WO2022210992A1 - 水質浄化装置及び水質浄化方法 - Google Patents

水質浄化装置及び水質浄化方法 Download PDF

Info

Publication number
WO2022210992A1
WO2022210992A1 PCT/JP2022/016337 JP2022016337W WO2022210992A1 WO 2022210992 A1 WO2022210992 A1 WO 2022210992A1 JP 2022016337 W JP2022016337 W JP 2022016337W WO 2022210992 A1 WO2022210992 A1 WO 2022210992A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pipe
pump mechanism
upper opening
lower opening
Prior art date
Application number
PCT/JP2022/016337
Other languages
English (en)
French (fr)
Inventor
弘文 中西
仁章 田中
重直 圓山
琢磨 古川
Original Assignee
横河電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横河電機株式会社 filed Critical 横河電機株式会社
Publication of WO2022210992A1 publication Critical patent/WO2022210992A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water

Definitions

  • the present disclosure relates to a water purification device and a water purification method.
  • the surface layer is rich in oxygen due to photosynthesis, and if vertical mixing is performed properly, the oxygen-poor state in the bottom layer does not occur. A layer (density stratification) is formed, which makes it difficult for vertical mixing to occur.
  • the water in the surface layer and the water in the bottom layer are sent through a pipe to a spout located in the intermediate layer by a pump mechanism, mixed, and discharged. , the oxygen concentration in the water discharged from the spout is diluted, and the amount of oxygen that can be supplied to the bottom layer is insufficient.
  • An object of the present disclosure is to provide a water purification device and a water purification method that can efficiently supply oxygen to the bottom layer of a water area.
  • a water purification apparatus includes a pipe comprising an upper opening arranged in a surface layer of a water area and a lower opening arranged in a bottom layer of the water area; and a pump mechanism for sending water so that one of the lower opening is used as a water intake port, and the other of the upper opening and the lower opening is used as a water discharge port.
  • the water in the surface layer is taken into the pipe from the upper opening and discharged from the lower opening in the bottom layer, so that the water in the surface layer is directly supplied to the bottom layer, or the water in the bottom layer is supplied to the pipe from the lower opening.
  • the water in the surface layer can be gradually supplied to the bottom layer by convection, so that oxygen can be efficiently supplied to the bottom layer.
  • the water purification device includes an internal temperature sensor that measures the temperature of water inside the pipe at a predetermined water depth, an external temperature sensor that measures the temperature of water outside the pipe at the predetermined water depth, and a control unit that controls the flow rate of the pump mechanism so that the difference between the measured value by the internal temperature sensor and the measured value by the external temperature sensor falls within a predetermined range.
  • the difference between the measured value by the internal temperature sensor and the measured value by the external temperature sensor falls within a predetermined range (for example, within ⁇ 5° C., within ⁇ 4° C., or within ⁇ 3° C.).
  • the pipe By limiting the flow rate of the pumping mechanism, i.e., pumping the water slowly (e.g., at a flow rate of 1-10 mm/s, 1-30 mm/s or 1-100 mm/s through the pipe), the pipe
  • the heat transfer between the inside and outside of the pipe through the pipe allows water to be sent while reducing the temperature difference between the inside and outside of the pipe, and therefore the difference in density. Therefore, the buoyancy or sedimentation force acting on the water caused by the difference in density, which is a load or resistance force when sending water, can be firmly reduced, so that the pump mechanism can be operated efficiently with a low load. can do.
  • the internal temperature sensor and the external temperature sensor measure the temperature of water at the spout.
  • the pump mechanism has a constricted portion that reduces a flow passage cross-sectional area in the pipe, an impeller that is arranged in the constricted portion, and an electric motor that rotates the impeller.
  • the restrictor since the restrictor is provided, even if the cross-sectional area of the flow path in the pipe is too large, an impeller of an appropriate size that is not too large can be used. It can be driven in a moderate rev range that is not energy efficient. Therefore, the energy efficiency of the pump mechanism can be enhanced.
  • control unit controls the flow rate of the pump mechanism so that the flow rate is set to a large value regardless of the internal temperature sensor and the external temperature sensor, and then the value measured by the internal temperature sensor and the value measured by the external temperature sensor falls within the predetermined range.
  • a method for purifying water includes a pipe having an upper opening and a lower opening, and a pump mechanism provided therein, the upper opening being located in the surface layer of a water area, and the lower opening being located in the bottom layer of the water area. an arranging step of arranging such that an opening is positioned; and water is pumped by the pump mechanism such that one of the upper opening and the lower opening is used as a water intake port and the other of the upper opening and the lower opening is used as a water discharge port.
  • the water in the surface layer is taken into the pipe from the upper opening and discharged from the lower opening in the bottom layer, so that the water in the surface layer is directly supplied to the bottom layer, or the water in the bottom layer is supplied to the pipe from the lower opening.
  • the water in the surface layer can be gradually supplied to the bottom layer by convection, so that oxygen can be efficiently supplied to the bottom layer.
  • the water supply step includes an internal temperature measurement step of measuring the temperature of water inside the pipe at a predetermined water depth, and an external temperature measurement step of measuring the temperature of water outside the pipe at the predetermined water depth. and a control step of controlling the flow rate of the pump mechanism so that the difference between the measured value obtained by the internal temperature measuring step and the measured value obtained by the external temperature measuring step falls within a predetermined range.
  • the difference between the value measured by the internal temperature measurement step and the value measured by the external temperature measurement step is within a predetermined range (for example, within ⁇ 5° C., within ⁇ 4° C., or within ⁇ 3° C.).
  • the internal temperature measurement step and the external temperature measurement step may be performed first or at the same time.
  • the internal temperature measurement step and the external temperature measurement step measure the temperature of water at the spout.
  • the internal temperature measurement step after controlling the flow rate of the pump mechanism so that the flow rate is set to a large value regardless of the internal temperature measurement step and the external temperature measurement step, the internal temperature measurement step reducing the flow rate of the pump mechanism so that the difference between the measured value obtained by the step and the measured value obtained by the external temperature measurement step falls within the predetermined range.
  • FIG. 1 is a layout diagram of a water purifier according to a first embodiment
  • FIG. 2 is a block diagram of the water purification device shown in FIG. 1
  • FIG. It is a layout diagram of a water purification device according to a second embodiment.
  • a water purification apparatus 1 according to the first embodiment shown in FIG. , the ocean, rivers, dam lakes, lakes, and other water areas 10 .
  • the water purification device 1 is a device that forcibly causes vertical mixing in a water area 10 using a pump mechanism 3 to supply oxygen in a surface layer 10a to a bottom layer 10b, thereby purifying water.
  • the surface layer 10a is a layer of water that forms the water surface 10c of the water area 10
  • the bottom layer 10b is a layer of water that is in contact with the bottom surface 10d of the water area 10.
  • the pipe 2 is cylindrical and arranged to extend vertically in the water area 10 . Further, the pipe 2 has an upper opening 2a arranged in the surface layer 10a and a lower opening 2b arranged in the bottom layer 10b. A channel for communication is formed.
  • the upper opening 2a is composed of a plurality of openings penetrating the pipe 2 in the radial direction. In addition, the upper opening 2a may be composed of a single opening.
  • the lower opening 2b is an opening formed by the lower edge of the pipe 2.
  • the pipe 2 is made of a plastic film having a thickness of, for example, several millimeters. Therefore, the pipe 2 has good thermal conductivity and low cost. Moreover, since the pipe 2 has flexibility, it is easy to handle until installation.
  • the pipe 2 may be formed of a material other than the plastic film. However, the pipe 2 is preferably made of a material having thermal conductivity. Also, the pipe 2 is preferably made of a flexible material.
  • the lower end 2c of the pipe 2 is connected to the bottom surface 10d by an anchor 9 and held.
  • the anchor 9 is composed of a plurality of linear members 9a, and each of the linear members 9a is provided with a locking portion that is inserted into and locked to the bottom surface 10d at the lower end of each linear member 9a.
  • the anchor 9 may have any configuration as long as the lower end portion 2c of the pipe 2 can be connected to and held by the bottom surface 10d.
  • the upper end 2d of the pipe 2 is connected to the float 8 and is vertically stretched by the buoyancy of the float 8, so that the upper opening 2a is arranged in the surface layer 10a.
  • the configuration of the float 8 is not particularly limited as long as it can generate buoyancy with respect to water.
  • the upper opening 2a may be arranged in the surface layer 10a by mechanically connecting the pipe 2 to another structure or the like.
  • the pipe 2 may be vertically extended by providing a weight at the lower end portion 2c of the pipe 2 instead of the anchor 9.
  • the upper end surface 2e of the pipe 2 protrudes above the water surface 10c, and the power supply 7 and the control unit 6 are arranged on the upper end surface 2e.
  • the power supply 7 and the control unit 6 may be arranged underwater.
  • the pump mechanism 3 is driven with low power, so the power supply 7 can be composed of, for example, a natural energy power generation device such as a solar battery and a secondary battery that stores the electricity generated by the device. .
  • the pump mechanism 3 is provided inside the pipe 2 and is configured to feed water so that the upper opening 2a serves as a water intake port 2f and the lower opening 2b serves as a water discharge port 2g.
  • the pump mechanism 3 is composed of a narrowed portion 3a that reduces the cross-sectional area of the flow path in the pipe 2, an impeller 3b arranged in the narrowed portion 3a, and an electric motor 3c that rotates the impeller 3b.
  • the electric motor 3 c is connected to the power source 7 and the control section 6 via wiring 11 .
  • the pump mechanism 3 can send water from the water intake port 2f to the water discharge port 2g by rotating the impeller 3b within the throttle portion 3a.
  • the narrowing portion 3a narrows the flow path in a stepped manner, it may be configured to narrow the flow path in a tapered shape.
  • the pump mechanism 3 is arranged above the pipe 2, it may be arranged below the pipe 2 or in the middle in the vertical direction, for example. However, it is preferable to dispose it above the pipe 2 because the wiring 11 can be short.
  • the internal temperature sensor 4 is arranged inside the pipe 2 at the water outlet 2g and is configured to measure the temperature of the water inside the pipe 2 at the water outlet 2g.
  • the external temperature sensor 5 is arranged outside the pipe 2 at the water outlet 2g and is configured to measure the temperature of the water outside the pipe 2 at the water outlet 2g.
  • the control unit 6 controls the pump so that the difference between the measured value by the internal temperature sensor 4 and the measured value by the external temperature sensor 5 falls within a predetermined range (for example, within ⁇ 5° C., within ⁇ 4° C., or within ⁇ 3° C.). It is configured to control the flow rate of mechanism 3 .
  • the control unit 6 is composed of a computer 6a and a driver 6b.
  • the computer 6a can communicate with the internal temperature sensor 4, the external temperature sensor 5 and the driver 6b, calculates the difference between the measurement value by the internal temperature sensor 4 and the measurement value by the external temperature sensor 5, It is configured to instruct the driver 6b about the target rotation speed of the motor 3c.
  • the driver 6b is electrically connected to the power source 7 and the electric motor 3c, and controls the voltage or current supplied from the power source 7 to the electric motor 3c so that the rotation speed of the electric motor 3c reaches the target rotation speed. is configured to
  • a water purification method using such a water purification device 1 has an arrangement step and a water supply step.
  • the water supply step has an internal temperature measurement step, an external temperature measurement step and a control step.
  • the arranging step is a step of arranging the pipe 2 so that the upper opening 2a is located in the surface layer 10a and the lower opening 2b is located in the bottom layer 10b.
  • the water feeding step is a step of feeding water by the pump mechanism 3 so that the upper opening 2a serves as the water intake 2f and the lower opening 2b serves as the water outlet 2g.
  • the water in the surface layer 10a is taken into the pipe 2 from the upper opening 2a and discharged from the lower opening 2b in the bottom layer 10b, so that the oxygen-rich water in the surface layer 10a is directly transferred to the bottom layer 10b. Since oxygen can be supplied, oxygen can be efficiently supplied to the bottom layer 10b.
  • the internal temperature measurement step is a step of measuring the temperature of the water in the pipe 2 at the spout 2g with the internal temperature sensor 4.
  • the external temperature measurement step is a step of measuring the temperature of water outside the pipe 2 at the spout 2g with the external temperature sensor 5.
  • FIG. The control step is a step of controlling the flow rate of the pump mechanism 3 by the control unit 6 so that the difference between the measurement value obtained by the internal temperature measurement step and the measurement value obtained by the external temperature measurement step falls within the predetermined range. It should be noted that the internal temperature measurement step and the external temperature measurement step may be performed first or at the same time.
  • the flow rate of the pump mechanism 3 is restricted, that is, the water is slowly pumped so that the difference between the measured value in the internal temperature measuring step and the measured value in the external temperature measuring step falls within the predetermined range.
  • Heat is transferred from inside the pipe 2 to outside the pipe 2 through the pipe 2 by sending (for example, at a flow rate of 1 to 10 mm/s, 1 to 30 mm/s or 1 to 100 mm/s through the pipe 2)
  • the transmission makes it possible to send water while firmly reducing the temperature difference between the inside and outside of the pipe 2 and thus the density difference. Therefore, it is possible to firmly reduce the buoyancy acting on the water to be sent due to the difference in density, which is a load, or a resistance force, when sending water.
  • the pipe 2 can run on electric power.
  • the pipe 2 can be made of a flexible material.
  • the temperature difference (density difference) between the water coming out of the spout 2g and the water around the spout 2g is small, the water coming out of the spout 2g is unlikely to rise again and tends to stay in the bottom layer 10b.
  • the pump mechanism 3 since the pump mechanism 3 is provided with the throttle portion 3a, even if the cross-sectional area of the flow path in the pipe 2 is too large, an impeller 3b of an appropriate size that is not too large can be used. , the electric motor 3c can be operated in a moderate rotation range that is not too low and energy efficient. Therefore, the energy efficiency of the pump mechanism 3 can be improved.
  • the control unit 6 for example, based on the temperature distribution of the water area 10 investigated in advance, the diameter size of the pipe 2, and the axial length of the pipe 2, regardless of the internal temperature measurement step and the external temperature measurement step.
  • the difference between the measured value in the internal temperature measurement step and the measured value in the external temperature measurement step is The flow rate of the pump mechanism 3 may be reduced so that it falls within a predetermined range. According to such a configuration, it is possible to quickly and reliably form a flow of water from the water intake to the water discharge port with a preset "large flow rate", and then adjust the flow rate. can be controlled quickly and efficiently.
  • the pump mechanism 3 is configured to send water so that the upper opening 2a serves as the water intake port 2f and the lower opening 2b serves as the water discharge port 2g. 2, the pump mechanism 3 may be configured to feed water so that the lower opening 2b serves as the water intake port 2f and the upper opening 2a serves as the water discharge port 2g.
  • elements corresponding to those shown in FIG. 1 are denoted by the same reference numerals.
  • the water supply step is a step of sending water by the pump mechanism 3 so that the lower opening 2b is the water intake port 2f and the upper opening 2a is the water discharge port 2g. becomes.
  • the water in the bottom layer 10b is taken into the pipe 2 from the lower opening 2b and discharged from the upper opening 2a in the surface layer 10a, so that the oxygen-rich water in the surface layer 10a is gradually removed by convection. Since oxygen can be supplied to the bottom layer 10b, oxygen can be efficiently supplied to the bottom layer 10b.
  • the flow rate of the pump mechanism 3 is restricted so that the difference between the measured value obtained by the internal temperature measuring step and the measured value obtained by the external temperature measuring step falls within the predetermined range.
  • the temperature difference (density difference) between the water coming out of the spout 2g and the water around the spout 2g is small, the water coming out of the spout 2g is unlikely to descend again and tends to stay on the surface layer 10a.
  • water purification device 1 and the water purification method according to the embodiment described above can be modified in various ways as described below.
  • the water purification apparatus 1 includes a pipe 2 having an upper opening 2a arranged in the surface layer 10a of the water area 10 and a lower opening 2b arranged in the bottom layer 10b of the water area 10; and a pump mechanism 3 for sending water so that one of the upper opening 2a and the lower opening 2b is used as the water intake port 2f and the other of the upper opening 2a and the lower opening 2b is used as the water discharge port 2g. can be changed.
  • the water purification apparatus 1 includes an internal temperature sensor 4 that measures the temperature of water inside the pipe 2 at a predetermined water depth, an external temperature sensor 5 that measures the temperature of water outside the pipe 2 at the predetermined water depth, and an internal It is preferable to have a control unit 6 that controls the flow rate of the pump mechanism 3 so that the difference between the measured value by the temperature sensor 4 and the measured value by the external temperature sensor 5 falls within a predetermined range.
  • the internal temperature sensor 4 and the external temperature sensor 5 preferably measure the temperature of the water at the spout 2g.
  • the pump mechanism 3 has a narrowed portion 3a that reduces the cross-sectional area of the flow path in the pipe 2, an impeller 3b that is arranged in the narrowed portion 3a, and an electric motor 3c that rotates the impeller 3b. .
  • control unit 6 controls the flow rate of the pump mechanism 3 so that the flow rate is set to a large value regardless of the internal temperature sensor 4 and the external temperature sensor 5. It is preferable to reduce the flow rate of the pump mechanism 3 so that the difference from the measured value by the sensor 5 falls within the predetermined range.
  • the water purification method according to the above-described embodiment includes the pipe 2 having the upper opening 2a and the lower opening 2b, and the pump mechanism 3 provided therein, and the upper opening 2a being located in the surface layer 10a of the water area 10, and the water area an arrangement step of arranging the lower opening 2b so as to be located in the bottom layer 10b of 10;
  • Various modifications are possible as long as it has a water supply step of sending water by the pump mechanism 3 as follows.
  • the water supply step includes an internal temperature measurement step of measuring the temperature of the water inside the pipe 2 at a predetermined water depth, an external temperature measurement step of measuring the temperature of the water outside the pipe 2 at the predetermined water depth, and an internal temperature measurement step. and a control step of controlling the flow rate of the pump mechanism 3 so that the difference between the measured value obtained by the step and the measured value obtained by the external temperature measurement step falls within a predetermined range.
  • the internal temperature measurement step and the external temperature measurement step it is preferable to measure the temperature of the water at the spout 2g.
  • control step after controlling the flow rate of the pump mechanism 3 so that the flow rate is set to a large value regardless of the internal temperature measurement step and the external temperature measurement step, the measured value in the internal temperature measurement step and the external temperature measurement It is preferable to reduce the flow rate of the pump mechanism 3 so that the difference from the measured value by the step falls within the predetermined range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

水質浄化装置(1)は、水域(10)の表層(10a)内に配置される上部開口(2a)、及び水域(10)の底層(10b)内に配置される下部開口(2b)を備えるパイプ(2)と、パイプ(2)内に設けられ、上部開口(2a)と下部開口(2b)との一方を取水口(2f)とし、上部開口(2a)と下部開口(2b)との他方を吐水口(2g)とするように水を送るポンプ機構(3)と、を有する。水質浄化方法は、上部開口(2a)及び下部開口(2b)を備え、内部にポンプ機構(3)が設けられるパイプ(2)を、水域(10)の表層(10a)内に上部開口(2a)が位置し、水域(10)の底層(10b)内に下部開口(2b)が位置するように配置する配置ステップと、上部開口(2a)と下部開口(2b)との一方を取水口(2f)とし、上部開口(2a)と下部開口(2b)との他方を吐水口(2g)とするように、ポンプ機構(3)によって水を送る送水ステップと、を有する。

Description

水質浄化装置及び水質浄化方法 関連出願へのクロスリファレンス
 本出願は、日本国特許出願2021-061812号(2021年3月31日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本開示は、水質浄化装置及び水質浄化方法に関する。
 海洋、河川、ダム湖、湖沼等の水域に、生活排水、工場排水等に含まれる窒素、リン等の栄養塩が流れ込むと、植物プランクトンが大量に発生し、水域の底層では堆積する死骸の分解のため大量の酸素が消費され、貧酸素状態となる。この状態になると、無酸素でも分解可能な嫌気性細菌が支配的となり、分解時に発生する毒性をもった硫化水素又は硫化物により水域の生物が死滅することとなる。
 一方、表層は光合成により酸素が豊富な状態であり、鉛直混合が適切に行われれば底層の貧酸素状態は発生しないが、実際の水域では、表層と底層間の温度差による密度の違いで発生する層(密度成層)が形成されることにより、鉛直混合が起こりにくい状態となっている。
 そのため、ポンプ機構を用いて強制的に水域に鉛直混合を生じさせる水質浄化装置が提案されている(例えば特許文献1参照)。
特許第4076824号公報
 特許文献1に記載されるような従来の水質浄化装置では、ポンプ機構によりパイプを通して表層の水と底層の水を中間層内に位置する吐水口まで送り、混合して吐出するようにしているので、吐水口から吐出される水の酸素濃度が薄まってしまい、底層に供給できる酸素量が不十分であった。
 本開示の目的は、水域の底層に効率的に酸素を供給することができる水質浄化装置及び水質浄化方法を提供することにある。
 幾つかの実施形態に係る水質浄化装置は、水域の表層内に配置される上部開口、及び前記水域の底層内に配置される下部開口を備えるパイプと、前記パイプ内に設けられ、前記上部開口と前記下部開口との一方を取水口とし、前記上部開口と前記下部開口との他方を吐水口とするように水を送るポンプ機構と、を有する。このような構成によれば、表層の水を上部開口からパイプ内に取り入れ、底層内で下部開口から吐出することで表層の水を直接底層に供給し、或いは、底層の水を下部開口からパイプ内に取り入れ、表層内で上部開口から吐出することで表層の水を対流により徐々に底層に供給することができるので、底層に効率的に酸素を供給することができる。
 一実施形態において、前記水質浄化装置は、所定の水深における前記パイプ内の水の温度を測定する内部温度センサと、前記所定の水深における前記パイプ外の水の温度を測定する外部温度センサと、前記内部温度センサによる測定値と前記外部温度センサによる測定値との差分が所定の範囲に収まるように前記ポンプ機構の流量を制御する制御部と、を有する。このような構成によれば、前記内部温度センサによる測定値と前記外部温度センサによる測定値との差分が所定の範囲(例えば、±5℃以内、±4℃以内又は±3℃以内)に収まるように、ポンプ機構の流量を制限する、すなわち水をゆっくり送る(例えば、パイプ内を1~10mm/s、1~30mm/s又は1~100mm/sの速度で流れる流量で)ことにより、パイプを介したパイプ内外間の熱伝達によってパイプ内外間の水の温度差、したがって密度差をしっかりと低減しながら水を送ることができる。したがって、水を送る際の負荷つまり抵抗力となる、密度差に起因して生じる送られる水に働く浮力又は沈降力をしっかりと低減することができるので、ポンプ機構を低負荷で効率的に運転することができる。
 一実施形態において、前記内部温度センサ及び前記外部温度センサは、前記吐水口における水の温度を測定する。このような構成によれば、ポンプ機構の負荷を簡単に効率的に低減することができる。また、吐出した水の再浮上又は再沈降をより確実に低減し、吐出した水を滞留させることができる。
 一実施形態において、前記ポンプ機構は、前記パイプ内の流路断面積を低減させる絞り部と、前記絞り部内に配置されるインペラと、前記インペラを回転させる電動モータと、を有する。このような構成によれば、絞り部を設けたことにより、パイプ内の流路断面積が大きすぎる場合でも、大きすぎない適度な大きさのインペラを用いることができるので、電動モータを低すぎないエネルギー効率の良い適度な回転域で運転することができる。したがって、ポンプ機構のエネルギー効率を高めることができる。
 一実施形態において、前記制御部は、前記内部温度センサ及び前記外部温度センサによらずに設定された大きめの流量となるように前記ポンプ機構の流量を制御した後に、前記内部温度センサによる測定値と前記外部温度センサによる測定値との前記差分が前記所定の範囲に収まるように前記ポンプ機構の流量を低減させる。このような構成によれば、ポンプ機構の流量を速やかに効率的に制御することができる。
 幾つかの実施形態に係る水質浄化方法は、上部開口及び下部開口を備え、内部にポンプ機構が設けられるパイプを、水域の表層内に前記上部開口が位置し、前記水域の底層内に前記下部開口が位置するように配置する配置ステップと、前記上部開口と前記下部開口との一方を取水口とし、前記上部開口と前記下部開口との他方を吐水口とするように、前記ポンプ機構によって水を送る送水ステップと、を有する。このような構成によれば、表層の水を上部開口からパイプ内に取り入れ、底層内で下部開口から吐出することで表層の水を直接底層に供給し、或いは、底層の水を下部開口からパイプ内に取り入れ、表層内で上部開口から吐出することで表層の水を対流により徐々に底層に供給することができるので、底層に効率的に酸素を供給することができる。
 一実施形態において、前記送水ステップは、所定の水深における前記パイプ内の水の温度を測定する内部温度測定ステップと、前記所定の水深における前記パイプ外の水の温度を測定する外部温度測定ステップと、前記内部温度測定ステップによる測定値と前記外部温度測定ステップによる測定値との差分が所定の範囲に収まるように前記ポンプ機構の流量を制御する制御ステップと、を有する。このような構成によれば、前記内部温度測定ステップによる測定値と前記外部温度測定ステップによる測定値との差分が所定の範囲(例えば、±5℃以内、±4℃以内又は±3℃以内)に収まるように、ポンプ機構の流量を制限する、すなわち水をゆっくり送る(例えば、パイプ内を1~10mm/s、1~30mm/s又は1~100mm/sの速度で流れる流量で)ことにより、パイプを介したパイプ内外間の熱伝達によってパイプ内外間の水の温度差、したがって密度差をしっかりと低減しながら水を送ることができる。したがって、水を送る際の負荷つまり抵抗力となる、密度差に起因して生じる送られる水に働く浮力又は沈降力をしっかりと低減することができるので、ポンプ機構を低負荷で効率的に運転することができる。なお、前記内部温度測定ステップ及び前記外部温度測定ステップを行うタイミングは、どちらが先でもよいし、同時でも構わない。
 一実施形態において、前記内部温度測定ステップ及び前記外部温度測定ステップでは、前記吐水口における水の温度を測定する。このような構成によれば、ポンプ機構の負荷を簡単に効率的に低減することができる。また、吐出した水の再浮上又は再沈降をより確実に低減し、吐出した水を滞留させることができる。
 一実施形態において、前記制御ステップでは、前記内部温度測定ステップ及び前記外部温度測定ステップによらずに設定された大きめの流量となるように前記ポンプ機構の流量を制御した後に、前記内部温度測定ステップによる測定値と前記外部温度測定ステップによる測定値との前記差分が前記所定の範囲に収まるように前記ポンプ機構の流量を低減させる。このような構成によれば、ポンプ機構の流量を速やかに効率的に制御することができる。
 本開示によれば、水域の底層に効率的に酸素を供給することができる水質浄化装置及び水質浄化方法を提供することができる。
第1実施形態に係る水質浄化装置の配置図である。 図1に示す水質浄化装置のブロック図である。 第2実施形態に係る水質浄化装置の配置図である。
 以下、図面を参照して、本開示に係る実施形態について詳細に例示説明する。
 図1に示す第1実施形態に係る水質浄化装置1は、パイプ2、ポンプ機構3、内部温度センサ4、外部温度センサ5、制御部6、電源7、フロート8及びアンカー9を有しており、海洋、河川、ダム湖、湖沼等の水域10に配置されている。
 水域10では、表層10aと底層10bの温度差による密度の違いにより層が形成されることにより、鉛直混合が起こりにくく、そのため、底層10bが汚染を生じるおそれのある貧酸素状態に陥りやすい状態となっている。水質浄化装置1は、ポンプ機構3を用いて強制的に水域10に鉛直混合を生じさせることで、底層10bに表層10aの酸素を供給し、それにより水質を浄化する装置である。なお、表層10aは、水域10の水面10cを形成する水の層であり、底層10bは、水域10の底面10dに接する水の層である。
 パイプ2は、水域10内で鉛直方向に延びるように配置された筒状をなしている。また、パイプ2は、表層10a内に配置される上部開口2a、及び底層10b内に配置される下部開口2bを有しており、パイプ2の内部には、上部開口2aと下部開口2bとを連通させる流路が形成されている。上部開口2aは、パイプ2を径方向に貫通する複数の開口で構成されている。なお、上部開口2aは、単数の開口で構成してもよい。下部開口2bは、パイプ2の下端縁で形成される開口で構成されている。パイプ2は、厚みが例えば数mmのプラスチックフィルムで形成されている。したがって、パイプ2は、良好な熱伝導性を有しており、また、低コストである。また、パイプ2は、柔軟性を有しているので設置までの取り扱いが容易である。なお、パイプ2は、プラスチックフィルム以外の素材で形成してもよい。しかし、パイプ2は、熱伝導性を有する素材で形成することが好ましい。また、パイプ2は、柔軟な素材で形成することが好ましい。
 パイプ2は、下端部2cがアンカー9によって底面10dに接続されて保持されている。アンカー9は、複数の線状部材9aで構成されており、各々の線状部材9aの下端部には、底面10dに突き刺さって係止される係止部が設けられている。なお、アンカー9は、パイプ2の下端部2cを底面10dに接続して保持させることができる限り、任意の構成を有していてよい。
 パイプ2は、上端部2dがフロート8に接続されて、フロート8の浮力により鉛直方向に引き伸ばされており、それにより、上部開口2aが表層10a内に配置されている。フロート8は、水に対する浮力を生じさせるものであればその構成は特に限定されない。なお、フロート8を用いずに、例えば、他の構造体等に機械的にパイプ2を接続することにより、上部開口2aを表層10a内に配置してもよい。
 なお、アンカー9に代えて錘をパイプ2の下端部2cに設けることにより、パイプ2を鉛直方向に引き延ばす構成としてもよい。
 パイプ2の上端面2eは水面10c上に飛び出しており、上端面2e上には、電源7と制御部6が配置されている。なお、電源7と制御部6を水中に配置するようにしても構わない。本実施形態ではポンプ機構3が低電力で駆動されるので、電源7は、例えば、太陽電池等の自然エネルギー発電装置と、当該装置で発電した電気を蓄える二次電池とで構成することができる。
 ポンプ機構3は、パイプ2内に設けられており、上部開口2aを取水口2fとし、下部開口2bを吐水口2gとするように水を送るように構成されている。また、ポンプ機構3は、パイプ2内の流路断面積を低減させる絞り部3aと、絞り部3a内に配置されるインペラ3bと、インペラ3bを回転させる電動モータ3cとで構成されている。電動モータ3cは、電源7及び制御部6に配線11を介して接続されている。ポンプ機構3は、絞り部3a内でインペラ3bが回転することにより、取水口2fから吐水口2gまで水を送ることができる。絞り部3aは段差状に流路を絞っているが、テーパ状に流路を絞る構成としてもよい。
 なお、ポンプ機構3はパイプ2の上部に配置されているが、例えば、パイプ2の下部又は上下方向中間部に配置しても構わない。しかし、パイプ2の上部に配置する方が、配線11が短くて済むので好ましい。
 内部温度センサ4は、吐水口2gにおいてパイプ2内に配置されており、吐水口2gにおけるパイプ2内の水の温度を測定するように構成されている。外部温度センサ5は、吐水口2gにおいてパイプ2外に配置されており、吐水口2gにおけるパイプ2外の水の温度を測定するように構成されている。
 制御部6は、内部温度センサ4による測定値と外部温度センサ5による測定値との差分が所定の範囲(例えば、±5℃以内、±4℃以内又は±3℃以内)に収まるようにポンプ機構3の流量を制御するように構成されている。
 図2に示すように、制御部6は、コンピュータ6aとドライバ6bとで構成されている。コンピュータ6aは、内部温度センサ4、外部温度センサ5及びドライバ6bと通信可能であり、内部温度センサ4による測定値と外部温度センサ5による測定値との差分を算出し、この差分に基いて電動モータ3cの目標回転数をドライバ6bに指示するように構成されている。ドライバ6bは、電源7及び電動モータ3cと電気的に接続されており、電動モータ3cの回転数が目標回転数になるように、電源7から電動モータ3cに供給する電圧又は電流を制御するように構成されている。
 このような水質浄化装置1を用いる水質浄化方法は、配置ステップ及び送水ステップを有している。送水ステップは、内部温度測定ステップ、外部温度測定ステップ及び制御ステップを有している。
 配置ステップは、パイプ2を、表層10a内に上部開口2aが位置し、底層10b内に下部開口2bが位置するように配置するステップである。送水ステップは、上部開口2aを取水口2fとし、下部開口2bを吐水口2gとするように、ポンプ機構3によって水を送るステップである。
 このような送水ステップによれば、表層10aの水を上部開口2aからパイプ2内に取り入れ、底層10b内で下部開口2bから吐出することで、酸素が豊富な表層10aの水を直接底層10bに供給することができるので、底層10bに効率的に酸素を供給することができる。
 内部温度測定ステップは、吐水口2gにおけるパイプ2内の水の温度を内部温度センサ4によって測定するステップである。外部温度測定ステップは、吐水口2gにおけるパイプ2外の水の温度を外部温度センサ5によって測定するステップである。制御ステップは、制御部6により、内部温度測定ステップによる測定値と外部温度測定ステップによる測定値との差分が前記所定の範囲に収まるようにポンプ機構3の流量を制御するステップである。なお、内部温度測定ステップ及び外部温度測定ステップを行うタイミングは、どちらが先でもよいし、同時でも構わない。
 このような制御ステップによれば、内部温度測定ステップによる測定値と外部温度測定ステップによる測定値との差分が前記所定の範囲に収まるように、ポンプ機構3の流量を制限する、すなわち水をゆっくり送る(例えば、パイプ2内を1~10mm/s、1~30mm/s又は1~100mm/sの速度で流れる流量で)ことにより、パイプ2を介したパイプ2内からパイプ2外への熱伝達によってパイプ2内外間の水の温度差、したがって密度差をしっかりと低減しながら水を送ることができる。したがって、水を送る際の負荷つまり抵抗力となる、密度差に起因して生じる送られる水に働く浮力をしっかりと低減することができるので、ポンプ機構3を低負荷で効率的に、且つ低電力で運転することができる。また、ゆっくりと水を流すことでパイプ2内外間の圧力差が殆ど発生しないため、パイプ2を柔軟な素材で構成可能である。また、吐水口2gから出てくる水と吐水口2g周辺の水との温度差(密度差)が小さければ、吐水口2gから出てくる水が再上昇しにくく底層10bに滞留しやすい。
 また、本実施形態では、ポンプ機構3に絞り部3aを設けているので、パイプ2内の流路断面積が大きすぎる場合でも、大きすぎない適度な大きさのインペラ3bを用いることができるので、電動モータ3cを低すぎないエネルギー効率の良い適度な回転域で運転することができる。したがって、ポンプ機構3のエネルギー効率を高めることができる。
 また、制御ステップでは、制御部6により、内部温度測定ステップ及び外部温度測定ステップによらずに、例えば、予め調査した水域10の温度分布、パイプ2の径寸法、及びパイプ2の軸長に基いて設定された大きめの流量となるようにポンプ機構3の流量(つまり電動モータ3cの回転数)を制御した後に、内部温度測定ステップによる測定値と外部温度測定ステップによる測定値との差分が前記所定の範囲に収まるようにポンプ機構3の流量を低減させてもよい。このような構成によれば、予め設定された「大きめの流量」により、取水口から吐水口への水の流れを速やか且つ確実に形成し、次いで流量を調整することができるので、ポンプ機構3の流量を速やかに効率的に制御することができる。
 第1実施形態に係る水質浄化装置1では、ポンプ機構3が、上部開口2aを取水口2fとし、下部開口2bを吐水口2gとするように水を送るように構成されているが、図3に示す第2実施形態のように、ポンプ機構3を、下部開口2bを取水口2fとし、上部開口2aを吐水口2gとするように水を送るように構成してもよい。なお、図3において、図1に示す要素に対応する要素に同一の符号を付している。
 第2実施形態に係る水質浄化装置1を用いる水質浄化方法は、送水ステップが、下部開口2bを取水口2fとし、上部開口2aを吐水口2gとするように、ポンプ機構3によって水を送るステップとなる。このような送水ステップによれば、底層10bの水を下部開口2bからパイプ2内に取り入れ、表層10a内で上部開口2aから吐出することで、酸素が豊富な表層10aの水を対流により徐々に底層10bに供給することができるので、底層10bに効率的に酸素を供給することができる。
 また、制御ステップによれば、内部温度測定ステップによる測定値と外部温度測定ステップによる測定値との差分が前記所定の範囲に収まるように、ポンプ機構3の流量を制限することにより、パイプ2を介したパイプ2外からパイプ2内への熱伝達によってパイプ2内外間の水の温度差、したがって密度差をしっかりと低減しながら水を送ることができる。したがって、水を送る際の負荷となる、密度差に起因して生じる送られる水に働く沈降力をしっかりと低減することができるので、ポンプ機構3を低負荷で効率的に、且つ低電力で運転することができる。また、ゆっくりと水を流すことでパイプ2内外間の圧力差が殆ど発生しないため、パイプ2を柔軟な素材で構成可能である。また、吐水口2gから出てくる水と吐水口2g周辺の水との温度差(密度差)が小さければ、吐水口2gから出てくる水が再下降しにくく表層10aに滞留しやすい。
 その他の点は、第1実施形態に係る水質浄化装置1を用いる水質浄化方法の場合と同様である。
 前述した実施形態は本開示の一例であり、種々変更可能であることはいうまでもない。
 例えば、前述した実施形態に係る水質浄化装置1及び水質浄化方法は、以下に述べるような種々の変更が可能である。
 前述した実施形態に係る水質浄化装置1は、水域10の表層10a内に配置される上部開口2a、及び水域10の底層10b内に配置される下部開口2bを備えるパイプ2と、パイプ2内に設けられ、上部開口2aと下部開口2bとの一方を取水口2fとし、上部開口2aと下部開口2bとの他方を吐水口2gとするように水を送るポンプ機構3と、を有する限り、種々の変更が可能である。
 しかし、水質浄化装置1は、所定の水深におけるパイプ2内の水の温度を測定する内部温度センサ4と、前記所定の水深におけるパイプ2外の水の温度を測定する外部温度センサ5と、内部温度センサ4による測定値と外部温度センサ5による測定値との差分が所定の範囲に収まるようにポンプ機構3の流量を制御する制御部6と、を有することが好ましい。
 また、内部温度センサ4及び外部温度センサ5は、吐水口2gにおける水の温度を測定することが好ましい。
 また、ポンプ機構3は、パイプ2内の流路断面積を低減させる絞り部3aと、絞り部3a内に配置されるインペラ3bと、インペラ3bを回転させる電動モータ3cと、を有することが好ましい。
 また、制御部6は、内部温度センサ4及び外部温度センサ5によらずに設定された大きめの流量となるようにポンプ機構3の流量を制御した後に、内部温度センサ4による測定値と外部温度センサ5による測定値との差分が前記所定の範囲に収まるようにポンプ機構3の流量を低減させることが好ましい。
 また、前述した実施形態に係る水質浄化方法は、上部開口2a及び下部開口2bを備え、内部にポンプ機構3が設けられるパイプ2を、水域10の表層10a内に上部開口2aが位置し、水域10の底層10b内に下部開口2bが位置するように配置する配置ステップと、上部開口2aと下部開口2bとの一方を取水口2fとし、上部開口2aと下部開口2bとの他方を吐水口2gとするように、ポンプ機構3によって水を送る送水ステップと、を有する限り、種々の変更が可能である。
 しかし、送水ステップは、所定の水深におけるパイプ2内の水の温度を測定する内部温度測定ステップと、前記所定の水深におけるパイプ2外の水の温度を測定する外部温度測定ステップと、内部温度測定ステップによる測定値と外部温度測定ステップによる測定値との差分が所定の範囲に収まるようにポンプ機構3の流量を制御する制御ステップと、を有することが好ましい。
 また、内部温度測定ステップ及び外部温度測定ステップでは、吐水口2gにおける水の温度を測定することが好ましい。
 また、制御ステップでは、内部温度測定ステップ及び外部温度測定ステップによらずに設定された大きめの流量となるようにポンプ機構3の流量を制御した後に、内部温度測定ステップによる測定値と外部温度測定ステップによる測定値との差分が前記所定の範囲に収まるようにポンプ機構3の流量を低減させることが好ましい。
 1  水質浄化装置
 2  パイプ
 2a 上部開口
 2b 下部開口
 2c 下端部
 2d 上端部
 2e 上端面
 2f 取水口
 2g 吐水口
 3  ポンプ機構
 3a 絞り部
 3b インペラ
 3c 電動モータ
 4  内部温度センサ
 5  外部温度センサ
 6  制御部
 6a コンピュータ
 6b ドライバ
 7  電源
 8  フロート
 9  アンカー
 9a 線状部材
10  水域
10a 表層
10b 底層
10c 水面
10d 底面
11  配線

Claims (5)

  1.  水域の表層内に配置される上部開口、及び前記水域の底層内に配置される下部開口を備えるパイプと、
     前記パイプ内に設けられ、前記上部開口と前記下部開口との一方を取水口とし、前記上部開口と前記下部開口との他方を吐水口とするように水を送るポンプ機構と、を有する水質浄化装置。
  2.  所定の水深における前記パイプ内の水の温度を測定する内部温度センサと、
     前記所定の水深における前記パイプ外の水の温度を測定する外部温度センサと、
     前記内部温度センサによる測定値と前記外部温度センサによる測定値との差分が所定の範囲に収まるように前記ポンプ機構の流量を制御する制御部と、を有する、
    請求項1に記載の水質浄化装置。
  3.  前記内部温度センサ及び前記外部温度センサは、前記吐水口における水の温度を測定する、請求項2に記載の水質浄化装置。
  4.  前記ポンプ機構は、前記パイプ内の流路断面積を低減させる絞り部と、前記絞り部内に配置されるインペラと、前記インペラを回転させる電動モータと、を有する、請求項1~3の何れか1項に記載の水質浄化装置。
  5.  上部開口及び下部開口を備え、内部にポンプ機構が設けられるパイプを、水域の表層内に前記上部開口が位置し、前記水域の底層内に前記下部開口が位置するように配置する配置ステップと、
     前記上部開口と前記下部開口との一方を取水口とし、前記上部開口と前記下部開口との他方を吐水口とするように、前記ポンプ機構によって水を送る送水ステップと、を有する水質浄化方法。
PCT/JP2022/016337 2021-03-31 2022-03-30 水質浄化装置及び水質浄化方法 WO2022210992A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-061812 2021-03-31
JP2021061812A JP2022157532A (ja) 2021-03-31 2021-03-31 水質浄化装置及び水質浄化方法

Publications (1)

Publication Number Publication Date
WO2022210992A1 true WO2022210992A1 (ja) 2022-10-06

Family

ID=83459648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016337 WO2022210992A1 (ja) 2021-03-31 2022-03-30 水質浄化装置及び水質浄化方法

Country Status (2)

Country Link
JP (1) JP2022157532A (ja)
WO (1) WO2022210992A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309395A (ja) * 1992-05-11 1993-11-22 Ebara Corp 攪拌及び曝気装置
JP2005193197A (ja) * 2004-01-09 2005-07-21 Hokoku Kogyo Co Ltd 水質浄化装置
JP2006000835A (ja) * 2004-06-15 2006-01-05 Kyoriz:Kk 水浄化システムおよび水流発生撹拌混合機
CN210973942U (zh) * 2019-10-29 2020-07-10 温州大学 高温含氧水与低温厌氧水混合导流装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309395A (ja) * 1992-05-11 1993-11-22 Ebara Corp 攪拌及び曝気装置
JP2005193197A (ja) * 2004-01-09 2005-07-21 Hokoku Kogyo Co Ltd 水質浄化装置
JP2006000835A (ja) * 2004-06-15 2006-01-05 Kyoriz:Kk 水浄化システムおよび水流発生撹拌混合機
CN210973942U (zh) * 2019-10-29 2020-07-10 温州大学 高温含氧水与低温厌氧水混合导流装置

Also Published As

Publication number Publication date
JP2022157532A (ja) 2022-10-14

Similar Documents

Publication Publication Date Title
US6676837B2 (en) Solar aeration system
CN105668762B (zh) 基于臭氧微纳米气泡的废水处理系统及方法
WO2017168778A1 (ja) 微生物燃料電池、及び微生物燃料電池システム
CN105609787A (zh) 用于细菌燃料电池和细菌电解电池中的电极以及采用该电极的细菌燃料电池和细菌电解电池
CN103518282B (zh) 微生物燃料电池
WO2022210992A1 (ja) 水質浄化装置及び水質浄化方法
KR20150067659A (ko) 호수의 녹조방지 및 녹조제거용 수질정화장치
US10347932B2 (en) Method and apparatus for converting chemical energy stored in wastewater
CN103204592A (zh) 一种低功耗高效的水体曝气增氧装置
US20100112380A1 (en) Electricity Generation in Single-Chamber Granular Activated Carbon Microbial Fuel Cells Treating Wastewater
US20150108068A1 (en) Microbial fuel cell aerator
US10340545B2 (en) Method and apparatus for converting chemical energy stored in wastewater into electrical energy
KR20140147209A (ko) 민물뱀장어의 양식수 공급 시스템
JP6029081B1 (ja) 廃水処理装置及び気体式液体仕切弁
JP2004512938A (ja) 貯水池の水質改善装置及びその方法
CN106542617B (zh) 一种污水处理机器人
JP4022065B2 (ja) 水浄化装置
FI59777B (fi) Foerfarande foer foerbaettrande av det ekologiska tillstaondet foer en termiskt avlagrad vattenbassaeng
WO2015129094A1 (ja) 微生物燃料電池
CN213865446U (zh) 自动控温式污水处理器
JP2004057967A (ja) 浄水機
JP2019171235A (ja) 排水処理装置
CN212609818U (zh) 一种污水生物处理装置
US20230175155A1 (en) Water supply oxygenation systems and methods
CN206544929U (zh) 一种污水处理机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781202

Country of ref document: EP

Kind code of ref document: A1