WO2022210544A1 - 溶接継手、溶接継手の設計方法、溶接継手の製造方法及び船体構造 - Google Patents

溶接継手、溶接継手の設計方法、溶接継手の製造方法及び船体構造 Download PDF

Info

Publication number
WO2022210544A1
WO2022210544A1 PCT/JP2022/015024 JP2022015024W WO2022210544A1 WO 2022210544 A1 WO2022210544 A1 WO 2022210544A1 JP 2022015024 W JP2022015024 W JP 2022015024W WO 2022210544 A1 WO2022210544 A1 WO 2022210544A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
hardness
weld
butt
welded joint
Prior art date
Application number
PCT/JP2022/015024
Other languages
English (en)
French (fr)
Inventor
和利 市川
広志 島貫
鉄平 大川
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202280011770.9A priority Critical patent/CN116802114A/zh
Priority to KR1020237018355A priority patent/KR20230096097A/ko
Priority to JP2022542030A priority patent/JP7173416B1/ja
Publication of WO2022210544A1 publication Critical patent/WO2022210544A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B43/00Improving safety of vessels, e.g. damage control, not otherwise provided for
    • B63B43/18Improving safety of vessels, e.g. damage control, not otherwise provided for preventing collision or grounding; reducing collision damage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/40Building or assembling vessels or marine structures, e.g. hulls or offshore platforms characterised by joining methods
    • B63B73/43Welding, e.g. laser welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Definitions

  • the present invention relates to a welded joint, a method for designing a welded joint, a method for manufacturing a welded joint, and a hull structure provided with the welded joint.
  • Patent Document 1 proposes a hull structure with excellent collision resistance.
  • collision resistance refers to the ability to prevent the hull from breaking even if it is hit by another ship at a predetermined speed, for example.
  • This hull structure conforms to the Unified Requirement W11 Rev.8 2014 of the International Federation of Classification Societies (IACS) for a part of the outer or inner plate of the side of the ship, or for all parts of the outer or inner plate.
  • Strength class 32 which satisfies the compliant standards, is imposed as a specification with a total elongation of 1.4 times or more the value of the total elongation specified in the unified standard of IACS, and has been confirmed to have met the above specifications, It has a hull structure using 36 or 40 high ductility steel. In such a case, by using the above-mentioned highly ductile steel plate for the hull structure, it is possible to suppress the occurrence of fractures in the hull such as the outer plate and the inner plate.
  • Patent Document 2 proposes a welded joint that suppresses breakage at the welded metal portion.
  • Patent Document 2 shows a relational expression with parameters such as the groove angle, the tensile strength of the weld metal, the tensile strength of the base material, etc. in full penetration welding of a groove having a shape such as a V shape.
  • a welded joint that is made satisfies the relationship. In such a case, even if the strength of the weld metal material is lower than the strength of the base metal, a tenacious welded joint is realized by avoiding the concentration of deformation on the weld metal portion, which has lower toughness than the base metal. be able to.
  • Japanese Patent No. 5893231 Japanese Patent No. 6319027
  • the HAZ becomes higher than the austenitizing temperature due to the welding heat.
  • the structure of the base material does not remain in the HAZ, and the strength of the base material may be lower than that of the base material.
  • the HAZ tends to soften, and there is a possibility that the strength and elongation characteristics of the steel sheet will not be fully utilized in the welded joint.
  • the present invention has been made in view of the above problems, and an object of the present invention is to suppress breakage due to strain concentration in the weld heat affected zone in welded joints between steel plates.
  • the steel plate may be of strength class 32, 36 or 40 defined by the unified standard.
  • the value of total elongation in a tensile test using a flat joint test piece with a gage length of 200 mm and a width of 40 mm is 1.4 times or more the total elongation value of the base material specified in the unified standard. There may be.
  • a method for designing a butt weld joint formed using a steel plate wherein the steel plate is the International Federation of Classification Societies (IACS) a steel sheet selection step of selecting a steel sheet that satisfies the standard (Unified Requirement W11 Rev.9 2017) and has a total elongation that is 1.40 times or more the value of the total elongation specified in the unified standard; , the plate thickness of the butt weld joint is t (mm), the width of the weld heat affected zone is Lh (mm), the hardness of the weld heat affected zone is Hh, the hardness of the base material is Hb, and the weld metal
  • Hw is the hardness of the part, when Hh/Hb is less than 0.97, the following formulas (1) to (4) are satisfied, and when Hh/Hb is 0.97 or more, and a welding condition setting step of setting welding conditions for butt welding so
  • a method for manufacturing a butt welded joint formed using a steel plate wherein the steel plate used is International Federation of Classification Societies (IACS) Steel sheet selection step of selecting a steel sheet that satisfies the standard (Unified Requirement W11 Rev.9 2017) and has a total elongation that is 1.40 times or more the value of the total elongation specified in the unified standard , the plate thickness of the butt weld joint is t (mm), the width of the weld heat affected zone is Lh (mm), the hardness of the weld heat affected zone is Hh, the hardness of the base material is Hb, and welding
  • Hw is the hardness of the metal part
  • Hh/Hb is less than 0.97
  • the following expressions (1) to (4) are satisfied, and when Hh/Hb is 0.97 or more, , a welding condition setting step for setting welding conditions for butt welding so as to satisfy the following
  • a part of the butt-welded joint of the shell plate of the side or the bottom of the ship, or the whole part of the butt-welded joint, or A hull structure is provided in which a part of the butt-welded joint of the inner plate of the side or bottom of the ship or the whole of the butt-welded joint is the welded joint.
  • a hull structure is provided which is the welded joint.
  • the present invention it is possible to provide a welded joint with excellent ductility, and it is possible to suppress breakage due to strain concentration in the welded heat affected zone in the welded joint between steel plates.
  • the welded joint for a part or all of the butt welded joints of the shell plate of the side or bottom of the ship, it is possible to prevent the welded joints from breaking due to collision or grounding of the ship, for example. is suppressed. As a result, the industrial contribution will be extremely significant.
  • FIG. 2 is an enlarged view of a side portion and a bottom portion of the hull structure in FIG. 1; It is a figure which shows the joint tension test piece used for FEM analysis. It is a figure which shows the example of the model used by FEM analysis.
  • 4 is a graph comparing a limit HAZ width derived by an estimation formula and a limit HAZ width obtained by FEM analysis;
  • FIG. 4 is a diagram showing the state of a joint tensile test piece after a joint tensile test;
  • FIG. 4 is a diagram showing a cross-sectional hardness distribution of an EGW joint of high ductility steel sheets;
  • FIG. 4 is a diagram showing a cross-sectional hardness distribution of an EGW joint made of conventional steel;
  • a double hull structure of an oil tank will be described.
  • the main members constituting the side section 10 of the double-hull structure are the outer plate 11 and the inner plate 12, and the stiffeners 13 attached to the outer plate 11 and the inner plate 12, respectively.
  • 14 , transformer 15 and stringer 16 Main members constituting the ship bottom 20 are stiffeners 23 and 24 attached to the outer plate 21 and the inner plate 22, the outer plate 21 and the inner plate 22, a transformer 25, and stringers 26, respectively.
  • the double hull construction has an upper deck 30 and a bilge 31 .
  • the main members such as the outer plate and the inner plate meet the Unified Requirement W11 Rev. 9 2017) and has a total elongation of 1.40 times or more the value of the total elongation specified in the unified standard of IACS.
  • the collision resistance of the ship can be dramatically improved, and the hull such as the outer plate and the inner plate can be prevented from being broken.
  • Patent Document 1 when assuming a collision accident of a large crude oil tanker (VLCC: Very Large Crude Oil Carrier), which is a large vessel, the outer plate of the side of the hull structure and the inner
  • VLCC Very Large Crude Oil Carrier
  • FEM finite element method
  • the amount of energy absorption can be improved in the same way, and the hull such as the outer plate and inner plate will be broken. can be suppressed.
  • Table 1 shows the total elongation values specified by the unified standard (Unified Requirement W11 Rev.9 2017). Table 1 defines the minimum elongation values that the hull material used should satisfy, depending on the plate thickness and grade.
  • the alphabets (A, B, D, E and F) in Grade indicate the difference in test temperature required in the Charpy impact test, and the numbers (32, 36, and 40) indicate the division of strength. ing.
  • the high ductility steel sheets have an elongation exceeding the standard value of total elongation shown in Table 1, and satisfy the unified standard. By using a high ductility steel sheet having the above-described strength classes, the effects of the present invention as described below become particularly remarkable.
  • the term "high ductility steel sheet” means that the total elongation is 1.40 times or more of the value of the total elongation specified in the IACS unified standard, which satisfies the standard in accordance with the IACS unified standard. shall refer to a steel plate having
  • the composition and manufacturing conditions of the steel sheet are not limited.
  • the high ductility steel sheet the composition is, in mass%, C: 0.02 to 0.18%, Si: 0.01 to 0.50%, Mn: 0.9 to 1.6%, Al: It is possible to use a steel sheet containing 0.001 to 0.100%, N: 0.02% or less, P: 0.02% or less, and S: 0.01% or less, and the balance being Fe and impurities. can.
  • a steel sheet with the above-mentioned composition changed may be used according to the required properties such as improvement of the strength of the base material and improvement of the toughness of the welded joint.
  • a steel sheet with the above-mentioned composition changed may be used according to the required properties such as improvement of the strength of the base material and improvement of the toughness of the welded joint.
  • part of Fe Ni: 0.8% or less, Cr: 0.2% or less, Mo: 0.08% or less, Cu: 0.35% or less, W: 1.5% or less.
  • a butt welded joint (hereinafter simply referred to as a "welded joint") formed using a highly ductile steel plate will be described.
  • a welding method for the welded joint for example, a welding method such as shielded arc welding (SMAW), carbon dioxide gas (CO 2 ) arc welding, electrogas arc welding (EGW), submerged arc welding (SAW) can be used.
  • SMAW shielded arc welding
  • CO 2 carbon dioxide gas
  • EGW electrogas arc welding
  • SAW submerged arc welding
  • the present inventors conducted extensive studies and found that, in welded joints, the location where fracture occurs may change due to the difference between the hardness of the HAZ and the hardness of the base material. I thought about sex.
  • the inventors conducted a joint tensile test simulation by the finite element method (FEM) in order to further verify the knowledge conceived from the above study.
  • FEM finite element method
  • FIG. 3 is a diagram showing a joint tensile test piece (flat joint test piece) used for FEM analysis.
  • FIG. 3(a) shows a side view
  • FIG. 3(b) shows a plan view.
  • the outer shape of the joint tensile test piece complies with JIS No. 1A tensile test piece.
  • a joint tensile test piece was modeled so that the weld metal zone WM and the weld heat affected zone HAZ were positioned at the center of the joint tensile test piece in the longitudinal direction.
  • the weld metal zone WM is located in the center, the weld heat affected zone HAZ is located outside the weld metal zone WM, and the base metal part BM is further outside the weld heat affected zone HAZ.
  • the length of the joint tensile test piece is 580 mm
  • the length of the parallel portion is 220 mm
  • the gauge length GL is 200 mm.
  • the width of the grip portion of the joint tensile test piece is 60 mm
  • the width of the parallel portion is 40 mm.
  • the radius of curvature R at the location where the width changes between 60 mm and 40 mm is 25 mm.
  • the width of the parallel portion is not limited to 40 mm, and may be 25 mm, for example.
  • the plate thickness t of the joint tensile test piece was set to 4 cases of 6 mm, 12 mm, 24 mm, and 36 mm.
  • the width of the weld metal portion WM was fixed at 20 mm, and the width Lh of the weld heat affected zone HAZ was varied in the range of 1 to 15 mm at 1 mm intervals.
  • the range of 1 to 15 mm for the HAZ width Lh is the range assumed for the weld heat affected zone HAZ under normal welding conditions.
  • the softening rate of the weld heat affected zone HAZ with respect to the base metal portion BM was set to four cases of 5%, 10%, 20%, and 30%.
  • FIG. 4 shows an example of the model (right half of the joint tensile test piece) used in the FEM analysis.
  • FIG. 4 shows an example of a model in which the plate thickness t of the joint tensile test piece is 12 mm and the width Lh of the weld heat affected zone HAZ is 5 mm.
  • the width Lh of the weld heat affected zone HAZ is changed in the range of 1 to 15 mm at a pitch of 1 mm. Then, FEM analysis was performed, and the limit HAZ width (hereinafter referred to as "limit HAZ width") that does not cause breakage in the weld heat affected zone HAZ was determined. The results are shown in Table 3.
  • the inventors derived an estimation formula for the limit HAZ width based on the FEM analysis results shown in Table 3.
  • the limit HAZ width is assumed to become infinite when the HAZ softening rate approaches 0% (that is, Hh/Hb approaches 1).
  • an estimation formula for the limit HAZ width Lh LIM shown in the following formula (7) was defined.
  • the HAZ softening rate is a value of more than 0%, so Hh/Hb is a value of less than 1.00, as in formula (13) below.
  • the welded joint shall satisfy the conditions shown in the following formulas (14) to (16).
  • the HAZ softening rate is set to four cases of 5%, 10%, 20%, and 30%.
  • the Hh/Hb is 0.97 or more and the limit HAZ softening width Lh LIM exceeds 15 mm, so the following formula (14) is derived.
  • the hardness of the weld metal portion is greater than or equal to that of the base metal portion, which is the so-called over-matching that is assumed in a normal welded joint, the following formula (15) is derived.
  • the plate thickness t of the joint tensile test piece is four cases of 6 mm, 12 mm, 24 mm, and 36 mm. also satisfies the above formula (10). From these results, the following formula (16) is derived.
  • the conditions to be satisfied by the welded joint in the present invention can be classified according to the value of Hh/Hb. (4) is satisfied, and when Hh/Hb is 0.97 or more, the following expressions (3) to (4) are satisfied.
  • Hh/Hb tensile fracture due to strain concentration in the HAZ (soft zone) can be suppressed, and welding with excellent ductility can be achieved. Fittings can be provided.
  • Hh hardness of HAZ
  • Hb hardness of base material
  • t thickness of welded joint (mm)
  • Lh width of HAZ (mm)
  • Hw Hardness of the weld metal part.
  • the Vickers hardness distribution at the 1/4 position and 3/4 position of the plate thickness of the cross section of the base material and the welded joint is measured at a pitch of 1 mm in accordance with JIS Z2244:2009. do.
  • a test piece of the base metal part and a test piece of the welded joint which are not affected by heat are prepared respectively.
  • a sample is taken so that the weld line is positioned in the center in the direction orthogonal to the extending direction of the weld line in the welded joint, and the sample is taken as a measurement cross section.
  • the load is 10 kg.
  • Hb be the average hardness of the base metal portion calculated using the results obtained by such measurements
  • Hh be the minimum hardness of the HAZ
  • Hw be the minimum hardness of the weld metal portion.
  • the average hardness Hb of the base metal portion, the minimum hardness Hh of the HAZ, the minimum hardness Hw of the weld metal portion, and the width of the HAZ Lh are defined and their specific measurement methods are as follows. , as follows.
  • the hardness of the base material Hb In the measurement of the welded joint, the cross section of the welded joint is polished and then subjected to nital corrosion to expose the weld metal and HAZ. After that, at the 1/4 position of the plate thickness and the 3/4 position of the plate thickness, starting from the boundary line (fusion line) between the weld metal and the HAZ, the hardness is increased to the base metal side at a pitch of 1 mm until it reaches the base metal part. The distribution is measured, and the minimum value of the measurement results is taken as the HAZ hardness Hh.
  • a region where the hardness measurement result is 97% or less of the hardness Hb of the base material portion is defined as the HAZ softening region.
  • the distances to the ends of the softened regions on the side of the base material are determined, and the maximum value of the obtained distances is defined as the HAZ width Lh.
  • the weld metal zone is measured at 1 mm intervals at the 1/4 position and the 3/4 position of the plate thickness, and the minimum value of the obtained measured values is defined as the hardness Hw of the weld metal zone.
  • a flat joint test piece having a gauge length of 200 mm and a width of 40 mm was prepared by properly satisfying the conditions (1) to (4) above according to the value of Hh / Hb. Then, when such a test piece is subjected to a tensile test, the value of the total elongation in the tensile test is 1.40 times or more the value of the total elongation of the base material specified in the unified standard. The higher the ratio of the total elongation to the value of the total elongation of the base material specified in the unified standard, the better. upper limit.
  • FIG. 5 is a graph comparing the limit HAZ width (horizontal axis in FIG. 5) derived by the estimation formula of formula (10) and the limit HAZ width (vertical axis in FIG. 5) obtained by FEM analysis.
  • the estimated results using Equation (10) and the FEM analysis results are in good agreement in four cases where the plate thickness t of the welded joint is 6 mm, 12 mm, 24 mm, and 36 mm. Even when the plate thickness t of the welded joint is 40 mm, extrapolation of the graph in FIG. Therefore, it can be seen that the above equations (1) to (4), which are the conditions to be satisfied by the welded joint, are appropriate.
  • the method for designing a welded joint according to the present embodiment is a method for designing a butt welded joint formed using steel plates.
  • This design method includes a steel plate selection step of selecting a steel plate to be a material for a welded joint, and a welding condition setting step of setting welding conditions for butt welding.
  • the steel plate to be the material for the welded joints satisfies the standard (Unified Requirement W11 Rev.9 2017) of the International Association of Classification Societies (IACS) and all the steel sheets specified by the unified standard are selected.
  • the step is to select a steel sheet having a total elongation of 1.40 times or more the elongation value.
  • the plate thickness of the weld joint is t (mm)
  • the width of the weld heat affected zone is Lh (mm)
  • the hardness of the weld heat affected zone is Hh
  • the hardness of the base material is Hb
  • a step of setting welding conditions for butt welding so as to satisfy the above equations (1) to (4), where Hw is the hardness of the weld metal portion.
  • this welding condition setting step various simulation methods including FEM may be performed to virtually obtain welding conditions that satisfy the above formulas (1) to (4).
  • actual butt welding and post-welding verification are performed while changing the welding conditions, and the steel plate that satisfies the above formulas (1) to (4).
  • Welding conditions may be determined experimentally.
  • the steel plates selected in accordance with the design method of the welded joint as described above are butt-welded in accordance with the set welding conditions to obtain the above-described welded joint.
  • the method for manufacturing a welded joint according to the present embodiment includes the steel plate selection step and the welding condition setting step as described above, and the welding step of welding the selected steel plates according to the set welding conditions. It can be said that it is a thing.
  • SMAW shielded arc welding
  • CO 2 carbon dioxide
  • EGW electrogas arc welding
  • SAW submerged arc welding
  • the welded joint satisfying the above formulas (1) to (4) (hereinafter referred to as "the above welded joint") is a part of the butt welded joint of the outer plate of the side or bottom of the ship in the hull structure. or all parts of the butt weld joint.
  • the above-mentioned welded joint is used for a part of butt-welded joints of the inner plates of the side or bottom of the ship or the whole of the butt-welded joints in the hull structure.
  • the above welded joints are used in butt-welded joints of the outer or inner plates of the side or bottom of a ship where it is necessary to suppress rupture.
  • the part where it is necessary to suppress the hole is the part of the side part or the bottom part of the ship that may receive an impact when the ship collides or runs aground. do.
  • a portion with no ballast tanks and a single outer plate is specified as a portion where it is necessary to suppress the rupture, and the welded joints of the portion are specified as described above. Welded joints may also be used.
  • a portion of the outer plate that is part of the fuel tank is specified as a portion in which the rupture needs to be suppressed, and use the above-described welded joint for the welded joint of that portion.
  • the portion of the outer plate facing the inner plate where the tank storing the product oil is specified as the portion that needs to be prevented from breaking.
  • the above-mentioned welded joint may be used for the welded joint of the relevant portion.
  • the portion of the ship's side shell plate that is closest to the spherical tank storing LNG may be specified as the portion that needs to be prevented from breaking.
  • the portion since the tank is spherical, the portion does not need to cover the entire tank in plan view and side view, but only the portion closest to the tank. Then, the welded joint may be used for the welded joint at the specified site.
  • the peripheral portion of the side shell plate, which is closest to the spherical tank may also be specified as the portion requiring suppression of rupture.
  • the above method is a method for identifying the parts where it is necessary to suppress the rupture from the design drawing of the ship. Absorbed energy analysis of each member by FEM may be performed to identify the site where rupture needs to be suppressed.
  • the above-mentioned welded joints may be used for a part of butt-welded joints of stiffeners, transformers, or stringers on the side or bottom of the ship, or for all of the butt-welded joints. good.
  • the welded joint may be used for a part of the butt welded joint on either the upper deck or the bilge, or for the entire butt welded joint in the hull structure.
  • the above welded joint can be used not only for large ships but also for small ships, and is particularly effective when applied to large ships. Furthermore, the welded joint can be used for both double-hulled and single-hulled vessels.
  • the outer plating can be regarded as the inner plating (and conversely, the inner plating can be regarded as the outer plating).
  • the hull structure of the above embodiment uses a high ductility steel plate having a total elongation value of 1.40 times or more of the total elongation value specified by the IACS unified standard.
  • a realistic production target for the above-mentioned high-ductility steel sheets is 1.50 times or more than 1.50 times the total elongation value specified in the unified standard of IACS. preferable.
  • YP36 steel yield stress 36 kgf/mm 2 , 1 kgf is about 9.8 N
  • TS yield stress
  • EL total elongation
  • the item "magnification” in Table 4 below represents the magnification for the value of total elongation defined by the unified standard of IACS.
  • test No. in Table 5 below For No. 7, an undermatched welding material was used. Also, Test No. in Table 5 below. For test no. It was made to become a larger heat input than 4.
  • Table 5 shows the measurement results of the tensile strength (TS) and total elongation (EL) of the joint tensile test pieces of each steel material and each welding method, and the fracture position.
  • TS tensile strength
  • EL total elongation
  • FIG. 1 and No. 5 shows the state of the joint tensile test piece after the test.
  • FIG. 7 shows the cross-sectional hardness distribution of the EGW joint of high ductility steel plate
  • FIG. 8 shows the cross-sectional hardness distribution of the conventional steel EGW joint. 7(b) and 8(b)
  • the horizontal axis indicates the distance from the center of the EGW joint
  • the vertical axis indicates the Vickers hardness (Hv).
  • Hv Vickers hardness
  • the part with a distance of ⁇ 10 mm from the center is the weld metal part
  • the outside of the weld metal part is the HAZ
  • the outside of the HAZ is the base material portion.
  • Two graphs are shown in FIGS. 7(b) and 8(b).
  • "t/4" is the position corresponding to the depth of 1/4 of the plate thickness t from the surface of the EGW joint shown in FIGS. It is a position corresponding to a depth of 3/4 of the plate thickness t from the surface of the EGW joint shown in (a) and FIG. 8 (a).
  • the hardness of the HAZ and the hardness of the base material are almost the same.
  • the hardness of the HAZ is smaller than the hardness of the base metal portion, and the HAZ is softened over a wide range.
  • variety Lh of HAZ is also described.
  • the present invention is useful for ships where excellent collision resistance is important in the hull structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

【課題】鋼板同士の溶接継手において溶接熱影響部でのひずみ集中による破断を抑制すること。 【解決手段】鋼板を使用して形成された突合せ溶接継手であって、前記鋼板は、国際船級協会連合(IACS)の統一規格(Unified Requirement W11 Rev.9 2017)に準拠した規格を満たし、かつ、前記統一規格で規定された全伸びの値の1.40倍以上の全伸びを有し、前記突合せ溶接継手の板厚をt(mm)、溶接熱影響部の幅をLh(mm)、前記溶接熱影響部の硬さをHh、母材部の硬さをHb、及び、溶接金属部の硬さをHwとしたときに、Hh/Hbが0.97未満の場合には、下記式(1)~(4)を満足し、Hh/Hbが0.97以上の場合には、下記式(3)~(4)を満足する。 Lh≦(0.034t+0.510)/(1-Hh/Hb)0.9 ・・・(1) Hh/Hb≧0.70 ・・・(2) Hw/Hb≧1.0 ・・・(3) 6≦t≦40 ・・・(4)

Description

溶接継手、溶接継手の設計方法、溶接継手の製造方法及び船体構造
 本発明は、溶接継手、溶接継手の設計方法及び溶接継手の製造方法と、当該溶接継手を備えた船体構造に関する。
 近年、船舶の衝突、座礁等の海難事故による海洋汚染が社会問題となっている。例えば、鉱石運搬船や石炭運搬船等のバルクキャリアのように、積荷が海洋を過度に汚染するものではない船舶であっても、燃料油の流出によって海洋を汚染する場合がある。また、タンカー等の船舶から積荷である油が流出すれば、海洋汚染はより顕著になる。このため、衝突、座礁等による船殻の破口を抑制する必要がある。
 そこで、特許文献1には、耐衝突性に優れた船体構造が提案されている。ここでいう耐衝突性とは、例えば所定の速度で他船の衝突を受けても船殻の破口を抑制できる性質をいう。この船体構造は、船側部の外板若しくは内板の一部の部位又は外板若しくは内板の全ての部位に、国際船級協会連合(IACS)の統一規格(Unified Requirement W11 Rev.8 2014)に準拠した規格を満たし、IACSの統一規格で規定された全伸びの値の1.4倍以上の全伸びが仕様として課せられ、且つ、上記仕様を満たしたことが確認された、強度区分32、36又は40の高延性鋼板を使用した船殻構造を有している。かかる場合、船体構造に上記高延性鋼板を使用することで、外板や内板等の船殻に破口が生じるのを抑制することができる。
 また、特許文献2には、溶接金属部での破断を抑制した溶接継手が提案されている。特許文献2には、V形等の形状を有する開先の完全溶け込み溶接において、開先角度、溶接金属の引張強さ、母材の引張強さ等をパラメータとする関係式が示され、提案された溶接継手は当該関係式を満たす。かかる場合、溶接金属材料の強度が母材の強度を下回る場合であっても、母材に比較して靭性が低い溶接金属部に変形が集中するのを避けることで、粘り強い溶接継手を実現することができる。
特許第5893231号公報 特許第6319027号公報
 ところで、溶接継手における溶接金属材料の強度が母材の強度を下回る、いわゆるアンダーマッチングの場合や、溶接熱影響部(HAZ:Heat Affected Zone)が軟化している場合に、溶接継手に引張応力が作用すると、軟質部に塑性ひずみが集中する。このため、溶接継手の部材の伸びが小さい時点で、当該溶接継手が破断することが想定される。
 特に、熱加工制御(TMCP:Thermo Mechanical Control Process)による鋼板の組織制御により、当該鋼板の強度・伸び特性を向上させている場合、HAZは、溶接熱によってオーステナイト化温度よりも高温となる。これにより、母材の組織がHAZに残存せず、母材に比べ強度が低下することがある。そうすると、HAZは軟化しやすく、溶接継手では鋼板の強度・伸び特性が十分に生かされない可能性がある。
 本発明者らが鋭意検討したところ、後述するように溶接継手においてHAZが破断しないための条件として、HAZの軟化率とHAZの幅が影響することを見出した。
 そこで、本発明は、上記問題に鑑みてなされたものであり、鋼板同士の溶接継手において溶接熱影響部でのひずみ集中による破断を抑制することを目的とする。
 上記課題を解決するために、本発明のある観点によれば、鋼板を使用して形成された突合せ溶接継手であって、前記鋼板は、国際船級協会連合(IACS)の統一規格(Unified Requirement W11 Rev.9 2017)に準拠した規格を満たし、かつ、前記統一規格で規定された全伸びの値の1.40倍以上の全伸びを有し、前記突合せ溶接継手の板厚をt(mm)、溶接熱影響部の幅をLh(mm)、前記溶接熱影響部の硬さをHh、母材部の硬さをHb、及び、溶接金属部の硬さをHwとしたときに、Hh/Hbが0.97未満の場合には、下記式(1)~(4)を満足し、Hh/Hbが0.97以上の場合には、下記式(3)~(4)を満足する溶接継手が提供される。
 前記溶接継手において、前記鋼板は、前記統一規格で規定された強度区分32、36又は40であってもよい。
 標点間距離が200mm、幅が40mmの平形継手試験片を用いた引張試験での全伸びの値が、前記統一規格で規定された母材部の全伸びの値の1.4倍以上であってもよい。
 また、上記課題を解決するために、本発明の別の観点によれば、鋼板を使用して形成される突合せ溶接継手の設計方法であって、前記鋼板として、国際船級協会連合(IACS)の統一規格(Unified Requirement W11 Rev.9 2017)に準拠した規格を満たし、かつ、前記統一規格で規定された全伸びの値の1.40倍以上の全伸びを有する鋼板を選定する鋼板選定ステップと、前記突合せ溶接継手の板厚をt(mm)、溶接熱影響部の幅をLh(mm)、前記溶接熱影響部の硬さをHh、母材部の硬さをHb、及び、溶接金属部の硬さをHwとしたときに、Hh/Hbが0.97未満の場合には、下記式(1)~(4)を満足し、Hh/Hbが0.97以上の場合には、下記式(3)~(4)を満足するように、突合せ溶接の溶接条件を設定する溶接条件設定ステップと、を有する溶接継手の設計方法が提供される。
 また、上記課題を解決するために、本発明の更に別の観点によれば、鋼板を使用して形成される突合せ溶接継手の製造方法であって、前記鋼板として、国際船級協会連合(IACS)の統一規格(Unified Requirement W11 Rev.9 2017)に準拠した規格を満たし、かつ、前記統一規格で規定された全伸びの値の1.40倍以上の全伸びを有する鋼板を選定する鋼板選定ステップと、前記突合せ溶接継手の板厚をt(mm)、溶接熱影響部の幅をLh(mm)、前記溶接熱影響部の硬さをHh、母材部の硬さをHb、及び、溶接金属部の硬さをHwとしたときに、Hh/Hbが0.97未満の場合には、下記式(1)~(4)を満足し、Hh/Hbが0.97以上の場合には、下記式(3)~(4)を満足するように、突合せ溶接の溶接条件を設定する溶接条件設定ステップと、前記鋼板選定ステップにおいて選定された前記鋼板を、前記溶接条件設定ステップにおいて設定された前記溶接条件のもとで溶接する溶接ステップと、を有する溶接継手の製造方法が提供される。
 また、上記課題を解決するために、本発明の更に別の観点によれば、船側部若しくは船底部の外板の突合せ溶接継手の一部の部位若しくは当該突合せ溶接継手の全ての部位、又は、船側部若しくは船底部の内板の突合せ溶接継手の一部の部位若しくは当該突合せ溶接継手の全ての部位が、前記溶接継手である船体構造が提供される。
 また、上記課題を解決するために、本発明の更に別の観点によれば、船側部又は船底部の外板又は内板の突合せ溶接継手の中で、破口を抑制する必要がある部位が、前記溶接継手である船体構造が提供される。
 
  Lh≦(0.034t+0.510)/(1-Hh/Hb)0.9 ・・・(1)
  Hh/Hb≧0.70 ・・・(2)
  Hw/Hb≧1.0 ・・・(3)
  6≦t≦40 ・・・(4)
 
 以上説明したように本発明によれば、延性に優れた溶接継手を提供することができ、鋼板同士の溶接継手において溶接熱影響部でのひずみ集中による破断を抑制することができる。また、船側部若しくは船底部の外板の突合せ溶接継手の一部の部位若しくは当該突合せ溶接継手の全ての部位に、当該溶接継手を使用することにより、例えば船舶の衝突や座礁による溶接継手の破断が抑制される。その結果、産業上の貢献が極めて顕著となる。
船体構造の部材を説明するための図である。 図1における船体構造の船側部及び船底部を拡大した図である。 FEM解析に用いた継手引張試験片を示す図である。 FEM解析で用いたモデルの例を示す図である。 推定式で導出した限界HAZ幅と、FEM解析で求めた限界HAZ幅とを比較したグラフである。 継手引張試験後の継手引張試験片の状態を示す図である。 高延性鋼板のEGW継手の断面硬さ分布を示す図である。 従来鋼のEGW継手の断面硬さ分布を示す図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
<船体構造>
 先ず、船体構造(船殻構造)の一例として、油槽の二重船殻構造について説明する。図1及び図2に示すように、二重船殻構造の船側部10を構成する主要な部材は、外板11と内板12、外板11と内板12にそれぞれ付随する防撓材13、14、トランス15、及び、ストリンガー16である。また、船底部20を構成する主要な部材は、外板21と内板22、外板21と内板22にそれぞれ付随する防撓材23、24、トランス25、及び、ストリンガー26である。更に、二重船殻構造は、アッパーデッキ30及びビルジ31を有している。
<鋼板>
 本実施形態の船体構造において、上記外板や内板等の主要な部材には、例えば上記特許文献1に開示されたように、国際船級協会連合(IACS)の統一規格(Unified Requirement W11 Rev.9 2017)に準拠した規格を満たし、IACSの統一規格で規定された全伸びの値の1.40倍以上の全伸びを有する高延性鋼板が用いられる。かかる場合、船舶の耐衝突性を飛躍的に向上でき、外板や内板等の船殻に破口が生じるのを抑制することができる。なお、上記のIACSの統一規格で規定された全伸びの値に対する全伸びの倍率は、高ければ高いほど良く、その上限値は特に規定するものではないが、実質的には2.20倍程度が上限となる。
 具体的には、特許文献1に記載されている通り、大型船舶である大型原油タンカー(VLCC:Very Large Crude oil Carrier)の衝突事故を想定した場合において、船体構造の船側部の外板や内板等に様々な全伸びを有する鋼板を適用して有限要素法(Finite Element Method:FEM)による解析を行ったところ、IACSの統一規格で規定された全伸びの値の1.40倍以上の全伸びを有する高延性鋼板を用いた場合に、従来鋼を用いた場合に比べて、エネルギー吸収量を向上させることができ、外板や内板等の船殻に破口が生じるのを抑制することができた。また、船底部の外板や内板等に上記高延性鋼板を用いた場合においても、同様に、エネルギー吸収量を向上させることができ、外板や内板等の船殻に破口が生じるのを抑制することができる。
 なお、統一規格(Unified Requirement W11 Rev.9 2017)で規定された全伸びの値は、表1の通りである。表1は、板厚とGradeに応じて、使用する船体材料が満足するべき最小の伸び値を規定している。統一規格では、Gradeにおけるアルファベット(A、B、D、E及びF)は、シャルピー衝撃試験で要求される試験温度の違いを示し、数字(32、36、及び40)は、強度の区分を示している。高延性鋼板は、これらの表1で示す全伸びの規格値を上回る伸びを有しており、統一規格を満足している。上記のような強度の区分を有する高延性鋼板を用いることで、以下で説明するような本発明の効果が特に顕著となる。
Figure JPOXMLDOC01-appb-T000001
 以上のように、本実施形態の船体構造には、高延性鋼板が用いられる。以下の説明において「高延性鋼板」という場合は、このようにIACSの統一規格に準拠した規格を満たし、且つ、IACSの統一規格で規定された全伸びの値の1.40倍以上の全伸びを有する鋼板を指すものとする。
 なお、高延性鋼板は、上記の要件を満足する限り、鋼板の組成及び製造条件は限定されない。例えば、上記高延性鋼板として、組成が、質量%で、C:0.02~0.18%、Si:0.01~0.50%、Mn:0.9~1.6%、Al:0.001~0.100%、N:0.02%以下、P:0.02%以下、及びS:0.01%以下を含有し、残部が、Fe及び不純物からなる鋼板を用いることができる。
 また、高延性鋼板には、母材部の強度の向上、溶接継手の靭性の向上等、要求される特性に応じて、上記組成を変更した鋼板を用いてもよい。例えば、上記組成において、Feの一部に換えて、Ni:0.8%以下、Cr:0.2%以下、Mo:0.08%以下、Cu:0.35%以下、W:1.0%以下、Co:1.0%以下、V:0.1%以下、Nb:0.05%以下、Ti:0.02%以下、Zr:0.05%以下、Ta:0.05%以下、Hf:0.005%以下、REM(希土類元素):0.005%以下、Y:0.005%以下、Ca:0.01%以下、Mg:0.01%以下、Te:0.01%以下、Se:0.005%以下、B:0.005%以下、及び、Sn:0.3%以下の1種又は2種以上を含有させてもよい。
 また、上記のような強度の区分の高延性鋼板以外にも、例えば、国際船級協会連合(IACS)の統一規格(Unified Requirement W11 Rev.9 2017)に準拠した規格を満たし、IACSの統一規格で規定された全伸びの値の1.40倍以上の全伸びを有する軟鋼を用いることも可能である。
<溶接継手>
 次に、本実施形態の船体構造において、高延性鋼板を使用して形成される突合せ溶接継手(以下、単に「溶接継手」という。)について説明する。溶接継手の溶接方法としては、例えば、被覆アーク溶接(SMAW)、炭酸ガス(CO)アーク溶接、エレクトロガスアーク溶接(EGW)、サブマージアーク溶接(SAW)等の溶接方法を用いることができる。
 上述したように本実施形態では、船体構造に高延性鋼板を用いることで、外板や内板等の船殻に破口が生じるのを抑制することができる。一方、従来の技術では、溶接継手において、破断を抑制する効果が得られるか否かは明らかではなかった。例えば船舶の衝突、座礁等が生じた場合、溶接継手の溶接線に沿って破断する懸念がある。
 本発明者らは、上記懸念を払拭するために、鋭意検討を行った結果、溶接継手において、HAZの硬さと母材部の硬さとの相違に起因して、破断が生じる部位が変化する可能性に想到した。
 そこで、本発明者らは、上記検討から想到した知見について更なる検証を行うべく、有限要素法(FEM)により継手引張試験のシミュレーションを実施した。その結果、以下に述べる通り、HAZが破断しないための溶接継手の条件(具体的には、HAZの軟化率(以下、「HAZ軟化率」という。)とHAZの幅(以下、「HAZ幅」という。)の条件)を見出すに至った。
 図3は、FEM解析に用いた継手引張試験片(平形継手試験片)を示す図である。図3(a)は側面図を示し、図3(b)は平面図を示す。継手引張試験片の外形は、JIS1A号引張試験片に準拠している。継手引張試験片の長手方向中心部に溶接金属部WMと溶接熱影響部HAZとが位置するように、継手引張試験片をモデル化した。すなわち、モデル化した継手引張試験片において、溶接金属部WMは中心に位置し、溶接熱影響部HAZは溶接金属部WMの外側に位置し、母材部BMは溶接熱影響部HAZの更に外側に位置する。
 かかるモデルにおいて、継手引張試験片の長さは580mmであり、平行部の長さは220mmであり、標点間距離GLは200mmである。継手引張試験片の掴み部の幅は60mmであり、平行部の幅は40mmである。母材部BMにおいて、幅が60mmと40mmで変化する場所の曲率半径Rは25mmである。なお、平行部の幅は40mmに限定されず、例えば25mmとしてもよい。
 また、継手引張試験片の板厚tは、6mm、12mm、24mm、36mmの4ケースとした。溶接金属部WMの幅は20mmで固定し、溶接熱影響部HAZの幅Lhを1~15mmの範囲において1mmピッチで変化させた。このHAZ幅Lhの1~15mmの範囲は、通常の溶接条件での溶接熱影響部HAZで想定される範囲である。母材部BMに対する溶接熱影響部HAZの軟化率は、5%、10%、20%、30%の4ケースとした。
 図4に、FEM解析で用いたモデル(継手引張試験片の右半分)の例を示した。図4には、継手引張試験片の板厚tが12mmであり、溶接熱影響部HAZの幅Lhが5mmの場合のモデルの例を示している。
 FEM解析において、材料の真応力―真ひずみ関係を、下記式(6)のSwift則により近似した。ここで、以下の式(6)において、σ:真応力、ε:真ひずみ、σ、α、n:材料特性、である。また、FEM解析に用いたSwift則のパラメータは、本発明者らが過去に実施した各種実験で取得されたデータに基づいて、表2の通りに設定した。
 
  σ=σ(1+ε/α) ・・・(6)
 
Figure JPOXMLDOC01-appb-T000002
 
 以上の継手引張試験片の板厚t(4ケース)と溶接熱影響部HAZの軟化率(4ケース)の条件において、溶接熱影響部HAZの幅Lhを1~15mmの範囲で1mmピッチで変化させてFEM解析を行い、溶接熱影響部HAZで破断しない限界のHAZの幅(以下、「限界HAZ幅」という。)を求めた。その結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、継手引張試験片の板厚tが小さく、且つ、溶接熱影響部HAZの軟化率が大きい場合、限界HAZ幅は小さくなる傾向があり、小さいHAZ幅Lhで溶接熱影響部HAZが破断しやすいことがわかる。一方、継手引張試験片の板厚tが大きく、且つ、溶接熱影響部HAZの軟化率が小さい場合、限界HAZ幅は大きくなる傾向があり、大きいHAZ幅Lhでも溶接熱影響部HAZが破断しにくいことがわかる。
 次に、本発明者らは、表3に示すFEM解析結果に基づいて、限界HAZ幅の推定式を導出した。限界HAZ幅は、HAZ軟化率が0%に近づく(すなわち、Hh/Hbが1に近づく)と、無限大になることが想定される。かかる想定に基づき、下記式(7)に示す限界HAZ幅LhLIMの推定式を定義した。
 
  LhLIM=a/(1-Hh/Hb) ・・・(7)
 
 表3のFEM解析結果を用いて、継手引張試験片の板厚t毎に、最小二乗法により係数a、bを導出した。その結果、aは板厚tに依存して変化し、bは板厚tに依存しないと見做せることが分かり、下記式(8)及び(9)が導出された。
 
  a=0.034t+0.510 ・・・(8)
  b=0.9 ・・・(9)
 
 以上より、上記式(7)~(9)に基づいて、下記式(10)に示す限界HAZ幅の推定式が導出された。ここで、以下の式(10)において、LhLIM:限界HAZ幅(mm)、t:継手引張試験片(溶接継手)の板厚(mm)、Hh:HAZの硬さ、Hb:母材部の硬さ、である。
 
  LhLIM=(0.034t+0.510)/(1-Hh/Hb)0.9・・・(10)
 
 そして、下記式(11)に示す通り、HAZ幅Lhが限界HAZ幅LhLIM以下であれば、HAZで破断しない。そうすると、式(10)及び(11)より、本発明において溶接継手が満足すべき条件である下記式(12)が導出される。また、上記のように、HAZ軟化率は0%超の値であるため、下記式(13)のように、Hh/Hbは1.00未満の値となる。
 
  Lh≦LhLIM ・・・(11)
  Lh≦(0.034t+0.510)/(1-Hh/Hb)0.9 ・・・(12)
  Hh/Hb<1.00・・・(13)
 
 なお、溶接継手は、下記式(14)~(16)に示す条件を満足するものとする。上述した通り、FEM解析ではHAZ軟化率を5%、10%、20%、30%の4ケースとしている。また、式(12)によると、板厚が6mmである場合、Hh/Hbが0.97以上で限界HAZ軟化幅LhLIMが15mmを超えるため、下記式(14)が導出される。また、溶接金属部の硬さが母材部の硬さ以上であって、通常の溶接継手で想定される、いわゆるオーバーマッチングであるため、下記式(15)が導出される。更に、上述した通り、FEM解析では継手引張試験片の板厚tを6mm、12mm、24mm、36mmの4ケースとしているが、後述するように、本発明者らは板厚tが40mmであっても上記式(10)を満たすことを確認している。かかる結果から、下記式(16)が導出される。
 
  0.97>Hh/Hb≧0.70 ・・・(14)
  Hw/Hb≧1.0 ・・・(15)
  6≦t≦40 ・・・(16)
 
 以上をまとめると、本発明において溶接継手が満足すべき条件は、Hh/Hbの値に応じて場合分けすることができ、Hh/Hbが0.97未満の場合は、下記式(1)~(4)を満足することであり、Hh/Hbが0.97以上の場合は、下記式(3)~(4)を満足することとなる。換言すれば、Hh/Hbの値に応じて、溶接継手が上記のような条件を満足すれば、HAZ(軟質部)でのひずみ集中による引張破断を抑制することができ、延性に優れた溶接継手を提供することができる。ここで、下記式(1)~(4)において、Hh:HAZの硬さ、Hb:母材部の硬さ、t:溶接継手の板厚(mm)、Lh:HAZ幅(mm)、Hw:溶接金属部の硬さ、である。
 
  Lh≦(0.034t+0.510)/(1-Hh/Hb)0.9 ・・・(1)
  Hh/Hb≧0.70 ・・・(2)
  Hw/Hb≧1.0 ・・・(3)
  6≦t≦40 ・・・(4)
 
 なお、本実施形態において、母材及び溶接継手の断面の板厚の1/4位置と板厚の3/4位置のビッカーズ硬さ分布を、JIS Z2244:2009に即して、1mmピッチで測定する。この際、熱影響を受けていない母材部の試験片と溶接継手の試験片をそれぞれ用意する。溶接部の硬さ測定では、溶接継手における溶接線の延伸方向に対して直交する方向に、溶接線が中央に位置するように、サンプルを採取して、測定断面とする。また、ビッカーズ硬さ分布の測定では、荷重は10kgとする。かかる測定により得られた結果を用いて算出される母材部の硬さの平均値をHbとし、HAZの硬さの最小値をHhとし、溶接金属部の硬さの最小値をHwとする。また、上記のようにして得られる硬さの測定結果から、板厚の1/4位置と板厚の3/4位置のHAZ軟化部の幅を求め、それらの平均値をLhとする。
 なお、母材部の硬さの平均値Hb、HAZの硬さの最小値Hh、溶接金属部の硬さの最小値Hw、及び、HAZ幅Lhについて、定義と、より具体的な測定方法は、以下の通りである。
 すなわち、母材部については、板厚の1/4位置と板厚の3/4位置において、1mmピッチで10点ずつ、合計20点測定し、得られた20個の測定値の平均値を、母材部の硬さHbとする。溶接継手の測定では、溶接継手の断面を研磨後にナイタール腐食することで、溶接金属とHAZを現出させる。その後、板厚の1/4位置と板厚の3/4位置において、溶接金属とHAZの境界線(溶融線)を起点として、母材側に1mmピッチで母材部に到達するまで硬さ分布を測定し、測定結果の最小値をHAZの硬さHhとする。硬さの測定結果が、母材部の硬さHbの97%以下である領域をHAZ軟化域と定義し、板厚の1/4位置と板厚の3/4位置において、溶融線からHAZ軟化域の母材側端部までの距離をそれぞれ求め、得られた距離の最大値をHAZ幅Lhとする。また、溶接金属部については、板厚の1/4位置と板厚の3/4位置において、1mmピッチで測定し、得られた測定値の最小値を溶接金属部の硬さHwとする。
 また、溶接継手が、Hh/Hbの値に応じて、上記(1)~(4)の条件を適切に満足することで、標点間距離が200mm、幅が40mmの平形継手試験片を作製して、かかる試験片を引張試験に供した場合に、引張試験での全伸びの値は、上記統一規格で規定された母材部の全伸びの値の1.40倍以上となる。上記統一規格で規定された母材部の全伸びの値に対する全伸びの倍率は、高ければ高いほど良く、その上限値は特に規定するものではないが、実質的には2.20倍程度が上限となる。
<検証>
 ここで、上述した限界HAZ幅LhLIMの推定式である上記式(10)について、検証する。図5は、式(10)の推定式で導出した限界HAZ幅(図5の横軸)と、FEM解析で求められた限界HAZ幅(図5の縦軸)とを比較したグラフである。図5を参照すると、溶接継手の板厚tが6mm、12mm、24mm、36mmの4ケースにおいて、式(10)を用いた推定結果とFEM解析結果とが良好に一致していることが分かる。なお、溶接継手の板厚tが40mmの場合でも、図5におけるグラフを外挿すれば、式(10)を用いた推定結果とFEM解析結果とが良好に一致する。従って、溶接継手が満足すべき条件である上記式(1)~(4)が適切であることが分かる。
<溶接継手の設計方法>
 次に、上記のような溶接継手を製造する際の溶接継手の設計方法について説明する。
 本実施形態に係る溶接継手の設計方法は、鋼板を使用して形成される突合せ溶接継手の設計方法である。この設計方法は、溶接継手の素材となる鋼板を選定する鋼板選定ステップと、突合わせ溶接の溶接条件を設定する溶接条件設定ステップと、を有する。
 鋼板選定ステップは、溶接継手の素材となる鋼板として、国際船級協会連合(IACS)の統一規格(Unified Requirement W11 Rev.9 2017)に準拠した規格を満たし、かつ、かかる統一規格で規定された全伸びの値の1.40倍以上の全伸びを有する鋼板を選定するステップである。
 また、溶接条件設定ステップは、溶接継手の板厚をt(mm)、溶接熱影響部の幅をLh(mm)、溶接熱影響部の硬さをHh、母材部の硬さをHb、及び、溶接金属部の硬さをHwとしたときに、上記式(1)~式(4)を満足するように、突合せ溶接の溶接条件を設定するステップである。
 かかる溶接条件設定ステップでは、FEMをはじめとする各種のシミュレーション方法を実施し、上記式(1)~式(4)を満足するような溶接条件を、仮想的に求めてもよい。また、上記鋼板選定ステップで選定した鋼板を利用して、溶接条件を変えながら実際に突合わせ溶接と溶接後の検証とを行って、上記式(1)~式(4)を満足するような溶接条件を実験的に求めてもよい。
 上記のような溶接条件設定ステップを経ることで、溶接条件も含め、求める溶接継手を製造するための具体的な設計図面を得ることができる。
<溶接継手の製造方法>
 次に、上記のような溶接継手の製造方法について説明する。
 本実施形態に係る溶接継手の製造方法では、上記のような溶接継手の設計方法に即して選定された鋼板を、設定した溶接条件に即して突合わせ溶接することで、上記のような溶接継手を製造する。すなわち、本実施形態に係る溶接継手の製造方法は、上記のような鋼板選定ステップ及び溶接条件設定ステップと、選定された鋼板を、設定した溶接条件に即して溶接する溶接ステップと、を有するものであるといえる。
 ここで、用いる溶接方法としては、例えば、被覆アーク溶接(SMAW)、炭酸ガス(CO)アーク溶接、エレクトロガスアーク溶接(EGW)、サブマージアーク溶接(SAW)等を挙げることができる。
 また、かかる溶接の際に、例えば以下のような条件を採用することにより、上記式(1)~式(4)を満足する溶接継手を、確実に製造することが可能となるため、特に好ましい。
 すなわち、溶接入熱量が大きい場合は、HAZが大きくなる傾向があるため注意が必要である。例えば、エレクトロガスアーク溶接(EGW)やサブマージアーク溶接(SAW)において、溶接入熱量が50kJ/cmを超える場合には、特にHAZ軟化し難い鋼板を選定することが重要となる。一方、被覆アーク溶接(SMAW)や炭酸ガス(CO)アーク溶接において、溶接入熱量を20kJ/cm以下とすれば、HAZが小さくなるため、あまり鋼板のHAZ軟化特性に配慮せずとも、上記式(1)~式(4)を満足する溶接継手を製造することが可能となる。
<船体構造への溶接継手の適用>
 以上のように上記式(1)~(4)を満足する溶接継手(以下、「上記溶接継手」という。)は、船体構造において、船側部又は船底部の外板の突合せ溶接継手の一部の部位又は当該突合せ溶接継手の全ての部位に使用される。また、上記溶接継手は、船体構造において、船側部又は船底部の内板の突合せ溶接継手の一部の部位又は当該突合せ溶接継手の全ての部位に使用される。
 特に、上記溶接継手は、船側部又は船底部の外板又は内板の突合せ溶接継手の中で、破口を抑制する必要がある部位に使用される。ここで、破口を抑制する必要がある部位は、船側部又は船底部のうち船舶が衝突、座礁する際に衝撃を受ける可能性がある部位であって、具体的には船舶の種類に依存する。
 例えば、バルクキャリアにおいては、バラストタンクがなく船倉が外板1枚の部位(つまり、内板がない部位)を、破口を抑制する必要がある部位と特定し、当該部位の溶接継手に上記溶接継手を使用してもよい。あるいは、燃料タンクの一部となる外板がある部位を、破口を抑制する必要がある部位と特定し、当該部位の溶接継手に上記溶接継手を使用してもよい。
 また、例えばタンカーにおいては、製品油(原油タンカーの場合には、原油)が貯蔵されているタンクがある内板に対向する外板の部位を、破口を抑制する必要がある部位と特定し、当該部位の溶接継手に上記溶接継手を使用してもよい。
 また、例えば球形タンク方式のLNG船においては、LNGが貯留されている球形タンクが最も近接する船側外板の部位を、破口を抑制する必要がある部位と特定してもよい。この場合、タンクは球形であるため、当該部位は、平面視及び側面視においてタンク全体をカバーする部分である必要はなく、タンクが最も近接する部分のみでよい。そして、特定された部位の溶接継手に上記溶接継手を使用してもよい。必要に応じて、球形タンクが最も近接する船側外板の周辺の部位も、破口を抑制する必要がある部位と特定してもよい。
 以上の方法は、船舶の設計図面から、破口を抑制する必要がある部位を特定する方法である。FEMによる各部材の吸収エネルギー解析を行って、破口を抑制する必要がある部位を特定してもよい。
 なお、上記溶接継手は、船体構造において、船側部又は船底部の防撓材、トランス、ストリンガーのいずれかの突合せ溶接継手の一部の部位又は当該突合せ溶接継手の全ての部位に使用してもよい。また、上記溶接継手は、船体構造において、アッパーデッキ、ビルジのいずれかの突合せ溶接継手の一部の部位又は当該突合せ溶接継手の全ての部位に使用されてもよい。
 また、上記溶接継手は、大型船舶に加えて小型船舶にも使用可能であるが、特に大型船舶に適用した場合に効果が大きい。さらに、上記溶接継手は、二重船殻構造(ダブルハル)の船舶や一重船殻構造(シングルハル)の船舶のいずれにも使用可能である。なお、一重船殻構造の場合、外板は内板でもあると看做せる(逆に、内板は外板でもあると看做せる。)。
 なお、以上の実施形態の船体構造には、IACSの統一規格で規定された全伸びの値の1.40倍以上の全伸びを有する高延性鋼板を用いる。ただし、高延性鋼板の品質管理上、上記高延性鋼板の現実的な製造目標としては、IACSの統一規格で規定された全伸びの値の1.50倍又は1.50倍以上とすることが好ましい。
 以下では、実施例及び比較例を示しながら、本実施形態に係る溶接継手について、具体的に説明する。
 先ず、本発明者らは、以下の表4に示した高延性鋼板と従来鋼について、継手引張試験を実施し、検証を行った。従来鋼としては、YP36鋼(降伏応力36kgf/mm、1kgfは、約9.8Nである。)を用いた。なお、以下の表4には、降伏応力(YP)、引張強さ(TS)、及び、全伸び(EL)についても、あわせて記載している。また、以下の表4における「倍率」の項目は、IACSの統一規格で規定された全伸びの値に対する倍率を表している。
Figure JPOXMLDOC01-appb-T000004
 次に、上記表4に示した高延性鋼板同士の溶接継手と従来鋼同士の溶接継手を、EGW、COアーク溶接、又は、SAWにより2個ずつ作製し、それぞれの溶接継手に対し、JIS Z2241:2011に準拠した1A号引張試験(標点間距離が200mm、幅が40mmの平形継手試験片を用いたもの)にて継手引張試験を行った。
 この際、各溶接方法における溶接条件は、以下に示す表5の通りとした。
 また、以下の表5における試験No.7については、アンダーマッチの溶接材料を用いた。また、以下の表5における試験No.8については、試験No.4よりも大きな入熱量となるようにした。
 また、継手引張試験に供する前の溶接継手について、先だって説明した方法により、式(1)~式(4)に記載されている各パラメータの具体的な値を測定したところ、それぞれ、以下のようになった。
 上記継手引張試験の結果を、以下の表5に示す。表5には、各鋼材及び各溶接方法の継手引張試験片における引張強さ(TS)と全伸び(EL)の測定結果、及び、破断位置を示している。ここで、以下の表5における「倍率」の項目は、IACSの統一規格で規定された母材部の全伸びの値に対する倍率を表している。更に、図6は、試験No.1とNo.5に関して、試験後の継手引張試験片の状態を示している。
 表5及び図6に示すように、本試験で使用した高延性鋼板同士の溶接継手においては、母材部で破断し、延性(伸び)が低下しないことが確認された。一方、従来鋼同士の溶接継手においては、HAZで破断し、延性が大きく低下することが確認された。
Figure JPOXMLDOC01-appb-T000005
 本発明者らは、上記継手引張試験において、高延性鋼板のEGWの溶接継手(以下、「EGW継手」という。)が母材部で破断したのに対し、従来鋼のEGW継手がHAZで破断した結果について考察を行った。
 図7は、高延性鋼板のEGW継手の断面硬さ分布を示し、図8は、従来鋼のEGW継手の断面硬さ分布を示す。図7(b)及び図8(b)において、横軸はEGW継手の中心からの距離を示し、縦軸はビッカーズ硬さ(Hv)を示す。また、図7(b)及び図8(b)に示す溶接継手において、中心からの距離が±10mmの部分が溶接金属部であり、溶接金属部の外側(中心からの距離が±10mm~±20mmの部分)がHAZであり、更に、HAZの外側(中心からの距離が±20mmより外側の部分)が母材部である。また、図7(b)及び図8(b)には2つのグラフが示されている。「t/4」は図7(a)及び図8(a)に示すEGW継手について、表面から板厚tの1/4の深さに対応する位置であり、「3t/4」は図7(a)及び図8(a)に示すEGW継手の表面から板厚tの3/4の深さに対応する位置である。
 図7(b)に示すように高延性鋼板の溶接継手では、HAZの硬さと母材部の硬さがほぼ同じである。一方、図8(b)に示すように従来鋼の溶接継手では、HAZの硬さが母材部の硬さに比べて小さく、HAZが広範囲に軟化している。なお、図8(b)では、HAZの幅Lhに対応する範囲をあわせて記載している。
 従って、溶接継手では、HAZが広範囲に軟化していると、HAZで破断し、延性(伸び)が大幅に低下することが明らかとなった。換言すれば、高延性鋼板の溶接継手では、大入熱溶接で作製された場合でも、HAZ軟化が生じにくいため、母材部で破断し、延性が低下しない。一方、従来鋼の溶接継手では、大入熱溶接で作製された場合、HAZが広範囲に軟化するため、HAZで破断し、延性が大きく低下する。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 本発明は、船体構造において優れた耐衝突性が重要である船舶に有用である。
 10  船側部
 11  外板
 12  内板
 13  外板に付随する防撓材
 14  内板に付随する防撓材
 15  トランス
 16  ストリンガー
 20  船底部
 21  外板
 22  内板
 23  外板に付随する防撓材
 24  内板に付随する防撓材
 25  トランス
 26  ストリンガー
 30  アッパーデッキ
 31  ビルジ
 
 

Claims (7)

  1.  鋼板を使用して形成された突合せ溶接継手であって、
     前記鋼板は、国際船級協会連合(IACS)の統一規格(Unified Requirement W11 Rev.9 2017)に準拠した規格を満たし、かつ、前記統一規格で規定された全伸びの値の1.40倍以上の全伸びを有し、
     前記突合せ溶接継手の板厚をt(mm)、溶接熱影響部の幅をLh(mm)、前記溶接熱影響部の硬さをHh、母材部の硬さをHb、及び、溶接金属部の硬さをHwとしたときに、
     Hh/Hbが0.97未満の場合には、下記式(1)~(4)を満足し、
     Hh/Hbが0.97以上の場合には、下記式(3)~(4)を満足する、溶接継手。
      Lh≦(0.034t+0.510)/(1-Hh/Hb)0.9 ・・・(1)
      Hh/Hb≧0.70 ・・・(2)
      Hw/Hb≧1.0 ・・・(3)
      6≦t≦40 ・・・(4)
     
  2.  前記鋼板は、前記統一規格で規定された強度区分32、36又は40である、請求項1に記載の溶接継手。
  3.  標点間距離が200mm、幅が40mmの平形継手試験片を用いた引張試験での全伸びの値が、前記統一規格で規定された母材部の全伸びの値の1.40倍以上である、請求項1又は2に記載の溶接継手。
  4.  鋼板を使用して形成される突合せ溶接継手の設計方法であって、
     前記鋼板として、国際船級協会連合(IACS)の統一規格(Unified Requirement W11 Rev.9 2017)に準拠した規格を満たし、かつ、前記統一規格で規定された全伸びの値の1.40倍以上の全伸びを有する鋼板を選定する鋼板選定ステップと、
     前記突合せ溶接継手の板厚をt(mm)、溶接熱影響部の幅をLh(mm)、前記溶接熱影響部の硬さをHh、母材部の硬さをHb、及び、溶接金属部の硬さをHwとしたときに、Hh/Hbが0.97未満の場合には、下記式(1)~(4)を満足し、Hh/Hbが0.97以上の場合には、下記式(3)~(4)を満足するように、突合せ溶接の溶接条件を設定する溶接条件設定ステップと、
    を有する、溶接継手の設計方法。
      Lh≦(0.034t+0.510)/(1-Hh/Hb)0.9 ・・・(1)
      Hh/Hb≧0.70 ・・・(2)
      Hw/Hb≧1.0 ・・・(3)
      6≦t≦40 ・・・(4)
     
  5.  鋼板を使用して形成される突合せ溶接継手の製造方法であって、
     前記鋼板として、国際船級協会連合(IACS)の統一規格(Unified Requirement W11 Rev.9 2017)に準拠した規格を満たし、かつ、前記統一規格で規定された全伸びの値の1.40倍以上の全伸びを有する鋼板を選定する鋼板選定ステップと、
     前記突合せ溶接継手の板厚をt(mm)、溶接熱影響部の幅をLh(mm)、前記溶接熱影響部の硬さをHh、母材部の硬さをHb、及び、溶接金属部の硬さをHwとしたときに、Hh/Hbが0.97未満の場合には、下記式(1)~(4)を満足し、Hh/Hbが0.97以上の場合には、下記式(3)~(4)を満足するように、突合せ溶接の溶接条件を設定する溶接条件設定ステップと、
     前記鋼板選定ステップにおいて選定された前記鋼板を、前記溶接条件設定ステップにおいて設定された前記溶接条件のもとで溶接する溶接ステップと、
    を有する、溶接継手の製造方法。
      Lh≦(0.034t+0.510)/(1-Hh/Hb)0.9 ・・・(1)
      Hh/Hb≧0.70 ・・・(2)
      Hw/Hb≧1.0 ・・・(3)
      6≦t≦40 ・・・(4)
     
  6.  船側部若しくは船底部の外板の突合せ溶接継手の一部の部位若しくは当該突合せ溶接継手の全ての部位、又は、船側部若しくは船底部の内板の突合せ溶接継手の一部の部位若しくは当該突合せ溶接継手の全ての部位が、請求項1~3の何れか一項に記載の溶接継手である、船体構造。
  7.  船側部又は船底部の外板又は内板の突合せ溶接継手の中で、破口を抑制する必要がある部位が、請求項1~3の何れか一項に記載の溶接継手である、船体構造。
     
     
PCT/JP2022/015024 2021-03-29 2022-03-28 溶接継手、溶接継手の設計方法、溶接継手の製造方法及び船体構造 WO2022210544A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280011770.9A CN116802114A (zh) 2021-03-29 2022-03-28 焊接接头、焊接接头的设计方法、焊接接头的制造方法以及船体结构
KR1020237018355A KR20230096097A (ko) 2021-03-29 2022-03-28 용접 조인트, 용접 조인트의 설계 방법, 용접 조인트의 제조 방법 및 선체 구조
JP2022542030A JP7173416B1 (ja) 2021-03-29 2022-03-28 溶接継手、溶接継手の設計方法、溶接継手の製造方法及び船体構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-055126 2021-03-29
JP2021055126 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022210544A1 true WO2022210544A1 (ja) 2022-10-06

Family

ID=83456293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015024 WO2022210544A1 (ja) 2021-03-29 2022-03-28 溶接継手、溶接継手の設計方法、溶接継手の製造方法及び船体構造

Country Status (4)

Country Link
JP (1) JP7173416B1 (ja)
KR (1) KR20230096097A (ja)
CN (1) CN116802114A (ja)
WO (1) WO2022210544A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069323A (ja) * 2016-11-02 2018-05-10 新日鐵住金株式会社 溶接継手の作製方法、および溶接継手の改修方法
JP2018158345A (ja) * 2017-03-22 2018-10-11 Jfeスチール株式会社 溶接構造体
JP2020172256A (ja) * 2019-04-09 2020-10-22 日本製鉄株式会社 衝突評価試験体、衝突試験方法および衝突試験装置ならびに船体構造の製造方法、船体構造の設計方法および船体構造

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319027U (ja) 1986-07-22 1988-02-08
WO2016013288A1 (ja) * 2014-07-25 2016-01-28 新日鐵住金株式会社 耐衝突性に優れた船体構造及び船体構造の設計方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069323A (ja) * 2016-11-02 2018-05-10 新日鐵住金株式会社 溶接継手の作製方法、および溶接継手の改修方法
JP2018158345A (ja) * 2017-03-22 2018-10-11 Jfeスチール株式会社 溶接構造体
JP2020172256A (ja) * 2019-04-09 2020-10-22 日本製鉄株式会社 衝突評価試験体、衝突試験方法および衝突試験装置ならびに船体構造の製造方法、船体構造の設計方法および船体構造

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ICHIKAWA KAZUTOSHI, TEPPEI OKAWA, HIROYUKI SHIRAHATA, KAZUHISA YANAGITA : "Improvement of Crashworthiness of Oil Tankers with High Strength and Highly Ductile Steels", MATERIA JAPAN, vol. 57, no. 1, 1 January 2018 (2018-01-01), pages 14 - 16, XP055974080, DOI: 10.2320/materia.57.14] *
ICHIKAWA, KAZUTOSHI; OKAWA, TEPPEI; YAMADA, YASUHIRA; KAMITA, KENICHI; FUNATSU, YUJI: "Development and Commercialisation High Tensile and Highly Ductile Steel for Hull with Improved Crashworthiness", JOURNAL OF THE JAPAN WELDING SOCIETY, JAPAN WELDING SOCIETY, JP, vol. 87, no. 4, 5 June 2018 (2018-06-05), JP , pages 238 - 241, XP009540134, ISSN: 0021-4787, DOI: 10.2207/jjws.87.238 *

Also Published As

Publication number Publication date
JP7173416B1 (ja) 2022-11-16
CN116802114A (zh) 2023-09-22
KR20230096097A (ko) 2023-06-29
JPWO2022210544A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
KR20210136132A (ko) 극저온용 고강도 용접 조인트의 제조 방법
NO323347B1 (no) Sveiset hoystyrke stalstruktur
KR100772729B1 (ko) 내취성 파괴 발생 특성이 우수한 대입열 맞대기 용접이음부
KR101614375B1 (ko) 취성 균열 전파 정지 특성이 우수한 고강도 후강판의 제조 방법
EP1108495B1 (en) Welding material and a method of producing welded joint
EP2476771A1 (en) Two-phase stainless steel
Kitagawa et al. Recent development of high-strength and tough welding consumables for offshore structures
KR20110095390A (ko) 내취성 균열 전파성이 우수한 용접 구조체
Suzuki et al. Steel products for shipbuilding
WO2022210544A1 (ja) 溶接継手、溶接継手の設計方法、溶接継手の製造方法及び船体構造
JP2005111501A (ja) 耐脆性破壊伝播特性に優れた溶接構造体
WO2018066018A1 (ja) 船舶バラストタンク用鋼材および船舶
US6852175B2 (en) High strength marine structures
KR20140113974A (ko) 취성 균열 전파 정지 특성이 우수한 구조용 고강도 후강판 및 그의 제조 방법
TWI469846B (zh) A thick steel sheet excellent in fatigue resistance in the thickness direction and a method for producing the same, and a thick welded steel joint
Nagahara et al. 530N/mm^ 2 Tensile Strength Grade Steel Plate for Multi-Pupose Gas Carrier
JP4903107B2 (ja) 溶接継手
CN117460594A (zh) 焊接结构体
CN114058975A (zh) 高热输入焊接的耐低温抗腐蚀货油舱用钢及其制造方法
JP4818467B1 (ja) 耐脆性き裂伝播性に優れた溶接継手及び溶接構造体
Sieurin et al. Fracture toughness of welded commercial lean duplex stainless steels
EP1997578A1 (en) High heat input butt-welded joint excelling in brittle fracturing resisting performance and method of verifying brittle fracturing resisting performance of high heat input butt-welded joint
JP4394996B2 (ja) 耐脆性破壊発生特性に優れた溶接継手
Nowacki Ferritic-austenitic steel and its weldability in large size constructions
EP0633326B1 (en) Sea water corrosion resistant steel suitable for hot and wet environments and method of manufacturing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022542030

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780755

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237018355

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280011770.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780755

Country of ref document: EP

Kind code of ref document: A1