WO2022210523A1 - 燃料電池の二次利用判定システム及び燃料電池の二次利用判定方法 - Google Patents

燃料電池の二次利用判定システム及び燃料電池の二次利用判定方法 Download PDF

Info

Publication number
WO2022210523A1
WO2022210523A1 PCT/JP2022/014957 JP2022014957W WO2022210523A1 WO 2022210523 A1 WO2022210523 A1 WO 2022210523A1 JP 2022014957 W JP2022014957 W JP 2022014957W WO 2022210523 A1 WO2022210523 A1 WO 2022210523A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
information
exhibited
output
deterioration
Prior art date
Application number
PCT/JP2022/014957
Other languages
English (en)
French (fr)
Inventor
誠治 杉浦
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN202280025010.3A priority Critical patent/CN117121024A/zh
Publication of WO2022210523A1 publication Critical patent/WO2022210523A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/008Disposal or recycling of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell secondary usage determination system and a fuel cell secondary usage determination method.
  • Patent Document 1 Conventionally, there has been proposed a system for determining a charge calculation standard for secondary batteries (see Patent Document 1, for example).
  • the system of Patent Document 1 includes a remaining capacity detection unit that detects the remaining capacity of a secondary battery, a time-series data storage unit that stores time-series data in which the remaining capacity and detection time points are associated, deterioration suppression conditions and At least one of the deterioration acceleration conditions is set in advance, and a use evaluation specifying unit that determines whether the change in the remaining capacity obtained from the time-series data corresponds to at least one of the conditions, and specifies the use evaluation based on the determination result. and a calculation standard determining unit that determines a fee calculation standard in accordance with a usage evaluation based on a predetermined determination standard.
  • changes in remaining capacity include discharge capacity and charge capacity in a certain period and discharge capacity and charge capacity at a certain SOC. According to this configuration, it is possible to evaluate the tendency of the user to use the battery based on the chronological change in the remaining capacity and the deterioration suppression condition or the deterioration acceleration condition, and determine the charge calculation standard. . Therefore, it is said that it is possible to motivate the user to use the battery in a manner that leads to suppression of deterioration of the battery.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a technology that can evaluate the reuse value based on the deterioration mode of the fuel cell.
  • the present invention accepts from the exhibitor input information including individual information including the type and identifier of the exhibited fuel cell, information on the period of use so far, output performance information including the current output, and deterioration information.
  • a residual value of the exhibited fuel cell is determined based on the exhibitor input information reception unit (for example, an exhibitor input information reception unit 27 described later), the use period information, the output performance information, and the deterioration information. and a value determining unit (for example, a residual value determining unit 22 to be described later).
  • the reuse value of the fuel cell can be appropriately evaluated. It is known that the actual service life and service life of a fuel cell greatly depend on the usage history and operating environment of the fuel cell. may still have residual value. Disposing of such a fuel cell with residual value based only on the elapse of a preset lifespan or service life wastes the residual value, which poses a problem in terms of effective utilization of resources. .
  • the reuse value when reusing a used fuel cell can be determined, an appropriate fuel cell can be selected according to the reuse destination.
  • the invention of (1) for example, when diverting a fuel cell that has reached the end of its useful life for use in a vehicle to a stationary use, it is possible for an intermediary to easily select a reuse destination and set a selling price. becomes.
  • a user input information receiving unit for example, a user input information a receiving unit 28
  • a matching processing unit for example, the matching processing unit 24 described later
  • the user since the exhibited fuel cell having the current output that satisfies the user's requested output can be selected as a matching candidate, the user can select an appropriate fuel cell that satisfies the requested output from among the matching candidates. can be selected.
  • a usable period estimating unit estimates the usable period of the exhibited fuel cell based on the individual information and the deterioration information.
  • a possible period estimating unit 25 is further provided, wherein the individual information includes the designed service life of the exhibited fuel cell, and the user input information accepting unit accepts expected usage period information of the fuel cell from the user. and the matching processing unit selects the exhibited fuel cell as a matching candidate when the usable period of the exhibited fuel cell estimated by the usable period estimating unit satisfies the expected usage period of the user. you can
  • the user since an exhibited fuel cell having an estimated usable period that satisfies the assumed period of use can be selected as a matching candidate, the user selects an appropriate fuel that satisfies the assumed period of use from among the matching candidates. Batteries can be selected.
  • the usable period estimation unit estimates the usable period based on the expected power generation frequency of the fuel cell at the reuse destination by the user. can be corrected.
  • the user can select from the matching candidates according to the power generation frequency of the reuse destination. A more suitable fuel cell can be selected.
  • the residual value determination unit determines the residual price of the exhibited fuel cell
  • the user input information reception unit determines the usage
  • the matching processing unit may receive the budget information of the user, and if the remaining price of the exhibited fuel cell is within the user's budget, the matching processing unit may select the exhibited fuel cell as a matching candidate.
  • the user can select an appropriate fuel cell satisfying the budget from among the matching candidates. can.
  • the matching processing unit is configured to , the exhibited fuel cell with a relatively low degree of deterioration may be preferentially selected as a matching candidate.
  • the exhibited fuel cell that satisfies the required output and has a small degree of deterioration can be selected as a matching candidate. It is possible to select a fuel cell that is more suitable for the purpose of reuse from among the above.
  • the matching processing unit calculates the output requested by the user by summing the current outputs of the plurality of exhibited fuel cells. If the conditions are satisfied, the plurality of exhibited fuel cells may be selected as matching candidates.
  • a plurality of exhibited fuel cells satisfying the user's required output can be selected as matching candidates, so that the user can satisfy the required output from among the matching candidates. Combinations of multiple fuel cells can be selected.
  • the matching processing unit determines the degree of deterioration when the output fluctuation of the fuel cell expected at the reuse destination by the user is smaller than a predetermined value.
  • a combination of a plurality of exhibited fuel cells is selected as a matching candidate regardless of the degree of deterioration.
  • a combination of a plurality of exhibited fuel cells having a relatively small degree of deterioration and a relatively small difference in degree of deterioration may be selected as a matching candidate.
  • a combination of a plurality of exhibited fuel cells can be selected as matching candidates regardless of the degree of deterioration.
  • the output fluctuation of the fuel cell expected at the reuse destination is large, a combination of the above-mentioned exhibited fuel cells with a relatively small degree of deterioration and a relatively small difference in the degree of deterioration is selected as a matching candidate. can.
  • the fuel cell is used as a stationary power source with small output fluctuations, there is no problem even if the deterioration of the fuel cell progresses.
  • the user can select a combination of fuel cells that is suitable for this application and does not depend on the degree of deterioration.
  • the deterioration of the fuel cell is not advanced, and there is no difference in the degree of deterioration among the plurality of fuel cells. Therefore, the user can select a combination of fuel cells with a relatively small degree of deterioration and a relatively small difference in degree of deterioration for this application.
  • the usable period estimating unit calculates, from the design service life, the life consumption period due to output reduction and the life consumption period due to membrane deterioration.
  • the usable period may be calculated by subtracting one of
  • a more accurate estimated usable period can be calculated by subtracting the life consumed due to output reduction or membrane deterioration from the design service life, so that a more appropriate fuel according to the user's request Batteries can be selected as matching candidates.
  • the usable period estimating unit determines, from the design service life, the larger one of the life consumption period due to the output decrease and the life consumption period due to the membrane deterioration.
  • the usable period may be calculated by subtracting .
  • the life consumption period due to the output decrease is the ratio of the difference between the initial output and the current output to the difference between the initial output and the final output. , may be calculated by multiplying the design service life.
  • the service life consumption period due to membrane deterioration may be calculated by multiplying the design service life by the membrane deterioration rate.
  • the exhibitor input information receiving unit can receive the seller's desired selling price information, and the residual value determination unit receives the seller's desired selling price information. If the input information includes the suggested selling price information, the suggested selling price is determined as the residual price of the exhibited fuel cell, and if the seller input information does not include the suggested selling price information. Alternatively, the remaining price of the exhibited fuel cell may be calculated based on the information entered by the exhibitor.
  • the residual value determination unit estimates the usable period estimation unit for the design service life of the exhibited fuel cell.
  • the remaining price of the exhibited fuel cell may be calculated by multiplying the initial price of the exhibited fuel cell by the usable period ratio.
  • the remaining price of the exhibited fuel cell can be calculated based on the estimated usable period, so that a more appropriate remaining price can be set and more appropriate fuel cell matching becomes possible.
  • the present invention provides, from the exhibitor, information entered by the exhibitor, including individual information including the type and identifier of the exhibited fuel cell, information on the period of use so far, output performance information including the current output, and deterioration information. and a residual value determination step of determining a residual value of the exhibited fuel cell based on the usage period information, the output performance information, and the deterioration information. Provide a next usage determination method.
  • FIG. 1 is a block diagram showing the configuration of a fuel cell secondary usage determination system according to a first embodiment
  • FIG. It is a figure which shows an example of the time series data memorize
  • FIG. 4 is a diagram showing an example of display information displayed on the display terminal according to the first embodiment;
  • FIG. 4 is a flow chart showing the procedure of processing of the fuel cell secondary usage determination system according to the first embodiment.
  • FIG. 7 is a block diagram showing the configuration of a fuel cell secondary usage determination system according to a second embodiment;
  • FIG. 10 is a diagram showing an example of display information displayed on the input display terminal according to the second embodiment; It is a figure which shows an example of the demand information memorize
  • FIG. 10 is a diagram showing an example of display information displayed on the input display terminal according to the second embodiment when a user requests a plurality of fuel cells;
  • FIG. 10 is a diagram showing an example of management information stored in a management information storage unit according to the second embodiment when a user requests a plurality of fuel cells; 8 is a flow chart showing the procedure of processing of the fuel cell secondary usage determination system according to the second embodiment.
  • the system for determining the secondary use of a fuel cell according to the first embodiment is a system capable of evaluating the reuse value based on the state of deterioration of the fuel cell. More specifically, the fuel cell secondary usage determination system according to the present embodiment includes individual information, usage period information, output performance information, deterioration information, etc. of the exhibited fuel cell from an exhibitor such as an electric power supplier. This system receives exhibitor input information and determines the residual value of the exhibited fuel cell based on the exhibitor input information.
  • FIG. 1 is a block diagram showing the configuration of a fuel cell secondary usage determination system 1 according to the first embodiment.
  • a fuel cell secondary usage determination system 1 includes a fuel cell system 10 , a fuel cell management server 20 , and a display terminal 30 .
  • the fuel cell system 10, the fuel cell management server 20, and the display terminal 30 are connected so as to be able to communicate with each other via a communication network (not shown) such as the Internet, a 4G, 5G standard mobile phone network, or the like.
  • the fuel cell system 10 and the fuel cell management server 20 are configured by microprocessors having CPU, RAM, ROM, and I/O, for example.
  • the CPU executes each program read from the ROM or each storage unit, reads information from the RAM, ROM, and each storage unit during the execution, and writes information to the RAM and each storage unit, It exchanges signals with a communication unit (not shown).
  • a communication unit not shown.
  • the fuel cell system 10 is mounted on, for example, a fuel cell vehicle.
  • the fuel cell system 10 includes a fuel cell stack 11 , a state monitoring section 12 , an output performance detection section 13 , a membrane deterioration rate calculation section 14 and a time series data storage section 15 .
  • the fuel cell stack 11 has, for example, a stack structure in which tens to hundreds of fuel cells are stacked. Each fuel cell is constructed by sandwiching a membrane electrode assembly (MEA) between a pair of separators.
  • MEA membrane electrode assembly
  • a membrane electrode assembly is composed of two electrodes, an anode electrode (negative electrode) and a cathode electrode (positive electrode), and a solid polymer electrolyte membrane sandwiched between these electrodes. Both electrodes are generally formed of a catalyst layer that is in contact with the solid polymer electrolyte membrane and performs an oxidation/reduction reaction, and a gas diffusion layer that is in contact with this catalyst layer.
  • fuel gas hydrogen gas
  • oxidant gas air
  • the fuel cell stack 11 (hereinafter also simply referred to as a fuel cell) in this embodiment is not a new fuel cell stack that has just been manufactured, but a worn-out fuel cell stack or a 1 is an aged fuel cell stack; These used fuel cell stacks are put up by an exhibitor as the fuel cell stack 11 according to the present embodiment, and the secondary use determination system 1 of the fuel cell according to the present embodiment evaluates the reuse value based on the state of deterioration. evaluated.
  • the fuel cell stack is used synonymously with the fuel cell.
  • the state monitoring unit 12 acquires operation history information of the fuel cell. Specifically, the state monitoring unit 12 acquires and monitors the output voltage and output current of the fuel cell at predetermined time intervals, such as every 10 seconds, when the fuel cell generates power in response to an activation instruction. The state monitoring unit 12 acquires and monitors the operating environment temperature (refrigerant temperature) at predetermined time intervals such as every 10 seconds, for example, using a temperature sensor arranged in the cooling path of the fuel cell. The state monitoring unit 12 acquires and monitors the gas pressure at predetermined time intervals such as every 10 seconds, for example, using a pressure sensor arranged in the gas path of the fuel cell. The state monitoring unit 12 acquires and monitors the operating environment humidity at predetermined time intervals such as every 10 seconds, for example, using a humidity sensor arranged in the fuel cell stack 11 or the like.
  • the operating environment temperature refrigerant temperature
  • the state monitoring unit 12 acquires and monitors the gas pressure at predetermined time intervals such as every 10 seconds, for example, using a pressure
  • the state monitoring unit 12 acquires and monitors the information about the period of use up to now, including the power generation time.
  • the state monitoring unit 12 executes a cross leak inspection of the fuel cell, acquires the resulting cross leak amount, and monitors it.
  • the amount of cross-leakage of the fuel cell is the amount of gas leaked between the anode and the cathode via the electrolyte membrane.
  • This cross leak amount is both operational history information and one of deterioration information of the fuel cell.
  • the state monitoring unit 12 transmits various parameters obtained as described above to the output performance detecting unit 13, the membrane deterioration rate calculating unit 14, and the time-series data storing unit 15, which will be described later, as operation history information of the fuel cell. do.
  • the output performance detection unit 13 detects the output performance of the fuel cell. Specifically, the output performance detection unit 13 detects output performance such as initial output and current output of the fuel cell based on the output voltage and output current of the fuel cell acquired by the state monitoring unit 12 described above. Further, the output performance detection unit 13 detects the amount of decrease in output from the initial output to the current output as output performance information and also as one piece of deterioration information of the fuel cell. These output performance information and deterioration information detected by the output performance detection unit 13 are transmitted to the time-series data storage unit 15, which will be described later.
  • the membrane deterioration rate calculation unit 14 calculates the membrane deterioration rate of the electrolyte membrane of the fuel cell based on the operation history information of the fuel cell acquired by the state monitoring unit 12 described above.
  • the film deterioration rate calculated by the film deterioration rate calculation unit 14 is transmitted to the time-series data storage unit 15, which will be described later, as one piece of deterioration information of the fuel cell.
  • the chemical deterioration of the electrolyte membrane of the fuel cell is thought to be caused by the scission reaction of the polymer main chain and the unzipping reaction in which decomposition progresses from the end of the main chain.
  • the cut sites newly become two terminals, suggesting that the number of starting points for the unzipping reaction increases exponentially in a doubling manner.
  • the membrane deterioration rate of the electrolyte membrane of the fuel cell is modeled by an exponential function.
  • the film deterioration rate calculation unit 14 calculates the film deterioration rate F according to the following equation (1) modeled by an exponential function.
  • a and b are coefficients determined by the specifications of the fuel cell, operating environment temperature (refrigerant temperature), gas pressure, operating environment humidity, output voltage and output current.
  • T is the power generation time (h) during which the fuel cell generated power.
  • the data acquired by the state monitoring unit 12 is used for the specifications of the fuel cell, operating environment temperature (coolant temperature), gas pressure, operating environment humidity, output voltage, output current, and power generation time.
  • the time-series data storage unit 15 stores the operation history information of the fuel cell acquired by the state monitoring unit 12, the output performance information of the fuel cell detected by the output performance detection unit 13, and the information calculated by the membrane deterioration rate calculation unit 14. Deterioration information including the film deterioration rate detected by the output performance detection unit 13, the output reduction amount detected by the output performance detection unit 13, and the cross leak amount acquired by the state monitoring unit 12 is stored as time-series data.
  • the time-series data stored in the time-series data storage unit 15 is linked to individual information including the model and identifier of the fuel cell and sent to the fuel cell management server 20, which will be described later, when the fuel cell is exhibited.
  • FIG. 2 is a diagram showing an example of time-series data stored in the time-series data storage unit 15 according to this embodiment.
  • the operating time power generation time
  • the time-series data storage unit 15 stores the output and the film deterioration rate and cross leak amount as deterioration information.
  • the fuel cell management server 20 includes a time-series data storage unit 21, a residual value determination unit 22, a management information storage unit 23, and an exhibitor input information reception unit 27.
  • the exhibitor input information acceptance unit 27 accepts the time-series data linked to the individual information including the model and identifier of the fuel cell when the fuel cell is exhibited. That is, the exhibitor input information receiving unit 27 receives, from the exhibitor, individual information including the type and identifier of the exhibited fuel cell, operation history information including past usage period information such as power generation time, and output including current output. Accepts exhibitor input information including performance information and deterioration information including film deterioration rate, output decrease amount, and cross leak amount.
  • the exhibitor input information receiving unit 27 may receive information on the desired sales price of the exhibited fuel cell from the exhibitor.
  • the desired sales price information may be determined as the residual price in the determination of the residual value by the residual value determination unit 22, which will be described later.
  • appropriate fuel cell matching can be performed according to the seller's desired selling price information.
  • the time-series data storage unit 21 stores the time-series data linked to the individual information including the model and identifier of the fuel cell received by the exhibitor input information receiving unit 27 . That is, the time-series data storage unit 21 stores operation history information, output performance information, and deterioration information of the exhibited fuel cell, which are linked to individual information including the model and identifier of the fuel cell.
  • the residual value determination unit 22 determines the residual value of the exhibited fuel cell based on the usage period information, output performance information, and deterioration information of the fuel cell. As described above, the usage period information, output performance information, and deterioration information of the fuel cell are all stored in the time-series data storage unit 21 .
  • the usage period information of the fuel cell is one of the operation history information of the exhibited fuel cell stored in the time-series data storage unit 21, and specifically corresponds to power generation time and the like.
  • the deterioration information of the fuel cell includes the membrane deterioration rate, the amount of output decrease, and the amount of cross leak.
  • the residual value determination result by the residual value determination unit 22 is transmitted to the management information storage unit 23, which will be described later, as residual value information of the fuel cell.
  • the residual value determination unit 22 determines the residual value of the exhibited fuel cell as, for example, the residual price.
  • the exhibitor input information receiving section 27 receives the suggested selling price information of the exhibited fuel cell from the exhibitor, the residual value determination section 22 may determine the suggested selling price information as the residual price. If the seller's input information does not include the suggested selling price information, the remaining price of the exhibited fuel cell may be calculated based on the seller's input information. As a result, it is possible to set a residual price that meets the desire of the exhibitor.
  • the management information storage unit 23 stores residual value information determined by the residual value determination unit 22 . Specifically, the management information storage unit 23 stores the residual value information determined by the residual value determination unit 22 in association with the individual information including the model and identifier of the fuel cell and the time-series data described above.
  • FIG. 3 is a diagram showing an example of management information stored in the management information storage unit 23 according to this embodiment.
  • the detection time, usage period, total operating time, output, membrane deterioration rate, and residual value are stored in the management information storage unit 23 for each fuel cell type and identifier. .
  • the residual value is determined and stored.
  • the display terminal 30 is used by system users such as exhibitors, and can access the fuel cell management server 20 .
  • An exhibitor or the like can display the management information stored in the management information storage unit 23 using the display terminal 30 when the operation of the fuel cell is stopped and the fuel cell is sold to a dealer. That is, the display terminal 30 can acquire and display residual value information linked to individual information and time-series data of exhibited fuel cells.
  • FIG. 4 is a diagram showing an example of display information displayed on the display terminal 30 according to this embodiment.
  • the display terminal 30 displays the detection time, usage period, total operating time, output, membrane deterioration rate, and residual price for each fuel cell type and identifier. .
  • the user of the fuel cell secondary usage determination system 1 according to the present embodiment can confirm these pieces of information on the display terminal 30 .
  • FIG. 5 is a flow chart showing the procedure of processing of the fuel cell secondary usage determination system 1 according to the present embodiment. This process is repeatedly executed, for example, at a predetermined control cycle.
  • step S1 the exhibitor input information is accepted. Specifically, by the exhibitor input information reception unit 27 provided in the fuel cell management server 20, from the exhibitor, individual information including the type and identifier of the exhibited fuel cell, operation history including past usage period information such as power generation time, etc. information, output performance information including current output, and deterioration information including film deterioration, output decrease amount and cross leak amount. After that, the process proceeds to step S2.
  • step S2 the residual value of the exhibited fuel cell is determined.
  • the residual value determination unit 22 provided in the fuel cell management server 20 determines the residual value of the exhibited fuel cell based on the usage period information, the output performance information, and the deterioration information. After the determination, this processing ends.
  • the method for determining secondary use of fuel cells according to the present embodiment is realized. That is, the exhibitor input information receiving step in the fuel cell secondary usage determining method according to the present embodiment corresponds to the above-described step S1, and the residual value determining step corresponds to the above-described step S2.
  • the fuel cell secondary use determination system 1 receives individual information including the type and identifier of the exhibited fuel cell, information on the period of use so far, output performance information including the current output, and deterioration and an exhibitor input information reception unit 27 for accepting exhibitor input information including information. Also provided is a residual value determination unit 22 that determines the residual value of the exhibited fuel cell based on the usage period information, the output performance information, and the deterioration information. As a result, according to this embodiment, the residual value can be determined based on the state of deterioration of each exhibited fuel cell, so that the reuse value of the fuel cell can be appropriately evaluated.
  • the actual lifespan and service life of a fuel cell greatly depend on the usage history and operating environment of the fuel cell. Therefore, even a fuel cell that has passed its preset service life may still have residual value at that point. Disposing of such a fuel cell with residual value based only on the elapse of a preset lifespan or service life wastes the residual value, which poses a problem in terms of effective utilization of resources. .
  • the reuse value of a used fuel cell can be determined, so that an appropriate fuel cell can be selected according to the reuse destination.
  • the system for determining secondary use of fuel cells according to the second embodiment is a system that can evaluate reuse value based on the state of deterioration of a fuel cell, and can match appropriate fuel cells according to reuse destinations. .
  • the seller input information including individual information, usage period information, output performance information, deterioration information, etc. of the exhibited fuel cell is received, and the seller input information
  • This is a system for determining the residual value of exhibited fuel cells based on
  • user input information such as required output information of the fuel cell is received from users such as electric power supply companies, and appropriate fuel cells according to the reuse destination are selected as matching candidates based on the user input information. It is the system to select.
  • FIG. 6 is a block diagram showing the configuration of the fuel cell secondary usage determination system 1A according to this embodiment.
  • the present embodiment is the same as the first embodiment except that the configuration of the fuel cell management server 20A is different from that of the first embodiment and that an input display terminal 40 is provided.
  • the fuel cell management server 20A according to this embodiment includes a matching processing unit 24, a usable period estimation unit 25, a demand information storage unit 26, and a user input information reception unit 28. is different from the first embodiment.
  • the fuel cell system 10 As in the first embodiment, the fuel cell system 10, the fuel cell management server 20A, the display terminal 30, and the input display terminal 40 are connected to the Internet, 4G, 5G, and other standard mobile phone networks. are connected so as to be able to communicate with each other via a communication network.
  • the user input information reception unit 28 receives user input information including requested output information of the fuel cell from the user. Even if the user input information includes the user's reuse destination (application) information, information on the estimated usage period of the fuel cell at the reuse destination, power generation frequency information at the reuse destination, and user's budget information good. Also, when the user requests a plurality of fuel cells, information on the required number of fuel cells may be included.
  • FIG. 7 is a diagram showing an example of user input information displayed on the input display terminal 40 according to this embodiment.
  • the reuse destination of the fuel cell the model of the fuel cell, the frequency of power generation, the required output, the form of the system to be used, and the assumed years of use of the equipment are input and displayed on the input display terminal. 40 are displayed.
  • the user input information is input by the user via the input display terminal 40 .
  • the user can check the user input information using the input display terminal 40 .
  • the matching processing unit 24 selects the exhibited fuel cell as a matching candidate when the current output of the exhibited fuel cell satisfies the user's requested output. Therefore, when the user input information receiving unit 28 receives the requested output information of the fuel cell requested by the user, the matching processing unit 24 selects the exhibited fuel cell having the current output that satisfies the requested output as a matching candidate. . As a result, the user can confirm the selected matching candidate exhibition fuel cell by the input display terminal 40, and can select the fuel cell that satisfies the required output from the matching candidates.
  • the output requested by the user may be the required output itself assumed at the reuse destination, or may be an output larger than the required output according to the user's request.
  • the matching performed by the matching processing unit 24 is based on the prerequisite that the current output of the exhibited fuel cell satisfies the user's requested output.
  • matching may be performed by adding additional conditions as described below.
  • the matching processing unit 24 may select the exhibited fuel cell as a matching candidate when the estimated usable period calculated by the usable period estimating unit 25 described later satisfies the expected period of use of the user.
  • the matching processing unit 24 selects the exhibit fuel cell having an estimated usable period that satisfies the assumed usage period as a matching candidate. selected as As a result, the user can confirm the selected matching candidate exhibition fuel cell by the input display terminal 40, and can select the fuel cell that satisfies the expected usage period from the matching candidates.
  • the matching processing unit 24 may select the exhibited fuel cell as a matching candidate if the remaining price of the exhibited fuel cell is within the user's budget.
  • the matching processing unit 24 selects the exhibition fuel cell having a remaining price that satisfies the user's budget as a matching candidate.
  • the user can confirm the selected matching candidate exhibition fuel cell by the input display terminal 40, and can select the fuel cell that satisfies the budget from the matching candidates.
  • the matching processing unit 24 may preferentially select a exhibited fuel cell with a relatively low degree of deterioration as a matching candidate when the expected required output at the reuse destination by the user is higher than a predetermined output.
  • the degree of deterioration is based on the above-described deterioration information including the film deterioration rate, the output decrease amount, and the cross leak amount. The greater the value, the greater the degree of deterioration.
  • a relatively small degree of deterioration means that the degree of deterioration is relatively small among exhibited fuel cells selected as matching candidates.
  • the predetermined output is set in advance based on the relationship between the output and the degree of deterioration.
  • the matching processing unit 24 determines the degree of deterioration from among the exhibited fuel cells having the current output that satisfies the requested output. Those that are relatively small are preferentially selected as matching candidates.
  • the input/display terminal 40 displays the one with the lowest degree of deterioration at the top.
  • the user can confirm the selected matching candidate exhibited fuel cell through the input display terminal 40, and selects a fuel cell that satisfies the required output and has a small degree of deterioration from among the matching candidates. be able to.
  • the matching processing unit 24 may select a plurality of exhibited fuel cells as matching candidates if the user's requested output is satisfied by summing the current outputs of the exhibited fuel cells. In this case, when the user input information receiving unit 28 receives the requested output information of the fuel cell requested by the user, the matching processing unit 24 sums the current outputs to obtain a plurality of exhibited fuels that satisfy the user's requested output. A battery is selected as a matching candidate. For example, if two fuel cells with a current output of 50 kW are exhibited and the user requests a fuel cell with a current output of 100 kW, the matching processing unit 24 replaces the two exhibited fuel cells with a current output of 50 kW with a power of 100 kW.
  • the matching processing unit 24 also considers the model and selects a plurality of exhibited fuel cells as matching candidates.
  • the matching processing unit 24 when the user's requested output is satisfied by summing the current output of a plurality of exhibited fuel cells, when the output fluctuation of the fuel cell expected at the reuse destination by the user is smaller than a predetermined value.
  • a combination of a plurality of exhibited fuel cells may be selected as matching candidates regardless of the degree of deterioration. If the fuel cell is used for a stationary power source with small output fluctuations, there is no problem even if the deterioration of the fuel cell progresses. because there is no Here, the output fluctuation is calculated, for example, from the difference between the maximum output value and the minimum output value of the fuel cell assumed at the reuse destination. The degree of deterioration is as described above.
  • the predetermined value is set in advance based on the relationship between the output fluctuation and the degree of deterioration.
  • the matching processing unit 24 sums up the current outputs regardless of the degree of deterioration.
  • a plurality of exhibited fuel cells that satisfy the user's required output are selected as matching candidates.
  • the user can confirm the selected matching candidate exhibited fuel cells through the input display terminal 40, and select a combination of fuel cells satisfying the required output regardless of the degree of deterioration from among the matching candidates. can be selected.
  • the matching processing unit 24 determines whether the output fluctuation of the fuel cell expected at the reuse destination by the user is equal to or greater than the predetermined value when the user's requested output is satisfied by summing the current outputs of the plurality of exhibited fuel cells. In some cases, a combination of a plurality of exhibited fuel cells with a relatively small degree of deterioration and a relatively small difference in the degree of deterioration may be selected as a matching candidate. When the fuel cell is used for commercial vehicles such as trucks, etc., where the output fluctuates greatly, it is preferable that the deterioration of the fuel cell is not advanced, and that there is no difference in the degree of deterioration between the plurality of fuel cells. It is from.
  • the degree of deterioration is relatively small and the difference in degree of deterioration is relatively small means that the degree of deterioration is relatively small among the exhibited fuel cells selected as matching candidates, and the degree of deterioration is relatively small among the plurality of selected matching candidates. It means a combination with a small difference in degree of deterioration.
  • the matching processing unit 24 determines that the degree of deterioration is relatively small and the difference in degree of deterioration is small.
  • a plurality of exhibited fuel cells that are relatively small and that satisfy the user's required output by summing the current outputs are selected as matching candidates.
  • the user can confirm the selected matching candidate exhibition fuel cell through the input display terminal 40, and request the matching candidate with a small degree of deterioration and a small difference in the degree of deterioration from among the matching candidates.
  • a combination of fuel cells that meet the output can be selected.
  • the usable period estimating unit 25 estimates the usable period of the exhibited fuel cell based on the individual information and deterioration information of the exhibited fuel cell. Further, the usable period estimating unit 25 may calculate the estimated usable period based on the output performance information, the required output information, and the reuse destination information in addition to the individual information and deterioration information of the exhibited fuel cell. . The usable period estimating unit 25 may calculate an estimated usable period when the exhibited fuel cell selected as a matching candidate by the matching processing unit 24 is used at the reuse destination. An estimated usable period may be calculated for use as a condition for matching by . The estimated usable period calculated by the usable period estimating section 25 is displayed on the input display terminal 40 and is transmitted to and stored in the management information storage section 23 .
  • the available period estimating unit 25 may calculate the estimated available period by subtracting either the life consumption period due to output reduction or the life consumption period due to film deterioration from the design service life. As a result, a more accurate estimated usable period can be calculated, and a more suitable fuel cell according to the user's request can be selected as a matching candidate.
  • the available period estimating unit 25 may calculate the estimated available period by subtracting the larger one of the life consumption period due to output reduction and the life consumption period due to film deterioration from the design service life. As a result, a more accurate estimated usable period can be calculated, and a more appropriate fuel cell that meets the user's request can be selected as a matching candidate.
  • the individual information of the exhibited fuel cell includes the design service life and is stored in the time-series data storage unit 21 .
  • the life consumption period due to output reduction is calculated by multiplying the design service life by the ratio of the difference between the initial output and the current output to the difference between the initial output and the final output of the fuel cell.
  • the life consumption period due to the decrease in output is calculated according to the following equation (2).
  • the initial output, final output, and current output are stored in the time-series data storage unit 21 as output performance information.
  • the life consumption period calculated based on the amount of output decrease from the design service life a more accurate estimated usable period can be calculated.
  • the final output is the designed output in a degraded state at the end of the design service life.
  • the life consumption period due to film deterioration is calculated by multiplying the film deterioration rate by the design service life. Specifically, the life consumption period due to film deterioration is calculated according to the following equation (3).
  • the film deterioration rate is calculated by the film deterioration rate calculation unit 14 described above and stored in the time-series data storage unit 21 . Thus, by subtracting the life consumption period calculated based on the film deterioration rate from the design service life, a more accurate estimated usable period can be calculated.
  • the usable period estimating unit 25 may correct the estimated usable period described above based on the frequency of power generation of the fuel cell assumed at the reuse destination by the user. Specifically, when the user input information receiving unit 28 receives the power generation frequency information at the reuse destination of the fuel cell, the usable period estimating unit 25 repeats the estimated usable period estimated as described above. Correction is made based on the power generation frequency of the user. This makes it possible to match a more appropriate fuel cell according to the power generation frequency of the reuse destination. Accordingly, the user can confirm the exhibited fuel cell as a more appropriately selected matching candidate through the input/display terminal 40, and can select a more appropriate fuel cell from among the matching candidates according to the power generation frequency of the reuse destination. A fuel cell can be selected.
  • the demand information storage unit 26 stores, as demand information, user input information including requested output information of the fuel cell received by the user input information receiving unit 28 from the user.
  • the demand information may include reuse destination (application) information of the user, information on the expected usage period of the fuel cell at the reuse destination, power generation frequency information at the reuse destination, and user budget information. Also, when the user requests a plurality of fuel cells, information on the required number of fuel cells may be included.
  • FIG. 8 is a diagram showing an example of demand information stored in the demand information storage unit 26 according to this embodiment.
  • the user's reuse destination, fuel cell type, power generation frequency, required output, utilization system type, and assumed years of facility use are stored.
  • the user can confirm the demand information by using the input display terminal 40 .
  • the residual value determination unit 22 of this embodiment calculates the ratio of the estimated usable period calculated by the usable period estimating unit 25 to the design useful life of the exhibited fuel cell.
  • the remaining price of the exhibited fuel cell may be calculated by multiplying the initial price of the exhibited fuel cell.
  • the residual value determination unit 22 of this embodiment may calculate the residual value according to the following equation (4). As a result, the residual price of the exhibited fuel cell can be calculated based on the estimated usable period, so that a more appropriate residual price can be set.
  • FIG. 9 is a diagram showing an example of management information stored in the management information storage unit 23 according to this embodiment.
  • detection time, usage period, total operating time, output, membrane deterioration rate, residual price, and estimated usable period are stored for each fuel cell type and identifier. .
  • These management information are displayed on the input display terminal 40 .
  • the matching processing unit 24 selects and displays the exhibited fuel cell that meets the user's request. At this time, it is also possible to refer to the estimated usable period when the selected fuel cell is used in the reuse destination system.
  • FIG. 10 is a diagram showing an example of display information displayed on the input display terminal 40 according to this embodiment when the user requests a plurality of fuel cells.
  • the input/display terminal 40 displays the reuse destination, fuel cell type, power generation frequency, required output, utilization system configuration, assumed years of facility use, and required number of units.
  • the user inputs the required number of fuel cells as user input information via the input display terminal 40, and the user uses the input display terminal 40 to The user-entered information can be verified.
  • FIG. 11 is a diagram showing an example of management information stored in the management information storage unit 23 according to this embodiment when a user requests a plurality of fuel cells.
  • detection time, usage period, total operating time, output, membrane deterioration rate, residual value, and estimated usable period are stored for each fuel cell type and identifier. .
  • a plurality of exhibited fuel cells that satisfy the request are selected as matching candidates by the matching processing unit 24 and displayed on the input display terminal 40. can select the desired combination of coulometric batteries from among them.
  • FIG. 12 is a flow chart showing the procedure of processing of the fuel cell secondary usage determination system 1A according to the present embodiment. This process is repeatedly executed, for example, at a predetermined control cycle.
  • step S1 the exhibitor input information is accepted.
  • the exhibitor input information receiving unit 27 provided in the fuel cell management server 20A receives individual information including the type and identifier of the exhibited fuel cell, past usage period information, and output performance information including the current output from the exhibitor. , and deterioration information. After that, the process proceeds to step S2.
  • step S2 the residual value of the exhibited fuel cell is determined. Specifically, the residual value determination unit 22 provided in the fuel cell management server 20A determines the residual value of the exhibited fuel cell based on the usage period information, the output performance information, and the deterioration information. After that, the process proceeds to step S3.
  • step S3 user input information is accepted.
  • the user input information receiving unit 28 provided in the fuel cell management server 20 receives user input information including requested output information of the fuel cell from the user. After that, the process proceeds to step S4.
  • step S4 matching processing is executed. Specifically, the matching processing unit 24 provided in the fuel cell management server 20A selects exhibited fuel cells whose current output meets the user's requested output as matching candidates. After that, this process is terminated.
  • the user input information is received after the exhibitor input information is received and the residual value is determined, but the procedure of these processes is not limited to this.
  • the user input information may be received first, then the exhibitor input information may be received, and the residual value may be determined.
  • a fuel cell secondary usage determination system 1A includes a user input information receiving unit that receives user input information including required output information of a fuel cell from a user, and a current output of the exhibited fuel cell. However, if the output requested by the user is satisfied, a matching processing unit is further provided which selects the exhibited fuel cell as a matching candidate. As a result, according to the present embodiment, it is possible to select, as matching candidates, exhibited fuel cells that match the user's request, and the user can select a desired fuel cell from among the matching candidates.
  • Reference Signs List 1 1A fuel cell secondary use determination system 10 fuel cell system 11 fuel cell stack 12 state monitoring unit 13 output performance detection unit 14 membrane deterioration rate calculation unit 15 time series data storage unit 20, 20A fuel cell management server 21 time series Data storage unit 22 Residual value determination unit 23 Management information storage unit 24 Matching processing unit 25 Usable period estimation unit 26 Demand information storage unit 27 Seller input information reception unit 28 User input information reception unit 30 Display terminal 40 For input display terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Economics (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Development Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池の劣化形態に基づいて再利用価値を評価できる技術を提供すること。出品者から、出品燃料電池の型式及び識別子を含む個体情報、これまでの使用期間情報、現出力を含む出力性能情報、並びに劣化情報、を含む出品者入力情報を受け付ける出品者入力情報受付部27と、使用期間情報、出力性能情報、及び劣化情報に基づいて、出品燃料電池の残存価値を判定する残存価値判定部22と、を備える、燃料電池の二次利用判定システム1である。

Description

燃料電池の二次利用判定システム及び燃料電池の二次利用判定方法
 本発明は、燃料電池の二次利用判定システム及び燃料電池の二次利用判定方法に関する。
 従来、二次電池に関する料金の算定基準を決定するシステムが提案されている(例えば、特許文献1参照)。この特許文献1のシステムは、二次電池の残容量を検知する残容量検知部と、残容量と検知時点とが関連づけられた時系列データを記憶する時系列データ記憶部と、劣化抑制条件及び劣化促進条件の少なくとも1つの条件が予め設定されており、時系列データから求まる残容量の変化が少なくとも1つの条件に該当するかを判定し、判定結果に基づき使用評価を特定する使用評価特定部と、予め設定された決定基準に基づき、使用評価に応じて料金の算定基準を決定する算定基準決定部と、を備える。
 上記特許文献1のシステムにおいて、残容量の変化には、或る期間における放電容量及び充電容量と、或るSOCにおける放電容量及び充電容量が含まれる。この構成によれば、残容量の時系列の変化と、劣化抑制条件又は劣化促進条件とに基づいて、使用者の使用傾向を電池の特性を利用して評価し、料金の算定基準を決定できる。そのため、電池の劣化抑制に繋がる使用をするように、使用者に動機付けを与えることができるとされている。
特開2018-063632号公報
 しかしながら、二次電池と燃料電池とでは、劣化形態及びその要因が異なる。一般的に燃料電池は、その使用時間に応じて、電極の劣化と電解質膜の劣化が発生する。電解質膜の劣化は、いずれ燃料ガスと酸化剤ガスのクロスリークに至り、クロスリークが発生した燃料電池は使用できなくなる。従って、燃料電池の劣化形態に基づいて再利用価値を評価できる技術が望まれる。
 本発明は上記に鑑みてなされたものであり、燃料電池の劣化形態に基づいて再利用価値を評価できる技術を提供することを目的とする。
 (1) 本発明は、出品者から、出品燃料電池の型式及び識別子を含む個体情報、これまでの使用期間情報、現出力を含む出力性能情報、並びに劣化情報、を含む出品者入力情報を受け付ける出品者入力情報受付部(例えば、後述の出品者入力情報受付部27)と、前記使用期間情報、前記出力性能情報、及び前記劣化情報に基づいて、前記出品燃料電池の残存価値を判定する残存価値判定部(例えば、後述の残存価値判定部22)と、を備える、燃料電池の二次利用判定システム(例えば、後述の燃料電池の二次利用判定システム1,1A)を提供する。
 (1)の発明によれば、出品燃料電池毎に、その劣化形態に基づいて残存価値を判定できるため、燃料電池の再利用価値を適切に評価できる。燃料電池の実際の寿命や耐用年数は、該燃料電池の使用履歴や動作環境等に大きく依存することが知られており、予め設定された耐用年数を過ぎた燃料電池であっても、その時点ではまだ残存価値を有している可能性がある。このような残存価値を有する燃料電池を、予め設定された寿命、耐用年数の経過のみに基づいて破棄するのは、その残存価値を無駄にすることとなり、資源の有効活用の面で課題がある。これに対して(1)の発明によれば、中古の燃料電池を再利用する際の再利用価値を判定できるため、該再利用先に応じた適切な燃料電池を選定できる。ひいては、(1)の発明によれば、例えば車両用として耐用年数を満了した燃料電池を定置用の用途に転用する際に、仲介業者における再利用先の選定や販売価格の設定が容易に可能となる。
 (2) (1)の燃料電池の二次利用判定システムにおいて、利用者から、燃料電池の要求出力情報を含む利用者入力情報を受け付ける利用者入力情報受付部(例えば、後述の利用者入力情報受付部28)と、前記出品燃料電池の現出力が、前記利用者の要求出力を満たす場合には、該出品燃料電池をマッチング候補として選定するマッチング処理部(例えば、後述のマッチング処理部24)と、をさらに備えてよい。
 (2)の発明によれば、利用者の要求出力を満たす現出力を有する出品燃料電池をマッチング候補として選定できるため、利用者は、該マッチング候補の中から要求出力を満たす適切な燃料電池を選択することができる。
 (3) (2)の燃料電池の二次利用判定システムにおいて、前記個体情報及び前記劣化情報に基づいて、前記出品燃料電池の使用可能期間を推定する使用可能期間推定部(例えば、後述の使用可能期間推定部25)をさらに備え、前記個体情報には、前記出品燃料電池の設計耐用期間が含まれ、前記利用者入力情報受付部は、前記利用者から燃料電池の想定使用期間情報を受け付け、前記マッチング処理部は、前記出品燃料電池の前記使用可能期間推定部により推定された使用可能期間が、前記利用者の想定使用期間を満たす場合には、該出品燃料電池をマッチング候補として選定してよい。
 (3)の発明によれば、想定使用期間を満たす推定使用可能期間を有する出品燃料電池をマッチング候補として選定できるため、利用者は、該マッチング候補の中から、想定使用期間を満たす適切な燃料電池を選択することができる。
 (4) (3)の燃料電池の二次利用判定システムにおいて、前記使用可能期間推定部は、前記利用者による再利用先で想定される燃料電池の発電頻度に基づいて、前記使用可能期間を補正してよい。
 (4)の発明によれば、再利用先の発電頻度に応じたより適切な出品燃料電池をマッチング候補として選定できるため、利用者は、該マッチング候補の中から、再利用先の発電頻度に応じたより適切な燃料電池を選択することができる。
 (5) (3)又は(4)の燃料電池の二次利用判定システムにおいて、前記残存価値判定部は、前記出品燃料電池の残存価格を判定し、前記利用者入力情報受付部は、前記利用者の予算情報を受け付け、前記マッチング処理部は、前記出品燃料電池の残存価格が前記利用者の予算内である場合には、該出品燃料電池をマッチング候補として選定してよい。
 (5)の発明によれば、利用者の予算の範囲内の出品燃料電池をマッチング候補として選定できるため、利用者は、該マッチング候補の中から予算を満たす適切な燃料電池を選択することができる。
 (6) (3)から(5)いずれかの燃料電池の二次利用判定システムにおいて、前記マッチング処理部は、前記利用者による再利用先で想定される必要出力が所定出力より高い場合には、劣化度が相対的に小さい出品燃料電池をマッチング候補として優先して選定してよい。
 (6)の発明によれば、再利用先で想定される必要出力が高い場合に、要求出力を満たすとともに劣化度の小さい出品燃料電池をマッチング候補として選定できるため、利用者は、該マッチング候補の中から再利用先の用途に見合ったより適切な燃料電池を選択することができる。
 (7) (3)から(6)いずれかの燃料電池の二次利用判定システムにおいて、前記マッチング処理部は、複数の前記出品燃料電池の現出力を合算することで前記利用者の要求出力を満たす場合には、前記複数の出品燃料電池をマッチング候補として選定してよい。
 (7)の発明によれば、現出力を合算することで利用者の要求出力を満たす複数の出品燃料電池をマッチング候補として選定できるため、利用者は、該マッチング候補の中から要求出力を満たす複数の燃料電池の組み合わせを選択することができる。
 (8) (7)の燃料電池の二次利用判定システムにおいて、前記マッチング処理部は、前記利用者による再利用先で想定される燃料電池の出力変動が所定値より小さい場合には、劣化度によらずに複数の前記出品燃料電池の組み合わせをマッチング候補として選定し、前記利用者による再利用先で想定される燃料電池の出力変動が前記所定値以上である場合には、劣化度が相対的に小さく且つ劣化度の差が相対的に小さい複数の前記出品燃料電池の組み合わせをマッチング候補として選定してよい。
 (8)の発明によれば、再利用先で想定される燃料電池の出力変動が小さい場合には、劣化度によらずに複数の前記出品燃料電池の組み合わせをマッチング候補として選定できる。また、再利用先で想定される燃料電池の出力変動が大きい場合には、劣化度が相対的に小さく且つ劣化度の差が相対的に小さい複数の前記出品燃料電池の組み合わせをマッチング候補として選定できる。これにより、燃料電池の用途が、例えば定置型電源等で出力変動が小さい場合には、燃料電池の劣化が進んでいても問題は無く、また、複数の燃料電池間における劣化度に差があっても問題は無いため、利用者は、この用途に見合った劣化度によらない燃料電池の組み合わせを選択することができる。また、燃料電池の用途が、例えばトラック等の商用車等で出力変動が大きい場合には、燃料電池の劣化が進んでいないものがよく、また、複数の燃料電池間における劣化度に差が無いほうがよいため、利用者は、この用途に見合った劣化度が相対的に小さく且つ劣化度の差が相対的に小さい燃料電池の組み合わせを選択することができる。
 (9) (3)から(8)いずれかの燃料電池の二次利用判定システムにおいて、前記使用可能期間推定部は、前記設計耐用期間から、出力低下による寿命消費期間と膜劣化による寿命消費期間のうちいずれかを減算することにより、前記使用可能期間を算出してよい。
 (9)の発明によれば、出力低下又は膜劣化により消費された寿命を設計耐用期間から差し引くことにより、より正確な推定使用可能期間を算出できるため、利用者の要求に応じたより適切な燃料電池をマッチング候補として選定できる。
 (10) (9)の燃料電池の二次利用判定システムにおいて、前記使用可能期間推定部は、前記設計耐用期間から、前記出力低下による寿命消費期間と前記膜劣化による寿命消費期間のうち大きい方を減算することにより、前記使用可能期間を算出してよい。
 (10)の発明によれば、出力低下による寿命消費期間と膜劣化による寿命消費期間のうち大きい方を設計耐用期間から差し引くことにより、より正確な推定使用可能期間を算出できるため、利用者の要求に応じたより適切な燃料電池をマッチング候補として選定できる。
 (11) (9)又は(10)の燃料電池の二次利用判定システムにおいて、前記出力低下による寿命消費期間は、初期出力と最終出力との差分に対する初期出力と現出力との差分の比を、前記設計耐用期間に乗じることにより算出されてよい。
 (11)の発明によれば、出力減少量に基づいて算出される寿命消費期間を設計耐用期間から差し引くことにより、より正確な推定使用可能期間を算出できるため、利用者の要求に応じたより適切な燃料電池をマッチング候補として選定できる。
 (12) (9)から(11)いずれかの燃料電池の二次利用判定システムにおいて、前記膜劣化による寿命消費期間は、膜劣化率を前記設計耐用期間に乗じることにより算出されてよい。
 (12)の発明によれば、膜劣化率に基づいて算出される寿命消費期間を設計耐用期間から差し引くことにより、より正確な推定使用可能期間を算出できるため、利用者の要求に応じたより適切な燃料電池をマッチング候補として選定できる。
 (13) (5)の燃料電池の二次利用判定システムにおいて、前記出品者入力情報受付部は、前記出品者の販売希望価格情報を受け付け可能であり、前記残存価値判定部は、前記出品者入力情報に前記販売希望価格情報が含まれている場合には、該販売希望価格を前記出品燃料電池の残存価格と決定し、前記出品者入力情報に前記販売希望価格情報が含まれていない場合には、該出品者入力情報に基づいて前記出品燃料電池の残存価格を算出してよい。
 (13)の発明によれば、出品者の販売希望価格情報に応じた適切な燃料電池のマッチングが可能となり、出品者及び利用者ともに満足するような燃料電池のマッチングが可能となる。
 (14) (5)又は(13)の燃料電池の二次利用判定システムにおいて、前記残存価値判定部は、前記出品燃料電池の前記設計耐用期間に対する、前記使用可能期間推定部により推定された推定使用可能期間の比を、該出品燃料電池の初期の価格に乗じることにより、該出品燃料電池の残存価格を算出してよい。
 (14)の発明によれば、推定使用可能期間に基づいた出品燃料電池の残存価格を算出できるため、より適切な残存価格を設定でき、より適切な燃料電池のマッチングが可能となる。
 (15) また本発明は、出品者から、出品燃料電池の型式及び識別子を含む個体情報、これまでの使用期間情報、現出力を含む出力性能情報、並びに劣化情報、を含む出品者入力情報を受け付ける出品者入力情報受付ステップと、前記使用期間情報、前記出力性能情報、及び前記劣化情報に基づいて、前記出品燃料電池の残存価値を判定する残存価値判定ステップと、を有する、燃料電池の二次利用判定方法を提供する。
 (15)の発明によれば、上述の(1)の発明と同様の効果が奏される。
 本発明によれば、燃料電池の劣化形態に基づいて再利用価値を評価できる技術を提供することができる。
第1実施形態に係る燃料電池の二次利用判定システムの構成を示すブロック図である。 第1実施形態に係る時系列データ記憶部に記憶される時系列データの一例を示す図である。 第1実施形態に係る管理情報記憶部に記憶される管理情報の一例を示す図である。 第1実施形態に係る表示用端末に表示される表示情報の一例を示す図である。 第1実施形態に係る燃料電池の二次利用判定システムの処理の手順を示すフローチャートである。 第2実施形態に係る燃料電池の二次利用判定システムの構成を示すブロック図である。 第2実施形態に係る入力表示用端末に表示される表示情報の一例を示す図である。 第2実施形態に係る需要情報記憶部に記憶される需要情報の一例を示す図である。 第2実施形態に係る管理情報記憶部に記憶される管理情報の一例を示す図である。 利用者が複数の燃料電池を要求する場合において、第2実施形態に係る入力表示用端末に表示される表示情報の一例を示す図である。 利用者が複数の燃料電池を要求する場合において、第2実施形態に係る管理情報記憶部に記憶される管理情報の一例を示す図である。 第2実施形態に係る燃料電池の二次利用判定システムの処理の手順を示すフローチャートである。
 本発明の実施形態について、図面を参照して詳しく説明する。なお、第2実施形態の説明において、第1実施形態と共通する構成については同一符号を付し、その説明については省略する。
[第1実施形態]
 第1実施形態に係る燃料電池の二次利用判定システムは、燃料電池の劣化形態に基づいて再利用価値を評価できるシステムである。より詳しくは、本実施形態に係る燃料電池の二次利用判定システムは、例えば電力供給事業者等の出品者から、出品燃料電池の個体情報、使用期間情報、出力性能情報、劣化情報等を含む出品者入力情報を受け付け、該出品者入力情報に基づいて出品燃料電池の残存価値を判定するシステムである。
 図1は、第1実施形態に係る燃料電池の二次利用判定システム1の構成を示すブロック図である。図1に示されるように、本実施形態に係る燃料電池の二次利用判定システム1は、燃料電池システム10と、燃料電池管理サーバ20と、表示用端末30と、を備える。これら燃料電池システム10、燃料電池管理サーバ20、及び表示用端末30は、インターネットや4G、5G等の規格の携帯電話網等の図示しない通信網を介して、相互に通信可能に接続される。
 燃料電池システム10及び燃料電池管理サーバ20は、例えばCPU、RAM、ROM、及びI/O等を有するマイクロプロセッサにより構成される。CPUは、ROM又は各記憶部から読み出した各プログラムを実行し、その実行の際にはRAM、ROM、及び各記憶部から情報を読み出し、RAM及び各記憶部に対して情報の書き込みを行い、図示しない通信部と信号の授受を実行する。このようにして、ハードウェアとソフトウェア(プログラム)が協働することにより、本実施形態における処理は実現される。
 燃料電池システム10は、例えば燃料電池車両に搭載される。燃料電池システム10は、燃料電池スタック11と、状態監視部12と、出力性能検知部13と、膜劣化率算出部14と、時系列データ記憶部15と、を備える。
 燃料電池スタック11は、例えば、数十個から数百個の燃料電池セルが積層されたスタック構造を有する。各燃料電池セルは、膜電極構造体(MEA)を一対のセパレータで挟持して構成される。膜電極構造体は、アノード電極(負極)及びカソード電極(正極)の2つの電極と、これら電極に挟持された固体高分子電解質膜とで構成される。通常、両電極は、固体高分子電解質膜に接して酸化・還元反応を行う触媒層と、この触媒層に接するガス拡散層とから形成される。この燃料電池スタック11は、アノード電極側に形成されたアノード流路に燃料ガス(水素ガス)が供給され、カソード電極側に形成されたカソード流路に酸化剤ガス(空気)が供給されると、これらの電気化学反応により発電する。
 本実施形態における燃料電池スタック11(以下、単に燃料電池とも言う。)は、製造されてからまだ間もない新品の燃料電池スタックではなく、使い古された燃料電池スタックや、製造されてからかなりの期間が経過した燃料電池スタックである。これら中古の燃料電池スタックが、本実施形態に係る燃料電池スタック11として出品者により出品され、本実施形態に係る燃料電池の二次利用判定システム1により、その劣化形態に基づいて再利用価値が評価される。なお、本明細書では、燃料電池スタックは燃料電池と同義で用いるものとする。
 状態監視部12は、燃料電池の動作履歴情報を取得する。具体的に、状態監視部12は、燃料電池が起動指示を受けて発電をする際に、燃料電池の出力電圧及び出力電流を、例えば10秒間隔等の所定時間毎に取得して監視する。状態監視部12は、例えば燃料電池の冷却経路に配置された温度センサにより、例えば10秒間隔等の所定時間毎に動作環境温度(冷媒温度)を取得して監視する。状態監視部12は、例えば燃料電池のガス経路に配置された圧力センサにより、例えば10秒間隔等の所定時間毎にガス圧力を取得して監視する。状態監視部12は、例えば燃料電池スタック11等に配置された湿度センサにより、例えば10秒間隔等の所定時間毎に動作環境湿度を取得して監視する。
 また、燃料電池が発電を開始してから停止するまでの間、状態監視部12は、発電時間を含むこれまでの使用期間情報を取得して監視する。発電停止時には、状態監視部12は、燃料電池のクロスリーク検査を実行し、その結果得られたクロスリーク量を取得して監視する。ここで、燃料電池のクロスリーク量とは、電解質膜を介してアノードとカソードとの間で生じるガスの漏れ量である。このクロスリーク量は、動作履歴情報であるとともに燃料電池の劣化情報の一つでもある。
 なお、状態監視部12は、上述のようにして取得した各種パラメータを、燃料電池の動作履歴情報として、後述の出力性能検知部13、膜劣化率算出部14及び時系列データ記憶部15に送信する。
 出力性能検知部13は、燃料電池の出力性能を検知する。具体的に、出力性能検知部13は、上述の状態監視部12で取得された燃料電池の出力電圧及び出力電流に基づいて、燃料電池の初期出力や現出力等の出力性能を検知する。また、出力性能検知部13は、初期出力から現出力への出力減少量を、出力性能情報であるとともに燃料電池の劣化情報の一つとして検知する。出力性能検知部13で検知されたこれらの出力性能情報や劣化情報は、後述の時系列データ記憶部15に送信される。
 膜劣化率算出部14は、上述の状態監視部12で取得された燃料電池の動作履歴情報に基づいて、燃料電池の電解質膜の膜劣化率を算出する。この膜劣化率算出部14で算出される膜劣化率は、燃料電池の劣化情報の一つとして後述の時系列データ記憶部15に送信される。
 ここで、燃料電池の電解質膜の化学劣化は、高分子主鎖の切断反応と、主鎖の末端から分解が進行するUnzipping反応が存在すると考えられる。高分子の主鎖が切断されると、切断された箇所は新たに二つの末端となるため、Unzipping反応の起点は倍々方式で指数関数的に増加していくことが示唆される。このことから、燃料電池の電解質膜の膜劣化率は、指数関数によりモデル化される。
 具体的に、膜劣化率算出部14は、指数関数によりモデル化された以下の式(1)に従って、膜劣化率Fを算出する。
Figure JPOXMLDOC01-appb-M000001
 上記式(1)中、a及びbは、燃料電池の仕様、動作環境温度(冷媒温度)、ガス圧力、動作環境湿度、出力電圧及び出力電流により決定される係数である。また、上記式(1)中、Tは、燃料電池の発電が行われた発電時間(h)である。これら燃料電池の仕様、動作環境温度(冷媒温度)、ガス圧力、動作環境湿度、出力電圧、出力電流、及び発電時間については、上述の通り、状態監視部12により取得されたデータが用いられる。
 時系列データ記憶部15は、状態監視部12で取得された燃料電池の動作履歴情報と、出力性能検知部13で検知された燃料電池の出力性能情報と、膜劣化率算出部14で算出された膜劣化率、出力性能検知部13で検知された出力減少量、及び状態監視部12で取得されたクロスリーク量を含む劣化情報と、を時系列データとして記憶する。この時系列データ記憶部15に記憶された時系列データは、燃料電池の出品時に、燃料電池の型式や識別子を含む個体情報に紐付けられて、後述の燃料電池管理サーバ20に送信される。
 図2は、本実施形態に係る時系列データ記憶部15に記憶される時系列データの一例を示す図である。図2に示されるように、本例では、検知時刻毎に、燃料電池の動作履歴情報の一つであるこれまでの使用期間情報としての運転時間(発電時間)と、出力性能情報としての現出力と、劣化情報としての膜劣化率及びクロスリーク量と、が時系列データ記憶部15に記憶される。
 燃料電池管理サーバ20は、時系列データ記憶部21と、残存価値判定部22と、管理情報記憶部23と、出品者入力情報受付部27と、を備える。
 出品者入力情報受付部27は、燃料電池の出品時に、燃料電池の型式や識別子を含む個体情報に紐付けられた上述の時系列データを受け付ける。即ち、出品者入力情報受付部27は、出品者から、出品燃料電池の型式及び識別子を含む個体情報と、発電時間等のこれまでの使用期間情報を含む動作履歴情報と、現出力を含む出力性能情報と、膜劣化率、出力減少量、及びクロスリーク量を含む劣化情報と、を含む出品者入力情報を受け付ける。
 また、出品者入力情報受付部27は、出品者から、出品燃料電池の販売希望価格情報を受け付けてもよい。この場合には、後述の残存価値判定部22による残存価値の判定において、販売希望価格情報を残存価格として判定してもよい。これにより、出品者の販売希望価格情報に応じた適切な燃料電池のマッチングが可能となる。
 時系列データ記憶部21は、出品者入力情報受付部27が受け付けた、燃料電池の型式や識別子を含む個体情報に紐付けられた上述の時系列データを記憶する。即ち、時系列データ記憶部21は、燃料電池の型式や識別子を含む個体情報にそれぞれ紐付けられた、出品燃料電池の動作履歴情報、出力性能情報、及び劣化情報を記憶する。
 残存価値判定部22は、燃料電池の使用期間情報、出力性能情報、及び劣化情報に基づいて、出品燃料電池の残存価値を判定する。上述したように、燃料電池の使用期間情報、出力性能情報、及び劣化情報は、いずれも時系列データ記憶部21に記憶されている。燃料電池の使用期間情報は、時系列データ記憶部21に記憶される出品燃料電池の動作履歴情報の一つであり、具体的には発電時間等が該当する。燃料電池の劣化情報には、膜劣化率、出力減少量及びクロスリーク量が含まれる。残存価値判定部22による残存価値判定結果は、燃料電池の残存価値情報として後述の管理情報記憶部23に送信される。
 残存価値判定部22は、出品燃料電池の残存価値を、例えば残存価格として判定する。残存価値判定部22は、出品者入力情報受付部27が出品燃料電池の販売希望価格情報を出品者から受け付けた場合には、販売希望価格情報を残存価格として判定してもよい。出品者入力情報に販売希望価格情報が含まれていない場合には、出品者入力情報に基づいて出品燃料電池の残存価格を算出してもよい。これにより、出品者の希望に応じて、該希望に見合った残存価格の設定が可能となる。
 管理情報記憶部23は、残存価値判定部22により判定された残存価値情報を記憶する。具体的に、管理情報記憶部23は、残存価値判定部22により判定された残存価値情報を、燃料電池の型式や識別子を含む個体情報及び上述の時系列データに紐付けて記憶する。
 図3は、本実施形態に係る管理情報記憶部23に記憶される管理情報の一例を示す図である。図3に示されるように、本例では、燃料電池の型式及び識別子毎に、検知時刻、使用期間、総運転時間、出力、膜劣化率、及び残存価値が管理情報記憶部23に記憶される。残存価値としては、残存価格が判定されて記憶されている。
 表示用端末30は、出品者等のシステム利用者により用いられ、燃料電池管理サーバ20にアクセス可能である。出品者等は、燃料電池の運用を中止して販売業者に販売等する際に、この表示用端末30により、管理情報記憶部23に記憶されている管理情報を表示可能である。即ち、この表示用端末30により、出品燃料電池の個体情報及び時系列データに紐づいた残存価値情報を取得して表示することが可能である。
 図4は、本実施形態に係る表示用端末30に表示される表示情報の一例を示す図である。図4に示されるように、本例では、燃料電池の型式及び識別子毎に、検知時刻、使用期間、総運転時間、出力、膜劣化率、及び残存価格が、表示用端末30に表示される。このように、本実施形態に係る燃料電池の二次利用判定システム1の利用者は、これらの情報を表示用端末30により確認可能である。
 次に、本実施形態に係る燃料電池の二次利用判定システム1の処理の手順について説明する。図5は、本実施形態に係る燃料電池の二次利用判定システム1の処理の手順を示すフローチャートである。本処理は、例えば所定の制御周期で繰り返し実行される。
 ステップS1では、出品者入力情報を受け付ける。具体的に、燃料電池管理サーバ20が備える出品者入力情報受付部27により、出品者から、出品燃料電池の型式及び識別子を含む個体情報、発電時間等のこれまでの使用期間情報を含む動作履歴情報、現出力を含む出力性能情報、並びに、膜劣化、出力減少量及びクロスリーク量を含む劣化情報、を含む出品者入力情報を受け付ける。その後、ステップS2に進む。
 ステップS2では、出品燃料電池について残存価値を判定する。具体的に、燃料電池管理サーバ20が備える残存価値判定部22により、使用期間情報、出力性能情報、及び劣化情報に基づいて、出品燃料電池の残存価値を判定する。判定後、本処理を終了する。
 なお、本実施形態に係る燃料電池の二次利用判定システム1の処理の実行により、本実施形態に係る燃料電池の二次利用判定方法が実現される。即ち、本実施形態に係る燃料電池の二次利用判定方法における出品者入力情報受付ステップが、上述のステップS1の処理に相当し、残存価値判定ステップが、上述のステップS2の処理に相当する。
 本実施形態によれば、以下の効果が奏される。
 本実施形態に係る燃料電池の二次利用判定システム1は、出品者から、出品燃料電池の型式及び識別子を含む個体情報、これまでの使用期間情報、現出力を含む出力性能情報、並びに、劣化情報、を含む出品者入力情報を受け付ける出品者入力情報受付部27を備える。また、使用期間情報、出力性能情報、及び劣化情報に基づいて、出品燃料電池の残存価値を判定する残存価値判定部22を備える。これにより本実施形態によれば、出品燃料電池毎に、その劣化形態に基づいて残存価値を判定できるため、燃料電池の再利用価値を適切に評価できる。
 また、燃料電池の実際の寿命や耐用年数は、該燃料電池の使用履歴や動作環境等に大きく依存することが知られている。そのため、予め設定された耐用年数を過ぎた燃料電池であっても、その時点ではまだ残存価値を有している可能性がある。このような残存価値を有する燃料電池を、予め設定された寿命、耐用年数の経過のみに基づいて破棄するのは、その残存価値を無駄にすることとなり、資源の有効活用の面で課題がある。これに対して本実施形態によれば、中古の燃料電池を再利用する際の再利用価値を判定できるため、該再利用先に応じた適切な燃料電池を選定できる。ひいては、本実施形態によれば、例えば車両用として耐用年数を満了した燃料電池を定置用の用途に転用する際に、仲介業者における再利用先の選定や販売価格の設定が容易に可能となる。
[第2実施形態]
 第2実施形態に係る燃料電池の二次利用判定システムは、燃料電池の劣化形態に基づいて再利用価値を評価できるとともに、再利用先に応じた適切な燃料電池のマッチングが可能なシステムである。より詳しくは、例えば電力供給事業者等の燃料電池の出品者から、出品燃料電池の個体情報、使用期間情報、出力性能情報、劣化情報等を含む出品者入力情報を受け付け、該出品者入力情報に基づいて出品燃料電池の残存価値を判定するシステムである。また、例えば電力供給事業者等の利用者から、燃料電池の要求出力情報等の利用者入力情報を受け付け、該利用者入力情報に基づいて再利用先に応じた適切な燃料電池をマッチング候補として選定するシステムである。
 図6は、本実施形態に係る燃料電池の二次利用判定システム1Aの構成を示すブロック図である。図6に示されるように本実施形態では、第1実施形態と比べて、燃料電池管理サーバ20Aの構成が相違する点と、入力表示用端末40を備える点以外は第1実施形態と同様の構成である。具体的には、本実施形態に係る燃料電池管理サーバ20Aは、マッチング処理部24と、使用可能期間推定部25と、需要情報記憶部26と、利用者入力情報受付部28と、を備える点が、第1実施形態と相違する。
 なお、第1実施形態と同様に、これら燃料電池システム10、燃料電池管理サーバ20A、表示用端末30、及び入力表示用端末40は、インターネットや4G、5G等の規格の携帯電話網等の図示しない通信網を介して、相互に通信可能に接続される。
 利用者入力情報受付部28は、利用者から、燃料電池の要求出力情報を含む利用者入力情報を受け付ける。利用者入力情報としては、利用者の再利用先(用途)情報、再利用先における燃料電池の想定使用期間情報、再利用先における発電頻度情報、及び利用者の予算情報が含まれていてもよい。また、利用者が複数の燃料電池を要求する場合には、その必要台数情報が含まれていてもよい。
 ここで、図7は、本実施形態に係る入力表示用端末40に表示される利用者入力情報の一例を示す図である。図7に示されるように、本例では、利用者入力情報として、燃料電池の再利用先、燃料電池の型式、発電頻度、必要出力、利用システム形態、及び想定設備使用年数が入力表示用端末40表示される。利用者入力情報は、入力表示用端末40を介して、利用者から入力される。利用者は、入力表示用端末40により、利用者入力情報を確認可能である。
 マッチング処理部24は、出品燃料電池の現出力が、利用者の要求出力を満たす場合には、該出品燃料電池をマッチング候補として選定する。そのため、利用者が要求する燃料電池の要求出力情報を利用者入力情報受付部28が受け付けると、マッチング処理部24により、その要求出力を満たす現出力を有する出品燃料電池がマッチング候補として選定される。これにより、利用者は、選定されたマッチング候補の出品燃料電池を入力表示用端末40により確認することができ、該マッチング候補の中から、要求出力を満たす燃料電池を選択することができる。なお、利用者の要求出力とは、再利用先で想定される必要出力そのものでもよく、利用者の要求に応じて該必要出力より大きい出力であってもよい。
 マッチング処理部24によるマッチングでは、上述の通り、出品燃料電池の現出力が利用者の要求出力を満たすことが前提条件である。ただし、以下に説明するような付加的条件を加えてマッチングしてもよい。
 マッチング処理部24は、後述の使用可能期間推定部25により算出された推定使用可能期間が、利用者の想定使用期間を満たす場合には、該出品燃料電池をマッチング候補として選定してもよい。この場合、利用者の再利用先における想定使用期間情報を利用者入力情報受付部28が受け付けると、マッチング処理部24により、その想定使用期間を満たす推定使用可能期間を有する出品燃料電池がマッチング候補として選定される。これにより、利用者は、選定されたマッチング候補の出品燃料電池を入力表示用端末40により確認することができ、該マッチング候補の中から、想定使用期間を満たす燃料電池を選択することができる。
 マッチング処理部24は、出品燃料電池の残存価格が利用者の予算内である場合には、該出品燃料電池をマッチング候補として選定してもよい。この場合、利用者の予算情報を利用者入力情報受付部28が受け付けると、マッチング処理部24により、その利用者の予算を満たす残存価格を有する出品燃料電池がマッチング候補として選定される。これにより、利用者は、選定されたマッチング候補の出品燃料電池を入力表示用端末40により確認することができ、該マッチング候補の中から、予算を満たす燃料電池を選択することができる。
 マッチング処理部24は、利用者による再利用先で想定される必要出力が所定出力より高い場合には、劣化度が相対的に小さい出品燃料電池をマッチング候補として優先して選定してもよい。ここで、劣化度とは、膜劣化率、出力減少量、及びクロスリーク量を含む上述の劣化情報に基づくものであり、膜劣化率が大きいほど、出力減少量が大きいほど、クロスリーク量が大きいほど、劣化度が大きい。劣化度が相対的に小さいとは、マッチング候補として選定される出品燃料電池の中で劣化度が相対的に小さいことを意味する。所定出力は、出力と劣化度との関係に基づいて予め設定される。
 この場合、利用者が要求する燃料電池の要求出力情報を利用者入力情報受付部28が受け付けると、マッチング処理部24により、その要求出力を満たす現出力を有する出品燃料電池の中から劣化度が相対的に小さいものがマッチング候補として優先して選定される。このとき、例えば入力表示用端末40には劣化度の小さいものが最上位に表示される。これにより、利用者は、選定されたマッチング候補の出品燃料電池を入力表示用端末40により確認することができ、該マッチング候補の中から、要求出力を満たすとともに劣化度の小さい燃料電池を選択することができる。
 マッチング処理部24は、複数の出品燃料電池の現出力を合算することで利用者の要求出力を満たす場合には、複数の出品燃料電池をマッチング候補として選定してもよい。この場合、利用者が要求する燃料電池の要求出力情報を利用者入力情報受付部28が受け付けると、マッチング処理部24により、現出力を合算することで利用者の要求出力を満たす複数の出品燃料電池がマッチング候補として選定される。例えば、現出力が50kWの燃料電池が2つ出品されていたとして、利用者が100kWの燃料電池を要求している場合には、マッチング処理部24は、50kWの出品燃料電池2つを100kWの燃料電池としてマッチング候補に選定する。これにより、利用者は、選定されたマッチング候補の複数の出品燃料電池を入力表示用端末40により確認することができ、該マッチング候補の中から、要求出力を満たす複数の燃料電池の組み合わせを選択することができる。なお、燃料電池の型式によっては互いに連結できない場合もあるため、マッチング処理部24は、型式も考慮して複数の出品燃料電池をマッチング候補として選定する。
 マッチング処理部24は、複数の出品燃料電池の現出力を合算することで利用者の要求出力を満たす場合において、利用者による再利用先で想定される燃料電池の出力変動が所定値より小さい場合には、劣化度によらずに複数の出品燃料電池の組み合わせをマッチング候補として選定してもよい。燃料電池の用途が、例えば定置型電源等で出力変動が小さい場合には、燃料電池の劣化が進んでいても問題は無く、また、複数の燃料電池間における劣化度に差があっても問題は無いからである。ここで、出力変動は、例えば再利用先で想定される燃料電池の最大出力値と最小出力値との差分により算出される。劣化度は、上述の通りである。所定値は、出力変動と劣化度との関係に基づいて予め設定される。
 この場合、利用者が要求する燃料電池の要求出力情報及び再利用先情報を利用者入力情報受付部28が受け付けると、マッチング処理部24により、劣化度によらずに、現出力を合算することで利用者の要求出力を満たす複数の出品燃料電池がマッチング候補として選定される。これにより、利用者は、選定されたマッチング候補の出品燃料電池を入力表示用端末40により確認することができ、該マッチング候補の中から、劣化度に関係なく要求出力を満たす燃料電池の組み合わせを選択することができる。
 マッチング処理部24は、複数の出品燃料電池の現出力を合算することで利用者の要求出力を満たす場合において、利用者による再利用先で想定される燃料電池の出力変動が上記所定値以上である場合には、劣化度が相対的に小さく且つ劣化度の差が相対的に小さい複数の出品燃料電池の組み合わせをマッチング候補として選定してもよい。燃料電池の用途が、例えばトラック等の商用車等で出力変動が大きい場合には、燃料電池の劣化が進んでいないものがよく、また、複数の燃料電池間における劣化度に差が無いほうがよいからである。劣化度が相対的に小さく且つ劣化度の差が相対的に小さいとは、マッチング候補として選定される出品燃料電池の中で劣化度が相対的に小さいうえ、選定された複数のマッチング候補間における劣化度の差が小さい組み合わせを意味する。
 この場合、利用者が要求する燃料電池の要求出力情報及び再利用先情報を利用者入力情報受付部28が受け付けると、マッチング処理部24により、劣化度が相対的に小さく且つ劣化度の差が相対的に小さいものであり且つ現出力を合算することで利用者の要求出力を満たす複数の出品燃料電池がマッチング候補として選定される。これにより、利用者は、選定されたマッチング候補の出品燃料電池を入力表示用端末40により確認することができ、該マッチング候補の中から、劣化度が小さく且つ劣化度の差が小さいもので要求出力を満たす燃料電池の組み合わせを選択することができる。
 使用可能期間推定部25は、出品燃料電池の個体情報及び劣化情報に基づいて、出品燃料電池の使用可能期間を推定する。また、使用可能期間推定部25は、出品燃料電池の個体情報及び劣化情報に加えて、出力性能情報、要求出力情報、及び再利用先情報に基づいて、推定使用可能期間を算出してもよい。使用可能期間推定部25は、マッチング処理部24でマッチング候補として選定された出品燃料電池に対して、再利用先で利用されたときの推定使用可能期間を算出してもよく、マッチング処理部24によるマッチングの条件として用いるために推定使用可能期間を算出してもよい。使用可能期間推定部25で算出された推定使用可能期間は、入力表示用端末40に表示されるとともに、管理情報記憶部23に送信されて記憶される。
 使用可能期間推定部25は、設計耐用期間から、出力低下による寿命消費期間と膜劣化による寿命消費期間のうちいずれかを減算することにより、推定使用可能期間を算出してもよい。これにより、より正確な推定使用可能期間を算出できるため、利用者の要求に応じたより適切な燃料電池をマッチング候補として選定できる。
 あるいは、使用可能期間推定部25は、設計耐用期間から、出力低下による寿命消費期間と膜劣化による寿命消費期間のうち大きい方を減算することにより、推定使用可能期間を算出してもよい。これにより、さらに正確な推定使用可能期間を算出できるため、利用者の要求に応じたさらに適切な燃料電池をマッチング候補として選定できる。なお本実施形態では、出品燃料電池の個体情報に設計耐用期間が含まれ、時系列データ記憶部21に記憶されている。
 ここで、出力低下による寿命消費期間は、燃料電池の初期出力と最終出力との差分に対する、初期出力と現出力との差分の比を、設計耐用期間に乗じることにより算出される。具体的には、出力低下による寿命消費期間は以下の式(2)に従って算出される。初期出力、最終出力、及び現出力は出力性能情報として時系列データ記憶部21に記憶されている。このように、出力減少量に基づいて算出される寿命消費期間を設計耐用期間から差し引くことにより、より正確な推定使用可能期間を算出できる。なお、最終出力とは、設計耐用期間満了時の劣化状態における設計出力である。
Figure JPOXMLDOC01-appb-M000002
 膜劣化による寿命消費期間は、膜劣化率を設計耐用期間に乗じることにより算出される。具体的には、膜劣化による寿命消費期間は以下の式(3)に従って算出される。膜劣化率は、上述の膜劣化率算出部14により算出され、時系列データ記憶部21に記憶されている。このように、膜劣化率に基づいて算出される寿命消費期間を設計耐用期間から差し引くことにより、より正確な推定使用可能期間を算出できる。
Figure JPOXMLDOC01-appb-M000003
 また、使用可能期間推定部25は、利用者による再利用先で想定される燃料電池の発電頻度に基づいて、上述の推定使用可能期間を補正してもよい。具体的に、使用可能期間推定部25は、利用者入力情報受付部28が燃料電池の再利用先における発電頻度情報を受け付けた場合には、上述のようにして推定した推定使用可能期間を再利用先の発電頻度に基づいて補正する。これにより、再利用先の発電頻度に応じたより適切な燃料電池をマッチング可能となる。従って、利用者は、より適切に選定されたマッチング候補の出品燃料電池を入力表示用端末40により確認することができ、該マッチング候補の中から、再利用先の発電頻度に応じてより適切な燃料電池を選択することができる。
 需要情報記憶部26は、利用者から利用者入力情報受付部28が受け付けた、燃料電池の要求出力情報を含む利用者入力情報を需要情報として記憶する。需要情報としては、利用者の再利用先(用途)情報、再利用先における燃料電池の想定使用期間情報、再利用先における発電頻度情報、及び利用者の予算情報が含まれていてもよい。また、利用者が複数の燃料電池を要求する場合には、その必要台数情報が含まれていてもよい。
 ここで、図8は、本実施形態に係る需要情報記憶部26に記憶される需要情報の一例を示す図である。図8に示されるように、本例では、利用者による再利用先、燃料電池の型式、発電頻度、必要出力、利用システム形態、及び想定設備使用年数が記憶される。利用者は、入力表示用端末40により、これら需要情報を確認可能である。
 なお、本実施形態の残存価値判定部22は、第1実施形態と異なり、出品燃料電池の設計耐用期間に対する、上述の使用可能期間推定部25により算出された推定使用可能期間の比を、該出品燃料電池の初期の価格に乗じることにより、該出品燃料電池の残存価格を算出してもよい。具体的には、本実施形態の残存価値判定部22は、以下の式(4)に従って残存価格を算出してもよい。これにより、推定使用可能期間に基づいた出品燃料電池の残存価格を算出できるため、より適切な残存価格を設定できる。
Figure JPOXMLDOC01-appb-M000004
 また、本実施形態に係る管理情報記憶部23は、第1実施形態と異なり、上述のようにして算出された推定使用可能期間を記憶する。ここで、図9は、本実施形態に係る管理情報記憶部23に記憶される管理情報の一例を示す図である。図9に示されるように、本例では、燃料電池の型式及び識別子毎に、検知時刻、使用期間、総運転時間、出力、膜劣化率、残存価格、及び推定使用可能期間が、記憶される。これら管理情報は、入力表示用端末40に表示される。このように、マッチング処理部24により利用者の要求に見合った出品燃料電池が選定され、表示される。このとき、選定された燃料電池を再利用先のシステムで利用した場合の推定使用可能期間も参照することができる。
 次に、利用者が複数の燃料電池を要求する場合について説明する。
 図10は、利用者が複数の燃料電池を要求する場合において、本実施形態に係る入力表示用端末40に表示される表示情報の一例を示す図である。図10に示される例では、再利用先、燃料電池の型式、発電頻度、必要出力、利用システム形態、想定設備使用年数、及び必要台数が、入力表示用端末40に表示される。このように、利用者が複数の燃料電池を要求する場合には、利用者は入力表示用端末40を介してその必要台数を利用者入力情報として入力し、利用者は入力表示用端末40によりその利用者入力情報を確認可能である。
 図11は、利用者が複数の燃料電池を要求する場合において、本実施形態に係る管理情報記憶部23に記憶される管理情報の一例を示す図である。図11に示されるように、本例では、燃料電池の型式及び識別子毎に、検知時刻、使用期間、総運転時間、出力、膜劣化率、残存価値、及び推定使用可能期間が、記憶される。このように、利用者が複数の燃料電池を要求する場合には、要求を満足する複数の出品燃料電池がマッチング処理部24によりマッチング候補として選定されて入力表示用端末40に表示され、利用者はその中から希望の電量電池の組み合わせを選択することができる。
 次に、本実施形態に係る燃料電池の二次利用判定システム1Aの処理の手順について説明する。図12は、本実施形態に係る燃料電池の二次利用判定システム1Aの処理の手順を示すフローチャートである。本処理は、例えば所定の制御周期で繰り返し実行される。
 ステップS1では、出品者入力情報を受け付ける。具体的に、燃料電池管理サーバ20Aが備える出品者入力情報受付部27により、出品者から、出品燃料電池の型式及び識別子を含む個体情報、これまでの使用期間情報、現出力を含む出力性能情報、並びに劣化情報、を含む出品者入力情報を受け付ける。その後、ステップS2に進む。
 ステップS2では、出品燃料電池について残存価値を判定する。具体的に、燃料電池管理サーバ20Aが備える残存価値判定部22により、使用期間情報、出力性能情報、及び劣化情報に基づいて、出品燃料電池の残存価値を判定する。その後、ステップS3に進む。
 ステップS3では、利用者入力情報を受け付ける。具体的に、燃料電池管理サーバ20が備える利用者入力情報受付部28により、利用者から、燃料電池の要求出力情報を含む利用者入力情報を受け付ける。その後、ステップS4に進む。
 ステップS4では、マッチング処理を実行する。具体的に、燃料電池管理サーバ20Aが備えるマッチング処理部24により、出品燃料電池の現出力が、利用者の要求出力を満たす出品燃料電池をマッチング候補として選定する。その後、本処理を終了する。
 なお、図12に示されるフローチャートでは、出品者入力情報を受け付け、残存価値を判定した後に、利用者入力情報を受け付けているが、これら処理の手順はこれに限定されない。例えば、利用者入力情報を先に受け付け、その後、出品者入力情報を受け付け、残存価値を判定してもよい。
 本実施形態によれば、第1実施形態と同様の効果が奏される他、以下の効果が奏される。
 本実施形態に係る燃料電池の二次利用判定システム1Aは、利用者から、燃料電池の要求出力情報を含む利用者入力情報を受け付ける利用者入力情報受付部を備えるとともに、出品燃料電池の現出力が、利用者の要求出力を満たす場合には、該出品燃料電池をマッチング候補として選定するマッチング処理部をさらに備える。これにより本実施形態によれば、利用者の要求に見合った出品燃料電池をマッチング候補として選定することができ、利用者はそのマッチング候補の中から希望の燃料電池を選択することができる。
 なお、本発明は、上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 1,1A 燃料電池の二次利用判定システム
 10 燃料電池システム
 11 燃料電池スタック
 12 状態監視部
 13 出力性能検知部
 14 膜劣化率算出部
 15 時系列データ記憶部
 20,20A 燃料電池管理サーバ
 21 時系列データ記憶部
 22 残存価値判定部
 23 管理情報記憶部
 24 マッチング処理部
 25 使用可能期間推定部
 26 需要情報記憶部
 27 出品者入力情報受付部
 28 利用者入力情報受付部
 30 表示用端末
 40 入力表示用端末

Claims (15)

  1.  出品者から、出品燃料電池の型式及び識別子を含む個体情報、これまでの使用期間情報、現出力を含む出力性能情報、並びに、劣化情報、を含む出品者入力情報を受け付ける出品者入力情報受付部と、
     前記使用期間情報、前記出力性能情報、及び前記劣化情報に基づいて、前記出品燃料電池の残存価値を判定する残存価値判定部と、を備える、燃料電池の二次利用判定システム。
  2.  利用者から、燃料電池の要求出力情報を含む利用者入力情報を受け付ける利用者入力情報受付部と、
     前記出品燃料電池の現出力が、前記利用者の要求出力を満たす場合には、該出品燃料電池をマッチング候補として選定するマッチング処理部と、をさらに備える、請求項1に記載の燃料電池の二次利用判定システム。
  3.  前記個体情報及び前記劣化情報に基づいて、前記出品燃料電池の使用可能期間を推定する使用可能期間推定部をさらに備え、
     前記個体情報には、前記出品燃料電池の設計耐用期間が含まれ、
     前記利用者入力情報受付部は、前記利用者から燃料電池の想定使用期間情報を受け付け、
     前記マッチング処理部は、前記出品燃料電池の前記使用可能期間推定部により推定された使用可能期間が、前記利用者の想定使用期間を満たす場合には、該出品燃料電池をマッチング候補として選定する、請求項2に記載の燃料電池の二次利用判定システム。
  4.  前記使用可能期間推定部は、前記利用者による再利用先で想定される燃料電池の発電頻度に基づいて、前記使用可能期間を補正する、請求項3に記載の燃料電池の二次利用判定システム。
  5.  前記残存価値判定部は、前記出品燃料電池の残存価格を判定し、
     前記利用者入力情報受付部は、前記利用者の予算情報を受け付け、
     前記マッチング処理部は、前記出品燃料電池の残存価格が前記利用者の予算内である場合には、該出品燃料電池をマッチング候補として選定する、請求項3又は4に記載の燃料電池の二次利用判定システム。
  6.  前記マッチング処理部は、前記利用者による再利用先で想定される必要出力が所定出力より高い場合には、劣化度が相対的に小さい出品燃料電池をマッチング候補として優先して選定する、請求項3から5いずれかに記載の燃料電池の二次利用判定システム。
  7.  前記マッチング処理部は、複数の前記出品燃料電池の現出力を合算することで前記利用者の要求出力を満たす場合には、前記複数の出品燃料電池をマッチング候補として選定する、請求項3から6いずれかに記載の燃料電池の二次利用判定システム。
  8.  前記マッチング処理部は、
     前記利用者による再利用先で想定される燃料電池の出力変動が所定値より小さい場合には、劣化度によらずに複数の前記出品燃料電池の組み合わせをマッチング候補として選定し、
     前記利用者による再利用先で想定される燃料電池の出力変動が前記所定値以上である場合には、劣化度が相対的に小さく且つ劣化度の差が相対的に小さい複数の前記出品燃料電池の組み合わせをマッチング候補として選定する、請求項7に記載の燃料電池の二次利用判定システム。
  9.  前記使用可能期間推定部は、前記設計耐用期間から、出力低下による寿命消費期間と膜劣化による寿命消費期間のうちいずれかを減算することにより、前記使用可能期間を算出する、請求項3から8いずれかに記載の燃料電池の二次利用判定システム。
  10.  前記使用可能期間推定部は、前記設計耐用期間から、前記出力低下による寿命消費期間と前記膜劣化による寿命消費期間のうち大きい方を減算することにより、前記使用可能期間を算出する、請求項9に記載の燃料電池の二次利用判定システム。
  11.  前記出力低下による寿命消費期間は、初期出力と最終出力との差分に対する初期出力と現出力との差分の比を、前記設計耐用期間に乗じることにより算出される、請求項9又は10に記載の燃料電池の二次利用判定システム。
  12.  前記膜劣化による寿命消費期間は、膜劣化率を前記設計耐用期間に乗じることにより算出される、請求項9から11いずれかに記載の燃料電池の二次利用判定システム。
  13.  前記出品者入力情報受付部は、前記出品者の販売希望価格情報を受け付け可能であり、
     前記残存価値判定部は、
     前記出品者入力情報に前記販売希望価格情報が含まれている場合には、該販売希望価格を前記出品燃料電池の残存価格と決定し、
     前記出品者入力情報に前記販売希望価格情報が含まれていない場合には、該出品者入力情報に基づいて前記出品燃料電池の残存価格を算出する、請求項5に記載の燃料電池の二次利用判定システム。
  14.  前記残存価値判定部は、前記出品燃料電池の前記設計耐用期間に対する、前記使用可能期間推定部により推定された推定使用可能期間の比を、該出品燃料電池の初期の価格に乗じることにより、該出品燃料電池の残存価格を算出する、請求項5又は13に記載の燃料電池の二次利用判定システム。
  15.  出品者から、出品燃料電池の型式及び識別子を含む個体情報、これまでの使用期間情報、現出力を含む出力性能情報、並びに劣化情報、を含む出品者入力情報を受け付ける出品者入力情報受付ステップと、
     前記使用期間情報、前記出力性能情報、及び前記劣化情報に基づいて、前記出品燃料電池の残存価値を判定する残存価値判定ステップと、を有する、燃料電池の二次利用判定方法。
PCT/JP2022/014957 2021-03-30 2022-03-28 燃料電池の二次利用判定システム及び燃料電池の二次利用判定方法 WO2022210523A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280025010.3A CN117121024A (zh) 2021-03-30 2022-03-28 燃料电池的二次利用判定系统及燃料电池的二次利用判定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021057950 2021-03-30
JP2021-057950 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022210523A1 true WO2022210523A1 (ja) 2022-10-06

Family

ID=83456344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014957 WO2022210523A1 (ja) 2021-03-30 2022-03-28 燃料電池の二次利用判定システム及び燃料電池の二次利用判定方法

Country Status (2)

Country Link
CN (1) CN117121024A (ja)
WO (1) WO2022210523A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003248764A (ja) * 2002-12-20 2003-09-05 Tokyo Gas Co Ltd 消耗品の取引方法および取引システム
JP2005302337A (ja) * 2004-04-07 2005-10-27 Aichi Electric Co Ltd バッテリーの再生・流通システムおよび該システムを実現するプログラム
JP2010244820A (ja) * 2009-04-06 2010-10-28 Toyota Motor Corp 燃料電池価格算出装置、燃料電池価格算出方法、及びコンピュータプログラム
JP2013084198A (ja) * 2011-10-12 2013-05-09 Nissan Motor Co Ltd バッテリ検索装置およびバッテリ検索方法
JP2013120640A (ja) * 2011-12-06 2013-06-17 Panasonic Corp 蓄電池移転支援装置および蓄電池移転支援方法
US20130332370A1 (en) * 2012-06-06 2013-12-12 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Replaceable battery valuation system
JP2015069335A (ja) * 2013-09-27 2015-04-13 株式会社東芝 設備管理システム及び設備管理方法
WO2020136768A1 (ja) * 2018-12-26 2020-07-02 本田技研工業株式会社 保管システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003248764A (ja) * 2002-12-20 2003-09-05 Tokyo Gas Co Ltd 消耗品の取引方法および取引システム
JP2005302337A (ja) * 2004-04-07 2005-10-27 Aichi Electric Co Ltd バッテリーの再生・流通システムおよび該システムを実現するプログラム
JP2010244820A (ja) * 2009-04-06 2010-10-28 Toyota Motor Corp 燃料電池価格算出装置、燃料電池価格算出方法、及びコンピュータプログラム
JP2013084198A (ja) * 2011-10-12 2013-05-09 Nissan Motor Co Ltd バッテリ検索装置およびバッテリ検索方法
JP2013120640A (ja) * 2011-12-06 2013-06-17 Panasonic Corp 蓄電池移転支援装置および蓄電池移転支援方法
US20130332370A1 (en) * 2012-06-06 2013-12-12 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Replaceable battery valuation system
JP2015069335A (ja) * 2013-09-27 2015-04-13 株式会社東芝 設備管理システム及び設備管理方法
WO2020136768A1 (ja) * 2018-12-26 2020-07-02 本田技研工業株式会社 保管システム

Also Published As

Publication number Publication date
CN117121024A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
Wang et al. Power management system for a fuel cell/battery hybrid vehicle incorporating fuel cell and battery degradation
Zou et al. A framework for simplification of PDE-based lithium-ion battery models
Li et al. Fuel cell system degradation analysis of a Chinese plug-in hybrid fuel cell city bus
Ettihir et al. Online identification of semi-empirical model parameters for PEMFCs
US8088525B2 (en) Online low performing cell (LPC) prediction and detection of fuel cell system
US20090197125A1 (en) Method for Maximum Net Power Calculation for Fuel Cell System Based on Online Polarization Curve Estimation
EP3145021B1 (en) Secondary-battery monitoring device and method for predicting capacity of secondary battery
Bloom et al. A comparison of fuel cell testing protocols–a case study: protocols used by the US Department of Energy, European Union, international electrotechnical commission/fuel cell testing and standardization network, and fuel cell technical team
US9494655B2 (en) Apparatus for diagnosing a state of a fuel cell stack and method thereof
Khaki et al. Voltage loss and capacity fade reduction in vanadium redox battery by electrolyte flow control
US10921382B2 (en) Battery information processing apparatus, battery manufacturing support apparatus, battery assembly, battery information processing method, and method of manufacturing battery assembly
JP7271365B2 (ja) 表示制御装置、表示制御方法、及びプログラム
Tanrioven et al. Reliability modeling and analysis of stand-alone PEM fuel cell power plants
US9496573B2 (en) Intact method of evaluating unit cells in a fuel cell stack and a device using the same
CN102169165B (zh) 燃料电池堆的最小电池电压退化的早期检测
Fornaro et al. Redox flow battery time‐varying parameter estimation based on high‐order sliding mode differentiators
WO2022210523A1 (ja) 燃料電池の二次利用判定システム及び燃料電池の二次利用判定方法
EP4206712A1 (en) Apparatus and method for diagnosing battery
US20100114513A1 (en) Estimating minimum voltage of fuel cells
Bloom et al. A comparison of fuel cell test protocols
US20090197127A1 (en) Algorithm for Stack Current Controller Based on Polarization Curve Estimation of a Fuel Cell Stack
Jacome et al. A review of model-based prognostic for proton exchange membrane fuel cell under automotive load cycling
JP2016103449A (ja) 正極電位の推定方法、正極電位の推定装置、メモリ効果有無の判定方法、メモリ効果有無の判定装置及び起電圧の推定方法
CN110853466A (zh) 氢燃料电池管理系统、运行方法及存储介质
Saha et al. Structural modeling and analysis of fuel cell: a graph-theoretic approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780734

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18552905

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780734

Country of ref document: EP

Kind code of ref document: A1