4个OFDM符号可以是非SSB符号;中间8个OFDM符号,该中间8个OFDM符号可以是SSB符号;以及尾2个OFDM符号,该尾2个OFDM符号可以是非SSB符号。可以理解的是,上述中间8个SSB符号可以包含2个SSB,也就是说,4个SSB符号可以包含1个SSB。
基于图5a所示的120kHz子载波间隔的SSB的一个时隙的时域位置,若将120kHz子载波间隔的SSB与480/960kHz子载波间隔的SSB共存在一个载波中发送,可以得到如图5b所示的480kHz子载波间隔的SSB的连续4个时隙的时域位置示意图及如图5c所示的960kHz子载波间隔的SSB的连续8个时隙的时域位置示意图。其中,120kHz子载波间隔的SSB的一个时隙可以对应480kHz子载波间隔的SSB的4个时隙,120kHz子载波间隔的SSB的一个时隙可以对应960kHz子载波间隔的SSB的8个时隙。
如图5b所示,上述480kHz子载波间隔的SSB的连续4个时隙500可以分别包含时隙501、时隙502、时隙503及时隙504,上述连续4个时隙500可以包括56个OFDM符号。其中,上述56个OFDM符号可以按先后顺序排列,分别是前16个非SSB符号、中间32个SSB符号及尾8个非SSB符号。上述中间32个SSB符号可以包含多个SSB,示例性的,时隙502可以包含2个SSB,时隙503可以包含2个SSB。可以理解的是,上述中间32个SSB符号仅示例性的示出了4个SSB的场景,并不构成对本申请实施例的限定,在一些实施例中,上述中间32个SSB符号可以包含更多的SSB(例如,5个SSB)。
由于480kHz子载波间隔的SSB的连续4个时隙500中的前16个OFDM符号与120kHz子载波间隔的SSB的时隙中的前4个OFDM符号都是非SSB符号,因此,可以选取上述480kHz子载波间隔的SSB的连续4个时隙500中的前16个OFDM符号中的OFDM符号作为gap,由此可以将上述gap用于发送上行数据。示例性的,可以选取上述480kHz子载波间隔的SSB的连续4个时隙500中的前16个OFDM符号中的前14个OFDM符号作为gap,也就是说,可以将时隙501作为gap,该时隙501内不包含480kHz子载波间隔的SSB。
接着,由于480kHz子载波间隔的SSB的连续4个时隙500中的尾8个OFDM符号与120kHz子载波间隔的SSB的时隙中的尾2个OFDM符号都是非SSB符号,因此,可以选取上述480kHz子载波间隔的SSB的连续4个时隙500中的尾8个OFDM符号作为gap,由此可以将上述gap用于发送上行数据。示例性的,可以将上述时隙504中的尾8个OFDM符号作为gap,也就是说,上述时隙504中的尾8个OFDM符号中不包含480kHz子载波间隔的SSB。
可选地,由于时隙504包含14个OFDM符号,因此,上述时隙504中的前6个OFDM符号可以包含一个480kHz子载波间隔的SSB,也就是说,该时隙504的尾8个OFDM符号可以用于发送发送上行数据,前6个OFDM符号可以用于发送SSB;上述时隙504 中的前6个OFDM符号也可以不包含480kHz子载波间隔的SSB,也就是说,该时隙504只用于发送上行数据。由此可以得到如图5d所示的480kHz子载波间隔的SSB时域位置示意图。
由于5毫秒内,480kHz子载波间隔的SSB包含160个时隙,也就是说,5毫秒内可以包含40组上述480kHz子载波间隔的SSB连续的4个时隙。而上述5毫秒内,上述480kHz子载波间隔的SSB中可以用于gap的时隙可以通过如下公式表征:
n=4*p+q;其中,n为时隙的编号,p为大于等于0、且小于40的整数,q为0或3。可以理解的是,当q=0时,表示的是每4个连续的时隙中的第一个时隙;当q=3时,表示的是每4个连续的时隙中的第四个时隙,也就是每4个连续的时隙中的最后一个时隙。在上述第n个时隙内,不包含480kHz子载波间隔的SSB。
进一步地,上述5毫秒内,上述480kHz子载波间隔的SSB中可以用于gap且能用于SSB的时隙可以通过如下公式表征:
L=4*p+q;其中,L为时隙的编号,p为大于等于0、且小于40的整数,q为3。可以理解的是,当q=3时,表示的是每4个连续的时隙中的第四个时隙。在上述第L个时隙内,除了该第L个时隙内的前6个OFDM符号内包含480kHz子载波间隔的SSB,后8个OFDM符号内不包含480kHz子载波间隔的SSB;也就是说,上述第L个时隙内的前6个OFDM符号存在第一个480kHz子载波间隔的SSB,后8个OFDM符号不存在第二个480kHz子载波间隔的SSB。可以理解的是,一个时隙内可以有两个SSB,上述第一个SSB是指时隙内的头一个SSB,上述第二个SSB是指时隙内的尾一个SSB。下文中的第一个SSB和第二个SSB可以参考此处的描述,不再进行赘述。
如图5c所示,上述960kHz子载波间隔的SSB的连续8个时隙510可以分别包含时隙511、时隙512、时隙513、时隙514、时隙515、时隙516、时隙517及时隙518,上述连续8个时隙510可以包括112个OFDM符号。其中,上述112个OFDM符号可以按先后顺序排列,分别是前32个非SSB符号、中间64个SSB符号及尾16个非SSB符号。上述中间64个SSB符号可以包含多个SSB,示例性的,时隙513可以包含2个SSB,时隙514可以包含2个SSB,时隙515可以包含2个SSB,时隙516可以包含2个SSB,时隙517可以包含2个SSB。
由于960kHz子载波间隔的SSB的连续8个时隙510中的前32个OFDM符号与120kHz子载波间隔的SSB的时隙中的前4个OFDM符号都是非SSB符号,因此,可以选取上述960kHz子载波间隔的SSB的连续8个时隙510中的前32个OFDM符号中的OFDM符号作为gap,由此可以将上述gap用于发送上行数据。示例性的,可以选取上述960kHz子载波间隔的SSB的连续8个时隙510中的前32个OFDM符号中的前28个OFDM符号作为2个gap,也就是说,可以将时隙511和时隙512作为gap,该时隙511及时隙512内不包含960kHz子载波间隔的SSB。
接着,由于960kHz子载波间隔的SSB的连续8个时隙510中的尾16个OFDM符号与120kHz子载波间隔的SSB的时隙中的尾2个OFDM符号都是非SSB符号,因此,可以选取上述960kHz子载波间隔的SSB的连续8个时隙510中的尾16个OFDM符号中的OFDM符号作为gap,由此可以将上述gap用于发送上行数据。示例性的,可以将上述 时隙518中的14个OFDM符号作为gap,也就是说,上述时隙518中的14个OFDM符号中不包含960kHz子载波间隔的SSB。
由于5毫秒内,960kHz子载波间隔的SSB包含320个时隙,也就是说,5毫秒内可以包含40组上述960kHz子载波间隔的SSB连续的8个时隙。而上述5毫秒内,上述960kHz子载波间隔的SSB中可以用于gap的时隙可以通过如下公式表征:
n=8*p+q;其中,n为时隙的编号,p为大于等于0、且小于40的整数,p为0、1或7。可以理解的是,当p=0时,表示的是每8个连续的时隙中的第一个时隙;当p=1时,表示的是每8个连续的时隙中的第二个时隙;当p=7时,表示的是每8个连续的时隙中的第八个时隙,也就是每8个连续的时隙中的最后一个时隙。
图6a为120kHz子载波间隔的SSB的一个时隙的另一种形式的时域位置示意图。如图6a所示,上述120kHz子载波间隔的SSB的时隙包括14个OFDM符号。其中,上述14个OFDM符号可以按先后顺序排列,分别是前2个OFDM符号,该前2个OFDM符号可以是非SSB符号;接下来4个连续的OFDM符号,该4个连续的OFDM符号可以是SSB符号;再接下来2个OFDM符号,该2个OFDM符号可以是非SSB符号;再接下来4个连续的OFDM符号,该4个连续的OFDM符号可以是SSB符号;最后2个OFDM符号,该2个OFDM符号可以是非SSB符号。可以理解的是,上述第一组连续的4个SSB符号可以包含1个SSB,上述第二组连续的4个SSB符号可以包含1个SSB。
基于图6a所示的120kHz子载波间隔的SSB的一个时隙的时域位置,若将120kHz子载波间隔的SSB与480/960kHz子载波间隔的SSB共存在一个载波中发送,可以得到如图6b所示的480kHz子载波间隔的SSB的连续4个时隙的时域位置示意图及如图6c所示的960kHz子载波间隔的SSB的连续8个时隙的时域位置示意图。其中,120kHz子载波间隔的SSB的一个时隙可以对应480kHz子载波间隔的SSB的4个时隙,120kHz子载波间隔的SSB的一个时隙可以对应960kHz子载波间隔的SSB的8个时隙。
如图6b所示,上述480kHz子载波间隔的SSB的连续4个时隙600可以分别包含时隙601、时隙602、时隙603及时隙604,上述连续4个时隙600可以包括56个OFDM符号。其中,上述56个OFDM符号可以按先后顺序排列,分别是前8个非SSB符号、前16个SSB符号、中间8个非SSB符号、后16个SSB符合及尾8个非SSB符号。上述前16个SSB符号可以包含多个SSB,以及后16个SSB符号可以包含多个SSB,示例性的,时隙602可以包含2个SSB,时隙603可以包含2个SSB。可以理解的是,上述前16个SSB符号及上述后16个SSB符号仅示例性的示出了4个SSB的场景,并不构成对本申请实施例的限定,在一些实施例中,上述前16个SSB符号及上述后16个SSB符号可以包含更多的SSB(例如,6个SSB)。
由于480kHz子载波间隔的SSB的连续4个时隙600中的前8个OFDM符号与120kHz子载波间隔的SSB的时隙中的前2个OFDM符号都是非SSB符号,因此,可以选取上述480kHz子载波间隔的SSB的连续4个时隙600中的前8个OFDM符号作为gap,由此可以将上述gap用于发送上行数据。示例性的,可以将时隙601中的前8个OFDM符号作为gap,该时隙601内不包含480kHz子载波间隔的SSB。
接着,由于480kHz子载波间隔的SSB的连续4个时隙600中的尾8个OFDM符号与120kHz子载波间隔的SSB的时隙中的尾2个OFDM符号都是非SSB符号,因此,可 以选取上述480kHz子载波间隔的SSB的连续4个时隙600中的尾8个OFDM符号作为gap,由此可以将上述gap用于发送上行数据。示例性的,可以将上述时隙604中的尾8个OFDM符号作为gap,也就是说,上述时隙604中的尾8个OFDM符号中不包含480kHz子载波间隔的SSB。
可选地,由于时隙601包含14个OFDM符号,因此,上述时隙601中的尾6个OFDM符号可以包含一个480kHz子载波间隔的SSB,也就是说,该时隙601的前8个OFDM符号可以用于发送上行数据,尾6个OFDM符号可以用于发送SSB。同样地,由于时隙604包含14个OFDM符号,因此,上述时隙604中的尾6个OFDM符号也可以包含一个480kHz子载波间隔的SSB,也就是说,该时隙604的前8个OFDM符号可以用于发送上行数据,尾6个OFDM符号可以用于发送SSB。由此可以得到如图6d所示的480kHz子载波间隔的SSB时域位置示意图。
由于5毫秒内,480kHz子载波间隔的SSB包含160个时隙,也就是说,5毫秒内可以包含40组上述480kHz子载波间隔的SSB连续的4个时隙。而上述5毫秒内,上述480kHz子载波间隔的SSB中可以用于gap的时隙可以通过如下公式表征:
n=4*p+q;其中,n为时隙的编号,p为大于等于0、且小于40的整数,q为0或3。可以理解的是,当q=0时,表示的是每4个连续的时隙中的第一个时隙;当q=3时,表示的是每4个连续的时隙中的第四个时隙,也就是每4个连续的时隙中的最后一个时隙。在上述第n个时隙内,不包含480kHz子载波间隔的SSB。
进一步地,上述5毫秒内,上述480kHz子载波间隔的SSB中可以用于gap且能用于SSB的时隙可以通过如下公式表征:
L=4*p+q;其中,L为时隙的编号,p为大于等于0、且小于40的整数,q为0或3。可以理解的是,当q=0时,表示的是每4个连续的时隙中的第一个时隙;在上述第L个时隙内,除了该第L个时隙内的后6个OFDM符号内包含480kHz子载波间隔的SSB,前8个OFDM符号内不包含480kHz子载波间隔的SSB;也就是说,上述第L个时隙内前8个OFDM符号不存在第一个480kHz子载波间隔的SSB,后6个OFDM符号存在第一个480kHz子载波间隔的SSB。
当q=3时,表示的是每4个连续的时隙中的第四个时隙。在上述第L个时隙内,除了该第L个时隙内的前6个OFDM符号内包含480kHz子载波间隔的SSB,后8个OFDM符号内不包含480kHz子载波间隔的SSB;也就是说,上述第L个时隙内的前6个OFDM符号存在第一个480kHz子载波间隔的SSB,后8个OFDM符号不存在第二个480kHz子载波间隔的SSB。
如图6c所示,上述960kHz子载波间隔的SSB的连续8个时隙610可以分别包含时隙611、时隙612、时隙613、时隙614、时隙615、时隙616、时隙617及时隙618,上述连续8个时隙610可以包括112个OFDM符号。其中,上述112个OFDM符号可以按先后顺序排列,分别是前16个非SSB符号、前32个SSB符号、中间16个非SSB符号、后32个SSB符号及尾16个非SSB符号。上述前32个SSB符号及后32个SSB符号可以包含多个SSB,示例性的,时隙612可以包含2个SSB,时隙613可以包含2个SSB,时隙616可以包含2个SSB,时隙617可以包含2个SSB。可以理解的是,上述前32个SSB符号及上述后32个SSB符号仅示例性的示出了8个SSB的场景,并不 构成对本申请实施例的限定,在一些实施例中,上述前32个SSB符号及上述后32个SSB符号可以包含更多的SSB(例如,10个SSB)。
由于960kHz子载波间隔的SSB的连续8个时隙610中的前16个OFDM符号与120kHz子载波间隔的SSB的时隙中的前2个OFDM符号都是非SSB符号,因此,可以选取上述960kHz子载波间隔的SSB的连续8个时隙610中的前16个OFDM符号中的OFDM符号作为gap,由此可以将上述gap用于发送上行数据。示例性的,可以将时隙611作为gap,该时隙611内不包含960kHz子载波间隔的SSB。
接着,由于960kHz子载波间隔的SSB的连续8个时隙610中的中间16个OFDM符号与120kHz子载波间隔的SSB的时隙中的中间2个OFDM符号都是非SSB符号,因此,可以选取上述960kHz子载波间隔的SSB的连续8个时隙610中的中间16个OFDM符号中的OFDM符号作为gap,由此可以将上述gap用于发送上行数据。示例性的,由于上述960kHz子载波间隔的SSB的连续8个时隙610中的中间16个OFDM符号分布在两个时隙中,例如,时隙614和时隙615,因此,可以上述可以将时隙614中的尾8个OFDM符号作为gap,以及将时隙615中的前8个OFDM符号作为gap;其中,时隙614及时隙615内不包含960kHz子载波间隔的SSB。可选地,由于时隙614包含14个OFDM符号,因此,上述时隙614中的前6个OFDM符号可以包含一个480kHz子载波间隔的SSB,也就是说,该时隙614的尾8个OFDM符号可以用于发送上行数据,前6个OFDM符号可以用于发送SSB。同样地,时隙615的前8个OFDM符号可以用于发送上行数据,尾6个OFDM符号可以用于发送SSB。由此可以得到如图6e所示的960kHz子载波间隔的SSB时域位置示意图。
然后,由于960kHz子载波间隔的SSB的连续8个时隙610中的尾16个OFDM符号与120kHz子载波间隔的SSB的时隙中的尾2个OFDM符号都是非SSB符号,因此,可以选取上述960kHz子载波间隔的SSB的连续8个时隙610中的尾16个OFDM符号中的OFDM符号作为gap,由此可以将上述gap用于发送上行数据。示例性的,可以将上述时隙618中的14个OFDM符号作为gap,也就是说,上述时隙618中的14个OFDM符号中不包含960kHz子载波间隔的SSB。
由于5毫秒内,960kHz子载波间隔的SSB包含320个时隙,也就是说,5毫秒内可以包含40组上述960kHz子载波间隔的SSB连续的8个时隙。而上述5毫秒内,上述960kHz子载波间隔的SSB中可以用于gap的时隙可以通过如下公式表征:
n=8*p+q;其中,n为时隙的编号,p为大于等于0、且小于40的整数,q为0、3、4或7。可以理解的是,当q=0时,表示的是每8个连续的时隙中的第一个时隙;当q=3时,表示的是每8个连续的时隙中的第四个时隙;当q=4时,表示的是每8个连续的时隙中的第五个时隙;当p=7时,表示的是每8个连续的时隙中的第八个时隙,也就是每8个连续的时隙中的最后一个时隙。在上述第n个时隙内,不包含480kHz子载波间隔的SSB。
进一步地,上述5毫秒内,上述480kHz子载波间隔的SSB中可以用于gap且能用于SSB的时隙还可以通过如下公式表征:
L=8*p+q;其中,L为时隙的编号,p为大于等于0、且小于40的整数,q为3或4。可以理解的是,当q=3时,表示的是每4个连续的时隙中的第四个时隙;在上述第 L个时隙内,除了该第L个时隙内的前6个OFDM符号内包含480kHz子载波间隔的SSB,后8个OFDM符号内不包含480kHz子载波间隔的SSB;也就是说,上述第L个时隙内前6个OFDM符号存在第一个480kHz子载波间隔的SSB,后8个OFDM符号不存在第二个480kHz子载波间隔的SSB。
当q=4时,表示的是每4个连续的时隙中的第五个时隙。在上述第L个时隙内,除了该第L个时隙内的后6个OFDM符号内包含480kHz子载波间隔的SSB,前8个OFDM符号内不包含480kHz子载波间隔的SSB;也就是说,上述第L个时隙内的后6个OFDM符号存在第一个480kHz子载波间隔的SSB,前8个OFDM符号不存在第一个480kHz子载波间隔的SSB。
图7a为120kHz子载波间隔的SSB的一个时隙的再一种形式的时域位置示意图。如图7a所示,上述120kHz子载波间隔的SSB的时隙包括14个OFDM符号。其中,上述14个OFDM符号可以按先后顺序排列,分别是前2个OFDM符号,该前2个OFDM符号可以是非SSB符号;接下来4个连续的OFDM符号,该4个连续的OFDM符号可以是SSB符号;再接下来3个OFDM符号,该3个OFDM符号可以是非SSB符号;再接下来4个连续的OFDM符号,该4个连续的OFDM符号可以是SSB符号;最后1个OFDM符号,该1个OFDM符号可以是非SSB符号。可以理解的是,上述第一组连续的4个SSB符号可以包含1个SSB,上述第二组连续的4个SSB符号可以包含1个SSB。
基于图7a所示的120kHz子载波间隔的SSB的一个时隙的时域位置,若将120kHz子载波间隔的SSB与480/960kHz子载波间隔的SSB共存在一个载波中发送,可以得到如图7b所示的480kHz子载波间隔的SSB的连续4个时隙的时域位置示意图及如图7c所示的960kHz子载波间隔的SSB的连续8个时隙的时域位置示意图。其中,120kHz子载波间隔的SSB的一个时隙可以对应480kHz子载波间隔的SSB的4个时隙,120kHz子载波间隔的SSB的一个时隙可以对应960kHz子载波间隔的SSB的8个时隙。
如图7b所示,上述480kHz子载波间隔的SSB的连续4个时隙700可以分别包含时隙701、时隙702、时隙703及时隙704,上述连续4个时隙700可以包括56个OFDM符号。其中,上述56个OFDM符号可以按先后顺序排列,分别是前8个非SSB符号、前16个SSB符号、中间12个非SSB符号、后16个SSB符合及尾4个非SSB符号。上述前16个SSB符号及后16个SSB符号可以包含多个SSB,示例性的,时隙702可以包含1个SSB,时隙703可以包含1个SSB。可以理解的是,上述前16个SSB符号及上述后16个SSB符号仅示例性的示出了2个SSB的场景,并不构成对本申请实施例的限定,在一些实施例中,上述前16个SSB符号及上述后16个SSB符号可以包含更多的SSB(例如,4个SSB)。
由于480kHz子载波间隔的SSB的连续4个时隙700中的前8个OFDM符号与120kHz子载波间隔的SSB的时隙中的前2个OFDM符号都是非SSB符号,因此,可以选取上述480kHz子载波间隔的SSB的连续4个时隙700中的前8个OFDM符号作为gap,由此可以将上述gap用于发送上行数据。示例性的,可以将时隙701中的前8个OFDM符号作为gap,该时隙701内不包含480kHz子载波间隔的SSB。
接着,由于480kHz子载波间隔的SSB的连续4个时隙700中的中间12个OFDM符号与120kHz子载波间隔的SSB的时隙中的中间3个OFDM符号都是非SSB符号,因 此,可以选取上述480kHz子载波间隔的SSB的连续4个时隙700中的中间12个OFDM符号中的OFDM符号作为gap,由此可以将上述gap用于发送上行数据。示例性的,可以将上述时隙703中的前8个OFDM符号作为gap,也就是说,上述时隙703中不包含480kHz子载波间隔的SSB。
可选地,由于时隙701包含14个OFDM符号,因此,上述时隙701中的尾6个OFDM符号可以包含一个480kHz子载波间隔的SSB,也就是说,该时隙701的前8个OFDM符号可以用于发送上行数据,尾6个OFDM符号可以用于发送SSB。同样地,由于时隙703包含14个OFDM符号,因此,上述时隙703中的尾6个OFDM符号可以包含一个480kHz子载波间隔的SSB,也就是说,该时隙703的前8个OFDM符号可以用于发送上行数据,尾6个OFDM符号可以用于发送SSB。由此可以得到如图7d所示的480kHz子载波间隔的SSB时域位置示意图。
由于5毫秒内,480kHz子载波间隔的SSB包含160个时隙,也就是说,5毫秒内可以包含40组上述480kHz子载波间隔的SSB连续的4个时隙。而上述5毫秒内,上述480kHz子载波间隔的SSB中可以用于gap的时隙可以通过如下公式表征:
n=4*p+q;其中,n为时隙的编号,p为大于等于0、且小于40的整数,q为0或2。可以理解的是,当q=0时,表示的是每4个连续的时隙中的第一个时隙;当q=2时,表示的是每4个连续的时隙中的第三个时隙。在上述第n个时隙内,不包含480kHz子载波间隔的SSB。
进一步地,上述5毫秒内,上述480kHz子载波间隔的SSB中可以用于gap且能用于SSB的时隙可以通过如下公式表征:
L=4*p+q;其中,L为时隙的编号,p为大于等于0、且小于40的整数,q为0或2。可以理解的是,当q=0时,表示的是每4个连续的时隙中的第一个时隙;在上述第L个时隙内,除了该第L个时隙内的后6个OFDM符号内包含480kHz子载波间隔的SSB,前8个OFDM符号内不包含480kHz子载波间隔的SSB;也就是说,上述第L个时隙内前8个OFDM符号不存在第一个480kHz子载波间隔的SSB,后6个OFDM符号存在第一个480kHz子载波间隔的SSB。
当q=2时,表示的是每4个连续的时隙中的第三个时隙。在上述第L个时隙内,除了该第L个时隙内的后6个OFDM符号内包含480kHz子载波间隔的SSB,前8个OFDM符号内不包含480kHz子载波间隔的SSB;也就是说,上述第L个时隙内的后6个OFDM符号存在第一个480kHz子载波间隔的SSB,前8个OFDM符号不存在第一个480kHz子载波间隔的SSB。
如图7c所示,上述960kHz子载波间隔的SSB的连续8个时隙710可以分别包含时隙711、时隙712、时隙713、时隙714、时隙715、时隙716、时隙717及时隙718,上述连续8个时隙710可以包括112个OFDM符号。其中,上述112个OFDM符号可以按先后顺序排列,分别是前16个非SSB符号、前32个SSB符号、中间24个非SSB符号、后32个SSB符号及尾8个非SSB符号。上述前32个SSB符号及后32个SSB符号可以包含多个SSB,示例性的,时隙712可以包含2个SSB,时隙713可以包含2个SSB,时隙716可以包含2个SSB,时隙717可以包含2个SSB。可以理解的是,上述前32个SSB符号及上述后32个SSB符号仅示例性的示出了8个SSB的场景,并不 构成对本申请实施例的限定,在一些实施例中,上述前32个SSB符号及上述后32个SSB符号可以包含更多的SSB(例如,10个SSB)。
由于960kHz子载波间隔的SSB的连续8个时隙710中的前16个OFDM符号与120kHz子载波间隔的SSB的时隙中的前2个OFDM符号都是非SSB符号,因此,可以选取上述960kHz子载波间隔的SSB的连续8个时隙710中的前16个OFDM符号中的OFDM符号作为gap,由此可以将上述gap用于发送上行数据。示例性的,可以将时隙711作为gap,该时隙711内不包含960kHz子载波间隔的SSB。
接着,由于960kHz子载波间隔的SSB的连续8个时隙710中的中间24个OFDM符号与120kHz子载波间隔的SSB的时隙中的中间3个OFDM符号都是非SSB符号,因此,可以选取上述960kHz子载波间隔的SSB的连续8个时隙710中的中间24个OFDM符号中的OFDM符号作为gap,由此可以将上述gap用于发送上行数据。示例性的,由于上述960kHz子载波间隔的SSB的连续8个时隙710中的中间24个OFDM符号分布在两个时隙中,例如,时隙714和时隙715,因此,可以上述可以将时隙714中的尾8个OFDM符号作为gap,以及将时隙715作为gap;其中,时隙714及时隙715内不包含960kHz子载波间隔的SSB。
然后,由于960kHz子载波间隔的SSB的连续8个时隙710中的尾8个OFDM符号与120kHz子载波间隔的SSB的时隙中的尾1个OFDM符号都是非SSB符号,因此,可以选取上述960kHz子载波间隔的SSB的连续8个时隙710中的尾8个OFDM符号作为gap,由此可以将上述gap用于发送上行数据。示例性的,可以将上述时隙718中的尾8个OFDM符号作为gap,也就是说,上述时隙718中不包含960kHz子载波间隔的SSB。
可选地,由于时隙714包含14个OFDM符号,因此,上述时隙714中的前6个OFDM符号可以包含一个480kHz子载波间隔的SSB,也就是说,该时隙714的尾8个OFDM符号可以用于发送上行数据,前6个OFDM符号可以用于发送SSB。同样地,由于时隙718包含14个OFDM符号,因此,上述时隙718中的前6个OFDM符号可以包含一个480kHz子载波间隔的SSB,也就是说,该时隙718的尾8个OFDM符号可以用于发送上行数据,前6个OFDM符号可以用于发送SSB。由此可以得到如图7e所示的960kHz子载波间隔的SSB时域位置示意图。
由于5毫秒内,960kHz子载波间隔的SSB包含320个时隙,也就是说,5毫秒内可以包含40组上述960kHz子载波间隔的SSB连续的8个时隙。而上述5毫秒内,上述960kHz子载波间隔的SSB中可以用于gap的时隙可以通过如下公式表征:
n=8*p+q;其中,n为时隙的编号,p为大于等于0、且小于40的整数,q为0、3、4或7。可以理解的是,当q=0时,表示的是每8个连续的时隙中的第一个时隙;当q=3时,表示的是每8个连续的时隙中的第四个时隙;当q=4时,表示的是每8个连续的时隙中的第五个时隙;当p=7时,表示的是每8个连续的时隙中的第八个时隙,也就是每8个连续的时隙中的最后一个时隙。在上述第n个时隙内,不包含480kHz子载波间隔的SSB。
进一步地,上述5毫秒内,上述480kHz子载波间隔的SSB中可以用于gap且能用于SSB的时隙可以通过如下公式表征:
L=8*p+q;其中,L为时隙的编号,p为大于等于0、且小于40的整数,q为3或 7。可以理解的是,当q=3时,表示的是每4个连续的时隙中的第四个时隙;在上述第L个时隙内,除了该第L个时隙内的前6个OFDM符号内包含480kHz子载波间隔的SSB,后8个OFDM符号内不包含480kHz子载波间隔的SSB;也就是说,上述第L个时隙内前6个OFDM符号存在第一个480kHz子载波间隔的SSB,后8个OFDM符号不存在第二个480kHz子载波间隔的SSB。
当q=7时,表示的是每8个连续的时隙中的第八个时隙。在上述第L个时隙内,除了该第L个时隙内的前6个OFDM符号内包含480kHz子载波间隔的SSB,后8个OFDM符号内不包含480kHz子载波间隔的SSB;也就是说,上述第L个时隙内的前6个OFDM符号存在第一个480kHz子载波间隔的SSB,后8个OFDM符号不存在第一个480kHz子载波间隔的SSB。
图8为本申请实施例提供的芯片的结构示意图,如图8所示,上述芯片800可以包括:确定模块810;其中,
确定模块810,用于确定时隙中不包含SSB或仅包含一个SSB。
其中一种可能的实现方式中,上述确定模块810还用于确定第n个时隙内不包含SSB;其中,n=40*k+m,k为小于4且大于等于0的整数,m为大于等于32且小于等于39的整数。
其中一种可能的实现方式中,上述确定模块810还用于确定第n个时隙内不包含SSB;其中,n=4*p+q;其中,p为小于40且大于等于0的整数,q为0和/或3。
其中一种可能的实现方式中,上述确定模块810还用于确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为3。
其中一种可能的实现方式中,上述确定模块810还用于确定所述第L个时隙内仅包含第一个SSB。
其中一种可能的实现方式中,上述确定模块810还用于确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为0。
其中一种可能的实现方式中,上述确定模块810还用于所述第L个时隙内仅包含一个SSB包括:所述第L个时隙内仅包含第二个SSB。
其中一种可能的实现方式中,上述确定模块810还用于确定第n个时隙内不包含SSB;其中,n=4*p+q;其中,p为小于40且大于等于0的整数,q为0和/或2。
其中一种可能的实现方式中,上述确定模块810还用于确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为0和/或2。
其中一种可能的实现方式中,上述确定模块810还用于所述第L个时隙内仅包含一个SSB包括:所述第L个时隙内仅包含第二个SSB。
其中一种可能的实现方式中,所述SSB为子载波间隔为480kHz的SSB。
其中一种可能的实现方式中,上述确定模块810还用于确定第n个时隙内不包含SSB;其中,n=80*k+m,k为小于4且大于等于0的整数,m为大于等于64且小于等于79的整数。
其中一种可能的实现方式中,上述确定模块810还用于确定第n个时隙内不包含SSB;其中,n=8*p+q;其中,p为小于40且大于等于0的整数,q为0、1和/或7。
其中一种可能的实现方式中,上述确定模块810还用于确定第n个时隙内不包含 SSB;其中,n=8*p+q;其中,p为小于40且大于等于0的整数,q为0、3、4和/或7。
其中一种可能的实现方式中,上述确定模块810还用于确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为3。
其中一种可能的实现方式中,上述确定模块810还用于确定所述第L个时隙内仅包含第一个SSB。
其中一种可能的实现方式中,上述确定模块810还用于确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为4。
其中一种可能的实现方式中,上述确定模块810还用于确定所述第L个时隙内仅包含第二个SSB。
其中一种可能的实现方式中,上述确定模块810还用于确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为3和/或7。
其中一种可能的实现方式中,上述确定模块810还用于确定所述第L个时隙内仅包含第一个SSB。
其中一种可能的实现方式中,所述SSB为子载波间隔为960kHz的SSB
应理解,以上图8所示的芯片800的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块以软件通过处理元件调用的形式实现,部分模块通过硬件的形式实现。此外这些模块全部或部分可以集成在一起,也可以独立实现。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit;以下简称:ASIC),或,一个或多个微处理器(Digital Singnal Processor;以下简称:DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array;以下简称:FPGA)等。再如,这些模块可以集成在一起,以片上系统(System-On-a-Chip;以下简称:SOC)的形式实现。
以上各实施例中,涉及的处理器可以例如包括CPU、DSP、微控制器或数字信号处理器,还可包括GPU、嵌入式神经网络处理器(Neural-network Process Units;以下简称:NPU)和图像信号处理器(Image Signal Processing;以下简称:ISP),该处理器还可包括必要的硬件加速器或逻辑处理硬件电路,如ASIC,或一个或多个用于控制本申请技术方案程序执行的集成电路等。此外,处理器可以具有操作一个或多个软件程序的功能,软件程序可以存储在存储介质中。
本说明书实施例提供一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,当所述计算机指令在计算机上运行时,所述计算机指令使所述计算机执行本说明书图1-图7所示实施例提供的方法。
上述非暂态计算机可读存储介质可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器 件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(Read Only Memory;以下简称:ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory;以下简称:EPROM)或闪存、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括——但不限于——电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于——无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本说明书操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(Local Area Network;以下简称:LAN)或广域网(Wide Area Network;以下简称:WAN)连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本说明书的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本说明书的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本说明书的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本说明书的实施例所属技术领域的技术人员所理解。
在本说明书所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本说明书各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(Processor)执行本说明书各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory;以下简称:ROM)、随机存取存储器(Random Access Memory;以下简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本说明书的较佳实施例而已,并不用以限制本说明书,凡在本说明书的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本说明书保护的范围之内。

Claims (25)

  1. 一种同步信号块SSB确定方法,其特征在于,所述方法包括:
    确定时隙中不包含SSB或仅包含一个SSB。
  2. 根据权利要求1所述的方法,其特征在于,确定第n个时隙内不包含SSB;其中,n=40*k+m,k为小于4且大于等于0的整数,m为大于等于32且小于等于39的整数。
  3. 根据权利要求1所述的方法,其特征在于,确定第n个时隙内不包含SSB;其中,n=4*p+q;其中,p为小于40且大于等于0的整数,q为0和/或3。
  4. 根据权利要求1所述的方法,其特征在于,确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为3。
  5. 根据权利要求4所述的方法,其特征在于,所述第L个时隙内仅包含一个SSB包括:所述第L个时隙内仅包含第一个SSB。
  6. 根据权利要求1所述的方法,其特征在于,确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为0。
  7. 根据权利要求6所述的方法,其特征在于,所述第L个时隙内仅包含一个SSB包括:所述第L个时隙内仅包含第二个SSB。
  8. 根据权利要求1所述的方法,其特征在于,确定第n个时隙内不包含SSB;其中,n=4*p+q;其中,p为小于40且大于等于0的整数,q为0和/或2。
  9. 根据权利要求1所述的方法,其特征在于,确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为0和/或2。
  10. 根据权利要求9所述的方法,其特征在于,所述第L个时隙内仅包含一个SSB包括:所述第L个时隙内仅包含第二个SSB。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述SSB为子载波间隔为480kHz的SSB。
  12. 根据权利要求1所述的方法,其特征在于,确定第n个时隙内不包含SSB;其中,n=80*k+m,k为小于4且大于等于0的整数,m为大于等于64且小于等于79的整数。
  13. 根据权利要求1所述的方法,其特征在于,确定第n个时隙内不包含SSB;其中,n=8*p+q;其中,p为小于40且大于等于0的整数,q为0、1和/或7。
  14. 根据权利要求1所述的方法,其特征在于,确定第n个时隙内不包含SSB;其中,n=8*p+q;其中,p为小于40且大于等于0的整数,q为0、3、4和/或7。
  15. 根据权利要求1所述的方法,其特征在于,确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为3。
  16. 根据权利要求15所述的方法,其特征在于,所述第L个时隙内仅包含一个SSB包括:所述第L个时隙内仅包含第一个SSB。
  17. 根据权利要求1所述的方法,其特征在于,确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为4。
  18. 根据权利要求17所述的方法,其特征在于,所述第L个时隙内仅包含一个 SSB包括:所述第L个时隙内仅包含第二个SSB。
  19. 根据权利要求1所述的方法,其特征在于,确定第L个时隙内仅包含一个SSB,L=4*p+q;其中,p为小于40且大于等于0的整数,q为3和/或7。
  20. 根据权利要求19所述的方法,其特征在于,所述第L个时隙内仅包含一个SSB包括:所述第L个时隙内仅包含第一个SSB。
  21. 根据权利要求12至20任一项所述的方法,其特征在于,所述SSB为子载波间隔为960kHz的SSB。
  22. 一种芯片,其特征在于,用于执行如权利要求1-21中任一项所述的方法。
  23. 一种电子设备,其特征在于,包括:存储器,所述存储器用于存储计算机程序代码,所述计算机程序代码包括指令,当所述电子设备从所述存储器中读取所述指令,以使得所述电子设备执行如权利要求1-21中任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在所述电子设备上运行时,使得所述电子设备执行如权利要求1-21中任一项所述的方法。
  25. 一种计算机程序,其特征在于,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-21中任一项所述的方法。
PCT/CN2021/136485 2021-04-06 2021-12-08 同步信号块ssb确定方法及相关设备 WO2022213644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110368442.1A CN115190613A (zh) 2021-04-06 2021-04-06 同步信号块ssb确定方法及相关设备
CN202110368442.1 2021-04-06

Publications (1)

Publication Number Publication Date
WO2022213644A1 true WO2022213644A1 (zh) 2022-10-13

Family

ID=83511423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136485 WO2022213644A1 (zh) 2021-04-06 2021-12-08 同步信号块ssb确定方法及相关设备

Country Status (2)

Country Link
CN (1) CN115190613A (zh)
WO (1) WO2022213644A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110601809A (zh) * 2019-09-30 2019-12-20 北京展讯高科通信技术有限公司 信息发送方法及装置、信息接收方法及装置
CN111669235A (zh) * 2020-05-15 2020-09-15 中国信息通信研究院 一种高频发现信号传输方法、设备和系统
CN112566234A (zh) * 2020-11-24 2021-03-26 中兴通讯股份有限公司 同步广播信号配置方法、装置、节点和存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110601809A (zh) * 2019-09-30 2019-12-20 北京展讯高科通信技术有限公司 信息发送方法及装置、信息接收方法及装置
CN111669235A (zh) * 2020-05-15 2020-09-15 中国信息通信研究院 一种高频发现信号传输方法、设备和系统
CN112566234A (zh) * 2020-11-24 2021-03-26 中兴通讯股份有限公司 同步广播信号配置方法、装置、节点和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Initial access aspects for NR to support operation between 52.6 GHz and 71 GHz", 3GPP DRAFT; R1-2101453, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 19 January 2021 (2021-01-19), XP051971618 *

Also Published As

Publication number Publication date
CN115190613A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
CN111757477B (zh) 一种上报能力的方法及用户设备
WO2020244623A1 (zh) 一种空鼠模式实现方法及相关设备
WO2021023046A1 (zh) 一种电子设备控制方法及一种电子设备
WO2022156555A1 (zh) 屏幕亮度的调整方法、装置和终端设备
CN114868417A (zh) 一种通信方法、通信装置和系统
WO2022262492A1 (zh) 数据下载方法、装置和终端设备
WO2022042768A1 (zh) 索引显示方法、电子设备及计算机可读存储介质
WO2022022319A1 (zh) 一种图像处理方法、电子设备、图像处理系统及芯片系统
CN112738794A (zh) 驻网方法、芯片、移动终端及存储介质
CN114125789A (zh) 通信方法、终端设备及存储介质
WO2020078267A1 (zh) 在线翻译过程中的语音数据处理方法及装置
CN110798893A (zh) 一种解决共存干扰的方法及电子设备
CN113126948A (zh) 一种音频播放方法及相关设备
WO2022152167A1 (zh) 一种网络选择方法及设备
WO2022199613A1 (zh) 同步播放方法及装置
WO2022095752A1 (zh) 帧解复用方法、电子设备及存储介质
WO2022105674A1 (zh) 来电接听方法、电子设备及存储介质
WO2022213644A1 (zh) 同步信号块ssb确定方法及相关设备
WO2021052408A1 (zh) 一种电子设备显示方法及电子设备
CN113453327A (zh) 一种发送功率控制方法、终端、芯片系统与系统
WO2022152323A1 (zh) 数据传输方法、芯片、终端及存储介质
CN113572586A (zh) 一种探测参考信号的发送方法、用户设备以及一种系统
WO2024055881A1 (zh) 时钟同步方法、电子设备、系统及存储介质
CN112996066B (zh) 驻网方法及相关设备
CN116708317B (zh) 数据包mtu的调整方法、装置和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935861

Country of ref document: EP

Kind code of ref document: A1