WO2022211042A1 - Laminate for printed circuit board and junction for multilayer printed circuit board - Google Patents

Laminate for printed circuit board and junction for multilayer printed circuit board Download PDF

Info

Publication number
WO2022211042A1
WO2022211042A1 PCT/JP2022/016605 JP2022016605W WO2022211042A1 WO 2022211042 A1 WO2022211042 A1 WO 2022211042A1 JP 2022016605 W JP2022016605 W JP 2022016605W WO 2022211042 A1 WO2022211042 A1 WO 2022211042A1
Authority
WO
WIPO (PCT)
Prior art keywords
printed wiring
wiring board
adhesive layer
base material
metal foil
Prior art date
Application number
PCT/JP2022/016605
Other languages
French (fr)
Japanese (ja)
Inventor
誠一 善見
順哉 中坪
茂樹 今村
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2022562936A priority Critical patent/JP7298786B2/en
Publication of WO2022211042A1 publication Critical patent/WO2022211042A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present disclosure relates to a printed wiring board laminate and a multilayer printed wiring board assembly.
  • a printed wiring board generally uses a metal laminate in which a conductive layer made of metal foil is laminated on a base material, and the conductive layer of the metal laminate is patterned to form a circuit.
  • the printed wiring board for the fifth generation mobile communication system is required to have excellent electrical characteristics corresponding to frequencies in the high frequency band.
  • Patent Document 1 can be cited as a technique related to laminated films used for rubber moldings.
  • the aforementioned Patent Document 1 discloses a laminated film having an adhesive layer on one surface of a fluororesin film.
  • the adhesive layer is a deposited film formed on the fluororesin film by a plasma chemical vapor deposition method using a vapor deposition gas composition containing an organic silicon compound.
  • Patent Documents 2 and 3 disclose laminates with an adhesive layer suitable for manufacturing products related to printed wiring boards.
  • base materials containing low-dielectric resin materials such as liquid crystal polymers (LCP) and fluorine-based resins
  • LCP liquid crystal polymers
  • fluorine-based resins such as fluorine-based resins
  • Such a base material may have poor adhesion to the metal foil.
  • the metal foil is required to have a low roughness, but a metal foil with a low surface roughness tends to have insufficient adhesiveness to the base material.
  • the present disclosure is an invention made in view of the above problems, and a main object thereof is to provide a laminate for a printed wiring board in which a base material and a metal foil are strongly bonded and transmission loss is suppressed. .
  • the present disclosure provides a laminate for a printed wiring board in which a base material, an adhesive layer, and a metal foil are laminated in this order, wherein the base material contains a low dielectric resin material.
  • the adhesive layer contains a thermosetting resin
  • the maximum height roughness (Rz) of the adhesive layer side surface of the metal foil is 10 ⁇ m or less
  • the adhesive layer side surface of the base material is Provided is a printed wiring board laminate having a maximum height roughness (Rz) of 0.1 ⁇ m or more.
  • the first base material, the first adhesive layers disposed on both sides of the first base material, and the surface of each of the first adhesive layers opposite to the first base material A first printed wiring board laminate having a first metal foil disposed, a second base material, second adhesive layers disposed on both sides of the second base material, and one of the second a second printed wiring board laminate having a second metal foil disposed on the surface of the adhesive layer opposite to the second base material, the first printed wiring board laminate, and In the second printed wiring board laminate, the second adhesive layer on the side of the second printed wiring board laminate on which the second metal foil is not disposed is the second adhesive layer of the first printed wiring board laminate. 1.
  • a bonded structure for a multilayer printed wiring board arranged to face a metal foil wherein the first base material and the second base material contain a low dielectric resin material, and the first adhesive layer and the second base material contain a low dielectric resin material.
  • the second adhesive layer contains a thermosetting resin, and the maximum height roughness (Rz) of the surfaces of the first metal foil and the second metal foil facing the first adhesive layer and the second adhesive layer is 10 ⁇ m or less. and the maximum height roughness (Rz) of the surfaces of the first base material and the second base material on the first adhesive layer and second adhesive layer sides is 0.1 ⁇ m or more, for a multilayer printed wiring board Provide a conjugate.
  • FIG. 1 is a schematic cross-sectional view illustrating a printed wiring board laminate of the present disclosure
  • FIG. 1 is a schematic cross-sectional view illustrating a printed wiring board laminate of the present disclosure
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view illustrating a joined body for a multilayer printed wiring board of the present disclosure and a manufacturing process thereof
  • 1 is a schematic cross-sectional view illustrating a conventional joined body for a multilayer printed wiring board and a manufacturing process thereof
  • FIG. It is a schematic sectional drawing which illustrates the conventional laminated body for printed wiring boards.
  • a configuration such as a member or a region is “above (or below)” another configuration such as another member or another region. So far, this includes not only when directly above (or directly below) other structures, but also when above (or below) other structures, i.e. above (or below) other structures and between other structures. Including cases where the constituent elements of are included.
  • FIG. 1 is a schematic cross-sectional view illustrating a printed wiring board laminate in the present disclosure.
  • the printed wiring board laminate 10 according to the present disclosure shown in FIG. It has an adhesive layer 3 and a metal foil 4 in this order.
  • the printed wiring board laminate 10 according to the present disclosure includes a vapor deposition layer 2 and a thermosetting resin on both sides of a base material 1 containing a low dielectric resin material. and the metal foil 4 in this order.
  • FIG. 5 shows a schematic cross-sectional view illustrating a conventional printed wiring board laminate.
  • the base material 11 containing the low dielectric resin material and the metal foil 14 are laminated by thermal welding. Adhesion to metal foil may be poor. Furthermore, metal foils with low surface roughness have poor adhesion to low dielectric substrates. Therefore, the conventional printed wiring board laminate 20 has insufficient adhesiveness between the base material 11 and the metal foil 14 .
  • the present inventors have studied the layer structure of a laminate for a printed wiring board that is strongly bonded while suppressing transmission loss. Further, by arranging an adhesive layer between the base material and the metal foil, it is possible to obtain a laminate for a printed wiring board in which the base material and the metal foil are firmly bonded while ensuring the smoothness of the metal foil. I found
  • high frequency bands specifically 3-5 GHz, 25-30 GHz, 60-80 GHz, >
  • a laminated body for a printed wiring board that is compatible with the fifth generation mobile communication system using 100 GHz or the like can be obtained.
  • the substrate in the present disclosure contains a low dielectric resin material and has a maximum height roughness (Rz) of 0.1 ⁇ m or more on the adhesive layer side surface.
  • the maximum height roughness (Rz) may be 0.3 ⁇ m or more, 0.4 ⁇ m or more, 0.5 ⁇ m or more, or 0.6 ⁇ m or more, It may be 0.7 ⁇ m or more.
  • the maximum height roughness (Rz) may be, for example, 20.0 ⁇ m or less, 10.0 ⁇ m or less, and preferably 5.0 ⁇ m or less.
  • the maximum height roughness (Rz) in the present disclosure is a value obtained by a method conforming to JIS B 0601 (2001). That is, using a surface roughness measuring instrument (Kosaka Laboratory Surfcorder SE1700 ⁇ ), only the reference length described in JIS B 0601 is extracted from the roughness curve in the direction of the average line, and the peak line and valley bottom of this extracted portion Rz is the distance from the line measured in the direction of the longitudinal magnification of the roughness curve.
  • JP-A-2020-95254 in addition to the measurement using a surface roughness measuring instrument, the method described in JP-A-2020-95254 can be used to obtain the adhesive layer side of the substrate from a cross-sectional SEM image of the laminate for printed wiring boards.
  • the maximum height roughness (Rz) of the surface can be determined.
  • the cross section is exposed by known techniques such as ion beams and microtome.
  • the laminate is cut so that the cross section of the base material in the lamination direction in the laminate can be observed, and the cross section is visually observed with a scanning transmission electron microscope (trade name: S-5500 manufactured by Hitachi High Technology). .
  • a scanning transmission electron microscope (trade name: S-5500 manufactured by Hitachi High Technology).
  • image processing by performing image processing on the observed image, the maximum height roughness (Rz) of the adhesive layer side surface of the base material can be obtained.
  • image processing method commercially available image processing software such as image Pro PLUS (manufactured by Media Cybernetics) can be used. As shown in Examples described later, the Rz measured by the surface roughness measuring instrument and the Rz measured from the cross-sectional SEM image of the laminate are almost the same.
  • a base material in the present disclosure includes a low dielectric resin material.
  • the dielectric constant ⁇ of such a substrate is, for example, 4.0 or less, may be 3.5 or less, or may be 3.0 or less.
  • the dielectric loss tangent tan ⁇ of the substrate is, for example, 0.01 or less, may be 0.006 or less, or may be 0.002 or less.
  • the dielectric constant and dielectric loss tangent are the dielectric constant and dielectric loss tangent at 23°C and 28 GHz.
  • Permittivity and dielectric loss tangent can be measured by a resonator method. Permittivity and loss tangent are measured with a microwave network analyzer, for example, equipped with a network analyzer (Keysight Technologies E8363B PNA series) and a split cylinder resonator 28 GHz (EM Lab split cylinder resonator 28 GHz CR-728). can be measured using the system.
  • low-dielectric resins contained in such base materials include fluorine-based resins, liquid crystal polymers, polyphenylene ether resins (PPE), syndiotactic polystyrene resins (SPS), cycloolefin copolymer resins (COC), cycloolefin copolymer resins (COC), Olefin polymer resin (COP) and the like are included.
  • fluorine-based resins include polytetrafluoroethylene (PTFE), perfluoroalkoxy resin (PFA) composed of a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether, tetrafluoroethylene and hexafluoropropylene copolymer (FEP), tetrafluoroethylene and hexafluoropropylene copolymer (FEP), Fluoroethylene, perfluoroalkyl vinyl ether and hexafluoropropylene copolymer (EPE), copolymer of tetrafluoroethylene and ethylene or propylene (ETFE), polychlorotrifluoroethylene resin (PCTFE), copolymer of ethylene and chlorotrifluoroethylene (ECTFE ), vinylidene fluoride resin (PVDF), or vinyl fluoride resin (PVF).
  • the substrate may contain only one type of fluororesin, or may contain two or more types.
  • liquid crystal polymer is a polymer capable of forming a melt phase having optical anisotropy.
  • liquid crystal polymers include polyarylate liquid crystal polymers, wholly aromatic polyesters, semi-rigid aromatic polyesters, and polyesteramides.
  • liquid crystal polymers include (1) aromatic or aliphatic dihydroxy compounds, (2) aromatic or aliphatic dicarboxylic acids, (3) aromatic hydroxycarboxylic acids, (4) aromatic diamines, aromatic hydroxylamines or aromatic and copolymers made from group aminocarboxylic acids.
  • the liquid crystal polymer has a polymer main chain composed of an aromatic group, and these aromatic groups are ester bonds (-C(O)O- or -OC(O)- ), amide bonds (-C(O)NH- or -NHC(O)-), liquid crystalline polyesters or liquid crystalline polyesteramides are preferred.
  • the above-mentioned aromatic group means a monocyclic aromatic group, a condensed ring aromatic group, a monocyclic aromatic group or a condensed ring aromatic group directly bonded, an oxygen atom, a sulfur atom, a carbon number of 1 to
  • the concept also includes a group of 6 linked via a linking group such as an alkylene group, a sulfonyl group and a carbonyl group.
  • the substrate may contain only one type of liquid crystal polymer, or may contain two or more types.
  • the low dielectric resin material is preferably a thermoplastic resin.
  • the base material in the present disclosure may contain a reinforcing material as an optional component.
  • the coefficient of thermal expansion can be reduced by containing the reinforcing material.
  • the reinforcing material is not particularly limited as long as it has a coefficient of thermal expansion smaller than that of the low dielectric resin material, and examples thereof include silica. Further, it is desirable to use a reinforcing material having insulating properties, heat resistance that does not melt and flow at the melting point of the low dielectric resin material, tensile strength equal to or greater than that of the low dielectric resin material, and corrosion resistance.
  • Such a reinforcing material can be composed of, for example, a glass cloth formed into a glass cloth, a fluororesin-containing glass cloth obtained by impregnating such a glass cloth with a fluororesin, a resin cloth, a heat-resistant film, or the like.
  • the resin cloth include those containing heat-resistant fibers made of metal, ceramics, polytetrafluoroethylene, polyetheretherketone, polyimide, aramid, or the like.
  • liquid crystal polymer polyimide, polyamideimide, polybenzimidazole, polyetheretherketone, polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, thermosetting resin, crosslinked resin, etc. What is used as a main component can be mentioned.
  • the resin cloth and the heat-resistant film preferably have a melting point (or heat distortion temperature) higher than the thermocompression bonding temperature in "6.
  • the weaving method of the resin cloth is preferably plain weave in order to make the base material thinner, but twill weave and satin weave are preferable in order to make the base material bendable. In addition, a known weaving method can be applied.
  • the content of the reinforcing material in the base material is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
  • the thickness of the substrate in the present disclosure is, for example, 10 ⁇ m or more, may be 20 ⁇ m or more, or may be 50 ⁇ m or more. On the other hand, the thickness of the substrate is, for example, 300 ⁇ m or less, and may be 200 ⁇ m or less.
  • the surface of the adhesive layer side of the base material may have a vapor deposition film in order to improve adhesion with the adhesive layer, and the adhesive layer side of the base material may have a vapor deposition film.
  • the surface may be subjected to surface treatment.
  • the surface of such a deposited film on the side opposite to the base material, or the surface of the base material subjected to surface treatment usually reflects the surface shape of the adhesive layer side of the base material as it is. Therefore, the maximum height roughness (Rz) of these surfaces is equivalent to the maximum height roughness (Rz) of the adhesive layer side surface of the substrate.
  • the vapor-deposited layer used in the present disclosure is preferably a vapor-deposited film containing carbon, silicon and oxygen. Furthermore, it is preferable that the vapor-deposited film is adhered to the substrate by a siloxane bond.
  • the vapor-deposited film is preferably a layer formed by vapor-phase chemical vapor deposition (CVD) using a vapor deposition gas composition containing an organosilicon compound (hereinafter also referred to as "source gas").
  • the deposited film is preferably a dense and highly flexible continuous layer containing mainly carbon, silicon and oxygen. Moreover, it is preferable that at least one of a methyl (CH 3 ) group and an ethyl (C 2 H 5 ) group is present on the surface of the deposited film. By forming at least one of the CH 3 group and the C 2 H 5 group on the surface of the deposited film, the adhesion with the adhesive layer is improved.
  • Such a vapor deposition film uses an organosilicon compound monomer containing a methyl group directly bonded to a Si atom as a vapor deposition material, and a vapor deposition gas composition containing a vapor deposition monomer gas and optionally an oxygen supplying gas.
  • a vapor deposition gas composition containing a vapor deposition monomer gas and optionally an oxygen supplying gas.
  • CVD methods such as thermal CVD and optical CVD, but it is preferable to employ the plasma CVD method, which allows low-temperature film formation and is less prone to coloration of the base material.
  • the amount of CH 3 groups and C 2 H 5 groups present on the surface can be adjusted by changing the ratio of the vapor deposition monomer gas and the oxygen supplying gas in the vapor deposition gas composition during film formation.
  • the thickness of the deposited film is, for example, 5 nm or more, and may be 10 nm or more. On the other hand, the thickness of the deposited film is, for example, 100 nm or less, and may be 50 nm or less.
  • the thickness of the deposited film can be measured using, for example, a fluorescent X-ray spectrometer (model name: RIX2000 type) manufactured by Rigaku Corporation.
  • a vapor deposition film for example, an object to be vapor deposited (base material) is introduced into a vacuum chamber. Then, a vapor deposition gas composition containing a vapor deposition monomer gas comprising an organosilicon compound and optionally an oxygen supplying gas is introduced into the vacuum chamber at a constant rate, and the surface of the object (substrate) to be vapor deposited is subjected to the CVD method. A deposition film is formed thereon.
  • organosilicon compounds include organosilicon compounds containing CH3 directly bonded to silicon (Si) atoms. Specific examples include hexamethyldisiloxane (HMDSO), tetramethyldisiloxane (TMDSO), octamethyl Cyclotetrasiloxane, methylsilane, dimethylsilane, trimethylsilane, tetramethylsilane, ethylsilane.
  • HMDSO hexamethyldisiloxane
  • TMDSO tetramethyldisiloxane
  • octamethyl Cyclotetrasiloxane methylsilane, dimethylsilane, trimethylsilane, tetramethylsilane, ethylsilane.
  • organosilicon compounds may be any organic compound that has an appropriate vapor pressure at room temperature and can be subjected to CVD (particularly plasma CVD). Therefore, using a material having a functional group with 3 or more carbon atoms such as C 3 H 8 group, a deposited film containing at least one of CH 3 group and C 2 H 5 group is formed by CVD (especially plasma CVD). method).
  • oxygen gas for example, is used as the oxygen supply gas.
  • Ozone gas or laughing gas N 2 O gas
  • oxygen gas is most preferable in terms of film formation efficiency and cost.
  • a gas (carrier gas) for efficiently introducing the vapor deposition monomer gas into the vacuum chamber and a gas for the purpose of generating or enhancing plasma are also introduced into the vapor deposition gas composition as necessary. you can
  • the most common plasma CVD method is to apply an electric field of 13.56 MHz between parallel plate electrodes. That is, a vapor deposition gas composition is introduced into the vacuum chamber to maintain a constant pressure, and 13. between a flat plate electrode placed in the vacuum chamber and a ground electrode placed facing the flat plate electrode in parallel. A 56 MHz RF alternating voltage is applied.
  • a glow discharge plasma is generated, and the plasma flow is used to chemically react the vapor deposition gas composition, thereby forming a vapor deposition film.
  • the vapor-deposited film (substrate) is usually placed on the surface of the ground electrode, but may be placed on the side of the plate electrode to which the RF voltage is applied.
  • a lower frequency 40 kHz, 50 kHz, etc.
  • a higher frequency 2.45 GHz, etc.
  • a DC voltage may be applied.
  • a hollow cathode electrode that generates a plasma flow by blowing out gas, or to generate an induced plasma from an external coil. It is also possible to increase the plasma density by using a magnetic field or by using the ECR resonance phenomenon (a phenomenon in which electrons in the plasma undergo cyclotron resonance by appropriately adjusting the electric and magnetic fields).
  • Film formation by the plasma CVD method has various conditions such as input power, gas flow rate, film formation pressure, distance between electrodes, and film formation time, and these conditions can be adjusted as appropriate.
  • the input power is, for example, 20 W or more, and may be 50 W or more.
  • the input power is, for example, 1000 W or less, and may be 800 W or less.
  • plasma treatment is preferably performed after the CVD method.
  • plasma treatment include electron beam treatment, corona treatment, atmospheric pressure plasma treatment, low pressure plasma treatment, and the like. From the viewpoint of productivity, corona treatment, atmospheric pressure plasma treatment, low-pressure plasma treatment, and the like are preferable, and oxygen plasma treatment under low pressure is particularly preferable because the plasma atmosphere can be easily controlled.
  • the contact angle of water on the surface of the deposited film is, for example, 10° or more, may be 30° or more, or may be 50° or more. On the other hand, the contact angle of water is, for example, 120° or less, may be 100° or less, or may be 80° or less.
  • the contact angle of water is a value measured using a contact angle tester under conditions of 20° C. and 50% RH.
  • the substrate in the present disclosure may be one in which the surface on the adhesive layer side is subjected to surface treatment. This is because the adhesiveness with the adhesive layer is improved.
  • Surface treatments include plasma treatment, corona treatment, flame treatment, flame treatment and chemical treatment.
  • the above surface treatment may form a surface treatment layer in which functional groups containing oxygen atoms are introduced on the substrate surface.
  • the thickness of the surface treatment layer in this case is, for example, 1 nm or more, and may be 5 nm or more.
  • the thickness of the surface treatment layer is, for example, 50 nm or less, and may be 30 nm or less.
  • the thickness of the surface treatment layer can be measured, for example, using a fluorescent X-ray spectrometer (model name: RIX2000 type) manufactured by Rigaku Corporation.
  • the surface treatment layer appears as a layer containing oxygen on the surface of the fluororesin.
  • the atomic concentration of oxygen is preferably 1.0 atomic percent (at. %) or more.
  • the base material is degassed, and then the base material surface is subjected to vacuum discharge treatment.
  • the degassing treatment and the vacuum discharge treatment are preferably performed continuously as a series of steps while maintaining a vacuum state.
  • the degassing treatment of the substrate includes, for example, a treatment of holding the substrate at a degree of vacuum of 1.0 ⁇ 10 ⁇ 1 Pa or less in an inert gas stream having an oxygen concentration of 0.01% or less.
  • inert gas include rare gas and nitrogen gas.
  • rare gases include argon (Ar), helium (He), neon (Ne), krypton (Kr), and xenon (Xe).
  • the oxygen concentration of the inert gas may be 0.001% or less.
  • the degree of vacuum (gas pressure) in the inert gas stream may be 5.0 ⁇ 10 ⁇ 2 Pa or less, or 1.0 ⁇ 10 ⁇ 2 Pa or less. On the other hand, the degree of vacuum is, for example, 1.0 ⁇ 10 ⁇ 4 Pa or more.
  • the degassing treatment may be performed while the substrate is heated.
  • the heating temperature is, for example, 30° C. or higher, may be 40° C. or higher, or may be 50° C. or higher.
  • the heating temperature is, for example, 100° C. or lower, may be 90° C. or lower, or may be 80° C. or lower.
  • the treatment time of the degassing treatment is, for example, 20 seconds or longer, may be 30 seconds or longer, or may be 40 seconds or longer.
  • the treatment time of the degassing treatment is, for example, 90 seconds or less, may be 80 seconds or less, or may be 70 seconds or less.
  • Vacuum discharge treatment is a process that cleans and modifies the surface of the base material.
  • Vacuum discharge treatment includes, for example, corona discharge treatment and glow discharge treatment, and glow discharge treatment under low pressure is particularly preferred.
  • the gas used is ionized to generate plasma in which gas ions and electrons coexist.
  • Vacuum discharge treatment is performed on the surface of the base material that has been subjected to degassing treatment in an inert gas stream with an oxygen concentration of 0.01% or less at 1.0 ⁇ 10 -3 Pa or more and 1.0 ⁇ 10 -2 Pa It is preferable to apply a DC electric field while maintaining the following degree of vacuum and simultaneously perform vacuum discharge treatment with an applied power of 0.2 W/cm 2 or more for 10 seconds or more.
  • the oxygen concentration of the inert gas may be 0.001% or less.
  • the degree of vacuum (gas pressure) in the inert gas stream is, for example, 1.0 ⁇ 10 ⁇ 3 Pa or more, may be 3.0 ⁇ 10 ⁇ 3 Pa or more, and may be 5.0 ⁇ 10 ⁇ 3 Pa or more may be sufficient.
  • the degree of vacuum (gas pressure) in the inert gas stream is, for example, 1.0 ⁇ 10 ⁇ 2 Pa or less, and may be 9.0 ⁇ 10 ⁇ 3 Pa or less.
  • an AC electric field is usually applied.
  • the frequency of the alternating current is preferably 10 kHz or more and 900 MHz or less.
  • the applied power of the AC electric field is, for example, 0.2 W/cm 2 or more, may be 0.3 W/cm 2 or more, or may be 0.4 W/cm 2 or more.
  • the applied power of the AC electric field is, for example, 1.0 W/cm 2 or less, may be 0.9 W/cm 2 or less, or may be 0.8 W/cm 2 or less.
  • the processing time of the vacuum discharge treatment is, for example, 10 seconds or longer, may be 15 seconds or longer, or may be 20 seconds or longer. On the other hand, the processing time of the vacuum discharge treatment is, for example, 100 seconds or less, may be 70 seconds or less, or may be 50 seconds or less.
  • a DC electric field may be applied simultaneously with the vacuum discharge treatment in order to modify the surface of the substrate.
  • a DC electric field is applied in a direction that forces the cationized inert gas atoms toward the surface of the substrate.
  • the electric field intensity of the DC electric field is, for example, 10 V/cm or more, may be 30 V/cm or more, may be 50 V/cm or more, or may be 70 V/cm or more.
  • the electric field intensity of the DC electric field is, for example, 200 V/cm or less, and may be 150 V/cm or less.
  • the contact angle of water on the surface of the substrate on the surface-treated side is, for example, 10° or more, may be 30° or more, or may be 50° or more.
  • the contact angle of water is, for example, 120° or less, may be 100° or less, or may be 80° or less.
  • the contact angle of water is a value measured using a contact angle tester under conditions of 20° C. and 50% RH.
  • the adhesive layer in the present disclosure contains a thermosetting resin.
  • a thermosetting resin functions as an adhesive and is preferably in a semi-cured state or a cured state.
  • "semi-cured” means a state in which the curing of the resin is stopped in the middle, and is a B-stage (thermosetting resin means the cured intermediate) state of the composition.
  • the adhesive layer is in contact with the substrate.
  • thermosetting resins include epoxy resins, silicone resins, unsaturated polyester resins, saturated polyester resins, melamine resins, phenol resins, polyamides, ketone resins, urethane resins, urea resins, acrylic resins, vinyl resins, alkyd resins, Examples include amino alkyd resins, hydrocarbon resins (aromatic and aliphatic), rubber resins, fluororesins, and polyimide resins.
  • the curing temperature of the thermosetting resin is, for example, 250° C. or lower, and may be 200° C. or lower.
  • the polyimide resin for example, a polyimide adhesive described in Japanese Patent No. 6790816 can be used.
  • an adhesive composition containing a carboxyl group-containing styrene elastomer and an epoxy resin described in Japanese Patent No. 6485577, and a modified polyolefin resin described in Japanese Patent No. 671848, and an adhesive composition containing an epoxy resin can also be suitably used.
  • the adhesive layer in the present disclosure may further contain a low dielectric resin material.
  • a low dielectric resin material the materials described in "A. Laminate for printed wiring board 1.
  • Base material can be used. Specific examples include polyolefin, polystyrene, polyphenylene ether (PPE), fluororesin, and liquid crystal polymer.
  • the polyolefins include cycloolefin polymers (COP), cycloolefin copolymers (COC), ⁇ -olefin copolymers, and the like.
  • COP cycloolefin polymers
  • COC cycloolefin copolymers
  • ⁇ -olefin copolymers and the like.
  • syndiotactic polystyrene (SPS) etc. can be mentioned as said polystyrene.
  • the dielectric constant ⁇ of the adhesive layer is, for example, 4.0 or less, may be 3.5 or less, or may be 3.0 or less.
  • the dielectric constant is a value obtained by using a dielectric constant measuring device for the adhesive layer (after curing) at a measurement temperature of 23° C. and a measurement frequency of 10 GHz.
  • the dielectric loss tangent tan ⁇ of the adhesive layer is, for example, 0.01 or less, may be 0.006 or less, or may be 0.002 or less.
  • the dielectric loss tangent can be measured by the same method as the dielectric constant.
  • the thickness of the adhesive layer is, for example, 1 ⁇ m or more, and may be 5 ⁇ m or more. On the other hand, the thickness of the adhesive layer is, for example, 300 ⁇ m or less, and may be 200 ⁇ m or less. In the present disclosure, the thickness of the adhesive layer is preferably thinner than the thickness of the substrate. Since the dielectric constant of the base material is often lower than that of the adhesive layer, it is preferable in terms of electrical properties if the thickness of the adhesive layer is thinner than the thickness of the base material.
  • the ratio of the thickness of the substrate to the thickness of the adhesive layer is preferably 1 or more, particularly preferably 3 or more.
  • Metal Foil The metal foil in the present disclosure is preferably located on the side of the adhesive layer opposite to the base material and is in contact with the adhesive layer.
  • the metal foil has a maximum height roughness (Rz) of 10.0 ⁇ m or less on the adhesive layer side surface. Electric current flows on the surface of the metal foil due to the skin effect caused by eddy currents, but if the surface roughness of the metal foil is large, the path becomes long and the loss tends to increase. Therefore, the loss can be suppressed when the maximum height roughness (Rz) of the metal foil is as smooth as the above value or less.
  • the surface of the metal foil is preferably smooth.
  • the maximum height roughness (Rz) of the adhesive layer side surface of the metal foil is preferably 5.0 ⁇ m or less, more preferably 2.0 ⁇ m or less.
  • the maximum height roughness (Rz) is, for example, 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and particularly preferably 1.0 or more.
  • the maximum height roughness (Rz) of the metal foil can be measured by the measurement method described above in "1. Base material".
  • metal materials for metal foil include copper, aluminum, gold, silver, stainless steel, titanium, and nickel.
  • copper (copper foil) is preferable from the viewpoint of workability and cost.
  • the copper foil may be a rolled copper foil or an electrolytic copper foil.
  • the thickness of the metal foil is, for example, 1 ⁇ m or more, may be 5 ⁇ m or more, or may be 10 ⁇ m or more. On the other hand, the thickness of the metal foil is, for example, 200 ⁇ m or less, may be 100 ⁇ m or less, or may be 50 ⁇ m or less.
  • the metal foil is preferably patterned.
  • the printed wiring board laminate in the present disclosure has the base material, the adhesive layer, and the metal foil described above.
  • it may be a laminate having an adhesive layer and a metal foil on one side of the substrate (especially a single-sided copper-clad laminate), or a laminate having an adhesive layer and a metal foil on both sides of the substrate. It may also be a body (especially a double-sided copper-clad laminate).
  • the interlayer adhesive strength between the substrate and the metal foil may be, for example, 6.0 N/15 mm or more, or may be 10.5 N/15 mm or more.
  • the interlaminar bond strength was measured using a test piece cut to a width of 15 mm from the laminate (after curing) under the conditions of 23°C and 30% RH with a tensile tester (Inc. It is a value measured by pulling at a peeling angle of 180° at a tensile speed of 50 mm/min using a model number: STB-1225S manufactured by A&D.
  • the use of the laminate for printed wiring boards in the present disclosure is not particularly limited, but it has excellent electrical properties corresponding to frequencies in the high frequency band, so it is particularly used for producing printed wiring boards for 5th generation mobile communication systems. It is preferably used as a laminate for
  • Method for manufacturing printed wiring board laminate is not particularly limited, but contains a low dielectric resin material, and at least one surface has the maximum height roughness (Rz) and a metal foil preparation step of preparing a metal foil in which at least one surface has the maximum height roughness (Rz), and the maximum height roughness of the substrate ( and a bonding step of bonding a metal foil to a surface having Rz) via an adhesive layer containing a thermosetting resin.
  • This step is a step of preparing a substrate containing a low dielectric resin material and having a maximum height roughness (Rz) of 0.1 ⁇ m or more on at least one surface.
  • a method for obtaining such a surface state is not particularly limited, but may be, for example, either chemical treatment or physical treatment.
  • the physical treatment is performed, for example, by blasting the surface of the film containing the low dielectric resin material.
  • wet blasting is particularly preferred.
  • the maximum height roughness can be adjusted by adjusting the type, particle size, content in the slurry, etc. of the abrasive used in the blasting treatment and the treatment time.
  • the particle size of the abrasive may be 1 ⁇ m or more, or 10 ⁇ m or more. Moreover, it may be 200 ⁇ m or less, or may be 100 ⁇ m or less.
  • the abrasive is not particularly limited, and examples thereof include alumina (Al 2 O 3 ), silicon carbide (SiC), stainless steel, zirconia (ZrO 2 ), glass, chromium, melamine resin, and phenol resin.
  • the maximum height roughness (Rz) of at least one surface is 0.1 ⁇ m or more, it can be used as a base material as it is.
  • This step is a step of preparing a metal foil having a maximum height roughness (Rz) of 10 ⁇ m or less on at least one surface.
  • Rz maximum height roughness
  • a commercially available product may be used, or the surface of the metal foil may be smoothed.
  • Methods for smoothing the surface of the metal foil include, for example, half-etching using wet etching and dry etching. Etching conditions are appropriately set according to the type of metal foil.
  • the bonding step is a step of bonding the substrate and the metal foil via an adhesive layer containing a thermosetting resin, and the smooth surface of the metal foil is arranged so that at least the adhesive layer side. be. As a result, a laminate is obtained in which the substrate, the adhesive layer and the metal foil are laminated in this order in the thickness direction.
  • Examples of methods for forming the adhesive layer include a method of applying a resin composition containing an uncured thermosetting resin, and then curing or semi-curing the uncured thermosetting resin with heat.
  • the resin composition may be applied onto a substrate, may be applied onto a metal foil, or may be applied onto both of them.
  • a coating method is not particularly limited, and a known method can be adopted.
  • the heating temperature for curing the thermosetting resin is, for example, 250° C. or lower, and may be 200° C. or lower.
  • the bonded product for a multilayer printed wiring board according to the present disclosure includes a first base material, first adhesive layers disposed on both sides of the first base material, and the first adhesive layers.
  • a first printed wiring board laminate having a first metal foil arranged on the surface opposite to the first base material, a second base material, and a second base material arranged on both sides of the second base material and a second printed wiring board laminate having a second adhesive layer and a second metal foil disposed on the surface of one of the second adhesive layers opposite to the second base material.
  • the first laminate for printed wiring board and the second laminate for printed wiring board, the second adhesive layer on the side of the second laminate for printed wiring board where the second metal foil is not arranged is , arranged to face the first metal foil of the first printed wiring board laminate, the first base material and the second base material containing a low dielectric resin material, the first adhesive layer and
  • the second adhesive layer contains a thermosetting resin, and the maximum height roughness (Rz) of the surfaces of the first metal foil and the second metal foil facing the first adhesive layer and the second adhesive layer is 10 ⁇ m or less. and the maximum height roughness (Rz) of the surfaces of the first base material and the second base material on the first adhesive layer and second adhesive layer sides is 0.1 ⁇ m or more, for a multilayer printed wiring board It is a zygote.
  • FIG. 3(a) shows a process diagram for manufacturing a multilayer printed wiring board assembly according to the present disclosure
  • FIG. 3(b) shows a multilayer printed wiring board assembly according to the present disclosure
  • the bonded body 100 for a multilayer printed wiring board shown in FIG. A first printed wiring board laminate 10A having a first metal foil pattern 4p disposed thereon, and a second deposited film 2, a second adhesive layer 3, and a second metal foil patterned on one side of a second substrate 1.
  • the second printed wiring board laminate 10B having the second metal foil pattern 4p disposed on the second printed wiring board and the second vapor deposition film 2 and the second adhesive layer 3 on the other surface is the second printed wiring board laminate It is joined by the second adhesive layer 3 of the laminate 10B.
  • the adhesive layer in the assembly for multilayer printed wiring boards is usually in a cured state.
  • the number of the first printed wiring board laminate included in the joined body for a multilayer printed wiring board in the present disclosure is usually one, and one or more second laminates are provided on one side or both sides of the first printed wiring board laminate. 2 printed wiring board laminates are placed.
  • FIG. 4(a) shows a process diagram for manufacturing a conventional multilayer printed wiring board assembly
  • FIG. 4(b) shows a conventional multilayer printed wiring board assembly
  • conventional printed wiring board laminates 20A and 20B using a low dielectric resin material (especially thermoplastic resin) such as liquid crystal polymer (LCP) and fluororesin for the base material 11.
  • thermoplastic resin especially liquid crystal polymer (LCP)
  • LCP liquid crystal polymer
  • fluororesin for the base material 11.
  • the laminated bodies are bonded to each other by heat welding.
  • a high temperature of about 400° C. is usually required for this heat welding. Therefore, as shown in FIG. 4(b), the thermoplastic resin may be melted and the metal foil pattern 14p may be displaced.
  • the laminated body of the present disclosure is bonded at a relatively low temperature (for example, 200° C. or less) by using the adhesive layer containing the thermosetting resin described above. be able to.
  • Example 1 Polytetrafluoroethylene (PTFE) film (TOMBO No. 9001 (manufactured by Nichias) Maximum height roughness (Rz) of both main surfaces 0.45 ⁇ m, arithmetic mean roughness (Ra) 0.08 ⁇ m, dielectric constant ⁇ 2.0 , dielectric loss tangent 0.0002, thickness 50 ⁇ m) was prepared as a substrate. Both surfaces of this substrate were subjected to the following plasma treatment.
  • PTFE polytetrafluoroethylene
  • a copper foil (CF-T49A-DS-HD2, thickness 12 ⁇ m, Rz 2.0 ⁇ m, manufactured by Fukuda Metal Foil & Powder Co., Ltd.) was also prepared.
  • a thermosetting low dielectric adhesive film (epoxy resin, dielectric constant ⁇ 2.3, dielectric loss tangent 0.002, thickness 25 ⁇ m) is placed on both sides of the plasma-treated PTFE film. Copper foils were arranged and they were bonded together by thermocompression bonding (180° C., 1 MPa, 60 minutes) to obtain a laminate for a printed wiring board.
  • the produced printed wiring board laminate was cut and the Rz of the adhesive layer side surface of the base material was measured from the cross-sectional SEM image by the measurement method described in the above "1. Base material", it was 0. It was 45 ⁇ m, and a value equivalent to the Rz of the PTFE film was obtained.
  • Plasma treatment conditions/Gas Ar 600 sccm ⁇ Pressure: 4Pa ⁇ Processing time: 5 minutes
  • Example 1-1 Both main surfaces of the polytetrafluoroethylene (PTFE) film used in Example 1-1 were subjected to wet blasting under the abrasive and air pressure conditions shown in Table 1, thereby achieving the maximum height shown in Table 1.
  • a printed wiring board laminate was produced in the same manner as in Example 1-1, except that the obtained base material was used.
  • Example 2-1 Polytetrafluoroethylene (PTFE) film (V7900 (manufactured by Valqua) Maximum height roughness (Rz) of both main surfaces 0.34 ⁇ m, arithmetic mean roughness (Ra) 0.07 ⁇ m, dielectric constant ⁇ 2.0, dielectric loss tangent 0.0002, thickness 50 ⁇ m) was prepared.
  • a printed wiring board laminate was produced in the same manner as in Example 1-1, except that this was used as the base material.
  • Example 2-2 to 2-19 The polytetrafluoroethylene (PTFE) film used in Example 2-1 (maximum height roughness (Rz) of both main surfaces 0.34 ⁇ m, arithmetic mean roughness (Ra) 0.07 ⁇ m, dielectric constant ⁇ 2.0 , dielectric loss tangent 0.0002, thickness 50 ⁇ m) were subjected to wet blasting under the abrasive and air pressure conditions shown in Tables 2 and 3, resulting in the maximum height shown in Tables 2 and 3. A substrate having a roughness (Rz) and an arithmetic mean roughness (Ra) was obtained. A printed wiring board laminate was produced in the same manner as in Example 2-1, except that the obtained base material was used.
  • PTFE polytetrafluoroethylene
  • the printed wiring board laminates (Examples 1-1 to 1-9 and Examples 2-1 to 2-19) in the present disclosure consisted of a base material and a metal foil. It was confirmed that they were strongly adhered.
  • the polytetrafluoroethylene (PTFE) film (TOMBO No. 9001 (manufactured by Nichias)) used in Example 1, the polytetrafluoroethylene (PTFE) film (V7900 (manufactured by Valqua) used in Example 2, )), the dielectric constant at 28 GHz and The dissipation factor was measured and summarized in Table 4 below. Measurements were performed using Keysight Network Analyzer E8363B and EM Lab Split Cylinder Resonator CR-728.
  • Examples 3-1 to 3-4 Comparative Example
  • a printed wiring board laminate was produced.
  • RF705T (trade name) manufactured by Panasonic Corporation was used.
  • RF705T (trade name) manufactured by Panasonic Corporation had a dielectric constant of 2.9 and a dielectric loss tangent of 0.002.
  • a copper foil on one surface of the obtained printed wiring board laminate was patterned to prepare a microstrip line having a wiring length of 100 mm and an impedance of 50 ⁇ .
  • the transmission loss S21 parameter was measured with a network analyzer (E8363B PNA series manufactured by Keysight Technologies) at a measurement frequency of 1 GHz to 40 GHz. Moreover, it evaluated according to the following evaluation criteria. Table 6 shows the results.
  • Example 4 Polytetrafluoroethylene (PTFE) film used in Example 1-1 (TOMBO No. 9001 (manufactured by Nichias) Maximum height roughness (Rz) of both main surfaces 0.45 ⁇ m, arithmetic mean roughness (Ra) 0 0.08 ⁇ m, dielectric constant ⁇ 2.0, dielectric loss tangent 0.0002, thickness 50 ⁇ m), silica deposition films were formed as follows.
  • a PTFE film is introduced into a vacuum chamber, and a vapor deposition gas composition containing hexamethyldisiloxane (HMDSO) as a vapor deposition monomer gas, oxygen gas, and helium gas as a carrier gas is introduced into the vacuum chamber. Then, a 13.56 MHz RF AC voltage is applied between a flat plate electrode installed in a vacuum chamber and a ground electrode installed parallel to the flat plate electrode, and one side of the PTFE film is removed by plasma CVD. A vapor deposition film was formed on the surface. A vapor deposition film was also formed on the other surface in the same manner, and a vapor deposition film was formed on both sides of the PTFE film. Note that no plasma treatment was performed after the CVD treatment.
  • HMDSO hexamethyldisiloxane
  • a laminate for a printed wiring board was produced in the same manner as in Example 1-1, except that a PTFE film having a deposited silica film formed thereon was used as the base material.
  • the composition of the deposited silica film was determined by XPS analysis. Table 6 shows the results.
  • the composition of the PTFE film and the composition of the surface-treated layer obtained by the plasma treatment of Example 1-1 are also shown.
  • the peel strength (interlayer adhesive strength) of the printed wiring board laminate obtained in Example 4 was measured by the peel strength test, and the result was 6.0 N / 15 mm, and the base material and the metal foil were strong. was adhered to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

The present disclosure provides a laminate for printed circuit boards, obtained by laminating a base material, an adhesive layer, and a metal foil in this order. The base material contains a low-dielectric resin material. The adhesive layer contains a thermosetting resin. The maximum height roughness (Rz) of the surface of the metal foil on the adhesive layer side is 10 μm or less. The maximum height roughness (Rz) of the surface of the base material on the adhesive layer side is 0.1 μm or more.

Description

プリント配線基板用積層体および多層プリント配線基板用接合体Laminate for printed wiring board and joined body for multilayer printed wiring board
 本開示は、プリント配線基板用積層体および多層プリント配線基板用接合体に関する。 The present disclosure relates to a printed wiring board laminate and a multilayer printed wiring board assembly.
 近年、エレクトロニクス製品の軽量化、小型化、高密度化に伴い、各種プリント配線基板の需要が伸びている。プリント配線基板には、通常、基材上に金属箔からなる導電層が積層された金属積層板が用いられ、金属積層板の導電層がパターニングされて回路が形成される。 In recent years, the demand for various printed wiring boards has increased as electronic products have become lighter, smaller, and more dense. A printed wiring board generally uses a metal laminate in which a conductive layer made of metal foil is laminated on a base material, and the conductive layer of the metal laminate is patterned to form a circuit.
 携帯電話端末に代表される移動通信システムは、今後、現状に比べて高い周波数帯が用いられることが想定される。周波数が高くなるに従い、高周波回路での伝送損失も大きくなる。したがって、第5世代移動通信システム用のプリント配線基板に対して、高周帯域の周波数に対応する優れた電気特性が求められている。 It is expected that mobile communication systems, typified by mobile phone terminals, will use higher frequency bands in the future than at present. As the frequency increases, the transmission loss in the high frequency circuit also increases. Therefore, the printed wiring board for the fifth generation mobile communication system is required to have excellent electrical characteristics corresponding to frequencies in the high frequency band.
 なお、ゴム成形体に用いられる積層フィルムに関する技術として、特許文献1が挙げられる。上記特許文献1には、フッ素系樹脂フィルムの一方の面に接着層を有する積層フィルムが開示されている。上記接着層は、有機珪素化合物を含む蒸着用ガス組成物を用いて、プラズマ気相化学蒸着法により上記フッ素系樹脂フィルム上に形成した蒸着膜であることを特徴とする。
 また、プリント配線基板の関連製品の製造に適した接着剤層付き積層体としては、特許文献2および特許文献3が開示されている
Patent Document 1 can be cited as a technique related to laminated films used for rubber moldings. The aforementioned Patent Document 1 discloses a laminated film having an adhesive layer on one surface of a fluororesin film. The adhesive layer is a deposited film formed on the fluororesin film by a plasma chemical vapor deposition method using a vapor deposition gas composition containing an organic silicon compound.
In addition, Patent Documents 2 and 3 disclose laminates with an adhesive layer suitable for manufacturing products related to printed wiring boards.
特許第5895468号明細書Patent No. 5895468 特許第6485577号明細書Patent No. 6485577 特許第6718148号明細書Patent No. 6718148
 近年、高周波の情報信号を扱うプリント配線基板用の基材として、液晶ポリマー(LCP)、フッ素系樹脂のような低誘電樹脂材料を含有する基材を使用することが検討されている。このような基材は、金属箔との密着性が悪い場合がある。また、伝送損失抑制のため、金属箔は低粗度であることが求められているが、表面が低粗度の金属箔は、基材との接着性が不十分となりやすい。 In recent years, the use of base materials containing low-dielectric resin materials such as liquid crystal polymers (LCP) and fluorine-based resins has been studied as base materials for printed wiring boards that handle high-frequency information signals. Such a base material may have poor adhesion to the metal foil. In addition, in order to suppress transmission loss, the metal foil is required to have a low roughness, but a metal foil with a low surface roughness tends to have insufficient adhesiveness to the base material.
 本開示は、上記問題に鑑みてなされた発明であり、基材と金属箔とを強固に接着し、かつ、伝送損失を抑制した、プリント配線基板用積層体を提供することを主目的とする。 The present disclosure is an invention made in view of the above problems, and a main object thereof is to provide a laminate for a printed wiring board in which a base material and a metal foil are strongly bonded and transmission loss is suppressed. .
 上記目的を達成するために、本開示は、基材、接着層、および金属箔がこの順に積層された、プリント配線基板用積層体であって、上記基材は、低誘電樹脂材料を含有し、上記接着層は、熱硬化性樹脂を含有し、上記金属箔の上記接着層側の面の最大高さ粗さ(Rz)が10μm以下であり、上記基材の上記接着層側の面の最大高さ粗さ(Rz)が0.1μm以上である、プリント配線基板用積層体プリント配線基板用積層体を提供する。 In order to achieve the above object, the present disclosure provides a laminate for a printed wiring board in which a base material, an adhesive layer, and a metal foil are laminated in this order, wherein the base material contains a low dielectric resin material. , the adhesive layer contains a thermosetting resin, the maximum height roughness (Rz) of the adhesive layer side surface of the metal foil is 10 μm or less, and the adhesive layer side surface of the base material is Provided is a printed wiring board laminate having a maximum height roughness (Rz) of 0.1 μm or more.
 また、本開示においては、第1基材と、上記第1基材の両面に配置された第1接着層と、上記それぞれの第1接着層の上記第1基材とは反対側の面に配置された第1金属箔と、を有する第1プリント配線基板用積層体、および、第2基材と、上記第2基材の両面に配置された第2接着層と、片方の上記第2接着層の上記第2基材とは反対側の面に配置された第2金属箔と、を有する第2プリント配線基板用積層体、を有し、上記第1プリント配線基板用積層体、および上記第2プリント配線基板用積層体は、上記第2プリント配線基板用積層体の上記第2金属箔が配置されていない側の第2接着層が、上記第1プリント配線基板用積層体の第1金属箔と対向するように配置されている多層プリント配線基板用接合体であって、上記第1基材および上記第2基材は、低誘電樹脂材料を含有し、上記第1接着層および第2接着層は、熱硬化性樹脂を含有し、上記第1金属箔および第2金属箔の上記第1接着層および第2接着層側の面の最大高さ粗さ(Rz)が10μm以下であり、上記第1基材および上記第2基材の上記第1接着層および第2接着層側の面の最大高さ粗さ(Rz)が0.1μm以上である、多層プリント配線基板用接合体を提供する。 Further, in the present disclosure, the first base material, the first adhesive layers disposed on both sides of the first base material, and the surface of each of the first adhesive layers opposite to the first base material A first printed wiring board laminate having a first metal foil disposed, a second base material, second adhesive layers disposed on both sides of the second base material, and one of the second a second printed wiring board laminate having a second metal foil disposed on the surface of the adhesive layer opposite to the second base material, the first printed wiring board laminate, and In the second printed wiring board laminate, the second adhesive layer on the side of the second printed wiring board laminate on which the second metal foil is not disposed is the second adhesive layer of the first printed wiring board laminate. 1. A bonded structure for a multilayer printed wiring board arranged to face a metal foil, wherein the first base material and the second base material contain a low dielectric resin material, and the first adhesive layer and the second base material contain a low dielectric resin material. The second adhesive layer contains a thermosetting resin, and the maximum height roughness (Rz) of the surfaces of the first metal foil and the second metal foil facing the first adhesive layer and the second adhesive layer is 10 μm or less. and the maximum height roughness (Rz) of the surfaces of the first base material and the second base material on the first adhesive layer and second adhesive layer sides is 0.1 μm or more, for a multilayer printed wiring board Provide a conjugate.
 本開示においては、基材と金属箔とが強固に接着され、かつ、伝送損失が抑制された、プリント配線基板用積層体とすることができる、 In the present disclosure, it is possible to provide a laminate for a printed wiring board in which the base material and the metal foil are firmly adhered and the transmission loss is suppressed.
本開示のプリント配線基板用積層体を例示する概略断面図である。1 is a schematic cross-sectional view illustrating a printed wiring board laminate of the present disclosure; FIG. 本開示のプリント配線基板用積層体を例示する概略断面図である。1 is a schematic cross-sectional view illustrating a printed wiring board laminate of the present disclosure; FIG. 本開示の多層プリント配線基板用接合体およびその製造工程を例示する概略断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view illustrating a joined body for a multilayer printed wiring board of the present disclosure and a manufacturing process thereof; 従来の多層プリント配線基板用接合体およびその製造工程を例示する概略断面図である。1 is a schematic cross-sectional view illustrating a conventional joined body for a multilayer printed wiring board and a manufacturing process thereof; FIG. 従来のプリント配線基板用積層体を例示する概略断面図である。It is a schematic sectional drawing which illustrates the conventional laminated body for printed wiring boards.
 以下、本開示における実施の形態を、図面等を参照しながら説明する。但し、本開示は多くの異なる態様で実施することが可能であり、以下に例示する実施の形態の記載内容に限定して解釈されない。また、図面は説明をより明確にするため、実施の態様に比べ、各部の幅、厚み、形状等について模式的に表される場合があるが、あくまで一例であって、本開示における解釈を限定しない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。また、説明の便宜上、上方又は下方という語句を用いて説明する場合があるが、上下方向が逆転してもよい。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings and the like. However, the present disclosure can be embodied in many different forms and should not be construed as limited to the description of the embodiments exemplified below. In addition, in order to clarify the description, the drawings may schematically represent the width, thickness, shape, etc. of each part compared to the embodiment, but this is only an example, and the interpretation in the present disclosure is limited. do not do. In addition, in this specification and each figure, the same reference numerals may be given to the same elements as those described above with respect to the existing figures, and detailed description thereof may be omitted as appropriate. Also, for convenience of explanation, the terms "upper" and "lower" may be used, but the up-down direction may be reversed.
 また、本明細書において、ある部材又はある領域等のある構成が、他の部材又は他の領域等の他の構成の「上に(又は下に)」あるとする場合、特段の限定がない限り、これは他の構成の直上(又は直下)にある場合のみでなく、他の構成の上方(又は下方)にある場合を含み、すなわち、他の構成の上方(又は下方)において間に別の構成要素が含まれている場合も含む。 Also, in this specification, there is no particular limitation when a configuration such as a member or a region is “above (or below)” another configuration such as another member or another region. So far, this includes not only when directly above (or directly below) other structures, but also when above (or below) other structures, i.e. above (or below) other structures and between other structures. Including cases where the constituent elements of are included.
A.プリント配線基板用積層体
 図1は、本開示におけるプリント配線基板用積層体を例示する概略断面図である。図1に示す本開示におけるプリント配線基板用積層体10は、低誘電樹脂材料を含有する基材1の一方の面側に、基材1側から、蒸着層2と、熱硬化性樹脂を含有する接着層3と、金属箔4と、をこの順に有する。また、図2に示すように、本開示におけるプリント配線基板用積層体10は、低誘電樹脂材料を含有する基材1の両面に、基材1側から、蒸着層2と、熱硬化性樹脂を含有する接着層3と、金属箔4と、をこの順に有してもよい。
A. Printed Wiring Board Laminate FIG. 1 is a schematic cross-sectional view illustrating a printed wiring board laminate in the present disclosure. The printed wiring board laminate 10 according to the present disclosure shown in FIG. It has an adhesive layer 3 and a metal foil 4 in this order. Further, as shown in FIG. 2, the printed wiring board laminate 10 according to the present disclosure includes a vapor deposition layer 2 and a thermosetting resin on both sides of a base material 1 containing a low dielectric resin material. and the metal foil 4 in this order.
 ここで、図5に、従来のプリント配線基板用積層体を例示する概略断面図を示す。従来のプリント配線基板用積層体20は、低誘電樹脂材料を含む基材11と、金属箔14とを、熱溶着により積層するが、上述したように、低誘電樹脂材料を含む基材は、金属箔との密着性が悪い場合がある。さらに、表面が低粗度の金属箔は、低誘電基材との接着性が不十分である。そのため、従来のプリント配線基板用積層体20は、基材11と金属箔14との接着性が不十分であった。 Here, FIG. 5 shows a schematic cross-sectional view illustrating a conventional printed wiring board laminate. In the conventional printed wiring board laminate 20, the base material 11 containing the low dielectric resin material and the metal foil 14 are laminated by thermal welding. Adhesion to metal foil may be poor. Furthermore, metal foils with low surface roughness have poor adhesion to low dielectric substrates. Therefore, the conventional printed wiring board laminate 20 has insufficient adhesiveness between the base material 11 and the metal foil 14 .
 本発明者らは、伝送損失を抑制しつつ、強固に接着されたプリント配線基板用積層体の層構成について検討したところ、基材を所定の値以上の最大高さ粗さの面を有し、かつ、基材および金属箔の間に接着層を配置することで、金属箔の平滑性を確保しつつ、基材と金属箔とを強固に接着したプリント配線基板用積層体が得られることを見出した。 The present inventors have studied the layer structure of a laminate for a printed wiring board that is strongly bonded while suppressing transmission loss. Further, by arranging an adhesive layer between the base material and the metal foil, it is possible to obtain a laminate for a printed wiring board in which the base material and the metal foil are firmly bonded while ensuring the smoothness of the metal foil. I found
 そのため、本開示によれば、基材と金属箔とを強固に接着し、かつ、伝送損失を抑制した、高い周波数帯、具体的には、3-5GHz、25-30GHz、60-80GHz、>100GHzなどを用いる第5世代移動通信システムに対応可能なプリント配線基板用積層体とできる。 Therefore, according to the present disclosure, high frequency bands, specifically 3-5 GHz, 25-30 GHz, 60-80 GHz, > A laminated body for a printed wiring board that is compatible with the fifth generation mobile communication system using 100 GHz or the like can be obtained.
1.基材
(1)表面粗さ
 本開示における基材は、低誘電樹脂材料を含有し、接着層側の面の最大高さ粗さ(Rz)が0.1μm以上である。最大高さ粗さ(Rz)は、0.3μm以上であってもよく、0.4μm以上であってもよく、0.5μm以上であってもよく、0.6μm以上であってもよく、0.7μm以上であってもよい。一方、最大高さ粗さ(Rz)は、例えば20.0μm以下であってもよく、10.0μm以下であってもよく、好ましくは5.0μm以下である。
1. Substrate (1) Surface Roughness The substrate in the present disclosure contains a low dielectric resin material and has a maximum height roughness (Rz) of 0.1 μm or more on the adhesive layer side surface. The maximum height roughness (Rz) may be 0.3 μm or more, 0.4 μm or more, 0.5 μm or more, or 0.6 μm or more, It may be 0.7 μm or more. On the other hand, the maximum height roughness (Rz) may be, for example, 20.0 μm or less, 10.0 μm or less, and preferably 5.0 μm or less.
 基材の接着層側の面の最大高さ粗さ(Rz)が特定の値以上であることにより、上記接着層に対しアンカー効果を付与でき、上記接着層との密着性を向上できる。 By setting the maximum height roughness (Rz) of the adhesive layer side surface of the base material to a specific value or more, an anchor effect can be imparted to the adhesive layer, and adhesion to the adhesive layer can be improved.
 なお、本開示において最大高さ粗さ(Rz)とは、JIS B 0601(2001)に準拠する方法で得た値である。すなわち、表面粗さ測定器(小坂研究所製 サーフコーダーSE1700α)を用い、粗さ曲線からその平均線の方向にJIS B 0601に記載の基準長さだけを抜き取り、この抜き取り部分の山頂線と谷底線との間隔を粗さ曲線の縦倍率の方向に測定したものがRzである。 Note that the maximum height roughness (Rz) in the present disclosure is a value obtained by a method conforming to JIS B 0601 (2001). That is, using a surface roughness measuring instrument (Kosaka Laboratory Surfcorder SE1700α), only the reference length described in JIS B 0601 is extracted from the roughness curve in the direction of the average line, and the peak line and valley bottom of this extracted portion Rz is the distance from the line measured in the direction of the longitudinal magnification of the roughness curve.
 また、本開示においては、表面粗さ測定器による測定の他に、特開2020-95254号公報に記載の方法により、プリント配線基板用積層体の断面SEM画像から、基材の接着層側の面の最大高さ粗さ(Rz)を求めることができる。断面は、イオンビーム、ミクロトーム等の公知の手法により露出させる。 Further, in the present disclosure, in addition to the measurement using a surface roughness measuring instrument, the method described in JP-A-2020-95254 can be used to obtain the adhesive layer side of the substrate from a cross-sectional SEM image of the laminate for printed wiring boards. The maximum height roughness (Rz) of the surface can be determined. The cross section is exposed by known techniques such as ion beams and microtome.
 具体的には、積層体における積層方向の基材の断面が観察できるように積層体を切断し、断面状態を走査型透過電子顕微鏡(商品名:S-5500日立ハイテクノロジー製)により視野観察する。その後、観察画像の画像処理を行うことで、基材の接着層側の面の最大高さ粗さ(Rz)を求めることができる。
 画像処理方法としては、image Pro PLUS(メディアサイバネティクス社製)など市販の画像処理ソフトを用いることができる。後述する実施例に示すように、表面粗さ測定器により測定されたRzと、積層体の断面SEM画像から測定されたRzとは、ほぼ同等となる。
Specifically, the laminate is cut so that the cross section of the base material in the lamination direction in the laminate can be observed, and the cross section is visually observed with a scanning transmission electron microscope (trade name: S-5500 manufactured by Hitachi High Technology). . After that, by performing image processing on the observed image, the maximum height roughness (Rz) of the adhesive layer side surface of the base material can be obtained.
As an image processing method, commercially available image processing software such as image Pro PLUS (manufactured by Media Cybernetics) can be used. As shown in Examples described later, the Rz measured by the surface roughness measuring instrument and the Rz measured from the cross-sectional SEM image of the laminate are almost the same.
 本開示における基材は、低誘電樹脂材料を含む。このような基材の誘電率εは、例えば4.0以下であり、3.5以下であってもよく、3.0以下であってもよい。
 また、基材の誘電正接tanδは、例えば0.01以下であり、0.006以下であってもよく、0.002以下であってもよい。
A base material in the present disclosure includes a low dielectric resin material. The dielectric constant ε of such a substrate is, for example, 4.0 or less, may be 3.5 or less, or may be 3.0 or less.
Also, the dielectric loss tangent tan δ of the substrate is, for example, 0.01 or less, may be 0.006 or less, or may be 0.002 or less.
 ここで、誘電率および誘電正接は、23℃、28GHzにおける誘電率および誘電正接である。誘電率および誘電正接は、共振器法により測定することができる。誘電率および誘電正接は、例えば、ネットワークアナライザ(Keysight Technologies社製 E8363B PNAシリーズ)と、スプリットシリンダ共振器28GHz(EMラボ社製 スプリットシリンダ共振器28GHz CR-728)とを備える、マイクロ波ネットワークアナライザ測定システムを用いて測定することができる。 Here, the dielectric constant and dielectric loss tangent are the dielectric constant and dielectric loss tangent at 23°C and 28 GHz. Permittivity and dielectric loss tangent can be measured by a resonator method. Permittivity and loss tangent are measured with a microwave network analyzer, for example, equipped with a network analyzer (Keysight Technologies E8363B PNA series) and a split cylinder resonator 28 GHz (EM Lab split cylinder resonator 28 GHz CR-728). can be measured using the system.
(2)材料
 このような基材に含まれる低誘電樹脂としては、フッ素系樹脂や液晶ポリマー、ポリフェニレンエーテル樹脂(PPE)、シンジオタクチックポリスチレン樹脂(SPS)、シクロオレフィンコポリマー樹脂(COC)、シクロオレフィンポリマー樹脂(COP)等が挙げられる。
(2) Materials Examples of low-dielectric resins contained in such base materials include fluorine-based resins, liquid crystal polymers, polyphenylene ether resins (PPE), syndiotactic polystyrene resins (SPS), cycloolefin copolymer resins (COC), cycloolefin copolymer resins (COC), Olefin polymer resin (COP) and the like are included.
 フッ素系樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンとペルフルオロアルキルビニルエーテルとの共重合体からなるペルフルオロアルコキシ樹脂(PFA)、テトラフルオロエチレンとヘキサフルオロプロピレンコポリマー(FEP)、テトラフルオロエチレンとペルフルオロアルキルビニルエーテルとヘキサフルオロプロピレンコポリマー(EPE)、テトラフルオロエチレンとエチレン又はプロピレンとのコポリマー(ETFE)、ポリクロロトリフルオロエチレン樹脂(PCTFE)、エチレンとクロロトリフルオロエチレンとのコポリマー(ECTFE)、フッ化ビニリデン系樹脂(PVDF)、又はフッ化ビニル系樹脂(PVF)が挙げられる。基材は、フッ素系樹脂を1種のみ含有していてもよく、2種以上を含有していてもよい。 Examples of fluorine-based resins include polytetrafluoroethylene (PTFE), perfluoroalkoxy resin (PFA) composed of a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether, tetrafluoroethylene and hexafluoropropylene copolymer (FEP), tetrafluoroethylene and hexafluoropropylene copolymer (FEP), Fluoroethylene, perfluoroalkyl vinyl ether and hexafluoropropylene copolymer (EPE), copolymer of tetrafluoroethylene and ethylene or propylene (ETFE), polychlorotrifluoroethylene resin (PCTFE), copolymer of ethylene and chlorotrifluoroethylene (ECTFE ), vinylidene fluoride resin (PVDF), or vinyl fluoride resin (PVF). The substrate may contain only one type of fluororesin, or may contain two or more types.
 上記液晶ポリマーは、光学的異方性を有する溶融相を形成しうるポリマーである。液晶ポリマーとしては、例えば、ポリアリレート系液晶ポリマー、全芳香族ポリエステル、半剛直性芳香族ポリエステル、ポリエステルアミドを挙げられる。また、液晶ポリマーとして、(1)芳香族または脂肪族ジヒドロキシ化合物、(2)芳香族または脂肪族ジカルボン酸、(3)芳香族ヒドロキシカルボン酸、(4)芳香族ジアミン、芳香族ヒドロキシアミンまたは芳香族アミノカルボン酸を原料とする共重合体、が挙げられる。 The above liquid crystal polymer is a polymer capable of forming a melt phase having optical anisotropy. Examples of liquid crystal polymers include polyarylate liquid crystal polymers, wholly aromatic polyesters, semi-rigid aromatic polyesters, and polyesteramides. In addition, liquid crystal polymers include (1) aromatic or aliphatic dihydroxy compounds, (2) aromatic or aliphatic dicarboxylic acids, (3) aromatic hydroxycarboxylic acids, (4) aromatic diamines, aromatic hydroxylamines or aromatic and copolymers made from group aminocarboxylic acids.
 また、良好な耐熱性が得られる点で、液晶ポリマーは、高分子主鎖が芳香族基からなり、これらの芳香族基がエステル結合(-C(O)O-または-OC(O)-)、アミド結合(-C(O)NH-または-NHC(O)-)とで連結されてなる、液晶ポリエステルまたは液晶ポリエステルアミドが好ましい。なお、上記芳香族基とは、単環芳香族基、縮合環芳香族基に加え、単環芳香族基または縮合環芳香族基が直接結合するか、酸素原子、硫黄原子、炭素数1~6のアルキレン基、スルホニル基およびカルボニル基等の連結基を介して連結してなる基も含む概念である。基材は、液晶ポリマーを1種のみ含有してもよく、2種以上を含有してもよい。 In addition, in terms of obtaining good heat resistance, the liquid crystal polymer has a polymer main chain composed of an aromatic group, and these aromatic groups are ester bonds (-C(O)O- or -OC(O)- ), amide bonds (-C(O)NH- or -NHC(O)-), liquid crystalline polyesters or liquid crystalline polyesteramides are preferred. The above-mentioned aromatic group means a monocyclic aromatic group, a condensed ring aromatic group, a monocyclic aromatic group or a condensed ring aromatic group directly bonded, an oxygen atom, a sulfur atom, a carbon number of 1 to The concept also includes a group of 6 linked via a linking group such as an alkylene group, a sulfonyl group and a carbonyl group. The substrate may contain only one type of liquid crystal polymer, or may contain two or more types.
 低誘電樹脂材料は、熱可塑性樹脂が好ましい。 The low dielectric resin material is preferably a thermoplastic resin.
 本開示における基材は、任意成分として、補強材を含有してもよい。補強材を含有することにより熱膨張率を低減できる。
 補強材としては、低誘電樹脂材料よりも熱膨張率が小さければ特に限定されないが、例えば、シリカが挙げられる。また、絶縁性と、低誘電樹脂材料の融点で溶融流動しない耐熱性と、低誘電樹脂材料と同等以上の引っ張り強さと、耐腐食性とを有する補強材が望ましい。
The base material in the present disclosure may contain a reinforcing material as an optional component. The coefficient of thermal expansion can be reduced by containing the reinforcing material.
The reinforcing material is not particularly limited as long as it has a coefficient of thermal expansion smaller than that of the low dielectric resin material, and examples thereof include silica. Further, it is desirable to use a reinforcing material having insulating properties, heat resistance that does not melt and flow at the melting point of the low dielectric resin material, tensile strength equal to or greater than that of the low dielectric resin material, and corrosion resistance.
 このような補強材としては、例えばガラスをクロス状に形成したガラスクロス、このようなガラスクロスにフッ素樹脂を含浸させたフッ素樹脂含有ガラスクロス、樹脂クロス、および耐熱フィルムなどから構成することが可能である。
 上記樹脂クロスとしては、金属、セラミックス、ポリテトラフルオロエチレン、ポリエーテルエーテルケトン、ポリイミド、アラミド等により形成された耐熱繊維を含むものを挙げることができる。また、上記耐熱フィルムとしては、液晶ポリマー、ポリイミド、ポリアミドイミド、ポリベンゾイミダゾール、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、熱硬化樹脂、架橋樹脂等を主成分とするものを挙げることができる。
Such a reinforcing material can be composed of, for example, a glass cloth formed into a glass cloth, a fluororesin-containing glass cloth obtained by impregnating such a glass cloth with a fluororesin, a resin cloth, a heat-resistant film, or the like. is.
Examples of the resin cloth include those containing heat-resistant fibers made of metal, ceramics, polytetrafluoroethylene, polyetheretherketone, polyimide, aramid, or the like. As the heat-resistant film, liquid crystal polymer, polyimide, polyamideimide, polybenzimidazole, polyetheretherketone, polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, thermosetting resin, crosslinked resin, etc. What is used as a main component can be mentioned.
 なお、上記樹脂クロス及び耐熱フィルムは、後述する「6.プリント配線基板用積層体の製造方法 (4)接着工程」での熱圧着の温度以上の融点(又は熱変形温度)を有するものが好ましい。上記樹脂クロスの織り方は、基材を薄くするためには平織りが好ましいが、基材を屈曲可能とするためには綾織り及びサテン織りが好ましい。この他、公知の織り方を適用できる。 The resin cloth and the heat-resistant film preferably have a melting point (or heat distortion temperature) higher than the thermocompression bonding temperature in "6. Production method for printed wiring board laminate (4) Adhesion step" described later. . The weaving method of the resin cloth is preferably plain weave in order to make the base material thinner, but twill weave and satin weave are preferable in order to make the base material bendable. In addition, a known weaving method can be applied.
 基材中の補強材の含有量としては、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましい。 The content of the reinforcing material in the base material is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
 本開示における基材の厚さは、例えば10μm以上であり、20μm以上であってもよく、50μm以上であってもよい。一方、基材の厚さは、例えば300μm以下であり、200μm以下であってもよい。 The thickness of the substrate in the present disclosure is, for example, 10 μm or more, may be 20 μm or more, or may be 50 μm or more. On the other hand, the thickness of the substrate is, for example, 300 μm or less, and may be 200 μm or less.
(3)その他
 本開示においては、上記基材の接着層側の面に、接着層との接着性向上のために、蒸着膜を有していてもよく、また上記基材の接着層側の面に表面処理が施されたものであってもよい。
 このような蒸着膜の基材と反対側の面、もしくは表面処理が施された基材表面は、通常、基材の接着層側の表面形状がそのまま反映される。そのため、これらの表面の最大高さ粗さ(Rz)は、基材の接着層側の面の最大高さ粗さ(Rz)と同等となる。
(3) Others In the present disclosure, the surface of the adhesive layer side of the base material may have a vapor deposition film in order to improve adhesion with the adhesive layer, and the adhesive layer side of the base material may have a vapor deposition film. The surface may be subjected to surface treatment.
The surface of such a deposited film on the side opposite to the base material, or the surface of the base material subjected to surface treatment, usually reflects the surface shape of the adhesive layer side of the base material as it is. Therefore, the maximum height roughness (Rz) of these surfaces is equivalent to the maximum height roughness (Rz) of the adhesive layer side surface of the substrate.
a.蒸着膜
 本開示に用いられるおける蒸着層は、炭素、珪素および酸素を含有する蒸着膜であることが好ましい。さらに、上記蒸着膜は、シロキサン結合によって基材と接着していることが好ましい。上記蒸着膜は、有機珪素化合物を含む蒸着用ガス組成物(以下、「原料ガス」とも記載する)を用いた気相化学蒸着法(CVD法)により形成された層が好ましい。
a. Vapor-Deposited Film The vapor-deposited layer used in the present disclosure is preferably a vapor-deposited film containing carbon, silicon and oxygen. Furthermore, it is preferable that the vapor-deposited film is adhered to the substrate by a siloxane bond. The vapor-deposited film is preferably a layer formed by vapor-phase chemical vapor deposition (CVD) using a vapor deposition gas composition containing an organosilicon compound (hereinafter also referred to as "source gas").
 蒸着膜は、主に炭素、珪素、および酸素を含む緻密で可撓性に富む連続層が好ましい。また、蒸着膜は、表面にメチル(CH)基及びエチル(C)基の少なくとも一方が存在することが好ましい。CH基及びC基の少なくとも一方を蒸着膜の表面に形成することで、接着層との密着性が良好となる。 The deposited film is preferably a dense and highly flexible continuous layer containing mainly carbon, silicon and oxygen. Moreover, it is preferable that at least one of a methyl (CH 3 ) group and an ethyl (C 2 H 5 ) group is present on the surface of the deposited film. By forming at least one of the CH 3 group and the C 2 H 5 group on the surface of the deposited film, the adhesion with the adhesive layer is improved.
 このような蒸着膜は、蒸着材料としてSi原子に直接結合したメチル基を含む有機珪素化合物モノマーを使用し、これよりなる蒸着用モノマーガス、および場合により酸素供給ガス、を含む蒸着用ガス組成物を用いて、CVD法により成膜できる。また、CVD法には、熱CVD法や光CVD等のいくつかの方法があるが、低温成膜が可能で、基材の着色を生じにくいプラズマCVD法の採用が好ましい。表面に存在するCH基及びC基の量は、成膜時の蒸着用ガス組成物中の蒸着用モノマーガスと酸素供給ガスとの比を変化させることにより調製できる。 Such a vapor deposition film uses an organosilicon compound monomer containing a methyl group directly bonded to a Si atom as a vapor deposition material, and a vapor deposition gas composition containing a vapor deposition monomer gas and optionally an oxygen supplying gas. can be used to form a film by a CVD method. There are several CVD methods, such as thermal CVD and optical CVD, but it is preferable to employ the plasma CVD method, which allows low-temperature film formation and is less prone to coloration of the base material. The amount of CH 3 groups and C 2 H 5 groups present on the surface can be adjusted by changing the ratio of the vapor deposition monomer gas and the oxygen supplying gas in the vapor deposition gas composition during film formation.
 蒸着膜の厚さは、例えば5nm以上であり、10nm以上であってもよい。一方、蒸着膜の厚さは、例えば100nm以下であり、50nm以下であってもよい。蒸着膜の厚さは、例えば、(株)リガク社製蛍光X線分析装置(機種名:RIX2000型)を用いて測定できる。 The thickness of the deposited film is, for example, 5 nm or more, and may be 10 nm or more. On the other hand, the thickness of the deposited film is, for example, 100 nm or less, and may be 50 nm or less. The thickness of the deposited film can be measured using, for example, a fluorescent X-ray spectrometer (model name: RIX2000 type) manufactured by Rigaku Corporation.
 蒸着膜を成膜するためには、例えば、被蒸着体(基材)を真空槽内に導入する。そして、真空槽内に、有機珪素化合物からなる蒸着用モノマーガスと、場合により酸素供給ガスとを含む蒸着用ガス組成物を一定割合で導入し、CVD法により被蒸着体(基材)の表面上に蒸着膜を形成する。  In order to form a vapor deposition film, for example, an object to be vapor deposited (base material) is introduced into a vacuum chamber. Then, a vapor deposition gas composition containing a vapor deposition monomer gas comprising an organosilicon compound and optionally an oxygen supplying gas is introduced into the vacuum chamber at a constant rate, and the surface of the object (substrate) to be vapor deposited is subjected to the CVD method. A deposition film is formed thereon.
 有機珪素化合物としては、例えば、シリコン(Si)原子に直接結合したCHを含む有機珪素化合物が挙げられ、具体例として、ヘキサメチルジシロキサン(HMDSO)、テトラメチルジシロキサン(TMDSO)、オクタメチルシクロテトラシロキサン、メチルシラン、ジメチルシラン、トリメチルシラン、テトラメチルシラン、エチルシランが挙げられる。 Examples of organosilicon compounds include organosilicon compounds containing CH3 directly bonded to silicon (Si) atoms. Specific examples include hexamethyldisiloxane (HMDSO), tetramethyldisiloxane (TMDSO), octamethyl Cyclotetrasiloxane, methylsilane, dimethylsilane, trimethylsilane, tetramethylsilane, ethylsilane.
 他の有機珪素化合物としては、有機化合物であって常温で適当な蒸気圧を持ち、CVD法(特にプラズマCVD法)を実施可能な材料であればよい。したがって、例えばC基等の炭素数が3以上の官能基をもつ材料を用いて、CH基およびC基のいずれかを少なくとも含む蒸着膜を、CVD法(特にプラズマCVD法)により製造できる。 Other organosilicon compounds may be any organic compound that has an appropriate vapor pressure at room temperature and can be subjected to CVD (particularly plasma CVD). Therefore, using a material having a functional group with 3 or more carbon atoms such as C 3 H 8 group, a deposited film containing at least one of CH 3 group and C 2 H 5 group is formed by CVD (especially plasma CVD). method).
 一方、酸素供給ガスとしては、例えば酸素ガスが用いられる。酸素ガスの代わりに、オゾンガスまたは笑気ガス(NOガス)を使用できるが、成膜効率やコストの面から、酸素ガスを使用することが最も好ましい。 On the other hand, oxygen gas, for example, is used as the oxygen supply gas. Ozone gas or laughing gas (N 2 O gas) can be used instead of oxygen gas, but oxygen gas is most preferable in terms of film formation efficiency and cost.
 また、蒸着用ガス組成物中に、蒸着用モノマーガスを効率よく真空槽中に導入するためのガス(キャリアガス)や、プラズマの発生又は増強する目的のガスの導入も、必要に応じて行ってよい。 In addition, a gas (carrier gas) for efficiently introducing the vapor deposition monomer gas into the vacuum chamber and a gas for the purpose of generating or enhancing plasma are also introduced into the vapor deposition gas composition as necessary. you can
 プラズマCVD法として最も一般的な方法は、平行平板電極間に13.56MHzの電界を印加する方式である。すなわち、真空槽内に蒸着用ガス組成物を導入することで一定圧力に維持し、真空槽内に設置した平板電極と該平板電極と平行に対向して設置したアース電極との間に13.56MHzのRF交流電圧を印加する。 The most common plasma CVD method is to apply an electric field of 13.56 MHz between parallel plate electrodes. That is, a vapor deposition gas composition is introduced into the vacuum chamber to maintain a constant pressure, and 13. between a flat plate electrode placed in the vacuum chamber and a ground electrode placed facing the flat plate electrode in parallel. A 56 MHz RF alternating voltage is applied.
 例えば、300Wの電力を投入することで、グロー放電プラズマを発生させ、そのプラズマ流を利用し、蒸着用ガス組成物を化学的に反応させることで蒸着膜を形成可能である。被蒸着フィルム(基材)は、通常、アース電極の表面に設置するが、RF電圧を印加する平板電極側に設置してもよい。 For example, by applying a power of 300 W, a glow discharge plasma is generated, and the plasma flow is used to chemically react the vapor deposition gas composition, thereby forming a vapor deposition film. The vapor-deposited film (substrate) is usually placed on the surface of the ground electrode, but may be placed on the side of the plate electrode to which the RF voltage is applied.
 本開示においては、13.56MHzのRF交流電圧を印加する代わりに、より低い周波数(40kHzや50kHz等)や、より高い周波数(2.45GHz等)を印加することも可能である。また、直流電圧を印加してもよい。平板電極の代わりに、ガスの吹き出しによりプラズマ流を発生するホローカソード電極を利用し、又は、外部コイルから誘導プラズマを発生することも可能である。磁界を用い、又は、ECR共鳴現象(電場と磁場とを適切に調節することで、プラズマ中の電子をサイクロトロン共鳴させる現象)を用いて、プラズマ密度を高めることも可能である。 In the present disclosure, it is possible to apply a lower frequency (40 kHz, 50 kHz, etc.) or a higher frequency (2.45 GHz, etc.) instead of applying a 13.56 MHz RF AC voltage. Alternatively, a DC voltage may be applied. Instead of a flat plate electrode, it is possible to use a hollow cathode electrode that generates a plasma flow by blowing out gas, or to generate an induced plasma from an external coil. It is also possible to increase the plasma density by using a magnetic field or by using the ECR resonance phenomenon (a phenomenon in which electrons in the plasma undergo cyclotron resonance by appropriately adjusting the electric and magnetic fields).
 プラズマCVD法の成膜には、投入電力、ガス流量、成膜圧力、電極間距離、成膜時間等の様々な条件があり、これらの条件を適宜に調製できる。投入電力は、例えば20W以上であり、50W以上であってもよい。一方、投入電力は、例えば1000W以下であり、800W以下であってもよい。 Film formation by the plasma CVD method has various conditions such as input power, gas flow rate, film formation pressure, distance between electrodes, and film formation time, and these conditions can be adjusted as appropriate. The input power is, for example, 20 W or more, and may be 50 W or more. On the other hand, the input power is, for example, 1000 W or less, and may be 800 W or less.
 さらに、本開示においては、CVD法の後に、プラズマ処理を行うことが好ましい。プラズマ処理としては、電子ビームによる処理、コロナ処理、大気圧プラズマ処理、低圧プラズマ処理等があげられる。生産性の観点からコロナ処理、大気圧プラズマ処理、低圧プラズマ処理等が好ましく、特に、プラズマ雰囲気の制御のしやすさから、低圧下での酸素プラズマ処理が好ましい。 Furthermore, in the present disclosure, plasma treatment is preferably performed after the CVD method. Examples of plasma treatment include electron beam treatment, corona treatment, atmospheric pressure plasma treatment, low pressure plasma treatment, and the like. From the viewpoint of productivity, corona treatment, atmospheric pressure plasma treatment, low-pressure plasma treatment, and the like are preferable, and oxygen plasma treatment under low pressure is particularly preferable because the plasma atmosphere can be easily controlled.
 蒸着膜の表面における水の接触角は、例えば10°以上であり、30°以上であってもよく、50°以上であってもよい。一方、上記水の接触角は、例えば120°以下であり、100°以下であってもよく、80°以下であってもよい。水の接触角は、接触角試験機を用いて20℃、50%RHの条件下で測定した値である。 The contact angle of water on the surface of the deposited film is, for example, 10° or more, may be 30° or more, or may be 50° or more. On the other hand, the contact angle of water is, for example, 120° or less, may be 100° or less, or may be 80° or less. The contact angle of water is a value measured using a contact angle tester under conditions of 20° C. and 50% RH.
b.基材の表面処理
 本開示における基板は、接着層側の表面に表面処理が行われたものであってもよい。接着層との接着性が向上するからである。表面処理としては、プラズマ処理、コロナ処理、火炎処理、フレーム処理および化学的処理が挙げられる。
b. Surface Treatment of Substrate The substrate in the present disclosure may be one in which the surface on the adhesive layer side is subjected to surface treatment. This is because the adhesiveness with the adhesive layer is improved. Surface treatments include plasma treatment, corona treatment, flame treatment, flame treatment and chemical treatment.
 上記表面処理により、基材表面に酸素原子を含む官能基が導入された表面処理層が形成される場合がある。この場合の表面処理層の厚さは、例えば1nm以上であり、5nm以上であってもよい。一方、表面処理層の厚さは、例えば50nm以下であり、30nm以下であってもよい。表面処理層の厚さは、例えば、(株)リガク社製蛍光X線分析装置(機種名:RIX2000型)を用いて測定できる。 The above surface treatment may form a surface treatment layer in which functional groups containing oxygen atoms are introduced on the substrate surface. The thickness of the surface treatment layer in this case is, for example, 1 nm or more, and may be 5 nm or more. On the other hand, the thickness of the surface treatment layer is, for example, 50 nm or less, and may be 30 nm or less. The thickness of the surface treatment layer can be measured, for example, using a fluorescent X-ray spectrometer (model name: RIX2000 type) manufactured by Rigaku Corporation.
 また、本開示における基材が、酸素を含まないフッ素系樹脂である場合は、上記表面処理層は上記フッ素系樹脂表面に酸素を含む層として現れる。具体的には、酸素の原子濃度が、好ましくは1.0原子パーセント(at.%)以上の層とできる。 Further, when the substrate in the present disclosure is a fluororesin containing no oxygen, the surface treatment layer appears as a layer containing oxygen on the surface of the fluororesin. Specifically, the atomic concentration of oxygen is preferably 1.0 atomic percent (at. %) or more.
 表面処理を行うためには、例えば、基材の脱ガス処理を行い、その後、基材表面に対する真空放電処理を行う。脱ガス処理および真空放電処理は、真空状態を保持しながら、一連の工程として連続的に行うことが好ましい。 In order to perform surface treatment, for example, the base material is degassed, and then the base material surface is subjected to vacuum discharge treatment. The degassing treatment and the vacuum discharge treatment are preferably performed continuously as a series of steps while maintaining a vacuum state.
 基材の脱ガス処理としては、例えば、基材を酸素濃度0.01%以下の不活性ガス気流中で1.0×10-1Pa以下の真空度に保持する処理が挙げられる。不活性ガスとしては、例えば、希ガスや窒素ガスが挙げられる。希ガスとしては、例えば、アルゴン(Ar)、ヘリウム(He)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)が挙げられる。不活性ガスの酸素濃度は、0.001%以下であってもよい。不活性ガス気流中での真空度(ガス圧)は、5.0×10-2Pa以下であってもよく、1.0×10-2Pa以下であってもよい。一方、真空度は、例えば1.0×10-4Pa以上である。 The degassing treatment of the substrate includes, for example, a treatment of holding the substrate at a degree of vacuum of 1.0×10 −1 Pa or less in an inert gas stream having an oxygen concentration of 0.01% or less. Examples of inert gas include rare gas and nitrogen gas. Examples of rare gases include argon (Ar), helium (He), neon (Ne), krypton (Kr), and xenon (Xe). The oxygen concentration of the inert gas may be 0.001% or less. The degree of vacuum (gas pressure) in the inert gas stream may be 5.0×10 −2 Pa or less, or 1.0×10 −2 Pa or less. On the other hand, the degree of vacuum is, for example, 1.0×10 −4 Pa or more.
 脱ガス処理は、基材を加熱した状態で行ってもよい。加熱温度は、例えば30℃以上であり、40℃以上であってもよく、50℃以上であってもよい。一方、加熱温度は、例えば100℃以下であり、90℃以下であってもよく、80℃以下であってもよい。脱ガス処理の処理時間は、例えば20秒間以上であり、30秒間以上であってもよく、40秒間以上であってもよい。一方、脱ガス処理の処理時間は、例えば90秒間以下であり、80秒間以下であってもよく、70秒間以下であってもよい。 The degassing treatment may be performed while the substrate is heated. The heating temperature is, for example, 30° C. or higher, may be 40° C. or higher, or may be 50° C. or higher. On the other hand, the heating temperature is, for example, 100° C. or lower, may be 90° C. or lower, or may be 80° C. or lower. The treatment time of the degassing treatment is, for example, 20 seconds or longer, may be 30 seconds or longer, or may be 40 seconds or longer. On the other hand, the treatment time of the degassing treatment is, for example, 90 seconds or less, may be 80 seconds or less, or may be 70 seconds or less.
 真空放電処理は、基材の表面を清浄化するとともに、改質する工程である。真空放電処理としては、例えば、コロナ放電処理およびグロー放電処理が挙げられるが、特に低圧下でのグロー放電処理が好ましい。不活性ガスの存在下で真空放電処理を行うと、使用ガスがイオン化し、気体イオンと電子とが共存するプラズマが発生する。 Vacuum discharge treatment is a process that cleans and modifies the surface of the base material. Vacuum discharge treatment includes, for example, corona discharge treatment and glow discharge treatment, and glow discharge treatment under low pressure is particularly preferred. When vacuum discharge treatment is performed in the presence of an inert gas, the gas used is ionized to generate plasma in which gas ions and electrons coexist.
 真空放電処理は、脱ガス処理を行った基材の表面に対して、酸素濃度0.01%以下の不活性ガス気流中で1.0×10-3Pa以上1.0×10-2Pa以下の真空度を保持しながら、直流電界を印加すると同時に、0.2W/cm以上の印加パワーで10秒間以上真空放電処理を行うことが好ましい。不活性ガスの酸素濃度は、0.001%以下であってもよい。不活性ガス気流中での真空度(ガス圧)は、例えば1.0×10-3Pa以上であり、3.0×10-3Pa以上であってもよく、5.0×10-3Pa以上であってもよい。一方、不活性ガス気流中での真空度(ガス圧)は、例えば1.0×10-2Pa以下であり、9.0×10-3Pa以下であってもよい。 Vacuum discharge treatment is performed on the surface of the base material that has been subjected to degassing treatment in an inert gas stream with an oxygen concentration of 0.01% or less at 1.0 × 10 -3 Pa or more and 1.0 × 10 -2 Pa It is preferable to apply a DC electric field while maintaining the following degree of vacuum and simultaneously perform vacuum discharge treatment with an applied power of 0.2 W/cm 2 or more for 10 seconds or more. The oxygen concentration of the inert gas may be 0.001% or less. The degree of vacuum (gas pressure) in the inert gas stream is, for example, 1.0×10 −3 Pa or more, may be 3.0×10 −3 Pa or more, and may be 5.0×10 −3 Pa or more may be sufficient. On the other hand, the degree of vacuum (gas pressure) in the inert gas stream is, for example, 1.0×10 −2 Pa or less, and may be 9.0×10 −3 Pa or less.
 真空放電処理では、通常、交流の電界を印加する。交流の周波数は、10kHz以上M、900MHz以下であることが好ましい。交流の電界の印加パワーは、例えば0.2W/cm以上であり、0.3W/cm以上であってもよく、0.4W/cm以上であってもよい。一方、交流の電界の印加パワーは、例えば1.0W/cm以下であり、0.9W/cm以下であってもよく、0.8W/cm以下であってもよい。 In the vacuum discharge treatment, an AC electric field is usually applied. The frequency of the alternating current is preferably 10 kHz or more and 900 MHz or less. The applied power of the AC electric field is, for example, 0.2 W/cm 2 or more, may be 0.3 W/cm 2 or more, or may be 0.4 W/cm 2 or more. On the other hand, the applied power of the AC electric field is, for example, 1.0 W/cm 2 or less, may be 0.9 W/cm 2 or less, or may be 0.8 W/cm 2 or less.
 真空放電処理の処理時間は、例えば10秒間以上であり、15秒間以上であってもよく、20秒間以上であってもよい。一方、真空放電処理の処理時間は、例えば100秒間以下であり、70秒間以下であってもよく、50秒間以下であってもよい。 The processing time of the vacuum discharge treatment is, for example, 10 seconds or longer, may be 15 seconds or longer, or may be 20 seconds or longer. On the other hand, the processing time of the vacuum discharge treatment is, for example, 100 seconds or less, may be 70 seconds or less, or may be 50 seconds or less.
 本開示においては、基材の表面を改質するために、真空放電処理と同時に、直流の電界を印加してもよい。直流の電界は、カチオン化した不活性ガス原子を、基材の表面に対して強制的に誘引する方向に印加する。直流の電界を基材に印加するには、基材の処理面とは反対側に設置された電極にマイナス、それと対向して置かれた電極にプラスとなるように印加することが好ましい。 In the present disclosure, a DC electric field may be applied simultaneously with the vacuum discharge treatment in order to modify the surface of the substrate. A DC electric field is applied in a direction that forces the cationized inert gas atoms toward the surface of the substrate. In order to apply a DC electric field to the base material, it is preferable to apply a negative voltage to the electrode placed on the side opposite to the treated surface of the base material and a positive voltage to the electrode placed opposite to it.
 直流の電界の電界強度は、例えば10V/cm以上であり、30V/cm以上であってもよく、50V/cm以上であってもよく、70V/cm以上であってもよい。一方、直流の電界の電界強度は、例えば200V/cm以下であり、150V/cm以下であってもよい。 The electric field intensity of the DC electric field is, for example, 10 V/cm or more, may be 30 V/cm or more, may be 50 V/cm or more, or may be 70 V/cm or more. On the other hand, the electric field intensity of the DC electric field is, for example, 200 V/cm or less, and may be 150 V/cm or less.
 表面処理が行われた側の上記基材の表面における水の接触角は、例えば10°以上であり、30°以上であってもよく、50°以上であってもよい。一方、上記水の接触角は、例えば120°以下であり、100°以下であってもよく、80°以下であってもよい。水の接触角は、接触角試験機を用いて20℃、50%RHの条件下で測定した値である。 The contact angle of water on the surface of the substrate on the surface-treated side is, for example, 10° or more, may be 30° or more, or may be 50° or more. On the other hand, the contact angle of water is, for example, 120° or less, may be 100° or less, or may be 80° or less. The contact angle of water is a value measured using a contact angle tester under conditions of 20° C. and 50% RH.
2.接着層
 本開示における接着層は、熱硬化性樹脂を含有する。熱硬化性樹脂は、接着剤として機能し、半硬化状態または硬化した状態が好ましい。本発明において、「半硬化」とは、樹脂の硬化を途中段階で停止させた状態であり、JIS K 6800「接着剤・接着用語」に定義されているようなB-ステージ(熱硬化性樹脂組成物の硬化中間体)状態を意味する。また、接着層は、基材と接触していることが好ましい。
2. Adhesive Layer The adhesive layer in the present disclosure contains a thermosetting resin. A thermosetting resin functions as an adhesive and is preferably in a semi-cured state or a cured state. In the present invention, "semi-cured" means a state in which the curing of the resin is stopped in the middle, and is a B-stage (thermosetting resin means the cured intermediate) state of the composition. Moreover, it is preferable that the adhesive layer is in contact with the substrate.
 熱硬化性樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、メラミン樹脂、フェノール樹脂、ポリアミド、ケトン樹脂、ウレタン樹脂、尿素樹脂、アクリル樹脂、ビニル樹脂、アルキド樹脂、アミノアルキド樹脂、炭化水素樹脂(芳香族系および脂肪族系)、ゴム系樹脂、フッ素樹脂、ポリイミド系樹脂が挙げられる。また、熱硬化性樹脂の硬化温度は、例えば250℃以下であり、200℃以下であってもよい。ポリイミド系樹脂としては、例えば、特許第6790816号に記載のポリイミド系接着剤を使用することができる。 Examples of thermosetting resins include epoxy resins, silicone resins, unsaturated polyester resins, saturated polyester resins, melamine resins, phenol resins, polyamides, ketone resins, urethane resins, urea resins, acrylic resins, vinyl resins, alkyd resins, Examples include amino alkyd resins, hydrocarbon resins (aromatic and aliphatic), rubber resins, fluororesins, and polyimide resins. Moreover, the curing temperature of the thermosetting resin is, for example, 250° C. or lower, and may be 200° C. or lower. As the polyimide resin, for example, a polyimide adhesive described in Japanese Patent No. 6790816 can be used.
 さらに、本開示の接着層としては、特許第6485577号に記載の、カルボキシ基含有スチレン系エラストマー、およびエポキシ樹脂を含有する接着剤組成物、さらに特許第671848号に記載の、変性ポリオレフィン系樹脂、およびエポキシ樹脂を含有する接着剤組成物も好適に用いることができる。 Furthermore, as the adhesive layer of the present disclosure, an adhesive composition containing a carboxyl group-containing styrene elastomer and an epoxy resin described in Japanese Patent No. 6485577, and a modified polyolefin resin described in Japanese Patent No. 671848, and an adhesive composition containing an epoxy resin can also be suitably used.
 本開示における接着層においては、さらに低誘電樹脂材料が含有されていてもよい。このような低誘電樹脂材料としては、「A.プリント配線基板用積層体 1.基材」に記載されている材料を用いることができる。
 具体的には、ポリオレフィン、ポリスチレン、ポリフェニレンエーテル(PPE)、フッ素系樹脂、液晶ポリマー等が挙げられる。上記ポリオレフィンとしては、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、およびα-オレフィン共重合体等を挙げることができる。また、上記ポリスチレンとしては、シンジオタクチックポリスチレン(SPS)等を挙げることができる。
The adhesive layer in the present disclosure may further contain a low dielectric resin material. As such a low dielectric resin material, the materials described in "A. Laminate for printed wiring board 1. Base material" can be used.
Specific examples include polyolefin, polystyrene, polyphenylene ether (PPE), fluororesin, and liquid crystal polymer. Examples of the polyolefins include cycloolefin polymers (COP), cycloolefin copolymers (COC), α-olefin copolymers, and the like. Moreover, syndiotactic polystyrene (SPS) etc. can be mentioned as said polystyrene.
 接着層の誘電率εは、例えば4.0以下であり、3.5以下であってもよく、3.0以下であってもよい。誘電率は、接着層(硬化後)に対して、誘電率測定装置を用い、測定温度23℃、測定周波数10GHzにおける誘電率を求めた値である。接着層の誘電正接tanδは、例えば0.01以下であり、0.006以下であってもよく、0.002以下であってもよい。誘電正接は、誘電率と同様の方法により測定することができる。 The dielectric constant ε of the adhesive layer is, for example, 4.0 or less, may be 3.5 or less, or may be 3.0 or less. The dielectric constant is a value obtained by using a dielectric constant measuring device for the adhesive layer (after curing) at a measurement temperature of 23° C. and a measurement frequency of 10 GHz. The dielectric loss tangent tan δ of the adhesive layer is, for example, 0.01 or less, may be 0.006 or less, or may be 0.002 or less. The dielectric loss tangent can be measured by the same method as the dielectric constant.
 接着層の厚さは、例えば1μm以上であり、5μm以上であってもよい。一方、接着層の厚さは、例えば300μm以下であり、200μm以下であってもよい。本開示においては、接着層の厚さは、基材の厚さよりも薄いことが好ましい。基材の誘電率が、接着層の誘電率よりも低い場合が多いため、接着層の厚さが基材の厚さよりも薄ければ、電気特性上好ましい。基材の厚さと接着層の厚さとの比(基材の厚さ/接着層の厚さ)は、1以上であることが好ましく、特に3以上であることが好ましい。 The thickness of the adhesive layer is, for example, 1 μm or more, and may be 5 μm or more. On the other hand, the thickness of the adhesive layer is, for example, 300 μm or less, and may be 200 μm or less. In the present disclosure, the thickness of the adhesive layer is preferably thinner than the thickness of the substrate. Since the dielectric constant of the base material is often lower than that of the adhesive layer, it is preferable in terms of electrical properties if the thickness of the adhesive layer is thinner than the thickness of the base material. The ratio of the thickness of the substrate to the thickness of the adhesive layer (thickness of substrate/thickness of adhesive layer) is preferably 1 or more, particularly preferably 3 or more.
3.金属箔
 本開示における金属箔は、上記接着層の上記基材とは反対の面側に位置し、上記接着層と接触していることが好ましい。
3. Metal Foil The metal foil in the present disclosure is preferably located on the side of the adhesive layer opposite to the base material and is in contact with the adhesive layer.
 本開示においては、金属箔は、接着層側の面の最大高さ粗さ(Rz)が10.0μm以下である。渦電流による表皮効果で金属箔の表面に電流が流れるが、金属箔の表面の粗度が大きいと経路が長くなり損失が大きくなりやすい。そのため、金属箔の最大高さ粗さ(Rz)が上記値以下と平滑であることで上記損失を抑制できる。特に、第5世代移動通信システムに用いられるプリント配線基板の場合、導体損失を低減することが重要になるため、金属箔の表面は平滑であることが好ましい。 In the present disclosure, the metal foil has a maximum height roughness (Rz) of 10.0 μm or less on the adhesive layer side surface. Electric current flows on the surface of the metal foil due to the skin effect caused by eddy currents, but if the surface roughness of the metal foil is large, the path becomes long and the loss tends to increase. Therefore, the loss can be suppressed when the maximum height roughness (Rz) of the metal foil is as smooth as the above value or less. In particular, in the case of printed wiring boards used in fifth-generation mobile communication systems, it is important to reduce conductor loss, so the surface of the metal foil is preferably smooth.
 金属箔の接着層側の面の最大高さ粗さ(Rz)は、好ましくは、5.0μm以下であり、更に好ましくは2.0μm以下である。一方、最大高さ粗さ(Rz)は、例えば0.1μm以上であり、好ましくは0.5μm以上であり、特に好ましは、1.0以上である。
 なお、金属箔の上記最大高さ粗さ(Rz)は、上述した「1.基材」に記載の測定方法で測定できる。
The maximum height roughness (Rz) of the adhesive layer side surface of the metal foil is preferably 5.0 μm or less, more preferably 2.0 μm or less. On the other hand, the maximum height roughness (Rz) is, for example, 0.1 μm or more, preferably 0.5 μm or more, and particularly preferably 1.0 or more.
The maximum height roughness (Rz) of the metal foil can be measured by the measurement method described above in "1. Base material".
 本開示においては、金属箔の表面の粗さが上述したような範囲であっても、上記接着層の効果により、所定の接着強度を保つことができ、かつ導体損失を低減することができる。 According to the present disclosure, even if the surface roughness of the metal foil is within the range described above, due to the effect of the adhesive layer, a predetermined adhesive strength can be maintained and conductor loss can be reduced.
 金属箔の金属材料としては、例えば、銅、アルミニウム、金、銀、ステンレス、チタン、ニッケルが挙げられる。これらの中でも加工性やコストの観点から、銅(銅箔)が好ましい。さらに、銅箔は、圧延銅箔であってもよく、電解銅箔であってもよい。 Examples of metal materials for metal foil include copper, aluminum, gold, silver, stainless steel, titanium, and nickel. Among these, copper (copper foil) is preferable from the viewpoint of workability and cost. Furthermore, the copper foil may be a rolled copper foil or an electrolytic copper foil.
 金属箔の厚さは、例えば1μm以上であり、5μm以上であってもよく、10μm以上であってもよい。一方、金属箔の厚さは、例えば200μm以下であり、100μm以下であってもよく、50μm以下であってもよい。 The thickness of the metal foil is, for example, 1 μm or more, may be 5 μm or more, or may be 10 μm or more. On the other hand, the thickness of the metal foil is, for example, 200 μm or less, may be 100 μm or less, or may be 50 μm or less.
 本開示において、金属箔はパターン状であることが好ましい。 In the present disclosure, the metal foil is preferably patterned.
4.その他
 本開示におけるプリント配線基板用積層体は、上述した基材、接着層および金属箔を有する。例えば、基材の一方の面側に、接着層および金属箔を有する積層体(特に、片面銅張積層体)であってもよいし、基材の両面に、接着層および金属箔を有する積層体(特に、両面銅張積層体)であってもよい。
4. Others The printed wiring board laminate in the present disclosure has the base material, the adhesive layer, and the metal foil described above. For example, it may be a laminate having an adhesive layer and a metal foil on one side of the substrate (especially a single-sided copper-clad laminate), or a laminate having an adhesive layer and a metal foil on both sides of the substrate. It may also be a body (especially a double-sided copper-clad laminate).
 基材と金属箔との層間接着強度は、例えば6.0N/15mm以上であってもよく、10.5N/15mm以上であってもよい。層間接着強度は、JIS K 6854-2に準拠して、積層体(硬化後)から15mm幅に切り出した試験片を用いて、23℃、30%RHの条件下で、引張試験機(株式会社エー・アンド・デイ製、型番:STB-1225S)を用いて、引張速度50mm/分、剥離角180°で引っ張って測定した値である。 The interlayer adhesive strength between the substrate and the metal foil may be, for example, 6.0 N/15 mm or more, or may be 10.5 N/15 mm or more. In accordance with JIS K 6854-2, the interlaminar bond strength was measured using a test piece cut to a width of 15 mm from the laminate (after curing) under the conditions of 23°C and 30% RH with a tensile tester (Inc. It is a value measured by pulling at a peeling angle of 180° at a tensile speed of 50 mm/min using a model number: STB-1225S manufactured by A&D.
 本開示におけるプリント配線基板用積層体の用途は、特に限定されないが、高周帯域の周波数に対応する優れた電気特性を有するため、特に、第5世代移動通信システム用のプリント配線基板を作製するための積層体として好適に使用される。 The use of the laminate for printed wiring boards in the present disclosure is not particularly limited, but it has excellent electrical properties corresponding to frequencies in the high frequency band, so it is particularly used for producing printed wiring boards for 5th generation mobile communication systems. It is preferably used as a laminate for
6.プリント配線基板用積層体の製造方法
 本開示におけるプリント配線基板用積層体の製造方法は、特に限定されないが、低誘電樹脂材料を含有し、少なくとも一方の表面が上記最大高さ粗さ(Rz)を有する基材を準備する基材準備工程と、少なくとも一方の表面が上記最大高さ粗さ(Rz)を有する金属箔を準備する金属箔準備工程と、基材の上記最大高さ粗さ(Rz)を有する面に、金属箔を、熱硬化性樹脂を含有する接着層を介して接着する接着工程と、を有する方法が挙げられる。
6. Method for manufacturing printed wiring board laminate The method for manufacturing a printed wiring board laminate in the present disclosure is not particularly limited, but contains a low dielectric resin material, and at least one surface has the maximum height roughness (Rz) and a metal foil preparation step of preparing a metal foil in which at least one surface has the maximum height roughness (Rz), and the maximum height roughness of the substrate ( and a bonding step of bonding a metal foil to a surface having Rz) via an adhesive layer containing a thermosetting resin.
(1)基材準備工程
 本工程は、低誘電樹脂材料を含有し、少なくとも一方の表面の最大高さ粗さ(Rz)が0.1μm以上である基材を準備する工程である。
 このような表面状態を得る方法としては、特に限定されないが、例えば、化学的処理、物理的処理のいずれであってもよい。物理的処理は、例えば、上記低誘電樹脂材料を含むフィルム等の表面に対するブラスト処理によって行う。
(1) Substrate Preparing Step This step is a step of preparing a substrate containing a low dielectric resin material and having a maximum height roughness (Rz) of 0.1 μm or more on at least one surface.
A method for obtaining such a surface state is not particularly limited, but may be, for example, either chemical treatment or physical treatment. The physical treatment is performed, for example, by blasting the surface of the film containing the low dielectric resin material.
 本開示においては、中でも、ウェットブラスト処理が好ましい。ブラスト処理に使用される研磨剤の種類、粒径、スラリー中の含有量等や、処理時間の調整によって、上記最大高さ粗さに調整できる。例えば、研磨剤の粒径は、1μm以上であってもよく、10μm以上であってもよい。また、200μm以下であってもよく、100μm以下であってもよい。また、研磨剤としては特に限定されず、例えば、アルミナ(Al)、炭化ケイ素(SiC)、ステンレス、ジルコニア(ZrO)、ガラス、クロム、メラミン樹脂、フェノール樹脂を挙げることができる。 In the present disclosure, wet blasting is particularly preferred. The maximum height roughness can be adjusted by adjusting the type, particle size, content in the slurry, etc. of the abrasive used in the blasting treatment and the treatment time. For example, the particle size of the abrasive may be 1 μm or more, or 10 μm or more. Moreover, it may be 200 μm or less, or may be 100 μm or less. The abrasive is not particularly limited, and examples thereof include alumina (Al 2 O 3 ), silicon carbide (SiC), stainless steel, zirconia (ZrO 2 ), glass, chromium, melamine resin, and phenol resin.
 また、低誘電樹脂材料を含有し、少なくとも一方の表面の最大高さ粗さ(Rz)が0.1μm以上であれば、そのまま基材として用いることができる。 Also, if it contains a low dielectric resin material and the maximum height roughness (Rz) of at least one surface is 0.1 μm or more, it can be used as a base material as it is.
(2)金属箔準備工程
 本工程は、少なくとも一方の表面の最大高さ粗さ(Rz)が10μm以下である金属箔を準備する工程である。上記最大高さ粗さを有する金属箔は、市販品を使用してもよいし、金属箔の表面を平滑化してもよい。金属箔の表面を平滑化する方法としては、例えば、ウェットエッチング、ドライエッチング法のエッチングを用いたハーフエッチング法が挙げられる。エッチング条件については、金属箔の種類に応じて適宜設定される。
(2) Metal Foil Preparing Step This step is a step of preparing a metal foil having a maximum height roughness (Rz) of 10 μm or less on at least one surface. As the metal foil having the maximum height roughness, a commercially available product may be used, or the surface of the metal foil may be smoothed. Methods for smoothing the surface of the metal foil include, for example, half-etching using wet etching and dry etching. Etching conditions are appropriately set according to the type of metal foil.
(3)接着工程
 接着工程は、基材および金属箔を、熱硬化性樹脂を含有する接着層を介して接着する工程であり、金属箔の平滑面が少なくとも接着層側となるように配置される。これにより、基材、接着層および金属箔が、厚さ方向において、この順に積層された積層体が得られる。
(3) Bonding step The bonding step is a step of bonding the substrate and the metal foil via an adhesive layer containing a thermosetting resin, and the smooth surface of the metal foil is arranged so that at least the adhesive layer side. be. As a result, a laminate is obtained in which the substrate, the adhesive layer and the metal foil are laminated in this order in the thickness direction.
 接着層の形成方法としては、例えば、未硬化の熱硬化性樹脂を含有する樹脂組成物を塗工し、その後、未硬化の熱硬化性樹脂を熱により硬化または半硬化させる方法が挙げられる。樹脂組成物は、基材上に塗工してもよく、金属箔に塗工してもよく、その両者に塗工してもよい。塗工方法は、特に限定されず、公知の方法を採用できる。また、熱硬化性樹脂を硬化させる際の加熱温度は、例えば250℃以下であり、200℃以下であってもよい。 Examples of methods for forming the adhesive layer include a method of applying a resin composition containing an uncured thermosetting resin, and then curing or semi-curing the uncured thermosetting resin with heat. The resin composition may be applied onto a substrate, may be applied onto a metal foil, or may be applied onto both of them. A coating method is not particularly limited, and a known method can be adopted. The heating temperature for curing the thermosetting resin is, for example, 250° C. or lower, and may be 200° C. or lower.
B.多層プリント配線基板用接合体
 本開示における多層プリント配線基板用接合体は、第1基材と、上記第1基材の両面に配置された第1接着層と、上記それぞれの第1接着層の上記第1基材とは反対側の面に配置された第1金属箔と、を有する第1プリント配線基板用積層体、および、第2基材と、上記第2基材の両面に配置された第2接着層と、片方の上記第2接着層の上記第2基材とは反対側の面に配置された第2金属箔と、を有する第2プリント配線基板用積層体、を有し、上記第1プリント配線基板用積層体、および上記第2プリント配線基板用積層体は、上記第2プリント配線基板用積層体の上記第2金属箔が配置されていない側の第2接着層が、上記第1プリント配線基板用積層体の第1金属箔と対向するように配置され、上記第1基材および上記第2基材は、低誘電樹脂材料を含有し、上記第1接着層および第2接着層は、熱硬化性樹脂を含有し、上記第1金属箔および第2金属箔の上記第1接着層および第2接着層側の面の最大高さ粗さ(Rz)が10μm以下であり、上記第1基材および上記第2基材の上記第1接着層および第2接着層側の面の最大高さ粗さ(Rz)が0.1μm以上である、多層プリント配線基板用接合体である。
B. Bonded product for multilayer printed wiring board The bonded product for a multilayer printed wiring board according to the present disclosure includes a first base material, first adhesive layers disposed on both sides of the first base material, and the first adhesive layers. A first printed wiring board laminate having a first metal foil arranged on the surface opposite to the first base material, a second base material, and a second base material arranged on both sides of the second base material and a second printed wiring board laminate having a second adhesive layer and a second metal foil disposed on the surface of one of the second adhesive layers opposite to the second base material. , the first laminate for printed wiring board and the second laminate for printed wiring board, the second adhesive layer on the side of the second laminate for printed wiring board where the second metal foil is not arranged is , arranged to face the first metal foil of the first printed wiring board laminate, the first base material and the second base material containing a low dielectric resin material, the first adhesive layer and The second adhesive layer contains a thermosetting resin, and the maximum height roughness (Rz) of the surfaces of the first metal foil and the second metal foil facing the first adhesive layer and the second adhesive layer is 10 μm or less. and the maximum height roughness (Rz) of the surfaces of the first base material and the second base material on the first adhesive layer and second adhesive layer sides is 0.1 μm or more, for a multilayer printed wiring board It is a zygote.
 図3(a)に、本開示における多層プリント配線基板用接合体を製造する際の工程図、図3(b)に本開示における多層プリント配線基板用接合体を示す。図3(b)の多層プリント配線基板用接合体100は、この例では、第1基材1の両面に、第1蒸着膜2、第1接着層3、および第1金属箔がパターン状に配置された第1金属箔パターン4pを有する第1プリント配線基板用積層体10Aと、第2基材1の片面に第2蒸着膜2、第2接着層3、および第2金属箔がパターン状に配置された第2金属箔パターン4pを有し、他の面に第2蒸着膜2、および第2接着層3を有する第2プリント配線基板用積層体10Bとが、第2プリント配線基板用積層体10Bの第2接着層3によって接合している。 FIG. 3(a) shows a process diagram for manufacturing a multilayer printed wiring board assembly according to the present disclosure, and FIG. 3(b) shows a multilayer printed wiring board assembly according to the present disclosure. In this example, the bonded body 100 for a multilayer printed wiring board shown in FIG. A first printed wiring board laminate 10A having a first metal foil pattern 4p disposed thereon, and a second deposited film 2, a second adhesive layer 3, and a second metal foil patterned on one side of a second substrate 1. The second printed wiring board laminate 10B having the second metal foil pattern 4p disposed on the second printed wiring board and the second vapor deposition film 2 and the second adhesive layer 3 on the other surface is the second printed wiring board laminate It is joined by the second adhesive layer 3 of the laminate 10B.
 多層プリント配線基板用接合体に用いる基材、接着層、および金属箔は、上述した「A.プリント配線基板用積層体」と同様であるため、ここでの説明は省略する。多層プリント配線基板用接合体中の接着層は、通常、硬化状態である。
 本開示における多層プリント配線基板用接合体に含まれる第1プリント配線基板用積層体は、通常1つであり、この第1プリント配線基板用積層体の片面側もしくは両面側に1つ以上の第2プリント配線基板用積層体が配置される。
Since the base material, the adhesive layer, and the metal foil used for the bonded body for multilayer printed wiring board are the same as those in the above-described "A. Laminate for printed wiring board", descriptions thereof are omitted here. The adhesive layer in the assembly for multilayer printed wiring boards is usually in a cured state.
The number of the first printed wiring board laminate included in the joined body for a multilayer printed wiring board in the present disclosure is usually one, and one or more second laminates are provided on one side or both sides of the first printed wiring board laminate. 2 printed wiring board laminates are placed.
 従来から、電気機器や電子機器の内部で用いられる回路基板としては、2層以上の回路を有する多層プリント配線板が広く用いられている。ここで、図4(a)に、従来の多層プリント配線基板用接合体を製造する際の工程図、図4(b)に従来の多層プリント配線基板用接合体を示す。図4(a)に示すように、液晶ポリマー(LCP)、フッ素系樹脂等の低誘電樹脂材料(特に、熱可塑性樹脂)を基材11に用いた従来のプリント配線基板用積層体20A、20Bを接合して多層プリント配線基板用接合体200を製造する場合には、熱溶着により積層体同士を接合する。この熱溶着の際に、通常400℃程度の高温が必要となっていた。そのため、図4(b)に示すように、熱可塑性樹脂が溶融し、金属箔パターン14pの位置ずれが生じる場合があった。 Conventionally, multilayer printed wiring boards having two or more layers of circuits have been widely used as circuit boards used inside electrical and electronic devices. Here, FIG. 4(a) shows a process diagram for manufacturing a conventional multilayer printed wiring board assembly, and FIG. 4(b) shows a conventional multilayer printed wiring board assembly. As shown in FIG. 4(a), conventional printed wiring board laminates 20A and 20B using a low dielectric resin material (especially thermoplastic resin) such as liquid crystal polymer (LCP) and fluororesin for the base material 11. When manufacturing the multilayer printed wiring board bonded body 200 by bonding, the laminated bodies are bonded to each other by heat welding. A high temperature of about 400° C. is usually required for this heat welding. Therefore, as shown in FIG. 4(b), the thermoplastic resin may be melted and the metal foil pattern 14p may be displaced.
 これに対し、本開示の多層プリント配線基板用接合体であれば、上述した熱硬化性樹脂を含有する接着層を使用することにより、比較的低温(例えば200℃以下)で積層体を接合することができる。 On the other hand, in the multilayer printed wiring board bonded body of the present disclosure, the laminated body is bonded at a relatively low temperature (for example, 200° C. or less) by using the adhesive layer containing the thermosetting resin described above. be able to.
 なお、本開示は、上記実施形態に限定されない。上記実施形態は、例示であり、本開示の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示の技術的範囲に包含される。 It should be noted that the present disclosure is not limited to the above embodiments. The above embodiment is an example, and any device that has substantially the same configuration as the technical idea described in the claims of the present disclosure and achieves the same effect is the present invention. It is included in the technical scope of the disclosure.
 以下に実施例および比較例を示し、本開示をさらに詳細に説明する。
[プリント配線基板用積層体の製造]
(実施例1-1)
 ポリテトラフルオロエチレン(PTFE)フィルム(TOMBO No.9001(ニチアス社製) 両主面の最大高さ粗さ(Rz)0.45μm、算術平均粗さ(Ra)0.08μm、誘電率ε2.0、誘電正接0.0002、厚さ50μm)を基材として準備した。この基材の両面に、下記プラズマ処理を行った。また、銅箔(福田金属箔粉工業株式会社 CF-T49A-DS-HD2 厚さ12μm Rz2.0μm)を準備した。プラズマ処理を行ったPTFEフィルムの両面に、熱硬化性の低誘電接着フィルム(エポキシ樹脂、誘電率ε2.3、誘電正接0.002、厚さ25μm)をそれぞれ配置し、さらに、その両面に上記銅箔を配置し、それらを熱圧着(180℃、1MPa、60分)で貼り合わせ、プリント配線基板用積層体とした。
 なお、製造したプリント配線基板用積層体を切断し、断面SEM画像から、上述した「1.基材」に記載の測定方法で基材の接着層側の面のRzを測定したところ、0.45μmであり、PTFEフィルムのRzと同等の値が得られた。
Examples and comparative examples are shown below to describe the present disclosure in more detail.
[Manufacture of laminate for printed wiring board]
(Example 1-1)
Polytetrafluoroethylene (PTFE) film (TOMBO No. 9001 (manufactured by Nichias) Maximum height roughness (Rz) of both main surfaces 0.45 μm, arithmetic mean roughness (Ra) 0.08 μm, dielectric constant ε 2.0 , dielectric loss tangent 0.0002, thickness 50 μm) was prepared as a substrate. Both surfaces of this substrate were subjected to the following plasma treatment. A copper foil (CF-T49A-DS-HD2, thickness 12 μm, Rz 2.0 μm, manufactured by Fukuda Metal Foil & Powder Co., Ltd.) was also prepared. A thermosetting low dielectric adhesive film (epoxy resin, dielectric constant ε2.3, dielectric loss tangent 0.002, thickness 25 μm) is placed on both sides of the plasma-treated PTFE film. Copper foils were arranged and they were bonded together by thermocompression bonding (180° C., 1 MPa, 60 minutes) to obtain a laminate for a printed wiring board.
In addition, when the produced printed wiring board laminate was cut and the Rz of the adhesive layer side surface of the base material was measured from the cross-sectional SEM image by the measurement method described in the above "1. Base material", it was 0. It was 45 μm, and a value equivalent to the Rz of the PTFE film was obtained.
プラズマ処理条件
・ガス:Ar 600sccm
・圧力:4Pa
・処理時間:5分
Plasma treatment conditions/Gas: Ar 600 sccm
・Pressure: 4Pa
・Processing time: 5 minutes
(実施例1-2~実施例1-9)
 実施例1-1で用いた上記ポリテトラフルオロエチレン(PTFE)フィルムの両主面に対し、表1に示す研磨剤およびエア圧力条件でウェットブラスト処理を行い、これにより表1に示す最大高さ粗さ(Rz)および算術平均粗さ(Ra)を有する基材を得た。得られた基材を用いた以外は、実施例1-1と同様の方法で、プリント配線基板用積層体を製造した。
(Examples 1-2 to 1-9)
Both main surfaces of the polytetrafluoroethylene (PTFE) film used in Example 1-1 were subjected to wet blasting under the abrasive and air pressure conditions shown in Table 1, thereby achieving the maximum height shown in Table 1. A substrate with roughness (Rz) and arithmetic mean roughness (Ra) was obtained. A printed wiring board laminate was produced in the same manner as in Example 1-1, except that the obtained base material was used.
(実施例2-1)
 ポリテトラフルオロエチレン(PTFE)フィルム(V7900(バルカー社製) 両主面の最大高さ粗さ(Rz)0.34μm、算術平均粗さ(Ra)0.07μm、誘電率ε2.0、誘電正接0.0002、厚さ50μm)を準備した。これを基材として用いた以外は、実施例1-1と同様の方法でプリント配線基板用積層体を製造した。
(Example 2-1)
Polytetrafluoroethylene (PTFE) film (V7900 (manufactured by Valqua) Maximum height roughness (Rz) of both main surfaces 0.34 μm, arithmetic mean roughness (Ra) 0.07 μm, dielectric constant ε2.0, dielectric loss tangent 0.0002, thickness 50 μm) was prepared. A printed wiring board laminate was produced in the same manner as in Example 1-1, except that this was used as the base material.
(実施例2-2~実施例2-19)
 実施例2-1で用いた上記ポリテトラフルオロエチレン(PTFE)フィルム(両主面の最大高さ粗さ(Rz)0.34μm、算術平均粗さ(Ra)0.07μm、誘電率ε2.0、誘電正接0.0002、厚さ50μm)の両主面に対し、表2および表3に示す研磨剤およびエア圧力条件でウェットブラスト処理を行い、これにより、表2および表3に示す最大高さ粗さ(Rz)および算術平均粗さ(Ra)を有する基材を得た。得られた基材を用いた以外は、実施例2-1と同様の方法で、プリント配線基板用積層体を製造した。
(Examples 2-2 to 2-19)
The polytetrafluoroethylene (PTFE) film used in Example 2-1 (maximum height roughness (Rz) of both main surfaces 0.34 μm, arithmetic mean roughness (Ra) 0.07 μm, dielectric constant ε 2.0 , dielectric loss tangent 0.0002, thickness 50 μm) were subjected to wet blasting under the abrasive and air pressure conditions shown in Tables 2 and 3, resulting in the maximum height shown in Tables 2 and 3. A substrate having a roughness (Rz) and an arithmetic mean roughness (Ra) was obtained. A printed wiring board laminate was produced in the same manner as in Example 2-1, except that the obtained base material was used.
[剥離強度試験]
 実施例1-1~1-9、実施例2-1~2-19で得られたプリント配線基板用積層体の剥離強度(層間接着強度)を、上述した「5.プリント配線基板用積層体」に記載の方法により測定した。結果を表1、表2、および表3に示す。
 評価結果は、以下の基準により判断した。
A:密着強度が大きかった。
B:密着強度が実用上問題無いレベルであった。
C:密着強度が小さく、実用上問題があった。
[Peel strength test]
The peel strength (interlayer adhesive strength) of the laminates for printed wiring boards obtained in Examples 1-1 to 1-9 and Examples 2-1 to 2-19 was measured according to the above "5. Laminate for printed wiring boards Measured by the method described in . The results are shown in Tables 1, 2 and 3.
The evaluation results were judged according to the following criteria.
A: Adhesion strength was large.
B: Adhesion strength was at a practically acceptable level.
C: Adhesion strength was low, and there was a problem in practical use.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1、表2、および表3から、本開示におけるプリント配線基板用積層体(実施例1-1~1-9、実施例2-1~2-19)は、基材と金属箔とを強固に接着できたものであることが確認された。 From Tables 1, 2, and 3, the printed wiring board laminates (Examples 1-1 to 1-9 and Examples 2-1 to 2-19) in the present disclosure consisted of a base material and a metal foil. It was confirmed that they were strongly adhered.
 なお、実施例1の記載に用いたポリテトラフルオロエチレン(PTFE)フィルム(TOMBO No.9001(ニチアス社製))、実施例2で用いたポリテトラフルオロエチレン(PTFE)フィルム(V7900(バルカー社製))、実施例1および実施例2で用いた接着層、実施例1-5のプリント配線基板用積層体、および実施例2-5のプリント配線基板用積層体の、28GHzでの誘電率および誘電正接を測定し、下記の表4にまとめた。測定は、Keysight ネットワークアナライザ E8363B、およびEMラボ スプリットシリンダ共振器 CR-728を用いた。 The polytetrafluoroethylene (PTFE) film (TOMBO No. 9001 (manufactured by Nichias)) used in Example 1, the polytetrafluoroethylene (PTFE) film (V7900 (manufactured by Valqua) used in Example 2, )), the dielectric constant at 28 GHz and The dissipation factor was measured and summarized in Table 4 below. Measurements were performed using Keysight Network Analyzer E8363B and EM Lab Split Cylinder Resonator CR-728.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例3-1~実施例3-4、比較例)
 実施例1-5における基材(Rz=0.87μm)、実施例1-7における基材(Rz=1.71μm)、実施例2-5における基材(Rz=0.90μm)、および実施例2-7における基材(Rz=1.76μm)を用い、表5に記載の表面高さ粗さ(Rz)を有する銅箔を用いた以外は、実施例1-1と同様の方法でプリント配線基板用積層体を製造した。また、比較例として、Panasonic社製R-F705T(商品名)を用いた。なお、Panasonic社製R-F705T(商品名)の誘電率は2.9であり、誘電正接は0.002であった。
(Examples 3-1 to 3-4, Comparative Example)
The substrate in Example 1-5 (Rz = 0.87 μm), the substrate in Example 1-7 (Rz = 1.71 μm), the substrate in Example 2-5 (Rz = 0.90 μm), and the implementation In the same manner as in Example 1-1, except that the substrate (Rz = 1.76 μm) in Example 2-7 was used and a copper foil having a surface height roughness (Rz) shown in Table 5 was used. A printed wiring board laminate was produced. As a comparative example, RF705T (trade name) manufactured by Panasonic Corporation was used. Note that RF705T (trade name) manufactured by Panasonic Corporation had a dielectric constant of 2.9 and a dielectric loss tangent of 0.002.
[伝送損失測定]
 得られたプリント配線基板用積層体における一方の面の銅箔をパターニングし、配線長さ100mm、インピーダンス50Ω回路となるマイクロストリップラインを作製した。
 測定周波数を1GHz~40GHzとし、伝送損失S21パラメータをネットワークアナライザ(Keysight Technologies社製 E8363B PNAシリーズ)で測定した。また、下記評価基準に従って、評価した。結果を表6に示す。
[Transmission loss measurement]
A copper foil on one surface of the obtained printed wiring board laminate was patterned to prepare a microstrip line having a wiring length of 100 mm and an impedance of 50Ω.
The transmission loss S21 parameter was measured with a network analyzer (E8363B PNA series manufactured by Keysight Technologies) at a measurement frequency of 1 GHz to 40 GHz. Moreover, it evaluated according to the following evaluation criteria. Table 6 shows the results.
[評価基準]
A:伝送損失が少なかった
B:伝送損失が実使用上問題ないレベルであった
C:伝送損失が大きく、実使用上問題があった
[Evaluation criteria]
A: Transmission loss was small B: Transmission loss was at a level that did not pose a problem in practical use C: Transmission loss was large and there was a problem in practical use
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5から、本開示におけるプリント配線基板用積層体は、比較例のものと比較して、伝送損失が抑制されたものとなることが確認された。これは、比較例に用いたPanasonic社製R-F705T(商品名)の誘電率と誘電正接が高ことに起因するものであると考えられる。
(比較例の基材のRz、銅箔のRzについて、請求項1の数値に入ってしまいますが、構造が異なり、誘電正接が高いもののようです。構造的には、接着層が無く、基材(樹脂層)と銅箔の構成のようです。製品名が開示されているので、特に比較例の構造的な説明が無くてもよさそうでしたら、特に追加の説明は無くてもよいと思います。)
From Table 5, it was confirmed that the transmission loss was suppressed in the printed wiring board laminate of the present disclosure as compared with the comparative example. This is considered to be due to the high dielectric constant and dielectric loss tangent of RF705T (trade name) manufactured by Panasonic Corporation used in the comparative example.
(The Rz of the base material and the Rz of the copper foil in the comparative example are included in the numerical values in claim 1, but they have a different structure and seem to have a high dielectric loss tangent. Structurally, there is no adhesive layer and the base material It seems to be the composition of the material (resin layer) and copper foil.Since the product name is disclosed, if it seems that there is no need to explain the structure of the comparative example, there is no need to provide any additional explanation. think.)
(実施例4)
 実施例1-1で使用したポリテトラフルオロエチレン(PTFE)フィルム(TOMBO No.9001(ニチアス社製) 両主面の最大高さ粗さ(Rz)0.45μm、算術平均粗さ(Ra)0.08μm、誘電率ε2.0、誘電正接0.0002、厚さ50μm)の両面に、下記のようにシリカ蒸着膜を形成した。
(Example 4)
Polytetrafluoroethylene (PTFE) film used in Example 1-1 (TOMBO No. 9001 (manufactured by Nichias) Maximum height roughness (Rz) of both main surfaces 0.45 μm, arithmetic mean roughness (Ra) 0 0.08 μm, dielectric constant ε2.0, dielectric loss tangent 0.0002, thickness 50 μm), silica deposition films were formed as follows.
(シリカ蒸着膜形成方法)
 PTFEフィルムを真空槽内に導入し、真空槽内に、蒸着用モノマーガスとしてのヘキサメチルジシロキサン(HMDSO)と、酸素ガスと、キャリアガスとしてのヘリウムガスとを含む蒸着用ガス組成物を導入し、真空槽内に設置した平板電極と、該平板電極と平行に対向して設置したアース電極との間に13.56MHzのRF交流電圧を印加して、プラズマCVD法によりPTFEフィルムの一方の表面上に蒸着膜を製膜した。また、もう一方の表面上にも同様の方法で蒸着膜を製膜し、PTFEフィルムの両面に蒸着膜を製膜した。なお、CVD処理後のプラズマ処理は行わなかった。
(Silica deposition film formation method)
A PTFE film is introduced into a vacuum chamber, and a vapor deposition gas composition containing hexamethyldisiloxane (HMDSO) as a vapor deposition monomer gas, oxygen gas, and helium gas as a carrier gas is introduced into the vacuum chamber. Then, a 13.56 MHz RF AC voltage is applied between a flat plate electrode installed in a vacuum chamber and a ground electrode installed parallel to the flat plate electrode, and one side of the PTFE film is removed by plasma CVD. A vapor deposition film was formed on the surface. A vapor deposition film was also formed on the other surface in the same manner, and a vapor deposition film was formed on both sides of the PTFE film. Note that no plasma treatment was performed after the CVD treatment.
 シリカ蒸着膜を形成したPTFEフィルムを基材として用いた以外は、実施例1-1と同様の方法でプリント配線基板用積層体を製造した。
 シリカ蒸着膜の組成をXPS分析により求めた。結果を表6に示す。なお、PTFEフィルムの組成および実施例1-1のプラズマ処理を行うことにより得られた表面処理層の組成も併せて示す。また、上記剥離強度試験により、実施例4で得られたプリント配線基板用積層体の剥離強度(層間接着強度)を測定した結果、6.0N/15mmであり、基材と金属箔とが強固に接着されたものとなった。
A laminate for a printed wiring board was produced in the same manner as in Example 1-1, except that a PTFE film having a deposited silica film formed thereon was used as the base material.
The composition of the deposited silica film was determined by XPS analysis. Table 6 shows the results. The composition of the PTFE film and the composition of the surface-treated layer obtained by the plasma treatment of Example 1-1 are also shown. In addition, the peel strength (interlayer adhesive strength) of the printed wiring board laminate obtained in Example 4 was measured by the peel strength test, and the result was 6.0 N / 15 mm, and the base material and the metal foil were strong. was adhered to.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
  1 … 基材
  2 … 蒸着膜
  3 … 接着層
  4 … 金属箔
 10 … プリント配線基板用積層体
100 … 多層プリント配線基板用接合体
DESCRIPTION OF SYMBOLS 1... Base material 2... Vapor-deposited film 3... Adhesive layer 4... Metal foil 10... Laminate for printed wiring board 100... Joined body for multilayer printed wiring board

Claims (12)

  1.  基材、接着層、および金属箔がこの順に積層されたプリント配線基板用積層体であって、
     前記基材は、低誘電樹脂材料を含有し、
     前記接着層は、熱硬化性樹脂を含有し、
     前記金属箔の前記接着層側の面の最大高さ粗さ(Rz)が10μm以下であり、前記基材の前記接着層側の面の最大高さ粗さ(Rz)が0.1μm以上である、プリント配線基板用積層体。
    A laminate for a printed wiring board in which a substrate, an adhesive layer, and a metal foil are laminated in this order,
    The base material contains a low dielectric resin material,
    The adhesive layer contains a thermosetting resin,
    The maximum height roughness (Rz) of the adhesive layer side surface of the metal foil is 10 μm or less, and the maximum height roughness (Rz) of the adhesive layer side surface of the base material is 0.1 μm or more. A laminate for a printed wiring board.
  2.  前記金属箔の前記接着層側の面の最大高さ粗さ(Rz)が0.1μm以上である、請求項1に記載のプリント配線基板用積層体。 The printed wiring board laminate according to claim 1, wherein the surface of the metal foil on the adhesive layer side has a maximum height roughness (Rz) of 0.1 µm or more.
  3.  前記基材は、誘電率が4.0以下であり、誘電正接が0.01以下である、請求項1または請求項2に記載のプリント配線基板用積層体。 The printed wiring board laminate according to claim 1 or 2, wherein the substrate has a dielectric constant of 4.0 or less and a dielectric loss tangent of 0.01 or less.
  4.  前記基材が、前記低誘電樹脂材料として、フッ素系樹脂および液晶ポリマーの少なくとも一種を含む、請求項1から請求項3までのいずれかの請求項に記載のプリント配線基板用積層体。 The laminate for a printed wiring board according to any one of claims 1 to 3, wherein the base material contains at least one kind of fluororesin and liquid crystal polymer as the low dielectric resin material.
  5.  前記接着層は、半硬化状態または硬化状態である、請求項1から請求項4までのいずれかの請求項に記載のプリント配線基板用積層体。 The printed wiring board laminate according to any one of claims 1 to 4, wherein the adhesive layer is in a semi-cured state or a cured state.
  6.  前記接着層は、硬化状態において誘電率が4.0以下であり、誘電正接が0.01以下である、請求項1から請求項5までのいずれかの請求項に記載のプリント配線基板用積層体。 6. The laminate for a printed wiring board according to any one of claims 1 to 5, wherein the adhesive layer has a dielectric constant of 4.0 or less and a dielectric loss tangent of 0.01 or less in a cured state. body.
  7.  前記接着層の厚さは、前記基材の厚さよりも薄い、請求項1から請求項6までのいずれかの請求項に記載のプリント配線基板用積層体。 The printed wiring board laminate according to any one of claims 1 to 6, wherein the thickness of the adhesive layer is thinner than the thickness of the base material.
  8.  前記金属箔が、銅箔である、請求項1から請求項7までのいずれかの請求項に記載のプリント配線基板用積層体。 The printed wiring board laminate according to any one of claims 1 to 7, wherein the metal foil is a copper foil.
  9.  前記金属箔がパターン状である、請求項1から請求項8までのいずれかの請求項に記載のプリント配線基板用積層体。 The printed wiring board laminate according to any one of claims 1 to 8, wherein the metal foil is patterned.
  10.  前記基材の前記接着層側の面の最大高さ粗さ(Rz)が、20.0μm以下である、請求項1から請求項9までのいずれかの請求項に記載のプリント配線基板用積層体。 10. The laminate for a printed wiring board according to any one of claims 1 to 9, wherein the maximum height roughness (Rz) of the adhesive layer side surface of the base material is 20.0 μm or less. body.
  11.  前記接着層が、低誘電樹脂を含有する、請求項1から請求項10までのいずれかの請求項に記載のプリント配線基板用積層体。 The printed wiring board laminate according to any one of claims 1 to 10, wherein the adhesive layer contains a low dielectric resin.
  12.  第1基材と、前記第1基材の両面に配置された第1接着層と、前記それぞれの第1接着層の前記第1基材とは反対側の面に配置された第1金属箔と、を有する第1プリント配線基板用積層体、および、
     第2基材と、前記第2基材の両面に配置された第2接着層と、片方の前記第2接着層の前記第2基材とは反対側の面に配置された第2金属箔と、を有する第2プリント配線基板用積層体、を有し、
     前記第1プリント配線基板用積層体、および前記第2プリント配線基板用積層体は、前記第2プリント配線基板用積層体の前記第2金属箔が配置されていない側の第2接着層が、前記第1プリント配線基板用積層体の第1金属箔と対向するように配置されている多層プリント配線基板用接合体であって、
     前記第1基材および前記第2基材は、低誘電樹脂材料を含有し、
     前記第1接着層および第2接着層は、熱硬化性樹脂を含有し、
     前記第1金属箔および第2金属箔の前記第1接着層および第2接着層側の面の最大高さ粗さ(Rz)が10μm以下であり、
     前記第1基材および前記第2基材の前記第1接着層および第2接着層側の面の最大高さ粗さ(Rz)が0.1μm以上である、多層プリント配線基板用接合体。
    a first substrate, first adhesive layers disposed on both sides of the first substrate, and a first metal foil disposed on a surface of each of the first adhesive layers opposite to the first substrate and a first printed wiring board laminate, and
    a second base material, second adhesive layers disposed on both sides of the second base material, and a second metal foil disposed on a surface of one of the second adhesive layers opposite to the second base material and a second printed wiring board laminate having
    In the first printed wiring board laminate and the second printed wiring board laminate, the second adhesive layer on the side where the second metal foil of the second printed wiring board laminate is not arranged is A multilayer printed wiring board assembly arranged to face the first metal foil of the first printed wiring board laminate,
    The first base material and the second base material contain a low dielectric resin material,
    The first adhesive layer and the second adhesive layer contain a thermosetting resin,
    The maximum height roughness (Rz) of the surfaces of the first metal foil and the second metal foil facing the first adhesive layer and the second adhesive layer is 10 μm or less,
    A joined body for a multilayer printed wiring board, wherein the maximum height roughness (Rz) of the surfaces of the first base material and the second base material facing the first adhesive layer and the second adhesive layer is 0.1 μm or more.
PCT/JP2022/016605 2021-03-31 2022-03-31 Laminate for printed circuit board and junction for multilayer printed circuit board WO2022211042A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022562936A JP7298786B2 (en) 2021-03-31 2022-03-31 Laminate for printed wiring board and joined body for multilayer printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021060003 2021-03-31
JP2021-060003 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022211042A1 true WO2022211042A1 (en) 2022-10-06

Family

ID=83456643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016605 WO2022211042A1 (en) 2021-03-31 2022-03-31 Laminate for printed circuit board and junction for multilayer printed circuit board

Country Status (3)

Country Link
JP (1) JP7298786B2 (en)
TW (1) TW202246053A (en)
WO (1) WO2022211042A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005167172A (en) * 2003-11-14 2005-06-23 Hitachi Chem Co Ltd Printed wiring board and its manufacturing method
JP2006210524A (en) * 2005-01-26 2006-08-10 Matsushita Electric Ind Co Ltd Multilayered circuit board and its manufacturing method
JP2018041961A (en) * 2016-09-05 2018-03-15 荒川化学工業株式会社 Copper clad laminate sheet for flexible printed wiring board and flexible printed wiring board
WO2019188087A1 (en) * 2018-03-30 2019-10-03 三井金属鉱業株式会社 Copper-clad laminate
WO2020066145A1 (en) * 2018-09-28 2020-04-02 日東電工株式会社 Low dielectric substrate material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003136631A (en) * 2001-11-02 2003-05-14 Kanegafuchi Chem Ind Co Ltd Flexible copper-clad laminated sheet
JP2011100846A (en) * 2009-11-05 2011-05-19 Sumitomo Metal Mining Co Ltd Two-layer flexible board, method of manufacturing the same, two-layer flexible wiring board, method of manufacturing the same, and plasma processing device
JP2015115334A (en) * 2013-12-09 2015-06-22 イビデン株式会社 Printed wiring board and method for manufacturing printed wiring board
WO2017029973A1 (en) * 2015-08-17 2017-02-23 住友電気工業株式会社 Printed wiring board and electronic component
JP6736610B2 (en) * 2017-07-28 2020-08-05 旭化成株式会社 Method for manufacturing conductive pattern
JP6986926B2 (en) * 2017-10-18 2021-12-22 セイコーインスツル株式会社 Manufacturing method of tape base material for wiring board and tape base material for wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005167172A (en) * 2003-11-14 2005-06-23 Hitachi Chem Co Ltd Printed wiring board and its manufacturing method
JP2006210524A (en) * 2005-01-26 2006-08-10 Matsushita Electric Ind Co Ltd Multilayered circuit board and its manufacturing method
JP2018041961A (en) * 2016-09-05 2018-03-15 荒川化学工業株式会社 Copper clad laminate sheet for flexible printed wiring board and flexible printed wiring board
WO2019188087A1 (en) * 2018-03-30 2019-10-03 三井金属鉱業株式会社 Copper-clad laminate
WO2020066145A1 (en) * 2018-09-28 2020-04-02 日東電工株式会社 Low dielectric substrate material

Also Published As

Publication number Publication date
JPWO2022211042A1 (en) 2022-10-06
TW202246053A (en) 2022-12-01
JP7298786B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
TWI462827B (en) Liquid crystal polymer film base copper clad laminate and manufacturing method thereof
CA2051266C (en) Metal-film laminate resistant to delamination
JP6461532B2 (en) Method for producing fluororesin substrate and method for producing printed wiring board
WO2001074585A1 (en) Metallized polyimide film
JP4341023B2 (en) Method for producing metal-coated liquid crystal polymer film
JP2015097257A (en) Fluorine resin base material, printed wiring board, and circuit module
KR20060125883A (en) Adhesive bond and method for the production thereof
WO2016121397A1 (en) Antenna, and electronic device having antenna
CN110235309A (en) The method for manufacturing multilayer magnetic dielectric material
JP2007221713A (en) High frequency transmission line
CN112334301A (en) Metal foil with resin
JP7298786B2 (en) Laminate for printed wiring board and joined body for multilayer printed wiring board
JP2006306009A (en) Two-layer film, method for producing two-layer film and method for manufacturing printed wiring board
TW201519711A (en) Surface-treated copper foil and copper-clad laminate plate including the same, printed curcuit board using the same, and method for manufacturing the same
WO2015053309A1 (en) Fluorine resin base material, printed wiring board, and circuit module
CN112776433A (en) Manufacturing method of high-frequency flexible copper-clad plate
JP2001049002A (en) Thermoplastic liquid crystal polymer film and its preparation
JP2021089939A (en) Laminated body for printed wiring board
JP2021054012A (en) Laminate for printed wiring board
JP7424601B2 (en) Laminate, resin film, and method for manufacturing the laminate
TWI825179B (en) Laminated body and method of manufacturing the laminated body
WO2021020289A1 (en) Polyarylene sulfide resin film, metal layered product, production method for polyarylene sulfide resin film, and production method for metal layered product
WO2021251265A1 (en) Thermoplastic liquid crystal polymer molded body
WO2021251262A1 (en) Thermoplastic liquid crystal polymer molded body
KR20050090560A (en) Flexible copper clad laminate and its manufacturing method for high frequency

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022562936

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781252

Country of ref document: EP

Kind code of ref document: A1