WO2021020289A1 - Polyarylene sulfide resin film, metal layered product, production method for polyarylene sulfide resin film, and production method for metal layered product - Google Patents

Polyarylene sulfide resin film, metal layered product, production method for polyarylene sulfide resin film, and production method for metal layered product Download PDF

Info

Publication number
WO2021020289A1
WO2021020289A1 PCT/JP2020/028494 JP2020028494W WO2021020289A1 WO 2021020289 A1 WO2021020289 A1 WO 2021020289A1 JP 2020028494 W JP2020028494 W JP 2020028494W WO 2021020289 A1 WO2021020289 A1 WO 2021020289A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
polyarylene sulfide
less
metal
sulfide resin
Prior art date
Application number
PCT/JP2020/028494
Other languages
French (fr)
Japanese (ja)
Inventor
山田絵美
佐藤誠
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202080054999.1A priority Critical patent/CN114245810A/en
Priority to JP2020544048A priority patent/JPWO2021020289A1/ja
Priority to KR1020217041412A priority patent/KR20220042307A/en
Publication of WO2021020289A1 publication Critical patent/WO2021020289A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention relates to a method for producing a polyarylene sulfide resin film, a metal laminate, a polyarylene sulfide resin film, and a method for producing a metal laminate, which can be suitably used for wiring board applications, circuit material applications, and the like.
  • the dielectric loss is derived from the insulator layer of the circuit board, and it is known that the smaller the dielectric constant and the dielectric loss tangent of the insulator layer, the smaller the dielectric loss. Moreover, since it is proportional to the frequency, the higher the frequency, the more easily it is affected. Therefore, a resin having a small dielectric constant and a small dielectric loss tangent has been attracting attention as a material suitable for a high-frequency compatible circuit board, and a circuit board using a film having a small dielectric constant and a small dielectric loss tangent such as a fluorine film or LCP has been developed (Patent Documents). 1).
  • the conductor loss depends on the resistance value of the conductor
  • silver or copper having a small resistance value is preferably used as the conductor layer for forming the wiring.
  • these conductor layers in addition to the method of laminating a metal foil on an insulator, a method of forming a thin metal layer on a smooth resin by sputtering to form a conductor layer of a circuit board is also known. Since the conductor layer formed by sputtering is as thin as several hundred nm or less, the conductor is thickened by electrolytic copper plating on the sputtering layer and wiring is processed to form a circuit board (Patent Document 2).
  • Typical methods for wiring processing include the subtractive method and the semi-additive method.
  • the subtractive method is a method in which the entire surface of a thin metal layer is thickened by electrolytic copper plating, and then resist is applied only to the pattern to be wired so that the metal layer remains, and an unnecessary region is etched with a chemical solution.
  • the semi-additive method the metal part of the wiring pattern to be processed is exposed on a thin metal layer, the other area is covered with a resist, and the wiring pattern part is electrolytically plated to form a thick conductor layer, and then the resist.
  • This is a method of removing a thin metal layer in a region other than the wiring covered with by soft etching. Etching is indispensable for wiring formation in either method, and if it is attempted to accurately form a fine pattern by these methods, etching variation in the wiring portion becomes an issue, so that the surface of the conductor layer is required to be smooth. ..
  • the surface is roughened to produce a laminated body.
  • surface smoothness is required to accurately form a fine pattern, it has been difficult to obtain sufficient performance.
  • it is often etched in a short time because only a thin metal layer is etched, and if the smoothness is poor, copper residue is generated depending on the variation in roughness. there were.
  • the current flowing through the conductor has a skin effect that is transmitted only on the surface layer.
  • the transmission length becomes large, which becomes a resistance and the transmission loss becomes large.
  • the interface between the film and copper is roughened in order to improve the adhesion, there is a problem that the transmission loss increases and the performance deteriorates.
  • polyphenylene sulfide resin film represented by polyphenylene sulfide (hereinafter, may be abbreviated as PPS).
  • PPS polyphenylene sulfide
  • the polyarylene sulfide resin also has few functional groups on the surface, and there is room for improvement in adhesion to the metal layer, and a method for improving adhesion while maintaining smoothness is required.
  • a preferred embodiment of the polyarylene sulfide resin film of the present invention is that the oxygen atom detected by the analysis by X-ray photoelectron spectroscopy (XPS) on at least one surface is 10 atomic% or more and 17 atomic% or less, and the oxygen atom and carbon A polyarylene sulfide resin film having an atomic number ratio O / C of 0.10 or more and 0.25 or less.
  • XPS X-ray photoelectron spectroscopy
  • a preferred embodiment of the metal laminate of the present invention is a metal laminate having a metal layer on a polyarylene sulfide resin film in contact with the polyarylene sulfide resin film, and the polyarylene sulfide is provided under the following conditions. It is a metal laminate in which the metal atom detected by XPS analysis of the surface ( ⁇ surface) of the metal layer peeled off from the based resin film in contact with the polyarylene sulfide resin film is 10 atomic% or less.
  • a preferred embodiment of the method for producing a polyarylene sulfide resin film of the present invention is a processing power density of 0.1 kW ⁇ min / m 2 or more and 50 kW ⁇ min / m 2 or less in an atmosphere of a pressure of 0.1 Pa or more and 100 Pa or less.
  • This is a method for producing a polyarylene sulfide-based resin film, which includes a step of performing plasma treatment.
  • a preferred embodiment of the method for producing a metal laminate of the present invention is 0.1 kW ⁇ min / m 2 or more and 50 kW ⁇ min / m 2 or less under an atmosphere of a pressure of 0.1 Pa or more and 100 Pa or less on a polyarylene sulfide resin film.
  • This is a method for producing a metal laminate, which comprises a step of laminating metals by a vapor phase film forming method or a method of laminating metal foils after plasma treatment at a processing power density.
  • the polyarylene sulfide-based resin film of the present invention is a film containing a polyarylene sulfide-based resin as a main component.
  • the main component means that it occupies 80% by mass or more of the raw material constituting the film.
  • the polyarylene sulfide-based resin film may be a single layer, or two or more layers may be laminated.
  • the polyarylene sulfide resin is a homopolymer or a copolymer having a repeating unit of-(Ar—S) ⁇ . Examples of Ar include units represented by the following equations (1) to (11) and the like.
  • R 1 and R 2 are substituents selected from hydrogen, alkyl group, alkoxy group and halogen group, and R 1 and R 2 may be the same or different).
  • the p-allylene sulfide unit represented by the above formula (1) is preferable, and typical examples thereof are polyphenylene sulfide, polyphenylene sulfide sulfone, and polyphenylene sulfide ketone. , These random copolymers, block copolymers and mixtures thereof and the like.
  • a p-phenylene sulfide unit is preferably exemplified from the viewpoint of film physical characteristics and economy.
  • the p-phenylene sulfide unit represented by the structural formula (12) below is 75 mol% or more, more preferably 80 mol% or more of the total repeating unit. Above, it is more preferable to occupy 85 mol% or more.
  • the polyarylene sulfide-based resin film of the present invention preferably has a melting point of at least one surface layer of 275 ° C. or lower, more preferably 220 ° C. or higher and 275 ° C. or lower, and 245 ° C. or higher and 265 ° C. or lower. Is even more preferable.
  • the surface layer means a layer located at the outermost layer when the polyarylene sulfide-based resin film has two or more layers.
  • the polyarylene sulfide resin film is a single layer, the single layer is used as the surface layer.
  • the melting point of the surface layer is 275 ° C. or lower
  • two or more layers may be laminated in order to maintain the heat resistance of the entire polyarylene sulfide resin film.
  • the melting point is 265 ° C. or lower.
  • it can be processed at a low temperature in the laminating of the metal layer, and it is possible to suppress defects due to oxidation of the resin or metal, or to prevent the film from warping due to residual stress due to the difference in the coefficient of thermal expansion between the resin and the metal.
  • the melting point is 220 ° C. or higher, the crystallinity of the polyarylene sulfide resin can be made sufficient, the heat resistance can be made sufficient, and the hygroscopicity can be lowered. From the same viewpoint, it is more preferable that the melting point is 245 ° C. or higher.
  • the melting point can be measured from the peak temperature of the melting endothermic peak of the DSC chart obtained by scraping the surface layer and sampling it according to JIS K7121-1987 using a differential scanning calorimeter. When a plurality of peak temperatures are observed, the peak temperature on the low temperature side is defined as the melting point.
  • the polyarylene sulfide resin for lowering the melting point of the surface layer to 275 ° C. or lower is 2 to 25 mol%, more preferably 2 to 15 mol%, in 100 mol% of the repeating unit of the above polyarylene sulfide resin. It is preferable that the copolymer is copolymerized with the copolymerization unit in the range. By having such a copolymerization unit in an amount of 2 mol% or more, the melting point of the polyarylene sulfide resin can be within the above-mentioned range, and the processability can be made sufficient. Further, when the copolymerization unit is 25 mol% or less, the degree of polymerization of the polyarylene sulfide resin can be sufficiently increased and the mechanical properties are improved.
  • Preferred copolymerization units are represented by the following formulas (13) to (17).
  • a particularly preferred copolymerization unit is the m-phenylene sulfide unit.
  • the mode of copolymerization with the copolymerization component is not particularly limited, but a random copolymer is preferable.
  • the composition of the polyarylene sulfide resin may contain various additives such as an antioxidant, a heat stabilizer, an antistatic agent and an antiblocking agent as long as the effects of the present invention are not impaired.
  • the polyarylene sulfide-based resin film of the present invention may contain a layer made of another resin.
  • resins constituting the laminate include polyimide resins, polyamide resins, polyether ether ketones, polyetherimides, polyamideimide resins, polyolefin resins such as polyethylene and polypropylene, polystyrene, polycarbonate, acrylic resins, urethane resins, and fluororesins.
  • Polyester resin such as polyethylene terephthalate and polyethylene naphthalate, polyketone, epoxy resin and the like, but are not limited thereto. Further, two or more kinds selected from the above and polyarylene sulfide-based resins can be blended and used.
  • the thickness of the polyarylene sulfide-based resin film of the present invention is not particularly limited, but is preferably 2 ⁇ m or more and 300 ⁇ m or less, more preferably 5 ⁇ m or more and 180 ⁇ m or less, and further 25 ⁇ m or more and 150 ⁇ m or less from the viewpoint of film forming property and processability. preferable.
  • the surface roughness Ra of at least one surface of the polyarylene sulfide-based resin film of the present invention is preferably 0.01 ⁇ m or more and 0.20 ⁇ m or less, and more preferably 0.01 ⁇ m or more and 0.12 ⁇ m or less. ..
  • the surface roughness Ra is the arithmetic mean roughness defined in JIS B 0601-1994.
  • the surface roughness is 0.01 ⁇ m or more, it is possible to prevent the film from slipping appropriately when rolled into a roll and causing scratches and wrinkles.
  • it is 0.20 ⁇ m or less it is possible to reduce the obscure pattern of the metal layer forming the circuit due to the surface roughness, suppress the generation of copper residue in the etching process, and transmit by the skin effect. It is possible to suppress a large loss.
  • Polyarylene sulfide resin has few functional groups on the surface and there is room for improvement in adhesion, so it is necessary to increase the interaction with the metal layer to be laminated.
  • the inventors have found a state of surface functional groups capable of modifying the surface of a polyarylene sulfide-based resin film to improve adhesion. This will be described in detail below.
  • a preferred embodiment of the polyarylene sulfide resin film of the present invention is that the oxygen atom detected by the analysis by X-ray photoelectron spectroscopy (XPS) on at least one surface is 10 atomic% or more and 17 atomic% or less, and the oxygen atom and carbon The atomic number ratio O / C of the atom is 0.10 or more and 0.25 or less.
  • XPS irradiates the sample surface with soft X-rays in an ultra-high vacuum, detects photoelectrons emitted from the surface with an analyzer, and obtains elemental information on the surface from the binding energy value of bound electrons in the substance, and each peak.
  • the oxygen atom detected by the XPS analysis of the film surface is preferably 10 atomic% or more and 17 atomic% or less, and more preferably 11 atomic% or more and 15 atomic% or less.
  • the oxygen atom is more preferably 11 atomic% or more.
  • the oxygen atom is more preferably 15 atomic% or less.
  • the atomic number ratio O / C of the oxygen atom and the carbon atom on the film surface is preferably 0.10 or more and 0.25 or less, and more preferably 0.15 or more and 0.23 or less.
  • the atomic number ratio O / C is more preferably 0.15 or more.
  • the atomic number ratio O / C is more preferably 0.23 or less.
  • the polyarylene sulfide resin film of the present invention has an atomic number ratio S / C of sulfur atom to carbon atom of 0.10 or more and 0.16 detected by analysis by X-ray photoelectron spectroscopy (XPS) on at least one surface. It is preferably 0.12 or more, and more preferably 0.16 or less.
  • XPS X-ray photoelectron spectroscopy
  • the polyarylene sulfide resin film of the present invention is a sulfur oxide when the peak area attributable to S2p of sulfur atoms detected by analysis by X-ray photoelectron spectroscopy (XPS) on at least one surface is 100%.
  • the peak area attributed to is preferably 5% or more and 20% or less, and more preferably 5% or more and 15% or less.
  • surface oxidation often proceeds at the same time as the modification, and not only oxygen is introduced into the skeleton end of the polyarylene sulfide resin, but also it reacts relatively. Sulfur, which is an easy part, is also oxidized.
  • sulfur oxides do not always contribute to the adhesion of metals, if surface oxidation progresses more than necessary, the resin may deteriorate and the adhesion may be disadvantageous.
  • the peak area attributed to sulfur oxides is 5% or more, functional groups that contribute to adhesion can be secured, and when it is 20% or less, resin deterioration due to oxidation can be suppressed and adhesion with metals can be ensured. ..
  • the analysis of the polyarylene sulfide-based resin film by XPS uses monochromatic Al K ⁇ 1.2 rays as excitation X-rays, and measures at an X-ray diameter of 1 mm and a photoelectron detection angle of 90 °.
  • the obtained spectrum is smoothed by 11-point smoothing, C1s (CH x , CC) is corrected on the horizontal axis with 284.6 eV, and the composition ratio is calculated from the peak area.
  • the method of modifying the surface of the polyarylene sulfide-based resin film to obtain the above-mentioned preferable surface state is preferably the method of plasma treatment because it is easy to treat the in-plane uniformly and the surface state can be easily adjusted depending on the conditions. be able to.
  • Plasma treatment is a method of modifying the surface by exposing a polyarylene sulfide resin film to be treated to a discharge obtained by applying a high voltage of direct current or alternating current between a high voltage application electrode and a counter electrode. is there.
  • the polyarylene sulfide-based resin film has problems such as low polarity, the coating film repelling and the entire surface cannot be covered, and poor adhesion, and various surface treatments have been conventionally used.
  • the aim of the conventional surface treatment is to increase the polarity of the film surface to improve the wettability, and the goal has been to add a large amount of oxygen atoms by corona treatment or ozone treatment in the atmosphere.
  • the metal when the metal is laminated to improve the adhesion, if the film surface is excessively oxidized, the metal may be oxidized from the interface and the performance may be deteriorated. Further, in order to increase the number of functional groups introduced into the film surface, it is effective to cut a part of the bonds of the polyarylene sulfide resin film to introduce oxygen, but the film surface layer was examined by the inventors. If the molecular chain is cut too much, a force is applied to the interface between the metal and the film, which have different physical properties, when the metal laminate is formed, and the fragile film is coagulated and broken, making it difficult to obtain sufficient adhesion. It turned out to be.
  • the inventors have clarified that there is a problem in adhesion to the metal layer because the surface state or the embrittled state is not sufficiently controlled by the conventional treatment methods. Therefore, as a result of diligent studies, the inventors have found a method for effectively obtaining a functional group that can easily bond with a metal by appropriately cutting the bond while suppressing the weakening of the polyarylene sulfide-based resin film. That is, according to the method for producing a polyarylene sulfide-based resin film in the present invention, the desired surface state of the polyarylene sulfide-based resin film described above can be efficiently obtained.
  • a preferred aspect of the method for producing a polyarylene sulfide resin film of the present invention is to perform plasma treatment on the polyarylene sulfide resin film under reduced pressure from the viewpoint that stable and efficient treatment is possible. It is preferable to include a step of performing plasma treatment at a processing power density of 0.1 kW ⁇ min / m 2 or more and 50 kW ⁇ min / m 2 or less in an atmosphere of 0.1 Pa or more and 100 Pa or less.
  • the pressure of the atmosphere in the case of plasma treatment under reduced pressure is preferably 0.1 Pa or more and 100 Pa or less, more preferably 0.1 Pa or more and 20 Pa or less, and further preferably 0.1 Pa or more and 15 Pa or less.
  • the value is 0.1 Pa or more, plasma discharge can be stably maintained, and active species having energy suitable for functional group formation are present at an appropriate density, so that the plasma discharge can be efficiently modified.
  • the value By setting the value to 100 Pa or less, it is possible to suppress the reaction between active species and inactivation, and to give a sufficient treatment effect to the object to be treated. From the same viewpoint, 20 Pa or less is more preferable, and 15 Pa or less is further preferable.
  • the atmosphere at the time of plasma treatment may be adjusted by introducing a gas into the discharge space for the purpose of increasing the treatment efficiency or introducing a specific functional group.
  • gases such as hydrocarbons can be used alone or in combination.
  • the gas to be used can be selected according to the ease of plasma discharge, the energy of the active species to be obtained, and the type of functional group to be introduced.
  • active species energy is relatively high argon or N 2, to contain O 2, CO 2, CO in order to facilitate introduction of oxygen preferable.
  • a mixed gas of argon and O 2 or a mixed gas of argon and CO 2 is more preferable, and a mixed gas of argon and O 2 is even more preferable.
  • the mixed gas it is preferable that the gas contains 50% or more of oxygen atoms in terms of volume ratio so that a sufficient amount of oxygen can be introduced.
  • any shape of the high-voltage application electrode can be used, and examples thereof include a rod shape that can be continuously processed while transporting a film, and a plate shape having a large area. Further, in order to increase the processing strength and reduce the damage to the base material, a magnetron electrode or a dielectric coated electrode can be used.
  • the counter electrode is not particularly limited as long as the film can be brought into close contact with the film, but a drum-shaped electrode capable of supporting the film transfer is preferable.
  • the number of high-voltage application electrodes and counter electrodes need not be the same. For example, if two or more high-voltage application electrodes are used for one counter electrode, space saving and processing efficiency can be improved.
  • the distance between the electrodes may be appropriately set according to the gas pressure condition and the processing strength, but it is 0 from the viewpoint of improving the adhesion of the polyarylene sulfide film and suppressing the film from being damaged and damaged.
  • the range is preferably 0.05 cm or more and 30 cm or less.
  • Processing intensity that process is preferably 0.1kW ⁇ min / m 2 or more 50kW ⁇ min / m 2 or less at a power density is 0.3kW ⁇ min / m 2 or more 15kW ⁇ min / m 2 or less More preferred.
  • the processing power density is a value obtained by dividing the product of the power input to the discharge and the time by the discharge area, and in the case of processing a long film, the input power is divided by the width of the discharged portion and the processing speed of the film. The value.
  • the processing power density is more preferably 0.3 kW ⁇ min / m 2 or more.
  • the processing power density is more preferably 15 kW ⁇ min / m 2 or less.
  • the processing power density is preferably 0.1 kW ⁇ min / m 2 or more and 50 kW ⁇ min / m 2 or less. If the pressure of 10Pa or more 100Pa or less, more preferably 0.3kW ⁇ min / m 2 or more 15kW ⁇ min / m 2 or less.
  • the oxygen atom detected in the above is 17 atomic% or less, and the atomic number ratio O / C of the oxygen atom and the carbon atom is 0.25 or less. From the same viewpoint and the viewpoint of reducing the number of surface treatments, it is more preferable that the oxygen atom is 10 atomic% or less and the O / C is 0.1 or less.
  • the metal laminate of the present invention has a metal layer on a polyarylene sulfide resin film in contact with the polyarylene sulfide resin film.
  • the thickness of the metal layer is preferably 0.05 ⁇ m or more and 30 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the thickness is 0.05 ⁇ m or more, oxidation of the metal can be suppressed. From the same viewpoint, it is preferable that the thickness is 0.1 ⁇ m or more.
  • the thickness is 30 ⁇ m or less, the metal layer becomes flexible and cracks and warpage of the laminated body can be suppressed. From the same viewpoint, the thickness is more preferably 20 ⁇ m or less.
  • the metal layer may be a single layer or two or more layers may be laminated.
  • the metal layer in the present invention preferably contains copper as the main component.
  • the principal component means that the constituent atoms are 60 atomic% or more.
  • the method of laminating the metal layer can be appropriately selected in consideration of productivity and the like. For example, a method of extruding or applying a polyarylene sulfide resin onto a copper foil, or a method of applying a metal foil to a polyarylene sulfide resin film. Examples thereof include a laminating method and a method of forming a metal layer by a vapor deposition method typified by a vacuum vapor deposition method or a sputtering method.
  • a preferable aspect of the method for producing a metal laminate of the present invention is to apply pressure to the polyarylene sulfide resin film from the viewpoint of maintaining a desirable surface state of the polyarylene sulfide resin film suitable for productivity and adhesion.
  • a vapor deposition method or a method of laminating metal foil is used. It is preferable to include a step of laminating metals.
  • the temperature of the thermal lamination is preferably Tm-20 ° C. or higher and Tm + 50 ° C. or lower, and more preferably Tm ° C. or higher and Tm + 30 ° C. or lower, when the melting point of the surface layer of the polyarylene sulfide resin film is Tm.
  • the temperature is preferably Tm ° C. or higher.
  • the temperature is more preferably Tm + 30 ° C. or lower.
  • the pressure of the laminate is preferably 0.1 MPa or more and 10 MPa or less, more preferably 0.5 MPa or more and 8 MPa or less, and further preferably 1.0 MPa or more and 5 MPa or less.
  • the pressure is more preferably 0.5 MPa or more, further preferably 1.0 MPa or more.
  • the pressure is more preferably 8 MPa or less, further preferably 5 MPa or less.
  • a vacuum vapor deposition method or a sputtering method can be preferably used from the viewpoint of maintaining productivity and a desirable surface state of a polyarylene sulfide resin film suitable for adhesion.
  • the vapor phase film forming method is preferable because the surface roughness is determined by following the surface of the substrate to be laminated, and the metal layer can be smoothed by using a smooth film.
  • the vacuum vapor deposition method there are an induction heating vapor deposition method, a resistance heating vapor deposition method, a laser beam vapor deposition method, an electron beam vapor deposition method, etc., but the electron beam vapor deposition method is preferably used from the viewpoint of having a high film deposition rate. Be done.
  • roll-to-roll processing is preferably used from the viewpoint of productivity, but since the film is exposed to heat during vapor deposition, it is cooled by a cooling roll in contact with the back surface of the film deposition surface. Deposition is preferred.
  • the film stress of the metal layer can be suppressed to a small value, which is advantageous in suppressing the peeling of the metal layer, and the viewpoint of maintaining the desirable surface state of the polyarylene sulfide resin film. It is also desirable from.
  • the maximum temperature of the polyarylene sulfide resin film at the time of vapor deposition is preferably equal to or lower than the glass transition temperature of the film surface layer. When a plurality of glass transition temperatures of the film surface layer are observed, it is preferable to deposit the metal at the highest temperature or lower.
  • the glass transition temperature can be obtained from a DSC chart obtained by using a differential scanning calorimeter.
  • any power source of DC, AC, or pulse may be used, and a magnet may be arranged in the apparatus to use a magnetic field or an ion beam may be used.
  • a magnetron sputtering method, a dual magnetron sputtering method, an ion beam sputtering method and the like can be mentioned. From the viewpoint of maintaining a desirable surface condition of the polyarylene sulfide resin film suitable for productivity and adhesion, it is preferable to perform sputtering at a power output of 5 kW or less.
  • two or more metal layers may be laminated.
  • the underlying metal layer can be laminated in order to improve the adhesion between the film and the metal layer and suppress migration.
  • laminating the base metal layer it is preferable to laminate the base metal on the polyarylene sulfide-based resin film and then laminate the layer containing copper as the main component in contact with the base metal layer.
  • the underlying metal layer preferably contains at least one selected from the group consisting of copper, nickel, titanium, and alloys containing at least one of them.
  • the metal of the underlying metal layer must be titanium or an alloy containing titanium because nickel as a magnetic material attenuates signals. Is preferable.
  • the thickness of the base metal layer is preferably 1 nm or more and 100 nm or less, and more preferably 1 nm or more and 50 nm or less.
  • the thickness of the base metal layer By setting the thickness of the base metal layer to 1 nm or more, it becomes easy to obtain a uniform effect in the plane, and by setting it to 100 nm or less, it is possible to suppress the deterioration of the wiring pattern workability due to the difference in the etching rate between the copper layer and the base layer. Can be done. Further, when the base metal is a magnetic material and its thickness is thick, there may be a problem that the loss becomes large and the signal is attenuated in high-speed signal transmission.
  • a vapor phase film forming method represented by a sputtering method or a vacuum vapor deposition method is preferable as a film forming method for the underlying metal layer, and a sputtering method that reaches the film surface with stronger energy. It is more preferable to have it in terms of improving adhesion.
  • the method for forming the base metal layer and the layer laminated on the base metal layer may be the same or different. For example, both the base metal layer and the layer above it may be formed by a sputtering method, or the base metal layer may be formed by a sputtering method and then formed on the base metal layer by a vacuum vapor deposition method.
  • the film When both are formed by the vapor phase film formation method, the film may be formed twice for each layer or continuously, but a very thin underlying metal layer is easily oxidized. Therefore, it is preferable to continuously form a film in order to reduce the influence of oxidation. Further, when a metal layer is formed by the vapor deposition method, it is often made into a thin film from the viewpoint of productivity. Therefore, in order to obtain a sufficient metal thickness as a conductor of resistance suitable for a circuit, the vapor deposition method is used. A copper layer can be further laminated by electrolytic copper plating using the layer obtained in (1) as a feeding layer.
  • the surface roughness Ra of the surface not in contact with the polyarylene sulfide resin film is preferably 0.01 ⁇ m or more and 0.20 ⁇ m or less, and 0.01 ⁇ m or more and 0.15 ⁇ m or less. It is more preferable that it is 0.01 ⁇ m or more and 0.10 ⁇ m or less.
  • the surface roughness Ra is the arithmetic mean roughness defined in JIS B 0601-1994. Since the polyarylene sulfide resin film having good dielectric properties and the metal layer are in direct contact with each other, it is possible to suppress the transmission loss of the transmitted signal due to the skin effect especially in the high frequency band when used as the wiring of the circuit board.
  • the method of directly contacting the polyarylene sulfide-based resin film with the metal layer can be laminated by a vapor phase film forming method such as sputtering or thin film deposition, in addition to bonding copper foils.
  • a vapor phase film forming method such as sputtering or thin film deposition
  • the metal layer tends to grow following the unevenness of the surface of the polyarylene sulfide resin film, so that the surface roughness of the surface not in contact with the polyarylene sulfide resin film is , It is strongly influenced by the surface roughness of the polyarylene sulfide resin film.
  • the surface is roughened in order to strengthen the adhesion, but the present application is characterized in that a strong adhesion is achieved even though a metal layer is provided on a smooth base material.
  • the surface roughness Ra of the surface of the metal layer not in contact with the polyarylene sulfide resin film is 0.01 ⁇ m or more and 0.20 ⁇ m or less, the skin effect on the surface of the metal layer not in contact with the polyarylene sulfide resin film Transmission loss due to can be suppressed.
  • it can be used as a practical circuit board wiring without a step of smoothing the surface of the metal layer again, and it can contribute to efficiency improvement and reduction of environmental load in the circuit board wiring process.
  • the conventional metal laminate using a polyarylene sulfide resin film has room for improvement in adhesion to the metal layer, and a method for improving adhesion while maintaining smoothness was required.
  • the present invention has studied various surface treatments on a polyarylene sulfide-based resin film, and has found a desirable state in the cross-sectional direction of the polyarylene sulfide-based resin film in a metal laminate. It was found that the state at these interfaces, that is, the ⁇ -plane, greatly contributes to the adhesion because the adhesion between the polyarylene sulfide-based resin film and the metal layer while maintaining the smoothness contributes to the chemical bond. Therefore, the state will be described below.
  • a polyarylene sulfide-based resin film has a low polarity, so that it is difficult to form a chemical bond, and there is room for improvement in adhesion to a metal layer.
  • the present inventions present the sulfur oxidizing component (SO) and sulfide (SO) present on the ⁇ -plane. It was found that the state of S 2- ) greatly affects the adhesion.
  • the mechanism by which these components improve the adhesion to the metal layer is that sulfur derived from the polyarylene sulfide resin film and the metal atom M of the metal laminate are M-OS bonded via the oxygen atom O.
  • SO is below the detection limit on the surface, SO is not detected even if the ⁇ plane is analyzed after laminating the metal, and a bond is formed. Since it is not done, it is considered that the adhesion will be weakened.
  • a preferred embodiment of the metal laminate of the present invention is a metal laminate having a metal layer on a polyarylene sulfide resin film in contact with the polyarylene sulfide resin film, and the polyarylene sulfide is provided under the following conditions. It is a metal laminate in which the metal atom detected by XPS analysis of the surface ( ⁇ surface) of the metal layer peeled off from the based resin film in contact with the polyarylene sulfide resin film is 10 atomic% or less.
  • the metal atom detected by XPS analysis of the surface ( ⁇ surface) of the metal layer exfoliated from the metal laminate in contact with the polyarylene sulfide resin film means that the exfoliated metal layer is poly. It means that a large amount of allylene sulfide resin film is attached.
  • the metal atom on the ⁇ -plane is 10 atomic% or less, the adhesion of the metal layer can be made sufficient, and peeling at the time of circuit formation can be suppressed. From the same viewpoint, it is more preferable that the metal atom on the ⁇ -plane is 5 atomic% or less. If there are two or more types of metal atoms detected, the total is taken as the amount of metal atoms.
  • the metal atoms detected depend on the composition of the laminate. For example, when the metal layer is a single copper layer, the detected metal atom is copper, but when a layer containing titanium is used as the base metal layer and a copper layer is laminated on top of it, titanium and copper are detected. May be done.
  • the peak area attributed to the sulfur oxidizing component (SO) is preferably 1% or more and 7% or less. More preferably, it is 2% or more and 5% or less.
  • the peak area attributable to the oxidizing component (SO) of sulfur is 1% or more, the surface is sufficiently modified and the adhesion is improved. From the same viewpoint, 2% or more is more preferable.
  • it is 7% or less deterioration of adhesion due to deterioration of the polyarylene sulfide-based resin film can be reduced, and peeling at the time of circuit formation can be suppressed. From the same viewpoint, 5% or less is more preferable.
  • the peak area attributed to sulfide (S 2-) is 5% or less More preferably, it is 3% or less. It is considered that the sulfide (S 2- ) remains on the surface of the polyarylene sulfide-based resin film in a state where the molecular chain is cut, without becoming a functional group that strongly bonds with the metal. If the molecular chain is cleaved under conditions such as the presence of sufficient oxygen, it can become a functional group that contributes to adhesion, but the required amount of oxygen is not supplied or remains on the surface with the molecular weight reduced.
  • the peak area attributed to sulfide ( S2- ) is more preferably 3% or less.
  • the lower limit of the peak area attributed to S 2- is about 1% from the detection limit of analysis.
  • the film surface may be damaged or oxidized by heat, and the surface layer may deteriorate and become fragile.
  • the polyarylene sulfide resin film becomes the peeling interface at the position where the strength is weak when viewed in the depth direction from the interface with the metal layer, and becomes the ⁇ surface of the metal layer.
  • a part of the surface layer of the polyarylene sulfide resin film adheres thinly.
  • the peeling interface is very close to the metal layer, the polyarylene sulfide resin adhering to the metal layer is thin, and even the elements of the metal layer are detected by the XPS analysis.
  • the metal layer can be peeled off by the method described in Examples.
  • the surface of the metal layer thus obtained in contact with the polyarylene sulfide resin film is defined as the ⁇ surface, and the surface thereof is analyzed by XPS.
  • the ⁇ -plane of the metal layer peeled from the polyarylene sulfide-based resin film is analyzed by using monochromatic Al K ⁇ 1 and 2 rays as excitation X-rays, with an X-ray diameter of 200 ⁇ m and a photoelectron detection angle of 45 °.
  • the obtained spectrum is smoothed by 9-point smoothing, C1s (CH x , CC) is corrected on the horizontal axis with 284.6 eV, and the composition ratio is calculated from the peak area.
  • group 1 For S2p, group 1 (CS, SS), group 2 (SO), and group 3 (satellite peak SO x (2 ⁇ x ⁇ 4)), where the peak area of the spectrum of 174 to 160 eV is 100%.
  • Group 4 Group 4 (S 2- ), of which the area ratios of group 2 and group 4 are calculated and used as the component ratio.
  • the ⁇ -plane is randomly measured once for each of 10 locations, and the component ratio is calculated for each measurement.
  • the calculated component ratio is the detection limit, it is set to 0%.
  • the arithmetic mean of each component ratio for 10 locations is used as the result of XPS analysis of the ⁇ plane.
  • the metal laminate of the present invention has good adhesion between the metal layer and the polyarylene sulfide resin film, and the surface of the metal layer is very smooth, so that it can be suitably used for circuit material applications, touch panels, and the like.
  • a metal layer is patterned to form a wiring circuit.
  • the wiring circuit can be formed by a known method such as a subtractive method or a semi-additive method, but when the wiring width of the circuit is narrow, the semi-additive method in which the decrease in the wiring width due to etching is small is more preferable.
  • Measurement points / number of times The surface of the polyarylene sulfide-based resin film was randomly measured once at each of 10 points, and the component ratio was calculated for each measurement. When the calculated component ratio was the detection limit, it was set to 0%. The arithmetic mean of each component ratio for 10 locations was used as the measurement result.
  • the surface roughness of the film is the arithmetic mean roughness defined in JISB0601-1994, and was measured under the following conditions.
  • Equipment Surfcorder ET4000A manufactured by Kosaka Laboratory Co., Ltd. Needle tip R: 2 ⁇ m Measurement area: 500 ⁇ m x 500 ⁇ m, Sample fixing: Kamaboko-shaped glass attached to the device.
  • the metal layer was peeled off at the interface between the polyarylene sulfide resin film of the metal laminate and the metal layer, and the peeled surface on the metal layer side was analyzed.
  • a strip-shaped laminate with a width of 10 mm is fixed to a flat plate, and the metal layer is gripped in an environment of room temperature of 23 ° C. and humidity of 50%, and the metal layer is peeled off at an angle of 100 mm / min and 180 °. did.
  • the thickness of the metal layer was unified to 12 ⁇ m.
  • electrolytic copper plating was performed, and when it exceeded 12 ⁇ m, the thickness was adjusted by etching or polishing.
  • the metal laminate was masked with masking tape having a width of 5 mm and etched with ferric chloride to obtain a measurement sample having a width of 5 mm and a length of 100 mm.
  • the sample was fixed to a SUS plate using an adhesive tape, the metal layer was gripped, and the adhesion was measured under the following conditions.
  • the value obtained by averaging the adhesion between the peeling distances of 4 mm and 50 mm was defined as the adhesion of the metal layer.
  • a wiring pattern was processed using a metal laminate, and its workability was evaluated.
  • the one that cannot be wired is designated as D.
  • the pattern processing method is as follows.
  • Electrolytic copper plating includes copper sulfate pentahydrate 50 g / L, sulfuric acid 200 g / L, chlorine 50 ppm, Meltex Inc. additive "Kappa Gleam (registered trademark)" ST-901A 2 ml / L, "Capper Gleam (registered)".
  • a liquid of 20 ml / L of "ST-901B" was used, and the plating conditions were a jet flow method and a current density of 1.0 A / dm 2 .
  • the plating resist was removed with an alkaline stripping solution, and the metal layer for power feeding between the wirings was removed using a hydrogen peroxide-sulfuric acid-based etching solution to form a wiring pattern. If the metal layer contains nickel or titanium as the base metal layer, it is difficult to remove it with a hydrogen peroxide-sulfuric acid-based etching solution. Therefore, after etching the copper layer by the above method, MEC Co., Ltd.'s "Meckli Mover" was used to remove the underlying metal.
  • Example 1 A polyarylene sulfide resin film obtained by plasma-treating one side of a 100 ⁇ m-thick biaxially stretched PPS film (“Trelina” (registered trademark) film # 100-3030 surface layer melting point 280 ° C. manufactured by Toray Industries, Inc.) under an argon atmosphere.
  • Telina registered trademark
  • the processing conditions were an argon atmosphere, a pressure of 0.3 Pa, and a processing power density of 0.8 kW ⁇ min / m 2 .
  • Example 2 A biaxially stretched PPS film with a thickness of 100 ⁇ m (“Trelina” (registered trademark) film manufactured by Toray Industries, Inc., 3-layer structure, melting points of both layers 255 ° C., melting point of central layer 280 ° C.) is used to create an atmosphere of plasma treatment.
  • Telina registered trademark
  • Example 3 A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 2 except that the base metal layer was Ti.
  • Example 4 A polyarylene sulfide resin film and a metal laminate were obtained in the same manner as in Example 2 except that copper was directly sputtered onto the plasma-treated polyarylene sulfide resin film.
  • Example 5 A polyarylene sulfide resin film and a metal laminate were formed in the same manner as in Example 2 except that Ni / Cr was formed as a base metal layer on the plasma-treated polyarylene sulfide resin film and then copper was laminated by a vapor deposition method. Obtained. Copper vapor deposition was a vacuum vapor deposition method using an electron beam, and a copper layer having a thickness of 0.5 ⁇ m was laminated.
  • Example 6 A copper foil was heat-laminated on the polyarylene sulfide-based resin film obtained in the same manner as in Example 2 to obtain a metal laminate.
  • As the copper foil an electrolytic copper foil CF-T4X-SV manufactured by Fukuda Metal Co., Ltd. with a thickness of 12 ⁇ m was used.
  • the thermal laminating conditions were set at 260 ° C. and 4 MPa for 10 minutes using a vacuum press device manufactured by Kitagawa Seiki Co., Ltd.
  • Example 7 A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 2 except that the plasma treatment conditions were an argon atmosphere.
  • Example 8 A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 2 except that the plasma treatment conditions were O 2 atmosphere.
  • Example 9 A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 8 except that the plasma treatment conditions were set to a treatment power density of 0.4 kW ⁇ min / m 2 .
  • Example 11 A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 2 except that the plasma treatment conditions were set to a treatment power density of 3.5 kW ⁇ min / m 2 .
  • Example 12 A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 8 except that the plasma treatment conditions were set to a treatment power density of 15 kW ⁇ min / m 2 .
  • Example 13 A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 8 except that the plasma treatment conditions were set to a treatment power density of 50 kW ⁇ min / m 2 .
  • Example 14 A polyarylene sulfide resin film and a metal laminate were obtained in the same manner as in Example 8 except that the plasma treatment conditions were a pressure of 0.1 Pa and a treatment power density of 7.0 kW ⁇ min / m 2 .
  • Example 15 A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 8 except that the plasma treatment conditions were set to a pressure of 10 Pa.
  • Example 16 A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 8 except that the plasma treatment conditions were set to a pressure of 15 Pa.
  • Example 17 A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 2 except that the plasma treatment conditions were a CO 2 atmosphere and the treatment power density was 1.2 kW ⁇ min / m 2 .
  • Example 1 A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 1 except that the metals were laminated without plasma treatment.
  • Example 3 A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 2 except that the corona treatment was performed instead of the plasma treatment.
  • the corona treatment conditions were 5 times with an electrode width of 25 mm, 100 W, and 0.3 m / min using a corona surface modifier manufactured by Kasuga Electric Works Ltd.
  • Example 4 A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 2 except that the blast treatment was performed instead of the plasma treatment.
  • the blast treatment silica sand having an average particle size of 200 ⁇ m was used as an abrasive, and the film was shot by a shot blasting method at a distance of 1 m and then washed with water.
  • Comparative Example 6 A polyarylene sulfide resin film and a metal laminate were obtained in the same manner as in Comparative Example 5 except that the plasma treatment conditions were set to a treatment power density of 15 kW ⁇ min / m 2 .
  • Tables 1 and 2 show the evaluation results in each Example / Comparative Example.
  • Comparative Example 2 the peak area attributed to the sulfur oxidizing component (SO) due to oxidation during bonding at a high temperature is relatively large, and in Comparative Example 4, the residue generated by the blasting treatment is detected in a state where the ends are oxidized. As a result, it is considered that the ratio of the peak area attributed to the oxidizing component (SO) of sulfur is relatively high. Further, in Comparative Examples 1 and 2, the ratio of the peak area attributed to sulfide ( S2- ) is relatively high because the molecular chain is cleaved in a state of oxygen deficiency when the base metal layer is formed, which contributes to the bond. This is probably because it was a residue in a difficult state. Further, in Comparative Example 4, it is considered that the residue generated by the blasting treatment remained on the surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are: a polyarylene sulfide resin film that can form a metal layer having both smoothness and adhesiveness; a metal layered product; a production method for the polyarylene sulfide resin film; and a production method for the metal layered product. In this polyarylene sulfide resin film, oxygen atoms detected on at least one surface thereof by analysis using X-ray photoemission spectroscopy (XPS) account for 10-17 atomic%, and the atomic ratio O/C of oxygen atoms to carbon atoms is 0.10-0.25.

Description

ポリアリーレンスルフィド系樹脂フィルム、金属積層体、ポリアリーレンスルフィド系樹脂フィルムの製造方法、および金属積層体の製造方法A method for producing a polyarylene sulfide-based resin film, a metal laminate, a polyarylene sulfide-based resin film, and a method for producing a metal laminate.
 本発明は、配線基板用途、回路材料用途等に好適に用いることが可能なポリアリーレンスルフィド系樹脂フィルム、金属積層体、ポリアリーレンスルフィド系樹脂フィルムの製造方法、および金属積層体の製造方法に関する。 The present invention relates to a method for producing a polyarylene sulfide resin film, a metal laminate, a polyarylene sulfide resin film, and a method for producing a metal laminate, which can be suitably used for wiring board applications, circuit material applications, and the like.
 通信技術、情報処理技術の発達に伴って、情報通信分野で扱う電気信号は、近年ますます高速化・大容量化している。通信の高速化・大容量化を達成するために電気信号は高周波化が進行しているが、高周波の電気信号は伝送損失が大きくなりやすいため、高周波の電気信号に対応した回路基板が求められている。伝送損失は導体損失と誘電体損失に分離でき、それぞれの損失低減が必要となる。 With the development of communication technology and information processing technology, the speed and capacity of electrical signals handled in the information and communication field have been increasing in recent years. Electric signals are becoming higher in frequency in order to achieve higher communication speeds and larger capacities, but high-frequency electrical signals tend to have large transmission losses, so circuit boards that support high-frequency electrical signals are required. ing. The transmission loss can be separated into a conductor loss and a dielectric loss, and it is necessary to reduce each loss.
 誘電体損失は、回路基板の絶縁体層に由来するもので、絶縁体層の誘電率と誘電正接が小さい方が誘電体損失は小さくなることが知られている。また、周波数にも比例するため、高周波になるほどその影響をうけやすくなる。そこで、高周波対応回路基板に適する材料として、誘電率と誘電正接が小さい樹脂が注目され、例えばフッ素フィルムやLCPといった誘電率、誘電正接が小さいフィルムを使用した回路基板が開発されている(特許文献1)。 The dielectric loss is derived from the insulator layer of the circuit board, and it is known that the smaller the dielectric constant and the dielectric loss tangent of the insulator layer, the smaller the dielectric loss. Moreover, since it is proportional to the frequency, the higher the frequency, the more easily it is affected. Therefore, a resin having a small dielectric constant and a small dielectric loss tangent has been attracting attention as a material suitable for a high-frequency compatible circuit board, and a circuit board using a film having a small dielectric constant and a small dielectric loss tangent such as a fluorine film or LCP has been developed (Patent Documents). 1).
 一方、導体損失は、導体の抵抗値に依存するため、抵抗値の小さい銀や銅が配線を形成する導体層として好ましく用いられている。これらの導体層については、絶縁体に金属箔を貼り合わせる方法の他に、平滑な樹脂にスパッタリングによって薄い金属層を形成して回路基板の導体層とする方法も知られている。スパッタリングで形成される導体層は数百nm以下と非常に薄いため、スパッタリング層の上に電解銅めっきするなどして導体を厚くして配線加工し、回路基板としている(特許文献2)。 On the other hand, since the conductor loss depends on the resistance value of the conductor, silver or copper having a small resistance value is preferably used as the conductor layer for forming the wiring. As for these conductor layers, in addition to the method of laminating a metal foil on an insulator, a method of forming a thin metal layer on a smooth resin by sputtering to form a conductor layer of a circuit board is also known. Since the conductor layer formed by sputtering is as thin as several hundred nm or less, the conductor is thickened by electrolytic copper plating on the sputtering layer and wiring is processed to form a circuit board (Patent Document 2).
 配線加工の代表的な方法としては、サブトラクティブ法とセミアディティブ法がある。サブトラクティブ法とは、薄い金属層の全面を電解銅めっきによって厚くした後、配線にしたいパターンのみレジストを塗布して金属層が残るようにして、不要な領域を薬液でエッチングする方法である。セミアディティブ法は、薄い金属層上に、加工したい配線パターンの金属部分を露出させて、それ以外の領域をレジストで覆い、配線パターン部分に電解めっきを施して導体層を厚く形成した後、レジストで覆っていた配線以外の領域の薄い金属層をソフトエッチングで除去する方法である。いずれの方法においても配線形成にはエッチングが不可欠で、これらの方法で微細なパターンを正確に形成しようとすると、配線部のエッチングばらつきが課題になるため、導体層表面は平滑性を要求される。 Typical methods for wiring processing include the subtractive method and the semi-additive method. The subtractive method is a method in which the entire surface of a thin metal layer is thickened by electrolytic copper plating, and then resist is applied only to the pattern to be wired so that the metal layer remains, and an unnecessary region is etched with a chemical solution. In the semi-additive method, the metal part of the wiring pattern to be processed is exposed on a thin metal layer, the other area is covered with a resist, and the wiring pattern part is electrolytically plated to form a thick conductor layer, and then the resist. This is a method of removing a thin metal layer in a region other than the wiring covered with by soft etching. Etching is indispensable for wiring formation in either method, and if it is attempted to accurately form a fine pattern by these methods, etching variation in the wiring portion becomes an issue, so that the surface of the conductor layer is required to be smooth. ..
特開2004-6668号公報Japanese Unexamined Patent Publication No. 2004-6668 特許第4646580号公報Japanese Patent No. 4646580
 従来、回路基板には耐熱性の高さからポリイミドフィルムが使用されてきたが、ポリイミドは高周波帯で使用するには誘電特性が悪く、また、吸湿によって誘電特性が変化する点が懸念されている。最近では高周波対応の回路基板として、誘電特性が良好なフッ素フィルムが注目されているが、フッ素フィルムはその組成から離型性が高く、導体との密着が悪いという性質がある。そこで特許文献1ではフッ素系樹脂電気絶縁層と伝導性金属箔を十分な密着力で直接接着するために、フッ素系樹脂電気絶縁層の表面に微細突起を形成し、伝導性金属箔の一面を粗面化して積層体を作製している。しかしながら、前述の通り、微細パターンを正確に形成するために表面平滑性が求められるため、十分な性能を得ることが難しかった。また、セミアディティブ法で回路を形成しようとすると、薄い金属層のみをエッチングするために短時間でエッチングすることが多く、平滑性が悪いと粗さのバラツキによっては銅残りが発生するという課題があった。さらに、導体を流れる電流はごく表層のみで伝達される表皮効果が知られており、導体表面の粗さが大きい場合は、伝送長さが大きくなり、抵抗となって伝送損失が大きくなることが知られている。したがって、密着を向上するためにフィルムと銅の界面を荒らすと、伝送損失が増大し、性能の低下につながるという課題があった。 Conventionally, a polyimide film has been used for a circuit board due to its high heat resistance, but there is concern that polyimide has poor dielectric properties for use in the high frequency band and that the dielectric properties change due to moisture absorption. .. Recently, as a circuit board compatible with high frequencies, a fluorine film having good dielectric properties has been attracting attention, but the fluorine film has a property of high releasability due to its composition and poor adhesion to a conductor. Therefore, in Patent Document 1, in order to directly bond the fluororesin electrical insulating layer and the conductive metal foil with sufficient adhesion, fine protrusions are formed on the surface of the fluororesin electrical insulating layer to form one surface of the conductive metal foil. The surface is roughened to produce a laminated body. However, as described above, since surface smoothness is required to accurately form a fine pattern, it has been difficult to obtain sufficient performance. In addition, when a circuit is formed by the semi-additive method, it is often etched in a short time because only a thin metal layer is etched, and if the smoothness is poor, copper residue is generated depending on the variation in roughness. there were. Furthermore, it is known that the current flowing through the conductor has a skin effect that is transmitted only on the surface layer. When the surface roughness of the conductor is large, the transmission length becomes large, which becomes a resistance and the transmission loss becomes large. Are known. Therefore, if the interface between the film and copper is roughened in order to improve the adhesion, there is a problem that the transmission loss increases and the performance deteriorates.
 そこで、誘電特性が良好な材料として、ポリフェニレンサルファイド(以下、PPSと略すことがある)に代表されるポリアリーレンスルフィド系樹脂フィルムに着目した。しかしながら、ポリアリーレンスルフィド系樹脂も表面の官能基が少なく、金属層との密着に改善の余地があり、平滑性を維持しつつ密着を向上する手法が必要であった。 Therefore, as a material having good dielectric properties, we focused on a polyphenylene sulfide resin film represented by polyphenylene sulfide (hereinafter, may be abbreviated as PPS). However, the polyarylene sulfide resin also has few functional groups on the surface, and there is room for improvement in adhesion to the metal layer, and a method for improving adhesion while maintaining smoothness is required.
 本発明のポリアリーレンスルフィド系樹脂フィルムの好ましい一態様は、少なくとも一方の表面のX線光電子分光法(XPS)による分析で検出される酸素原子が10atomic%以上17atomic%以下であり、酸素原子と炭素原子の原子数比O/Cが0.10以上0.25以下のポリアリーレンスルフィド系樹脂フィルムである。 A preferred embodiment of the polyarylene sulfide resin film of the present invention is that the oxygen atom detected by the analysis by X-ray photoelectron spectroscopy (XPS) on at least one surface is 10 atomic% or more and 17 atomic% or less, and the oxygen atom and carbon A polyarylene sulfide resin film having an atomic number ratio O / C of 0.10 or more and 0.25 or less.
 本発明の金属積層体の好ましい一態様は、ポリアリーレンスルフィド系樹脂フィルム上に、金属層を該ポリアリーレンスルフィド系樹脂フィルムと接した状態で有する金属積層体であり、下記の条件でポリアリーレンスルフィド系樹脂フィルムから剥離した該金属層の該ポリアリーレンスルフィド系樹脂フィルムに接していた面(α面)のXPSによる分析で検出される金属原子が10atomic%以下である金属積層体である。 A preferred embodiment of the metal laminate of the present invention is a metal laminate having a metal layer on a polyarylene sulfide resin film in contact with the polyarylene sulfide resin film, and the polyarylene sulfide is provided under the following conditions. It is a metal laminate in which the metal atom detected by XPS analysis of the surface (α surface) of the metal layer peeled off from the based resin film in contact with the polyarylene sulfide resin film is 10 atomic% or less.
 条件:金属層の厚み9μm、幅10mmの短冊状の金属積層体のポリアリーレンスルフィド系樹脂フィルム側を平板に固定して、室温23℃湿度50%の環境下、金属層を把持して剥離速度100mm/min、180°の角度で剥離する。 Conditions: The polyarylene sulfide resin film side of a strip-shaped metal laminate having a thickness of 9 μm and a width of 10 mm is fixed to a flat plate, and the metal layer is gripped and peeled at a room temperature of 23 ° C. and a humidity of 50%. Peel at an angle of 100 mm / min and 180 °.
 本発明のポリアリーレンスルフィド系樹脂フィルムの製造方法の好ましい一態様は、圧力0.1Pa以上100Pa以下の雰囲気下、0.1kW・min/m以上50kW・min/m以下の処理電力密度でプラズマ処理をする工程を含む、ポリアリーレンスルフィド系樹脂フィルムの製造方法である。 A preferred embodiment of the method for producing a polyarylene sulfide resin film of the present invention is a processing power density of 0.1 kW · min / m 2 or more and 50 kW · min / m 2 or less in an atmosphere of a pressure of 0.1 Pa or more and 100 Pa or less. This is a method for producing a polyarylene sulfide-based resin film, which includes a step of performing plasma treatment.
 本発明の金属積層体の製造方法の好ましい一態様は、ポリアリーレンスルフィド系樹脂フィルムに圧力0.1Pa以上100Pa以下の雰囲気下、0.1kW・min/m以上50kW・min/m以下の処理電力密度でプラズマ処理をした後、気相成膜法または金属箔を貼り合わせる方法により金属を積層する工程を含む、金属積層体の製造方法である。 A preferred embodiment of the method for producing a metal laminate of the present invention is 0.1 kW · min / m 2 or more and 50 kW · min / m 2 or less under an atmosphere of a pressure of 0.1 Pa or more and 100 Pa or less on a polyarylene sulfide resin film. This is a method for producing a metal laminate, which comprises a step of laminating metals by a vapor phase film forming method or a method of laminating metal foils after plasma treatment at a processing power density.
 本発明によれば、平滑性と密着力を両立する金属積層体を得ることができ、優れた性能の回路基板を得ることが可能になる。 According to the present invention, it is possible to obtain a metal laminate having both smoothness and adhesion, and it is possible to obtain a circuit board having excellent performance.
金属積層体の構成を示す断面概略図である。It is sectional drawing which shows the structure of the metal laminate. 金属積層体から金属層を剥離したα面を示す概略図である。It is the schematic which shows the α plane which peeled off the metal layer from a metal laminate.
 以下、図面等を参照しながら、本発明のポリアリーレンスルフィド系樹脂フィルムおよび金属積層体についてさらに詳しく説明する。 Hereinafter, the polyarylene sulfide-based resin film and the metal laminate of the present invention will be described in more detail with reference to the drawings and the like.
 本発明のポリアリーレンスルフィド系樹脂フィルムは、ポリアリーレンスルフィド系樹脂を主成分とするフィルムである。主成分とは、フィルムを構成する原料の80質量%以上を占めることをいう。ポリアリーレンスルフィド系樹脂フィルムは単層であってもよいし、2層以上が積層されていてもよい。ポリアリーレンスルフィド系樹脂とは、-(Ar-S)-の繰り返し単位を有するホモポリマーあるいはコポリマーである。Arとしては下記の式(1)~式(11)などであらわされる単位などがあげられる。 The polyarylene sulfide-based resin film of the present invention is a film containing a polyarylene sulfide-based resin as a main component. The main component means that it occupies 80% by mass or more of the raw material constituting the film. The polyarylene sulfide-based resin film may be a single layer, or two or more layers may be laminated. The polyarylene sulfide resin is a homopolymer or a copolymer having a repeating unit of-(Ar—S) −. Examples of Ar include units represented by the following equations (1) to (11) and the like.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(R,Rは、水素、アルキル基、アルコキシ基、ハロゲン基から選ばれた置換基であり、RとRは同一でも異なっていてもよい)
 本発明に用いるポリアリーレンスルフィド樹脂の繰り返し単位としては、上記の式(1)で表されるp-アリーレンスルフィド単位が好ましく、これらの代表的なものとして、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトン、これらのランダム共重合体、ブロック共重合体およびそれらの混合物などが挙げられる。特に好ましいp-アリーレンスルフィド単位としては、フィルム物性と経済性の観点から、p-フェニレンスルフィド単位が好ましく例示される。本発明においては、耐久性や寸法安定性等の観点から、下記の式(12)の構造式で示されるp-フェニレンスルフィド単位が、全繰り返し単位の75モル%以上、より好ましくは80モル%以上、さらに好ましくは85モル%以上占めることが好ましい。
(R 1 and R 2 are substituents selected from hydrogen, alkyl group, alkoxy group and halogen group, and R 1 and R 2 may be the same or different).
As the repeating unit of the polyarylene sulfide resin used in the present invention, the p-allylene sulfide unit represented by the above formula (1) is preferable, and typical examples thereof are polyphenylene sulfide, polyphenylene sulfide sulfone, and polyphenylene sulfide ketone. , These random copolymers, block copolymers and mixtures thereof and the like. As a particularly preferable p-ylene sulfide unit, a p-phenylene sulfide unit is preferably exemplified from the viewpoint of film physical characteristics and economy. In the present invention, from the viewpoint of durability, dimensional stability, etc., the p-phenylene sulfide unit represented by the structural formula (12) below is 75 mol% or more, more preferably 80 mol% or more of the total repeating unit. Above, it is more preferable to occupy 85 mol% or more.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 本発明のポリアリーレンスルフィド系樹脂フィルムは、少なくとも一方の表面層の融点が275℃以下であることが好ましく、220℃以上275℃以下であることがより好ましく、245℃以上265℃以下であることがさらに好ましい。ここで表面層とは、ポリアリーレンスルフィド系樹脂フィルムが2層以上である場合の最外層に位置する層をいう。また、ポリアリーレンスルフィド系樹脂フィルムが単層である場合は当該単層を表面層とする。 The polyarylene sulfide-based resin film of the present invention preferably has a melting point of at least one surface layer of 275 ° C. or lower, more preferably 220 ° C. or higher and 275 ° C. or lower, and 245 ° C. or higher and 265 ° C. or lower. Is even more preferable. Here, the surface layer means a layer located at the outermost layer when the polyarylene sulfide-based resin film has two or more layers. When the polyarylene sulfide resin film is a single layer, the single layer is used as the surface layer.
 表面層の融点を275℃以下にする場合、ポリアリーレンスルフィド系樹脂フィルム全体の耐熱性を維持するために、2層以上に積層してもよい。当該融点を275℃以下とすることにより、金属層との密着性を向上でき、後工程の回路加工で金属層が剥離することを軽減できる。同様の観点から当該融点が265℃以下であることがより好ましい。また、金属層のラミネートにおいて低温で加工でき、樹脂や金属の酸化による不具合を抑制したり、樹脂と金属の熱膨張率の差で応力が残りフィルムが反ったりすることを抑制できる。また、当該融点が220℃以上であることにより、ポリアリーレンスルフィド系樹脂の結晶性を十分なものとすることができ、耐熱性が十分なものとなり、また吸湿性を低くすることができる。同様の観点から当該融点が245℃以上であることがより好ましい。当該融点は、表面層を削り取りサンプリングしたものを、JIS K7121-1987に従って、示差走査熱量計を用いて得られるDSCチャートの融解吸熱ピークのピーク温度から測定することができる。ピーク温度が複数見られるときは、低温側のピーク温度を当該融点とする。 When the melting point of the surface layer is 275 ° C. or lower, two or more layers may be laminated in order to maintain the heat resistance of the entire polyarylene sulfide resin film. By setting the melting point to 275 ° C. or lower, the adhesion to the metal layer can be improved, and the peeling of the metal layer in the circuit processing in the subsequent process can be reduced. From the same viewpoint, it is more preferable that the melting point is 265 ° C. or lower. Further, it can be processed at a low temperature in the laminating of the metal layer, and it is possible to suppress defects due to oxidation of the resin or metal, or to prevent the film from warping due to residual stress due to the difference in the coefficient of thermal expansion between the resin and the metal. Further, when the melting point is 220 ° C. or higher, the crystallinity of the polyarylene sulfide resin can be made sufficient, the heat resistance can be made sufficient, and the hygroscopicity can be lowered. From the same viewpoint, it is more preferable that the melting point is 245 ° C. or higher. The melting point can be measured from the peak temperature of the melting endothermic peak of the DSC chart obtained by scraping the surface layer and sampling it according to JIS K7121-1987 using a differential scanning calorimeter. When a plurality of peak temperatures are observed, the peak temperature on the low temperature side is defined as the melting point.
 表面層の融点を275℃以下とするためのポリアリーレンスルフィド系樹脂としては、上記のポリアリーレンスルフィド系樹脂の繰り返し単位100モル%中、2~25モル%、より好ましくは2~15モル%の範囲で共重合単位と共重合しているものであることが好ましい。かかる共重合単位を2モル%以上有することで、ポリアリーレンスルフィド系樹脂の融点を前述する範囲とすることが可能となり、加工性を十分なものとすることができる。また、共重合単位が25モル%以下であることにより、ポリアリーレンスルフィド系樹脂の重合度を十分高くすることができ機械特性が向上する。 The polyarylene sulfide resin for lowering the melting point of the surface layer to 275 ° C. or lower is 2 to 25 mol%, more preferably 2 to 15 mol%, in 100 mol% of the repeating unit of the above polyarylene sulfide resin. It is preferable that the copolymer is copolymerized with the copolymerization unit in the range. By having such a copolymerization unit in an amount of 2 mol% or more, the melting point of the polyarylene sulfide resin can be within the above-mentioned range, and the processability can be made sufficient. Further, when the copolymerization unit is 25 mol% or less, the degree of polymerization of the polyarylene sulfide resin can be sufficiently increased and the mechanical properties are improved.
 好ましい共重合単位は、以下の式(13)~式(17)で表される。 Preferred copolymerization units are represented by the following formulas (13) to (17).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(ここでXは、アルキレン、CO、SO単位を示す。) (Here, X indicates alkylene, CO, SO 2 units.)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(ここでRはアルキル、ニトロ、フェニレン、アルコキシ基を示す。)
 特に好ましい共重合単位は、m-フェニレンスルフィド単位である。共重合成分との共重合の態様は特に限定されないが、ランダムコポリマーであることが好ましい。ポリアリーレンスルフィド樹脂の組成物には、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤、帯電防止剤やブロッキング防止剤などの各種添加剤を含有させてもよい。
(Here, R represents an alkyl, nitro, phenylene, or alkoxy group.)
A particularly preferred copolymerization unit is the m-phenylene sulfide unit. The mode of copolymerization with the copolymerization component is not particularly limited, but a random copolymer is preferable. The composition of the polyarylene sulfide resin may contain various additives such as an antioxidant, a heat stabilizer, an antistatic agent and an antiblocking agent as long as the effects of the present invention are not impaired.
 本発明のポリアリーレンスルフィド系樹脂フィルムは、他の樹脂からなる層を含んでも構わない。積層体を構成する樹脂の例としてはポリイミド樹脂、ポリアミド樹脂、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド樹脂、ポリエチレンやポリプロピレンなどのポリオレフィン樹脂や、ポリスチレン、ポリカーボネート、アクリル樹脂、ウレタン樹脂、フッ素樹脂、ポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステル樹脂、ポリケトン、エポキシ樹脂などが挙げられるがこれに限定されない。また、上記およびポリアリーレンスルフィド系樹脂から選択される2種以上を、ブレンドして用いることもできる。 The polyarylene sulfide-based resin film of the present invention may contain a layer made of another resin. Examples of resins constituting the laminate include polyimide resins, polyamide resins, polyether ether ketones, polyetherimides, polyamideimide resins, polyolefin resins such as polyethylene and polypropylene, polystyrene, polycarbonate, acrylic resins, urethane resins, and fluororesins. , Polyester resin such as polyethylene terephthalate and polyethylene naphthalate, polyketone, epoxy resin and the like, but are not limited thereto. Further, two or more kinds selected from the above and polyarylene sulfide-based resins can be blended and used.
 本発明のポリアリーレンスルフィド系樹脂フィルムの厚みは、特に制限はないが、製膜性と加工性の観点から、2μm以上300μm以下が好ましく、5μm以上180μm以下がより好ましく、25μm以上150μm以下がさらに好ましい。 The thickness of the polyarylene sulfide-based resin film of the present invention is not particularly limited, but is preferably 2 μm or more and 300 μm or less, more preferably 5 μm or more and 180 μm or less, and further 25 μm or more and 150 μm or less from the viewpoint of film forming property and processability. preferable.
 本発明のポリアリーレンスルフィド系樹脂フィルムは、少なくとも一方の表面の表面粗さRaが、0.01μm以上0.20μm以下であることが好ましく、0.01μm以上0.12μm以下であることがより好ましい。表面粗さRaは、JIS B 0601-1994で定義される算術平均粗さである。表面粗さが0.01μm以上であることにより、フィルムをロール状に巻いたときに適切に滑り、キズやシワが発生することを抑制できる。0.20μm以下であることにより、表面粗さによって回路を形成する金属層のパターンが不明瞭になることを軽減できたり、エッチング工程で銅残りが発生することを抑制できたり、表皮効果によって伝送損失が大きくなることを抑制できる。 The surface roughness Ra of at least one surface of the polyarylene sulfide-based resin film of the present invention is preferably 0.01 μm or more and 0.20 μm or less, and more preferably 0.01 μm or more and 0.12 μm or less. .. The surface roughness Ra is the arithmetic mean roughness defined in JIS B 0601-1994. When the surface roughness is 0.01 μm or more, it is possible to prevent the film from slipping appropriately when rolled into a roll and causing scratches and wrinkles. When it is 0.20 μm or less, it is possible to reduce the obscure pattern of the metal layer forming the circuit due to the surface roughness, suppress the generation of copper residue in the etching process, and transmit by the skin effect. It is possible to suppress a large loss.
 ポリアリーレンスルフィド系樹脂は、表面の官能基が少なく密着性に改善の余地があるため、積層する金属層との相互作用を増大させる必要がある。発明者らは鋭意検討した結果、ポリアリーレンスルフィド系樹脂フィルムの表面を改質し、密着を向上できる表面官能基の状態を見出した。以下具体的に説明する。 Polyarylene sulfide resin has few functional groups on the surface and there is room for improvement in adhesion, so it is necessary to increase the interaction with the metal layer to be laminated. As a result of diligent studies, the inventors have found a state of surface functional groups capable of modifying the surface of a polyarylene sulfide-based resin film to improve adhesion. This will be described in detail below.
 本発明のポリアリーレンスルフィド系樹脂フィルムの好ましい一態様は、少なくとも一方の表面のX線光電子分光法(XPS)による分析で検出される酸素原子が10atomic%以上17atomic%以下であり、酸素原子と炭素原子の原子数比O/Cが0.10以上0.25以下である。XPSは、超高真空中で試料表面に軟X線を照射して表面から放出される光電子をアナライザーで検出し、物質中の束縛電子の結合エネルギー値から表面の元素情報を得たり、各ピークのエネルギーシフトから結合状態に関する情報を得たり、さらにはピーク面積比を用いて定量したりできる分析手法である。XPSは、光電子が物質中を進むことができる長さ(平均自由行程)に対応する深さ領域の分析となるため、測定面の表面情報を得ることができる。フィルム表面のXPSによる分析で検出される酸素原子は、10atomic%以上17atomic%以下が好ましく、11atomic%以上15atomic%以下がより好ましい。酸素原子を10atomic%以上とすることで、密着に寄与する官能基を確保し、金属層との密着が向上する効果を得ることができる。同様の観点から当該酸素原子は11atomic%以上がより好ましい。また、当該酸素原子を17atomic%以下とすることで、樹脂の過度な酸化による密着低下や、直接接する金属層の酸化を抑制することができる。同様の観点から当該酸素原子は15atomic%以下がより好ましい。フィルム表面の酸素原子と炭素原子の原子数比O/Cは、0.10以上0.25以下が好ましく、0.15以上0.23以下がより好ましい。原子数比O/Cを0.10以上とすることで、必要な官能基を導入できる。同様の観点から当該原子数比O/Cは0.15以上がより好ましい。また、当該原子数比O/Cを0.25以下とすることで、過度な酸化による表層脆弱化を抑制でき、密着力を高めることができる。同様の観点から当該原子数比O/Cは0.23以下がより好ましい。 A preferred embodiment of the polyarylene sulfide resin film of the present invention is that the oxygen atom detected by the analysis by X-ray photoelectron spectroscopy (XPS) on at least one surface is 10 atomic% or more and 17 atomic% or less, and the oxygen atom and carbon The atomic number ratio O / C of the atom is 0.10 or more and 0.25 or less. XPS irradiates the sample surface with soft X-rays in an ultra-high vacuum, detects photoelectrons emitted from the surface with an analyzer, and obtains elemental information on the surface from the binding energy value of bound electrons in the substance, and each peak. It is an analytical method that can obtain information on the binding state from the energy shift of the above and further quantify it using the peak area ratio. Since XPS is an analysis of a depth region corresponding to the length (mean free path) at which photoelectrons can travel in a substance, surface information on the measurement surface can be obtained. The oxygen atom detected by the XPS analysis of the film surface is preferably 10 atomic% or more and 17 atomic% or less, and more preferably 11 atomic% or more and 15 atomic% or less. By setting the oxygen atom to 10 atomic% or more, it is possible to secure a functional group that contributes to adhesion and obtain an effect of improving adhesion with the metal layer. From the same viewpoint, the oxygen atom is more preferably 11 atomic% or more. Further, by setting the oxygen atom to 17 atomic% or less, it is possible to suppress deterioration of adhesion due to excessive oxidation of the resin and oxidation of the metal layer in direct contact with the resin. From the same viewpoint, the oxygen atom is more preferably 15 atomic% or less. The atomic number ratio O / C of the oxygen atom and the carbon atom on the film surface is preferably 0.10 or more and 0.25 or less, and more preferably 0.15 or more and 0.23 or less. By setting the atomic number ratio O / C to 0.10 or more, necessary functional groups can be introduced. From the same viewpoint, the atomic number ratio O / C is more preferably 0.15 or more. Further, by setting the atomic number ratio O / C to 0.25 or less, it is possible to suppress the surface layer weakening due to excessive oxidation and enhance the adhesion. From the same viewpoint, the atomic number ratio O / C is more preferably 0.23 or less.
 本発明のポリアリーレンスルフィド系樹脂フィルムは、少なくとも一方の表面のX線光電子分光法(XPS)による分析で検出される硫黄原子と炭素原子の原子数比S/Cが0.10以上0.16以下であることが好ましく、0.12以上0.16以下であることがより好ましい。ポリアリーレンスルフィド系樹脂フィルムにおいて酸素原子を導入する場合、硫黄原子の脱離を伴うと考える。したがって硫黄原子と炭素原子の原子数比S/Cを0.10以上とすることで、分子鎖切断による硫黄の大幅な減少で表層が脆弱化することを抑制して金属層との密着低下を防止でき、0.16以下とすることで、官能基数が十分なものとなり密着性を向上できる。 The polyarylene sulfide resin film of the present invention has an atomic number ratio S / C of sulfur atom to carbon atom of 0.10 or more and 0.16 detected by analysis by X-ray photoelectron spectroscopy (XPS) on at least one surface. It is preferably 0.12 or more, and more preferably 0.16 or less. When an oxygen atom is introduced into a polyarylene sulfide-based resin film, it is considered that the sulfur atom is eliminated. Therefore, by setting the atomic number ratio S / C of sulfur atoms to carbon atoms to 0.10 or more, it is possible to prevent the surface layer from becoming fragile due to a large decrease in sulfur due to molecular chain breakage, and to reduce adhesion to the metal layer. It can be prevented, and by setting it to 0.16 or less, the number of functional groups becomes sufficient and the adhesion can be improved.
 本発明のポリアリーレンスルフィド系樹脂フィルムは、少なくとも一方の表面のX線光電子分光法(XPS)による分析で検出される硫黄原子のS2pに帰属されるピーク面積を100%としたとき、硫黄酸化物に帰属されるピーク面積が5%以上20%以下であることが好ましく、5%以上15%以下がより好ましい。ポリアリーレンスルフィド系樹脂フィルムの改質の工程では、改質と同時に表面の酸化が進行することが多く、ポリアリーレンスルフィド系樹脂の骨格端部に酸素が導入されるだけでなく、比較的反応しやすい部位である硫黄も酸化される。しかしながら、硫黄の酸化物は必ずしも金属の密着に寄与するものばかりではないため、必要以上に表面酸化が進むと、樹脂の劣化となって密着にはかえって不利に働く場合がある。硫黄酸化物に帰属されるピーク面積が5%以上であることにより、密着に寄与する官能基を確保でき、20%以下にすることで酸化による樹脂劣化を抑制でき、金属との密着を確保できる。 The polyarylene sulfide resin film of the present invention is a sulfur oxide when the peak area attributable to S2p of sulfur atoms detected by analysis by X-ray photoelectron spectroscopy (XPS) on at least one surface is 100%. The peak area attributed to is preferably 5% or more and 20% or less, and more preferably 5% or more and 15% or less. In the process of modifying a polyarylene sulfide resin film, surface oxidation often proceeds at the same time as the modification, and not only oxygen is introduced into the skeleton end of the polyarylene sulfide resin, but also it reacts relatively. Sulfur, which is an easy part, is also oxidized. However, since sulfur oxides do not always contribute to the adhesion of metals, if surface oxidation progresses more than necessary, the resin may deteriorate and the adhesion may be disadvantageous. When the peak area attributed to sulfur oxides is 5% or more, functional groups that contribute to adhesion can be secured, and when it is 20% or less, resin deterioration due to oxidation can be suppressed and adhesion with metals can be ensured. ..
 XPSによるポリアリーレンスルフィド系樹脂フィルムの分析は、励起X線にmonochromatic Al Kα1.2線を使用し、X線径1mm、光電子検出角度90°で測定する。得られたスペクトルは、11-point smoothingでスムージング、C1s(CH、C-C)を284.6eVとして横軸補正し、ピーク面積から組成比を算出する。硫黄酸化物については、S2pに帰属される174~160eVの範囲のピーク面積を100%として、グループ1(C-S、S-S)、グループ2(SO)、グループ3(サテライトピーク、SO(2≦x≦4))、グループ4(S2-)に分割し、このうち、グループ2とグループ3の合計を硫黄酸化物として比率を算出する。 The analysis of the polyarylene sulfide-based resin film by XPS uses monochromatic Al Kα 1.2 rays as excitation X-rays, and measures at an X-ray diameter of 1 mm and a photoelectron detection angle of 90 °. The obtained spectrum is smoothed by 11-point smoothing, C1s (CH x , CC) is corrected on the horizontal axis with 284.6 eV, and the composition ratio is calculated from the peak area. For sulfur oxides, group 1 (CS, SS), group 2 (SO), and group 3 (satellite peak, SO x ), with the peak area in the range of 174 to 160 eV attributed to S2p as 100%. (2 ≦ x ≦ 4)) and group 4 (S 2- ), and the ratio is calculated by using the total of group 2 and group 3 as sulfur oxides.
 ポリアリーレンスルフィド系樹脂フィルムの表面を改質して上記の好ましい表面状態とする方法は、面内を均一に処理しやすく、条件によって表面状態を調整しやすい点から、プラズマ処理による方法を好ましくとることができる。 The method of modifying the surface of the polyarylene sulfide-based resin film to obtain the above-mentioned preferable surface state is preferably the method of plasma treatment because it is easy to treat the in-plane uniformly and the surface state can be easily adjusted depending on the conditions. be able to.
 プラズマ処理とは、高圧印加電極と対向電極の間に直流または交流の高電圧を印加して得られる放電に、被処理体であるポリアリーレンスルフィド系樹脂フィルムを曝して表面を改質する方法である。ポリアリーレンスルフィド系樹脂フィルムは、極性が低く、塗膜がはじいて全面を被覆できなかったり、密着が悪かったりするなどの課題があり、従来から各種表面処理が活用されてきた。従来の表面処理の狙いは、フィルム表面の極性を上げて、ぬれ性をよくすることであり、大気中でのコロナ処理やオゾン処理等で酸素原子を多く入れることを目標にしてきた。しかしながら、金属を積層して密着を向上させる場合は、フィルム表面を過剰に酸化させると、界面から金属が酸化されて性能が低下するおそれがある。また、フィルム表面に導入する官能基を増やすためには、ポリアリーレンスルフィド系樹脂フィルムの結合の一部を切断して酸素を導入することが効果的であるが、発明者らの検討によりフィルム表層で分子鎖の切断が進行し過ぎると、金属積層体にした際に、物性の異なる金属とフィルムとの界面に力がかかり、脆弱化したフィルムは凝集破壊して十分な密着を得ることが難しくなることがわかった。つまり、これまでの処理方法では十分制御されていない表面状態であったり脆化した状態であったりするために、金属層との密着に課題があることを発明者らは明らかにした。そこで発明者らは鋭意検討した結果、ポリアリーレンスルフィド系樹脂フィルムの脆弱化を抑制しつつ、結合を適切に切断して金属と結合しやすい官能基を効果的に得る方法を見出した。つまり、本発明におけるポリアリーレンスルフィド系樹脂フィルムの製造方法により、上述したポリアリーレンスルフィド系樹脂フィルムの望ましい表面状態を効率よく得ることができる。加えて、後述する金属積層体におけるM-O-S結合による強い結合状態を得つつ、ポリアリーレンスルフィド系樹脂フィルム部分における分子鎖が切断された脆弱な状態の、金属と強く結合する官能基にならない分子鎖を低減することができる。以下、本発明のポリアリーレンスルフィド系樹脂フィルムの製造方法について具体的に説明する。 Plasma treatment is a method of modifying the surface by exposing a polyarylene sulfide resin film to be treated to a discharge obtained by applying a high voltage of direct current or alternating current between a high voltage application electrode and a counter electrode. is there. The polyarylene sulfide-based resin film has problems such as low polarity, the coating film repelling and the entire surface cannot be covered, and poor adhesion, and various surface treatments have been conventionally used. The aim of the conventional surface treatment is to increase the polarity of the film surface to improve the wettability, and the goal has been to add a large amount of oxygen atoms by corona treatment or ozone treatment in the atmosphere. However, when the metal is laminated to improve the adhesion, if the film surface is excessively oxidized, the metal may be oxidized from the interface and the performance may be deteriorated. Further, in order to increase the number of functional groups introduced into the film surface, it is effective to cut a part of the bonds of the polyarylene sulfide resin film to introduce oxygen, but the film surface layer was examined by the inventors. If the molecular chain is cut too much, a force is applied to the interface between the metal and the film, which have different physical properties, when the metal laminate is formed, and the fragile film is coagulated and broken, making it difficult to obtain sufficient adhesion. It turned out to be. That is, the inventors have clarified that there is a problem in adhesion to the metal layer because the surface state or the embrittled state is not sufficiently controlled by the conventional treatment methods. Therefore, as a result of diligent studies, the inventors have found a method for effectively obtaining a functional group that can easily bond with a metal by appropriately cutting the bond while suppressing the weakening of the polyarylene sulfide-based resin film. That is, according to the method for producing a polyarylene sulfide-based resin film in the present invention, the desired surface state of the polyarylene sulfide-based resin film described above can be efficiently obtained. In addition, while obtaining a strong bond state due to the MOS bond in the metal laminate described later, it becomes a functional group that strongly bonds to the metal in a fragile state in which the molecular chain is cut in the polyarylene sulfide resin film portion. It is possible to reduce the number of molecular chains that do not become. Hereinafter, the method for producing the polyarylene sulfide-based resin film of the present invention will be specifically described.
 本発明のポリアリーレンスルフィド系樹脂フィルムの製造方法の好ましい一態様は、安定した効率のよい処理が可能な点から、ポリアリーレンスルフィド系樹脂フィルムに、減圧下でプラズマ処理を行うことであり、圧力0.1Pa以上100Pa以下の雰囲気下、0.1kW・min/m以上50kW・min/m以下の処理電力密度でプラズマ処理をする工程を含むことが好ましい。減圧下でプラズマ処理する場合の雰囲気の圧力は、0.1Pa以上100Pa以下が好ましく、0.1Pa以上20Pa以下がより好ましく、0.1Pa以上15Pa以下がさらに好ましい。0.1Pa以上とすることでプラズマ放電を安定的に維持することができ、また、官能基生成に適したエネルギーを持つ活性種が適切な密度で存在するため効率よく改質できる。100Pa以下とすることで活性種同士が反応して失活することを抑制して、被処理体に十分な処理効果を与えることができる。同様の観点から、20Pa以下がより好ましく、15Pa以下がさらに好ましい。 A preferred aspect of the method for producing a polyarylene sulfide resin film of the present invention is to perform plasma treatment on the polyarylene sulfide resin film under reduced pressure from the viewpoint that stable and efficient treatment is possible. It is preferable to include a step of performing plasma treatment at a processing power density of 0.1 kW · min / m 2 or more and 50 kW · min / m 2 or less in an atmosphere of 0.1 Pa or more and 100 Pa or less. The pressure of the atmosphere in the case of plasma treatment under reduced pressure is preferably 0.1 Pa or more and 100 Pa or less, more preferably 0.1 Pa or more and 20 Pa or less, and further preferably 0.1 Pa or more and 15 Pa or less. When the value is 0.1 Pa or more, plasma discharge can be stably maintained, and active species having energy suitable for functional group formation are present at an appropriate density, so that the plasma discharge can be efficiently modified. By setting the value to 100 Pa or less, it is possible to suppress the reaction between active species and inactivation, and to give a sufficient treatment effect to the object to be treated. From the same viewpoint, 20 Pa or less is more preferable, and 15 Pa or less is further preferable.
 プラズマ処理においては、処理効率を上げたり、特定の官能基を導入したりする目的で、放電空間にガスを導入してプラズマ処理する際の雰囲気を調整してもよい。使用するガスは、アルゴン、N、He、Ne、O、CO、CO、空気、水蒸気、H、NH、C2n+2(ただしn=1~4の整数)で表される炭化水素などの各種ガスを、単独または混合して使用できる。使用するガスは、プラズマ放電のしやすさや、得られる活性種のエネルギー、導入したい官能基の種類によって選定することができる。ポリアリーレンスルフィド系樹脂フィルムの改質においては、プラズマ放電しやすく、活性種のエネルギーが比較的高いアルゴンまたはNを、酸素を導入しやすくするためにO、CO、COを含むことが好ましい。なかでも、アルゴンとOまたはアルゴンとCOによる混合ガスがより好ましく、アルゴンとOによる混合ガスがさらに好ましい。また、表面処理が過剰となることを抑制するため、雰囲気はアルゴン、He、Ne、O、CO、CO、水蒸気、H、C2n+2(ただしn=1~4の整数)で表される炭化水素からなる群より選ばれる少なくとも1つからなることが好ましい。混合ガスとする場合は、十分な酸素量が導入できるように、体積比率で50%以上が酸素原子を含むガスであることが好ましい。 In the plasma treatment, the atmosphere at the time of plasma treatment may be adjusted by introducing a gas into the discharge space for the purpose of increasing the treatment efficiency or introducing a specific functional group. The gas used is represented by argon, N 2 , He, Ne, O 2 , CO 2 , CO, air, water vapor, H 2 , NH 3 , C n H 2n + 2 (where n = an integer of 1 to 4). Various gases such as hydrocarbons can be used alone or in combination. The gas to be used can be selected according to the ease of plasma discharge, the energy of the active species to be obtained, and the type of functional group to be introduced. In the modification of polyarylene sulfide-based resin film, easy to plasma discharge, active species energy is relatively high argon or N 2, to contain O 2, CO 2, CO in order to facilitate introduction of oxygen preferable. Of these, a mixed gas of argon and O 2 or a mixed gas of argon and CO 2 is more preferable, and a mixed gas of argon and O 2 is even more preferable. Further, in order to suppress excessive surface treatment, the atmosphere is argon, He, Ne, O 2 , CO 2 , CO, steam, H 2 , C n H 2n + 2 (where n = an integer of 1 to 4). It preferably consists of at least one selected from the group consisting of the represented hydrocarbons. When the mixed gas is used, it is preferable that the gas contains 50% or more of oxygen atoms in terms of volume ratio so that a sufficient amount of oxygen can be introduced.
 高圧印加電極の形状は任意のものを用いることができ、例えば、フィルムを搬送しながら連続的に処理することができる棒状、面積が広い板状などが挙げられる。また、処理強度を強めたり、基材へのダメージを低減したりするために、マグネトロン電極や誘電体被覆電極とすることができる。対向電極は、フィルムを密着させて処理できるものであれば特に限定されないが、フィルム搬送を支持できるドラム状電極が好ましい。高圧印加電極と、対向電極は同数である必要はなく、例えば対向電極1個に対して高圧印加電極を2個以上にすると、省スペースで処理効率を高めることができる。電極間の距離は、ガスの圧力条件、処理強度に応じて適切に設定すればよいが、ポリアリーレンスルフィド系フィルムの接着を改善しつつフィルムがダメージを受けて損傷することを抑制する観点から0.05cm以上30cm以下の範囲とすることが好ましい。 Any shape of the high-voltage application electrode can be used, and examples thereof include a rod shape that can be continuously processed while transporting a film, and a plate shape having a large area. Further, in order to increase the processing strength and reduce the damage to the base material, a magnetron electrode or a dielectric coated electrode can be used. The counter electrode is not particularly limited as long as the film can be brought into close contact with the film, but a drum-shaped electrode capable of supporting the film transfer is preferable. The number of high-voltage application electrodes and counter electrodes need not be the same. For example, if two or more high-voltage application electrodes are used for one counter electrode, space saving and processing efficiency can be improved. The distance between the electrodes may be appropriately set according to the gas pressure condition and the processing strength, but it is 0 from the viewpoint of improving the adhesion of the polyarylene sulfide film and suppressing the film from being damaged and damaged. The range is preferably 0.05 cm or more and 30 cm or less.
 処理強度は、処理電力密度で0.1kW・min/m以上50kW・min/m以下であることが好ましく、0.3kW・min/m以上15kW・min/m以下であることがより好ましい。ここで処理電力密度とは、放電に投入した電力と時間の積を放電面積で割った値であり、長尺フィルムの処理の場合は投入電力を放電部分の幅とフィルムの処理速度で割った値である。処理電力密度を0.1kW・min/m以上とすることで、改質に必要なエネルギーを与えることができる。同様の観点から当該処理電力密度は0.3kW・min/m以上であることがより好ましい。当該処理電力密度を50kW・min/m以下とすることで、フィルムがダメージを受けて損傷することを抑制できる。同様の観点から当該処理電力密度は15kW・min/m以下であることがより好ましい。プラズマ処理の条件について、圧力が0.1Pa以上10Pa未満の場合は処理電力密度0.1kW・min/m以上50kW・min/m以下が好ましい。圧力が10Pa以上100Pa以下の場合は、0.3kW・min/m以上15kW・min/m以下がさらに好ましい。 Processing intensity that process is preferably 0.1kW · min / m 2 or more 50kW · min / m 2 or less at a power density is 0.3kW · min / m 2 or more 15kW · min / m 2 or less More preferred. Here, the processing power density is a value obtained by dividing the product of the power input to the discharge and the time by the discharge area, and in the case of processing a long film, the input power is divided by the width of the discharged portion and the processing speed of the film. The value. By setting the processing power density to 0.1 kW · min / m 2 or more, the energy required for reforming can be provided. From the same viewpoint, the processing power density is more preferably 0.3 kW · min / m 2 or more. By setting the processing power density to 50 kW · min / m 2 or less, it is possible to prevent the film from being damaged and damaged. From the same viewpoint, the processing power density is more preferably 15 kW · min / m 2 or less. Regarding the plasma treatment conditions, when the pressure is 0.1 Pa or more and less than 10 Pa, the processing power density is preferably 0.1 kW · min / m 2 or more and 50 kW · min / m 2 or less. If the pressure of 10Pa or more 100Pa or less, more preferably 0.3kW · min / m 2 or more 15kW · min / m 2 or less.
 なお、過剰な表面処理によりポリアリーレンスルフィド系樹脂フィルムの脆化を抑制する観点から、プラズマ処理を行う前のポリアリーレンスルフィド系樹脂フィルムの少なくとも一方の表面のX線光電子分光法(XPS)による分析で検出される酸素原子が17atomic%以下であり、酸素原子と炭素原子の原子数比O/Cが0.25以下であることが好ましい。同様の観点および少ない表面処理回数とする観点から、酸素原子が10atomic%以下、O/Cが0.1以下であることがより好ましい。 From the viewpoint of suppressing brittleness of the polyarylene sulfide resin film due to excessive surface treatment, analysis of at least one surface of the polyarylene sulfide resin film before plasma treatment by X-ray photoelectron spectroscopy (XPS) is performed. It is preferable that the oxygen atom detected in the above is 17 atomic% or less, and the atomic number ratio O / C of the oxygen atom and the carbon atom is 0.25 or less. From the same viewpoint and the viewpoint of reducing the number of surface treatments, it is more preferable that the oxygen atom is 10 atomic% or less and the O / C is 0.1 or less.
 本発明の金属積層体は、ポリアリーレンスルフィド系樹脂フィルム上に、金属層を該ポリアリーレンスルフィド系樹脂フィルムと接した状態で有する。金属層は、厚さが0.05μm以上30μm以下であることが好ましく、0.1μm以上20μm以下であることがさらに好ましい。厚さが0.05μm以上であることにより、金属の酸化を抑制できる。同様の観点から当該厚さが0.1μm以上であることにより好ましい。当該厚さが30μm以下であることにより、金属層が柔軟となりクラックが入ったり、積層体が反ったりすることを抑制できる。同様の観点から当該厚さは20μm以下であることがより好ましい。金属層は、単層であっても2層以上が積層されていてもよい。 The metal laminate of the present invention has a metal layer on a polyarylene sulfide resin film in contact with the polyarylene sulfide resin film. The thickness of the metal layer is preferably 0.05 μm or more and 30 μm or less, and more preferably 0.1 μm or more and 20 μm or less. When the thickness is 0.05 μm or more, oxidation of the metal can be suppressed. From the same viewpoint, it is preferable that the thickness is 0.1 μm or more. When the thickness is 30 μm or less, the metal layer becomes flexible and cracks and warpage of the laminated body can be suppressed. From the same viewpoint, the thickness is more preferably 20 μm or less. The metal layer may be a single layer or two or more layers may be laminated.
 本発明における金属層は、主成分が銅であることが好ましい。主成分とは、構成する原子が60atomic%以上であることをさす。金属層の積層方法は、生産性等を考慮して適宜選択でき、例えば、銅箔の上にポリアリーレンスルフィド系樹脂を押し出したり、塗布したりする方法、ポリアリーレンスルフィド系樹脂フィルムに金属箔をラミネートする方法、真空蒸着法やスパッタリング法に代表される気相成膜法で金属層を製膜する方法が挙げられる。これらの中でも、本発明の金属積層体の製造方法の好ましい一態様は、生産性や接着に適したポリアリーレンスルフィド系樹脂フィルムの望ましい表面状態を維持する観点から、ポリアリーレンスルフィド系樹脂フィルムに圧力0.1Pa以上100Pa以下の雰囲気下、0.1kW・min/m以上50kW・min/m以下の処理電力密度でプラズマ処理をした後、気相成膜法または金属箔を貼り合わせる方法により金属を積層する工程を含むことが好ましい。上記観点からポリアリーレンスルフィド系樹脂フィルムに金属箔を貼り合わせる(ラミネートする)場合は、フィルムと金属箔を直接積層するために熱ラミネート法を用いることがより好ましい。熱ラミネートの温度は、ポリアリーレンスルフィド系樹脂フィルムの表面層の融点をTmとしたとき、Tm-20℃以上Tm+50℃以下とすることが好ましく、Tm℃以上Tm+30℃以下であることがより好ましい。熱ラミネートの温度をTm-20℃以上とすることで、フィルム表面の樹脂を柔らかくして十分な密着を得ることができる。同様の観点から当該温度はTm℃以上が好ましい。また、当該温度をTm+50℃以下とすることで、ポリアリーレンスルフィド系樹脂フィルムの望ましい表面状態を維持し、樹脂の分解や架橋によってフィルムが脆化して柔軟性が低下したり、凝集破壊されやすくなったりすることを防止できるとともに、樹脂と金属箔の熱膨張係数差が発生することによる反りをおさえることもできる。同様の観点から当該温度はTm+30℃以下であることがより好ましい。 The metal layer in the present invention preferably contains copper as the main component. The principal component means that the constituent atoms are 60 atomic% or more. The method of laminating the metal layer can be appropriately selected in consideration of productivity and the like. For example, a method of extruding or applying a polyarylene sulfide resin onto a copper foil, or a method of applying a metal foil to a polyarylene sulfide resin film. Examples thereof include a laminating method and a method of forming a metal layer by a vapor deposition method typified by a vacuum vapor deposition method or a sputtering method. Among these, a preferable aspect of the method for producing a metal laminate of the present invention is to apply pressure to the polyarylene sulfide resin film from the viewpoint of maintaining a desirable surface state of the polyarylene sulfide resin film suitable for productivity and adhesion. After plasma treatment at a processing power density of 0.1 kW · min / m 2 or more and 50 kW · min / m 2 or less in an atmosphere of 0.1 Pa or more and 100 Pa or less, a vapor deposition method or a method of laminating metal foil is used. It is preferable to include a step of laminating metals. From the above viewpoint, when the metal foil is laminated (laminated) on the polyarylene sulfide resin film, it is more preferable to use the thermal laminating method for directly laminating the film and the metal foil. The temperature of the thermal lamination is preferably Tm-20 ° C. or higher and Tm + 50 ° C. or lower, and more preferably Tm ° C. or higher and Tm + 30 ° C. or lower, when the melting point of the surface layer of the polyarylene sulfide resin film is Tm. By setting the temperature of the thermal lamination to Tm-20 ° C. or higher, the resin on the film surface can be softened and sufficient adhesion can be obtained. From the same viewpoint, the temperature is preferably Tm ° C. or higher. Further, by setting the temperature to Tm + 50 ° C. or lower, the desirable surface state of the polyarylene sulfide resin film is maintained, and the film becomes brittle due to decomposition or cross-linking of the resin, the flexibility is lowered, and the film is easily coagulated and broken. In addition to being able to prevent warping, it is also possible to suppress warpage due to the difference in thermal expansion coefficient between the resin and the metal foil. From the same viewpoint, the temperature is more preferably Tm + 30 ° C. or lower.
 ラミネートの圧力は0.1MPa以上10MPa以下であることが好ましく、0.5MPa以上8MPa以下であることがより好ましく、1.0MPa以上5MPa以下であることがさらに好ましい。当該圧力を0.1MPa以上とすることで、金属とフィルムを十分に接触させてはりあわせることができる。同様の観点から当該圧力は0.5MPa以上がより好ましく、1.0MPa以上がさらに好ましい。また、当該圧力を10MPa以下とすることでフィルムの変形をおさえたり、ラミネート中に樹脂が流動するような不具合を回避したりすることができる。同様の観点から当該圧力は8MPa以下がより好ましく、5MPa以下がさらに好ましい。 The pressure of the laminate is preferably 0.1 MPa or more and 10 MPa or less, more preferably 0.5 MPa or more and 8 MPa or less, and further preferably 1.0 MPa or more and 5 MPa or less. By setting the pressure to 0.1 MPa or more, the metal and the film can be sufficiently brought into contact with each other and bonded together. From the same viewpoint, the pressure is more preferably 0.5 MPa or more, further preferably 1.0 MPa or more. Further, by setting the pressure to 10 MPa or less, it is possible to suppress the deformation of the film and avoid the problem that the resin flows during the laminating. From the same viewpoint, the pressure is more preferably 8 MPa or less, further preferably 5 MPa or less.
 気相成膜法で金属を積層する方法として、生産性や、接着に適したポリアリーレンスルフィド系樹脂フィルムの望ましい表面状態を維持する観点から真空蒸着法やスパッタリング法を好ましく用いることができる。気相成膜法は、積層する基材の表面に追従して表面粗さが決まるため、平滑なフィルムを用いることで金属層を平滑にできるため好ましい。真空蒸着法の場合、その方式には誘導加熱蒸着法、抵抗加熱蒸着法、レーザービーム蒸着法、電子ビーム蒸着法などがあるが、高い成膜速度を有する観点から電子ビーム蒸着法が好適に用いられる。フィルムへの蒸着は、生産性の観点からロールトゥロールでの加工が好適に用いられるが、蒸着時はフィルムが熱にさらされるため、フィルムの蒸着面の裏面に接した冷却ロールにより冷却しながら蒸着することが好ましい。冷却して蒸着時の熱によるフィルムの変形を抑制すると、金属層の膜応力を小さく抑えられるため、金属層の剥離抑制に有利になり、ポリアリーレンスルフィド系樹脂フィルムの望ましい表面状態を維持する観点からも望ましい。同様の観点から、蒸着時におけるポリアリーレンスルフィド系樹脂フィルムの最高温度は当該フィルム表面層のガラス転移温度以下であることが好ましい。当該フィルム表面層のガラス転移温度が複数観測される場合は、最も高い温度以下で金属を蒸着することが好ましい。なお、当該ガラス転移温度は示差走査熱量計を用いて得られるDSCチャートより求めることができる。スパッタリング法の場合も、生産性の観点からロールトゥロールでの加工が好適に用いられる。スパッタリング法は、DC、AC、パルスいずれの電源を用いてもよく、装置内に磁石を配置して磁界を利用したり、イオンビームを利用したりしてもかまわない。例えば、マグネトロンスパッタリング法、デュアルマグネトロンスパッタリング法、イオンビームスパッタリング法などが挙げられる。生産性や接着に適したポリアリーレンスルフィド系樹脂フィルムの望ましい表面状態を維持する観点から、電源出力5kW以下にてスパッタリングを行うことが好ましい。 As a method of laminating metals by the vapor phase film forming method, a vacuum vapor deposition method or a sputtering method can be preferably used from the viewpoint of maintaining productivity and a desirable surface state of a polyarylene sulfide resin film suitable for adhesion. The vapor phase film forming method is preferable because the surface roughness is determined by following the surface of the substrate to be laminated, and the metal layer can be smoothed by using a smooth film. In the case of the vacuum vapor deposition method, there are an induction heating vapor deposition method, a resistance heating vapor deposition method, a laser beam vapor deposition method, an electron beam vapor deposition method, etc., but the electron beam vapor deposition method is preferably used from the viewpoint of having a high film deposition rate. Be done. For film deposition, roll-to-roll processing is preferably used from the viewpoint of productivity, but since the film is exposed to heat during vapor deposition, it is cooled by a cooling roll in contact with the back surface of the film deposition surface. Deposition is preferred. When the film is cooled and the deformation of the film due to heat during vapor deposition is suppressed, the film stress of the metal layer can be suppressed to a small value, which is advantageous in suppressing the peeling of the metal layer, and the viewpoint of maintaining the desirable surface state of the polyarylene sulfide resin film. It is also desirable from. From the same viewpoint, the maximum temperature of the polyarylene sulfide resin film at the time of vapor deposition is preferably equal to or lower than the glass transition temperature of the film surface layer. When a plurality of glass transition temperatures of the film surface layer are observed, it is preferable to deposit the metal at the highest temperature or lower. The glass transition temperature can be obtained from a DSC chart obtained by using a differential scanning calorimeter. Also in the case of the sputtering method, roll-to-roll processing is preferably used from the viewpoint of productivity. In the sputtering method, any power source of DC, AC, or pulse may be used, and a magnet may be arranged in the apparatus to use a magnetic field or an ion beam may be used. For example, a magnetron sputtering method, a dual magnetron sputtering method, an ion beam sputtering method and the like can be mentioned. From the viewpoint of maintaining a desirable surface condition of the polyarylene sulfide resin film suitable for productivity and adhesion, it is preferable to perform sputtering at a power output of 5 kW or less.
 本発明において金属層を2層以上積層してもよい。特に気相成膜法の場合は、フィルムと金属層の密着を向上したり、マイグレーションを抑止したりするために、下地金属層を積層することができる。下地金属層を積層する場合は、ポリアリーレンスルフィド系樹脂フィルム上に下地金属を積層し、下地金属層に接する状態で銅を主成分とする層を積層することが好ましい。下地金属層は、銅、ニッケル、チタン、およびそれらの少なくとも1種を含む合金、からなる群より選ばれる少なくとも1つを含むことが好ましい。その中でも、金属層の酸化防止、耐食性の観点から、ニッケル、チタン、および、ニッケルまたはチタンの少なくとも1種を含む合金、からなる群より選ばれる少なくとも1つを含むことが好ましい。本発明の金属積層体を高速信号伝送用の回路基板用途に使用する場合は、磁性体のニッケルは信号を減衰させるため、下地金属層の金属は、チタン、または、チタンを含む合金であることが好ましい。下地金属層の厚みは、1nm以上100nm以下が好ましく、1nm以上50nm以下がより好ましい。下地金属層の厚みを1nm以上とすることで面内で均一な効果を得やすくなり、100nm以下とすることで、銅層と下地層のエッチングレートの違いによる配線パターン加工性の低下を抑えることができる。また、下地金属が磁性体で、その厚さが厚い場合には、高速信号伝送において損失が大きくなって信号が減衰するといった問題が生じる場合もある。下地金属層の製膜方法は、薄膜の厚さ精度と生産性の観点からスパッタリング法や真空蒸着法に代表される気相成膜法が好ましく、より強いエネルギーをもってフィルム表面に到達するスパッタリング法であることが密着向上の点でより好ましい。下地金属層とその上に積層する層を製膜する方法は、同じであっても、異なっていてもよい。例えば、下地金属層とその上の層の両方をスパッタリング法で製膜してもよいし、下地金属層をスパッタリング法で製膜し、その上に真空蒸着法で製膜してもよい。両者を気相成膜法で形成する場合は、層ごとに2回に分けて製膜してもよいし、連続して製膜してもよいが、非常に薄い下地金属層は酸化されやすいため、酸化の影響を小さくするために連続して製膜することが好ましい。また、気相成膜法で金属層を形成する場合、生産性の観点から薄膜にすることが多いため、回路に適した抵抗の導体として十分な金属厚みを得るために、気相成膜法で得た層を給電層として、電解銅めっきによりさらに銅層を積層することができる。 In the present invention, two or more metal layers may be laminated. In particular, in the case of the vapor phase film forming method, the underlying metal layer can be laminated in order to improve the adhesion between the film and the metal layer and suppress migration. When laminating the base metal layer, it is preferable to laminate the base metal on the polyarylene sulfide-based resin film and then laminate the layer containing copper as the main component in contact with the base metal layer. The underlying metal layer preferably contains at least one selected from the group consisting of copper, nickel, titanium, and alloys containing at least one of them. Among them, from the viewpoint of antioxidant and corrosion resistance of the metal layer, it is preferable to contain at least one selected from the group consisting of nickel, titanium, and an alloy containing at least one of nickel or titanium. When the metal laminate of the present invention is used for a circuit board application for high-speed signal transmission, the metal of the underlying metal layer must be titanium or an alloy containing titanium because nickel as a magnetic material attenuates signals. Is preferable. The thickness of the base metal layer is preferably 1 nm or more and 100 nm or less, and more preferably 1 nm or more and 50 nm or less. By setting the thickness of the base metal layer to 1 nm or more, it becomes easy to obtain a uniform effect in the plane, and by setting it to 100 nm or less, it is possible to suppress the deterioration of the wiring pattern workability due to the difference in the etching rate between the copper layer and the base layer. Can be done. Further, when the base metal is a magnetic material and its thickness is thick, there may be a problem that the loss becomes large and the signal is attenuated in high-speed signal transmission. From the viewpoint of thin film thickness accuracy and productivity, a vapor phase film forming method represented by a sputtering method or a vacuum vapor deposition method is preferable as a film forming method for the underlying metal layer, and a sputtering method that reaches the film surface with stronger energy. It is more preferable to have it in terms of improving adhesion. The method for forming the base metal layer and the layer laminated on the base metal layer may be the same or different. For example, both the base metal layer and the layer above it may be formed by a sputtering method, or the base metal layer may be formed by a sputtering method and then formed on the base metal layer by a vacuum vapor deposition method. When both are formed by the vapor phase film formation method, the film may be formed twice for each layer or continuously, but a very thin underlying metal layer is easily oxidized. Therefore, it is preferable to continuously form a film in order to reduce the influence of oxidation. Further, when a metal layer is formed by the vapor deposition method, it is often made into a thin film from the viewpoint of productivity. Therefore, in order to obtain a sufficient metal thickness as a conductor of resistance suitable for a circuit, the vapor deposition method is used. A copper layer can be further laminated by electrolytic copper plating using the layer obtained in (1) as a feeding layer.
 本発明の金属積層体における金属層は、ポリアリーレンスルフィド系樹脂フィルムと接していない面の表面粗さRaが0.01μm以上0.20μm下であることが好ましく、0.01μm以上0.15μm以下であることがより好ましく、0.01μm以上0.10μm以下であることがさらに好ましい。表面粗さRaは、JIS B 0601-1994で定義される算術平均粗さである。良好な誘電特性をもつポリアリーレンスルフィド系樹脂フィルムと金属層とが直接接していることにより、回路基板の配線として使用するとき、特に高周波帯での表皮効果による伝達信号の伝送損失を抑制できる。ポリアリーレンスルフィド系樹脂フィルムと金属層とを直接接するようする方法は、銅箔の貼り合わせの他、スパッタや蒸着などによる気相成膜法で積層することができる。気相成膜法、特に蒸着の場合、金属層はポリアリーレンスルフィド系樹脂フィルム表面の凹凸に追従して成長する傾向があるため、ポリアリーレンスルフィド系樹脂フィルムと接していない面の表面粗さは、ポリアリーレンスルフィド系樹脂フィルムの表面粗さに強く影響される。一般に積層体を形成する際は、密着を強くするために表面を粗くするが、本願は平滑基材上に金属層を設けたにもかかわらず、強い密着力を両立した点に特徴がある。金属層のポリアリーレンスルフィド系樹脂フィルムと接していない面の表面粗さRaが0.01μm以上0.20μm以下であることにより、金属層のポリアリーレンスルフィド系樹脂フィルムと接していない面における表皮効果による伝送損失を抑制できる。また、上記態様とすることで、金属層表面を改めて平滑する工程なく実用的な回路基板の配線として用いることができ、回路基板の配線工程における効率化・環境負荷低減に貢献できる。 In the metal layer of the metal laminate of the present invention, the surface roughness Ra of the surface not in contact with the polyarylene sulfide resin film is preferably 0.01 μm or more and 0.20 μm or less, and 0.01 μm or more and 0.15 μm or less. It is more preferable that it is 0.01 μm or more and 0.10 μm or less. The surface roughness Ra is the arithmetic mean roughness defined in JIS B 0601-1994. Since the polyarylene sulfide resin film having good dielectric properties and the metal layer are in direct contact with each other, it is possible to suppress the transmission loss of the transmitted signal due to the skin effect especially in the high frequency band when used as the wiring of the circuit board. The method of directly contacting the polyarylene sulfide-based resin film with the metal layer can be laminated by a vapor phase film forming method such as sputtering or thin film deposition, in addition to bonding copper foils. In the gas phase film formation method, especially in the case of vapor deposition, the metal layer tends to grow following the unevenness of the surface of the polyarylene sulfide resin film, so that the surface roughness of the surface not in contact with the polyarylene sulfide resin film is , It is strongly influenced by the surface roughness of the polyarylene sulfide resin film. Generally, when forming a laminate, the surface is roughened in order to strengthen the adhesion, but the present application is characterized in that a strong adhesion is achieved even though a metal layer is provided on a smooth base material. When the surface roughness Ra of the surface of the metal layer not in contact with the polyarylene sulfide resin film is 0.01 μm or more and 0.20 μm or less, the skin effect on the surface of the metal layer not in contact with the polyarylene sulfide resin film Transmission loss due to can be suppressed. Further, by adopting the above aspect, it can be used as a practical circuit board wiring without a step of smoothing the surface of the metal layer again, and it can contribute to efficiency improvement and reduction of environmental load in the circuit board wiring process.
 従来のポリアリーレンスルフィド系樹脂フィルムを用いた金属積層体は、金属層との密着に改善の余地があり、平滑性を維持しつつ密着を向上する手法が必要であった。本発明らは、ポリアリーレンスルフィド系樹脂フィルムに様々な表面処理をすることを検討し、金属積層体中のポリアリーレンスルフィド系樹脂フィルムの断面方向における望ましい状態を見出すことに至った。平滑性を維持した状態でのポリアリーレンスルフィド系樹脂フィルムと金属層の密着は、化学的な結合が寄与するため、これらの界面、すなわち前記α面における状態が密着性に大きく寄与することがわかったので、以下、その状態について説明する。 The conventional metal laminate using a polyarylene sulfide resin film has room for improvement in adhesion to the metal layer, and a method for improving adhesion while maintaining smoothness was required. The present invention has studied various surface treatments on a polyarylene sulfide-based resin film, and has found a desirable state in the cross-sectional direction of the polyarylene sulfide-based resin film in a metal laminate. It was found that the state at these interfaces, that is, the α-plane, greatly contributes to the adhesion because the adhesion between the polyarylene sulfide-based resin film and the metal layer while maintaining the smoothness contributes to the chemical bond. Therefore, the state will be described below.
 一般的にポリアリーレンスルフィド系樹脂フィルムは、極性が低いため、化学的な結合を形成しづらく、金属層との密着に改善の余地がある。密着力を向上させるためには、ポリアリーレンスルフィド系樹脂フィルムと金属層の化学的結合を増やす必要があるが、本発明らは、α面に存在する硫黄の酸化成分(SO)や硫化物(S2-)の状態が密着に大きく影響することを見出した。これら成分が金属層との密着力を向上させるメカニズムは、ポリアリーレンスルフィド系樹脂フィルム由来の硫黄と、金属積層体の金属原子Mが、酸素原子Oを介してM-O-S結合することによるものと考える。例えば、改質していないポリアリーレンスルフィド系樹脂フィルムの場合、その表面にはSOは検出限界以下であり、金属を積層した後、α面を分析してもSOは検出されず、結合は形成されていないため、密着が弱くなると考える。 In general, a polyarylene sulfide-based resin film has a low polarity, so that it is difficult to form a chemical bond, and there is room for improvement in adhesion to a metal layer. In order to improve the adhesion, it is necessary to increase the chemical bond between the polyarylene sulfide-based resin film and the metal layer. However, the present inventions present the sulfur oxidizing component (SO) and sulfide (SO) present on the α-plane. It was found that the state of S 2- ) greatly affects the adhesion. The mechanism by which these components improve the adhesion to the metal layer is that sulfur derived from the polyarylene sulfide resin film and the metal atom M of the metal laminate are M-OS bonded via the oxygen atom O. Think of it. For example, in the case of an unmodified polyarylene sulfide resin film, SO is below the detection limit on the surface, SO is not detected even if the α plane is analyzed after laminating the metal, and a bond is formed. Since it is not done, it is considered that the adhesion will be weakened.
 本発明の金属積層体の好ましい一態様は、ポリアリーレンスルフィド系樹脂フィルム上に、金属層を該ポリアリーレンスルフィド系樹脂フィルムと接した状態で有する金属積層体であり、下記の条件でポリアリーレンスルフィド系樹脂フィルムから剥離した該金属層の該ポリアリーレンスルフィド系樹脂フィルムに接していた面(α面)のXPSによる分析で検出される金属原子が10atomic%以下である金属積層体である。 A preferred embodiment of the metal laminate of the present invention is a metal laminate having a metal layer on a polyarylene sulfide resin film in contact with the polyarylene sulfide resin film, and the polyarylene sulfide is provided under the following conditions. It is a metal laminate in which the metal atom detected by XPS analysis of the surface (α surface) of the metal layer peeled off from the based resin film in contact with the polyarylene sulfide resin film is 10 atomic% or less.
 条件:金属層の厚み9μm、幅10mmの短冊状の金属積層体のポリアリーレンスルフィド系樹脂フィルム側を平板に固定して、室温23℃湿度50%の環境下、金属層を把持して剥離速度100mm/min、180°の角度で剥離する。 Conditions: The polyarylene sulfide resin film side of a strip-shaped metal laminate having a thickness of 9 μm and a width of 10 mm is fixed to a flat plate, and the metal layer is gripped and peeled off in an environment of room temperature of 23 ° C. and humidity of 50%. Peel at an angle of 100 mm / min and 180 °.
 金属積層体から剥離した金属層のポリアリーレンスルフィド系樹脂フィルムに接していた面(α面)のXPSによる分析で検出される金属原子が10atomic%以下であるということは、剥離した金属層にポリアリーレンスルフィド系樹脂フィルムが多く付着していることを意味する。α面の金属原子が10atomic%以下であることにより、金属層の密着を十分なものとすることができ、回路形成時における剥離を抑制できる。同様の観点からα面の金属原子が5atomic%以下であることがより好ましい。なお、検出される金属原子が2種類以上の場合は、その合計を金属原子の量とする。検出される金属原子は、積層体の構成に依存する。例えば、金属層が銅層単層の場合、検出される金属原子は銅となるが、下地金属層としてチタンを含む層、その上に銅層を積層している場合は、チタンと銅が検出される場合がある。 The fact that the metal atom detected by XPS analysis of the surface (α surface) of the metal layer exfoliated from the metal laminate in contact with the polyarylene sulfide resin film means that the exfoliated metal layer is poly. It means that a large amount of allylene sulfide resin film is attached. When the metal atom on the α-plane is 10 atomic% or less, the adhesion of the metal layer can be made sufficient, and peeling at the time of circuit formation can be suppressed. From the same viewpoint, it is more preferable that the metal atom on the α-plane is 5 atomic% or less. If there are two or more types of metal atoms detected, the total is taken as the amount of metal atoms. The metal atoms detected depend on the composition of the laminate. For example, when the metal layer is a single copper layer, the detected metal atom is copper, but when a layer containing titanium is used as the base metal layer and a copper layer is laminated on top of it, titanium and copper are detected. May be done.
 前記α面のXPSによる分析で検出される硫黄原子のS2pに帰属されるピーク面積を100%としたとき、硫黄の酸化成分(SO)に帰属されるピーク面積は1%以上7%以下が好ましく、2%以上5%以下がより好ましい。硫黄の酸化成分(SO)に帰属されるピーク面積を1%以上とすることにより、十分に表面改質された状態となり密着が向上する。同様の観点から、2%以上がより好ましい。また、7%以下であることにより、ポリアリーレンスルフィド系樹脂フィルムの変質による密着低下を軽減でき、回路形成時における剥離を抑制できる。同様の観点から、5%以下がより好ましい。 When the peak area attributed to S2p of the sulfur atom detected by the XPS analysis of the α plane is 100%, the peak area attributed to the sulfur oxidizing component (SO) is preferably 1% or more and 7% or less. More preferably, it is 2% or more and 5% or less. By setting the peak area attributable to the oxidizing component (SO) of sulfur to 1% or more, the surface is sufficiently modified and the adhesion is improved. From the same viewpoint, 2% or more is more preferable. Further, when it is 7% or less, deterioration of adhesion due to deterioration of the polyarylene sulfide-based resin film can be reduced, and peeling at the time of circuit formation can be suppressed. From the same viewpoint, 5% or less is more preferable.
 前記α面のXPSによる分析で検出される硫黄原子のS2pに帰属されるピーク面積を100%としたとき、硫化物(S2-)に帰属されるピーク面積は5%以下であることが好ましく、3%以下であることがより好ましい。硫化物(S2-)はポリアリーレンスルフィド系樹脂フィルムの分子鎖が切断された状態で、金属と強く結合する官能基にならないまま表面に残ったものと考える。十分な酸素が存在するなどの条件が整った状態で分子鎖が切断されると密着に寄与する官能基となりうるが、必要量の酸素が供給されなかったり、低分子量化されたまま表面に残ってしまったりした場合は、密着に寄与することもないまま表面に残る。これらの密着に寄与しない成分が存在すると、密着阻害剤として働いたり、フィルムや金属層の変質で密着が弱くなったりすると考える。したがって、S2-に帰属されるピーク面積を5%以下に抑えれば、上記のようなポリアリーレンスルフィド系樹脂フィルムの過剰な変質を抑制できるため、回路形成時の剥離を軽減できる。同様の観点から、硫化物(S2-)に帰属されるピーク面積は3%以下であることがより好ましい。また、S2-に帰属されるピーク面積の下限は、分析の検出限界から1%程度である。 Is taken as 100% of the peak area attributed to S2p sulfur atom which is detected by the XPS analysis of the α surface, preferably the peak area attributed to sulfide (S 2-) is 5% or less More preferably, it is 3% or less. It is considered that the sulfide (S 2- ) remains on the surface of the polyarylene sulfide-based resin film in a state where the molecular chain is cut, without becoming a functional group that strongly bonds with the metal. If the molecular chain is cleaved under conditions such as the presence of sufficient oxygen, it can become a functional group that contributes to adhesion, but the required amount of oxygen is not supplied or remains on the surface with the molecular weight reduced. If it does, it remains on the surface without contributing to adhesion. It is considered that the presence of these components that do not contribute to adhesion may act as an adhesion inhibitor or weaken the adhesion due to deterioration of the film or metal layer. Therefore, Osaere peak areas attributable to S 2- to 5% or less, it is possible to suppress excessive alteration of polyarylene sulfide-based resin film as described above, it can be reduced exfoliation during circuit formation. From the same viewpoint, the peak area attributed to sulfide ( S2- ) is more preferably 3% or less. The lower limit of the peak area attributed to S 2- is about 1% from the detection limit of analysis.
 金属積層体の製造では、フィルム表面はダメージを受けたり、熱を受けて酸化したりして表層が変質して脆弱になる場合がある。金属層をポリアリーレンスルフィド系樹脂フィルムから剥離すると、ポリアリーレンスルフィド系樹脂フィルムは、金属層との界面から深さ方向に見たときに強度が弱い位置が剥離界面となり、金属層のα面にはポリアリーレンスルフィド系樹脂フィルムの表層の一部が薄く付着する。ポリアリーレンスルフィド系樹脂フィルムが脆弱になっていた場合、剥離界面は金属層にごく近い位置となり、金属層に付着するポリアリーレンスルフィド系樹脂は薄く、XPSでの分析では金属層の元素まで検出されることになる。一方、ポリアリーレンスルフィド系樹脂フィルムの金属層近傍がダメージを受けていない場合は、剥離した金属層に付着するフィルムが厚くなり、金属層の元素の検出量が少なくなる。また、ポリアリーレンスルフィド系樹脂の変質により、硫黄原子が脱離する場合がある。この脱離した硫黄原子が硫化物イオンとして存在した場合、金属と硫化物を形成するなどして密着阻害物となる場合がある。 In the manufacture of metal laminates, the film surface may be damaged or oxidized by heat, and the surface layer may deteriorate and become fragile. When the metal layer is peeled off from the polyarylene sulfide resin film, the polyarylene sulfide resin film becomes the peeling interface at the position where the strength is weak when viewed in the depth direction from the interface with the metal layer, and becomes the α surface of the metal layer. A part of the surface layer of the polyarylene sulfide resin film adheres thinly. When the polyarylene sulfide resin film is fragile, the peeling interface is very close to the metal layer, the polyarylene sulfide resin adhering to the metal layer is thin, and even the elements of the metal layer are detected by the XPS analysis. Will be. On the other hand, when the vicinity of the metal layer of the polyarylene sulfide resin film is not damaged, the film adhering to the peeled metal layer becomes thicker and the amount of detected elements in the metal layer decreases. In addition, sulfur atoms may be eliminated due to alteration of the polyarylene sulfide resin. When the desorbed sulfur atom exists as a sulfide ion, it may form an adhesion inhibitor by forming a sulfide with a metal.
 金属層の剥離は、実施例に記載の方法により行うことができる。このようにして得た金属層の、ポリアリーレンスルフィド系樹脂フィルムに接していた面をα面とし、その表面をXPSで分析する。ポリアリーレンスルフィド系樹脂フィルムから剥離した金属層のα面の分析は、励起X線にmonochromatic Al Kα1,2線を使用し、X線径200μm、光電子検出角度45°で測定する。得られたスペクトルは、9-point smoothingでスムージング、C1s(CH、C-C)を284.6eVとして横軸補正し、ピーク面積から組成比を算出する。S2pについては、174~160eVのスペクトルのピーク面積を100%として、グループ1(C-S、S-S)、グループ2(SO)、グループ3(サテライトピークSO(2≦x≦4))、グループ4(S2-)に分割し、このうち、グループ2とグループ4の面積比率をそれぞれ算出し、成分比率とする。 The metal layer can be peeled off by the method described in Examples. The surface of the metal layer thus obtained in contact with the polyarylene sulfide resin film is defined as the α surface, and the surface thereof is analyzed by XPS. The α-plane of the metal layer peeled from the polyarylene sulfide-based resin film is analyzed by using monochromatic Al Kα 1 and 2 rays as excitation X-rays, with an X-ray diameter of 200 μm and a photoelectron detection angle of 45 °. The obtained spectrum is smoothed by 9-point smoothing, C1s (CH x , CC) is corrected on the horizontal axis with 284.6 eV, and the composition ratio is calculated from the peak area. For S2p, group 1 (CS, SS), group 2 (SO), and group 3 (satellite peak SO x (2 ≦ x ≦ 4)), where the peak area of the spectrum of 174 to 160 eV is 100%. , Group 4 (S 2- ), of which the area ratios of group 2 and group 4 are calculated and used as the component ratio.
 なお、α面をランダムに10箇所各1回ずつ測定し、1回の測定ごとに算出して成分比率を求める。算出された成分比率が検出限界の場合は0%とする。10箇所分の各成分比率の算術平均をα面のXPS分析結果とする。 Note that the α-plane is randomly measured once for each of 10 locations, and the component ratio is calculated for each measurement. When the calculated component ratio is the detection limit, it is set to 0%. The arithmetic mean of each component ratio for 10 locations is used as the result of XPS analysis of the α plane.
 本発明の金属積層体は、金属層とポリアリーレンスルフィド系樹脂フィルムとの密着がよく、また金属層表面が非常に平滑であるため、回路材料用途、タッチパネルなどに好適に用いることができる。例えば回路基板の場合は、金属層をパターニングして配線回路を形成する。配線回路は、サブトラクティブ法やセミアディティブ法など公知の方法で形成することができるが、回路の配線幅が狭い場合は、エッチングによる配線幅の減少が少ないセミアディティブ法がより好まれる。 The metal laminate of the present invention has good adhesion between the metal layer and the polyarylene sulfide resin film, and the surface of the metal layer is very smooth, so that it can be suitably used for circuit material applications, touch panels, and the like. For example, in the case of a circuit board, a metal layer is patterned to form a wiring circuit. The wiring circuit can be formed by a known method such as a subtractive method or a semi-additive method, but when the wiring width of the circuit is narrow, the semi-additive method in which the decrease in the wiring width due to etching is small is more preferable.
 以下に、本発明を実施例に基づいて説明する。なお、本発明は、これらの実施例に限定されるものではなく、これらの実施例を本発明の趣旨に基づいて変形、変更することが可能であり、それらを発明の範囲から除外するものではない。 Hereinafter, the present invention will be described based on examples. The present invention is not limited to these examples, and these examples can be modified or modified based on the gist of the present invention, and they are not excluded from the scope of the invention. Absent.
 [評価方法]
 (1)ポリアリーレンスルフィド系樹脂フィルムの融点の測定
 測定を行いたい任意の層について、マイクロプレーンを用いて削り取ってサンプリングする。削り取ったサンプルについて、JIS K7121-1987に従って示差走査熱量計として、セイコーインスツルメンツ社製DSC(RDC220)、データ解析装置として同社製ディスクステーション(SSC/5200)を用いて、上記のサンプル5mgをアルミニウム製受皿上、室温から350℃まで昇温速度20℃/分で昇温する(1st Run)。同試料を取り出し急冷したのち、室温から350℃まで昇温速度20℃/分で昇温する(2nd Run)。得られた2nd RunのDSCチャートで確認される融解の吸熱ピークのピーク温度を融点(Tm)とする。
[Evaluation method]
(1) Measurement of Melting Point of Polyarylene Sulfide Resin Film Any layer to be measured is scraped off with a microplane and sampled. Regarding the scraped sample, according to JIS K7121-1987, a DSC (RDC220) manufactured by Seiko Instruments Co., Ltd. was used as a differential scanning calorimeter, and a disk station (SSC / 5200) manufactured by Seiko Instruments Co., Ltd. was used as a data analysis device. Above, the temperature is raised from room temperature to 350 ° C. at a heating rate of 20 ° C./min (1st Run). The sample is taken out and rapidly cooled, and then the temperature is raised from room temperature to 350 ° C. at a heating rate of 20 ° C./min (2nd Run). The peak temperature of the endothermic peak of melting confirmed on the obtained 2nd Run DSC chart is defined as the melting point (Tm).
 (2)ポリアリーレンスルフィド系樹脂フィルム表面のX線光電子分光法(XPS)による分析
 XPS法による分析は、本文中にも記載の以下の条件で測定、算出した。
装置:ESCALAB220iXL
励起X線:monochromatic Al Kα1,2線 (1486.6eV)
X線経:1mm
光電子脱出角度:90°(試料表面に対する検出器の傾き)
スムージング:11-point smoothing
横軸補正:C1s(CH、C-C)を284.6eVとした。
測定箇所・回数:ポリアリーレンスルフィド系樹脂フィルム表面をランダムに10箇所各1回ずつ測定し、1回の測定ごとに算出して成分比率を求めた。算出された成分比率が検出限界の場合は0%とした。10箇所分の各成分比率の算術平均を測定結果とした。
(2) Analysis of the surface of the polyarylene sulfide resin film by X-ray photoelectron spectroscopy (XPS) The analysis by the XPS method was measured and calculated under the following conditions described in the text.
Equipment: ESCALAB220iXL
Excited X-ray: monochromatic Al Kα 1 and 2 lines (1486.6 eV)
X-ray diameter: 1 mm
Photoelectron escape angle: 90 ° (inclination of detector with respect to sample surface)
Smoothing: 11-point smoothing
Horizontal axis correction: C1s (CH x , CC) was set to 284.6 eV.
Measurement points / number of times: The surface of the polyarylene sulfide-based resin film was randomly measured once at each of 10 points, and the component ratio was calculated for each measurement. When the calculated component ratio was the detection limit, it was set to 0%. The arithmetic mean of each component ratio for 10 locations was used as the measurement result.
 (3)ポリアリーレンスルフィド系樹脂フィルムの表面粗さの測定
 フィルムの表面粗さは、JISB0601-1994で定義される算術平均粗さのことであり、以下の条件で測定した。
装置:株式会社小坂研究所製 Surfcorder ET4000A
触針先端R:2μm
測定面積:500μm×500μm、
サンプル固定:装置付属のかまぼこ状のガラス。
(3) Measurement of Surface Roughness of Polyarylene Sulfide Resin Film The surface roughness of the film is the arithmetic mean roughness defined in JISB0601-1994, and was measured under the following conditions.
Equipment: Surfcorder ET4000A manufactured by Kosaka Laboratory Co., Ltd.
Needle tip R: 2 μm
Measurement area: 500 μm x 500 μm,
Sample fixing: Kamaboko-shaped glass attached to the device.
 (4)金属積層体の評価
 (4-1)金属層の表面粗さの測定
 金属層の表面粗さRaは、上記(3)のフィルムと同様に測定した。
(4) Evaluation of Metal Laminated Body (4-1) Measurement of Surface Roughness of Metal Layer The surface roughness Ra of the metal layer was measured in the same manner as in the film of (3) above.
 (4-2)金属積層体から剥離した金属層(α面)のXPSによる分析
 当評価において、金属層の厚みは9μmに統一した。積層体の金属層の厚みが9μmに満たない場合は、厚さが9μmになるように電解銅めっきし、9μmを超える場合は、研磨で調整した。
(4-2) Analysis of the metal layer (α-plane) peeled from the metal laminate by XPS In this evaluation, the thickness of the metal layer was unified to 9 μm. When the thickness of the metal layer of the laminate was less than 9 μm, electrolytic copper plating was performed so that the thickness was 9 μm, and when it exceeded 9 μm, it was adjusted by polishing.
 金属積層体のポリアリーレンスルフィド系樹脂フィルムと金属層との界面で金属層を剥離し、金属層側の剥離面を分析した。金属層の剥離は、10mm幅の短冊状の積層体を平板に固定して、室温23℃湿度50%の環境下で、金属層を把持して剥離速度100mm/min、180°の角度で剥離した。 The metal layer was peeled off at the interface between the polyarylene sulfide resin film of the metal laminate and the metal layer, and the peeled surface on the metal layer side was analyzed. To peel off the metal layer, a strip-shaped laminate with a width of 10 mm is fixed to a flat plate, and the metal layer is gripped in an environment of room temperature of 23 ° C. and humidity of 50%, and the metal layer is peeled off at an angle of 100 mm / min and 180 °. did.
 XPS法による分析は、本文中にも記載の以下の条件で測定、算出した。
装置:QuanteraSXM
励起X線:monochromatic Al Kα1,2線 (1486.6eV)
X線経:200μm
光電子脱出角度:45°(試料表面に対する検出器の傾き)
スムージング:9-point smoothing
横軸補正:C1s(CH、C-C)を284.6eVとした。
測定箇所・回数:α面をランダムに10箇所各1回ずつ測定し、1回の測定ごとに算出して成分比率を求めた。算出された成分比率が検出限界の場合は0%とした。10箇所分の各成分比率の算術平均をα面のXPS分析結果とした。
The analysis by the XPS method was measured and calculated under the following conditions described in the text.
Equipment: QuanteraSXM
Excited X-ray: monochromatic Al Kα 1 and 2 lines (1486.6 eV)
X-ray diameter: 200 μm
Photoelectron escape angle: 45 ° (inclination of detector with respect to sample surface)
Smoothing: 9-point smoothing
Horizontal axis correction: C1s (CH x , CC) was set to 284.6 eV.
Measurement points / number of times: The α-plane was randomly measured once at each of 10 points, and the component ratio was calculated for each measurement. When the calculated component ratio was the detection limit, it was set to 0%. The arithmetic mean of each component ratio for 10 locations was used as the result of XPS analysis of the α plane.
 (5)金属層の密着力の測定
 金属層の密着力測定においては、金属層の厚みを12μmに統一した。金属積層体の金属層の厚みが12μmに満たない場合は電解銅めっきし、12μmを超える場合はエッチングまたは研磨で厚さを調整した。
(5) Measurement of Adhesion Strength of Metal Layer In the adhesion strength measurement of the metal layer, the thickness of the metal layer was unified to 12 μm. When the thickness of the metal layer of the metal laminate was less than 12 μm, electrolytic copper plating was performed, and when it exceeded 12 μm, the thickness was adjusted by etching or polishing.
 金属積層体は、幅5mmのマスキングテープでマスクして塩化第二鉄でエッチングして幅5mm長さ100mmの測定用サンプルを得た。サンプルは粘着テープを用いてSUS板に固定し、金属層を把持して以下の条件で密着力を測定した。
装置:粘着・皮膜剥離解析装置 VPA-2
サンプル幅:5mm
サンプル長さ:100mm
剥離条件:90°、100mm/min
測定距離:75mm。
The metal laminate was masked with masking tape having a width of 5 mm and etched with ferric chloride to obtain a measurement sample having a width of 5 mm and a length of 100 mm. The sample was fixed to a SUS plate using an adhesive tape, the metal layer was gripped, and the adhesion was measured under the following conditions.
Equipment: Adhesive / film peeling analyzer VPA-2
Sample width: 5 mm
Sample length: 100 mm
Peeling conditions: 90 °, 100 mm / min
Measuring distance: 75 mm.
 得られた測定プロファイルのうち、剥離距離4mmから50mmの間の密着力を平均した値を、金属層の密着力とした。密着力が5N/cm以上の場合はA、3N/cm以上5N/cm未満の場合はB、1.0N/cm以上3N/cm未満の場合はC、0.1N/cm以上1.0N/cm未満の場合はD、0.1N/cm未満の場合をEとした。 Of the obtained measurement profiles, the value obtained by averaging the adhesion between the peeling distances of 4 mm and 50 mm was defined as the adhesion of the metal layer. A when the adhesion is 5N / cm or more, B when the adhesion is 3N / cm or more and less than 5N / cm, C when the adhesion is 1.0N / cm or more and less than 3N / cm, 0.1N / cm or more and 1.0N / When it was less than cm, it was designated as D, and when it was less than 0.1 N / cm, it was designated as E.
 (6)配線パターンの形成
 金属積層体を用いて配線パターンを加工し、その加工性を評価した。銅残りなく配線加工できるものをA、加工できるものの配線パターンの端部や配線間に銅残りがある場合はB、加工できるものの銅残りがあったり配線端部の直線が荒れたりするものをC、配線加工できないものをDとした。パターン加工方法は以下の通りである。
(6) Formation of Wiring Pattern A wiring pattern was processed using a metal laminate, and its workability was evaluated. A for wiring that can be processed without copper residue, B if there is copper residue at the end of the wiring pattern or between wirings that can be processed, and C for those that can be processed but have copper residue or the straight line at the wiring end is rough. , The one that cannot be wired is designated as D. The pattern processing method is as follows.
 金属積層体の金属層表面に、東京応化株式会社製“PMER(登録商標)”P-LA900PMを使用して、レジスト厚20μm、L/S=10/10μmの配線パターンのめっきレジストを形成した。その後、金属層厚みが10μmになるように電解銅めっきした。電解銅めっきは、硫酸銅五水和塩50g/L、硫酸200g/L、塩素50ppm、メルテックス株式会社の添加剤“カパーグリーム(登録商標)”ST-901A 2ml/L、“カパーグリーム(登録商標)”ST-901B 20ml/Lの液を使用し、めっき条件は、噴流方式、電流密度1.0A/dmとした。電解銅めっき後、めっきレジストをアルカリ性の剥離液で除去し、過酸化水素-硫酸系のエッチング液を用いて配線間にある給電目的の金属層を除去して配線パターンを形成した。なお、金属層に下地金属層としてニッケルやチタンを含む場合は、過酸化水素-硫酸系のエッチング液で除去しにくいため、銅層を上記方法でエッチングした後、メック株式会社製“メックリムーバー”を使用して下地金属を除去した。 A plating resist having a wiring pattern having a resist thickness of 20 μm and L / S = 10/10 μm was formed on the surface of the metal layer of the metal laminate using “PMER®” P-LA900PM manufactured by Tokyo Ohka Co., Ltd. Then, electrolytic copper plating was performed so that the thickness of the metal layer was 10 μm. Electrolytic copper plating includes copper sulfate pentahydrate 50 g / L, sulfuric acid 200 g / L, chlorine 50 ppm, Meltex Inc. additive "Kappa Gleam (registered trademark)" ST-901A 2 ml / L, "Capper Gleam (registered)". A liquid of 20 ml / L of "ST-901B" was used, and the plating conditions were a jet flow method and a current density of 1.0 A / dm 2 . After electrolytic copper plating, the plating resist was removed with an alkaline stripping solution, and the metal layer for power feeding between the wirings was removed using a hydrogen peroxide-sulfuric acid-based etching solution to form a wiring pattern. If the metal layer contains nickel or titanium as the base metal layer, it is difficult to remove it with a hydrogen peroxide-sulfuric acid-based etching solution. Therefore, after etching the copper layer by the above method, MEC Co., Ltd.'s "Meckli Mover" Was used to remove the underlying metal.
 [実施例1]
 厚さ100μmの二軸延伸PPSフィルム(東レ株式会社製“トレリナ”(登録商標)フィルム #100-3030 表面層融点280℃)の片面に、アルゴン雰囲気下でプラズマ処理してポリアリーレンスルフィド系樹脂フィルムを得た。処理条件は、アルゴン雰囲気下、圧力0.3Pa、処理電力密度0.8kW・min/mとした。
[Example 1]
A polyarylene sulfide resin film obtained by plasma-treating one side of a 100 μm-thick biaxially stretched PPS film (“Trelina” (registered trademark) film # 100-3030 surface layer melting point 280 ° C. manufactured by Toray Industries, Inc.) under an argon atmosphere. Got The processing conditions were an argon atmosphere, a pressure of 0.3 Pa, and a processing power density of 0.8 kW · min / m 2 .
 プラズマ処理した面に、下地金属層としてマグネトロンスパッタリング法でNi/Cr=80/20(モル比)の組成の金属を、25nm形成し、続いて、マグネトロンスパッタリング法で銅を90nm積層して金属積層体を得た。Ni/Cr、Cuのスパッタリング条件はいずれも、アルゴンガスを導入して真空到達度は0.2Pa以下、RF電源を用いて出力は500Wとした。 A metal having a composition of Ni / Cr = 80/20 (molar ratio) was formed on the plasma-treated surface as a base metal layer by a magnetron sputtering method at 25 nm, and then copper was laminated by a magnetron sputtering method at 90 nm to laminate the metal. I got a body. For all the sputtering conditions of Ni / Cr and Cu, the degree of vacuum reached was 0.2 Pa or less by introducing argon gas, and the output was 500 W using an RF power supply.
 [実施例2]
 厚さ100μmの二軸延伸PPSフィルム(東レ株式会社製“トレリナ”(登録商標)フィルム、3層構成、両側の層の融点255℃、中心層融点280℃)を使用し、プラズマ処理の雰囲気をアルゴン/O=50/50(体積比)とした以外は実施例1と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。
[Example 2]
A biaxially stretched PPS film with a thickness of 100 μm (“Trelina” (registered trademark) film manufactured by Toray Industries, Inc., 3-layer structure, melting points of both layers 255 ° C., melting point of central layer 280 ° C.) is used to create an atmosphere of plasma treatment. A polyarylene sulfide resin film and a metal laminate were obtained in the same manner as in Example 1 except that argon / O 2 = 50/50 (volume ratio).
 [実施例3]
 下地金属層をTiにした以外は、実施例2と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。
[Example 3]
A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 2 except that the base metal layer was Ti.
 [実施例4]
 プラズマ処理したポリアリーレンスルフィド系樹脂フィルムに直接銅をスパッタリングした以外は、実施例2と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。
[Example 4]
A polyarylene sulfide resin film and a metal laminate were obtained in the same manner as in Example 2 except that copper was directly sputtered onto the plasma-treated polyarylene sulfide resin film.
 [実施例5]
 プラズマ処理したポリアリーレンスルフィド系樹脂フィルムに、下地金属層としてNi/Crを形成した後、蒸着法で銅を積層した以外は実施例2と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。銅蒸着は、電子ビームを用いた真空蒸着法で、0.5μmの厚さの銅層を積層した。
[Example 5]
A polyarylene sulfide resin film and a metal laminate were formed in the same manner as in Example 2 except that Ni / Cr was formed as a base metal layer on the plasma-treated polyarylene sulfide resin film and then copper was laminated by a vapor deposition method. Obtained. Copper vapor deposition was a vacuum vapor deposition method using an electron beam, and a copper layer having a thickness of 0.5 μm was laminated.
 [実施例6]
 実施例2と同様にして得たポリアリーレンスルフィド系樹脂フィルムに銅箔を熱ラミネートして金属積層体を得た。銅箔は、福田金属株式会社製電解銅箔CF-T4X-SV、厚さ12μmを使用した。熱ラミネート条件は、北川精機株式会社製真空プレス装置を用いて、260℃、4MPaで10分間とした。
[Example 6]
A copper foil was heat-laminated on the polyarylene sulfide-based resin film obtained in the same manner as in Example 2 to obtain a metal laminate. As the copper foil, an electrolytic copper foil CF-T4X-SV manufactured by Fukuda Metal Co., Ltd. with a thickness of 12 μm was used. The thermal laminating conditions were set at 260 ° C. and 4 MPa for 10 minutes using a vacuum press device manufactured by Kitagawa Seiki Co., Ltd.
 [実施例7]
 プラズマ処理条件を、アルゴン雰囲気とした以外は実施例2と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。
[Example 7]
A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 2 except that the plasma treatment conditions were an argon atmosphere.
 [実施例8]
 プラズマ処理条件を、O雰囲気とした以外は実施例2と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。
[Example 8]
A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 2 except that the plasma treatment conditions were O 2 atmosphere.
 [実施例9]
 プラズマ処理条件を、処理電力密度0.4kW・min/mとした以外は実施例8と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。
[Example 9]
A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 8 except that the plasma treatment conditions were set to a treatment power density of 0.4 kW · min / m 2 .
 [実施例10]
 プラズマ処理条件を、処理雰囲気アルゴン/O=50/50(体積比)、処理電力密度6.0kW・min/mとした以外は実施例1と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。
[Example 10]
The plasma treatment conditions were the same as in Example 1 except that the treatment atmosphere was argon / O 2 = 50/50 (volume ratio) and the treatment power density was 6.0 kW / min / m 2, and the polyarylene sulfide resin film and metal were used. A laminate was obtained.
 [実施例11]
 プラズマ処理条件を、処理電力密度3.5kW・min/mとした以外は実施例2と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。
[Example 11]
A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 2 except that the plasma treatment conditions were set to a treatment power density of 3.5 kW · min / m 2 .
 [実施例12]
 プラズマ処理条件を、処理電力密度15kW・min/mとした以外は実施例8と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。
[Example 12]
A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 8 except that the plasma treatment conditions were set to a treatment power density of 15 kW · min / m 2 .
 [実施例13]
 プラズマ処理条件を、処理電力密度50kW・min/mとした以外は実施例8と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。
[Example 13]
A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 8 except that the plasma treatment conditions were set to a treatment power density of 50 kW · min / m 2 .
 [実施例14]
 プラズマ処理条件を、圧力0.1Pa、処理電力密度7.0kW・min/mとした以外は実施例8と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。
[Example 14]
A polyarylene sulfide resin film and a metal laminate were obtained in the same manner as in Example 8 except that the plasma treatment conditions were a pressure of 0.1 Pa and a treatment power density of 7.0 kW · min / m 2 .
 [実施例15]
 プラズマ処理条件を、圧力10Paとした以外は実施例8と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。
[Example 15]
A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 8 except that the plasma treatment conditions were set to a pressure of 10 Pa.
 [実施例16]
 プラズマ処理条件を、圧力15Paとした以外は実施例8と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。
[Example 16]
A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 8 except that the plasma treatment conditions were set to a pressure of 15 Pa.
 [実施例17]
 プラズマ処理条件を、CO雰囲気下とし、処理電力密度1.2kW・min/mとした以外は実施例2と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。
[Example 17]
A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 2 except that the plasma treatment conditions were a CO 2 atmosphere and the treatment power density was 1.2 kW · min / m 2 .
 [実施例18]
 プラズマ処理条件を、N/CO=90/10(体積比)雰囲気下とした以外は実施例17と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。
[Example 18]
A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 17 except that the plasma treatment conditions were N 2 / CO 2 = 90/10 (volume ratio) atmosphere.
 [比較例1]
 プラズマ処理をせずに、金属を積層した以外は実施例1と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。
[Comparative Example 1]
A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 1 except that the metals were laminated without plasma treatment.
 [比較例2]
 プラズマ処理をせずに、金属を積層した以外は実施例6と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。
[Comparative Example 2]
A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 6 except that the metals were laminated without plasma treatment.
 [比較例3]
 プラズマ処理の代わりにコロナ処理をした以外は、実施例2と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。コロナ処理条件は、春日電機株式会社製コロナ表面改質装置を用いて電極幅25mm、100W、0.3m/minで5回処理した。
[Comparative Example 3]
A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 2 except that the corona treatment was performed instead of the plasma treatment. The corona treatment conditions were 5 times with an electrode width of 25 mm, 100 W, and 0.3 m / min using a corona surface modifier manufactured by Kasuga Electric Works Ltd.
 [比較例4]
 プラズマ処理の代わりに、ブラスト処理をした以外は実施例2と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。ブラスト処理は、研磨材として平均粒径200μmの珪砂を用い、1m離れたフィルムにショットするショットブラスト方式で処理した後、水洗した。
[Comparative Example 4]
A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 2 except that the blast treatment was performed instead of the plasma treatment. In the blasting treatment, silica sand having an average particle size of 200 μm was used as an abrasive, and the film was shot by a shot blasting method at a distance of 1 m and then washed with water.
 [比較例5]
 プラズマ処理条件を、処理雰囲気N/O=50/50(体積比)、圧力0.02Paとした以外は実施例2と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。
[Comparative Example 5]
A polyarylene sulfide-based resin film and a metal laminate were obtained in the same manner as in Example 2 except that the plasma treatment conditions were a treatment atmosphere N 2 / O 2 = 50/50 (volume ratio) and a pressure of 0.02 Pa.
 [比較例6]
 プラズマ処理条件を、処理電力密度15kW・min/mとした以外は比較例5と同様にしてポリアリーレンスルフィド系樹脂フィルム、金属積層体を得た。
[Comparative Example 6]
A polyarylene sulfide resin film and a metal laminate were obtained in the same manner as in Comparative Example 5 except that the plasma treatment conditions were set to a treatment power density of 15 kW · min / m 2 .
 各実施例・比較例における評価結果を表1、2に示す。 Tables 1 and 2 show the evaluation results in each Example / Comparative Example.
 なお、実施例1のポリアリーレンスルフィド系樹脂フィルムを得る際、交流電源周波数13.56MHzの電源を用い、出力100W、搬送速度0.5m/min条件でプラズマ処理した。 When the polyarylene sulfide-based resin film of Example 1 was obtained, plasma treatment was performed using a power source having an AC power frequency of 13.56 MHz under the conditions of an output of 100 W and a transport speed of 0.5 m / min.
 また、実施例1、2にて用いた厚さ100μmの二軸延伸PPSフィルムを片刃で厚み約半分程度にスライスし、その断面を(2)の方法で分析すると、いずれのフィルムも硫黄の酸化成分(SO)に帰属されるピーク面積割合は1%未満であり、硫化物(S2-)に帰属されるピーク面積割合も1%未満であった。 Further, when the biaxially stretched PPS film having a thickness of 100 μm used in Examples 1 and 2 was sliced with a single edge to about half the thickness and the cross section was analyzed by the method (2), all the films were oxidized by sulfur. The peak area ratio attributed to component (SO) was less than 1%, and the peak area ratio attributed to sulfide (S 2- ) was also less than 1%.
 比較例2は高温で貼り合わせる際の酸化によって硫黄の酸化成分(SO)に帰属されるピーク面積が比較的大きく、比較例4はブラスト処理で生成した残渣が、末端が酸化された状態で検出された結果、硫黄の酸化成分(SO)に帰属されるピーク面積割合が比較的高いと考える。また、比較例1、2において硫化物(S2-)に帰属されるピーク面積割合が比較的高いのは、下地金属層の形成時に酸素不足の状態で分子鎖が切断され、結合に寄与しづらい状態で残渣となっていたためと考える。また、比較例4については、ブラスト処理によって生成した残渣が表面に残っていたためと考える。 In Comparative Example 2, the peak area attributed to the sulfur oxidizing component (SO) due to oxidation during bonding at a high temperature is relatively large, and in Comparative Example 4, the residue generated by the blasting treatment is detected in a state where the ends are oxidized. As a result, it is considered that the ratio of the peak area attributed to the oxidizing component (SO) of sulfur is relatively high. Further, in Comparative Examples 1 and 2, the ratio of the peak area attributed to sulfide ( S2- ) is relatively high because the molecular chain is cleaved in a state of oxygen deficiency when the base metal layer is formed, which contributes to the bond. This is probably because it was a residue in a difficult state. Further, in Comparative Example 4, it is considered that the residue generated by the blasting treatment remained on the surface.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
1:ポリアリーレンスルフィド系樹脂フィルム
2:金属層
3:下地金属層
4:α面
1: Polyarylene sulfide resin film 2: Metal layer 3: Base metal layer 4: α-plane

Claims (14)

  1. 少なくとも一方の表面のX線光電子分光法(XPS)による分析で検出される酸素原子が10atomic%以上17atomic%以下であり、酸素原子と炭素原子の原子数比O/Cが0.10以上0.25以下であるポリアリーレンスルフィド系樹脂フィルム。 The oxygen atom detected by the analysis by X-ray photoelectron spectroscopy (XPS) on at least one surface is 10 atomic% or more and 17 atomic% or less, and the atomic number ratio O / C of the oxygen atom and the carbon atom is 0.10 or more and 0. A polyarylene sulfide resin film of 25 or less.
  2. 前記X線光電子分光法(XPS)による分析で検出される硫黄原子と炭素原子の原子数比S/Cが0.10以上0.16以下である請求項1に記載のポリアリーレンスルフィド系樹脂フィルム。 The polyarylene sulfide-based resin film according to claim 1, wherein the atomic number ratio S / C of the sulfur atom and the carbon atom detected by the analysis by the X-ray photoelectron spectroscopy (XPS) is 0.10 or more and 0.16 or less. ..
  3. 前記X線光電子分光法(XPS)による分析で検出される硫黄原子のS2pに帰属されるピーク面積を100%としたとき、硫黄酸化物に帰属されるピーク面積が5%以上20%以下である請求項1または2に記載のポリアリーレンスルフィド系樹脂フィルム。 When the peak area attributable to S2p of the sulfur atom detected by the analysis by the X-ray photoelectron spectroscopy (XPS) is 100%, the peak area attributed to sulfur oxide is 5% or more and 20% or less. The polyarylene sulfide-based resin film according to claim 1 or 2.
  4. 少なくとも一方の表面の表面粗さRaが0.01μm以上0.20μm以下である請求項1から3のいずれかに記載のポリアリーレンスルフィド系樹脂フィルム。 The polyarylene sulfide-based resin film according to any one of claims 1 to 3, wherein the surface roughness Ra of at least one surface is 0.01 μm or more and 0.20 μm or less.
  5. 前記ポリアリーレンスルフィド系樹脂フィルムが2層以上の積層体であり、少なくとも一方の表面層の融点が275℃以下である請求項1から4のいずれかに記載のポリアリーレンスルフィド系樹脂フィルム。 The polyarylene sulfide resin film according to any one of claims 1 to 4, wherein the polyarylene sulfide resin film is a laminate of two or more layers, and the melting point of at least one of the surface layers is 275 ° C. or lower.
  6. ポリアリーレンスルフィド系樹脂フィルム上に、金属層を該ポリアリーレンスルフィド系樹脂フィルムと接した状態で有する金属積層体であり、下記の条件でポリアリーレンスルフィド系樹脂フィルムから剥離した該金属層の該ポリアリーレンスルフィド系樹脂フィルムに接していた面(α面)のXPSによる分析で検出される金属原子が10atomic%以下である金属積層体。
    条件:金属層の厚み9μm、幅10mmの短冊状の金属積層体のポリアリーレンスルフィド系樹脂フィルム側を平板に固定して、室温23℃湿度50%の環境下、金属層を把持して剥離速度100mm/min、180°の角度で剥離する。
    A metal laminate having a metal layer on a polyarylene sulfide resin film in contact with the polyarylene sulfide resin film, and the poly of the metal layer peeled from the polyarylene sulfide resin film under the following conditions. A metal laminate in which the metal atom detected by XPS analysis of the surface (α surface) in contact with the arylene sulfide resin film is 10 atomic% or less.
    Conditions: The polyarylene sulfide resin film side of a strip-shaped metal laminate having a thickness of 9 μm and a width of 10 mm is fixed to a flat plate, and the metal layer is gripped and peeled at a room temperature of 23 ° C. and a humidity of 50%. Peel at an angle of 100 mm / min and 180 °.
  7. 前記α面のXPSによる分析で検出される硫黄原子のS2pに帰属されるピーク面積を100%としたとき、硫黄の酸化成分(SO)に帰属されるピーク面積が1%以上7%以下である請求項6に記載の金属積層体。 When the peak area attributed to S2p of the sulfur atom detected by the XPS analysis of the α plane is 100%, the peak area attributed to the sulfur oxidizing component (SO) is 1% or more and 7% or less. The metal laminate according to claim 6.
  8. 前記α面のXPSによる分析で検出される硫黄原子のS2pに帰属されるピーク面積を100%としたとき、硫化物(S2-)に帰属されるピーク面積が5%以下である請求項6または7に記載の金属積層体。 Claim 6 that the peak area attributed to sulfide (S 2- ) is 5% or less when the peak area attributed to S2p of the sulfur atom detected by the XPS analysis of the α plane is 100%. Alternatively, the metal laminate according to 7.
  9. 前記ポリアリーレンスルフィド系樹脂フィルムが2層以上の積層体であり、前記金属層と接するポリアリーレンスルフィド系樹脂フィルムの表面層の融点が275℃以下である請求項6から8のいずれかに記載の金属積層体。 The invention according to any one of claims 6 to 8, wherein the polyarylene sulfide resin film is a laminate of two or more layers, and the melting point of the surface layer of the polyarylene sulfide resin film in contact with the metal layer is 275 ° C. or lower. Metal laminate.
  10. 前記金属層の主成分が銅である請求項6から9のいずれかに記載の金属積層体。 The metal laminate according to any one of claims 6 to 9, wherein the main component of the metal layer is copper.
  11. 前記金属層の前記ポリアリーレンスルフィド系樹脂フィルムと接していない面の表面粗さRaが0.01μm以上0.20μm以下である請求項6から10のいずれかに記載の金属積層体。 The metal laminate according to any one of claims 6 to 10, wherein the surface roughness Ra of the surface of the metal layer that is not in contact with the polyarylene sulfide resin film is 0.01 μm or more and 0.20 μm or less.
  12. 圧力0.1Pa以上100Pa以下の雰囲気下、0.1kW・min/m以上50kW・min/m以下の処理電力密度でプラズマ処理をする工程を含む、ポリアリーレンスルフィド系樹脂フィルムの製造方法。 A method for producing a polyarylene sulfide-based resin film, which comprises a step of performing plasma treatment at a processing power density of 0.1 kW · min / m 2 or more and 50 kW · min / m 2 or less in an atmosphere of a pressure of 0.1 Pa or more and 100 Pa or less.
  13. ポリアリーレンスルフィド系樹脂フィルムに圧力0.1Pa以上100Pa以下の雰囲気下、0.1kW・min/m以上50kW・min/m以下の処理電力密度でプラズマ処理をした後、気相成膜法または金属箔を貼り合わせる方法により金属を積層する工程を含む、金属積層体の製造方法。 A vapor phase film formation method is performed after plasma treatment is performed on a polyarylene sulfide resin film under an atmosphere of a pressure of 0.1 Pa or more and 100 Pa or less at a processing power density of 0.1 kW · min / m 2 or more and 50 kW · min / m 2 or less. Alternatively, a method for manufacturing a metal laminate, which comprises a step of laminating metals by a method of laminating metal foils.
  14. 請求項1から5のいずれかに記載のポリアリーレンスルフィド系樹脂フィルムに金属を積層する金属積層体の製造方法。 A method for producing a metal laminate in which a metal is laminated on the polyarylene sulfide-based resin film according to any one of claims 1 to 5.
PCT/JP2020/028494 2019-07-30 2020-07-22 Polyarylene sulfide resin film, metal layered product, production method for polyarylene sulfide resin film, and production method for metal layered product WO2021020289A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080054999.1A CN114245810A (en) 2019-07-30 2020-07-22 Polyarylene sulfide resin film, metal laminate, method for producing polyarylene sulfide resin film, and method for producing metal laminate
JP2020544048A JPWO2021020289A1 (en) 2019-07-30 2020-07-22
KR1020217041412A KR20220042307A (en) 2019-07-30 2020-07-22 A polyarylene sulfide-based resin film, a metal laminate, a method for producing a polyarylene sulfide-based resin film, and a method for producing a metal laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-139736 2019-07-30
JP2019139736 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021020289A1 true WO2021020289A1 (en) 2021-02-04

Family

ID=74230356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028494 WO2021020289A1 (en) 2019-07-30 2020-07-22 Polyarylene sulfide resin film, metal layered product, production method for polyarylene sulfide resin film, and production method for metal layered product

Country Status (5)

Country Link
JP (1) JPWO2021020289A1 (en)
KR (1) KR20220042307A (en)
CN (1) CN114245810A (en)
TW (1) TW202112913A (en)
WO (1) WO2021020289A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230321A1 (en) * 2020-05-13 2021-11-18 アウロステクノロジーズ合同会社 Film, laminate, and method for producing laminate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321687A (en) * 1988-06-22 1989-12-27 Toyo Metaraijingu Kk Flexible printed wiring board
JPH02107641A (en) * 1988-10-17 1990-04-19 Toray Ind Inc Polyphenylene sulfide film
JPH03244182A (en) * 1990-02-22 1991-10-30 Shin Etsu Chem Co Ltd Manufacture of flexible printed wiring board
JP2005310508A (en) * 2004-04-21 2005-11-04 Kaneka Corp Polyelectrolyte film and direct methanol fuel cell containing it
WO2008029651A1 (en) * 2006-09-04 2008-03-13 Toray Industries, Inc. Seal film for solar cell module and solar cell module utilizing the same
WO2016148017A1 (en) * 2015-03-13 2016-09-22 東レ株式会社 Composite polymer electrolyte membrane, as well as electrolyte membrane having catalyst layer, membrane electrode assembly, and solid polymer fuel cell in which said composite polymer electrolyte membrane is used

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121298A (en) * 2000-10-12 2002-04-23 Toray Ind Inc Polyphenylene sulfide film and capacitor
KR100502179B1 (en) 2002-02-25 2005-08-08 스마트알앤씨 주식회사 Preparation of Metal Clad Laminate for Printed Circuit Board
JP4479184B2 (en) * 2003-08-07 2010-06-09 パナソニック株式会社 Plastic film manufacturing method and flexible printed circuit board using the same
JP4646580B2 (en) 2004-09-02 2011-03-09 住友電気工業株式会社 Method for producing composite film and surface modification method for resin film
KR20080028493A (en) * 2005-08-19 2008-03-31 아사히 가세이 가부시키가이샤 Laminate and process for producing the same
WO2014199844A1 (en) * 2013-06-10 2014-12-18 東レ株式会社 Film laminate and method for producing same
JP5768943B1 (en) * 2013-10-29 2015-08-26 東レ株式会社 Method for producing carbon fiber reinforced polyarylene sulfide
JP7109176B2 (en) * 2017-10-18 2022-07-29 東レ・デュポン株式会社 polyimide film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321687A (en) * 1988-06-22 1989-12-27 Toyo Metaraijingu Kk Flexible printed wiring board
JPH02107641A (en) * 1988-10-17 1990-04-19 Toray Ind Inc Polyphenylene sulfide film
JPH03244182A (en) * 1990-02-22 1991-10-30 Shin Etsu Chem Co Ltd Manufacture of flexible printed wiring board
JP2005310508A (en) * 2004-04-21 2005-11-04 Kaneka Corp Polyelectrolyte film and direct methanol fuel cell containing it
WO2008029651A1 (en) * 2006-09-04 2008-03-13 Toray Industries, Inc. Seal film for solar cell module and solar cell module utilizing the same
WO2016148017A1 (en) * 2015-03-13 2016-09-22 東レ株式会社 Composite polymer electrolyte membrane, as well as electrolyte membrane having catalyst layer, membrane electrode assembly, and solid polymer fuel cell in which said composite polymer electrolyte membrane is used

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230321A1 (en) * 2020-05-13 2021-11-18 アウロステクノロジーズ合同会社 Film, laminate, and method for producing laminate

Also Published As

Publication number Publication date
TW202112913A (en) 2021-04-01
CN114245810A (en) 2022-03-25
KR20220042307A (en) 2022-04-05
JPWO2021020289A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
US6767644B2 (en) Metallized polyimide film
JP5639258B2 (en) Liquid crystal polymer film-based copper clad laminate and method for producing the same
KR101133488B1 (en) Non-adhesive-type flexible laminate and method for production thereof
EP2662208A1 (en) Copper-clad laminate and method for manufacturing same
JP6110581B2 (en) Surface-treated copper foil, copper-clad laminate and printed wiring board for high-frequency signal transmission circuit formation
JP2021054031A (en) Copper-clad laminate and method for producing copper-clad laminate
JP2007207812A (en) Copper foil for printed wiring board and printed wiring board using the same
JP5345955B2 (en) Adhesive flexible laminate
WO2021020289A1 (en) Polyarylene sulfide resin film, metal layered product, production method for polyarylene sulfide resin film, and production method for metal layered product
JP6578379B2 (en) Copper foil with carrier, copper foil with resin, and method for producing printed wiring board
JP6035679B2 (en) Plating laminate manufacturing method and plating laminate
JP2006306009A (en) Two-layer film, method for producing two-layer film and method for manufacturing printed wiring board
WO2016043058A1 (en) Surface-treated copper foil, method for producing same, copper-clad laminate for printed wiring board, and printed wiring board
JPH05259596A (en) Board for flexible printed wiring
JP7355648B2 (en) Laminate and method for manufacturing the laminate
JP2005262707A (en) Copper-clad laminated film and material for flexible circuit board
CN110392746B (en) Metallized film and method for manufacturing same
JP2006175634A (en) Metal-polyimide substrate
JP2023037942A (en) flexible substrate
TW202246053A (en) Stacked body for printed circuit board and joined body for multilayer printed circuit board
JP2021172006A (en) Copper-clad laminate, and method for manufacturing copper-clad laminate
US10149394B2 (en) Method for forming conductor layer, and method for producing multilayer wiring substrate using same
TW202136041A (en) Metal foil with carrier
JPH05259595A (en) Board for flexible printed wiring
JP2007247026A (en) Two layer film, method for producing two layer film, and method for producing printed board

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020544048

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846025

Country of ref document: EP

Kind code of ref document: A1