WO2022211254A1 - Ion sensor - Google Patents

Ion sensor Download PDF

Info

Publication number
WO2022211254A1
WO2022211254A1 PCT/KR2022/001809 KR2022001809W WO2022211254A1 WO 2022211254 A1 WO2022211254 A1 WO 2022211254A1 KR 2022001809 W KR2022001809 W KR 2022001809W WO 2022211254 A1 WO2022211254 A1 WO 2022211254A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
layer
electron transport
ion sensor
conductive
Prior art date
Application number
PCT/KR2022/001809
Other languages
French (fr)
Korean (ko)
Inventor
이영근
유민수
이동엽
Original Assignee
동우화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동우화인켐 주식회사 filed Critical 동우화인켐 주식회사
Publication of WO2022211254A1 publication Critical patent/WO2022211254A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/301Reference electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry

Definitions

  • the present invention relates to an ion sensor. More particularly, it relates to an ion sensor comprising a working electrode and a reference electrode.
  • a chemical sensor is a sensor that detects a specific ion present in a sample to be measured and measures the potential difference corresponding to the concentration and activity of the ion. Therefore, selectivity and sensitivity characteristics for accurately selecting and rapidly detecting a measurement target ion from among various ions included in a measurement target sample are important.
  • Korean Patent Laid-Open Publication No. 10-2013-0107609 discloses an ion sensor using a potential difference method.
  • An object of the present invention is to provide an ion sensor having improved sensing sensitivity and sensing resolution.
  • Substrate A conductive layer disposed on the substrate and disposed on an upper surface of the substrate, an electron transport layer disposed on the upper surface of the conductive layer and comprising a conductive binder and a metal complex dispersed in the conductive binder, and the electron transport a working electrode comprising an ion selective layer disposed on a top surface of the layer; and a reference electrode disposed on the substrate to be spaced apart from the working electrode.
  • the conductive layer includes a metal layer and a metal protective layer disposed on an upper surface of the metal layer.
  • the metal layer includes at least one of Au, Ag, Cu, Pt, Ti, Ni, Sn, Mo, Co, Pd, and alloys thereof.
  • the conductive binder includes a carbon paste, a metal-containing paste, or a conductive polymer.
  • the metal complex is Prussian blue, potassium ferricyanide, potassium ferrocyanide, hexaamine ruthenium (III) chloride (Hexaammineruthenium (III) chloride) ,
  • An ion sensor comprising at least one selected from the group consisting of a ferrocene-based compound, a quinone-based compound, and a hydroquinone-based compound.
  • the ion-selective layer comprises an ion-sensitive material and a polymer support.
  • the ion-sensitive material is H + , Na + , K + , Ca 2+ , Mg 2+ , OH - , Cl - , F - , Br - , I - , CN - and NO 3 -
  • An ion sensor comprising a material that selectively transmits one ion selected from the group consisting of.
  • the polymer support is polyvinyl chloride, polyvinyl chloride carboxylate, polyvinyl chloride aminate, polyvinyl butyral, polyvinyl alcohol, polymethyl acrylate, polyethylene oxide, xerogel, agar Rose, comprising at least one selected from the group consisting of polyurethane and silicone rubber, ion sensor.
  • the ion sensor according to embodiments of the present invention includes a substrate, a working electrode disposed on the substrate and including a conductive layer, an electron transport layer and an ion selective layer, and a reference electrode disposed on the substrate spaced apart from the working electrode include Accordingly, it is possible to provide an ion sensor having a small error with respect to a measurement value and improved sensing performance.
  • the working electrode includes the ion-selective layer, it may have high selectivity for a specific ion, and the sensing sensitivity and speed may be improved.
  • the electron transport layer includes the metal complex compound
  • electron and hole transport capability may be improved, and measurement dispersion may be reduced to improve reliability and accuracy of measurement.
  • the metal complex may be uniformly dispersed and fixed in the electron transport layer. Accordingly, the metal complex may be included in a high concentration in the electron transport layer.
  • the electron transport layer including the conductive binder is interposed between the conductive layer and the ion-selective layer, the adhesion of the ion-selective layer and the durability of the ion sensor may increase.
  • FIG. 1 is a schematic plan view illustrating an ion sensor according to exemplary embodiments.
  • FIGS. 2 to 4 are schematic cross-sectional views for explaining an ion sensor according to example embodiments.
  • 5 is a concentration-potential graph of an electrolyte sample measured by an ion sensor according to Examples and Comparative Examples of the present application.
  • An ion sensor includes a substrate, a working electrode disposed on the substrate, and a reference electrode disposed on the substrate to be spaced apart from the working electrode, wherein the working electrode is a conductive electrode disposed on an upper surface of the substrate. a layer, an electron transport layer disposed on the upper surface of the conductive layer and including a conductive binder and a metal complex, and an ion selective layer disposed on the upper surface of the electron transport layer.
  • FIG. 1 is a schematic plan view of an ion sensor according to exemplary embodiments.
  • an ion sensor includes a substrate 100 , a working electrode 210 , a reference electrode 220 , and a wiring 310 .
  • an auxiliary sensor 320 may be further included.
  • the substrate 100 may be provided as a substrate on which the working electrode 210 , the reference electrode 220 , the wiring 310 , and the like are disposed.
  • the substrate 100 may be a commonly used substrate or film material without any particular limitation, and may include, for example, glass, a polymer, and/or an inorganic insulating material.
  • the substrate 100 may be a film having flexible properties.
  • the film may include a polyester-based resin such as polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, and polybutylene terephthalate; Cellulose resins, such as a diacetyl cellulose and a triacetyl cellulose; polycarbonate-based resin; acrylic resins such as polymethyl (meth)acrylate and polyethyl (meth)acrylate; styrenic resins such as polystyrene and acrylonitrile-styrene copolymer; polyolefin-based resins such as polyethylene, polypropylene, polyolefin having a cyclo-based or norbornene structure, and an ethylene-propylene copolymer; vinyl chloride-based resin; amide-based resins such as nylon and aromatic polyamide; imide-based resin; polyether sulfone-based resin; sulfone-
  • the thickness of the substrate 100 may be 1 ⁇ m to 500 ⁇ m. Within the thickness range, the strength, handleability, workability, and thinness of the ion sensor may be excellent. Preferably it may be 1 ⁇ m to 300 ⁇ m, more preferably 5 ⁇ m to 200 ⁇ m.
  • the substrate 100 may contain one or more additives.
  • additives include ultraviolet absorbers, antioxidants, lubricants, plasticizers, mold release agents, color inhibitors, flame retardants, nucleating agents, antistatic agents, pigments, colorants, and the like.
  • the substrate 100 may include various functional layers such as a hard coating layer, an anti-reflection layer, and a gas barrier layer on one or both sides of the film.
  • the substrate 100 may be surface-treated.
  • the surface treatment may include a plasma treatment, a corona treatment, a dry treatment such as a primer treatment, and a chemical treatment such as an alkali treatment including a saponification treatment.
  • FIGS. 2 to 4 are schematic cross-sectional views of ion sensors according to exemplary embodiments.
  • the working electrode 210 includes a first conductive layer 212 , an electron transport layer 214 , and an ion selective layer 216 .
  • the working electrode 210 includes a first conductive layer 212 , an electron transport layer 214 disposed on the top surface of the first conductive layer 212 , and an ion selective layer ( 216) may be included.
  • the working electrode 210 may detect an electrical signal generated by a reaction between the ion-sensitive material of the ion-selective layer 216 and the sensing target material.
  • the sensing target material may be an ion or a molecule.
  • the first conductive layer 212 may be disposed on the substrate 100 .
  • the first conductive layer 212 may directly contact the substrate 100 .
  • the first conductive layer 212 may serve as a path through which electrons and/or holes generated in reaction with a sensing target material are transmitted.
  • the first conductive layer 212 may include a metal layer 212a and a metal protection layer 212b.
  • the metal protective layer 212b may entirely cover the upper surface of the metal layer 212a.
  • the metal protective layer 212b may be in direct contact with the metal layer 212a.
  • the metal protective layer 212b may prevent the metal layer 212a from directly contacting the outside, thereby preventing oxidation-reduction of the metal layer 212a.
  • the metal layer 212a may include at least one of Au, Ag, Cu, Pt, Ti, Ni, Sn, Mo, Co, Pd, and alloys thereof.
  • an APC (Ag-Pd-Cu) alloy may be used.
  • the metal layer 212a may be formed of at least one of Au, Ag, APC alloy, and Pt.
  • the Au, Ag, APC alloy, and Pt may improve electrical conductivity and reduce resistance of the first conductive layer 212 . Therefore, the detection performance of the ion sensor can be improved.
  • the thickness of the metal layer 212a may be 500 ⁇ to 4000 ⁇ . Detection performance may be excellent within the thickness range. Preferably, the thickness of the metal layer 212a may be 1000 ⁇ to 3000 ⁇ .
  • the metal protective layer 212b may include a transparent conductive oxide.
  • the metal protective layer 212b is a transparent conductive oxide, such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (Zinc oxide, ZnO), and indium zinc tin.
  • Oxide Indium Zinc Tin Oxide, IZTO
  • cadmium tin oxide Cadmium Tin Oxide, CTO
  • the metal protective layer 212b may be formed of only ITO or IZO. ITO and IZO are chemically stable while having electrical conductivity, so that the metal layer 212a can be effectively protected from oxidation-reduction reactions.
  • the metal protective layer 212b may prevent the metal layer 212a from coming into direct contact with the atmosphere or a sample to prevent oxidation of a metal component constituting the metal layer 212a. Accordingly, the reliability of the electrical signal sensed by the metal layer 212a may be improved.
  • the thickness of the metal passivation layer 212b may be 100 ⁇ to 800 ⁇ .
  • the metal layer 212a may be effectively protected within the thickness range, and electrical conductivity of the first conductive layer 212 may be improved.
  • the thickness of the metal protective layer 212b may be 300 ⁇ to 500 ⁇ .
  • the electron transport layer 214 may be disposed on the upper surface of the first conductive layer 212 .
  • the upper surface and side surfaces of the first conductive layer 212 may be covered. In this case, direct contact between the first conductive layer 212 and the outside may be prevented, and corrosion or oxidation of the first conductive layer 212 may be suppressed by the electron transport layer 214 .
  • the electron transport layer 214 may include a conductive binder and a metal complex.
  • the electron transport layer 214 may rapidly transport electrons and/or holes generated in the ion-selective layer 216 to the first conductive layer 212 to improve sensing performance of the sensing target material of the ion-selective layer 216 .
  • electrons/holes may be generated by a reaction between the ion-sensitive material and the sensing target material, and the metal complex compound is a material that is oxidized or reduced by receiving electrons/holes generated by the reaction. may include Accordingly, electrons/holes may be transferred to the first conductive layer 212 through the oxidation or reduction.
  • a potential difference generated by a difference in concentration of the sensing target material inside/outside the working electrode 210 may be used.
  • the electromotive force generated in the ion-selective layer 216 may change depending on the transport state of electrons and/or holes, and accordingly, the distribution of the potential difference value between the working electrode 210 and the reference electrode 220 may increase.
  • a voltage according to the concentration of a sensing target material may not be constantly maintained, and an error may occur in measuring a potential difference.
  • the dispersion of the potential difference value may increase during repeated measurement due to the non-uniform potential difference, and the measured potential difference value may vary even when samples of the same concentration are measured. Also, minute changes in ion concentration may not be detected.
  • the ion selective layer 216 generates The voltage can be kept stable. Accordingly, the potential difference measured between the working electrode 210 and the reference electrode 220 may be constantly maintained according to the concentration of the sensing target material, and the accuracy and reliability of the measured value through the ion sensor may be improved.
  • the metal complex since the metal complex has abundant electron density and excellent oxidation-reduction reaction characteristics, electrons and/or holes generated from the ion selective layer 216 may be efficiently transported to the first conductive layer 212 . Accordingly, in measuring the potential difference between the working electrode 210 and the reference electrode 220 , a measurement speed for a threshold value may be improved, and dispersion of an electrical signal measured from the ion sensor may be reduced.
  • the metal complex compound is a cyano group (CN) containing compound such as Prussian blue, potassium ferricyanide, potassium ferrocyanide; Hexaammineruthenium (III) chloride; Ferrocene-based compounds; Quinone-based compounds such as 1,2-benzoquinone, 1,4-benzoquinone, 1,4-naphthoquinone, and anthraquinone; Or it may include a hydroquinone-based compound and the like.
  • CN cyano group
  • the metal complex compound may include a cyano group (CN)-containing compound such as Prussian blue, potassium ferricyanide and potassium ferrocyanide.
  • CN cyano group
  • the cyano group-containing compound can be easily oxidized or reduced. Accordingly, electrons and holes may be easily and quickly transported, and a potential difference between the working electrode 210 and the reference electrode 220 may be stably maintained.
  • the metal complex may include Prussian blue.
  • Prussian blue is a blue pigment containing ferric (III) hexacyanoferrate (II) potassium as a main component, and may have high oxidation properties.
  • the electron transport layer 214 including Prussian blue is disposed on the first conductive layer 212 , the electrical sensitivity of the working electrode 210 may be improved, and measurement dispersion may be improved.
  • the metal complex compound may be included in an amount of 0.01 wt% to 10 wt% based on the total weight of the electron transport layer 214 .
  • the content of the metal complex is less than 0.01 wt %, a path through which electrons/holes move to the first conductive layer 212 may not be sufficiently secured, and dispersion of the measured values may increase.
  • the content of the metal complex compound is greater than 10% by weight, the surface of the conductive binder may be modified as the content of the metal complex compound compared to the conductive binder increases, and the measurement dispersion may increase.
  • the metal complex may be included in an amount of 0.1 wt% to 7 wt%, more preferably 0.5 wt% to 3 wt%, based on the total weight of the electron transport layer 214.
  • excellent electron transport capability may be secured, and accuracy and reliability of the measured voltage or potential difference may be improved.
  • the electron transport layer 214 includes the conductive binder, it is possible to prevent the ion selective layer 216 from being peeled off from the working electrode 210 .
  • the ion-selective layer 216 selects ions during the measurement process due to the low adhesion of the ion-selective layer 216 to the first conductive layer 212 . Delamination of the stratified layer 216 may occur.
  • each structure/ Adhesion and adhesion between the layers may be improved. Accordingly, durability and mechanical/chemical stability of the ion sensor may be improved.
  • the conductive binder may include a carbon paste, a metal-containing paste, and a conductive polymer.
  • the carbon paste may include carbon black, graphite, graphite oxide, graphene, graphene oxide, and the like.
  • the metal-containing paste may include Cu, Ag, Au, Ni, Pa, Pt, and the like, and preferably Ag/AgCl paste.
  • the conductive polymer may be poly(3,4-ethylenedioxythiophenes)), poly(styrene sulfonates), PEDOT:PSS(Poly( 3,4-ethylenedioxythiophenes):poly(styrenesulfonates)) and the like.
  • the conductive binder may include a carbon paste in consideration of electron and/or hole transport characteristics, adhesion, durability, and the like.
  • the thickness of the electron transport layer 214 may be 3 ⁇ m to 15 ⁇ m, preferably 5 ⁇ m to 10 ⁇ m.
  • the adhesion between the first conductive layer 212 , the electron transport layer 214 , and the ion selective layer 216 may decrease.
  • the thickness is greater than 15 ⁇ m, sensing sensitivity and speed may decrease, and dispersion of measured values may increase.
  • the ion selective layer 216 may be disposed on the upper surface of the electron transport layer 214 .
  • the ion selective layer 216 may cover the top and side surfaces of the electron transport layer 214 .
  • the ion selective layer 216 may cover the side surface of the first conductive layer 212 and the top and side surfaces of the electron transport layer 214 .
  • the electron transport layer 214 may entirely cover the top and side surfaces of the first conductive layer 212
  • the ion selective layer 216 may entirely cover the top and side surfaces of the electron transport layer 214 .
  • the ion-selective layer 216 may include an ion-sensitive material and a polymer support.
  • the ion selective layer 216 may generate a potential difference between the working electrode 210 and the reference electrode 220 by directly contacting the measurement sample to sense the sensing target material.
  • the ion-sensitive material may serve to impart selectivity to a specific ion and generate a voltage by reacting with the ion.
  • the ion-sensitive material may be a material that causes a covalent bond, a coordination bond, or an ion exchange reaction with a sensing target material (eg, ion) included in the measurement sample.
  • the ion-sensitive material may be selected according to the ion to be measured.
  • the ion sensor may selectively detect specific ions by changing the ion-sensitive material included in the ion-selective layer 216 .
  • Examples of the ions to be measured include H + , Na + , K + , Ca 2+ , Mg 2+ , OH - , Cl - , F - , Br - , I - , CN - and NO 3 - .
  • the present invention is not limited thereto, and various measurement target ions may be selected as needed.
  • the ion-sensitive material is at least one of H + , Na + , K + , Ca 2+ , Mg 2+ , OH - , Cl - , F - , Br - , I - , CN - and NO 3 - It may include a material that selectively sensitizes the ions of the ion-selective layer 216 and transmits them into the ion-selective layer 216 .
  • N,N',N"-tripeptyl-N,N',N"-trimethyl-4,4',4"-propyridinetris(3-oxabutylamide) N ,N',N''-Triheptyl-N,N',N''-trimethyl-4,4',4''-propylidynetris(3-oxabutyramide)
  • N,N'-dibenzyl-N,N' -diphenyl-1,2-phenylenediacetamide N,N'-Dibenzyl-N,N'-diphenyl-1,2-phenylenedioxydi-acetamide
  • N,N,N',N'-tetracyclohexyl -1,2-phenylenedioxydiacetamide N,N,N',N'-Tetracyclohexyl-1,2-phenylenedioxydiacetamide
  • a sensing target material eg, a measurement target ion
  • a concentration difference of the sensing target material may occur inside and outside the working electrode 210 with the ion selective layer 216 as a boundary.
  • the concentration of the sensing target material outside the working electrode 210 may be lower than the concentration of the sensing target material inside the working electrode 210 .
  • an electromotive force is generated by the concentration difference of the sensing target material inside/outside the working electrode 210 , and thus a potential difference between the working electrode 210 and the reference electrode 220 may occur.
  • the potential of the working electrode 210 may change in proportion to the concentration of the sensing target material included in the sample. Accordingly, the potential difference between the working electrode 210 and the reference electrode 220 according to the concentration of the sensing target material may be measured by using the reference electrode 220 having a constant potential as a counter electrode. By measuring the potential difference, the concentration of the sensing target material in the sample may be measured.
  • the ion-sensitive material may be included in an amount of 0.5% to 10% by weight of the total weight of the ion-selective layer 216 . If it is less than 0.5% by weight, the sensitivity and selectivity to the sensing target material may be reduced, and if it is more than 10% by weight, the content of the polymer support may be relatively decreased, resulting in deterioration in stability and adhesion.
  • the polymer support forms the structure/appearance of the ion-selective layer 216 , and may serve to fix the ion-sensitive material in the ion-selective layer 216 .
  • the polymer support is polyvinyl chloride (PVC), polyvinyl chloride carboxylate (Polyvinyl chloride carboxylate), polyvinyl chloride aminate (Polyvinyl chloride aminate), polymethyl acrylate (Poly ( methylacrylate)), polyethylene oxide (Poly(ethylene oxide)), Xerogel, Polyurethane, Silicone rubber, Agarose, Polyvinyl butyral (PVB) And polyvinyl alcohol (Polyvinyl alcohol, PVA) and the like.
  • PVC polyvinyl chloride
  • Polyvinyl chloride carboxylate Polyvinyl chloride carboxylate
  • polyvinyl chloride aminate Polymethyl acrylate
  • Poly (ethylene oxide) Polyethylene oxide
  • Xerogel Polyurethane
  • Silicone rubber Agarose
  • PVB Polyvinyl butyral
  • PVA polyvinyl alcohol
  • the polymer support may be included in an amount of about 20% to 40% by weight based on the total weight of the ion selective layer 216 . Structural stability may be improved while preventing an increase in resistance within the above range.
  • the ion selective layer 216 may further include a plasticizer.
  • the ion-selective layer 216 includes a plasticizer, flexibility may be improved, and deterioration of signal stability due to high resistance may be prevented.
  • the electrical resistance of the ion-selective layer 216 decreases, charge separation formed on the surface of the membrane by bonding with specific ions or molecules may easily occur. Accordingly, an ion sensor having a stable signal and a fast response time may be provided.
  • NPOE 2-nitrophenyl octyl ether
  • DOS dioctyl sebacate
  • DOP bis (2-ethylhexyl) phthalate
  • DOA bis (2-ethylhexyl adipate
  • NPOE diethyl succinate
  • dioctyl maleate and diundecyl phthalate 2-nitrophenyl octyl ether
  • DOS dioctyl sebacate
  • DOS bis (2-ethylhexyl) phthalate
  • DOP bis (2-ethylhexyl) adipate
  • DOA 2-nitrophenyl octyl ether
  • NPOE diethyl succinate
  • the plasticizer may be included in an amount of about 50 wt% to about 80 wt% of the total weight of the ion selective layer 216 . Structural stability of the ion-selective layer 216 may be improved while preventing an increase in resistance within the above range.
  • the thickness of the ion-selective layer 216 may be greater than the thickness of the electron transport layer 214 .
  • the thickness of the ion selective layer 216 may be 5 ⁇ m to 30 ⁇ m, preferably 15 ⁇ m to 20 ⁇ m. Within the above range, the sensing sensitivity and speed may be excellent while improving the selectivity and sensitivity to the sensing target material.
  • a first conductive layer 212 is formed on the substrate 100 , an electron transport layer 214 is formed on the first conductive layer 212 , and an electron transport layer 214 is formed on the substrate 100 .
  • the working electrode 210 can be manufactured.
  • the first conductive layer 212 is formed on the substrate 100 with a metal film including at least one of Au, Ag, Cu, Pt, Ti, Ni, Sn, Mo, Co, Pd, and alloys thereof, and then It may be formed by patterning.
  • a patterning method commonly used in the art may be used.
  • photolithography may be used.
  • the metal layer 212a is first patterned and then the metal protective layer 212b is formed, or a transparent conductive oxide film is formed on the metal layer. Then, the metal layer and the transparent conductive oxide layer may be patterned together to form the metal layer 212a and the metal protective layer 212b together.
  • the electron transport layer 214 may be formed by coating a mixture of a conductive binder and a metal complex on the first conductive layer 212 and then drying the mixture.
  • a coating method commonly used in the art may be used, for example, various printing methods may be used.
  • the ion selective layer 216 may be formed by applying a mixture of a polymer support and an ion-sensitive material, or a mixture of a polymer support, an ion-sensitive material, and a plasticizer on the electron transport layer 214 and then drying.
  • the reference electrode 220 may be disposed on the substrate 100 .
  • the reference electrode 220 may be disposed on the same plane as the working electrode 210 of the substrate 100 .
  • the reference electrode 220 may be disposed to be spaced apart from the working electrode 210 , and the reference electrode 220 and the working electrode 210 may be electrically insulated.
  • the reference electrode 220 may provide a reference value for a voltage value or a potential value measured by the working electrode 210 when measuring a sample. By using the potential value of the reference electrode 220 as a reference value, the concentration of the sensing target material selectively transmitted into the working electrode 210 may be specified.
  • the sensing target material eg, specific ion
  • the sensing target material inside/outside the working electrode 210 . It is possible to calculate the voltage generated by the concentration difference of , and it is possible to derive the concentration of the component to be measured from the voltage.
  • the reference electrode 220 may include a second conductive layer 222 and a reference material layer 224 .
  • the second conductive layer 222 may be disposed on the upper surface of the substrate 100
  • the reference material layer 224 may be disposed on the upper surface of the second conductive layer 222 .
  • the second conductive layer 222 of the reference electrode 220 may include substantially the same material as the first conductive layer 212 of the working electrode 210 .
  • the reference material layer 224 may include Ag/AgCl paste.
  • the reference electrode 220 may include an Ag/AgCl electrode layer.
  • the Ag/AgCl electrode layer may be formed from Ag/AgCl paste, and the Ag/AgCl electrode layer may be disposed on the substrate 100 to directly contact the Ag/AgCl electrode layer.
  • the wiring 310 may be connected to each of the working electrode 210 and the reference electrode 220 .
  • the wiring 310 connected to the working electrode 210 and the wiring 310 connected to the reference electrode 220 may be electrically insulated from each other.
  • the wiring 310 may be formed of the same material as the first conductive layer 212 of the working electrode 210 , and may be formed of the same material as the second conductive layer 222 of the reference electrode 220 .
  • the wiring 310 may be integrally formed with the working electrode 210 and the reference electrode 220 .
  • the wiring 310 may be integrally formed by forming a metal film on the substrate 100 and patterning it.
  • the first conductive layer 212 , the reference electrode 220 , and the wiring 310 may be integrally formed through a screen printing method.
  • the wire 310 connected to the working electrode 210 and the wire 310 connected to the reference electrode 220 may be connected to the sensing driver.
  • an electrical signal (eg, a potential difference) measured from the working electrode 210 and the reference electrode 220 may be transmitted to the sensing driver through the wiring 310 .
  • the sensing driver may be a driving integrated circuit (IC) chip, and the concentration of the sensing target material may be calculated by the driving IC chip.
  • the sensing driver may include a signal detector and a signal processor.
  • the signal sensing unit and the signal processing unit may be electrically connected to each other.
  • the signal detector may detect a potential difference between the working electrode 210 and the reference electrode 220 according to the concentration of the sensing target material.
  • the signal processing unit may calculate the concentration of the sensing target material from the potential difference between the working electrode 210 and the reference electrode 220 measured by the signal sensing unit.
  • the ion sensor may further include an auxiliary sensor 320 .
  • the auxiliary sensor 320 may be electrically connected to the wiring 310 , and may correct a measurement deviation according to a surrounding environment.
  • the auxiliary sensor 320 may be a temperature sensor, and may correct a deviation of a measured value according to temperature.
  • a PET film having a thickness of 180 ⁇ m was prepared as a substrate. Thereafter, an APC metal film having a thickness of about 2000 ⁇ and an IZO metal protective film having a thickness of about 500 ⁇ were sequentially applied on the substrate, and then patterned to form a metal layer and a metal protective layer.
  • a reference electrode was formed by screen-printing Ag/AgCl (DBS-4585V, manufactured by Daejoo Electronic Materials) on the substrate to be spaced apart from the working electrode.
  • Example 1 in the same manner as in Example 1, except that the electron transport layer was formed using a carbon paste containing 3% by weight of Prussian blue instead of the carbon paste containing 0.5% by weight of Prussian blue. An ion sensor was fabricated.
  • Example 1 in the same manner as in Example 1, except that the electron transport layer was formed using a carbon paste containing 10% by weight of Prussian blue instead of the carbon paste containing 0.5% by weight of Prussian blue. An ion sensor was fabricated.
  • a PET film having a thickness of 180 ⁇ m was prepared as a substrate. Thereafter, an APC metal film with a thickness of about 2000 ⁇ and an IZO metal protective film with a thickness of about 500 ⁇ were sequentially applied on the substrate, and then patterned to form a metal layer and a metal protective layer.
  • a mixture comprising 5 wt% of bis[(12-crown-4)methyl]dodecylmethylmalonate, 35 wt% PU and 60 wt% DOS was mixed with 0.4 ml tetrahydrofuran After dilution in a solvent, the solution was drop-coated on the metal protective layer. Thereafter, it was dried at room temperature for about 24 hours to form an ion selective layer with a thickness of about 15 ⁇ m to form a working electrode.
  • a reference electrode was formed by screen-printing Ag/AgCl (DBS-4585V, manufactured by Daejoo Electronic Materials) on the substrate to be spaced apart from the working electrode.
  • the potential difference in the sodium electrolyte solution was measured using the sensors of Examples and Comparative Examples.
  • Each electrolyte solution (0.2, 0.5, 0.8, 1.0%) was evenly dropped on the working electrode and the reference electrode, and the potential difference between the working electrode and the reference electrode after 60 seconds at a current density of 3 kA/m 2 was measured through the constant current time potentiation method. measured. After measuring the potential difference 5 times for each concentration, the relative standard deviation (RSD) was calculated from the measured potential difference values and shown in Table 1 below.
  • the graph of FIG. 5 was obtained through the measured potential difference values of Examples and Comparative Examples. As the distribution in the y-axis direction (Potential) is wider, it indicates that the measurement distribution is deteriorated.
  • the ion sensor of Example 1 has excellent measurement dispersion by stably maintaining the potential value. It can be seen that the ion sensor of the comparative example is not clearly differentiated according to the concentration of the electrolyte solution as the dispersion of the measured values is large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

The present invention relates to an ion sensor, and more specifically, to an ion sensor comprising: a substrate; a working electrode disposed on the substrate and including a conductive layer, an electron transport layer, and an ion-selective layer; and a reference electrode. Accordingly, the ion sensor has excellent sensing sensitivity and speed, and can have improved accuracy and reliability.

Description

이온 센서ion sensor
본 발명은 이온 센서에 관한 것이다. 보다 상세하게는, 작업 전극 및 기준 전극을 포함하는 이온 센서에 관한 것이다.The present invention relates to an ion sensor. More particularly, it relates to an ion sensor comprising a working electrode and a reference electrode.
최근 혈액 투석, 원격 의료 진단 등의 임상 화학, 수질 분석 등의 환경 분석, 발효 공정 등의 식품 화학 등에 대한 관심이 증가함에 따라 혈액, 땀 등의 측정 대상에 포함되는 각종 화학 물질의 변화를 측정하는 화학 센서에 대한 요구가 점차 증가하고 있다.Recently, as interest in clinical chemistry such as hemodialysis and telemedicine diagnosis, environmental analysis such as water quality analysis, and food chemistry such as fermentation process has increased, it is possible to measure changes in various chemical substances included in measurement objects such as blood and sweat. There is a growing demand for chemical sensors.
화학 센서 중 이온 센서는 측정 대상 시료 중에 존재하는 특정 이온을 감지하여 해당 이온의 농도와 활성에 대응하는 전위차를 측정하는 센서이다. 따라서, 측정 대상 시료에 포함된 다양한 이온들 중에서 측정 대상 이온을 정확히 선별하고 신속하게 검출하는 선택도 및 감도 특성이 중요하다. A chemical sensor is a sensor that detects a specific ion present in a sample to be measured and measures the potential difference corresponding to the concentration and activity of the ion. Therefore, selectivity and sensitivity characteristics for accurately selecting and rapidly detecting a measurement target ion from among various ions included in a measurement target sample are important.
그러나, 종래의 이온 센서는 측정 대상 시료의 농도, 주변 온도 및 압력 등 다양한 측정 환경에 따라 선택도 및 감도가 쉽게 저하되어 측정 대상 이온의 농도를 정확하게 검출하기 어렵다. 따라서, 측정 대상 이온에 대하여 우수한 선택성과 감도를 가지는 이온 센서의 연구개발이 요구되고 있다.However, in the conventional ion sensor, selectivity and sensitivity are easily lowered according to various measurement environments such as the concentration of the sample to be measured, ambient temperature, and pressure, so it is difficult to accurately detect the concentration of the ion to be measured. Therefore, there is a demand for research and development of an ion sensor having excellent selectivity and sensitivity with respect to the ion to be measured.
예를 들면, 대한민국 공개특허공보 10-2013-0107609호는 전위차법을 이용한 이온 센서를 개시하고 있다.For example, Korean Patent Laid-Open Publication No. 10-2013-0107609 discloses an ion sensor using a potential difference method.
본 발명의 일 과제는 향상된 센싱 감도 및 센싱 해상도를 갖는 이온 센서를 제공하는 것이다.An object of the present invention is to provide an ion sensor having improved sensing sensitivity and sensing resolution.
1. 기판; 상기 기판 상에 배치되며, 상기 기판의 상면 상에 배치되는 도전층, 상기 도전층의 상면 상에 배치되고, 도전성 바인더 및 상기 도전성 바인더 내에 분산된 금속 착화합물을 포함하는 전자전달층, 및 상기 전자전달층의 상면 상에 배치된 이온 선택성층을 포함하는 작업 전극; 및 상기 기판 상에서 상기 작업 전극과 이격되어 배치된 기준 전극을 포함하는, 이온 센서.1. Substrate; A conductive layer disposed on the substrate and disposed on an upper surface of the substrate, an electron transport layer disposed on the upper surface of the conductive layer and comprising a conductive binder and a metal complex dispersed in the conductive binder, and the electron transport a working electrode comprising an ion selective layer disposed on a top surface of the layer; and a reference electrode disposed on the substrate to be spaced apart from the working electrode.
2. 위 1에 있어서, 상기 도전층은 금속층 및 상기 금속층의 상면 상에 배치된 금속 보호층을 포함하는, 이온 센서.2. The ion sensor according to 1 above, wherein the conductive layer includes a metal layer and a metal protective layer disposed on an upper surface of the metal layer.
3. 위 2에 있어서, 상기 금속층은 Au, Ag, Cu, Pt, Ti, Ni, Sn, Mo, Co, Pd 및 이들의 합금 중 적어도 하나를 포함하는, 이온 센서.3. The ion sensor according to the above 2, wherein the metal layer includes at least one of Au, Ag, Cu, Pt, Ti, Ni, Sn, Mo, Co, Pd, and alloys thereof.
4. 위 2에 있어서, 상기 금속 보호층은 투명 도전성 산화물을 포함하는, 이온 센서.4. The ion sensor according to 2 above, wherein the metal protective layer includes a transparent conductive oxide.
5. 위 1에 있어서, 상기 도전성 바인더는 카본 페이스트, 금속 함유 페이스트 또는 전도성 고분자를 포함하는, 이온 센서.5. The ion sensor according to 1 above, wherein the conductive binder includes a carbon paste, a metal-containing paste, or a conductive polymer.
6. 위 1에 있어서, 상기 금속 착화합물은 프러시안 블루(Prussian blue), 페리시안화 칼륨(Potassium ferricyanide), 페로시안화 칼륨(Potassium ferrocyanide), 염화헥사아민루세늄(Ⅲ)(Hexaammineruthenium(Ⅲ) chloride), 페로센계 화합물, 퀴논계 화합물 및 하이드로퀴논계 화합물로 구성된 그룹으로부터 선택된 적어도 하나를 포함하는, 이온 센서.6. In the above 1, the metal complex is Prussian blue, potassium ferricyanide, potassium ferrocyanide, hexaamine ruthenium (III) chloride (Hexaammineruthenium (III) chloride) , An ion sensor comprising at least one selected from the group consisting of a ferrocene-based compound, a quinone-based compound, and a hydroquinone-based compound.
7. 위 1에 있어서, 상기 금속 착화합물은 상기 전자전달층 총 중량 중 0.01중량% 내지 10중량%로 포함되는, 이온 센서.7. The ion sensor according to the above 1, wherein the metal complex is included in an amount of 0.01 wt% to 10 wt% of the total weight of the electron transport layer.
8. 위 1에 있어서, 상기 이온 선택성층은 이온 감응 물질 및 고분자 지지체를 포함하는, 이온 센서.8. The ion sensor according to 1 above, wherein the ion-selective layer comprises an ion-sensitive material and a polymer support.
9. 위 8에 있어서, 상기 이온 감응 물질은 H+, Na+, K+, Ca2+, Mg2+, OH-, Cl-, F-, Br-, I-, CN- 및 NO3 -로 구성된 그룹으로부터 선택된 하나의 이온을 선택적으로 투과시키는 물질을 포함하는, 이온 센서.9. The above 8, wherein the ion-sensitive material is H + , Na + , K + , Ca 2+ , Mg 2+ , OH - , Cl - , F - , Br - , I - , CN - and NO 3 - An ion sensor comprising a material that selectively transmits one ion selected from the group consisting of.
10. 위 8에 있어서, 상기 고분자 지지체는 폴리염화비닐, 폴리비닐클로라이드 카르복실레이트, 폴리비닐클로라이드 아미네이트, 폴리비닐부티랄, 폴리비닐알코올, 폴리메틸아크릴레이트, 폴리에틸렌옥사이드, 크세로겔, 아가로즈, 폴리우레탄 및 실리콘 러버로 구성된 그룹으로부터 선택된 적어도 하나를 포함하는, 이온 센서.10. In the above 8, the polymer support is polyvinyl chloride, polyvinyl chloride carboxylate, polyvinyl chloride aminate, polyvinyl butyral, polyvinyl alcohol, polymethyl acrylate, polyethylene oxide, xerogel, agar Rose, comprising at least one selected from the group consisting of polyurethane and silicone rubber,   ion   sensor.
11. 위 1에 있어서, 상기 이온 선택성층의 두께는 상기 전자전달층의 두께보다 두꺼운, 이온 센서.11. The ion sensor according to the above 1, wherein the thickness of the ion selective layer is thicker than the thickness of the electron transport layer.
12. 위 11에 있어서, 상기 전자전달층의 두께는 3㎛ 내지 15㎛인, 이온 센서.12. The ion sensor according to the above 11, wherein the electron transport layer has a thickness of 3 μm to 15 μm.
13. 위 11에 있어서, 상기 이온 선택성층의 두께는 5㎛ 내지 30㎛인, 이온 센서.13. The ion sensor according to the above 11, wherein the thickness of the ion selective layer is 5 μm to 30 μm.
14. 위 1에 있어서, 상기 전자전달층은 상기 도전층의 측면을 전체적으로 둘러싸는, 이온 센서.14. The ion sensor according to 1 above, wherein the electron transport layer entirely surrounds a side surface of the conductive layer.
15. 위 1에 있어서, 상기 이온 선택성층은 상기 도전층의 측면 및 상기 전자전달층의 측면을 전체적으로 둘러싸는, 이온 센서.15. The ion sensor according to 1 above, wherein the ion-selective layer entirely surrounds a side surface of the conductive layer and a side surface of the electron transport layer.
본 발명의 실시예들에 따른 이온 센서는 기판, 상기 기판 상에 배치되며 도전층, 전자전달층 및 이온 선택성층을 포함하는 작업전극, 및 상기 기판 상에서 상기 작업 전극과 이격되어 배치된 기준 전극을 포함한다. 따라서, 측정 값에 대한 오차가 작으며, 센싱 성능이 향상된 이온 센서를 제공할 수 있다.The ion sensor according to embodiments of the present invention includes a substrate, a working electrode disposed on the substrate and including a conductive layer, an electron transport layer and an ion selective layer, and a reference electrode disposed on the substrate spaced apart from the working electrode include Accordingly, it is possible to provide an ion sensor having a small error with respect to a measurement value and improved sensing performance.
상기 작업전극이 이온 선택성층을 포함함에 따라 특정 이온에 대한 높은 선택성을 가질 수 있으며, 센싱 민감도 및 속도가 향상될 수 있다.As the working electrode includes the ion-selective layer, it may have high selectivity for a specific ion, and the sensing sensitivity and speed may be improved.
또한, 전자전달층이 금속 착화합물을 포함함에 따라, 전자 및 정공의 운송 능력이 향상될 수 있으며, 측정 산포(dispersion)가 감소하여 측정의 신뢰도 및 정확도가 향상될 수 있다. 또한, 전자전달층이 도전성 바인더를 포함함에 따라 금속 착화합물이 전자 전달층 내에 균일하게 분산 및 고정될 수 있다. 이에 따라, 금속 착화합물이 전자 전달층 내에 고농도로 포함될 수 있다. In addition, as the electron transport layer includes the metal complex compound, electron and hole transport capability may be improved, and measurement dispersion may be reduced to improve reliability and accuracy of measurement. In addition, as the electron transport layer includes the conductive binder, the metal complex may be uniformly dispersed and fixed in the electron transport layer. Accordingly, the metal complex may be included in a high concentration in the electron transport layer.
또한, 도전층 및 이온 선택성층 사이에 도전성 바인더를 포함하는 전자전달층이 개재됨에 따라 이온 선택성층의 밀착력 및 이온 센서의 내구성이 증가할 수 있다. In addition, as the electron transport layer including the conductive binder is interposed between the conductive layer and the ion-selective layer, the adhesion of the ion-selective layer and the durability of the ion sensor may increase.
도 1은 예시적인 실시예들에 따른 이온 센서를 설명하기 위한 개략적인 평면도이다.1 is a schematic plan view illustrating an ion sensor according to exemplary embodiments.
도 2 내지 도 4는 예시적인 실시예들에 따른 이온 센서를 설명하기 위한 개략적인 단면도이다.2 to 4 are schematic cross-sectional views for explaining an ion sensor according to example embodiments.
도 5는 본원 실시예 및 비교예들에 따른 이온 센서로 전해질 시료를 측정한 농도-전위 그래프이다.5 is a concentration-potential graph of an electrolyte sample measured by an ion sensor according to Examples and Comparative Examples of the present application.
본 발명의 실시예들에 따른 이온 센서는 기판, 상기 기판 상에 배치된 작업 전극 및 상기 기판 상에서 상기 작업 전극과 이격되어 배치된 기준 전극을 포함하며, 작업 전극은 기판의 상면 상에 배치된 도전층, 도전층의 상면 상에 배치되며 도전성 바인더 및 금속 착화합물을 포함하는 전자전달층, 및 전자전달층의 상면 상에 배치된 이온 선택성층을 포함한다. 전자전달층 내에 금속 착화합물을 분산 및 고정하여 감지 대상 물질에 대한 감지 성능을 향상시킬 수 있다. An ion sensor according to embodiments of the present invention includes a substrate, a working electrode disposed on the substrate, and a reference electrode disposed on the substrate to be spaced apart from the working electrode, wherein the working electrode is a conductive electrode disposed on an upper surface of the substrate. a layer, an electron transport layer disposed on the upper surface of the conductive layer and including a conductive binder and a metal complex, and an ion selective layer disposed on the upper surface of the electron transport layer. By dispersing and fixing the metal complex in the electron transport layer, it is possible to improve the sensing performance of the sensing target material.
이하 도면을 참고하여, 본 발명의 실시예들을 보다 구체적으로 설명하도록 한다. 다만, 본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.Hereinafter, with reference to the drawings, embodiments of the present invention will be described in more detail. However, the following drawings attached to the present specification illustrate preferred embodiments of the present invention, and serve to further understand the technical spirit of the present invention together with the above-described content of the present invention, so the present invention is described in such drawings It should not be construed as being limited only to the matters.
도 1은 예시적인 실시예들에 따른 이온 센서의 개략적인 평면도이다.1 is a schematic plan view of an ion sensor according to exemplary embodiments.
도 1을 참조하면, 예시적인 실시예들에 따른 이온 센서는 기판(100), 작업 전극(210), 기준 전극(220), 배선(310)을 포함한다. 또한, 보조 센서(320)를 더 포함할 수 있다.Referring to FIG. 1 , an ion sensor according to example embodiments includes a substrate 100 , a working electrode 210 , a reference electrode 220 , and a wiring 310 . In addition, an auxiliary sensor 320 may be further included.
기판(100)은 작업 전극(210), 기준 전극(220), 배선(310) 등이 배치되는 기재로 제공될 수 있다.The substrate 100 may be provided as a substrate on which the working electrode 210 , the reference electrode 220 , the wiring 310 , and the like are disposed.
예를 들면, 상기 기판(100)은 통상적으로 사용되는 기재 또는 필름 소재가 특별한 제한 없이 사용될 수 있으며, 예를 들면, 유리, 고분자 및/또는 무기 절연 물질을 포함할 수 있다.For example, the substrate 100 may be a commonly used substrate or film material without any particular limitation, and may include, for example, glass, a polymer, and/or an inorganic insulating material.
바람직하게는, 상기 기판(100)은 플렉서블 특성을 갖는 필름일 수 있다. 예를 들면, 상기 필름은 폴리에틸렌테레프탈레이트, 폴리에틸렌이소프탈레이트, 폴리에틸렌나프탈레이트, 폴리부틸렌테레프탈레이트 등의 폴리에스테르계 수지; 디아세틸셀룰로오스, 트리아세틸셀룰로오스 등의 셀룰로오스계 수지; 폴리카보네이트계 수지; 폴리메틸(메타)아크릴레이트, 폴리에틸(메타)아크릴레이트 등의 아크릴계 수지; 폴리스티렌, 아크릴로니트릴-스티렌 공중합체 등의 스티렌계 수지; 폴리에틸렌, 폴리프로필렌, 시클로계 또는 노보넨 구조를 갖는 폴리올레핀, 에틸렌-프로필렌 공중합체 등의 폴리올레핀계 수지; 염화비닐계 수지; 나일론, 방향족 폴리아미드 등의 아미드계 수지; 이미드계 수지; 폴리에테르술폰계 수지; 술폰계 수지; 폴리에테르에테르케톤계 수지; 황화 폴리페닐렌계 수지; 비닐알코올계 수지; 염화비닐리덴계 수지; 비닐부티랄계 수지; 알릴레이트계 수지; 폴리옥시메틸렌계 수지; 에폭시계 수지 등과 같은 열가소성 수지로 구성된 필름을 들 수 있으며, 상기 열가소성 수지의 블렌드물로 구성된 필름도 사용할 수 있다. 또한, (메타)아크릴계, 우레탄계, 아크릴우레탄계, 에폭시계, 실리콘계 등의 열경화성 수지 또는 자외선 경화형 수지로 된 필름을 이용할 수도 있다.Preferably, the substrate 100 may be a film having flexible properties. For example, the film may include a polyester-based resin such as polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, and polybutylene terephthalate; Cellulose resins, such as a diacetyl cellulose and a triacetyl cellulose; polycarbonate-based resin; acrylic resins such as polymethyl (meth)acrylate and polyethyl (meth)acrylate; styrenic resins such as polystyrene and acrylonitrile-styrene copolymer; polyolefin-based resins such as polyethylene, polypropylene, polyolefin having a cyclo-based or norbornene structure, and an ethylene-propylene copolymer; vinyl chloride-based resin; amide-based resins such as nylon and aromatic polyamide; imide-based resin; polyether sulfone-based resin; sulfone-based resins; polyether ether ketone resin; sulfide polyphenylene-based resin; vinyl alcohol-based resin; vinylidene chloride-based resin; vinyl butyral-based resin; allylate-based resin; polyoxymethylene-based resins; and a film composed of a thermoplastic resin such as an epoxy-based resin, and a film composed of a blend of the above-mentioned thermoplastic resins can also be used. In addition, a film made of a thermosetting resin or ultraviolet curable resin such as (meth)acrylic, urethane, acrylic urethane, epoxy, or silicone may be used.
일부 실시예들에 있어서, 기판(100)의 두께는 1㎛ 내지 500㎛일 수 있다. 상기 두께 범위 내에서 이온 센서의 강도, 취급성, 작업성 및 박층성이 우수할 수 있다. 바람직하게는 1㎛ 내지 300㎛일 수 있으며, 더욱 바람직하게는 5㎛ 내지 200㎛일 수 있다.In some embodiments, the thickness of the substrate 100 may be 1 μm to 500 μm. Within the thickness range, the strength, handleability, workability, and thinness of the ion sensor may be excellent. Preferably it may be 1㎛ to 300㎛, more preferably 5㎛ to 200㎛.
예를 들면, 상기 기판(100)에는 1종 이상의 첨가제가 함유될 수 있다. 첨가제로는, 예컨대 자외선흡수제, 산화방지제, 윤활제, 가소제, 이형제, 착색방지제, 난연제, 핵제, 대전방지제, 안료, 착색제 등을 들 수 있다.For example, the substrate 100 may contain one or more additives. Examples of additives include ultraviolet absorbers, antioxidants, lubricants, plasticizers, mold release agents, color inhibitors, flame retardants, nucleating agents, antistatic agents, pigments, colorants, and the like.
일부 실시예들에 있어서, 상기 기판(100)은 필름의 일면 또는 양면에 하드코팅층, 반사방지층, 가스 배리어층과 같은 다양한 기능성층을 포함할 수 있다.In some embodiments, the substrate 100 may include various functional layers such as a hard coating layer, an anti-reflection layer, and a gas barrier layer on one or both sides of the film.
일부 실시예들에 있어서, 상기 기판(100)은 표면 처리될 수 있다. 예를 들면, 표면 처리는 플라즈마(plasma) 처리, 코로나(corona) 처리, 프라이머(primer) 처리 등의 건식 처리, 검화 처리를 포함하는 알칼리 처리 등의 화학 처리를 포함할 수 있다.In some embodiments, the substrate 100 may be surface-treated. For example, the surface treatment may include a plasma treatment, a corona treatment, a dry treatment such as a primer treatment, and a chemical treatment such as an alkali treatment including a saponification treatment.
도 2 내지 도 4는 예시적인 실시예들에 따른 이온 센서의 개략적인 단면도이다.2 to 4 are schematic cross-sectional views of ion sensors according to exemplary embodiments.
도 2 내지 도 4를 참조하면, 작업 전극(210)은 제1 도전층(212), 전자전달층(214) 및 이온 선택성층(216)을 포함한다.2 to 4 , the working electrode 210 includes a first conductive layer 212 , an electron transport layer 214 , and an ion selective layer 216 .
작업 전극(210)은 제1 도전층(212), 제1 도전층(212)의 상면 상에 배치된 전자전달층(214) 및 전자전달층(214)의 상면 상에 배치된 이온 선택성층(216)을 포함할 수 있다. 작업 전극(210)은 이온 선택성층(216)의 이온 감응 물질과 감지 대상 물질의 반응에 의해 발생된 전기적 신호를 감지할 수 있다. 예를 들면, 감지 대상 물질은 이온 또는 분자일 수 있다.The working electrode 210 includes a first conductive layer 212 , an electron transport layer 214 disposed on the top surface of the first conductive layer 212 , and an ion selective layer ( 216) may be included. The working electrode 210 may detect an electrical signal generated by a reaction between the ion-sensitive material of the ion-selective layer 216 and the sensing target material. For example, the sensing target material may be an ion or a molecule.
제1 도전층(212)은 기판(100) 상에 배치될 수 있다. 예를 들면, 제1 도전층(212)은 기판(100)에 직접 접촉할 수 있다. 제1 도전층(212)은 감지 대상 물질과의 반응에서 발생한 전자 및/또는 정공이 전달되는 통로로 제공될 수 있다. The first conductive layer 212 may be disposed on the substrate 100 . For example, the first conductive layer 212 may directly contact the substrate 100 . The first conductive layer 212 may serve as a path through which electrons and/or holes generated in reaction with a sensing target material are transmitted.
도 3을 참조하면, 제1 도전층(212)은 금속층(212a) 및 금속 보호층(212b)을 포함할 수 있다.Referring to FIG. 3 , the first conductive layer 212 may include a metal layer 212a and a metal protection layer 212b.
금속 보호층(212b)은 금속층(212a)의 상면을 전체적으로 덮을 수 있다. 예를 들면, 금속 보호층(212b)은 금속층(212a)과 직접 접촉할 수 있다. 금속 보호층(212b)은 금속층(212a)이 외부와 직접 접촉하는 것을 차단하여 금속층(212a)이 산화-환원되는 것을 방지할 수 있다. The metal protective layer 212b may entirely cover the upper surface of the metal layer 212a. For example, the metal protective layer 212b may be in direct contact with the metal layer 212a. The metal protective layer 212b may prevent the metal layer 212a from directly contacting the outside, thereby preventing oxidation-reduction of the metal layer 212a.
일부 실시예들에 있어서, 금속층(212a)은 Au, Ag, Cu, Pt, Ti, Ni, Sn, Mo, Co, Pd 및 이들의 합금 중 적어도 하나를 포함할 수 있다. 예를 들면, APC(Ag-Pd-Cu) 합금이 사용될 수 있다. 금속층(212a)은 Au, Ag, APC 합금 및 Pt 중 적어도 하나만으로 형성될 수도 있다. 상기 Au, Ag, APC 합금 및 Pt는 제1 도전층(212)의 전기 전도성을 향상시키고 저항을 감소시킬 수 있다. 따라서, 이온 센서의 검출 성능을 향상시킬 수 있다.In some embodiments, the metal layer 212a may include at least one of Au, Ag, Cu, Pt, Ti, Ni, Sn, Mo, Co, Pd, and alloys thereof. For example, an APC (Ag-Pd-Cu) alloy may be used. The metal layer 212a may be formed of at least one of Au, Ag, APC alloy, and Pt. The Au, Ag, APC alloy, and Pt may improve electrical conductivity and reduce resistance of the first conductive layer 212 . Therefore, the detection performance of the ion sensor can be improved.
일부 실시예들에 있어서, 상기 금속층(212a)의 두께는 500Å 내지 4000Å일 수 있다. 상기 두께 범위 내에서 검출 성능이 우수할 수 있다. 바람직하게는, 상기 금속층(212a)의 두께는 1000Å 내지 3000Å일 수 있다.In some embodiments, the thickness of the metal layer 212a may be 500 Å to 4000 Å. Detection performance may be excellent within the thickness range. Preferably, the thickness of the metal layer 212a may be 1000 Å to 3000 Å.
일부 실시예들에 있어서, 금속 보호층(212b)은 투명 도전성 산화물을 포함할 수 있다. 예를 들면, 상기 금속 보호층(212b)은 투명 도전성 산화물로서 인듐주석산화물(Indium Tin Oxide, ITO), 인듐아연산화물(Indium Zinc Oxide, IZO), 아연산화물(Zinc Oxide, ZnO), 인듐아연주석산화물(Indium Zinc Tin Oxide, IZTO), 카드뮴주석산화물(Cadmium Tin Oxide, CTO) 등을 포함할 수 있으며, 바람직하게는 ITO 또는 IZO를 포함할 수 있다. 일 실시예들에 있어서, 금속 보호층(212b)은 ITO 또는 IZO만으로 형성될 수 있다. ITO 및 IZO는 전기 전도성을 가지면서도 화학적으로 안정하여 금속층(212a)을 산화-환원 반응으로부터 효과적으로 보호할 수 있다.In some embodiments, the metal protective layer 212b may include a transparent conductive oxide. For example, the metal protective layer 212b is a transparent conductive oxide, such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (Zinc oxide, ZnO), and indium zinc tin. Oxide (Indium Zinc Tin Oxide, IZTO), cadmium tin oxide (Cadmium Tin Oxide, CTO)   may include, preferably ITO or IZO. In some embodiments, the metal protective layer 212b may be formed of only ITO or IZO. ITO and IZO are chemically stable while having electrical conductivity, so that the metal layer 212a can be effectively protected from oxidation-reduction reactions.
예를 들면, 금속 보호층(212b)은 금속층(212a)이 대기 또는 시료와 직접 접촉하는 것을 방지하여 금속층(212a)을 구성하는 금속 성분의 산화를 방지할 수 있다. 따라서, 금속층(212a)에 의해 감지되는 전기적 신호의 신뢰성을 향상시킬 수 있다.For example, the metal protective layer 212b may prevent the metal layer 212a from coming into direct contact with the atmosphere or a sample to prevent oxidation of a metal component constituting the metal layer 212a. Accordingly, the reliability of the electrical signal sensed by the metal layer 212a may be improved.
일부 실시예들에 있어서, 상기 금속 보호층(212b)의 두께는 100Å 내지 800Å일 수 있다. 상기 두께 범위 내에서 상기 금속층(212a)을 효과적으로 보호할 수 있으며, 제1 도전층(212)의 전기 전도성이 향상될 수 있다. 바람직하게는, 상기 금속 보호층(212b)의 두께는 300Å 내지 500Å일 수 있다.In some embodiments, the thickness of the metal passivation layer 212b may be 100 Å to 800 Å. The metal layer 212a may be effectively protected within the thickness range, and electrical conductivity of the first conductive layer 212 may be improved. Preferably, the thickness of the metal protective layer 212b may be 300 Å to 500 Å.
전자전달층(214)은 제1 도전층(212)의 상면 상에 배치될 수 있다. 예를 들면, 제1 도전층(212)의 상면 및 측면을 덮을 수 있다. 이 경우, 제1 도전층(212) 및 외부의 직접 접촉이 방지될 수 있으며, 전자전달층(214)에 의해 제1 도전층(212)의 부식 또는 산화가 억제될 수 있다.The electron transport layer 214 may be disposed on the upper surface of the first conductive layer 212 . For example, the upper surface and side surfaces of the first conductive layer 212 may be covered. In this case, direct contact between the first conductive layer 212 and the outside may be prevented, and corrosion or oxidation of the first conductive layer 212 may be suppressed by the electron transport layer 214 .
전자전달층(214)은 도전성 바인더 및 금속 착화합물을 포함할 수 있다. 전자전달층(214)은 이온 선택성층(216)에서 발생한 전자 및/또는 정공을 신속하게 제1 도전층(212)으로 수송하여 이온 선택성층(216)의 감지 대상 물질에 대한 센싱 성능을 향상시킬 수 있다.The electron transport layer 214 may include a conductive binder and a metal complex. The electron transport layer 214 may rapidly transport electrons and/or holes generated in the ion-selective layer 216 to the first conductive layer 212 to improve sensing performance of the sensing target material of the ion-selective layer 216 . can
예를 들면, 이온 선택성층(216) 내에서 이온 감응 물질 및 감지 대상 물질 간의 반응에 의해 전자/정공이 발생할 수 있으며, 금속 착화합물은 상기 반응에 의해 발생한 전자/정공을 수용하여 산화 또는 환원되는 물질을 포함할 수 있다. 따라서, 상기 산화 또는 환원을 통해 전자/정공을 제1 도전층(212)으로 전달할 수 있다.For example, in the ion selective layer 216 , electrons/holes may be generated by a reaction between the ion-sensitive material and the sensing target material, and the metal complex compound is a material that is oxidized or reduced by receiving electrons/holes generated by the reaction. may include Accordingly, electrons/holes may be transferred to the first conductive layer 212 through the oxidation or reduction.
이온 센서를 통한 감지 대상 물질의 측정에 있어서 작업 전극(210) 내/외부에서의 감지 대상 물질의 농도 차에 의해 발생하는 전위차를 이용할 수 있다. 이 경우, 전자 및/또는 정공의 수송 상태에 따라 이온 선택성층(216)에서 발생하는 기전력이 변화할 수 있으며, 이에 따라 작업 전극(210) 및 기준 전극(220) 간의 전위차 값의 산포가 증가할 수 있다.In measuring the sensing target material through the ion sensor, a potential difference generated by a difference in concentration of the sensing target material inside/outside the working electrode 210 may be used. In this case, the electromotive force generated in the ion-selective layer 216 may change depending on the transport state of electrons and/or holes, and accordingly, the distribution of the potential difference value between the working electrode 210 and the reference electrode 220 may increase. can
예를 들면, 전자/정공의 수송이 불안정함에 따라 감지 대상 물질의 농도에 따른 전압이 일정하게 유지되지 못할 수 있으며, 전위차 측정에 있어서 오차가 발생할 수 있다. 이 경우, 일정하지 않은 전위차로 인하여 반복 측정 시 전위차 값의 산포가 증가할 수 있으며, 동일 농도의 시료를 측정하더라도 측정 전위차 값이 달라질 수 있다. 또한, 이온 농도의 미세한 변화가 감지되지 않을 수 있다.For example, since electron/hole transport is unstable, a voltage according to the concentration of a sensing target material may not be constantly maintained, and an error may occur in measuring a potential difference. In this case, the dispersion of the potential difference value may increase during repeated measurement due to the non-uniform potential difference, and the measured potential difference value may vary even when samples of the same concentration are measured. Also, minute changes in ion concentration may not be detected.
예시적인 실시예들에 따른 이온 센서는 제1 도전층(212) 및 이온 선택성층(216) 사이에 금속 착화합물을 포함하는 전자전달층(214)이 배치됨에 따라 이온 선택성층(216)에서 발생하는 전압이 안정적으로 유지될 수 있다. 따라서, 작업 전극(210) 및 기준 전극(220) 간에 측정된 전위차가 감지 대상 물질의 농도에 따라 일정하게 유지될 수 있으며, 이온 센서를 통한 측정값의 정확도 및 신뢰성이 향상될 수 있다. In the ion sensor according to exemplary embodiments, as the electron transport layer 214 including the metal complex is disposed between the first conductive layer 212 and the ion selective layer 216 , the ion selective layer 216 generates The voltage can be kept stable. Accordingly, the potential difference measured between the working electrode 210 and the reference electrode 220 may be constantly maintained according to the concentration of the sensing target material, and the accuracy and reliability of the measured value through the ion sensor may be improved.
예를 들면, 금속 착화합물은 풍부한 전자 밀도 및 우수한 산화-환원 반응 특성을 가지므로, 이온 선택성층(216)으로부터 발생한 전자 및/또는 정공을 효율적으로 제1 도전층(212)으로 수송할 수 있다. 따라서, 작업 전극(210) 및 기준 전극(220) 간의 전위차 측정에 있어서 임계 값에 대한 측정 속도가 향상될 수 있으며, 이온 센서로부터 측정된 전기적 신호의 산포가 감소할 수 있다.For example, since the metal complex has abundant electron density and excellent oxidation-reduction reaction characteristics, electrons and/or holes generated from the ion selective layer 216 may be efficiently transported to the first conductive layer 212 . Accordingly, in measuring the potential difference between the working electrode 210 and the reference electrode 220 , a measurement speed for a threshold value may be improved, and dispersion of an electrical signal measured from the ion sensor may be reduced.
일부 실시예들에 있어서, 금속 착화합물은 프러시안 블루(Prussian blue), 페리시안화 칼륨(Potassium ferricyanide), 페로시안화 칼륨(Potassium ferrocyanide) 등의 시아노기(CN) 함유 화합물; 염화헥사아민루세늄(Ⅲ)(Hexaammineruthenium(Ⅲ) chloride); 페로센(Ferrocene)계 화합물; 1,2-벤조퀴논, 1,4-벤조퀴논, 1,4-나프토퀴논, 안트라퀴논 등의 퀴논(Quinone)계 화합물; 또는 하이드로퀴논(Hydroquinone)계 화합물 등을 포함할 수 있다.In some embodiments, the metal complex compound is a cyano group (CN) containing compound such as Prussian blue, potassium ferricyanide, potassium ferrocyanide; Hexaammineruthenium (III) chloride; Ferrocene-based compounds; Quinone-based compounds such as 1,2-benzoquinone, 1,4-benzoquinone, 1,4-naphthoquinone, and anthraquinone; Or it may include a hydroquinone-based compound and the like.
바람직하게는 금속 착화합물은 프러시안 블루, 페리시안화 칼륨 및 페로시안화 칼륨 등의 시아노기(CN) 함유 화합물을 포함할 수 있다. Preferably, the metal complex compound may include a cyano group (CN)-containing compound such as Prussian blue, potassium ferricyanide and potassium ferrocyanide.
상기 시아노기 함유 화합물은 쉽게 산화 또는 환원될 수 있다. 따라서, 전자 및 정공을 용이하고 신속하게 수송할 수 있으며, 작업 전극(210) 및 기준 전극(220) 간의 전위차를 안정적으로 유지할 수 있다.The cyano group-containing compound can be easily oxidized or reduced. Accordingly, electrons and holes may be easily and quickly transported, and a potential difference between the working electrode 210 and the reference electrode 220 may be stably maintained.
더욱 바람직하게는 금속 착화합물은 프러시안 블루를 포함할 수 있다. 예를 들면, 프러시안 블루는 헥사시아노철(II)산철(III)칼륨이 주성분인 청색 안료로서 높은 산화성을 가질 수 있다. 제1 도전층(212) 상에 프러시안 블루를 포함하는 전자전달층(214)이 배치됨에 따라, 작업 전극(210)의 전기적 감도를 향상시킬 수 있으며, 측정 산포가 개선될 수 있다.More preferably, the metal complex may include Prussian blue. For example, Prussian blue is a blue pigment containing ferric (III) hexacyanoferrate (II) potassium as a main component, and may have high oxidation properties. As the electron transport layer 214 including Prussian blue is disposed on the first conductive layer 212 , the electrical sensitivity of the working electrode 210 may be improved, and measurement dispersion may be improved.
일부 실시예들에 있어서, 상기 금속 착화합물은 상기 전자전달층(214) 총 중량 중 0.01중량% 내지 10중량%로 포함될 수 있다. 상기 금속 착화합물의 함량이 0.01중량% 미만인 경우, 전자/정공이 제1 도전층(212)으로 이동하는 경로가 충분히 확보되지 않을 수 있으며, 측정값의 산포가 증가할 수 있다. 상기 금속 착화합물의 함량이 10중량% 초과인 경우, 도전성 바인더 대비 금속 착화합물의 함량이 증가함에 따라 도전성 바인더의 표면이 개질될 수 있으며, 측정 산포가 증가할 수 있다.In some embodiments, the metal complex compound may be included in an amount of 0.01 wt% to 10 wt% based on the total weight of the electron transport layer 214 . When the content of the metal complex is less than 0.01 wt %, a path through which electrons/holes move to the first conductive layer 212 may not be sufficiently secured, and dispersion of the measured values may increase. When the content of the metal complex compound is greater than 10% by weight, the surface of the conductive binder may be modified as the content of the metal complex compound compared to the conductive binder increases, and the measurement dispersion may increase.
바람직하게는 상기 금속 착화합물은 상기 전자전달층(214) 총 중량 중 0.1중량% 내지 7중량%로 포함될 수 있으며, 보다 바람직하게는 0.5중량% 내지 3중량%로 포함될 수 있다. 상기 범위 내에서 우수한 전자 수송 능력을 확보할 수 있으며, 측정된 전압 또는 전위차의 정확도, 신뢰도가 향상될 수 있다.Preferably, the metal complex may be included in an amount of 0.1 wt% to 7 wt%, more preferably 0.5 wt% to 3 wt%, based on the total weight of the electron transport layer 214. Within the above range, excellent electron transport capability may be secured, and accuracy and reliability of the measured voltage or potential difference may be improved.
전자전달층(214)이 도전성 바인더를 포함함에 따라 이온 선택성층(216)이 작업 전극(210)으로부터 박리되는 현상을 방지할 수 있다. Since the electron transport layer 214 includes the conductive binder, it is possible to prevent the ion selective layer 216 from being peeled off from the working electrode 210 .
예를 들면, 이온 선택성층(216)이 제1 도전층(212) 상에 직접 적층되는 경우, 이온 선택성층(216)의 제1 도전층(212)에 대한 낮은 밀착력으로 인해 측정 과정에서 이온 선택성층(216)의 박리가 발생할 수 있다.For example, when the ion-selective layer 216 is directly laminated on the first conductive layer 212 , the ion-selective layer 216 selects ions during the measurement process due to the low adhesion of the ion-selective layer 216 to the first conductive layer 212 . Delamination of the stratified layer 216 may occur.
예시적인 실시예들에 따르면, 도전성 바인더를 포함하는 전자전달층(214)이 제1 도전층(212) 및 이온 선택성층(216) 사이에 배치됨에 따라, 작업 전극(210) 내에서 각 구조물/층들 간의 밀착력 및 접착력이 향상될 수 있다. 이에 따라, 이온 센서의 내구성, 기계적/화학적 안정성이 향상될 수 있다. According to exemplary embodiments, as an electron transport layer 214 comprising a conductive binder is disposed between the first conductive layer 212 and the ion selective layer 216 , each structure/ Adhesion and adhesion between the layers may be improved. Accordingly, durability and mechanical/chemical stability of the ion sensor may be improved.
일부 실시예들에 있어서, 도전성 바인더은 카본 페이스트, 금속 함유 페이스트 및 전도성 고분자 등을 포함할 수 있다.In some embodiments, the conductive binder may include a carbon paste, a metal-containing paste, and a conductive polymer.
예를 들면, 상기 카본 페이스트는 카본블랙(Carbon black), 흑연, 산화 흑연, 그래핀, 산화 그래핀 등을 포함할 수 있다. 예를 들면, 상기 금속 함유 페이스트는 Cu, Ag, Au, Ni, Pa, Pt 등을 포함할 수 있으며, 바람직하게는 Ag/AgCl 페이스트일 수 있다. 예를 들면, 상기 전도성 고분자는 폴리(3,4-에틸렌디옥시티오펜)(Poly(3,4-ethylenedioxythiophenes)), 폴리(스티렌술포네이트)(Poly(styrene sulfonates)), PEDOT:PSS(Poly(3,4-ethylenedioxythiophenes):poly(styrenesulfonates)) 등을 포함할 수 있다.For example, the carbon paste may include carbon black, graphite, graphite oxide, graphene, graphene oxide, and the like. For example, the metal-containing paste may include Cu, Ag, Au, Ni, Pa, Pt, and the like, and preferably Ag/AgCl paste. For example, the conductive polymer may be poly(3,4-ethylenedioxythiophenes)), poly(styrene sulfonates), PEDOT:PSS(Poly( 3,4-ethylenedioxythiophenes):poly(styrenesulfonates)) and the like.
바람직하게는, 상기 도전성 바인더는 전자 및/또는 정공의 운반 특성, 밀착력, 내구성 등을 고려하여 카본 페이스트를 포함할 수 있다. Preferably, the conductive binder may include a carbon paste in consideration of electron and/or hole transport characteristics, adhesion, durability, and the like.
예시적인 실시예들에 따르면, 상기 전자전달층(214)의 두께는 3㎛ 내지 15㎛일 수 있으며, 바람직하게는 5㎛ 내지 10㎛일 수 있다. 상기 두께가 3㎛ 미만인 경우, 제1 도전층(212), 전자전달층(214) 및 이온 선택성층(216) 간의 밀착성, 접착성이 감소할 수 있다. 상기 두께가 15㎛ 초과인 경우, 센싱 감도 및 속도가 감소할 수 있으며 측정값의 산포가 증가할 수 있다.According to exemplary embodiments, the thickness of the electron transport layer 214 may be 3 μm to 15 μm, preferably 5 μm to 10 μm. When the thickness is less than 3 μm, the adhesion between the first conductive layer 212 , the electron transport layer 214 , and the ion selective layer 216 may decrease. When the thickness is greater than 15 μm, sensing sensitivity and speed may decrease, and dispersion of measured values may increase.
이온 선택성층(216)은 전자전달층(214)의 상면 상에 배치될 수 있다. 예를 들면, 이온 선택성층(216)은 전자전달층(214)의 상면 및 측면을 덮을 수 있다. 예를 들면, 이온 선택성층(216)은 제1 도전층(212)의 측면, 및 전자전달층(214)의 상면 및 측면을 덮을 수 있다. The ion selective layer 216 may be disposed on the upper surface of the electron transport layer 214 . For example, the ion selective layer 216 may cover the top and side surfaces of the electron transport layer 214 . For example, the ion selective layer 216 may cover the side surface of the first conductive layer 212 and the top and side surfaces of the electron transport layer 214 .
도 4를 참조하면, 전자전달층(214)을 제1 도전층(212)의 상면 및 측면을 전체적으로 덮을 수 있으며, 이온 선택성층(216)은 전자전달층(214)의 상면 및 측면을 전체적으로 덮을 수 있다.Referring to FIG. 4 , the electron transport layer 214 may entirely cover the top and side surfaces of the first conductive layer 212 , and the ion selective layer 216 may entirely cover the top and side surfaces of the electron transport layer 214 . can
따라서, 측정 대상 시료가 전자전달층(214) 및 제1 도전층(212)에 직접 접촉하는 것을 방지할 수 있으며, 감지 대상 물질의 농도에 따른 측정값의 정확도를 향상시킬 수 있다.Accordingly, it is possible to prevent the measurement target sample from directly contacting the electron transport layer 214 and the first conductive layer 212 , and it is possible to improve the accuracy of the measurement value according to the concentration of the sensing target material.
이온 선택성층(216)은 이온 감응 물질 및 고분자 지지체를 포함할 수 있다. 이온 선택성층(216)은 측정 시료에 직접적으로 접촉하여 감지 대상 물질을 감지함으로써 작업 전극(210) 및 기준 전극(220) 사이에 전위차를 발생시킬 수 있다. The ion-selective layer 216 may include an ion-sensitive material and a polymer support. The ion selective layer 216 may generate a potential difference between the working electrode 210 and the reference electrode 220 by directly contacting the measurement sample to sense the sensing target material.
이온 감응 물질은 특정 이온에 대한 선택성을 부여하며, 상기 이온과 반응하여 전압을 발생시키는 역할을 수행할 수 있다. 예를 들면, 이온 감응 물질은 측정 시료 내에 포함되는 감지 대상 물질(예를 들면, 이온)과 공유결합, 배위 결합 또는 이온 교환 반응 등을 일으키는 물질일 수 있다. The ion-sensitive material may serve to impart selectivity to a specific ion and generate a voltage by reacting with the ion. For example, the ion-sensitive material may be a material that causes a covalent bond, a coordination bond, or an ion exchange reaction with a sensing target material (eg, ion) included in the measurement sample.
이온 감응 물질은 측정 대상 이온에 따라 선택될 수 있다. 예를 들면, 이온 선택성층(216)에 포함되는 이온 감응 물질을 변경함으로써 이온 센서가 특정 이온에 대하여 선택적으로 감지할 수 있다.The ion-sensitive material may be selected according to the ion to be measured. For example, the ion sensor may selectively detect specific ions by changing the ion-sensitive material included in the ion-selective layer 216 .
예를 들면, 측정 대상 이온으로서 H+, Na+, K+, Ca2+, Mg2+, OH-, Cl-, F-, Br-, I-, CN- 및 NO3 - 등을 들 수 있으나, 이에 한정되는 것은 아니며 필요에 따라 다양한 측정 대상 이온을 선택할 수 있다. Examples of the ions to be measured include H + , Na + , K + , Ca 2+ , Mg 2+ , OH - , Cl - , F - , Br - , I - , CN - and NO 3 - . However, the present invention is not limited thereto, and various measurement target ions may be selected as needed.
예를 들면, 상기 이온 감응 물질은 H+, Na+, K+, Ca2+, Mg2+, OH-, Cl-, F-, Br-, I-, CN- 및 NO3 - 중 적어도 하나의 이온에 대해 선택적으로 감응하여 이온 선택성층(216) 내로 투과시키는 물질을 포함할 수 있다. For example, the ion-sensitive material is at least one of H + , Na + , K + , Ca 2+ , Mg 2+ , OH - , Cl - , F - , Br - , I - , CN - and NO 3 - It may include a material that selectively sensitizes the ions of the ion-selective layer 216 and transmits them into the ion-selective layer 216 .
예를 들면, 상기 이온 감응 물질로서는 N,N',N"-트리펩틸-N,N',N"-트리메틸-4,4',4"-프로피리딘트리스(3-옥사부틸아미드)(N,N',N''-Triheptyl-N,N',N''-trimethyl-4,4',4''-propylidynetris(3-oxabutyramide)), N,N'-디벤질-N,N'-디페닐-1,2-페닐렌디아세트아미드(N,N'-Dibenzyl-N,N'-diphenyl-1,2-phenylenedioxydi-acetamide), N,N,N',N'-테트라시클로헥실-1,2-페닐렌디옥시디아세트아미드(N,N,N',N'-Tetracyclohexyl-1,2-phenylenedioxydiacetamide), 2,3:11,12-디데칼리노-16-크라운-5(2,3:11,12-Didecalino-16-crown-5), 4-옥타데카노닐옥시메틸- N,N,N',N'-테트라사이클로헥실-1,2-페틸렌디옥시디아세트아마이드(4-Octadecanoyloxymethyl-N,N,N',N'-tetracyclohexyl-1,2-phenylenedioxydiacetamide), (-)-(R,R)-N'N'-비스[(11-에톡시카르보닐)운데실]-N'N"4,5-테트라메틸-3,6-디옥사옥탄-디아미드((-)-(R,R)-N'N'-Bis-[11-(ethoxycarbonyl)undecyl]- N'N",4,5-tetramethyl-3,6-dioxaoctanediamide), 비스[(12-크라운-4)메틸]도데실메틸말로네이트(Bis[(12-crown-4)methyl] dodecylmethylmalonate), 4-t-부틸칼릭스[4]아렌-테트라아세트산 테트라에틸에스테르(4-tert-Butylcalix[4]arene-tetraacetic acid tetraethylester), 마두라마이신(Maduramicin), 발리노마이신(Valinomycin), 살리노마이신(Salinomycin), 뷰베리신(Beauvericin), 노낙틴(Nonactin), 모넨신(Monensin), (4S)-4-메틸-살리노마이신((4S)-4-methyl-salinomycin) 비스[(12-크라운-4)메틸] 2,2-디도데실말로네이트(Bis[(12-crown-4)methyl] 2,2-didodecylmalonate), 디시클로헥실 18-크라운-6(Dicyclohexyl 18-crown-6), 나프토-15-크라운-5(Nafto-15-crown-5), 비스(15-크라운-5)(Bis(15-crown-5) 등의 크라운 에테르 화합물 등을 들 수 있다.For example, as the ion-sensitive substance, N,N',N"-tripeptyl-N,N',N"-trimethyl-4,4',4"-propyridinetris(3-oxabutylamide) (N ,N',N''-Triheptyl-N,N',N''-trimethyl-4,4',4''-propylidynetris(3-oxabutyramide)), N,N'-dibenzyl-N,N' -diphenyl-1,2-phenylenediacetamide (N,N'-Dibenzyl-N,N'-diphenyl-1,2-phenylenedioxydi-acetamide), N,N,N',N'-tetracyclohexyl -1,2-phenylenedioxydiacetamide (N,N,N',N'-Tetracyclohexyl-1,2-phenylenedioxydiacetamide), 2,3:11,12-didecalino-16-crown-5 (2 ,3:11,12-Didecalino-16-crown-5), 4-octadecanoyloxymethyl-N,N,N',N'-tetracyclohexyl-1,2-petylenedioxydiacetamide ( 4-Octadecanoyloxymethyl-N,N,N',N'-tetracyclohexyl-1,2-phenylenedioxydiacetamide), (-)-(R,R)-N'N'-bis[(11-ethoxycarbonyl)undecyl ]-N'N"4,5-tetramethyl-3,6-dioxaoctane-diamide ((-)-(R,R)-N'N'-Bis-[11-(ethoxycarbonyl)undecyl]- N'N",4,5-tetramethyl-3,6-dioxaoctanediamide), bis[(12-crown-4)methyl]dodecylmethylmalonate (Bis[(12-crown-4)methyl] dodecylmethylmalonate), 4 -t-Butylcalix[4]arene-tetraacetic acid tetraethyl ester (4-tert-Butylcalix[4]arene-tetraacetic acid tetraethylester), Maduramicin, Valinomycin, Salinomycin ( Salinomycin), Beauvericin, Nonactin, Monensin, (4S)-4-methyl-salinomycin ((4) S)-4-methyl-salinomycin) bis[(12-crown-4)methyl] 2,2-didodecylmalonate (Bis[(12-crown-4)methyl] 2,2-didodecylmalonate), dicyclohexyl 18-crown-6 (Dicyclohexyl 18-crown-6), Nafto-15-crown-5, Bis (15-crown-5) (Bis (15-crown-5), etc. and crown ether compounds of
이온 선택성층(216)이 이온 감응 물질을 포함함에 따라 감지 대상 물질(예를 들면, 측정 대상 이온)이 선택적으로 투과될 수 있다. 이에 따라, 이온 선택성층(216)을 경계로 하여 작업 전극(210) 내부 및 외부에서 감지 대상 물질의 농도차가 발생할 수 있다. 예를 들면, 작업 전극(210) 외부에서의 감지 대상 물질의 농도가 작업 전극(210) 내부에서의 감지 대상 물질의 농도보다 낮을 수 있다.As the ion-selective layer 216 includes an ion-sensitive material, a sensing target material (eg, a measurement target ion) may be selectively transmitted. Accordingly, a concentration difference of the sensing target material may occur inside and outside the working electrode 210 with the ion selective layer 216 as a boundary. For example, the concentration of the sensing target material outside the working electrode 210 may be lower than the concentration of the sensing target material inside the working electrode 210 .
이 경우, 작업 전극(210) 내/외부에서의 감지 대상 물질의 농도차에 의해 기전력이 발생하게 되어 작업 전극(210)과 기준 전극(220) 간의 전위차가 발생할 수 있다. 예를 들면, 시료 내 포함되는 감지 대상 물질의 농도에 비례하여 작업 전극(210)의 전위가 변할 수 있다. 따라서, 일정한 전위를 갖는 기준 전극(220)을 상대 전극(Counter electrode)으로 하여 감지 대상 물질의 농도에 따른 작업 전극(210) 및 기준 전극(220) 간의 전위차를 측정할 수 있다. 상기 전위차를 측정함으로써 시료 내 감지 대상 물질의 농도를 측정할 수 있다.In this case, an electromotive force is generated by the concentration difference of the sensing target material inside/outside the working electrode 210 , and thus a potential difference between the working electrode 210 and the reference electrode 220 may occur. For example, the potential of the working electrode 210 may change in proportion to the concentration of the sensing target material included in the sample. Accordingly, the potential difference between the working electrode 210 and the reference electrode 220 according to the concentration of the sensing target material may be measured by using the reference electrode 220 having a constant potential as a counter electrode. By measuring the potential difference, the concentration of the sensing target material in the sample may be measured.
일부 실시예들에 있어서, 상기 이온 감응 물질은 이온 선택성층(216) 총 중량 중 0.5중량% 내지 10중량%로 포함될 수 있다. 0.5중량% 미만인 경우, 감지 대상 물질에 대한 민감성 및 선택성이 저하될 수 있으며, 10중량% 초과인 경우, 고분자 지지체의 함량이 상대적으로 감소하여 안정성 및 접착성이 열화일 수 있다.In some embodiments, the ion-sensitive material may be included in an amount of 0.5% to 10% by weight of the total weight of the ion-selective layer 216 . If it is less than 0.5% by weight, the sensitivity and selectivity to the sensing target material may be reduced, and if it is more than 10% by weight, the content of the polymer support may be relatively decreased, resulting in deterioration in stability and adhesion.
고분자 지지체는 이온 선택성층(216)의 구조/외형을 형성하며, 이온 감응 물질을 이온 선택성층(216) 내에 고정시키는 역할을 수행할 수 있다. The polymer support forms the structure/appearance of the ion-selective layer 216 , and may serve to fix the ion-sensitive material in the ion-selective layer 216 .
예시적인 실시예들에 따르면, 고분자 지지체는 폴리염화비닐(Polyvinyl chloride, PVC), 폴리비닐클로라이드 카복실레이트(Polyvinyl chloride carboxylate), 폴리비닐클로라이드 아미네이트(Polyvinyl chloride aminate), 폴리메틸아크릴레이트(Poly(methylacrylate)), 폴리에틸렌옥사이드(Poly(ethylene oxide)), 크세로겔(Xerogel), 폴리우레탄(Polyurethane), 실리콘 러버(Silicone rubber), 아가로즈(Agarose), 폴리비닐부티랄(Polyvinyl butyral, PVB) 및 폴리비닐알코올(Polyvinyl alcohol, PVA) 등을 포함할 수 있다.According to exemplary embodiments, the polymer support is polyvinyl chloride (PVC), polyvinyl chloride carboxylate (Polyvinyl chloride carboxylate), polyvinyl chloride aminate (Polyvinyl chloride aminate), polymethyl acrylate (Poly ( methylacrylate)), polyethylene oxide (Poly(ethylene oxide)), Xerogel, Polyurethane, Silicone rubber, Agarose, Polyvinyl butyral (PVB) And polyvinyl alcohol (Polyvinyl alcohol, PVA) and the like.
일부 실시예들에 있어서, 상기 고분자 지지체는 이온 선택성층(216) 총 중량 중 약 20중량% 내지 40중량%로 포함될 수 있다. 상기 범위 내에서 저항의 증가를 방지하면서 구조적 안정성을 향상시킬 수 있다. In some embodiments, the polymer support may be included in an amount of about 20% to 40% by weight based on the total weight of the ion selective layer 216 . Structural stability may be improved while preventing an increase in resistance within the above range.
일부 실시예들에 있어서, 상기 이온 선택성층(216)은 가소제를 더 포함할 수 있다. 이온 선택성층(216)이 가소제를 포함함에 따라, 유연성이 개선될 수 있으며, 높은 저항으로 인한 신호 안정성의 저하를 방지할 수 있다. 예를 들면, 이온 선택성층(216)의 전기적 저항이 낮아지면서 특정 이온 또는 분자와 결합하여 막 표면에 형성되는 전하 분리가 용이하게 일어날 수 있다. 이에 따라 안정적인 신호 및 빠른 감응 시간을 갖는 이온 센서가 제공될 수 있다.In some embodiments, the ion selective layer 216 may further include a plasticizer. As the ion-selective layer 216 includes a plasticizer, flexibility may be improved, and deterioration of signal stability due to high resistance may be prevented. For example, as the electrical resistance of the ion-selective layer 216 decreases, charge separation formed on the surface of the membrane by bonding with specific ions or molecules may easily occur. Accordingly, an ion sensor having a stable signal and a fast response time may be provided.
예를 들면, 가소제로서는 2-나이트로페닐옥틸에테르(2-nitrophenyl octyl ether, NPOE), 다이옥틸 세바케이트(Dioctyl sebacate, DOS), 비스(2-에틸헥실)프탈레이트(Bis(2-ethylhexyl) phthalate, DOP), 비스(2-에틸헥실)아디페이트(Bis(2-ethylhexyl) adipate, DOA), 2-니트로페닐 옥틸 에테르(2-nitrophenyl octyl ether, NPOE), 디에틸숙시네이트(Diethyl succinate), 디옥틸말레이트(Dioctyl maleate), 다이운데실프탈레이트(Diundecyl phtalate) 등을 들 수 있다.For example, as a plasticizer, 2-nitrophenyl octyl ether (NPOE), dioctyl sebacate (DOS), bis (2-ethylhexyl) phthalate (Bis (2-ethylhexyl) phthalate) , DOP), bis (2-ethylhexyl) adipate (Bis (2-ethylhexyl) adipate, DOA), 2-nitrophenyl octyl ether (NPOE), diethyl succinate, and dioctyl maleate and diundecyl phthalate.
일부 실시예들에 있어서, 상기 가소제는 이온 선택성층(216) 총 중량 중 약 50중량% 내지 80중량%로 포함될 수 있다. 상기 범위 내에서 저항의 증가를 방지하면서 이온 선택성층(216)의 구조적 안정성을 향상시킬 수 있다. In some embodiments, the plasticizer may be included in an amount of about 50 wt% to about 80 wt% of the total weight of the ion selective layer 216 . Structural stability of the ion-selective layer 216 may be improved while preventing an increase in resistance within the above range.
예시적인 실시예들에 따르면, 상기 이온 선택성층(216)의 두께는 전자전달층(214)의 두께보다 두꺼울 수 있다. 예를 들면, 상기 이온 선택성층(216)의 두께는 5㎛ 내지 30㎛일 수 있으며, 바람직하게는 15㎛ 내지 20㎛일 수 있다. 상기 범위 내에서 감지 대상 물질에 대한 선택성, 민감성을 향상시키면서 센싱 감도 및 속도가 우수할 수 있다.In example embodiments, the thickness of the ion-selective layer 216 may be greater than the thickness of the electron transport layer 214 . For example, the thickness of the ion selective layer 216 may be 5 μm to 30 μm, preferably 15 μm to 20 μm. Within the above range, the sensing sensitivity and speed may be excellent while improving the selectivity and sensitivity to the sensing target material.
예시적인 실시예들에 따르면, 기판(100) 상에 제1 도전층(212)을 형성하고, 제1 도전층(212) 상에 전자전달층(214)을 형성하고, 전자전달층(214) 상에 이온 선택성층(216)을 형성함으로써, 작업 전극(210)을 제조할 수 있다.According to exemplary embodiments, a first conductive layer 212 is formed on the substrate 100 , an electron transport layer 214 is formed on the first conductive layer 212 , and an electron transport layer 214 is formed on the substrate 100 . By forming the ion-selective layer 216 thereon, the working electrode 210 can be manufactured.
제1 도전층(212)은 기판(100) 상에 Au, Ag, Cu, Pt, Ti, Ni, Sn, Mo, Co, Pd 및 이들의 합금 중 적어도 하나를 포함하는 금속막을 형성한 후, 이를 패터닝(patterning)하여 형성될 수 있다.The first conductive layer 212 is formed on the substrate 100 with a metal film including at least one of Au, Ag, Cu, Pt, Ti, Ni, Sn, Mo, Co, Pd, and alloys thereof, and then It may be formed by patterning.
상기 패터닝은 당분야에서 통상적으로 사용되는 패터닝 공법이 사용될 수 있다. 예를 들면, 포토리소그래피(photolithography)를 사용할 수 있다.For the patterning, a patterning method commonly used in the art may be used. For example, photolithography may be used.
제1 도전층(212)이 금속 보호층(212b)을 더 포함할 경우, 금속층(212a)을 먼저 패터닝한 후 금속 보호층(212b)을 형성하거나, 상기 금속막 상에 투명 도전성 산화물막을 형성한 후, 상기 금속막과 투명 도전성 산화물막을 함께 패터닝하여 금속층(212a) 및 금속 보호층(212b)을 함께 형성될 수 있다.When the first conductive layer 212 further includes a metal protective layer 212b, the metal layer 212a is first patterned and then the metal protective layer 212b is formed, or a transparent conductive oxide film is formed on the metal layer. Then, the metal layer and the transparent conductive oxide layer may be patterned together to form the metal layer 212a and the metal protective layer 212b together.
일부 실시예들에 있어서, 전자전달층(214)은 도전성 바인더 및 금속 착화합물의 혼합물을 제1 도전층(212) 상에 도포한 후 건조하여 형성할 수 있다. 상기 도포는 당분야에서 통상적으로 사용되는 도포법이 사용될 수 있으며, 예를 들면, 각종 프린팅 방법이 사용될 수 있다.In some embodiments, the electron transport layer 214 may be formed by coating a mixture of a conductive binder and a metal complex on the first conductive layer 212 and then drying the mixture. For the application, a coating method commonly used in the art may be used, for example, various printing methods may be used.
일부 실시예들에 있어서, 이온 선택성층(216)은 고분자 지지체 및 이온 감응 물질의 혼합물, 또는 고분자 지지체, 이온 감응 물질 및 가소제의 혼합물을 전자전달층(214) 상에 도포한 후 건조하여 형성될 수 있다.In some embodiments, the ion selective layer 216 may be formed by applying a mixture of a polymer support and an ion-sensitive material, or a mixture of a polymer support, an ion-sensitive material, and a plasticizer on the electron transport layer 214 and then drying. can
기준 전극(220)은 기판(100) 상에 배치될 수 있다. 예를 들면, 기준 전극(220)은 기판(100)의 작업 전극(210)이 배치된 면과 동일한 면에 배치될 수 있다. 예를 들면, 기준 전극(220)은 작업 전극(210)과 이격되어 배치될 수 있으며, 기준 전극(220)과 작업 전극(210)은 전기적으로 절연될 수 있다.The reference electrode 220 may be disposed on the substrate 100 . For example, the reference electrode 220 may be disposed on the same plane as the working electrode 210 of the substrate 100 . For example, the reference electrode 220 may be disposed to be spaced apart from the working electrode 210 , and the reference electrode 220 and the working electrode 210 may be electrically insulated.
기준 전극(220)은 시료 측정 시 작업 전극(210)에서 측정되는 전압 값 또는 전위 값에 대한 기준치를 제공할 수 있다. 기준 전극(220)의 전위 값을 기준치로 하여 작업 전극(210) 내부로 선택적으로 투과된 감지 대상 물질의 농도를 특정할 수 있다.The reference electrode 220 may provide a reference value for a voltage value or a potential value measured by the working electrode 210 when measuring a sample. By using the potential value of the reference electrode 220 as a reference value, the concentration of the sensing target material selectively transmitted into the working electrode 210 may be specified.
예를 들면, 기준 전극(220)에서의 전위 값과 작업 전극(210)에서 측정되는 전위 값을 비교하여 순수하게 작업 전극(210) 내/외부에서의 감지 대상 물질(예를 들면, 특정 이온)의 농도차에 의해 발생한 전압을 계산할 수 있으며, 상기 전압으로부터 측정 대상 성분의 농도를 도출할 수 있다.For example, by comparing the potential value at the reference electrode 220 with the potential value measured at the working electrode 210 , the sensing target material (eg, specific ion) inside/outside the working electrode 210 . It is possible to calculate the voltage generated by the concentration difference of , and it is possible to derive the concentration of the component to be measured from the voltage.
일부 실시예들에 있어서, 기준 전극(220)은 제2 도전층(222) 및 기준 물질층(224)을 포함할 수 있다. 예를 들면, 기판(100)의 상면 상에 제2 도전층(222)이 배치되며, 상기 제2 도전층(222)의 상면 상에 기준 물질층(224)이 배치될 수 있다.In some embodiments, the reference electrode 220 may include a second conductive layer 222 and a reference material layer 224 . For example, the second conductive layer 222 may be disposed on the upper surface of the substrate 100 , and the reference material layer 224 may be disposed on the upper surface of the second conductive layer 222 .
예를 들면, 기준 전극(220)의 제2 도전층(222)은 작업 전극(210)의 제1 도전층(212)과 실질적으로 동일한 소재를 포함할 수 있다. 예를 들면, 기준 물질층(224)은 Ag/AgCl 페이스트를 포함할 수 있다. For example, the second conductive layer 222 of the reference electrode 220 may include substantially the same material as the first conductive layer 212 of the working electrode 210 . For example, the reference material layer 224 may include Ag/AgCl paste.
일부 실시예들에 있어서, 상기 기준 전극(220)은 Ag/AgCl 전극층을 포함할 수 있다. 예를 들면, 상기 Ag/AgCl 전극층은 Ag/AgCl 페이스트로부터 형성될 수 있으며, 기판(100) 상에 Ag/AgCl 전극층이 직접 접촉하도록 배치될 수 있다.In some embodiments, the reference electrode 220 may include an Ag/AgCl electrode layer. For example, the Ag/AgCl electrode layer may be formed from Ag/AgCl paste, and the Ag/AgCl electrode layer may be disposed on the substrate 100 to directly contact the Ag/AgCl electrode layer.
일부 실시예들에 있어서, 작업 전극(210) 및 기준 전극(220) 각각에 배선(310)이 연결될 수 있다. 작업 전극(210)에 연결된 배선(310) 및 기준 전극(220)에 연결된 배선(310)은 서로 전기적으로 절연될 수 있다. In some embodiments, the wiring 310 may be connected to each of the working electrode 210 and the reference electrode 220 . The wiring 310 connected to the working electrode 210 and the wiring 310 connected to the reference electrode 220 may be electrically insulated from each other.
예를 들면, 배선(310)은 작업 전극(210)의 제1 도전층(212)과 동일한 소재로 형성될 수 있으며, 기준 전극(220)의 제2 도전층(222)과 동일한 소재로 형성될 수 있다.For example, the wiring 310 may be formed of the same material as the first conductive layer 212 of the working electrode 210 , and may be formed of the same material as the second conductive layer 222 of the reference electrode 220 . can
일부 실시예들에 있어서, 배선(310)은 작업 전극(210) 및 기준 전극(220)과 일체로 형성될 수 있다. 기판(100) 상에 금속막을 형성하고 이를 패터닝함으로써 배선(310)을 일체로 형성할 수 있다. 또는, 스크린 인쇄법을 통해 제1 도전층(212), 기준 전극(220) 및 배선(310)을 일체로 형성할 수 있다.In some embodiments, the wiring 310 may be integrally formed with the working electrode 210 and the reference electrode 220 . The wiring 310 may be integrally formed by forming a metal film on the substrate 100 and patterning it. Alternatively, the first conductive layer 212 , the reference electrode 220 , and the wiring 310 may be integrally formed through a screen printing method.
일부 실시예들에 있어서, 작업 전극(210)에 연결된 배선(310) 및 기준 전극(220)에 연결된 배선(310)은 센싱 구동부에 연결될 수 있다.In some embodiments, the wire 310 connected to the working electrode 210 and the wire 310 connected to the reference electrode 220 may be connected to the sensing driver.
따라서, 작업 전극(210) 및 기준 전극(220)으로부터 측정된 전기적 신호(예를 들면, 전위차)가 배선(310)을 통해 센싱 구동부에 전달될 수 있다. 예를 들면, 센싱 구동부는 구동 집적 회로(IC) 칩일 수 있으며, 상기 구동 IC 칩에 의해 감지 대상 물질의 농도를 계산할 수 있다.Accordingly, an electrical signal (eg, a potential difference) measured from the working electrode 210 and the reference electrode 220 may be transmitted to the sensing driver through the wiring 310 . For example, the sensing driver may be a driving integrated circuit (IC) chip, and the concentration of the sensing target material may be calculated by the driving IC chip.
예를 들면, 센싱 구동부는 신호 감지부 및 신호 처리부를 포함할 수 있다. 신호 감지부와 신호 처리부는 서로 전기적으로 연결될 수 있다. For example, the sensing driver may include a signal detector and a signal processor. The signal sensing unit and the signal processing unit may be electrically connected to each other.
상기 신호 감지부는 감지 대상 물질의 농도에 따른 작업 전극(210) 및 기준 전극(220) 간의 전위 차이를 감지할 수 있다. 신호 처리부는 신호 감지부에 의해 측정된 작업 전극(210) 및 기준 전극(220) 간의 전위차로부터 감지 대상 물질의 농도를 계산할 수 있다.The signal detector may detect a potential difference between the working electrode 210 and the reference electrode 220 according to the concentration of the sensing target material. The signal processing unit may calculate the concentration of the sensing target material from the potential difference between the working electrode 210 and the reference electrode 220 measured by the signal sensing unit.
일부 실시예들에 있어서, 이온 센서는 보조 센서(320)를 더 포함할 수 있다. 보조 센서(320)는 배선(310)과 전기적으로 연결될 수 있으며, 주변 환경에 따른 측정 편차를 보정할 수 있다. 예를 들면, 상기 보조 센서(320)는 온도 센서일 수 있으며, 온도에 따른 측정값의 편차를 보정할 수 있다.In some embodiments, the ion sensor may further include an auxiliary sensor 320 . The auxiliary sensor 320 may be electrically connected to the wiring 310 , and may correct a measurement deviation according to a surrounding environment. For example, the auxiliary sensor 320 may be a temperature sensor, and may correct a deviation of a measured value according to temperature.
이하, 본 발명의 이해를 돕기 위하여 구체적인 실시예들 및 비교예들을 포함하는 실험예를 제시하나, 이는 본 발명을 예시하는 것일 뿐 첨부된 특허청구범위를 제한하는 것이 아니며, 본 발명의 범주 및 기술사상 범위 내에서 실시예에 대한 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, experimental examples including specific examples and comparative examples are presented to help the understanding of the present invention, but these are merely illustrative of the present invention and do not limit the appended claims, the scope and description of the present invention It is obvious to those skilled in the art that various changes and modifications to the embodiments are possible within the scope of the spirit, and it is natural that such variations and modifications fall within the scope of the appended claims.
실시예 및 비교예Examples and Comparative Examples
실시예 1Example 1
기판으로 180㎛ 두께의 PET 필름을 준비하였다. 이 후, 상기 기판 상에 약 2000Å 두께의 APC 금속막과 약 500Å 두께의 IZO 금속 보호막을 순서대로 도포한 뒤, 패터닝하여 금속층 및 금속 보호층을 형성하였다. A PET film having a thickness of 180 μm was prepared as a substrate. Thereafter, an APC metal film having a thickness of about 2000 Å and an IZO metal protective film having a thickness of about 500 Å were sequentially applied on the substrate, and then patterned to form a metal layer and a metal protective layer.
이 후, 상기 금속 보호층 상에 프러시안 블루 0.5중량%를 포함하는 카본 페이스트를 스크린 인쇄하여 약 8㎛ 두께의 전자전달층을 형성하였다. Thereafter, a carbon paste containing 0.5% by weight of Prussian blue was screen-printed on the metal protective layer to form an electron transport layer having a thickness of about 8 μm.
전자전달층 형성 후, 5중량%의 비스[(12-크라운-4)메틸]도데실메틸말로네이트(Bis[(12-crown-4)methyl] dodecylmethylmalonate), 35중량%의 폴리우레탄(PU) 및 60중량%의 다이옥틸 세바케이트(DOS)를 포함하는 혼합물을 0.4ml 테트라하이드로퓨란 용매에 희석시킨 후 상기 용액을 상기 전자전달층 상에 드랍 코팅하였다. 이 후, 실온에서 약 24시간 건조하여 약 15㎛ 두께의 이온 선택성층을 형성하여 작업 전극을 형성하였다.After formation of the electron transport layer, 5 wt% of bis[(12-crown-4)methyl]dodecylmethylmalonate (Bis[(12-crown-4)methyl] dodecylmethylmalonate), 35 wt% of polyurethane (PU) and 60% by weight of dioctyl sebacate (DOS) was diluted in 0.4 ml tetrahydrofuran solvent, and then the solution was drop-coated on the electron transport layer. Thereafter, it was dried at room temperature for about 24 hours to form an ion selective layer with a thickness of about 15 μm to form a working electrode.
기판 상에 작업 전극과 이격하여 Ag/AgCl(DBS-4585V, 대주전자재료 제)를 스크린 인쇄하여 기준 전극을 형성하였다.A reference electrode was formed by screen-printing Ag/AgCl (DBS-4585V, manufactured by Daejoo Electronic Materials) on the substrate to be spaced apart from the working electrode.
실시예 2Example 2
실시예 1에 있어서, 프러시안 블루 0.5중량%를 포함하는 카본 페이스트 대신에 프러시안 블루 3중량%를 포함하는 카본 페이스트를 사용하여 전자전달층을 형성하는 것을 제외하고는 실시예 1과 동일한 방법으로 이온 센서를 제작하였다.In Example 1, in the same manner as in Example 1, except that the electron transport layer was formed using a carbon paste containing 3% by weight of Prussian blue instead of the carbon paste containing 0.5% by weight of Prussian blue. An ion sensor was fabricated.
실시예 3Example 3
실시예 1에 있어서, 프러시안 블루 0.5중량%를 포함하는 카본 페이스트 대신에 프러시안 블루 10중량%를 포함하는 카본 페이스트를 사용하여 전자전달층을 형성하는 것을 제외하고는 실시예 1과 동일한 방법으로 이온 센서를 제작하였다.In Example 1, in the same manner as in Example 1, except that the electron transport layer was formed using a carbon paste containing 10% by weight of Prussian blue instead of the carbon paste containing 0.5% by weight of Prussian blue. An ion sensor was fabricated.
비교예comparative example
기판으로 180㎛ 두께의 PET 필름을 준비하였다. 이 후, 상기 기판 상에 약 2000Å 두께의 APC 금속막과 약 500Å 두께의 IZO 금속 보호막을 순서대로 도포한 뒤, 패터닝하여 금속층 및 금속 보호층을 형성하였다. A PET film having a thickness of 180 μm was prepared as a substrate. Thereafter, an APC metal film with a thickness of about 2000 Å and an IZO metal protective film with a thickness of about 500 Å were sequentially applied on the substrate, and then patterned to form a metal layer and a metal protective layer.
금속층 및 금속 보호층 형성 후, 5중량%의 비스[(12-크라운-4)메틸]도데실메틸말로네이트, 35중량%의 PU 및 60중량%의 DOS를 포함하는 혼합물을 0.4ml 테트라하이드로퓨란 용매에 희석시킨 후 상기 용액을 상기 금속 보호층 상에 드랍 코팅하였다. 이 후, 실온에서 약 24시간 건조하여 약 15㎛ 두께의 이온 선택성층을 형성하여 작업 전극을 형성하였다.After formation of the metal layer and the metal protective layer, a mixture comprising 5 wt% of bis[(12-crown-4)methyl]dodecylmethylmalonate, 35 wt% PU and 60 wt% DOS was mixed with 0.4 ml tetrahydrofuran After dilution in a solvent, the solution was drop-coated on the metal protective layer. Thereafter, it was dried at room temperature for about 24 hours to form an ion selective layer with a thickness of about 15 μm to form a working electrode.
기판 상에 작업 전극과 이격하여 Ag/AgCl(DBS-4585V, 대주전자재료 제)를 스크린 인쇄하여 기준 전극을 형성하였다.A reference electrode was formed by screen-printing Ag/AgCl (DBS-4585V, manufactured by Daejoo Electronic Materials) on the substrate to be spaced apart from the working electrode.
실험예: 전위차 산포 평가Experimental Example: Potential difference distribution evaluation
실시예 및 비교예의 센서를 이용하여 나트륨 전해질 용액에서의 전위차를 측정하였다.The potential difference in the sodium electrolyte solution was measured using the sensors of Examples and Comparative Examples.
각각의 전해질 용액(0.2, 0.5, 0.8, 1.0%)을 작업 전극과 기준 전극에 고르게 적하하고, 정전류 시간 전위차법을 통해 전류밀도 3kA/m2 조건에서 60초 후의 작업 전극 및 기준 전극의 전위차를 측정하였다. 각 농도에 대하여 5회씩 전위차를 측정한 후, 측정된 전위차 값들로부터 상대표준편차(RSD)를 계산하여 하기 표 1에 나타내었다.Each electrolyte solution (0.2, 0.5, 0.8, 1.0%) was evenly dropped on the working electrode and the reference electrode, and the potential difference between the working electrode and the reference electrode after 60 seconds at a current density of 3 kA/m 2 was measured through the constant current time potentiation method. measured. After measuring the potential difference 5 times for each concentration, the relative standard deviation (RSD) was calculated from the measured potential difference values and shown in Table 1 below.
구분division RSD(%)RSD (%)
전해질 농도(%)Electrolyte concentration (%) 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예comparative example
0.20.2 1One 44 1919 3838
0.50.5 00 77 1515 5252
0.80.8 1One 55 2020 5555
1.01.0 1One 88 1818 5454
표 1을 참조하면, 도전층 및 이온 선택성층 사이에 전자전달층이 개재된 실시예들의 경우 측정된 전위차 값의 상대 표준 편차가 현저히 낮은 것을 확인할 수 있다.Referring to Table 1, it can be seen that the relative standard deviation of the measured potential difference value is remarkably low in the examples in which the electron transport layer is interposed between the conductive layer and the ion selective layer.
비교예의 경우 도전층 및 이온 선택성층 사이에 전자전달층이 개재되지 않음에 따라, 측정값의 상대 표준 편차의 값이 실시예들에 비하여 현저히 증가된 것을 확인할 수 있다.In the case of the comparative example, as the electron transport layer is not interposed between the conductive layer and the ion selective layer, it can be seen that the value of the relative standard deviation of the measured value is significantly increased compared to that of the Examples.
또한, 상기 측정된 실시예 및 비교예들의 전위차 값을 통해 도 5의 그래프를 획득하였다. y축 방향(Potential)의 분포가 넓을수록 측정 산포가 열화임을 나타낸다.In addition, the graph of FIG. 5 was obtained through the measured potential difference values of Examples and Comparative Examples. As the distribution in the y-axis direction (Potential) is wider, it indicates that the measurement distribution is deteriorated.
도 5를 참조하면, 실시예 1의 이온 센서는 전위 값을 안정적으로 유지하여 측정 산포가 우수함을 확인할 수 있다. 비교예의 이온 센서는 측정값의 산포가 큼에 따라 전해질 용액의 농도에 따른 구분이 명확하지 않음을 확인할 수 있다. Referring to FIG. 5 , it can be confirmed that the ion sensor of Example 1 has excellent measurement dispersion by stably maintaining the potential value. It can be seen that the ion sensor of the comparative example is not clearly differentiated according to the concentration of the electrolyte solution as the dispersion of the measured values is large.

Claims (15)

  1. 기판;Board;
    상기 기판 상에 배치되며,disposed on the substrate,
    상기 기판의 상면 상에 배치되는 도전층;a conductive layer disposed on the upper surface of the substrate;
    상기 도전층의 상면 상에 배치되고, 도전성 바인더 및 상기 도전성 바인더 내에 분산된 금속 착화합물을 포함하는 전자전달층; 및an electron transport layer disposed on the upper surface of the conductive layer and including a conductive binder and a metal complex dispersed in the conductive binder; and
    상기 전자전달층의 상면 상에 배치된 이온 선택성층을 포함하는 작업 전극; 및a working electrode including an ion-selective layer disposed on an upper surface of the electron transport layer; and
    상기 기판 상에서 상기 작업 전극과 이격되어 배치된 기준 전극을 포함하는, 이온 센서.and a reference electrode disposed on the substrate to be spaced apart from the working electrode.
  2. 청구항 1에 있어서, 상기 도전층은 금속층 및 상기 금속층의 상면 상에 배치된 금속 보호층을 포함하는, 이온 센서.The ion sensor of claim 1 , wherein the conductive layer comprises a metal layer and a metal protective layer disposed on an upper surface of the metal layer.
  3. 청구항 2에 있어서, 상기 금속층은 Au, Ag, Cu, Pt, Ti, Ni, Sn, Mo, Co, Pd 및 이들의 합금 중 적어도 하나를 포함하는, 이온 센서.The ion sensor of claim 2 , wherein the metal layer comprises at least one of Au, Ag, Cu, Pt, Ti, Ni, Sn, Mo, Co, Pd, and alloys thereof.
  4. 청구항 2에 있어서, 상기 금속 보호층은 투명 도전성 산화물을 포함하는, 이온 센서.The ion sensor of claim 2 , wherein the metal protective layer comprises a transparent conductive oxide.
  5. 청구항 1에 있어서, 상기 도전성 바인더는 카본 페이스트, 금속 함유 페이스트 또는 전도성 고분자를 포함하는, 이온 센서.The ion sensor according to claim 1, wherein the conductive binder includes a carbon paste, a metal-containing paste, or a conductive polymer.
  6. 청구항 1에 있어서, 상기 금속 착화합물은 프러시안 블루(Prussian blue), 페리시안화 칼륨(Potassium ferricyanide), 페로시안화 칼륨(Potassium ferrocyanide), 염화헥사아민루세늄(Ⅲ)(Hexaammineruthenium(Ⅲ) chloride), 페로센계 화합물, 퀴논계 화합물 및 하이드로퀴논계 화합물로 구성된 그룹으로부터 선택된 적어도 하나를 포함하는, 이온 센서.The method according to claim 1, wherein the metal complex is Prussian blue (Prussian blue), potassium ferricyanide (Potassium ferricyanide), potassium ferrocyanide (Potassium ferrocyanide), hexaamine ruthenium (III) chloride (Hexaammineruthenium (III) chloride), ferrocene An ion sensor comprising at least one selected from the group consisting of a compound-based compound, a quinone-based compound, and a hydroquinone-based compound.
  7. 청구항 1에 있어서, 상기 금속 착화합물은 상기 전자전달층 총 중량 중 0.01중량% 내지 10중량%로 포함되는, 이온 센서.The ion sensor according to claim 1, wherein the metal complex is included in an amount of 0.01 wt% to 10 wt% of the total weight of the electron transport layer.
  8. 청구항 1에 있어서, 상기 이온 선택성층은 이온 감응 물질 및 고분자 지지체를 포함하는, 이온 센서.The ion sensor of claim 1 , wherein the ion-selective layer comprises an ion-sensitive material and a polymer support.
  9. 청구항 8에 있어서, 상기 이온 감응 물질은 H+, Na+, K+, Ca2+, Mg2+, OH-, Cl-, F-, Br-, I-, CN- 및 NO3 -로 구성된 그룹으로부터 선택된 하나의 이온을 선택적으로 투과시키는 물질을 포함하는, 이온 센서.The method according to claim 8, wherein the ion-sensitive material is H + , Na + , K + , Ca 2+ , Mg 2+ , OH - , Cl - , F - , Br - , I - , CN - and NO 3 - consisting of An ion sensor comprising a material that selectively transmits one ion selected from the group.
  10. 청구항 8에 있어서, 상기 고분자 지지체는 폴리염화비닐, 폴리비닐클로라이드 카르복실레이트, 폴리비닐클로라이드 아미네이트, 폴리비닐부티랄, 폴리비닐알코올, 폴리메틸아크릴레이트, 폴리에틸렌옥사이드, 크세로겔, 아가로즈, 폴리우레탄 및 실리콘 러버로 구성된 그룹으로부터 선택된 적어도 하나를 포함하는, 이온 센서.The method according to claim 8, wherein the polymer support is polyvinyl chloride, polyvinyl chloride carboxylate, polyvinyl chloride aminate, polyvinyl butyral, polyvinyl alcohol, polymethyl acrylate, polyethylene oxide, xerogel, agarose, A sensor comprising at least one selected from the group consisting of polyurethane and silicone rubber.
  11. 청구항 1에 있어서, 상기 이온 선택성층의 두께는 상기 전자전달층의 두께보다 두꺼운, 이온 센서.The ion sensor according to claim 1, wherein the thickness of the ion-selective layer is thicker than the thickness of the electron transport layer.
  12. 청구항 11에 있어서, 상기 전자전달층의 두께는 3㎛ 내지 15㎛인, 이온 센서.The ion sensor of claim 11 , wherein the electron transport layer has a thickness of 3 μm to 15 μm.
  13. 청구항 11에 있어서, 상기 이온 선택성층의 두께는 5㎛ 내지 30㎛인, 이온 센서.The ion sensor of claim 11 , wherein the ion-selective layer has a thickness of 5 μm to 30 μm.
  14. 청구항 1에 있어서, 상기 전자전달층은 상기 도전층의 측면을 전체적으로 둘러싸는, 이온 센서.The ion sensor of claim 1 , wherein the electron transport layer entirely surrounds a side surface of the conductive layer.
  15. 청구항 1에 있어서, 상기 이온 선택성층은 상기 도전층의 측면 및 상기 전자전달층의 측면을 전체적으로 둘러싸는, 이온 센서.The ion sensor of claim 1 , wherein the ion-selective layer entirely surrounds a side surface of the conductive layer and a side surface of the electron transport layer.
PCT/KR2022/001809 2021-03-31 2022-02-07 Ion sensor WO2022211254A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0042093 2021-03-31
KR1020210042093A KR20220135858A (en) 2021-03-31 2021-03-31 Ion sensor

Publications (1)

Publication Number Publication Date
WO2022211254A1 true WO2022211254A1 (en) 2022-10-06

Family

ID=83459290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001809 WO2022211254A1 (en) 2021-03-31 2022-02-07 Ion sensor

Country Status (2)

Country Link
KR (1) KR20220135858A (en)
WO (1) WO2022211254A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339958B1 (en) * 2008-07-31 2016-04-20 Medtronic MiniMed, Inc. Analyte sensor apparatuses having improved electrode configurations and methods for making and using them
KR20190031944A (en) * 2017-09-19 2019-03-27 동우 화인켐 주식회사 Glucose sensor
KR20200084678A (en) * 2019-01-03 2020-07-13 동우 화인켐 주식회사 Glucose sensing electrode, method of maufacturing the same and glucose sensor including the same
CN111665287A (en) * 2020-06-12 2020-09-15 浙江大学 Magnetic printing electrode
KR20200115285A (en) * 2019-03-29 2020-10-07 동우 화인켐 주식회사 Bio sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130107609A (en) 2012-03-22 2013-10-02 금오공과대학교 산학협력단 Ammonium cation and alkylammonium cation recognition ion selective electrode membrane using dihydroxo-tin(iv) pyridylporphyrin and ion selective electrode comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339958B1 (en) * 2008-07-31 2016-04-20 Medtronic MiniMed, Inc. Analyte sensor apparatuses having improved electrode configurations and methods for making and using them
KR20190031944A (en) * 2017-09-19 2019-03-27 동우 화인켐 주식회사 Glucose sensor
KR20200084678A (en) * 2019-01-03 2020-07-13 동우 화인켐 주식회사 Glucose sensing electrode, method of maufacturing the same and glucose sensor including the same
KR20200115285A (en) * 2019-03-29 2020-10-07 동우 화인켐 주식회사 Bio sensor
CN111665287A (en) * 2020-06-12 2020-09-15 浙江大学 Magnetic printing electrode

Also Published As

Publication number Publication date
KR20220135858A (en) 2022-10-07

Similar Documents

Publication Publication Date Title
TWI425461B (en) Electronic machine with protective panel
US7279080B2 (en) Gas sensors
TWI435246B (en) Touch panel and mobile device utilizing touch panel
WO2016018126A1 (en) Smart phone
WO2013062385A1 (en) Touch panel
WO2017018718A1 (en) Touch input apparatus including display module in which pressure electrode is formed, and method for forming pressure electrode
WO2010058929A2 (en) Pad for fabricating touch panel, method for fabricating touch panel using the same, and touch panel fabricated by the same
US7696538B2 (en) Sensor for measuring liquid contaminants in a semiconductor wafer fabrication process
US20220173185A1 (en) Display panel and display apparatus
WO2017039356A1 (en) Allergen detection apparatus using electrochemical detection method
WO2015026071A1 (en) Touch sensing electrode and touch screen panel having same
WO2019168303A1 (en) Digitizer integrated with touch sensor and display device comprising same
WO2020045739A1 (en) Hybrid large-area pressure sensor including capacitive sensor and resistive sensor integrated with each other
TW201104550A (en) Pesist film type of touch panel having function of press detection
WO2022211254A1 (en) Ion sensor
WO2015030404A1 (en) Touch sensing electrode and touch screen panel having same
WO2019059496A1 (en) Glucose sensor
DE68905007T2 (en) SENSOR FOR A SOLVENT DETECTOR.
WO2018135840A1 (en) Touch input device
WO2012033247A1 (en) Touch panel
WO2019164111A1 (en) Glucose sensor
WO2019212159A1 (en) Glucose sensor
WO2021080132A1 (en) Biosensor and concentration measurement method using same
WO2018212483A1 (en) Touch input device comprising display panel having strain gauge formed therein
KR20200093871A (en) Glucose sensing electrode and glucose sensor including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781375

Country of ref document: EP

Kind code of ref document: A1