WO2022211277A1 - Method for immobilization of biomimetic silica in whole cell catalyst for increased thermal stability - Google Patents

Method for immobilization of biomimetic silica in whole cell catalyst for increased thermal stability Download PDF

Info

Publication number
WO2022211277A1
WO2022211277A1 PCT/KR2022/002475 KR2022002475W WO2022211277A1 WO 2022211277 A1 WO2022211277 A1 WO 2022211277A1 KR 2022002475 W KR2022002475 W KR 2022002475W WO 2022211277 A1 WO2022211277 A1 WO 2022211277A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
whole
cell catalyst
biomimetic
thermal stability
Prior art date
Application number
PCT/KR2022/002475
Other languages
French (fr)
Korean (ko)
Inventor
조병훈
임균택
Original Assignee
경상국립대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상국립대학교산학협력단 filed Critical 경상국립대학교산학협력단
Publication of WO2022211277A1 publication Critical patent/WO2022211277A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01001Carbonate dehydratase (4.2.1.1), i.e. carbonic anhydrase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/35Fusion polypeptide containing a fusion for enhanced stability/folding during expression, e.g. fusions with chaperones or thioredoxin

Definitions

  • the present invention relates to a biomimetic silica immobilization method of a whole cell catalyst for increasing thermal stability.
  • enzymes and whole cells are used in many biocatalytic reactions. Although they have the disadvantage of lower speed compared to chemical catalysts, they have the advantage that the reaction proceeds under mild conditions of room temperature and atmospheric pressure and the reaction specificity is excellent.
  • a catalytic reaction using an enzyme it is widely used for organic synthesis of optically active compounds because of its simplicity, flexibility and efficiency, but unrefined enzymes interfere with the desired reaction, resulting in poor stereoselectivity and productivity. Therefore, it is more preferable to use a highly purified enzyme catalyst.
  • a procedure such as cell disruption after production of an enzyme from a living organism such as a microorganism, the process is complicated and expensive.
  • a whole cell catalyst intends to use the cell itself in which the enzyme is produced for the same purpose as a catalyst.
  • Such a whole-cell catalyst can be used more advantageously when a coenzyme is absolutely necessary for a biocatalyst process, or when the activity of an enzyme is significantly reduced during a process involving several steps of reaction or purification, but compared to an enzyme catalyst, a whole-cell catalyst In organic solvents, the stability of the cell itself may be reduced, or problems such as by-products or growth conditions may occur, so studies on ways to solve these problems are needed.
  • Korean Patent Publication No. 2020-0053289 discloses 'fusion protein comprising carbonic anhydrase and silica-affinity peptide and method for preparing the same'
  • Korean Patent No. 1591992 discloses a transformant as a whole cell catalyst 'Novel carbonic anhydrase 1 derived from Dunaliella salina' isolated from has been disclosed, but the method for immobilizing a biomimetic silica of a whole cell catalyst for increasing thermal stability of the present invention has not been disclosed.
  • the present invention has been derived from the above needs, and the present inventors have pelB signal peptide (pelB signal peptide), Thermosulfurimonas dismutans derived carbonic anhydrase (carbonic anhydrase) and silica-forming peptide ( Silica forming peptide) R5 was sequentially fused to a whole cell catalyst expressed in the cell gap of E. coli, a salt and a biomimetic silica precursor (tetramethyl orthosilicate) were mixed to form a whole cell catalyst on biomimetic silica. immobilized.
  • the present invention provides a biomimetic silica immobilization method for increasing the thermal stability of a whole cell catalyst, comprising mixing a whole cell catalyst, a salt and a silica precursor provides
  • the present invention provides a pelB signal peptide coding sequence; Thermosulfurimonas dismutans ( Thermosulfurimonas dismutans ) derived carbonic anhydrase (carbonic anhydrase) coding sequence; And silica forming peptide (silica forming peptide) coding sequence; preparing a whole-cell catalyst by transforming the host cell with a recombinant vector that is sequentially linked; and mixing the prepared whole-cell catalyst with a salt and a silica precursor to immobilize the whole-cell catalyst on biomimetic silica.
  • the present invention provides a biomimetic silica to which the whole-cell catalyst prepared by the above preparation method is immobilized.
  • the present invention provides a recombinant vector in which the pelB signal peptide coding sequence, the thermosulfurimonas dismutans-derived carbonic anhydrase coding sequence and the silica-forming peptide coding sequence are sequentially linked; salt; and a silica precursor; as an active ingredient, it provides a composition for increasing the thermal stability of the whole-cell catalyst immobilized on biomimetic silica.
  • the method according to the present invention can increase the thermal stability of the whole-cell catalyst immobilized on biomimetic silica
  • the method of the present invention is useful for biological processes using whole-cell catalysts, food, pharmaceuticals, bio-related industries, etc. It is expected that it can be used.
  • FIG. 1 is a pelB signal peptide coding sequence, Thermosulforimonas dismutans-derived carbonic anhydrase (tdCA) coding sequence, and silica-forming peptide R5 coding sequence pelB- expressed in E. coli cells transformed with a recombinant vector sequentially linked.
  • the figure shows the amino acid sequence of the tdCA-R5 fusion protein and the nucleotide sequence information of the gene encoding it.
  • Figure 2 shows the pelB signal peptide coding sequence, Thermosulforimonas dismutans-derived carbonic anhydrase (tdCA) coding sequence, and silica-forming peptide R5 coding sequence in E. coli BL21 (DE3) cells transformed with a recombinant vector sequentially linked This is the result of confirming the expression tendency of the pelB-tdCA-R5 fusion protein or the expression tendency of tdCA-R5 formed by cleavage of the pelB signal peptide.
  • M marker, S; soluble fraction, IS; insoluble fraction.
  • 3 is a whole-cell catalyst in which a pelB signal peptide coding sequence, a carbonic anhydrase (tdCA) coding sequence derived from Thermosulforimonas dismutans and a silica-forming peptide R5 coding sequence are fused (pelB-tdCA-R5) is expressed.
  • tdCA carbonic anhydrase
  • tdCA-R5 silica-forming peptide R5 coding sequence
  • Figure 4 is a pelB signal peptide coding sequence, Thermosulforimonas dismutans-derived carbonic anhydrase (tdCA) coding sequence and silica-forming peptide R5 coding sequence fused protein (pelB-tdCA-R5) expression whole-cell catalyst (Whole cell) and biomimetic silica (Whole cell@SiO 2 ) immobilized with a whole cell catalyst prepared by treating a silica precursor (1 M TMOS) on the whole cell catalyst were heated at 60° C. for 3 days, respectively, and then centrifuged. This is the result of confirming the level of the tdCA-R5 fusion protein in the supernatant (supernatant, Sup) and the entire sample (Total).
  • the present invention is a whole cell catalyst (whole cell catalyst), characterized in that it comprises the step of mixing a salt and a silica precursor, biomimetic silica immobilization for increasing the thermal stability of the whole cell catalyst provide a way
  • the whole-cell catalyst is Thermosulfurimonas dismutans )
  • the pelB signal peptide is fused to the amino terminus of carbonic anhydrase derived from dismutans, and the carboxy terminus It refers to a cell expressing a protein fused to a silica forming peptide in the cell gap.
  • the term 'cell gap' refers to a portion made of a gel-like material existing in the space between the inner membrane and the outer membrane of a cell.
  • Escherichia coli it is surrounded by two membranes, the inner and outer membranes. Based on these two membranes, the inner space of the inner membrane is the cytoplasm, the space between the inner and outer membrane is the periplasm space, and the outer space of the outer membrane is the extracellular space. classified into extracellular space.
  • the pelB signal peptide is a secretory sequence targeting the cell gap.
  • the pelB signal peptide is expressed in the cytoplasm in a fused form with a carbonic anhydrase and silica-forming peptide derived from Thermosulforimonas dismutans and passes through the cell inner membrane by signal peptidase As it is cut, a fusion protein of carbonic anhydrase and silica-forming peptide exists in the cell gap in a form in which the pelB signal peptide has been removed.
  • thermosulfurimonas dismutans-derived carbonic anhydrase may increase the expression level of the silica-forming peptide fused with carbonic anhydrase in the intercellular space.
  • the pelB signal peptide may consist of the amino acid sequence of SEQ ID NO: 1, and the Thermosulforimonas dismutans-derived carbonic anhydrase is the amino acid sequence of SEQ ID NO: 2 It may be formed, and the silica-forming peptide may be formed of the amino acid sequence of SEQ ID NO: 3, but is not limited thereto.
  • the silica-forming peptide is a peptide consisting of 19 amino acid residues including lysine, arginine and serine found in diatoms, and functions as a template and catalyst for silica formation together with polyamines.
  • the salt is cesium chloride (CsCl), lithium chloride (LiCl), sodium chloride (NaCl), potassium chloride (KCl), chloride Rubidium chloride (RbCl), sodium fluoride (Sodium fluoride, NaF), sodium bromide (Sodium bromide, NaBr), sodium iodide (Sodium iodide, NaI) or sodium nitrate (Sodium nitrate, NaNO 3 ) can be and more preferably cesium chloride, but is not limited thereto.
  • the silica precursor may be tetramethyl orthosilicate (TMOS) or tetraethyl orthosilicate (TEOS), preferably TMOS, but is not limited thereto.
  • TMOS tetramethyl orthosilicate
  • TEOS tetraethyl orthosilicate
  • the present invention also relates to the present invention.
  • pelB signal peptide coding sequence Thermosulfurimonas dismutans ( Thermosulfurimonas dismutans ) derived carbonic anhydrase (carbonic anhydrase) coding sequence; And silica forming peptide (silica forming peptide) coding sequence; transforming the host cell with the sequentially linked recombinant vector to prepare a whole cell catalyst (whole cell catalyst); and
  • the pelB signal peptide may consist of the amino acid sequence of SEQ ID NO: 1
  • the Thermosulforimonas dismutans-derived carbonic anhydrase is the amino acid sequence of SEQ ID NO: 2 It may consist of, and the silica-forming peptide may consist of the amino acid sequence of SEQ ID NO: 3, but is not limited thereto.
  • the whole-cell catalyst, the salt and the silica precursor are the same as described above.
  • the silica-forming peptide is used to form biomimetic silica nanoparticles in powder form at room temperature and neutral pH, and in the existing chemical silica synthesis method, biomimetic silica nanoparticles in powder form
  • biomimetic silica nanoparticles in powder form When forming particles, it is not necessary to carry out a process of heat treatment at high temperature (about 600°C) for a long time, and it is possible to improve the point that silica is only formed in the form of a gel at a very slow rate or that a gel is not formed near neutral pH. have.
  • the added salt is added when the salt is processed during the enzyme immobilization inside the silica between the silica and the enzyme. It promotes stabilization.
  • the biomimetic silica on which the whole-cell catalyst of the present invention is immobilized is prepared by mixing a whole-cell catalyst with a salt and a silica precursor, and the whole-cell catalyst in which the silica-forming peptide is expressed and the silica precursor react to form biomimetic silica, , a whole-cell catalyst immobilized on the formed biomimetic silica.
  • the whole-cell catalyst immobilized on the biomimetic silica has superior thermal stability compared to the whole-cell catalyst not immobilized on the biomimetic silica.
  • Recombinant refers to a cell in which the cell replicates, expresses a heterologous nucleic acid, or expresses a peptide, a heterologous peptide, or a protein encoded by the heterologous nucleic acid.
  • Recombinant cells can express genes or gene segments not found in the native form of the cell, either in sense or antisense form.
  • Recombinant cells can also express genes found in cells in a natural state, but the genes are modified and re-introduced into cells by artificial means.
  • vector is used to refer to a DNA fragment(s), a nucleic acid molecule, that is delivered into a cell.
  • the vector replicates DNA and can be reproduced independently in a host cell.
  • carrier is often used interchangeably with “vector.”
  • the expression vector preferably comprises one or more selectable markers.
  • the marker is a nucleic acid sequence having characteristics that can be selected by conventional chemical methods, and includes all genes that can distinguish transformed cells from non-transformed cells. Examples thereof include, but are not limited to, ampicillin, tetracycline, and the like.
  • any host cell known in the art may be used, for example, E. coli BL21, E. coli JM109, E. coli RR1 , E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, Bacillus subtilis, Bacillus genus strains such as Bacillus thuringiensis, and Salmonella typhimurium, Serratia marcesens and various Pseudomonas There are enterobacteriaceae and strains such as species.
  • the host cell according to an embodiment of the present invention is preferably Escherichia coli BL21 (DE3), but is not limited thereto.
  • the method of delivering the recombinant vector of the present invention into a host cell can be carried out by the CaCl 2 method, the Hanhan method (Hanahan, D., 1983 J. Mol. Biol. 166, 557-580) and the electroporation method.
  • the transformed host cell can be cultured in a medium suitable for the expression of a fusion protein of Thermosulforimonas dismutans-derived carbonic anhydrase and silica-forming peptide using known techniques.
  • a suitable culture medium can be obtained commercially or can be prepared according to the ingredients and composition ratios described in publications such as, for example, catalogs of the American Type Culture Collection, but is not limited thereto.
  • the present invention also provides a recombinant vector in which the pelB signal peptide coding sequence, the Thermosulfurimonas dismutans derived carbonic anhydrase coding sequence and the silica forming peptide coding sequence are sequentially linked. ; salt; and a silica precursor; as an active ingredient, it provides a composition for increasing the thermal stability of the whole-cell catalyst immobilized on biomimetic silica.
  • the pelB signal peptide may consist of the amino acid sequence of SEQ ID NO: 1
  • the Thermosulfur limonas dismutans-derived carbonic anhydrase may consist of the amino acid sequence of SEQ ID NO: 2
  • the silica-forming peptide may consist of the amino acid sequence of SEQ ID NO: 3, but is not limited thereto.
  • Escherichia coli TOP10 strain was used to construct the recombinant vector, and E. coli BL21(DE3) strain was used for protein expression.
  • Escherichia coli was cultured in LB (Luria-Bertani) medium at 37° C. and 180 rpm, and 50 ⁇ g/ml ampicillin was added as needed.
  • the pelB signal peptide for secretion into the periplasm space is linked to the N-terminus (amino terminus) of the Thermosulforimonas dismutans-derived carbonic anhydrase (tdCA), and the C-terminus (carboxy terminus) to the biological Cloning of the gene encoding the fusion protein (pelB-tdCA-R5) linked to the silica-forming peptide R5 for mimetic silica synthesis was performed. Specifically, the tdCA gene was amplified by PCR using pET-tdCA, which is a previously synthesized expression vector of the tdCA gene, as a template.
  • the amplified gene was cloned into the pGEM-T Easy vector, and the sequence was confirmed through sequencing. Thereafter, the tdCA gene was cloned into pET-22b(+), a vector containing the pelB signal peptide coding sequence, using Nco I and Hind III restriction enzyme sequences. After further cleavage with Hind III and Xho I, a gene fragment annealed with the R5 primer of Table 1 was inserted therebetween to finally construct pET-pelb-tdCA-R5.
  • a His6 tag (hexa histidine tag) provided from the pET-22b(+) vector was fused to the C-terminus and expressed.
  • the amino acid sequence of the pelB-tdCA-R5 fusion protein fused with the His6 tag and the nucleotide sequence information of the gene encoding the same are shown in FIG. 1 .
  • Primer information used in the present invention primer designation Sequence information (5' ⁇ 3') (SEQ ID NO:) NcoI-tdCA -HindIII F: CCATGG GTGGCGGTCA (4) R: AAGCTT TTTCAGAATCTTACGCGCG (5) R5 F: AGCTTAGCAGCAAAAAATCTGGCTCCTATTCAGGCTCGAAAGGTTCTAAACGTCG CATTCTGC (6) R: TCGAGCAGAATGCGACGTTTAGAACCTTTCGAGCCTGAATAGGAGCCAGATTTTT TGCTGCTA (7)
  • IPTG isopropyl- ⁇ -D-thiogalactopyranoside
  • the recovered cells are resuspended in a lysis buffer (lysis buffer; 50 mM sodium phosphate, 300 mM NaCl, 10 mM imidazole, pH 8.0), and then disrupted by ultrasonication in a cold state at 4 ° C., It was centrifuged for 10 minutes under 10,000 x g conditions. Thereafter, the supernatant was named as a soluble fraction (S), and the pellet was resuspended in the same volume of dissolution buffer and named as an insoluble fraction (IS). Each cell fraction was separated using SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and analyzed by Coomassie blue staining.
  • SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
  • the recovered cells were resuspended using 20 mM sodium phosphate buffer (pH 7.5) added with 0.5 M cesium chloride (CsCl), and the cell concentration was adjusted so that the absorbance value at 600 nm was 100. .
  • Biomimetic silica precursor TMOS Tetramethyl orthosilicate
  • TMOS Tetramethyl orthosilicate
  • Immobilization (encapsulation) of the whole cell catalyst through silica synthesis was performed. Thereafter, the immobilized whole-cell catalyst was washed twice by centrifugation and resuspension using distilled water, and finally resuspended in 1 ml of 20 mM sodium phosphate buffer.
  • the whole-cell catalyst not immobilized on the biomimetic silica and the whole-cell catalyst immobilized on the biomimetic silica were heated in a water bath at 60° C. for 3 days.
  • the cells before heating and after heating were washed three times with 20 mM sodium phosphate butter and resuspended, and then the enzyme activity was measured using a CO 2 hydration assay.
  • Enzyme release from cells by heating was analyzed by Western blot.
  • SDS-PAGE was performed by preparing a heated sample (Total) and a supernatant (supernatant, Sup) sample obtained by centrifugation. After treatment with a primary antibody (monoclonal anti-His6 tag antibody) and a secondary antibody (polyclonal anti-mouse IgG, alkaline phosphatase conjugated), NBT/BCIP substrate solution was treated to develop color.
  • TMOS silica precursor
  • DE3 wild-type E. coli BL21 (DE3) strain (control)
  • biomimetic silica immobilized with a whole cell catalyst were dried at 60° C. for 24 hours, and then EDS (Energy Dispersive X-ray Spectroscopy) , Oxford instruments) were used for elemental analysis.
  • pelB-tdCA in E. coli BL21(DE3) cells transformed with a recombinant vector in which the coding sequence for the pelB signal peptide, the thermosulfurimonas dismutans-derived carbonic anhydrase (tdCA) coding sequence, and the silica-forming peptide R5 coding sequence were sequentially linked Expression levels of -R5 or tdCA-R5 fusion proteins were analyzed.
  • Whole cell catalyst (hereinafter, whole cell) expressing pelB-tdCA-R5 fusion protein not immobilized on biomimetic silica, and a whole cell catalyst prepared by treating silica precursor (TMOS) on the whole cell catalyst is immobilized in the living body After the mimic silica (hereinafter, Whole cell@SiO 2 ) was heated at 60° C. for 3 days, the residual activity was compared.
  • TMOS silica precursor
  • the whole cell showed a residual activity of 12% compared to the initial activity without heating (the activity of the refrigerated sample), whereas the residual activity of the whole cell@SiO 2 using 0.5 M TMOS was 45% and 1 M TMOS. Residual activity of Whole cell@SiO 2 using was 86%, confirming that the thermal stability of the whole cell catalyst was increased in a TMOS concentration-dependent manner (FIG. 3).
  • the immobilization of the whole-cell catalyst on biomimetic silica can contribute to the improvement of the thermal stability of the whole-cell catalyst.
  • the method of immobilizing the whole-cell catalyst on the biomimetic silica in the present invention can be performed more simply and quickly by mixing the whole-cell catalyst and the silica precursor and reacting for 5 minutes, so that the thermal stability of the whole-cell catalyst can be very effectively improved. was expected to be possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to a method for immobilization of biomimetic silica in a whole cell catalyst for increased thermal stability. Since the method according to the present invention can very effectively increase the thermal stability of a whole cell catalyst immobilized in silica capsules, the method of the present invention can be advantageously used in bioprocess, food, pharmaceutical, chemical, and bio-related industries and the like using a whole cell catalyst.

Description

열 안정성 증가를 위한 전세포 촉매의 생체모방 실리카 고정화 방법Biomimetic Silica Immobilization Method of Whole Cell Catalyst for Increased Thermal Stability
본 발명은 열 안정성 증가를 위한 전세포 촉매의 생체모방 실리카 고정화 방법에 관한 것이다.The present invention relates to a biomimetic silica immobilization method of a whole cell catalyst for increasing thermal stability.
일반적으로 효소와 전세포는 많은 생촉매 반응에 이용되고 있다. 이들은 화학촉매에 비해 속도가 떨어지는 단점이 있지만, 상온·상압의 온화한 조건에서 반응을 진행시키고 반응특이성이 우수하다는 장점이 있다. 효소를 이용한 촉매 반응의 경우 간편함, 융통성 및 효율성이 좋기 때문에 광학활성을 갖는 화합물의 유기합성에 많이 사용되고 있지만, 정제되지 않은 효소는 원하는 반응을 방해하여 입체선택성(stereoselectivity)과 생산성이 떨어지는 문제점이 있을 수 있기 때문에 고도로 정제된 효소 촉매를 사용하는 것이 더 바람직하다. 그러나, 미생물과 같은 생명체에서 효소를 생산한 후 세포 파쇄 등의 절차를 통하여 원하는 효소만 분리·정제하여 사용할 경우 과정이 복잡할 뿐만 아니라 많이 비용이 소요될 수 있다.In general, enzymes and whole cells are used in many biocatalytic reactions. Although they have the disadvantage of lower speed compared to chemical catalysts, they have the advantage that the reaction proceeds under mild conditions of room temperature and atmospheric pressure and the reaction specificity is excellent. In the case of a catalytic reaction using an enzyme, it is widely used for organic synthesis of optically active compounds because of its simplicity, flexibility and efficiency, but unrefined enzymes interfere with the desired reaction, resulting in poor stereoselectivity and productivity. Therefore, it is more preferable to use a highly purified enzyme catalyst. However, when only the desired enzyme is isolated and purified through a procedure such as cell disruption after production of an enzyme from a living organism such as a microorganism, the process is complicated and expensive.
전세포 촉매(whole cell catalyst)는 효소가 생산되는 세포 자체를 촉매와 같은 용도로 사용하고자 하는 것으로, 세포 자체를 촉매 반응에 이용할 경우 활성의 안정화와 경제성 등의 장점을 가질 수 있다. 이러한 전세포 촉매는 생촉매 공정 시 조효소가 반드시 필요하거나 여러 단계의 반응을 수반하는 공정 또는 정제 시 효소의 활성이 현저히 감소하는 경우에 더 유리하게 사용될 수 있지만, 효소 촉매와 비교했을 때 전세포 촉매는 유기용매에서 세포 자체의 안정성이 감소하거나 부산물 생성 또는 성장 조건 제약 등의 문제가 발생할 수 있기 때문에 이러한 문제점을 해결하기 위한 방안에 대한 연구가 필요하다.A whole cell catalyst intends to use the cell itself in which the enzyme is produced for the same purpose as a catalyst. Such a whole-cell catalyst can be used more advantageously when a coenzyme is absolutely necessary for a biocatalyst process, or when the activity of an enzyme is significantly reduced during a process involving several steps of reaction or purification, but compared to an enzyme catalyst, a whole-cell catalyst In organic solvents, the stability of the cell itself may be reduced, or problems such as by-products or growth conditions may occur, so studies on ways to solve these problems are needed.
한편, 한국공개특허 제2020-0053289호에 '탄산무수화효소 및 실리카 친화성 펩타이드를 포함하는 융합 단백질 및 이의 제조방법'이 개시되어 있고, 한국등록특허 제1591992호에 전세포 촉매로서의 형질전환체에서 분리된 '두날리엘라 살리나 유래의 신규한 탄산무수화 효소 1'이 개시되어 있으나, 본 발명의 열 안정성 증가를 위한 전세포 촉매의 생체모방 실리카 고정화 방법에 대해서는 개시된 바가 없다.On the other hand, Korean Patent Publication No. 2020-0053289 discloses 'fusion protein comprising carbonic anhydrase and silica-affinity peptide and method for preparing the same', and Korean Patent No. 1591992 discloses a transformant as a whole cell catalyst 'Novel carbonic anhydrase 1 derived from Dunaliella salina' isolated from has been disclosed, but the method for immobilizing a biomimetic silica of a whole cell catalyst for increasing thermal stability of the present invention has not been disclosed.
본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 pelB 신호 펩타이드(pelB signal peptide), 써모설퍼리모나스 디스뮤탄스(Thermosulfurimonas dismutans) 유래 탄산무수화효소(carbonic anhydrase) 및 실리카 형성 펩타이드(silica forming peptide) R5가 순차적으로 융합된 단백질을 대장균의 세포 간극에서 발현시킨 전세포 촉매(whole cell catalyst)와, 염 및 생체모방 실리카 전구체(tetramethyl orthosilicate)를 혼합하여 생체모방 실리카에 전세포 촉매를 고정화시켰다. 상기 전세포 촉매가 고정화된 생체모방 실리카에 고온(60℃)을 처리한 결과, 생체모방 실리카에 고정화되지 않은 전세포 촉매 처리군(대조군)에 비해 생체모방 실리카에 고정화된 전세포 촉매 처리군에서 탄산무수화효소의 반감기가 현저하게 증가하고 효소 누출률이 감소한 것을 확인함으로써, 본 발명을 완성하였다.The present invention has been derived from the above needs, and the present inventors have pelB signal peptide (pelB signal peptide), Thermosulfurimonas dismutans derived carbonic anhydrase (carbonic anhydrase) and silica-forming peptide ( Silica forming peptide) R5 was sequentially fused to a whole cell catalyst expressed in the cell gap of E. coli, a salt and a biomimetic silica precursor (tetramethyl orthosilicate) were mixed to form a whole cell catalyst on biomimetic silica. immobilized. As a result of treating the biomimetic silica immobilized with the whole cell catalyst at a high temperature (60° C.), in the whole cell catalyst treatment group immobilized on the biomimetic silica compared to the whole cell catalyst treatment group (control group) not immobilized on the biomimetic silica By confirming that the half-life of carbonic anhydrase significantly increased and the enzyme leakage rate decreased, the present invention was completed.
상기 과제를 해결하기 위해, 본 발명은 전세포 촉매(whole cell catalyst), 염 및 실리카 전구체를 혼합하는 단계를 포함하는 것을 특징으로 하는, 전세포 촉매의 열 안정성을 증가시키기 위한 생체모방 실리카 고정화 방법을 제공한다.In order to solve the above problems, the present invention provides a biomimetic silica immobilization method for increasing the thermal stability of a whole cell catalyst, comprising mixing a whole cell catalyst, a salt and a silica precursor provides
또한, 본 발명은 pelB 신호 펩타이드 코딩 서열; 써모설퍼리모나스 디스뮤탄스(Thermosulfurimonas dismutans) 유래 탄산무수화효소(carbonic anhydrase) 코딩 서열; 및 실리카 형성 펩타이드(silica forming peptide) 코딩 서열;이 순차적으로 연결된 재조합 벡터로 숙주세포를 형질전환하여 전세포 촉매를 제조하는 단계; 및 상기 제조된 전세포 촉매와 염 및 실리카 전구체를 혼합하여 전세포 촉매를 생체모방 실리카에 고정화시키는 단계;를 포함하는, 전세포 촉매가 고정화된 생체모방 실리카의 제조방법을 제공한다.In addition, the present invention provides a pelB signal peptide coding sequence; Thermosulfurimonas dismutans ( Thermosulfurimonas dismutans ) derived carbonic anhydrase (carbonic anhydrase) coding sequence; And silica forming peptide (silica forming peptide) coding sequence; preparing a whole-cell catalyst by transforming the host cell with a recombinant vector that is sequentially linked; and mixing the prepared whole-cell catalyst with a salt and a silica precursor to immobilize the whole-cell catalyst on biomimetic silica.
또한, 본 발명은 상기 제조방법에 의해 제조된 전세포 촉매가 고정화된 생체모방 실리카를 제공한다.In addition, the present invention provides a biomimetic silica to which the whole-cell catalyst prepared by the above preparation method is immobilized.
또한, 본 발명은 pelB 신호 펩타이드 코딩 서열, 써모설퍼리모나스 디스뮤탄스 유래 탄산무수화효소 코딩 서열 및 실리카 형성 펩타이드 코딩 서열이 순차적으로 연결된 재조합 벡터; 염; 및 실리카 전구체;를 유효성분으로 포함하는, 생체모방 실리카에 고정화된 전세포 촉매의 열 안정성을 증가시키기 위한 조성물을 제공한다.In addition, the present invention provides a recombinant vector in which the pelB signal peptide coding sequence, the thermosulfurimonas dismutans-derived carbonic anhydrase coding sequence and the silica-forming peptide coding sequence are sequentially linked; salt; and a silica precursor; as an active ingredient, it provides a composition for increasing the thermal stability of the whole-cell catalyst immobilized on biomimetic silica.
본 발명에 따른 방법을 이용하면 생체모방 실리카에 고정화된 전세포 촉매의 열 안정성을 증가시킬 수 있으므로, 본 발명의 방법은 전세포 촉매를 사용하는 생물공정, 식품, 제약, 바이오 관련 산업 등에 유용하게 활용될 수 있을 것으로 기대된다.Since the method according to the present invention can increase the thermal stability of the whole-cell catalyst immobilized on biomimetic silica, the method of the present invention is useful for biological processes using whole-cell catalysts, food, pharmaceuticals, bio-related industries, etc. It is expected that it can be used.
도 1은 pelB 신호 펩타이드 코딩 서열, 써모설퍼리모나스 디스뮤탄스 유래 탄산무수화효소(tdCA) 코딩 서열 및 실리카 형성 펩타이드 R5 코딩 서열이 순차적으로 연결된 재조합 벡터로 형질전환된 대장균 세포에서 발현된 pelB-tdCA-R5 융합 단백질의 아미노산 서열과 이를 암호화하는 유전자의 염기서열 정보를 나타낸 그림이다.1 is a pelB signal peptide coding sequence, Thermosulforimonas dismutans-derived carbonic anhydrase (tdCA) coding sequence, and silica-forming peptide R5 coding sequence pelB- expressed in E. coli cells transformed with a recombinant vector sequentially linked. The figure shows the amino acid sequence of the tdCA-R5 fusion protein and the nucleotide sequence information of the gene encoding it.
도 2는 pelB 신호 펩타이드 코딩 서열, 써모설퍼리모나스 디스뮤탄스 유래 탄산무수화효소(tdCA) 코딩 서열 및 실리카 형성 펩타이드 R5 코딩 서열이 순차적으로 연결된 재조합 벡터로 형질전환된 대장균 BL21(DE3) 세포에서 pelB-tdCA-R5 융합 단백질의 발현 경향, 또는 pelB 신호 펩타이드의 절단에 의해 형성된 tdCA-R5의 발현 경향을 확인한 결과이다. M: 마커, S; 가용성 분획물(soluble fraction), IS; 불용성 분획물(insoluble fraction).Figure 2 shows the pelB signal peptide coding sequence, Thermosulforimonas dismutans-derived carbonic anhydrase (tdCA) coding sequence, and silica-forming peptide R5 coding sequence in E. coli BL21 (DE3) cells transformed with a recombinant vector sequentially linked This is the result of confirming the expression tendency of the pelB-tdCA-R5 fusion protein or the expression tendency of tdCA-R5 formed by cleavage of the pelB signal peptide. M: marker, S; soluble fraction, IS; insoluble fraction.
도 3은 pelB 신호 펩타이드 코딩 서열, 써모설퍼리모나스 디스뮤탄스 유래 탄산무수화효소(tdCA) 코딩 서열 및 실리카 형성 펩타이드 R5 코딩 서열이 융합된 단백질(pelB-tdCA-R5)이 발현된 전세포 촉매(Whole cell)와 상기 전세포 촉매에 염과 실리카 전구체(0.5 M 또는 1 M TMOS)를 처리하여 제조된 전세포 촉매가 고정화된 생체모방 실리카(Whole cell@SiO2)를 60℃에서 3일간 각각 가열한 후 탄산무수화효소의 잔여 활성(Residual activity)을 비교한 결과이다.3 is a whole-cell catalyst in which a pelB signal peptide coding sequence, a carbonic anhydrase (tdCA) coding sequence derived from Thermosulforimonas dismutans and a silica-forming peptide R5 coding sequence are fused (pelB-tdCA-R5) is expressed. (Whole cell) and biomimetic silica (Whole cell@SiO 2 ) immobilized with a whole cell catalyst prepared by treating the whole cell catalyst with a salt and a silica precursor (0.5 M or 1 M TMOS) at 60° C. for 3 days, respectively. This is the result of comparing the residual activity of carbonic anhydrase after heating.
도 4는 pelB 신호 펩타이드 코딩 서열, 써모설퍼리모나스 디스뮤탄스 유래 탄산무수화효소(tdCA) 코딩 서열 및 실리카 형성 펩타이드 R5 코딩 서열이 융합된 단백질(pelB-tdCA-R5)이 발현된 전세포 촉매(Whole cell)와 상기 전세포 촉매에 실리카 전구체(1 M TMOS)를 처리하여 제조된 전세포 촉매가 고정화된 생체모방 실리카(Whole cell@SiO2)를 60℃에서 3일간 각각 가열한 후 원심분리하여 수득한 상등액(supernatant, Sup)과 샘플 전체(Total)에서 tdCA-R5 융합 단백질의 수준을 확인한 결과이다.Figure 4 is a pelB signal peptide coding sequence, Thermosulforimonas dismutans-derived carbonic anhydrase (tdCA) coding sequence and silica-forming peptide R5 coding sequence fused protein (pelB-tdCA-R5) expression whole-cell catalyst (Whole cell) and biomimetic silica (Whole cell@SiO 2 ) immobilized with a whole cell catalyst prepared by treating a silica precursor (1 M TMOS) on the whole cell catalyst were heated at 60° C. for 3 days, respectively, and then centrifuged. This is the result of confirming the level of the tdCA-R5 fusion protein in the supernatant (supernatant, Sup) and the entire sample (Total).
본 발명의 목적을 달성하기 위하여, 본 발명은 전세포 촉매(whole cell catalyst), 염 및 실리카 전구체를 혼합하는 단계를 포함하는 것을 특징으로 하는, 전세포 촉매의 열 안정성 증가를 위한 생체모방 실리카 고정화 방법을 제공한다.In order to achieve the object of the present invention, the present invention is a whole cell catalyst (whole cell catalyst), characterized in that it comprises the step of mixing a salt and a silica precursor, biomimetic silica immobilization for increasing the thermal stability of the whole cell catalyst provide a way
본 발명의 일 구현 예에 따른 방법에 있어서, 상기 전세포 촉매는 써모설퍼리모나스 디스뮤탄스(Thermosulfurimonas dismutans) 유래 탄산무수화효소(carbonic anhydrase)의 아미노 말단에 pelB 신호 펩타이드가 융합되고, 카복시 말단에 실리카 형성 펩타이드(silica forming peptide)가 융합된 단백질을 세포 간극에 발현하는 세포를 의미한다.In the method according to an embodiment of the present invention, the whole-cell catalyst is Thermosulfurimonas dismutans ) The pelB signal peptide is fused to the amino terminus of carbonic anhydrase derived from dismutans, and the carboxy terminus It refers to a cell expressing a protein fused to a silica forming peptide in the cell gap.
본 명세서에서, 용어 '세포 간극'은 세포의 내막(inner membrane)과 외막(outer membrane) 사이의 공간에 존재하는 겔(gel)과 유사한 물질로 이루어진 부분을 말한다. 대장균의 경우 내막과 외막 2개의 막으로 둘러싸여 있으며, 이 2개의 막을 기준으로 내막의 내부 공간은 세포질(cytoplasm), 내막과 외막 사이의 공간은 세포 간극(periplasm space), 외막의 외부 공간은 세포외 영역(extracellular space)으로 분류한다.As used herein, the term 'cell gap' refers to a portion made of a gel-like material existing in the space between the inner membrane and the outer membrane of a cell. In the case of Escherichia coli, it is surrounded by two membranes, the inner and outer membranes. Based on these two membranes, the inner space of the inner membrane is the cytoplasm, the space between the inner and outer membrane is the periplasm space, and the outer space of the outer membrane is the extracellular space. classified into extracellular space.
또한, 상기 pelB 신호 펩타이드는 세포 간극으로 표적(targeting)하는 분비 서열이다. 본 발명에 있어서, 상기 pelB 신호 펩타이드는 써모설퍼리모나스 디스뮤탄스 유래 탄산무수화효소 및 실리카 형성 펩타이드와 융합된 형태로 세포질에서 발현되고 세포 내막을 통과하면서 신호 펩타이드 분해효소(signal peptidase)에 의해 잘려지게 되어, 세포 간극에서는 pelB 신호 펩타이드가 제거된 형태로 탄산무수화효소 및 실리카 형성 펩타이드의 융합 단백질이 존재하게 된다.In addition, the pelB signal peptide is a secretory sequence targeting the cell gap. In the present invention, the pelB signal peptide is expressed in the cytoplasm in a fused form with a carbonic anhydrase and silica-forming peptide derived from Thermosulforimonas dismutans and passes through the cell inner membrane by signal peptidase As it is cut, a fusion protein of carbonic anhydrase and silica-forming peptide exists in the cell gap in a form in which the pelB signal peptide has been removed.
본 발명의 일 구현 예에 따른 방법에 있어서, 상기 써모설퍼리모나스 디스뮤탄스 유래 탄산무수화효소는 탄산무수화효소와 융합된 실리카 형성 펩타이드의 세포 간극 내 발현 수준을 증가시킬 수 있다.In the method according to an embodiment of the present invention, the thermosulfurimonas dismutans-derived carbonic anhydrase may increase the expression level of the silica-forming peptide fused with carbonic anhydrase in the intercellular space.
본 발명의 일 구현 예에 따른 방법에 있어서, 상기 pelB 신호 펩타이드는 서열번호 1의 아미노산 서열로 이루어진 것일 수 있고, 상기 써모설퍼리모나스 디스뮤탄스 유래 탄산무수화효소는 서열번호 2의 아미노산 서열로 이루어진 것일 수 있으며, 상기 실리카 형성 펩타이드는 서열번호 3의 아미노산 서열로 이루어진 것일 수 있으나, 이에 제한되지 않는다.In the method according to an embodiment of the present invention, the pelB signal peptide may consist of the amino acid sequence of SEQ ID NO: 1, and the Thermosulforimonas dismutans-derived carbonic anhydrase is the amino acid sequence of SEQ ID NO: 2 It may be formed, and the silica-forming peptide may be formed of the amino acid sequence of SEQ ID NO: 3, but is not limited thereto.
상기 실리카 형성 펩타이드는 돌말류에서 발견된 라이신, 아르기닌 및 세린이 포함된 19개의 아미노산 잔기로 이루어진 펩타이드로, 폴리아민과 함께 실리카 형성을 위한 주형 및 촉매제로 작용한다.The silica-forming peptide is a peptide consisting of 19 amino acid residues including lysine, arginine and serine found in diatoms, and functions as a template and catalyst for silica formation together with polyamines.
본 발명의 일 구현 예에 따른 방법에 있어서, 상기 염은 염화세슘(Cesium chloride, CsCl), 염화리튬(Lithium chloride, LiCl), 염화나트륨(Sodium chloride, NaCl), 염화칼륨(Potassium chloride, KCl), 염화루비듐(Rubidium chloride, RbCl), 플루오린화나트륨(Sodium fluoride, NaF), 브로민화나트륨(Sodium bromide, NaBr), 아이오딘화나트륨(Sodium iodide, NaI) 또는 질산나트륨(Sodium nitrate, NaNO3)일 수 있으며, 더욱 바람직하게는 염화세슘일 수 있으나, 이에 제한되지 않는다.In the method according to an embodiment of the present invention, the salt is cesium chloride (CsCl), lithium chloride (LiCl), sodium chloride (NaCl), potassium chloride (KCl), chloride Rubidium chloride (RbCl), sodium fluoride (Sodium fluoride, NaF), sodium bromide (Sodium bromide, NaBr), sodium iodide (Sodium iodide, NaI) or sodium nitrate (Sodium nitrate, NaNO 3 ) can be and more preferably cesium chloride, but is not limited thereto.
또한, 상기 실리카 전구체는 테트라메틸 오르토실리케이트(tetramethyl orthosilicate, TMOS) 또는 테트라에틸 오르토실리케이트(tetraethyl orthosilicate, TEOS)일 수 있고, 바람직하게는 TMOS일 수 있으나, 이에 제한되지 않는다.In addition, the silica precursor may be tetramethyl orthosilicate (TMOS) or tetraethyl orthosilicate (TEOS), preferably TMOS, but is not limited thereto.
본 발명은 또한, The present invention also
pelB 신호 펩타이드 코딩 서열; 써모설퍼리모나스 디스뮤탄스(Thermosulfurimonas dismutans) 유래 탄산무수화효소(carbonic anhydrase) 코딩 서열; 및 실리카 형성 펩타이드(silica forming peptide) 코딩 서열;이 순차적으로 연결된 재조합 벡터로 숙주세포를 형질전환하여 전세포 촉매(whole cell catalyst)를 제조하는 단계; 및pelB signal peptide coding sequence; Thermosulfurimonas dismutans ( Thermosulfurimonas dismutans ) derived carbonic anhydrase (carbonic anhydrase) coding sequence; And silica forming peptide (silica forming peptide) coding sequence; transforming the host cell with the sequentially linked recombinant vector to prepare a whole cell catalyst (whole cell catalyst); and
상기 제조된 전세포 촉매와 염 및 실리카 전구체를 혼합하여 전세포 촉매를 생체모방 실리카에 고정화시키는 단계;를 포함하는, 전세포 촉매가 고정화된 생체모방 실리카의 제조방법 및 상기 제조방법에 의해 제조된 전세포 촉매가 고정화된 생체모방 실리카를 제공한다.Mixing the prepared whole-cell catalyst with a salt and a silica precursor to immobilize the whole-cell catalyst on biomimetic silica; a method for preparing biomimetic silica to which a whole-cell catalyst is immobilized, and the method prepared by the method To provide a biomimetic silica immobilized with a whole cell catalyst.
본 발명의 일 구현 예에 따른 제조방법에 있어서, 상기 pelB 신호 펩타이드는 서열번호 1의 아미노산 서열로 이루어진 것일 수 있고, 상기 써모설퍼리모나스 디스뮤탄스 유래 탄산무수화효소는 서열번호 2의 아미노산 서열로 이루어진 것일 수 있으며, 상기 실리카 형성 펩타이드는 서열번호 3의 아미노산 서열로 이루어진 것일 수 있으나, 이에 제한되지 않는다.In the production method according to an embodiment of the present invention, the pelB signal peptide may consist of the amino acid sequence of SEQ ID NO: 1, and the Thermosulforimonas dismutans-derived carbonic anhydrase is the amino acid sequence of SEQ ID NO: 2 It may consist of, and the silica-forming peptide may consist of the amino acid sequence of SEQ ID NO: 3, but is not limited thereto.
또한, 본 발명의 일 구현 예에 따른 제조방법에 있어서, 상기 전세포 촉매, 염 및 실리카 전구체는 전술한 것과 같다.In addition, in the preparation method according to an embodiment of the present invention, the whole-cell catalyst, the salt and the silica precursor are the same as described above.
본 발명의 일 구현 예에 따른 제조방법에 있어서, 상기 실리카 형성 펩타이드는 상온 및 중성 pH에서 분말 형태의 생체모방 실리카 나노입자를 형성하기 위해 사용한 것으로, 기존 화학적 실리카 합성법에서 분말 형태의 생체모방 실리카 나노입자를 형성할 때 장시간 고온(약 600℃)에서 열처리하는 과정을 수행하지 않아도 되고, 실리카가 아주 느린 속도로 겔(gel) 형태로만 형성되거나 중성 pH 부근에서 겔이 형성되지 않는 점을 개선시킬 수 있다. 또한, 실리카 형성 펩타이드를 이용한 효소 고정화는 실리카 합성과 동시에 효소를 내부에 가둬두는 캡슐화(encapsulation)를 통한 고정화가 일어나므로, 효소 고정화 시 염을 처리할 경우 첨가된 염은 실리카 내부에서 실리카와 효소 간의 안정화를 증진시키는 역할을 한다.In the preparation method according to an embodiment of the present invention, the silica-forming peptide is used to form biomimetic silica nanoparticles in powder form at room temperature and neutral pH, and in the existing chemical silica synthesis method, biomimetic silica nanoparticles in powder form When forming particles, it is not necessary to carry out a process of heat treatment at high temperature (about 600°C) for a long time, and it is possible to improve the point that silica is only formed in the form of a gel at a very slow rate or that a gel is not formed near neutral pH. have. In addition, since enzyme immobilization using a silica-forming peptide occurs through encapsulation that traps the enzyme inside at the same time as silica synthesis, the added salt is added when the salt is processed during the enzyme immobilization inside the silica between the silica and the enzyme. It promotes stabilization.
본 발명의 상기 전세포 촉매가 고정화된 생체모방 실리카는 전세포 촉매와 염 및 실리카 전구체를 혼합하여 제조된 것으로, 실리카 형성 펩타이드가 발현된 전세포 촉매와 실리카 전구체가 반응하여 생체모방 실리카를 형성하고, 상기 형성된 생체모방 실리카에 전세포 촉매가 고정화된 것이다. 본 발명에 따른 전세포 촉매가 고정화된 생체모방 실리카에 있어서, 상기 생체모방 실리카에 고정화된 전세포 촉매는 생체모방 실리카에 고정화되지 않은 전세포 촉매에 비해 열 안정성이 우수한 특징이 있다.The biomimetic silica on which the whole-cell catalyst of the present invention is immobilized is prepared by mixing a whole-cell catalyst with a salt and a silica precursor, and the whole-cell catalyst in which the silica-forming peptide is expressed and the silica precursor react to form biomimetic silica, , a whole-cell catalyst immobilized on the formed biomimetic silica. In the biomimetic silica to which the whole-cell catalyst according to the present invention is immobilized, the whole-cell catalyst immobilized on the biomimetic silica has superior thermal stability compared to the whole-cell catalyst not immobilized on the biomimetic silica.
용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.The term "recombinant" refers to a cell in which the cell replicates, expresses a heterologous nucleic acid, or expresses a peptide, a heterologous peptide, or a protein encoded by the heterologous nucleic acid. Recombinant cells can express genes or gene segments not found in the native form of the cell, either in sense or antisense form. Recombinant cells can also express genes found in cells in a natural state, but the genes are modified and re-introduced into cells by artificial means.
용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 용어 "전달체"는 흔히 "벡터"와 호환하여 사용된다.The term “vector” is used to refer to a DNA fragment(s), a nucleic acid molecule, that is delivered into a cell. The vector replicates DNA and can be reproduced independently in a host cell. The term "carrier" is often used interchangeably with "vector."
발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함한다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 암피실린, 테트라사이클린 등이 있으나, 이에 한정되는 것은 아니다.The expression vector preferably comprises one or more selectable markers. The marker is a nucleic acid sequence having characteristics that can be selected by conventional chemical methods, and includes all genes that can distinguish transformed cells from non-transformed cells. Examples thereof include, but are not limited to, ampicillin, tetracycline, and the like.
본 발명의 벡터를 원핵 세포에 안정되면서 연속적으로 클로닝 및 발현시킬 수 있는 숙주세포는 당업계에 공지된 어떠한 숙주세포도 이용할 수 있으며, 예컨대, E. coli BL21, E. coli JM109, E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, 바실러스 서브틸리스, 바실러스 츄린겐시스와 같은 바실러스 속 균주, 그리고 살모넬라 티피무리움, 세라티아 마르세슨스 및 다양한 슈도모나스 종과 같은 장내균과 균주 등이 있다.As a host cell capable of continuously cloning and expressing the vector of the present invention in a prokaryotic cell, any host cell known in the art may be used, for example, E. coli BL21, E. coli JM109, E. coli RR1 , E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, Bacillus subtilis, Bacillus genus strains such as Bacillus thuringiensis, and Salmonella typhimurium, Serratia marcesens and various Pseudomonas There are enterobacteriaceae and strains such as species.
본 발명의 일 구현 예에 따른 숙주세포는 바람직하게는 대장균(Escherichia coli) BL21(DE3)일 수 있으나, 이에 제한되지 않는다.The host cell according to an embodiment of the present invention is preferably Escherichia coli BL21 (DE3), but is not limited thereto.
본 발명의 재조합 벡터를 숙주세포 내로 운반하는 방법은 CaCl2 방법, 하나한 방법(Hanahan, D., 1983 J. Mol. Biol. 166, 557-580) 및 전기천공 방법 등에 의해 실시될 수 있다.The method of delivering the recombinant vector of the present invention into a host cell can be carried out by the CaCl 2 method, the Hanhan method (Hanahan, D., 1983 J. Mol. Biol. 166, 557-580) and the electroporation method.
본 발명의 제조방법에 있어서, 상기 형질전환된 숙주세포는 공지된 기술을 이용하여 써모설퍼리모나스 디스뮤탄스 유래 탄산무수화효소 및 실리카 형성 펩타이드의 융합 단백질의 발현에 적합한 배지에서 배양될 수 있다. 적합한 배양 배지는 상업적으로 입수하시거나 예를 들면, American Type Culture Collection의 카탈로그와 같은 간행물에 기재된 성분 및 조성비에 따라 제조할 수 있으나, 이에 제한되지 않는다.In the production method of the present invention, the transformed host cell can be cultured in a medium suitable for the expression of a fusion protein of Thermosulforimonas dismutans-derived carbonic anhydrase and silica-forming peptide using known techniques. . A suitable culture medium can be obtained commercially or can be prepared according to the ingredients and composition ratios described in publications such as, for example, catalogs of the American Type Culture Collection, but is not limited thereto.
본 발명은 또한, pelB 신호 펩타이드 코딩 서열, 써모설퍼리모나스 디스뮤탄스(Thermosulfurimonas dismutans) 유래 탄산무수화효소(carbonic anhydrase) 코딩 서열 및 실리카 형성 펩타이드(silica forming peptide) 코딩 서열이 순차적으로 연결된 재조합 벡터; 염; 및 실리카 전구체;를 유효성분으로 포함하는, 생체모방 실리카에 고정화된 전세포 촉매의 열 안정성을 증가시키기 위한 조성물을 제공한다.The present invention also provides a recombinant vector in which the pelB signal peptide coding sequence, the Thermosulfurimonas dismutans derived carbonic anhydrase coding sequence and the silica forming peptide coding sequence are sequentially linked. ; salt; and a silica precursor; as an active ingredient, it provides a composition for increasing the thermal stability of the whole-cell catalyst immobilized on biomimetic silica.
본 발명의 조성물에 있어서, 상기 pelB 신호 펩타이드는 서열번호 1의 아미노산 서열로 이루어진 것일 수 있고, 상기 써모설퍼리모나스 디스뮤탄스 유래 탄산무수화효소는 서열번호 2의 아미노산 서열로 이루어진 것일 수 있으며, 상기 실리카 형성 펩타이드는 서열번호 3의 아미노산 서열로 이루어진 것일 수 있으나, 이에 제한되지 않는다.In the composition of the present invention, the pelB signal peptide may consist of the amino acid sequence of SEQ ID NO: 1, and the Thermosulfur limonas dismutans-derived carbonic anhydrase may consist of the amino acid sequence of SEQ ID NO: 2, The silica-forming peptide may consist of the amino acid sequence of SEQ ID NO: 3, but is not limited thereto.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of Examples. However, the following examples are only illustrative of the present invention, and the content of the present invention is not limited to the following examples.
재료 및 방법Materials and Methods
1. 균주 배양1. strain culture
유전자 재조합 벡터 제작을 위해 Escherichia coli TOP10 균주를 사용하였고, 단백질 발현을 위해 E. coli BL21(DE3) 균주를 사용하였다. 대장균은 LB(Luria-Bertani) 배지에서 37℃, 180 rpm 조건하에 배양하였으며, 필요에 따라 50 ㎍/㎖ 암피실린(ampicillin)을 첨가하였다. Escherichia coli TOP10 strain was used to construct the recombinant vector, and E. coli BL21(DE3) strain was used for protein expression. Escherichia coli was cultured in LB (Luria-Bertani) medium at 37° C. and 180 rpm, and 50 μg/ml ampicillin was added as needed.
2. 플라스미드 벡터 제작2. Plasmid Vector Construction
써모설퍼리모나스 디스뮤탄스 유래 탄산무수화효소(tdCA)의 N-말단(아미노 말단)에 세포 간극(periplasm space)로의 분비를 위한 pelB 신호 펩타이드가 연결되고, C-말단(카복시 말단)에 생체모방 실리카 합성을 위한 실리카 형성 펩타이드 R5가 연결된 융합 단백질(pelB-tdCA-R5)을 암호화하는 유전자의 클로닝을 수행하였다. 구체적으로, 기존에 합성된 tdCA 유전자의 발현 벡터인 pET-tdCA를 주형으로 이용하여 PCR을 통해 tdCA 유전자를 증폭하였다. 증폭된 유전자는 pGEM-T Easy 벡터에 클로닝되었고, 시퀀싱을 통해 서열을 확인하였다. 이후 pelB 신호 펩타이드 코딩 서열이 포함된 벡터인 pET-22b(+)에 NcoI 및 HindIII 제한효소 서열을 이용하여 tdCA 유전자를 클로닝하였다. 이후 추가로 HindIII와 XhoI으로 절단한 후 이 사이에 표 1의 R5 프라이머를 어닐링(annealing)한 유전자 조각을 삽입하여 최종적으로 pET-pelb-tdCA-R5를 제작하였다. 단백질 발현 시 C-말단에는 pET-22b(+) 벡터로부터 제공되는 His6 태그(hexa histidine tag)가 융합되어 발현되었다. 상기 His6 태그가 융합된 pelB-tdCA-R5 융합 단백질의 아미노산 서열 및 이를 암호화하는 유전자의 염기서열 정보는 도 1에 나타내었다.The pelB signal peptide for secretion into the periplasm space is linked to the N-terminus (amino terminus) of the Thermosulforimonas dismutans-derived carbonic anhydrase (tdCA), and the C-terminus (carboxy terminus) to the biological Cloning of the gene encoding the fusion protein (pelB-tdCA-R5) linked to the silica-forming peptide R5 for mimetic silica synthesis was performed. Specifically, the tdCA gene was amplified by PCR using pET-tdCA, which is a previously synthesized expression vector of the tdCA gene, as a template. The amplified gene was cloned into the pGEM-T Easy vector, and the sequence was confirmed through sequencing. Thereafter, the tdCA gene was cloned into pET-22b(+), a vector containing the pelB signal peptide coding sequence, using Nco I and Hind III restriction enzyme sequences. After further cleavage with Hind III and Xho I, a gene fragment annealed with the R5 primer of Table 1 was inserted therebetween to finally construct pET-pelb-tdCA-R5. At the time of protein expression, a His6 tag (hexa histidine tag) provided from the pET-22b(+) vector was fused to the C-terminus and expressed. The amino acid sequence of the pelB-tdCA-R5 fusion protein fused with the His6 tag and the nucleotide sequence information of the gene encoding the same are shown in FIG. 1 .
본 발명에서 사용된 프라이머 정보Primer information used in the present invention
프라이머
명칭
primer
designation
서열정보 (5'→3') (서열번호)Sequence information (5'→3') (SEQ ID NO:)
NcoI-tdCA
-HindIII
NcoI-tdCA
-HindIII
F: CCATGGGTGGCGGTCA (4)F: CCATGG GTGGCGGTCA (4)
R: AAGCTTTTTCAGAATCTTACGCGCG (5)R: AAGCTT TTTCAGAATCTTACGCGCG (5)
R5R5 F: AGCTTAGCAGCAAAAAATCTGGCTCCTATTCAGGCTCGAAAGGTTCTAAACGTCG
CATTCTGC (6)
F: AGCTTAGCAGCAAAAAATCTGGCTCCTATTCAGGCTCGAAAGGTTCTAAACGTCG
CATTCTGC (6)
R: TCGAGCAGAATGCGACGTTTAGAACCTTTCGAGCCTGAATAGGAGCCAGATTTTT
TGCTGCTA (7)
R: TCGAGCAGAATGCGACGTTTAGAACCTTTCGAGCCTGAATAGGAGCCAGATTTTT
TGCTGCTA (7)
밑줄 : 제한효소 위치Underline: Restriction enzyme position
3. 전세포 촉매 제작3. Whole Cell Catalyst Fabrication
상기 구축한 재조합 벡터를 E. coli BL21(DE3) 균주에 도입하여 37℃, 180 rpm 조건에서 배양하였다. 세포 농도가 OD600=0.6~0.8에 도달했을 때 1 mM IPTG(isopropyl-β-D-thiogalactopyranoside)를 첨가하여 세포 간극에서 tdCA-R5 융합 단백질을 발현시켰다. 이후 37℃에서 12시간 동안 배양하였고, 배양이 끝난 후 4℃, 4,000 xg 조건으로 10분간 원심분리하여 세포를 회수하였다.The constructed recombinant vector was introduced into the E. coli BL21 (DE3) strain and cultured at 37° C. and 180 rpm. When the cell concentration reached OD 600 =0.6-0.8, 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) was added to express the tdCA-R5 fusion protein in the cell gap. After incubation at 37°C for 12 hours, cells were recovered by centrifugation at 4°C and 4,000 x g conditions for 10 minutes after the incubation was completed.
4. 세포 분획 및 단백질 발현 분석4. Cell Fraction and Protein Expression Analysis
상기 회수된 세포를 용해 버퍼(lysis buffer; 50 mM sodium phosphate, 300 mM NaCl, 10 mM imidazole, pH 8.0)에 재현탁하고, 차가운 상태에서 초음파 처리(ultrasonication)하여 파쇄한 후 파쇄액을 4℃, 10,000 xg 조건으로 10분간 원심분리하였다. 이후 상등액은 가용성 분획물(soluble fraction, S)로 명명하였고, 펠렛은 동일한 부피의 용해 버퍼로 재현탁하여 불용성 분획물(insoluble fraction, IS)로 명명하였다. 각각의 세포 분획물은 SDS-PAGE(sodium dodecyl sulfate-polyacrylamide gel electrophoresis)를 이용하여 분리한 후 쿠마씨 블루(Coomassie blue) 염색을 통해 분석하였다. The recovered cells are resuspended in a lysis buffer (lysis buffer; 50 mM sodium phosphate, 300 mM NaCl, 10 mM imidazole, pH 8.0), and then disrupted by ultrasonication in a cold state at 4 ° C., It was centrifuged for 10 minutes under 10,000 x g conditions. Thereafter, the supernatant was named as a soluble fraction (S), and the pellet was resuspended in the same volume of dissolution buffer and named as an insoluble fraction (IS). Each cell fraction was separated using SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and analyzed by Coomassie blue staining.
5. 생체모방 실리카를 이용한 전세포 촉매 고정화5. Whole Cell Catalyst Immobilization Using Biomimetic Silica
상기 회수된 세포는 0.5 M 염화세슘(CsCl)이 첨가된 20 mM 인산나트륨 버퍼(sodium phosphate buffer, pH 7.5)를 이용하여 재현탁하였고, 세포 농도는 600 nm에서의 흡광도값이 100이 되도록 조절하였다. 생체모방 실리카 전구체 TMOS(Tetramethyl orthosilicate)는 1 M 농도로 1 mM HCl에서 20분 동안 가수분해한 후 가수분해된 TMOS 100 ㎕와 세포 용액 900 ㎕를 혼합하고, 5분간 상온에서 그대로 두고 반응시켜 생체모방 실리카 합성을 통한 전세포 촉매의 고정화(캡슐화)를 진행하였다. 이후 증류수를 이용하여 원심분리 및 재현탁하여 고정화된 전세포 촉매를 2회 세척하고, 최종적으로 20 mM 인산나트륨 버퍼 1 ㎖에 재현탁하였다.The recovered cells were resuspended using 20 mM sodium phosphate buffer (pH 7.5) added with 0.5 M cesium chloride (CsCl), and the cell concentration was adjusted so that the absorbance value at 600 nm was 100. . Biomimetic silica precursor TMOS (Tetramethyl orthosilicate) was hydrolyzed in 1 mM HCl at a concentration of 1 M for 20 minutes, mixed with 100 μl of hydrolyzed TMOS and 900 μl of cell solution, and left at room temperature for 5 minutes to react. Immobilization (encapsulation) of the whole cell catalyst through silica synthesis was performed. Thereafter, the immobilized whole-cell catalyst was washed twice by centrifugation and resuspension using distilled water, and finally resuspended in 1 ml of 20 mM sodium phosphate buffer.
6. 열 안정성 측정6. Thermal stability measurement
생체모방 실리카에 대한 전세포 촉매의 고정화 유무에 따른 열 안정성을 확인하기 위해, 생체모방 실리카에 고정화되지 않은 전세포 촉매와 생체모방 실리카에 고정화된 전세포 촉매를 60℃ 중탕기에서 3일간 가열하였다. 잠재적으로 세포 외부로 방출된 효소를 제거하기 위해서 가열 전 세포와 가열 후 세포를 20 mM 인산나트륨 버터로 3회 세척하고 재현탁한 후 CO2 수화 분석법(hydration assay)을 이용하여 효소 활성을 측정하였다. 구체적으로, 얼음물에 차갑게 유지된 20 mM Tris 버퍼(100 μM phenol red, pH 8.3) 600 ㎕와 전세포 촉매 샘플 10 ㎕를 섞어 1회용 큐벳에 넣은 뒤 4℃로 맞춰진 분광기에 넣어두었다. 얼음물에 차갑게 유지된 CO2 포화 용액 400 ㎕를 첨가하여 섞은 후 570 nm에서 흡광도 변화를 관찰하였다. pH 7.5에 해당하는 흡광도인 1.2에서 pH 6.5에 해당하는 흡광도인 0.2까지 흡광도가 떨어지는 데 걸리는 시간(t)을 구하였다. 또한, 전세포 샘플 대신 버퍼를 이용하여 자연적인 CO2 수화 반응에 의해 걸리는 시간(t0; blank)을 구하였으며, 효소 활성은 (t0-t)/t를 이용하여 계산하였다. In order to confirm the thermal stability of the whole-cell catalyst on biomimetic silica with or without immobilization, the whole-cell catalyst not immobilized on the biomimetic silica and the whole-cell catalyst immobilized on the biomimetic silica were heated in a water bath at 60° C. for 3 days. In order to remove the enzyme potentially released outside the cell, the cells before heating and after heating were washed three times with 20 mM sodium phosphate butter and resuspended, and then the enzyme activity was measured using a CO 2 hydration assay. Specifically, 600 μl of 20 mM Tris buffer (100 μM phenol red, pH 8.3) kept cold in ice water and 10 μl of the whole cell catalyst sample were mixed and placed in a disposable cuvette and placed in a spectrometer set at 4°C. After adding and mixing 400 μl of a saturated CO 2 solution kept cold in ice water, the change in absorbance at 570 nm was observed. The time (t) for the absorbance to fall from the absorbance 1.2 corresponding to pH 7.5 to 0.2, the absorbance corresponding to pH 6.5, was calculated. In addition, the time taken by the natural CO 2 hydration reaction using a buffer instead of the whole cell sample (t0; blank) was obtained, and the enzyme activity was calculated using (t0-t)/t.
7. 가열 후 방출된 단백질 분석7. Analysis of Released Proteins after Heating
가열에 의한 세포로부터의 효소 방출은 웨스턴 블롯(Western blot)을 통해 분석하였다. 가열한 샘플 전체(Total)와 이를 원심분리하여 수득한 상등액(supernatant, Sup) 샘플을 준비하여 SDS-PAGE를 수행하였다. 1차 항체(monoclonal anti-His6 tag antibody) 및 2차 항체(polyclonal anti-mouse IgG, alkaline phosphatase conjugated) 처리 이후 NBT/BCIP 기질 용액(substrate solution)을 처리하여 발색시켰다.Enzyme release from cells by heating was analyzed by Western blot. SDS-PAGE was performed by preparing a heated sample (Total) and a supernatant (supernatant, Sup) sample obtained by centrifugation. After treatment with a primary antibody (monoclonal anti-His6 tag antibody) and a secondary antibody (polyclonal anti-mouse IgG, alkaline phosphatase conjugated), NBT/BCIP substrate solution was treated to develop color.
8. EDS 분석8. EDS Analysis
야생형 E. coli BL21(DE3) 균주에 실리카 전구체(TMOS)를 처리한 샘플(대조군)과 전세포 촉매가 고정화된 생체모방 실리카를 60℃에서 24시간 동안 건조시킨 후 EDS(Energy Dispersive X-ray Spectroscopy, Oxford instruments)를 이용하여 원소 분석을 수행하였다.A sample treated with a silica precursor (TMOS) in wild-type E. coli BL21 (DE3) strain (control) and biomimetic silica immobilized with a whole cell catalyst were dried at 60° C. for 24 hours, and then EDS (Energy Dispersive X-ray Spectroscopy) , Oxford instruments) were used for elemental analysis.
실시예 1. 세포 간극에서의 tdCA-R5 융합 단백질 발현Example 1. Expression of tdCA-R5 fusion protein in the cell gap
pelB 신호 펩타이드 코딩 서열, 써모설퍼리모나스 디스뮤탄스 유래 탄산무수화효소(tdCA) 코딩 서열 및 실리카 형성 펩타이드 R5 코딩 서열이 순차적으로 연결된 재조합 벡터로 형질전환된 대장균 BL21(DE3) 세포에서 pelB-tdCA-R5 또는 tdCA-R5 융합 단백질의 발현 수준을 분석하였다.pelB-tdCA in E. coli BL21(DE3) cells transformed with a recombinant vector in which the coding sequence for the pelB signal peptide, the thermosulfurimonas dismutans-derived carbonic anhydrase (tdCA) coding sequence, and the silica-forming peptide R5 coding sequence were sequentially linked Expression levels of -R5 or tdCA-R5 fusion proteins were analyzed.
그 결과, 대장균 세포의 불용성 분획물에서는 pelB-tdCA-R5 융합 단백질에 해당하는 밴드(31.6 kDa)가 뚜렷하게 나타나고, 가용성 분획물에서는 tdCA-R5 융합 단백질에 해당하는 밴드(29.4 kDa)가 뚜렷하게 나타난 것을 확인하였다. 가용성 분획물에서 발현된 tdCA-R5 융합 단백질은 pelB 신호 펩타이드(2.2 kDa)가 잘린 밴드 크기를 보였으므로, tdCA-R5 융합 단백질이 세포 간극에서 발현된 것임을 알 수 있다(도 2).As a result, it was confirmed that the band corresponding to the pelB-tdCA-R5 fusion protein (31.6 kDa) was clearly displayed in the insoluble fraction of E. coli cells, and the band corresponding to the tdCA-R5 fusion protein (29.4 kDa) was clearly displayed in the soluble fraction. . The tdCA-R5 fusion protein expressed in the soluble fraction showed a truncated band size of the pelB signal peptide (2.2 kDa), indicating that the tdCA-R5 fusion protein was expressed in the cell gap ( FIG. 2 ).
실시예 2. 생체모방 실리카 캡슐화에 의한 전세포 촉매의 열 안정성 분석Example 2. Thermal Stability Analysis of Whole Cell Catalysts by Biomimetic Silica Encapsulation
생체모방 실리카에 고정화되지 않은 pelB-tdCA-R5 융합 단백질이 발현된 전세포 촉매(이하, Whole cell)와, 상기 전세포 촉매에 실리카 전구체(TMOS)를 처리하여 제조된 전세포 촉매가 고정화된 생체모방 실리카(이하, Whole cell@SiO2)를 60℃에서 3일간 각각 가열한 후 잔여 활성을 비교하였다. Whole cell catalyst (hereinafter, whole cell) expressing pelB-tdCA-R5 fusion protein not immobilized on biomimetic silica, and a whole cell catalyst prepared by treating silica precursor (TMOS) on the whole cell catalyst is immobilized in the living body After the mimic silica (hereinafter, Whole cell@SiO 2 ) was heated at 60° C. for 3 days, the residual activity was compared.
그 결과, Whole cell의 경우 가열하지 않은 초기 활성 대비(냉장보관한 샘플의 활성) 12%의 잔여 활성을 나타낸 반면, 0.5 M TMOS를 사용한 Whole cell@SiO2의 잔여활성은 45%, 1 M TMOS를 사용한 Whole cell@SiO2의 잔여활성은 86%를 나타내어, TMOS 농도 의존적으로 전세포 촉매의 열 안정성이 증가한 것을 확인하였다(도 3). As a result, the whole cell showed a residual activity of 12% compared to the initial activity without heating (the activity of the refrigerated sample), whereas the residual activity of the whole cell@SiO 2 using 0.5 M TMOS was 45% and 1 M TMOS. Residual activity of Whole cell@SiO 2 using was 86%, confirming that the thermal stability of the whole cell catalyst was increased in a TMOS concentration-dependent manner (FIG. 3).
이를 통해, 생체모방 실리카에 대한 전세포 촉매의 고정화는 전세포 촉매의 열 안정성 향상에 기여할 수 있음을 알 수 있었다. 특히 본 발명에서 생체모방 실리카에 전세포 촉매를 고정화시키는 방법은 전세포 촉매와 실리카 전구체를 혼합하고 5분 동안 반응시킴으로써 보다 간단하고 빠르게 수행될 수 있으므로, 전세포 촉매의 열 안정성을 매우 효과적으로 향상시킬 수 있을 것으로 예상되었다.Through this, it was found that the immobilization of the whole-cell catalyst on biomimetic silica can contribute to the improvement of the thermal stability of the whole-cell catalyst. In particular, the method of immobilizing the whole-cell catalyst on the biomimetic silica in the present invention can be performed more simply and quickly by mixing the whole-cell catalyst and the silica precursor and reacting for 5 minutes, so that the thermal stability of the whole-cell catalyst can be very effectively improved. was expected to be possible.
또한, 온도 60℃는 대장균 세포막을 훼손시킬 수 있는 높은 온도이므로, 60℃의 고온 처리 후 대장균 세포 간극에서 발현된 tdCA-R5 융합 단백질의 누출률을 분석하기 위해 웨스턴 블롯을 수행하였다.In addition, since the temperature of 60 ° C is a high temperature that can damage the E. coli cell membrane, Western blot was performed to analyze the leakage rate of the tdCA-R5 fusion protein expressed in the E. coli cell gap after high temperature treatment at 60 ° C.
그 결과, Whole cell의 상등액에서는 tdCA-R5 융합 단백질이 검출된 반면, Whole cell@SiO2(1 M TMOS)의 상등액에서는 tdCA-R5 융합 단백질이 거의 검출되지 않음을 확인하였다(도 4). 이를 통해, 전세포 촉매를 실리카에 고정화시킬 경우 세포로부터 효소 누출률을 현저히 감소시킬 수 있음을 알 수 있었다.As a result, it was confirmed that the tdCA-R5 fusion protein was detected in the supernatant of the whole cell, whereas the tdCA-R5 fusion protein was hardly detected in the supernatant of the whole cell@SiO 2 (1 M TMOS) ( FIG. 4 ). Through this, it was found that when the whole-cell catalyst was immobilized on silica, the rate of enzyme leakage from the cells could be significantly reduced.
실시예 3. EDS 분석Example 3. EDS analysis
Whole cell@SiO2를 건조시킨 후 EDS를 통한 원소 분석을 수행하였다. 대조군으로서 야생형 E. coli BL21(DE3) 균주에 TMOS 처리한 후 세척 및 건조하여 원소 분석하였다. 야생형 E. coli의 경우 TMOS를 처리했음에도 불구하고 규소(Si) 함량이 0.14%~0.28%인 반면, Whole cell@SiO2의 경우 규소 함량이 0.85%~1.75%를 보였다(표 2). 이를 통해, 세포 간극에서 써모설퍼리모나스 디스뮤탄스 유래 탄산무수화효소 및 실리카 형성 펩타이드 R5의 융합 단백질 발현에 의해 생체모방 실리카가 제대로 형성되었음을 알 수 있었다. Whole cell@SiO 2 After drying, elemental analysis was performed through EDS. As a control, the wild-type E. coli BL21 (DE3) strain was treated with TMOS, washed and dried for elemental analysis. In the case of wild-type E. coli , the silicon (Si) content was 0.14% to 0.28% despite TMOS treatment, whereas in the case of Whole cell@SiO 2 , the silicon content was 0.85% to 1.75% (Table 2). Through this, it was confirmed that the biomimetic silica was properly formed by the expression of the fusion protein of the thermosulfurimonas dismutans-derived carbonic anhydrase and the silica-forming peptide R5 in the cell gap.
EDS 분석 결과EDS analysis results
Wild type E. coli BL21(DE3) (1 M TMOS)Wild type E. coli BL21(DE3) (1 M TMOS) pelB-tdCA-R5
(1 M TMOS)
pelB-tdCA-R5
(1M TMOS)
ElementElement wt%wt% at%at% wt%wt% at%at%
CC 56.1156.11 62.4162.41 55.2155.21 62.6962.69
NN 18.5818.58 17.7217.72 15.3515.35 14.9514.95
OO 21.9021.90 18.2918.29 22.4322.43 19.1219.12
NaNa 0.710.71 0.410.41 0.540.54 0.320.32
PP 2.412.41 1.041.04 4.714.71 2.072.07
SiSi 0.280.28 0.140.14 1.751.75 0.850.85
TotalTotal 100.00100.00 100.00100.00 100.00100.00 100.00100.00
wt% : weight percent(원자량의 조성 비율)wt%: weight percent (composition ratio of atomic weight)
at% : atomic percent(원자갯수의 조성 비율)at% : atomic percent (composition ratio of the number of atoms)

Claims (10)

  1. 전세포 촉매(whole cell catalyst), 염 및 실리카 전구체를 혼합하는 단계를 포함하는 것을 특징으로 하는, 전세포 촉매의 열 안정성을 증가시키기 위한 생체모방 실리카 고정화 방법.A biomimetic silica immobilization method for increasing the thermal stability of a whole cell catalyst, comprising mixing a whole cell catalyst, a salt and a silica precursor.
  2. 제1항에 있어서, 상기 전세포 촉매는 써모설퍼리모나스 디스뮤탄스(Thermosulfurimonas dismutans) 유래 탄산무수화효소(carbonic anhydrase)의 아미노 말단에 pelB 신호 펩타이드가 융합되고, 카복시 말단에 실리카 형성 펩타이드(silica forming peptide)가 융합된 단백질을 세포 간극에 발현하는 세포인 것을 특징으로 하는, 전세포 촉매의 열 안정성을 증가시키기 위한 생체모방 실리카 고정화 방법.According to claim 1, wherein the whole-cell catalyst is Thermosulfurimonas dismutans ( Thermosulfurimonas dismutans ) pelB signal peptide is fused to the amino terminus of carbonic anhydrase derived from, and silica forming peptide (silica) at the carboxy terminus Forming peptide) is a cell that expresses the fused protein in the intercellular space, characterized in that the biomimetic silica immobilization method for increasing the thermal stability of the whole cell catalyst.
  3. 제2항에 있어서, 상기 실리카 형성 펩타이드는 서열번호 3의 아미노산 서열로 이루어진 것을 특징으로 하는 전세포 촉매의 열 안정성을 증가시키기 위한 생체모방 실리카 고정화 방법.According to claim 2, wherein the silica-forming peptide is biomimetic silica immobilization method for increasing the thermal stability of the whole-cell catalyst, characterized in that consisting of the amino acid sequence of SEQ ID NO: 3.
  4. 제1항에 있어서, 상기 염은 염화세슘(CsCl), 염화리튬(LiCl), 염화나트륨(NaCl), 염화칼륨(KCl), 염화루비듐(RbCl), 플루오린화나트륨(NaF), 브로민화나트륨(NaBr), 아이오딘화나트륨(NaI) 또는 질산나트륨(NaNO3)인 것을 특징으로 하는 전세포 촉매의 열 안정성을 증가시키기 위한 생체모방 실리카 고정화 방법.According to claim 1, wherein the salt is cesium chloride (CsCl), lithium chloride (LiCl), sodium chloride (NaCl), potassium chloride (KCl), rubidium chloride (RbCl), sodium fluoride (NaF), sodium bromide (NaBr) , Sodium iodide (NaI) or sodium nitrate (NaNO 3 ) Biomimetic silica immobilization method for increasing the thermal stability of the whole-cell catalyst, characterized in that.
  5. 제1항에 있어서, 상기 실리카 전구체는 테트라메틸 오르토실리케이트(tetramethyl orthosilicate) 또는 테트라에틸 오르토실리케이트(tetraethyl orthosilicate)인 것을 특징으로 하는 전세포 촉매의 열 안정성을 증가시키기 위한 생체모방 실리카 고정화 방법.The method of claim 1, wherein the silica precursor is tetramethyl orthosilicate or tetraethyl orthosilicate.
  6. pelB 신호 펩타이드 코딩 서열; 써모설퍼리모나스 디스뮤탄스(Thermosulfurimonas dismutans) 유래 탄산무수화효소(carbonic anhydrase) 코딩 서열; 및 실리카 형성 펩타이드(silica forming peptide) 코딩 서열;이 순차적으로 연결된 재조합 벡터로 숙주세포를 형질전환하여 전세포 촉매(whole cell catalyst)를 제조하는 단계; 및pelB signal peptide coding sequence; Thermosulfurimonas dismutans ( Thermosulfurimonas dismutans ) derived carbonic anhydrase (carbonic anhydrase) coding sequence; And silica forming peptide (silica forming peptide) coding sequence; transforming the host cell with the sequentially linked recombinant vector to prepare a whole cell catalyst (whole cell catalyst); and
    상기 제조된 전세포 촉매와 염 및 실리카 전구체를 혼합하여 전세포 촉매를 생체모방 실리카에 고정화시키는 단계;를 포함하는, 전세포 촉매가 고정화된 생체모방 실리카의 제조방법.Mixing the prepared whole-cell catalyst with a salt and a silica precursor to immobilize the whole-cell catalyst on biomimetic silica;
  7. 제6항의 방법에 의해 제조된 전세포 촉매가 고정화된 생체모방 실리카. A biomimetic silica to which the whole-cell catalyst prepared by the method of claim 6 is immobilized.
  8. pelB 신호 펩타이드 코딩 서열, 써모설퍼리모나스 디스뮤탄스(Thermosulfurimonas dismutans) 유래 탄산무수화효소(carbonic anhydrase) 코딩 서열 및 실리카 형성 펩타이드(silica forming peptide) 코딩 서열이 순차적으로 연결된 재조합 벡터; 염; 및 실리카 전구체;를 유효성분으로 포함하는, 생체모방 실리카에 고정화된 전세포 촉매의 열 안정성을 증가시키기 위한 조성물.pelB signal peptide coding sequence, Thermosulfurimonas dismutans ( Thermosulfurimonas dismutans ) derived carbonic anhydrase coding sequence and silica forming peptide (silica forming peptide) a recombinant vector in which the coding sequence is sequentially linked; salt; and a silica precursor; as an active ingredient, a composition for increasing the thermal stability of a whole-cell catalyst immobilized on biomimetic silica.
  9. 제8항에 있어서, 상기 실리카 형성 펩타이드는 서열번호 3의 아미노산 서열로 이루어진 것을 특징으로 하는 생체모방 실리카에 고정화된 전세포 촉매의 열 안정성을 증가시키기 위한 조성물.The composition for increasing the thermal stability of the whole-cell catalyst immobilized on biomimetic silica according to claim 8, wherein the silica-forming peptide consists of the amino acid sequence of SEQ ID NO: 3.
  10. 제8항에 있어서, 상기 염은 염화세슘(CsCl), 염화리튬(LiCl), 염화나트륨(NaCl), 염화칼륨(KCl), 염화루비듐(RbCl), 플루오린화나트륨(NaF), 브로민화나트륨(NaBr), 아이오딘화나트륨(NaI) 또는 질산나트륨(NaNO3)인 것을 특징으로 하는 생체모방 실리카에 고정화된 전세포 촉매의 열 안정성을 증가시키기 위한 조성물.According to claim 8, wherein the salt is cesium chloride (CsCl), lithium chloride (LiCl), sodium chloride (NaCl), potassium chloride (KCl), rubidium chloride (RbCl), sodium fluoride (NaF), sodium bromide (NaBr) , Sodium iodide (NaI) or sodium nitrate (NaNO 3 ) Composition for increasing the thermal stability of the whole-cell catalyst immobilized on biomimetic silica.
PCT/KR2022/002475 2021-04-01 2022-02-21 Method for immobilization of biomimetic silica in whole cell catalyst for increased thermal stability WO2022211277A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0042667 2021-04-01
KR1020210042667A KR102599847B1 (en) 2021-04-01 2021-04-01 Method for immobilization of whole-cell catalyst in biomimetics silica for increased thermal stability

Publications (1)

Publication Number Publication Date
WO2022211277A1 true WO2022211277A1 (en) 2022-10-06

Family

ID=83457665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002475 WO2022211277A1 (en) 2021-04-01 2022-02-21 Method for immobilization of biomimetic silica in whole cell catalyst for increased thermal stability

Country Status (2)

Country Link
KR (1) KR102599847B1 (en)
WO (1) WO2022211277A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170126794A (en) * 2016-05-10 2017-11-20 포항공과대학교 산학협력단 A fusion protein comprising virus coat protein and silica forming peptide and its use

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101424605B1 (en) * 2011-06-29 2014-08-04 포항공과대학교 산학협력단 Method for converting and producing carbonate minerals from carbon dioxide using recombinant biocatalyst
KR101975754B1 (en) * 2012-08-28 2019-05-09 고려대학교 세종산학협력단 Peptides capable of silica deposition and use thereof
KR20200053289A (en) * 2018-11-08 2020-05-18 한국전력공사 Fusion protein comprising carbonic anhydrase and silica affinity peptide, and preparation method thereof
KR102401223B1 (en) * 2019-02-15 2022-05-25 고려대학교 세종산학협력단 Linker composition comprising silica-forming peptides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170126794A (en) * 2016-05-10 2017-11-20 포항공과대학교 산학협력단 A fusion protein comprising virus coat protein and silica forming peptide and its use

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Ph.D. thesis, Pohang University of Science and Technology", 1 January 2014, POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY, Korea, article JO BYUNG HOON 저작물을: "Development of carbonic anhydrase-based biocatalysts for biomimetic CO₂ sequestration.", pages: 1 - 154, XP055972116 *
BYUNG HOON JO, IN SEONG HWANG: "Characterization and High-Level Periplasmic Expression of Thermostable α-Carbonic Anhydrase from Thermosulfurimonas Dismutans in Escherichia Coli for CO2 Capture and Utilization", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 21, no. 1, pages 1 - 13, XP055698973, DOI: 10.3390/ijms21010103 *
CHIEN LIANG-JUNG, SURESHKUMAR MANTHIRIYAPPAN, HSIEH HSIAO-HSIN, WANG JUI-LUNG: "Biosequestration of carbon dioxide using a silicified carbonic anhydrase catalyst", BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, KOREAN SOCIETY FOR BIOTECHNOLOGY AND BIOENGINEERING, SEOUL, KR, vol. 18, no. 3, 1 June 2013 (2013-06-01), KR , pages 567 - 574, XP055972143, ISSN: 1226-8372, DOI: 10.1007/s12257-012-0398-2 *
MOON HYUKJOON, KIM SUHYEOK, JO BYUNG HOON, CHA HYUNG JOON: "Immobilization of genetically engineered whole-cell biocatalysts with periplasmic carbonic anhydrase in polyurethane foam for enzymatic CO2 capture and utilization", JOURNAL OF CO2 UTILIZATION, ELSEVIER, NL, vol. 39, 1 July 2020 (2020-07-01), NL , pages 101172, XP055972139, ISSN: 2212-9820, DOI: 10.1016/j.jcou.2020.101172 *

Also Published As

Publication number Publication date
KR102599847B1 (en) 2023-11-07
KR20220136704A (en) 2022-10-11

Similar Documents

Publication Publication Date Title
Mijakovic et al. Transmembrane modulator‐dependent bacterial tyrosine kinase activates UDP‐glucose dehydrogenases
US8241901B2 (en) Method of secretory expression of lysostaphin in Escherichia coli at high level
CN108795837B (en) Bacillus subtilis engineering bacterium for efficiently expressing phospholipase D
CN109055346B (en) L-aspartic acid-alpha-decarboxylase with improved thermal stability
US20120107875A1 (en) Expression Cassette, Recombinant Host Cell and Process for Producing a Target Protein
CN113061591B (en) Novel firefly luciferase mutant, preparation method and application thereof
CN111172129B (en) Phi29DNA polymerase mutant for improving thermal stability, amplification uniformity and amplification efficiency and application thereof
CN110564708A (en) Recombinant phospholipase D and application thereof in synthesis of phosphatidylserine or other phospholipids
CN108841809A (en) With height than amylase mutant and its gene and application living and thermal stability
KR20050074313A (en) Cephalosporin c acylases
WO2022211277A1 (en) Method for immobilization of biomimetic silica in whole cell catalyst for increased thermal stability
KR101659732B1 (en) Protein Expression System Induced by Heavy Metals And Biosensor for Detecting Heavy Metals
US8835153B2 (en) Process and genes for expression and overexpression of active [FeFe] hydrogenases
TW201433572A (en) Method for manufacturing human epidermal cell growth factor
Reilly et al. Characterization of recombinant Francisella tularensis acid phosphatase A
WO2021256674A1 (en) Method for increasing stability of target protein immobilized in silica nanoparticle through salt treatment
US11760988B2 (en) L-aspartate alpha-decarboxylase mutant and application thereof
CN115109770A (en) Benzaldehyde lyase mutant and application thereof in preparation of 1, 4-dihydroxy-2-butanone
KR20100128890A (en) Organophosphorus hydrolase variants and method for preparing the same
CN114410496A (en) Method for improving yield of pichia pastoris exogenous protein
CN108795832B (en) Host bacterium with endogenous L-asparaginase II gene knocked out, preparation method and application thereof
CN112592929A (en) Preparation method and application of halogenase recombinant expression vector
EP3701022B1 (en) Beta-lactamase variants
US20220119792A1 (en) Gene expression cassette for expressing n-terminal methionine-truncated protein of interest and method for producing n-terminal methionine-truncated protein of interest by using same
CN114958792B (en) Recombinant expression type nicotinamide phosphoribosyltransferase mutant and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781398

Country of ref document: EP

Kind code of ref document: A1