WO2022210163A1 - Terminal device, base station device, and method - Google Patents

Terminal device, base station device, and method Download PDF

Info

Publication number
WO2022210163A1
WO2022210163A1 PCT/JP2022/013504 JP2022013504W WO2022210163A1 WO 2022210163 A1 WO2022210163 A1 WO 2022210163A1 JP 2022013504 W JP2022013504 W JP 2022013504W WO 2022210163 A1 WO2022210163 A1 WO 2022210163A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
rrc
bwp
cell group
timer
Prior art date
Application number
PCT/JP2022/013504
Other languages
French (fr)
Japanese (ja)
Inventor
秀和 坪井
昇平 山田
貴子 堀
恭輔 井上
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2023511057A priority Critical patent/JPWO2022210163A1/ja
Publication of WO2022210163A1 publication Critical patent/WO2022210163A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a terminal device, base station device and method.
  • This application claims priority to Japanese Patent Application No. 2021-62889 filed in Japan on April 1, 2021, the content of which is incorporated herein.
  • 3GPP 3rd Generation Partnership Project
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • RAT radio access technology
  • 3GPP 3GPP is still conducting technical studies and establishing standards for extension technologies for E-UTRA.
  • E-UTRA is also called Long Term Evolution (LTE: registered trademark), and extended technologies are sometimes called LTE-Advanced (LTE-A) and LTE-Advanced Pro (LTE-A Pro).
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-Advanced Pro
  • NR New Radio, or NR Radio access
  • RAT Radio Access Technology
  • 3GPP TS 38.300 v16.2.0 NR;NR and NG-RAN Overall description; Stage 2" pp10-134 3GPP TS 36.300 v16.2.0,”Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2" pp19-361
  • a dual connectivity (also called multi-connectivity) technology in which one or more base station devices and terminal devices communicate using multiple cell groups.
  • a terminal device in order to perform communication in each cell group, a terminal device needs to monitor whether there is a message addressed to itself in each cell group.
  • a terminal device needs to constantly monitor a plurality of cell groups so that communication can be performed with low delay when large-capacity data communication occurs, and there is a problem of consuming a lot of power. Therefore, a technique for performing or stopping monitoring of some cell groups at low frequency (cell group deactivation technique) is being studied.
  • the terminal equipment In the inactive state of the cell group, the terminal equipment needs to perform the processing necessary to promptly communicate when the cell group becomes active.
  • One aspect of the present invention has been made in view of the circumstances described above, and one object thereof is to provide a terminal device, a base station device, a method, and an integrated circuit capable of efficiently performing communication control.
  • one aspect of the present invention takes the following measures. That is, one aspect of the present invention is a terminal device in which a master cell group and a secondary cell group are configured from a network, a receiving unit that receives an RRC message including a first timer value from the network, and the RRC a processing unit that performs processing based on the message, the processing unit activates a secondary cell group that is started by the terminal device's judgment based on the fact that the first timer is set to a specific value; / or considering that deactivation is not allowed, based on setting the first timer to a value other than the specific value, and activating and/or deactivating a secondary cell group; Start or restart the first timer, based on the first timer is running, based on the activation and / or deactivation of the secondary cell group, initiated by the terminal device's judgment not initiate secondary cell group activation and/or deactivation.
  • one aspect of the present invention is a method applied to a terminal device in which a master cell group and a secondary cell group are configured from a network, the step of receiving an RRC message including a first timer value from the network. And a step of performing processing based on the RRC message, and based on the fact that the first timer is set to a specific value, activation of the secondary cell group started by the terminal device's judgment and / or Based on determining that deactivation is not permitted, setting the first timer to a value other than the specific value, and activating and/or deactivating a secondary cell group, the first 1 timer is started or restarted, and the secondary cell group is activated and/or deactivated based on the fact that the first timer is running. Do not initiate cell group activation and/or deactivation.
  • one aspect of the present invention is an integrated circuit implemented in a terminal device in which a master cell group and a secondary cell group are configured from a network, and receives an RRC message including a first timer value from the network.
  • a secondary cell group that is started by the determination of the terminal device based on the fact that the terminal device exhibits the function and the function of performing processing based on the RRC message, and the specific value is set in the first timer is not permitted, the first timer is set to a value other than the specific value, and the secondary cell group is activated and/or deactivated.
  • the terminal device Do not initiate decision-initiated secondary cell group activation and/or deactivation.
  • one aspect of the present invention is a base station apparatus that communicates with a terminal device, comprising: a processing unit that generates an RRC message including a first timer value; and a transmission unit that transmits the RRC message to the terminal device. wherein the processing unit does not allow activation and / or deactivation of the secondary cell group started by the terminal device's judgment based on setting a specific value to the first timer Shown on the terminal device.
  • one aspect of the present invention is a method applied to a base station apparatus that communicates with a terminal apparatus, comprising: generating an RRC message including a value of a first timer; and transmitting the RRC message to the terminal apparatus. and setting a specific value to the first timer to disallow activation and/or deactivation of a secondary cell group initiated by a determination of the terminal device. shown in
  • one aspect of the present invention is an integrated circuit implemented in a base station device that communicates with a terminal device, comprising a function of generating an RRC message including a value of a first timer, and transmitting the RRC message to the terminal device.
  • Activation and/or deactivation of the secondary cell group initiated by the determination of the terminal device is caused by causing the base station device to exhibit the function of transmitting and setting a specific value to the first timer. Indicates to the terminal device that it is not permitted.
  • the terminal device, base station device, method, and integrated circuit can realize efficient communication control processing.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the invention;
  • FIG. 3 is a diagram of an example of NR protocol configuration according to an embodiment of the present invention;
  • the block diagram which shows the structure of the terminal device in embodiment of this invention. 1 is a block diagram showing the configuration of a base station apparatus according to an embodiment of the present invention;
  • ASN.1 description included in a message regarding RRC connection reconfiguration in E-UTRA according to an embodiment of the present invention.
  • LTE (and LTE-A, LTE-A Pro) and NR may be defined as different Radio Access Technologies (RAT).
  • RAT Radio Access Technologies
  • NR may also be defined as a technology included in LTE.
  • LTE may also be defined as a technology included in NR.
  • LTE that can be connected by NR and Multi Radio Dual connectivity (MR-DC) may be distinguished from conventional LTE.
  • MR-DC Multi Radio Dual connectivity
  • LTE using 5GC for the core network may be distinguished from conventional LTE using EPC for the core network.
  • EPC Multi Radio Dual connectivity
  • conventional LTE may refer to LTE that does not implement the technology standardized after Release 15 of 3GPP.
  • Embodiments of the present invention may be applied to NR, LTE and other RATs.
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • each node and entity when the radio access technology is E-UTRA or NR, and the processing in each node and entity will be described. It may be used for other radio access technologies.
  • the name of each node or entity in the embodiment of the present invention may be another name.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention. It should be noted that the functions of each node, radio access technology, core network, interface, etc. described using FIG. 1 are part of the functions closely related to the embodiment of the present invention, and may have other functions.
  • E-UTRA100 may be a radio access technology.
  • E-UTRA 100 may also be the air interface between UE 122 and eNB 102 .
  • the air interface between UE 122 and eNB 102 may be called the Uu interface.
  • the eNB (E-UTRAN Node B) 102 may be a base station device of the E-UTRA 100.
  • the eNB 102 may have the E-UTRA protocol described below.
  • the E-UTRA protocol may consist of an E-UTRA user plane (User Plane: UP) protocol described later and an E-UTRA control plane (Control Plane: CP) protocol described later.
  • eNB 102 may terminate E-UTRA User Plane (UP) and E-UTRA Control Plane (CP) protocols to UE 122 .
  • a radio access network composed of eNBs may be called E-UTRAN.
  • the EPC (Evolved Packet Core) 104 may be a core network.
  • Interface 112 is the interface between eNB 102 and EPC 104 and may be referred to as the S1 interface.
  • Interface 112 may include a control plane interface through which control signals pass, and/or a user plane interface through which user data passes.
  • the control plane interface of interface 112 may terminate at a Mobility Management Entity (MME; not shown) within EPC 104 .
  • MME Mobility Management Entity
  • S-GW serving gateway
  • the control plane interface of interface 112 may be called the S1-MME interface.
  • the user plane interface of interface 112 may be called the S1-U interface.
  • one or more eNBs 102 may be connected to the EPC 104 via the interface 112. Interfaces may exist between multiple eNBs 102 that connect to the EPC 104 (not shown). An interface between multiple eNBs 102 connected to an EPC 104 may be called an X2 interface.
  • NR106 may be a radio access technology.
  • NR 106 may also be the air interface between UE 122 and gNB 108 .
  • the air interface between UE 122 and gNB 108 may be called the Uu interface.
  • a gNB (g Node B) 108 may be a base station device of NR 106 .
  • gNB 108 may have the NR protocol described below.
  • the NR protocol may consist of an NR user plane (User Plane: UP) protocol, which will be described later, and an NR control plane (Control Plane: CP) protocol, which will be described later.
  • gNB 108 may terminate NR User Plane (UP) and NR Control Plane (CP) protocols to UE 122 .
  • UP NR user plane
  • CP NR Control Plane
  • 5GC110 may be a core network.
  • Interface 116 is the interface between gNB 108 and 5GC 110 and may be referred to as the NG interface.
  • Interface 116 may include a control plane interface through which control signals pass, and/or a user plane interface through which user data passes.
  • the control plane interface of interface 116 may terminate at the Access and Mobility Management Function (AMF: not shown) within 5GC 110 .
  • the user plane interface of interface 116 may terminate at a User Plane Function (UPF: not shown) within 5GC 110 .
  • the control plane interface of interface 116 may be referred to as the NG-C interface.
  • the user plane interface of interface 116 may be called the NG-U interface.
  • one or more gNBs 108 may be connected to the 5GC 110 via the interface 116. There may be interfaces between gNBs 108 that connect to the 5GC 110 (not shown). An interface between multiple gNBs 108 connected to a 5GC 110 may be called an Xn interface.
  • the eNB102 may have the function of connecting to the 5GC110.
  • the eNB 102 with the function of connecting to the 5GC 110 may be called ng-eNB.
  • Interface 114 is the interface between eNB 102 and 5GC 110 and may be called the NG interface.
  • Interface 114 may include a control plane interface through which control signals pass, and/or a user plane interface through which user data passes.
  • the control plane interface of interface 114 may terminate at the Access and Mobility Management Function (AMF: not shown) within 5GC 110 .
  • the user plane interface of interface 114 may terminate at a User Plane Function (UPF: not shown) within 5GC 110 .
  • the control plane interface of interface 114 may be referred to as the NG-C interface.
  • the user plane interface of interface 114 may be called the NG-U interface.
  • a radio access network composed of ng-eNBs or gNBs may be referred to as NG-RAN.
  • NG-RAN, E-UTRAN, eNB, ng-eNB, gNB, etc. may simply be referred to as networks.
  • one or more eNBs 102 may be connected to the 5GC 110 via the interface 114. There may be interfaces between multiple eNBs 102 that connect to the 5GC 110 (not shown). An interface between multiple eNBs 102 connected to a 5GC 110 may be called an Xn interface. Also, eNB 102 connected to 5GC 110 and gNB 108 connected to 5GC 110 may be connected via interface 120 . The interface 120 between the eNB 102 connected to the 5GC 110 and the gNB 108 connected to the 5GC 110 may be referred to as the Xn interface.
  • gNB108 may have the ability to connect to EPC104.
  • a gNB 108 with the ability to connect to an EPC 104 may be called an en-gNB.
  • Interface 118 is the interface between gNB 108 and EPC 104 and may be referred to as the S1 interface.
  • Interface 118 may include a user plane interface through which user data passes.
  • the user plane interface of interface 118 may terminate at an S-GW (not shown) within EPC 104 .
  • the user plane interface of interface 118 may be called the S1-U interface.
  • the eNB 102 connected to the EPC 104 and the gNB 108 connected to the EPC 104 may be connected via an interface 120 .
  • the interface 120 between the eNB 102 that connects to the EPC 104 and the gNB 108 that connects to the EPC 104 may be referred to as the X2 interface.
  • the interface 124 is the interface between the EPC 104 and the 5GC 110, and may be an interface through CP only, UP only, or both CP and UP. Also, some or all of interfaces 114, 116, 118, 120, 124, etc. may not be present depending on the communication system provided by the carrier.
  • UE122 may be a terminal device capable of receiving broadcast information and paging messages transmitted from eNB102 and/or gNB108. UE 122 may also be a terminal device capable of wireless connection with eNB 102 and/or gNB 108 . Also, the UE 122 may be a terminal device capable of simultaneously establishing wireless connection with the eNB 102 and wireless connection with the gNB 108 . UE 122 may have E-UTRA and/or NR protocols. Note that the wireless connection may be a Radio Resource Control (RRC) connection.
  • RRC Radio Resource Control
  • radio connection may be established by establishing a radio bearer (RB) between UE122 and eNB102 and/or gNB108.
  • a radio bearer used for the CP may be called a signaling radio bearer (SRB).
  • a radio bearer used for UP may also be called a data radio bearer (DRB Data Radio Bearer).
  • Each radio bearer may be assigned a radio bearer identity (ID).
  • the SRB radio bearer identifier may be called an SRB identity (SRB ID).
  • a DRB radio bearer identifier may be called a DRB identity (DRB ID).
  • UE 122 may be a terminal device capable of connecting with EPC 104 and/or 5GC 110 via eNB 102 and/or gNB 108.
  • EPC 104 When the connection destination core network of eNB 102 and/or gNB 108 with which UE 122 communicates is EPC 104, each DRB established between UE 122 and eNB 102 and/or gNB 108 further passes through EPC 104.
  • EPC 104 Evolved Packet System
  • Each EPS bearer may be identified by an EPS bearer identifier (Identity, or ID). Also, the same QoS may be guaranteed for data such as IP packets and Ethernet (registered trademark) frames passing through the same EPS bearer.
  • each DRB established between UE122 and eNB102 and/or gNB108 is further established within 5GC110.
  • Each DRB may be mapped to one or more QoS flows, or may not be mapped to any QoS flows.
  • Each PDU session may be identified with a PDU session identifier (Identity, Identifier, or ID).
  • Each QoS flow may also be identified by a QoS flow identifier (Identity, Identifier, or ID).
  • the same QoS may be guaranteed for data such as IP packets and Ethernet frames passing through the same QoS flow.
  • the EPC 104 does not need to have PDU sessions and/or QoS flows.
  • 5GC110 does not need to have an EPS bearer.
  • UE 122 When UE 122 is connected with EPC 104, UE 122 has information of EPS bearers, but may not have information within PDU sessions and/or QoS flows. Also, when the UE 122 is connected to the 5GC 110, the UE 122 may have information in PDU sessions and/or QoS flows, but not EPS bearer information.
  • eNB 102 and/or gNB 108 are also simply referred to as base station apparatuses, and UE 122 is simply referred to as terminal apparatus or UE.
  • FIG. 2 is a diagram of an example of E-UTRA protocol architecture according to an embodiment of the present invention.
  • FIG. 3 is a diagram of an example of the NR protocol configuration according to the embodiment of the present invention. Note that the functions of each protocol described using FIG. 2 and/or FIG. 3 are part of the functions closely related to the embodiment of the present invention, and may have other functions.
  • an uplink (UL) may be a link from a terminal device to a base station device.
  • the downlink (DL) may be a link from a base station apparatus to a terminal apparatus.
  • FIG. 2(A) is a diagram of the E-UTRA User Plane (UP) protocol stack.
  • the E-UTRAN UP protocol may be the protocol between UE 122 and eNB 102, as shown in FIG. 2(A). That is, the E-UTRANUP protocol may be a protocol that terminates at the eNB 102 on the network side.
  • the E-UTRA user plane protocol stack consists of a PHY (Physical layer) 200 that is a radio physical layer (radio physical layer), a MAC (Medium) that is a medium access control layer (medium access control layer). Access Control) 202, RLC (Radio Link Control) 204 which is a radio link control layer (radio link control layer), and PDCP (Packet Data Convergence Protocol) 206 which is a packet data convergence protocol layer may be configured.
  • PHY Physical layer
  • MAC Medium
  • Access Control 202
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • FIG. 3(A) is a diagram of the NR user plane (UP) protocol stack.
  • the NRUP protocol may be the protocol between UE 122 and gNB 108, as shown in FIG. 3(A). That is, the NR UP protocol may be a protocol that terminates at the gNB 108 on the network side.
  • the E-UTRA user plane protocol stack consists of PHY 300, which is a radio physical layer, MAC 302, which is a medium access control layer, RLC 304, which is a radio link control layer, and PDCP 306, which is a packet data convergence protocol layer. , and a service data adaptation protocol layer (SDAP) (Service Data Adaptation Protocol) 310 .
  • SDAP service data adaptation protocol layer
  • FIG. 2(B) is a diagram of the E-UTRA control plane (CP) protocol configuration.
  • RRC Radio Resource Control
  • NAS Non Access Stratum
  • NAS Non Access Stratum
  • non-AS Access Stratum
  • Fig. 3(B) is a diagram of the NR control plane (CP) protocol configuration.
  • RRC 308 which is a radio resource control layer, may be a protocol between UE 122 and gNB 108. That is, RRC 308 may be a protocol that terminates at gNB 108 on the network side.
  • the non-AS layer NAS 312 may be the protocol between the UE 122 and AMF. That is, the NAS 312 may be a protocol that terminates with AMF on the network side.
  • the AS (Access Stratum) layer may be a layer that terminates between UE 122 and eNB 102 and/or gNB 108. That is, the AS layer is a layer including part or all of PHY200, MAC202, RLC204, PDCP206 and RRC208 and/or a layer including part or all of PHY300, MAC302, RLC304, PDCP306, SDAP310 and RRC308. you can
  • PHY PHY layer
  • MAC MAC layer
  • RLC RLC layer
  • PDCP PDCP layer
  • RRC RRC layer
  • NAS NAS layer
  • PHY PHY layer
  • MAC MAC layer
  • RLC RLC layer
  • PDCP PDCP layer
  • RRC RRC layer
  • NAS NAS
  • SDAP may be the SDAP (SDAP layer) of the NR protocol.
  • PHY 200, MAC 202, RLC 204, PDCP 206, and RRC 208 are respectively defined as PHY for E-UTRA or PHY for LTE, E-UTRA MAC for LTE or MAC for LTE, RLC for E-UTRA or RLC for LTE, PDCP for E-UTRA or PDCP for LTE, and RRC for E-UTRA or RRC for LTE.
  • PHY200, MAC202, RLC204, PDCP206 and RRC208 respectively E-UTRA PHY or LTE PHY, E-UTRA MAC or LTE MAC, E-UTRA RLC or LTE RLC, E-UTRA PDCP or LTE PDCP and E-UTRA It may also be described as RRC or LTE RRC.
  • PHY 300, MAC 302, RLC 304, PDCP 306, and RRC 308 are called PHY for NR, MAC for NR, RLC for NR, RLC for NR, and RRC for NR, respectively.
  • PHY 200, MAC 302, RLC 304, PDCP 306, and RRC 308 may also be described as NR PHY, NR MAC, NR RLC, NR PDCP, NR RRC, etc., respectively.
  • An entity that has some or all of the functionality of the MAC layer may be called a MAC entity.
  • An entity that has some or all of the functionality of the RLC layer may be called an RLC entity.
  • An entity that has some or all of the functionality of the PDCP layer may be called a PDCP entity.
  • An entity that has some or all of the functionality of the SDAP layer may be called an SDAP entity.
  • An entity that has some or all of the functionality of the RRC layer may be called an RRC entity.
  • the MAC entity, RLC entity, PDCP entity, SDAP entity, and RRC entity may be replaced with MAC, RLC, PDCP, SDAP, and RRC, respectively.
  • the data provided from MAC, RLC, PDCP, SDAP to the lower layer and/or the data provided from the lower layer to MAC, RLC, PDCP, SDAP are respectively referred to as MAC PDU (Protocol Data Unit), RLC You may call them PDUs, PDCP PDUs, and SDAP PDUs.
  • MAC SDU Service Data Unit
  • RLC SDU refer to data provided from upper layers to MAC, RLC, PDCP, and SDAP and/or data provided from MAC, RLC, PDCP, and SDAP to upper layers, respectively.
  • PDCP SDU, and SDAP SDU A segmented RLC SDU may also be referred to as an RLC SDU segment.
  • the PHY of the terminal device may have a function of receiving data transmitted from the PHY of the base station device via a downlink (DL) physical channel.
  • the PHY of the terminal device may have a function of transmitting data to the PHY of the base station device via an uplink (UL) physical channel.
  • a PHY may be connected to a high-level MAC via a Transport Channel.
  • the PHY may pass data to the MAC over transport channels.
  • the PHY may also be provided with data from the MAC over the transport channel.
  • RNTI Radio Network Temporary Identifier
  • the physical channels used for wireless communication between the terminal device and the base station device may include the following physical channels.
  • PBCH Physical Broadcast CHannel
  • PDCCH Physical Downlink Control CHannel
  • PDSCH Physical Downlink Shared CHannel
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • the PBCH may be used to broadcast system information required by terminal equipment.
  • the PBCH may be used to report the time index (SSB-Index) within the period of the synchronization signal block (SS/PBCH block, also called SSB).
  • SSB-Index time index within the period of the synchronization signal block
  • the PDCCH may be used to transmit (or carry) downlink control information (DCI) in downlink radio communication (radio communication from the base station device to the terminal device).
  • DCI downlink control information
  • one or more DCIs (which may also be referred to as DCI formats) may be defined for transmission of downlink control information. That is, a field for downlink control information may be defined as DCI and mapped to information bits.
  • a PDCCH may be sent in a PDCCH candidate.
  • a terminal may monitor a set of PDCCH candidates in a serving cell. Monitoring a set of PDCCH candidates may mean attempting to decode the PDCCH according to a certain DCI format.
  • the DCI format may be used for PUSCH scheduling in the serving cell. PUSCH may be used for transmission of user data, transmission of RRC messages to be described later, and the like.
  • the PUCCH may be used to transmit uplink control information (UCI) in uplink radio communication (radio communication from a terminal device to a base station device).
  • the uplink control information may include channel state information (CSI: Channel State Information) used to indicate the state of the downlink channel.
  • CSI Channel State Information
  • the uplink control information may also include a scheduling request (SR: Scheduling Request) used to request UL-SCH (UL-SCH: Uplink Shared CHannel) resources.
  • SR Scheduling Request
  • UL-SCH Uplink Shared CHannel
  • the uplink control information may include HARQ-ACK (Hybrid Automatic Repeat request ACKnowledgement).
  • the PDSCH may be used to transmit downlink data (DL-SCH: Downlink Shared CHannel) from the MAC layer. Also, in the case of downlink, it may be used for transmission of system information (SI: System Information), random access response (RAR: Random Access Response), and the like.
  • SI System Information
  • RAR Random Access Response
  • PUSCH may be used to transmit HARQ-ACK and/or CSI together with uplink data (UL-SCH: Uplink Shared CHannel) or uplink data from the MAC layer.
  • PUSCH may also be used to transmit CSI only, or HARQ-ACK and CSI only. That is, PUSCH may be used to transmit UCI only.
  • PDSCH or PUSCH may also be used to transmit RRC signaling (also referred to as RRC messages) and MAC Control Elements (MAC Control Elements: MAC CE).
  • RRC signaling transmitted from the base station apparatus may be signaling common to multiple terminal apparatuses within the cell.
  • the RRC signaling transmitted from the base station apparatus may be signaling dedicated to a certain terminal apparatus (also referred to as dedicated signaling). That is, terminal device-specific (UE-specific) information may be transmitted using signaling dedicated to a certain terminal device.
  • PUSCH may also be used to transmit UE Capability in the uplink.
  • the PRACH may be used to transmit random access preambles.
  • PRACH is used to indicate initial connection establishment procedures, handover procedures, connection re-establishment procedures, synchronization (timing adjustments) for uplink transmissions, and requests for PUSCH (UL-SCH) resources. may be used for
  • Uplink Uplink
  • DL Downlink
  • BCCH Broadcast Control Channel
  • SI System Information
  • a PCCH may be a downlink logical channel for carrying paging messages.
  • a CCCH (Common Control Channel) may be a logical channel for transmitting control information between a terminal device and a base station device.
  • CCCH may be used when the terminal does not have an RRC connection.
  • CCCH may also be used between the base station apparatus and a plurality of terminal apparatuses.
  • DCCH Dedicated Control Channel
  • DCCH is a logical channel for transmitting dedicated control information in a one-to-one (point-to-point) bi-directional manner between a terminal device and a base station device. It's okay.
  • Dedicated control information may be control information dedicated to each terminal device.
  • DCCH may be used when a terminal device has an RRC connection.
  • a DTCH (Dedicated Traffic Channel) may be a logical channel for transmitting user data on a one-to-one (point-to-point) basis between a terminal device and a base station device.
  • a DTCH may be a logical channel for transmitting dedicated user data.
  • Dedicated user data may be user data dedicated to each terminal device.
  • DTCH may exist in both uplink and downlink.
  • MTCH Multicast Traffic Channel
  • MTCH may be a point-to-multipoint downlink channel for transmitting data from base station devices to terminal devices.
  • MTCH may be a multicast logical channel.
  • MTCH may be used by the corresponding terminal only when the terminal receives MBMS.
  • a MCCH may be a point-to-multipoint downlink channel for sending MBMS control information for one or more MTCHs from a base station apparatus to a terminal apparatus.
  • MCCH may be a multicast logical channel. The MCCH may be used by the terminal only when the terminal receives MBMS or is interested in receiving MBMS.
  • SC-MTCH Single Cell Multicast Traffic Channel
  • SC-MTCH Single Cell Multicast Traffic Channel
  • SC-MTCH may be a multicast logical channel.
  • SC-MTCH may be used by the corresponding terminal device only when the terminal device receives MBMS using SC-PTM (Single Cell Point-To-Multipoint).
  • SC-MCCH Single Cell Multicast Control Channel
  • SC-MCCH is a point-to-multipoint downlink for sending MBMS control information for one or more SC-MTCH from the base station apparatus to the terminal apparatus.
  • SC-MCCH may be a multicast logical channel.
  • the SC-MCCH may be used by the terminal only when the terminal receives MBMS using SC-PTM or when the terminal is interested in receiving MBMS using SC-PTM.
  • CCCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
  • UL-SCH Uplink Shared Channel
  • the DCCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
  • UL-SCH Uplink Shared Channel
  • DTCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
  • UL-SCH Uplink Shared Channel
  • BCCH may be mapped to BCH (Broadcast Channel), which is a downlink transport channel, and/or DL-SCH (Downlink Shared Channel).
  • BCH Broadcast Channel
  • DL-SCH Downlink Shared Channel
  • PCCH may be mapped to PCH (Paging Channel), which is a downlink transport channel.
  • PCH Packet Control Channel
  • CCCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • the DCCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • DTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • MTCH may be mapped to MCH (Multicast Channel), which is a downlink transport channel.
  • MCH Multicast Channel
  • MCCH may be mapped to MCH (Multicast Channel), which is a downlink transport channel.
  • MCH Multicast Channel
  • SC-MTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • SC-MTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • a MAC may be referred to as a MAC sublayer.
  • the MAC may have the function of mapping various logical channels (Logical Channel) to the corresponding transport channels.
  • a logical channel may be identified by a logical channel identifier (Logical Channel Identity or Logical Channel ID).
  • a MAC may be connected to an upper RLC via a logical channel (logical channel).
  • Logical channels may be divided into control channels for transmitting control information and traffic channels for transmitting user information according to the type of information to be transmitted.
  • Logical channels may also be divided into uplink logical channels and downlink logical channels.
  • the MAC may have the ability to multiplex MAC SDUs belonging to one or more different logical channels and provide them to the PHY.
  • the MAC may also have the function of demultiplexing the MAC PDUs provided by the PHY and providing them to upper layers via the logical channel to which each MAC SDU belongs.
  • the MAC may also have a function to perform error correction through HARQ (Hybrid Automatic Repeat reQuest). Also, the MAC may have a function of performing priority processing between terminal devices using dynamic scheduling. Also, the MAC may have a function of performing priority processing between logical channels within one terminal device. The MAC may have a function of prioritizing overlapping resources within one terminal device.
  • HARQ Hybrid Automatic Repeat reQuest
  • E-UTRA MAC may have the ability to identify Multimedia Broadcast Multicast Services (MBMS).
  • MBMS Multimedia Broadcast Multicast Services
  • the NR MAC may also have a function of identifying Multicast/Broadcast Service (MBS).
  • MMS Multicast/Broadcast Service
  • MAC may have a function to select a transport format.
  • MAC has a function of performing discontinuous reception (DRX) and/or discontinuous transmission (DTX: discontinuous transmission), a function of executing random access (RA) procedure, notifying information of transmittable power, power It may have a power headroom reporting function, a buffer status reporting function that notifies the amount of data in the transmission buffer, and so on.
  • DRX discontinuous reception
  • DTX discontinuous transmission
  • RA random access
  • NR MAC may have a Bandwidth Adaptation (BA) function. Also, the MAC PDU format used in E-UTRA MAC and the MAC PDU format used in NR MAC may be different.
  • the MAC PDU may also include a MAC control element (MAC control element: MAC CE), which is an element for performing control in MAC.
  • MAC control element MAC CE
  • the BSR procedure may be used to provide the serving gNB (base station equipment) with information about the uplink data volume within the MAC entity.
  • Each logical channel may be assigned to one logical channel group (Logical Channel Group: LCG) using a parameter (logicalChannelGroup) provided by RRC.
  • LCG Logical Channel Group
  • logicalChannelGroup a parameter provided by RRC.
  • the maximum number of LCGs can be eight.
  • the MAC entity of the terminal equipment shall calculate the amount of UL data available for a logical channel according to the data volume calculation procedure in RLC and PDCP. You can decide.
  • a BSR may be triggered based on meeting any of the following conditions (A) through (D).
  • BSR triggered by this condition may be a regular BSR.
  • BSR MAC CE buffer status report MAC CE plus its subheader
  • a BSR triggered by this condition may be a padding BSR.
  • C When the timer (retxBSR-Timer) used for BSR control expires and at least one of the logical channels belonging to the LCG contains uplink data. (The BSR triggered by this condition may be a regular BSR.)
  • D When the timer used to control the BSR (periodicBSR-Timer) expires. (BSRs triggered by this condition may be periodic BSRs.)
  • the MAC entity of the terminal shall indicate data available for transmission if more than one LCG has data available for transmission when the MAC PDU containing the BSR is constructed. May report Long BSR for all LCGs with For Regular BSR and Periodic BSR, the terminal MAC entity shall report Short BSR if two or more LCGs have no data available for transmission when the MAC PDU containing the BSR is constructed. good.
  • the MAC entity of the terminal device reports Short Truncated BSR, reports Long Truncated BSR, or reports Short BSR, based on the number of padding bits, the size of Short BSR, and the size of Long BSR. or report a Long BSR.
  • the MAC entity of the terminal device shall indicate when the BSR is triggered that the logical channel that triggered the BSR has the highest priority with data available for transmission. may be considered to be a logical channel of
  • the MAC entity of the terminal device indicates that at least one BSR has been triggered and that BSR has not been canceled, that UL-SCH resources are available for new transmissions, and that UL-SCH resources are assigned logical channel prioritization ( Some or all of the following (A) to (C) may be performed based on the fact that the BSR MAC CE and its subheaders can be accommodated as a result of logical channel prioritization.
  • B Generate one or more BSR MAC CEs or instruct other entities to generate one or more BSR MAC CEs
  • All generated BSRs are Long Truncated BSRs and Short Truncated BSRs Starts or restarts the periodicBSR-Timer, unless
  • C Starts or restarts the retxBSR-Timer
  • a MAC PDU may contain at most one BSR MAC CE, even when multiple BSRs are triggered by multiple events (conditions). Regular BSRs and Periodic BSRs may have priority over Padding BSRs.
  • the MAC entity of the terminal device may restart the retxBSR-Timer based on receiving a grant for transmission of new data on any UL-SCH.
  • the PHR procedure may be used to provide the serving gNB (base station equipment) with some or all of the information (A) to (C) below.
  • B The nominal UE maximum transmit power and others
  • C between the nominal UE maximum transmit power and the SRS transmit power per activated serving cell difference from estimate
  • the above information (A), (B), and (C) may be referred to as type 1 power headroom, type 2 power headroom, and type 3 power headroom, respectively. Also, information including part or all of (A) to (C) may be referred to as power headroom.
  • a MAC CE that contains only one set of information on the type of power headroom, the cell of interest, and the maximum transmission power in that cell may be referred to as a Single Entry PHR MAC CE.
  • a MAC CE that includes multiple sets of information on the power headroom type, target cell, and maximum transmission power in that cell may be referred to as Multiple Entry PHR MAC CE.
  • an uplink is set in a certain MAC entity, and the BWP indicated by the first downlink BWP identifier (firstActiveDownlinkBWP-Id) set in the RRC message is set to Dormant BWP.
  • the UE's MAC entity may trigger a PHR when a SCell that is not activated is activated. Also, when a PSCell is newly added or changed, the MAC entity of the UE may trigger PHR.
  • the UE's MAC entity shall May trigger PHR.
  • the above BWP change may be expressed as a BWP switch.
  • the MAC entity of the UE may perform some or all of (A) and (B) below. .
  • (A) If this uplink resource is the first since the last MAC reset, start a timer (phr-PeriodicTimer).
  • (B) If at least one PHR has been triggered by the PHR procedure and this trigger has not been canceled, and the assigned uplink resources are allocated for the PHR, taking into account the priority of the logical channels. Some or all of the following (B-1) to (B-5) are performed based on the ability to accommodate the MAC CE and its subheader.
  • (B-1) If the MAC CE to be accommodated is a Multiple Entry PHR MAC CE, perform some or all of the following (B-1-1) to (B-1-3) processing.
  • (B-1-1) Regarding each activated serving cell in which an uplink is configured, which is associated with an arbitrary MAC entity of the same UE and whose activated DL BWP is not a dormant (DL) BWP , obtains the type 1 or type 3 power headroom values for the uplink carriers associated with the NR serving cell and the E-UTRA serving cell, and if the MAC entity associating the serving cell is transmitting on this serving cell or another MAC entity of the same UE is configured and has uplink resources allocated for transmission on this serving cell and has uplink resources assigned for transmission on this serving cell.
  • DL dormant
  • the value of this maximum transmission power is obtained from the physical layer.
  • the UE may report type 2 power headroom for SpCells of another MAC entity of the same UE, if this MAC entity is an E-UTRA MAC entity If it is determined by higher layers to obtain the value of the Type 2 power headroom and then calculate the maximum transmit power based on the power used for actual transmission on this MAC entity's SpCell, Get the value of this maximum transmit power from the physical layer.
  • B-1-3 Generate and transmit a Multiple Entry PHR MAC CE based on the value reported from the physical layer after considering the priority of the logical channel.
  • B-2 If the accommodated MAC CE is a Single Entry PHR MAC CE, the type 1 power headroom value for the uplink carrier associated with the PCell and the associated maximum transmission. Power values are obtained from the physical layer, and a Single Entry PHR MAC CE is generated and transmitted based on these values, taking into account the priority of logical channels.
  • B-3) Start (Start) or restart (Restart) the timer (phr-PeriodicTimer).
  • B-4) Start or restart the timer (phr-ProhibitTimer).
  • B-5) Cancel all triggered PHRs.
  • a Scheduling Request may be used by a terminal device to request UL-SCH resources for a new transmission.
  • the MAC entity of the terminal device may be configured with zero, one, or multiple SR settings.
  • the SR configuration may include a set of PUCCH resources for different BWPs and cell-wide SRs. For one logical channel or beam failure recovery, PUCCH resources for at most one SR may be configured per BWP.
  • an SR When an SR is triggered, it may be considered pending (it is a Pending SR) until the SR is cancelled.
  • the MAC entity of the terminal device may consider that only the PUCCH resources of the BWP (Active BWP) that are activated when transmitting the SR are valid.
  • the MAC entity of the terminal equipment Based on the fact that at least one SR is pending and that it does not have a valid PUCCH resource configuration for the Pending SR, the MAC entity of the terminal equipment initiates a random access procedure in the SpCell to send the Pending SR. You can cancel.
  • RLC may be referred to as an RLC sublayer.
  • the E-UTRA RLC may have the function of segmenting and/or concatenating the data provided from the upper layer PDCP and providing it to the lower layer.
  • E-UTRA RLC may have the function of reassembling and re-ordering data provided from lower layers and providing it to upper layers.
  • NR RLC may have a function to add a sequence number independent of the sequence number added by PDCP to the data provided by PDCP in the upper layer. Also, the NR RLC may have a function of segmenting data provided from PDCP and providing it to lower layers. The NRRLC may also have a function of reassembling data provided from lower layers and providing the reassembled data to higher layers. The RLC may also have a data retransmission function and/or a retransmission request function (Automatic Repeat reQuest: ARQ).
  • ARQ Automatic Repeat reQuest
  • RLC may have a function to correct errors by ARQ.
  • the control information sent from the RLC receiver to the sender for ARQ indicating the data that needs to be retransmitted may be referred to as a status report.
  • a status report transmission instruction sent from the RLC transmitting side to the receiving side can be called a poll.
  • the RLC may also have the capability to detect data duplication.
  • RLC may also have a function of discarding data.
  • RLC may have three modes: Transparent Mode (TM), Unacknowledged Mode (UM), and Acknowledged Mode (AM).
  • TM Transparent Mode
  • UM Unacknowledged Mode
  • AM Acknowledged Mode
  • the TM does not divide the data received from the upper layer, and does not need to add an RLC header.
  • a TM RLC entity is a uni-directional entity and may be configured as a transmitting TM RLC entity or as a receiving TM RLC entity.
  • the UM divides and/or combines the data received from the upper layer, adds an RLC header, etc., but does not need to perform data retransmission control.
  • a UM RLC entity may be a unidirectional entity or a bi-directional entity. If the UM RLC entity is a unidirectional entity, the UM RLC entity may be configured as a transmitting UM RLC entity or as a receiving UM RLC entity. If the UM RLC entity is a bidirectional entity, the UM RRC entity may be configured as a UM RLC entity consisting of a transmitting side and a receiving side.
  • the AM may divide and/or combine the data received from the upper layer, add an RLC header, control data retransmission, etc.
  • the AM RLC entity is a bi-directional entity and may be configured as an AM RLC consisting of a transmitting side and a receiving side.
  • TMD PDU Data provided to the lower layer by TM and/or data provided from the lower layer may be called TMD PDU.
  • Data provided in UM to lower layers and/or data provided by lower layers may also be referred to as UMD PDUs.
  • UMD PDUs Data provided to lower layers by AM or data provided from lower layers.
  • AMD PDUs Data provided to lower layers by AM or data provided from lower layers.
  • RLC PDU format used in E-UTRA RLC and the RLC PDU format used in NR RLC may differ.
  • RLC PDUs may also include RLC PDUs for data and RLC PDUs for control.
  • An RLC PDU for data may be called an RLC DATA PDU (RLC Data PDU).
  • the control RLC PDU may be called an RLC CONTROL PDU.
  • PDCP may be referred to as a PDCP sublayer.
  • PDCP may have a function to maintain sequence numbers. PDCP may also have a header compression/decompression function for efficiently transmitting user data such as IP packets and Ethernet frames over a wireless section.
  • a protocol used for IP packet header compression/decompression may be called ROHC (Robust Header Compression) protocol.
  • Ethernet frame header compression/decompression may be called the EHC (Ethernet (registered trademark) Header Compression) protocol.
  • PDCP may also have data encryption/decryption functions.
  • PDCP may have data integrity protection and integrity verification functions.
  • PDCP may also have a re-ordering function.
  • PDCP may also have a retransmission function for PDCP SDUs.
  • PDCP may also have a function of discarding data using a discard timer.
  • PDCP may also have a duplication function.
  • PDCP may also have a function of discarding duplicated received data.
  • a PDCP entity is a bi-directional entity and may consist of a transmitting PDCP entity and a receiving PDCP entity.
  • the PDCP PDU format used in E-UTRA PDCP and the PDCP PDU format used in NR PDCP may be different.
  • PDCP PDUs may include data PDCP PDUs and control PDCP PDUs.
  • a PDCP PDU for data may be called a PDCP DATA PDU (PDCP Data PDU).
  • the PDCP PDU for control may be called a PDCP CONTROL PDU (PDCP Control PDU).
  • the status of PDCP replication (either Activated or Deactivated) may be configured by RRC at the same time. After that setting, the state of PDCP replication may be dynamically controlled by MAC CE.
  • the original PDCP PDU and the replicated PDCP PDU may be sent on different carriers.
  • original PDCP PDUs and replicated PDCP PDUs may be transmitted in cells of different cell groups.
  • the RRC entity of the terminal device may set duplication for the radio bearer by means of an RRC message.
  • the RRC message may include a cell group identifier and/or a logical channel identifier as primary path information.
  • a primary path may be information that indicates the cell group identifier and logical channel identifier of the primary RLC entity.
  • PDCP duplication may also be referred to as PDCP duplication or PDCP multiplexing.
  • SDAP is the Service Data Adaptation Protocol Layer (Service Data Adaptation Protocol Layer).
  • SDAP is mapping between downlink QoS flows and data radio bearers (DRBs) sent from the 5GC 110 to the terminal device via the base station device, and/or from the terminal device via the base station device. It may have the ability to map uplink QoS flows sent to the 5GC 110 to the DRB. SDAP may also have the function of storing mapping rule information. SDAP may also have a function to mark QoS flow identifiers (QoS Flow ID: QFI).
  • SDAP PDUs may include data SDAP PDUs and control SDAP PDUs. A data SDAP PDU may be called an SDAP DATA PDU. A control SDAP PDU may also be called an SDAP CONTROL PDU. Note that one SDAP entity of the terminal device may exist for each PDU session.
  • RRC may have a broadcast function.
  • RRC may have call (paging) functionality from EPC 104 and/or 5GC 110 .
  • RRC may have a paging function from eNB102 connected to gNB108 or 5GC100.
  • RRC may also have an RRC connection management function.
  • RRC may also have a radio bearer control function.
  • RRC may also have a cell group control function.
  • RRC may also have a mobility control function.
  • RRC may also have terminal measurement reporting and terminal measurement reporting control functions.
  • RRC may also have QoS management functions.
  • RRC may also have radio link failure detection and recovery functionality.
  • RRC uses RRC messages for broadcasting, paging, RRC connection management, radio bearer control, cell group control, mobility control, terminal equipment measurement reporting and terminal equipment measurement reporting control, QoS management, radio link failure detection and recovery, etc. may be performed. Note that the RRC messages and parameters used in E-UTRA RRC may differ from the RRC messages and parameters used in NR RRC.
  • the RRC message may be sent using the logical channel's BCCH, may be sent using the logical channel's PCCH, may be sent using the logical channel's CCCH, or may be sent using the logical channel's DCCH. It may be sent using the MCCH of the logical channel.
  • the RRC message sent using BCCH may include, for example, a master information block (Master Information Block: MIB), each type of system information block (System Information Block: SIB) may be included, and others of RRC messages may be included.
  • RRC messages sent using the PCCH may include, for example, paging messages and other RRC messages.
  • RRC messages sent in the uplink (UL) direction using CCCH include, for example, RRC Setup Request, RRC Resume Request, RRC Reestablishment Request, RRC A system information request message (RRC System Info Request) may be included. Also, for example, RRC Connection Request, RRC Connection Resume Request, RRC Connection Reestablishment Request, etc. may be included. Other RRC messages may also be included.
  • RRC messages sent in the downlink (DL) direction using CCCH include, for example, RRC Connection Reject, RRC Connection Setup, RRC Connection Reestablishment, RRC A connection re-establishment rejection message (RRC Connection Reestablishment Reject) may be included. Also, for example, an RRC rejection message (RRC Reject), an RRC setup message (RRC Setup), etc. may be included. Other RRC messages may also be included.
  • RRC messages sent in the uplink (UL) direction using DCCH include, for example, a Measurement Report message, an RRC Connection Reconfiguration Complete message, an RRC Connection Setup Complete message, An RRC Connection Reestablishment Complete message, a Security Mode Complete message, a UE Capability Information message, etc. may be included.
  • Measurement Report message RRC Reconfiguration Complete message, RRC Setup Complete message, RRC Reestablishment Complete message, RRC Resume Complete message ), a security mode complete message (Security Mode Complete), a UE capability information message (UE Capability Information), and the like.
  • Other RRC messages may also be included.
  • RRC messages sent in the downlink (DL) direction using DCCH include, for example, RRC Connection Reconfiguration, RRC ConnectionRelease, Security Mode Command, UE Capabilities.
  • An inquiry message (UE Capability Inquiry) may be included.
  • RRC Reconfiguration message RRC Resume message, RRC Release message, RRC Reestablishment message, Security Mode Command message, UE Capability Inquiry message. (UE Capability Enquiry), etc. may be included.
  • Other RRC messages may also be included.
  • a NAS may have an authentication function. Also, the NAS may have a function of performing mobility management. The NAS may also have a security control function.
  • each layer may be included in another layer (layer).
  • an IP layer a TCP (Transmission Control Protocol) layer above the IP layer, a UDP (User Datagram Protocol) layer, and the like may exist in layers (not shown) above the AS layer of the terminal device.
  • An Ethernet layer may exist in a layer above the AS layer of the terminal device.
  • the layer above the AS layer of the terminal device may be called the PDU layer (PDU layer).
  • the PDU layers may include IP layer, TCP layer, UDP layer, Ethernet layer, and so on.
  • Application layers may exist in higher layers such as the IP layer, TCP layer, UDP layer, Ethernet layer, and PDU layer.
  • the application layer may include SIP (Session Initiation Protocol) and SDP (Session Description Protocol) used in IMS (IP Multimedia Subsystem), which is one of the service networks standardized by 3GPP.
  • the application layer may include protocols such as RTP (Real-time Transport Protocol) used for media communication and/or RTCP (Real-time Transport Control Protocol) and HTTP (HyperText Transfer Protocol) for media communication control.
  • the application layer may also include codecs for various media.
  • the RRC layer may be a higher layer than the SDAP layer.
  • UE 122 may be in RRC_CONNECTED state.
  • a state in which an RRC connection is established may include a state in which the UE 122 holds some or all of the UE contexts described below.
  • states in which an RRC connection is established may include states in which UE 122 is able to transmit and/or receive unicast data.
  • UE 122 may also be in RRC_INACTIVE state when the RRC connection is suspended.
  • UE 122 may be in RRC_INACTIVE state when UE 122 is connected to 5GC and the RRC connection is dormant.
  • a UE 122 may be in the RRC_IDLE state when the UE 122 is neither in the RRC_CONNECTED state nor in the RRC_INACTIVE state.
  • UE 122 may initiate dormancy of the RRC connection. If the UE 122 is connected to EPC, when the RRC connection is suspended, the UE 122 may retain the AS context of the UE and an identifier (resumeIdentity) used for resume and transition to the RRC_IDLE state.
  • a layer higher than the RRC layer of UE 122 (for example, NAS layer) confirms that UE 122 holds the AS context of the UE, and that the E-UTRAN permits recovery of the RRC connection, and that UE 122 exits the RRC_IDLE state. When it needs to transition to the RRC_CONNECTED state, it may initiate the resumption of a dormant RRC connection.
  • the UE 122 connected to the EPC 104 and the UE 122 connected to the 5GC 110 may have different definitions of pausing the RRC connection.
  • UE122 when UE122 is connected to EPC (when sleeping in RRC_IDLE state) and when UE122 is connected to 5GC (when sleeping in RRC_INACTIVE state), UE122 is not connected to RRC. All or part of the procedure for returning from hibernation may be different.
  • RRC_CONNECTED state may be called RRC connected mode, RRC inactive mode, and RRC idle mode, respectively, and may be misidentified. If there is no fear, it may simply be called connected mode, inactive mode, or idle mode.
  • the UE AS context held by UE 122 includes the current RRC settings, current security context, PDCP state including ROHC (RObust Header Compression) state, C-RNTI (Cell Radio Network Temporary Identifier), cell identifier (cellIdentity), and physical cell identifier of the connection source PCell, all or part of which may be information.
  • the UE AS context held by either or all of the eNB 102 and gNB 108 may contain the same information as the UE AS context held by the UE 122, or the information contained in the UE AS context held by the UE 122. may contain different information.
  • a security context consists of a cryptographic key at the AS level, NH (Next Hop parameter), NCC (Next Hop Chaining Counter parameter) used to derive the access key for the next hop, an identifier for the selected AS level encryption algorithm, and replay protection. may be information including all or part of the counters used for
  • a cell group that is set by the base station device for the terminal device will be explained.
  • a cell group may consist of only one special cell (Special Cell: SpCell).
  • a cell group may also consist of one SpCell and one or more secondary cells (SCells). That is, a cell group may consist of one SpCell and optionally one or more SCells.
  • the SpCell may mean the Primary Cell (PCell). Also, when the MAC entity is associated with a Secondary Cell Group (SCG), SpCell may mean a Primary SCG Cell (PSCell). SpCell may also mean PCell if the MAC entity is not associated with a cell group. PCell, PSCell and SCell are serving cells.
  • a SpCell may support PUCCH transmission and contention-based Random Access.
  • a SpCell may remain activated at all times.
  • a PCell may be a cell used for the RRC connection establishment procedure when a terminal device in the RRC idle state transitions to the RRC connected state. Also, the PCell may be a cell used for the RRC connection re-establishment procedure in which the terminal device re-establishes the RRC connection. Also, the PCell may be a cell used for a random access procedure during handover.
  • a PSCell may be a cell used in a random access procedure when adding a secondary node (SN), which will be described later.
  • the SpCell may be a cell that is used for purposes other than those described above.
  • a cell group consists of SpCells and one or more SCells, it can be said that carrier aggregation (CA) is configured for this cell group.
  • CA carrier aggregation
  • a cell that provides an additional radio resource to a SpCell for a terminal device in which CA is configured may mean an SCell.
  • TAG Timing Advance Group
  • PTAG Primary Timing Advance Group
  • STAG Secondary Timing Advance Group
  • a cell group may be added to the terminal device from the base station device.
  • DC is a technique of performing data communication using radio resources of cell groups respectively configured by a first base station apparatus (first node) and a second base station apparatus (second node).
  • MR-DC may be a technology involved in DC.
  • a first base station apparatus may add a second base station apparatus to perform DC.
  • the first base station device may be called a master node (Master Node: MN).
  • a cell group composed of master nodes may be called a master cell group (MCG).
  • MCG master cell group
  • SN secondary node
  • SCG secondary cell group
  • the master node and the secondary node may be configured within the same base station apparatus.
  • the cell group set in the terminal device may be called MCG.
  • SpCell configured in the terminal device may be PCell.
  • MR-DC may be a technology that performs DC using E-UTRA for MCG and NR for SCG. Also, MR-DC may be a technique of performing DC using NR for MCG and E-UTRA for SCG. MR-DC may also be a technique of performing DC using NR for both MCG and SCG. Examples of MR-DC using E-UTRA for MCG and NR for SCG include EN-DC (E-UTRA-NR Dual Connectivity) using EPC in the core network and NGEN-DC using 5GC in the core network. There may be DC (NG-RAN E-UTRA-NR Dual Connectivity).
  • an example of MR-DC that uses NR for MCG and E-UTRA for SCG may be NE-DC (NR-E-UTRA Dual Connectivity) that uses 5GC for the core network.
  • An example of MR-DC using NR for both MCG and SCG may be NR-DC (NR-NR Dual Connectivity) using 5GC for the core network.
  • one MAC entity may exist for each cell group.
  • the MAC entity for the MCG in the terminal device may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.). Also, the MAC entity for the SCG in the terminal device may be created by the terminal device when the SCG is configured in the terminal device.
  • the MAC entity for each cell group of the terminal device may be set by the terminal device receiving an RRC message from the base station device.
  • the MAC entity for MCG may be the E-UTRA MAC entity and the MAC entity for SCG may be the NR MAC entity.
  • the MAC entity for MCG may be the NR MAC entity and the MAC entity for SCG may be the E-UTRA MAC entity.
  • both MAC entities for MCG and SCG may be NR MAC entities.
  • one MAC entity for each cell group can be rephrased as one MAC entity for each SpCell.
  • one MAC entity for each cell group may be rephrased as one MAC entity for each SpCell.
  • SRB0 to SRB2 may be defined as SRBs of E-UTRA, and SRBs other than these may be defined.
  • SRB0 to SRB3 may be defined as SRBs of NR, and SRBs other than these may be defined.
  • SRB0 may be the SRB for RRC messages that are transmitted and/or received using the CCCH of the logical channel.
  • SRB1 may be the SRB for RRC messages and for NAS messages before the establishment of SRB2.
  • RRC messages sent and/or received using SRB1 may include piggybacked NAS messages. All RRC and NAS messages transmitted and/or received using SRB1 may use the DCCH of the logical channel.
  • SRB2 may be an SRB for NAS messages and for RRC messages containing logged measurement information. All RRC and NAS messages transmitted and/or received using SRB2 may use the DCCH of the logical channel. Also, SRB2 may have a lower priority than SRB1.
  • SRB3 may be an SRB for transmitting and/or receiving a specific RRC message when EN-DC, NGEN-DC, NR-DC, etc. are set in the terminal device. All RRC and NAS messages transmitted and/or received using SRB3 may use the DCCH of the logical channel. Other SRBs may also be provided for other uses.
  • a DRB may be a radio bearer for user data.
  • Logical channel DTCH may be used for RRC messages transmitted and/or received using DRB.
  • Radio bearers may include RLC bearers.
  • An RLC bearer may consist of one or two RLC entities and logical channels.
  • the RLC entity when there are two RLC entities in the RLC bearer may be a TM RLC entity and/or a transmitting RLC entity and a receiving RLC entity in a unidirectional UM mode RLC entity.
  • SRB0 may consist of one RLC bearer.
  • An SRB0 RLC bearer may consist of a TM RLC entity and a logical channel.
  • SRB0 may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.).
  • SRB1 may be established and/or set in the terminal device by an RRC message received from the base station device when the terminal device transitions from the RRC idle state to the RRC connected state.
  • SRB1 may consist of one PDCP entity and one or more RLC bearers.
  • the SRB1 RLC bearer may consist of an AM RLC entity and a logical channel.
  • SRB2 may be established and/or set in the terminal device by an RRC message received by the terminal device in the RRC connected state with AS security activated from the base station device.
  • SRB2 may consist of one PDCP entity and one or more RLC bearers.
  • An SRB2 RLC bearer may consist of an AM RLC entity and a logical channel. Note that PDCPs on the base station device side of SRB1 and SRB2 may be placed in the master node.
  • SRB3 is when a secondary node in EN-DC, NGEN-DC, or NR-DC is added, or when the secondary node is changed, the terminal device in the RRC connection state with AS security activated becomes the base station.
  • One may be established and/or configured in the terminal by RRC messages received from the device.
  • SRB3 may be a direct SRB between the terminal device and the secondary node.
  • SRB3 may consist of one PDCP entity and one or more RLC bearers.
  • An SRB3 RLC bearer may consist of an AM RLC entity and a logical channel.
  • the PDCP on the base station device side of SRB3 may be placed in the secondary node.
  • One or more DRBs may be established and/or set in the terminal device by an RRC message received from the base station device by the terminal device in the RRC connected state with AS security activated.
  • a DRB may consist of one PDCP entity and one or more RLC bearers.
  • a DRB RLC bearer may consist of an AM or UM RLC entity and a logical channel.
  • the radio bearer in which PDCP is placed in the master node may be called the MN terminated (terminated) bearer.
  • a radio bearer in which PDCP is placed in a secondary node may be called an SN terminated (terminated) bearer.
  • a radio bearer in which the RLC bearer exists only in the MCG may be called an MCG bearer.
  • a radio bearer whose RLC bearer exists only in the SCG may be called an SCG bearer.
  • a radio bearer in which RLC bearers exist in both MCG and SCG may be called a split bearer.
  • the bearer types of SRB1 and SRB2 established/and configured in the terminal device may be MN-terminated MCG bearer and/or MN-terminated split bearer.
  • the SRB3 bearer type established/or configured in the terminal device may be an SN-terminated SCG bearer.
  • the DRB bearer type established/or configured in the terminal device may be any of all bearer types.
  • the RLC entity established and/or configured may be E-UTRA RLC.
  • the RLC entity established and/or configured may be NR RLC.
  • the PDCP entity established and/or configured for the MN-terminated MCG bearer may be either E-UTRA PDCP or NR PDCP.
  • bearer type radio bearers i.e. MN terminated split bearer, MN terminated SCG bearer, SN terminated MCG bearer, SN terminated split bearer and SN terminated SCG bearer, when EN-DC is configured in the terminal equipment.
  • the PDCP established and/or configured by the NR may be the NR PDCP.
  • the PDCP entity established and/or configured for radio bearers in all bearer types may be NR PDCP.
  • a DRB established and/or configured in a terminal device may be associated with one PDU session.
  • One SDAP entity may be established and/or configured for one PDU session in the terminal device.
  • Established and/or Configured in a Terminal An SDAP entity, a PDCP entity, an RLC entity, and a logical channel may be established and/or configured by an RRC message that the terminal receives from a base station.
  • a network configuration in which the master node is eNB 102 and EPC 104 is the core network may be called E-UTRA/EPC.
  • a network configuration in which the master node is eNB 102 and 5GC 110 is the core network may be called E-UTRA/5GC.
  • a network configuration in which the master node is gNB 108 and 5GC 110 is the core network may be called NR or NR/5GC.
  • the master node described above may refer to a base station apparatus that communicates with terminal apparatuses.
  • a handover may be a process in which the UE 122 in the RRC connected state changes the serving cell. Handover may occur when UE 122 receives an RRC message from eNB 102 and/or gNB 108 indicating a handover.
  • the RRC message that instructs handover may be a message regarding reconfiguration of the RRC connection that includes a parameter that instructs handover (for example, an information element named MobilityControlInfo or an information element named ReconfigurationWithSync).
  • MobilityControlInfo described above may be rephrased as a mobility control setting information element, a mobility control setting, or mobility control information.
  • the above information element named ReconfigurationWithSync may be rephrased as reset information element with synchronization or reset with synchronization.
  • the RRC message instructing handover may be a message indicating movement to another RAT cell (for example, MobilityFromEUTRACommand or MobilityFromNRCommand).
  • handover can be rephrased as reconfiguration with sync.
  • the conditions under which UE 122 can perform handover include some or all of when AS security is activated, when SRB2 is established, and at least one DRB is established. good.
  • the terminal device may perform processing that does not change the serving cell based on the RRC message instructing handover. That is, the terminal device may perform a handover process with the same cell as the current serving cell as the target cell.
  • the uplink Time Alignment in the MAC entity of the terminal device will be explained.
  • the MAC entity of the terminal device may be configured with the following parameters for maintenance of uplink time alignment by RRC.
  • Per TAG time alignment timer timeAlignmentTimner: The MAC entity considers the uplink of the serving cell belonging to the TAG associated with this timer to be uplink time aligned (in other words, uplink synchronized). A timer used to control time.
  • the MAC entity of the terminal device performs some or all of (A) to (D) below in order to maintain uplink time alignment.
  • (A) receives a timing advance command MAC control element, and if the indicated TAG maintains a parameter (N_TA) indicating timing advance between downlink and uplink, then (1) this indicated (2) start or restart the time alignment timer associated with this indicated TAG;
  • (B) When a timing advance command is received in the random access response message for the serving cell belonging to a certain TAG or the MSGB for the SpCell, some of (B-1) to (B-3) below or You can do all.
  • (B-1) If the random access preamble is not selected by the MAC entity from contention-based random access preambles, the following (B-1-1) to (B-1- 2) is processed.
  • (B-1-1) Apply the timing advance command for this TAG.
  • (B-1-2) Start or restart the time alignment timer associated with this TAG.
  • (B-2) If the condition of (B-1) is not met and the time alignment timer associated with this TAG is not running, then (B-2-1) to (B-2-3) below process.
  • (B-2-1) Apply the timing advance command for this TAG.
  • (B-2-2) Start the time alignment timer associated with this TAG.
  • (B-2-3) HARQ feedback for MAC PDU containing UE contention resolution identifier (UE contention Resolution Identity) MAC control element, or when contention resolution in the random access procedure is deemed not successful , stop the time alignment timer associated with this TAG when the collision resolution for the SI request is deemed successful.
  • (B-3) If none of the conditions (B-1) and (B-2) are met, ignore the received timing advance command.
  • (C) When an Absolute timing advance command is received in reply to an MSGA transmission containing a C-RNTI MAC control element, (1) apply the timing advance command to the PTAG and (2) apply the timing advance command to the PTAG. Start or restart the time alignment timer.
  • (D-1) If the time alignment timer associated with the PTAG expires, some or all of the following processes (D-1-1) to (D-1-8) may be executed. .
  • (D-1-1) Flush all HARQ buffers of all serving cells.
  • D-1-2 If PUCCH is configured in any serving cell, notify the RRC entity of the terminal device that the PUCCH of all serving cells will be released.
  • (D-1-4) Clear all configured configured downlink assignments and configured uplink grants.
  • (D-1-5) Clear all PUSCH resources for semi-persistent CSI reporting.
  • (D-1-6) Assume that all running time alignment timers have expired.
  • (D-1-7) Maintain N_TA of all TAGs.
  • (D-1-8) If the time alignment timer of the PTAG of the deactivated secondary cell group expires, do not perform beam failure detection and/or recovery in cells of this secondary cell group.
  • (D-2) If the condition of (D-1) is not met and the time alignment timer associated with the STAG expires, for all serving cells belonging to this TAG, the following (D-2 Part or all of -1) to (D-2-6) may be performed.
  • (D-2-1) Flush all HARQ buffers.
  • D-2-2 If PUCCH has been set, notify the RRC entity of the terminal device that it will be released.
  • D-2-3) If the SRS has been set, notify the RRC entity of the terminal device that it will be released.
  • D-2-4 Clear all configured configured downlink assignments and configured uplink grants.
  • D-2-5) Clear all PUSCH resources for semi-persistent CSI reporting.
  • D-2-6) Maintain N_TA of this TAG.
  • the MAC entity of the terminal device is When uplink transmission is stopped, it may be considered that the time alignment timer of the TAG associated with this SCell has expired.
  • the MAC entity of the terminal device When the time alignment timer associated with the TAG to which a certain SCell belongs is not running, the MAC entity of the terminal device does not perform transmission other than the random access preamble and MSGA transmission in this SCell. In addition, the MAC entity of the terminal does not perform any transmission other than the random access preamble and MSGA transmissions in the SpCell when the time alignment timer associated with the PTAG is not running.
  • FIG. 4 is a diagram showing an example flow of procedures for various settings in RRC according to the embodiment of the present invention.
  • FIG. 4 is an example flow when an RRC message is sent from the base station apparatus (eNB 102 and/or gNB 108) to the terminal apparatus (UE 122).
  • the base station device creates an RRC message (step S400).
  • the creation of the RRC message in the base station apparatus may be performed in order for the base station apparatus to distribute system information (SI) and paging information.
  • the creation of the RRC message in the base station apparatus may be performed so that the base station apparatus causes a specific terminal apparatus to perform processing.
  • the processing to be performed on a specific terminal device may include, for example, security-related settings, RRC connection reconfiguration, handover to a different RAT, RRC connection suspension, RRC connection release, and the like.
  • RRC connection reset processing includes, for example, radio bearer control (establishment, change, release, etc.), cell group control (establishment, addition, change, release, etc.), measurement setting, handover, security key update, etc. may be included.
  • the creation of the RRC message in the base station apparatus may be performed in response to the RRC message transmitted from the terminal apparatus.
  • the response to the RRC message sent from the terminal device may include, for example, a response to the RRC setup request, a response to the RRC reconnection request, a response to the RRC resume request, and the like.
  • the RRC message contains information (parameters) for various information notifications and settings. These parameters may be called fields and/or information elements and may be described using the ASN.1 (Abstract Syntax Notation One) notation scheme.
  • the base station device then transmits the created RRC message to the terminal device (step S402).
  • the terminal device performs processing such as setting according to the received RRC message, if necessary (step S404).
  • the terminal device that has performed the processing may transmit an RRC message for response to the base station device (not shown).
  • the RRC message is not limited to the above examples, and may be used for other purposes.
  • RRC on the master node side is used to transfer RRC messages for SCG side settings (cell group settings, radio bearer settings, measurement settings, etc.) to and from the terminal equipment. good.
  • SCG side settings cell group settings, radio bearer settings, measurement settings, etc.
  • E-UTRA RRC messages sent and received between eNB 102 and UE 122 may include NR RRC messages in the form of containers.
  • the NR RRC message transmitted and received between the gNB 108 and the UE 122 may include the E-UTRA RRC message in the form of a container.
  • RRC messages for SCG side configuration may be sent and received between the master node and the secondary node.
  • the RRC message for E-UTRA transmitted from eNB 102 to UE 122 may include the RRC message for NR, and the RRC message for NR transmitted from gNB 108 to UE 122 may be included.
  • the message may include an RRC message for E-UTRA.
  • Fig. 7 is an example of ASN.1 description representing fields and/or information elements related to radio bearer setup included in the message related to RRC connection reconfiguration in NR in Fig. 4.
  • Figure 8 is an example of ASN.1 description representing fields and/or information elements related to radio bearer setup included in the message related to RRC connection reconfiguration in E-UTRA in Figure 4.
  • ⁇ omitted> and ⁇ omitted> are not part of the ASN.1 notation, and other information is omitted. indicates that Information elements may be omitted even where there is no description of ⁇ omitted> or ⁇ omitted>.
  • the ASN.1 example in the embodiment of the present invention does not correctly follow the ASN.1 notation method.
  • the example of ASN.1 in the embodiment of the present invention is an example of notation of the parameters of the RRC message in the embodiment of the present invention, and other names and other notations may be used.
  • the ASN.1 example shows only examples of main information closely related to one aspect of the present invention in order to avoid complicating the explanation.
  • the parameters described in ASN.1 are all referred to as information elements without distinguishing between fields, information elements, etc. Further, in the embodiment of the present invention, fields described in ASN.1, information elements, etc. included in the RRC message may be called information or parameters. Note that the message regarding RRC connection reconfiguration may be an RRC reconfiguration message in NR or an RRC connection reconfiguration message in E-UTRA.
  • a master cell group (MCG) and a secondary cell group (SCG) are set by the above-described message regarding RRC connection reconfiguration.
  • MCG master cell group
  • SCG secondary cell group
  • Each cell group may consist of a special cell (SpCell) and zero or more other cells (secondary cells: SCells).
  • SpCell of MCG is also called PCell.
  • SpCell of SCG is also called PSCell.
  • Cell deactivation does not apply to SpCells, but may apply to SCells.
  • cell deactivation may not be applied to PCells, but may be applied to PSCells. In this case, cell deactivation may be performed differently for SpCells and SCells.
  • Cell activation and deactivation may be handled by a MAC entity that exists for each cell group.
  • the SCell configured in the terminal device may be activated and/or deactivated by (A), (B), and/or (C) below.
  • C SCell state (sCellState) set for each SCell by an RRC message (SCell is activated based on the inclusion of the SCell state field in the SCell configuration)
  • the MAC entity of the terminal device may perform some or all of the following processing (AD) for each SCell set in the cell group.
  • AD processing
  • processing AD (1) If the RRC parameter (SCell state) is set to activated when the SCell is configured, or if a MAC CE that activates the SCell is received, the MAC entity of UE 122 processes (AD-1 )I do. Otherwise, if a MAC CE is received that deactivates the SCell, or if the SCell inactivity timer expires in an active SCell, the MAC entity of UE 122 takes action (AD-2).
  • the MAC entity of the terminal device may perform some or all of (1) to (3) below.
  • this SCell was in an inactive state before receiving a MAC CE that activates this SCell, or if the RRC parameters ( sCellState) is set to activated, the MAC entity of UE 122 performs processing (AD-1-1).
  • UE 122's MAC entity starts or restarts (if already started) the SCell inactivity timer associated with that SCell.
  • the Active DL BWP is not a Dormant BWP, the suspended Type 1 Configured Uplink Grant associated with this SCell according to the stored configuration. If present, the UE 122's MAC entity (re)initializes it. and) the MAC entity of UE 122 triggers the PHR.
  • the MAC entity of the terminal device may perform some or all of (1) to (3) below. (1) If the BWP indicated by the first active downlink BWP identifier (firstActiveDownlinkBWP-Id) set in the RRC message for that SCell is not set to Dormant BWP, the MAC of UE 122 The entity performs processing (AD-1-1-1).
  • the MAC of UE 122 If the BWP indicated by the first active downlink BWP identifier (firstActiveDownlinkBWP-Id) set in the RRC message for that SCell is set to Dormant BWP, the MAC of UE 122 The entity stops this serving cell's BWP-Inactivity Timer (bwp-InactivityTimer) if it is running. (3) The MAC entity of UE 122 receives the downlink BWP indicated by the first active downlink BWP identifier (firstActiveDownlinkBWP-Id) configured in the RRC message for that SCell and the first active uplink BWP identifier. Activate the uplink BWP indicated by (firstActiveUplinkBWP-Id).
  • the MAC entity of the terminal device may activate the SCell at predetermined timing and apply (execute) normal SCell operations including some or all of (A) to (E) below.
  • SRS Sounding Reference Signal
  • B Channel State Information
  • C PDCCH monitoring for this SCell
  • D PDCCH monitoring for this SCell (etc.) (if scheduling for this SCell is done in the serving cell of (E) If PUCCH is configured, PUCCH transmission on this SCell
  • the MAC entity of the terminal device may perform some or all of (A) to (D) below.
  • the MAC entity of the terminal device may perform some or all of (A) to (D) below.
  • A) Do not transmit SRS on this SCell.
  • B) Do not report CSI for this SCell.
  • C) Do not transmit PUCCH, UL-SCH and/or RACH on this SCell.
  • D) Do not monitor the PDCCH of this SCell and/or the PDCCH for this SCell.
  • the SCell is activated and deactivated by the processing (AD) performed by the MAC entity.
  • the initial state of the SCell may be set by an RRC message.
  • the SCell inactivity timer will be explained.
  • the value of the SCell inactivity timer (information regarding the time when the timer is considered to have expired) may be notified by the RRC message.
  • the time notified without stopping the timer after starting or restarting the timer in the above process (AD) (here 40ms) has elapsed, the timer is considered expired.
  • the SCell deactivation timer may also be a timer named sCellDeactivationTimer.
  • bandwidth part (BWP)
  • the BWP may be part or all of the bandwidth of the serving cell.
  • a BWP may also be called a carrier BWP.
  • a terminal device may be configured with one or more BWPs.
  • a certain BWP may be set by information included in the broadcast information associated with the synchronization signal detected in the initial cell search.
  • a certain BWP may be a frequency bandwidth associated with a frequency for initial cell search.
  • Some BWPs may also be configured with RRC signaling (eg Dedicated RRC signaling).
  • the downlink BWP (DL BWP) and the uplink BWP (UL BWP) may be set individually. Also, one or more uplink BWPs may be associated with one or more downlink BWPs. Further, the association between the uplink BWP and the downlink BWP may be a default association, may be an association by RRC signaling (for example, Dedicated RRC signaling), or may be associated by physical layer signaling (for example, downlink The association may be based on downlink control information (DCI) notified by a control channel, or a combination thereof.
  • DCI downlink control information
  • a BWP may consist of a group of consecutive physical radio blocks (PRB: Physical Resource Block). Also, parameters of the BWP (one or more BWPs) of each component carrier may be set for the terminal device in the connected state.
  • PRB Physical Resource Block
  • the BWP parameters for each component carrier include (A) the type of cyclic prefix, (B) the subcarrier spacing, (C) the frequency position of the BWP (e.g., the start position or center frequency position on the low frequency side of the BWP) (
  • the frequency position for example, ARFCN may be used, or an offset from a specific subcarrier of the serving cell may be used.
  • the offset unit may be a subcarrier unit or a resource block unit. Also, both ARFCN and offset may be set.
  • D BWP bandwidth (e.g. number of PRBs)
  • E control signal resource configuration information
  • F SS block center frequency.
  • the location frequency location, for example, ARFCN may be used, or an offset from a specific subcarrier of the serving cell may be used.
  • the offset unit may be a subcarrier unit or a resource block unit. Also, both ARFCN and offset may be set. ), may be included in part or in whole. Also, the resource configuration information of the control signal may be included in the BWP configuration of at least some or all of the PCell and/or PSCell.
  • a terminal device may transmit and receive in an active BWP (Active BWP) out of one or more set BWPs.
  • active BWP active BWP
  • BWP may be set.
  • the activated downlink BWP is also called Active DL BWP.
  • the activated uplink BWP is also called Active UL BWP.
  • One or more BWPs may be configured in one serving cell. BWP switching in the serving cell is used to activate deactivated BWPs (also referred to as inactive BWPs) and deactivate activated BWPs.
  • deactivated BWPs also referred to as inactive BWPs
  • BWP switching is controlled by the MAC entity itself for PDCCH indicating downlink assignment or uplink grant, BWP inactivity timer, RRC signaling, or initiation of random access procedures.
  • Active BWP of the serving cell is indicated by RRC or PDCCH.
  • a dormant BWP Entering a dormant BWP or leaving a dormant BWP is done by BWP switching. This control is performed by the PDCCH for each SCell or for each group called Dormancy SCell Group. Configuration of dormant SCell groups is indicated by RRC signaling. Also, in the current specification Dormant BWP applies only to SCells. Note that a dormant BWP does not change a certain BWP to a dormant state, but may be interpreted as one BWP set for dormancy among one or more BWPs set for the UE. . Also, there may be a plurality of BWPs set in the UE for sleep.
  • a certain BWP is a dormant BWP may be indicated by not including a specific parameter in the BWP configuration.
  • the PDCCH-Config information element which is an information element for setting UE-specific (Specific) PDCCH parameters, included in the configuration of the downlink BWP, it is determined that the BWP is a dormant BWP. can be shown.
  • some of the parameters included in the PDCCH-Config information element which is an information element for configuring UE-specific PDCCH parameters included in the downlink BWP configuration, are not configured (not included). ) to indicate that the BWP is a dormant BWP.
  • some or all of the search space settings that define where and/or how to search for PDCCH candidates are configured by the PDCCH-Config information element as a BWP configuration. Not set (not included) may indicate that the BWP is a dormant BWP.
  • SpCells such as PCells and PSCells and settings of dormant BWPs for PUCCH SCells that can transmit PUCCH may not be supported.
  • a UE that has received a PDCCH indicating to exit from a dormant BWP outside a certain set period (active time) in SpCell uses the downlink BWP indicated by the first downlink BWP identifier notified in advance by RRC signaling. Activate.
  • a UE that has received a PDCCH in SpCell indicating that it will leave a dormant BWP within a certain set period (active time) uses the downlink BWP indicated by the second downlink BWP identifier notified in advance by RRC signaling. Activate.
  • a UE that receives a PDCCH indicating entry into a dormant BWP activates the downlink BWP indicated by the third downlink BWP identifier (dormantDownlinkBWP-Id) previously notified by RRC signaling.
  • Entry into and exit from the above-mentioned dormant BWP is performed by BWP switching, and when activating a new BWP, the previously active BWP is deactivated. That is, when exiting a dormant BWP, the dormant BWP is deactivated, and when entering a dormant BWP, the dormant BWP is activated.
  • a UE configured with discontinuous reception (DRX) in SpCell may monitor PDCCH in Active BWP of SpCell to detect a certain DCI format (e.g. DCI format 2_6) outside DRX active time. good.
  • the DCI format CRC may be scrambled with a certain RNTI (eg PS-RNTI).
  • a UE with a dormant SCell group set determines whether to switch to Active DL BWP based on the bitmap information included in the DCI format 2_6 payload. For example, if a bit in the bitmap is associated with one dormant SCell group and the bit is 1, if the Active DL BWP is a dormant BWP, perform a BWP switch to another preset BWP, If an Active DL BWP is not a dormant BWP, it may stay on that BWP. A BWP switch may also be performed such that if the bit is 0, the Active DL BWP becomes the Dormant BWP.
  • UE does not have to monitor PDCCH for the purpose of detecting DCI format 2_6 during DRX active time.
  • a UE configured for discontinuous reception (DRX) in SpCell may monitor PDCCH in Active BWP of SpCell to detect certain DCI formats (for example, DCI formats 0_1 and 1_1) during DRX active time.
  • the DCI format CRC may be scrambled with an RNTI (eg, C-RNTI or MCS-C-RNTI).
  • RNTI eg, C-RNTI or MCS-C-RNTI.
  • a UE in which a dormant SCell group is set determines switching of Active DL BWP based on the bitmap information included in the payload of DCI format 0_1 or DCI format 1_1.
  • a bit in the bitmap is associated with one dormant SCell group and the bit is 1, if the Active DL BWP is a dormant BWP, perform a BWP switch to another preset BWP, If an Active DL BWP is not a dormant BWP, it may stay on that BWP.
  • a BWP switch may also be performed such that if the bit is 0, the Active DL BWP becomes the Dormant BWP.
  • the "another preset BWP" may be a BWP different from the "another preset BWP" used in the description of the DCI format 2_6.
  • the UE does not have to monitor PDCCH for the purpose of detecting DCI format 0_1 and DCI format 1_1 outside the DRX active time.
  • Monitoring the PDCCH indicating exiting the dormant BWP means monitoring the PDCCH for detection of DCI format 2_6 outside the DRX active time, and DCI format 0_1 and DCI format 1_1 during the DRX active time. monitoring of the PDCCH for the purpose of detecting
  • the MAC entity shall, if the BWP is activated (is an Active BWP) and that BWP is not a dormant BWP, any of (A) through (H) below: Or you can do it all.
  • A Transmit UL-SCH on that BWP.
  • B If a PRACH occasion is configured, send RACH on that BWP.
  • C Monitor the PDCCH on that BWP.
  • D If PUCCH is configured, transmit PUCCH on that BWP.
  • E Report CSI on its BWP.
  • SRS If SRS is configured, send SRS on that BWP.
  • G Receive DL-SCH on that BWP.
  • H Initialize configured uplink grants of grant type 1 that have been set and suspended in that BWP.
  • the MAC entity shall, if the BWP is activated (is an Active BWP) and that BWP is a dormant BWP, one of (A) through (G) below: You can do part or all.
  • A Stop the BWP inactivity timer for the serving cell of this BWP if it is running.
  • B Do not monitor PDCCH for that BWP.
  • C Do not monitor the PDCCH for that BWP.
  • D Do not receive DL-SCH on that BWP.
  • F Do not send SRS on that BWP.
  • G Do not transmit UL-SCH on that BWP.
  • the MAC entity may do some or all of (A) through (I) below if the BWP is deactivated.
  • A Do not transmit UL-SCH on that BWP.
  • B Do not send RACH on that BWP.
  • C Do not monitor PDCCH on that BWP.
  • D Do not transmit PUCCH on that BWP.
  • E Do not report CSI on that BWP.
  • F Do not send SRS on that BWP.
  • G Do not receive DL-SCH on that BWP.
  • H Clear the configured uplink grant of grant type 2 set in that BWP.
  • I Suspend the configured uplink grant of grant type 1 for that deactivated BWP (inactive BWP).
  • the MAC entity may perform some or all of the following (A) through (E) on selected carriers of this serving cell.
  • (A) If the PRACH transmission resource (occasion) is not set for the Active UL BWP, (A1) switch the Active UL BWP to the BWP indicated by the RRC parameter (initialUplinkBWP), and (A2) If the serving cell is a SpCell, switch the Active UL BWP to the BWP indicated by the RRC parameter initialDownlinkBWP.
  • the MAC entity performs the following processing (A) for each activated serving cell for which the BWP inactivity timer is set.
  • the BWP inactivity timer may also be a timer named bwp-InactivityTimer.
  • A-1) if, in Active DL BWP, received PDCCH addressed to C-RNTI or CS-RNTI indicating downlink assignment or uplink grant, or if for Active DL BWP received a PDCCH addressed to a C-RNTI or CS-RNTI indicating a downlink assignment or uplink grant, or if a MAC PDU was sent with a configured uplink grant or if a configured If a MAC PDU is received for downlink allocation, the MAC entity performs the following (A-1-1) processing.
  • A-1-1-1 If the random access procedure associated with this serving cell is not in progress, or if the random access procedure in progress associated with this serving cell is received by the PDCCH addressed to the C-RNTI Once successfully completed, start or restart the BWP inactivity timer associated with the Active DL BWP.
  • A-2) If the BWP inactivity timer associated with the Active DL BWP expires (Expire), the MAC entity performs the following processing (A-2-1).
  • A-2-1 If defaultDownlinkBWP-Id is set, BWP switching is performed to BWP indicated by this defaultDownlinkBWP-Id, otherwise BWP switching is performed to initialDownlinkBWP.
  • the MAC entity may perform the following processing (A).
  • A If the default downlink BWP identifier (defaultDownlinkBWP-Id) is set, the switched Active DL BWP is not the BWP indicated by the identifier (dormantDownlinkBWP-Id), and if the switched Active DL BWP is dormantDownlinkBWP- If not the BWP indicated by Id, start or restart the BWP inactivity timer associated with the Active DL BWP.
  • defaultDownlinkBWP-Id defaultDownlinkBWP-Id
  • RLF Radio Link Failure
  • the terminal device receives the value (t310 or t313) of the timer (for example, T310 or T313) for detecting physical layer problems of the serving cell from the serving base station device, the value (t310 or t313), out of synchronization (OoS: out- of?sync) detection count thresholds N310 and N313, and synchronization (IS: in?sync) detection count thresholds N311 and N314, etc. are acquired from broadcast information and RRC messages for individual users. . Also, default values may be set for the timer value and the threshold for the number of times. Also, the name of the timer may be different between EUTRA and NR.
  • the threshold Qout is the block error rate of a hypothetical downlink control channel (PDCCH) transmission that the downlink radio link cannot reliably receive and also based on predetermined parameters.
  • (Block error rate) may be defined as the level at which the first specified percentage.
  • the threshold Qin is set so that the downlink radio link quality can be received more reliably than in a state of Qout when the downlink radio link quality is significantly higher, and furthermore, the block error rate of transmission of the hypothetical downlink control channel based on predetermined parameters is the second It may be defined as a level that is a specific percentage of two.
  • a plurality of block error rates may be defined based on the frequencies used, subcarrier intervals, service types, and the like.
  • the first specific percentage and/or the second specific percentage may be default values defined in the specification.
  • the first specific ratio and/or the second specific ratio may be values notified or broadcast from the base station apparatus to the terminal apparatus.
  • a terminal device may perform radio link monitoring using a certain type of reference signal (eg, cell-specific reference signal (CRS)) in a serving cell (eg, PCell and/or PSCell). Also, the terminal device receives from the base station device a configuration (radio link monitoring configuration: RadioLinkMonitoringConfig) indicating which reference signal is to be used for radio link monitoring in the serving cell (for example, PCell and/or PSCell), and sets one or Radio link monitoring may be performed using multiple reference signals (referred to herein as RLM-RS). Also, the terminal device may perform radio link monitoring using other signals.
  • the physical layer processing unit of the terminal device may notify the upper layer that synchronization is in progress when the conditions for being in synchronization are satisfied in the serving cell (for example, PCell and/or PSCell).
  • the monitoring setting: RadioLinkMonitoringConfig may be set for each downlink BWP.
  • a terminal device may perform radio link monitoring based on monitoring settings configured for a BWP that is an Active DL BWP.
  • a terminal device may perform radio link monitoring based on a monitoring setting set for a default BWP or a BWP designated by a base station device under specific conditions.
  • the radio link monitoring setting may include information indicating the purpose of monitoring and identifier information indicating the reference signal.
  • monitoring purposes may include monitoring radio link failures, beam failures, or both.
  • the identifier information indicating the reference signal may include information indicating the identifier (SSB-Index) of the synchronization signal block (SSB) of the cell. That is, the reference signal may include the synchronization signal.
  • identifier information indicating a reference signal may include information indicating an identifier associated with a channel state information reference signal (CSI-RS) configured in a terminal device.
  • CSI-RS channel state information reference signal
  • the RRC layer processing unit of the terminal device starts (Start) or restarts (Start) or restarts ( Restart).
  • the RRC layer processing unit of the terminal device may stop the timer (T310) when receiving the synchronizing signal continuously for a predetermined number of times (N311 times).
  • the timer (T310) expires, the RRC layer processing unit of the terminal device may transition to the idle state or execute the RRC connection re-establishment procedure.
  • the operation of the terminal device may differ depending on the AS Security establishment state. If AS Security has not been established, the terminal device transitions to the RRC IDLE state, and if AS Security has already been established, the terminal device may perform an RRC connection re-establishment procedure. Further, in determining whether to start or restart the timer T310, it may be added as a condition that none of a plurality of specific timers is running.
  • the RRC layer processing unit of the terminal device starts (Start) the timer (T313) when continuously receiving out of synchronization notified from the physical layer processing unit a predetermined number of times (N313 times) or It may be restarted.
  • the RRC layer processing unit of the terminal device may stop the timer (T313) when receiving synchronizing messages continuously for a predetermined number of times (N314 times).
  • the RRC layer processing unit of the terminal device may execute an SCG failure information procedure for notifying the network of the SCG failure when the timer (T313) expires.
  • SCG failure is also referred to as SCG failure.
  • the SCG failure information procedure is also referred to as the SCG failure information procedure.
  • the RRC layer processing unit of the terminal device when the RRC layer processing unit of the terminal device receives out of synchronization notified from the physical layer processing unit in each SpCell a predetermined number of times (N310 times) consecutively
  • the SpCell timer (T310) may be started (Start) or restarted (Restart).
  • the RRC layer processing section of the terminal device may stop the timer (T310) of the SpCell when receiving a predetermined number of consecutive times (N311 times) in each SpCell.
  • the RRC layer processing unit of the terminal device When the timer (T310) of each SpCell expires (Expire), the RRC layer processing unit of the terminal device, if the SpCell is a PCell, transitions to the idle state or performs a re-establishment procedure of the RRC connection. good too. Also, if the SpCell is a PSCell, an SCG failure information procedure for notifying the network of an SCG failure may be executed.
  • the RRC layer processing unit of the terminal device timer may be started.
  • the RRC layer processing unit of the terminal device may stop the timer (T314) if it receives a predetermined number of times (N311 times) consecutively while T314 is running.
  • the RLM-RS may be undefined if not explicitly or implicitly set from the network.
  • a terminal device may perform radio link monitoring using a reference signal that meets predetermined conditions when RLM-RS is not set by a network (for example, a base station device).
  • the RLM-RS is a reference signal used in radio link monitoring, and multiple RLM-RSs may be configured in the terminal device.
  • One RLM-RS resource may be one SS block or one CSI-RS resource (or port).
  • radio link monitoring using CRS may be performed in EUTRA cells and radio link monitoring using RLM-RS may be performed in NR cells, but the present invention is not limited to this.
  • the terminal device In the MCG, the terminal device is notified of a random access problem from the MAC layer of the MCG when the timer T310 expires, when the timer T312 expires, or when none of a plurality of specific timers is running. or when it is notified from the RLC layer of the MCG that the maximum number of retransmissions of the SRB or DRB has been reached, the terminal device determines that a radio link failure has been detected in the MCG.
  • the specific timers do not include timer T310 and timer T312.
  • the terminal device determines that a radio link failure has been detected in the SCG.
  • the specific timers do not include timer T310 and timer T312.
  • the problem of random access is that when the number of retransmissions of the random access preamble reaches a predetermined number in the MAC entity, if the random access preamble transmission is performed in the SpCell, the MAC entity of the cell group containing the SpCell to the higher layer (here the RRC entity).
  • the terminal device When the terminal device determines that a wireless link failure has been detected in the MCG, it stores various information as wireless link failure information. Then, if AS security is not activated, it sets the release reason to "Other" and starts the process of leaving RRC_CONNECTED. If AS security is activated, initiate the RRC connection re-establishment procedure.
  • the terminal device determines that a radio link failure has been detected in the SCG, and starts processing to report relevant information as an SCG radio link failure to the base station device.
  • beam failure recovery procedures may be configured by RRC for each serving cell. Beam failure is detected by counting beam failure instance notifications signaled to the MAC entity from lower layers (PHY layer). The MAC entity may perform some or all of (A), (B), and (C) below in each serving cell for beam failure detection.
  • A If a beam failure instance notification is received from the lower layer, start or restart a timer (beamFailureDetectionTimer) and increment a counter (BFI-COUNTER) by one. If the value of BFI_COUNTER is equal to or greater than the set threshold (beamFailureInstanceMaxCount), the following processing (A-1) is performed.
  • A-1) If the serving cell is a SCell, trigger beam failure recovery (BFR) for this serving cell, else initiate a random access procedure on the SpCell.
  • BFR beam failure recovery
  • B) Set BFI_COUNTER to 0 if the beamFailureDetectionTimer for this serving cell has expired or if the beamFailureDetectionTimer, beamFailureInstanceMaxCount, and/or the reference signal settings for beam failure detection have been changed by upper layers.
  • C If the serving cell is a SpCell and the random access procedure (procedure) is successfully completed, set BFI_COUNTER to 0 and stop the timer (beamFailureRecoveryTimer) to indicate that the beam failure recovery procedure has been successfully completed. I reckon.
  • the serving cell is a SCell and is addressed to a C-RNTI indicating a new uplink grant to transmit information for beam failure recovery of the SCell (e.g. information contained in the SCell BFR MAC CE)
  • a C-RNTI indicating a new uplink grant to transmit information for beam failure recovery of the SCell
  • the PDCCH is received or if the SCell is in inactive state, set BFI_COUNTER to 0, consider the beam failure recovery procedure to be successfully completed, and all beam failure recovery triggered for this serving cell ( BFR).
  • the MAC entity performs (A) below.
  • the UL-SCH resource can include the BFR MAC CE of the SCell and its subheader considering the priority of the logical channel, then the BFR MAC CE of the SCell and its subheader are included. Otherwise, if the UL-SCH resource can contain the SCell's truncated BFR MAC CE and its subheaders considering the logical channel priority, then the SCell's truncated BFR MAC CE and its Include subheaders. Otherwise, trigger a scheduling request for SCell beam failure recovery.
  • the SCell's dormancy is achieved by activating the dormant BWP in this SCell. Also, even when the SCell is in a dormant state, CSI measurement, automatic gain control (AGC), and beam control (beam management) including beam failure recovery may be performed in this SCell.
  • AGC automatic gain control
  • beam control beam management
  • FIG. 9 to 13 are examples of ASN.1 descriptions representing fields and/or information elements related to the addition of SCG PSCells and zero or more SCells, which are included in messages related to RRC connection reconfiguration in NR. .
  • the messages and/or information elements in each figure differ from the actual message structure and/or information element structure, and some structured fields and information elements are expanded. and/or omit fields or information elements not directly relevant to the description.
  • an RRC reconfiguration message may be used to add the SCG PSCell and zero or more SCells.
  • the RRC reconfiguration message may include some or all of the information (A) to (E) below. Also, the RRC reconfiguration message may include other information.
  • E RRC configuration of secondary cell group in MR-DC (mrdc-SecondaryCellGroupConfig)
  • the SCG setting may be notified by the above (C) setting of the RRC Reconfiguration message.
  • the SCG configuration is the RRC reconfiguration generated by the secondary node, included in the above (E) of the RRCReconfiguration message generated by the master node. May be notified by message.
  • the SCG setting may be notified by the above setting (C) included in the RRC reconfiguration message generated by the secondary node.
  • another message may be used for setting up the SCG.
  • the configuration of the above secondary cell group may be given in a cell group configuration information element (CellGroupConfigIE).
  • CellGroupConfigIE CellGroupConfig Information element
  • the cell group setting information element may include some or all of the following information (A) to (H). Also, the cell group setting information element may contain other information.
  • A Cell group identifier (cellGroupId)
  • B Settings for adding and/or modifying RLC bearers (rlc-BearerToAddModList)
  • C Setting for RLC bearer release (rlc-BearerToReleaseList)
  • D MAC configuration for this cell group (mac-CellGroupConfig)
  • E PHY configuration for this cell group (physicalCellGroupConfig)
  • F SpCell configuration (spCellConfig)
  • G Settings for adding and modifying SCells (sCellToAddModList)
  • H Setting for SCell release (sCellToReleaseList)
  • SpCells may be added and/or set by the SpCell settings in (F) above, and SCells may be added, modified, and/or released by the settings in (G) and (H) above. They may also be done by other messages.
  • the above SpCell settings may include some or all of the following information (A) to (D).
  • the SpCell configuration may also include other information.
  • the above information element of reset with synchronization may include some or all of the following information (A) to (D). Further, the reset information with synchronization may include other information.
  • A SpCell cell-specific parameter configuration (spCellConfigCommon)
  • B New terminal identifier (UE-Identity) value (newUE-Identity)
  • C Timer T304 value (t304)
  • D RACH terminal device specific parameter setting (rach-ConfigDedicated)
  • the setting of the RACH terminal device-specific parameters described above may include parameters (CFRA) used for contention-free random access. Note that if this CFRA is not included in the configuration, the terminal device may perform contention-based random access in a random access procedure. CFRA may include RA Occasion information used in collision-free random access.
  • the information element (ServingCellConfig IE) indicating the configuration of the SpCell terminal device-specific parameter may include some or all of the following information (A) to (C).
  • the above initial downlink BWP information is a setting for a terminal device-specific (UE-Specific) initial downlink BWP (BWP identifier #0). If any optional IE is included in this initial downlink BWP information and configured, the terminal device may consider BWP identifier #0 to be the BWP configured by RRC.
  • the identifier of the first active downlink BWP is activated when performing the RRC reconfiguration including this information (Upon performing the RRC reconfiguration). This is the identifier of the downlink BWP to be activated. Also, when the identifier information of the first active downlink BWP is set for the SCell, the downlink BWP indicated by this identifier information is activated when the SCell is activated. Also, when the identifier information of the first active downlink BWP is set for the SpCell, the downlink BWP of the SpCell indicated by this identifier information may be activated when the SCG is activated.
  • the identifier information of the first active uplink BWP may be set in the terminal device.
  • the identifier information of the first active downlink BWP may be configured in the terminal device in the same information element as the identifier information of the first active downlink BWP or in a different information element.
  • the BWP identifier set in the identifier information of the first active downlink BWP and the BWP identifier set in the identifier information of the first active uplink BWP may be the same value or may be different values.
  • the uplink BWP of the SpCell indicated by this identifier information may be activated when the SCG is activated.
  • the BWP identifier set in the identifier information of the first active downlink BWP and the BWP identifier set in the identifier information of the first active uplink BWP may have the same value.
  • the configuration of cell-specific parameters of the SpCell above may be given by an information element (ServingCellConfigCommon IE) used to configure the cell-specific parameters of the serving cell.
  • Information elements used to configure cell-specific parameters of the serving cell may include some or all of the following information (A) to (D), as shown in FIG. Other information may also be included in the information element used to configure cell-specific parameters for the serving cell.
  • A Physical cell identifier (physCellId)
  • B Common downlink parameters in cells (downlinkConfigCommon)
  • C Common uplink parameters in cells (uplinkConfigCommon)
  • D Configuration of SCell terminal device-specific parameters (including some cell-specific parameters)
  • sCellConfigDedicated (E) SSB subcarrier spacing information (ssbSubcarrierSpacing)
  • Downlink common parameters in a cell may include downlink frequency information (frequencyInfoDL) and/or initial downlink BWP information (initialDownlinkBWP).
  • the downlink frequency information may include information on the SSB frequency used in this serving cell.
  • SCellConfigIE SCell configuration information elements
  • the SCell configuration information element may include some or all of the following information (A) to (D). Also, the SCell configuration information element may include other information.
  • A Identifier for identifying SCell (sCellIndex)
  • B SCell cell-specific parameter configuration (sCellConfigCommon)
  • C Configuration of SCell terminal device-specific parameters (including some cell-specific parameters)
  • sCellConfigDedicated (D) Information indicating SCell activation/deactivation (sCellState-r16)
  • the RRC entity of the terminal device that has received the RRCReconfiguration message may perform some or all of (A) to (F) below.
  • a terminal device that receives the RRCReconfiguration message may perform other processing.
  • radioBearerConfig is included in RRCReconfiguration, configure radio bearers based on this radioBearerConfig.
  • D Set the content to be included in the RRC reconfiguration complete message.
  • the RRC entity of the terminal device may perform some or all of (A) to (G) below.
  • SCG transmission for all radio bearers is resumed if suspended.
  • C If the CellGroupConfig contains rlc-BearerToAddModList, perform RLC bearer addition and/or modification based on this rlc-BearerToAddModList.
  • D If CellGroupConfig contains mac-CellGroupConfig, configure the MAC entity of this cell group based on this mac-CellGroupConfig.
  • E If sCellToReleaseList is included in CellGroupConfig, release the SCell based on this sCellToReleaseList.
  • F If spCellConfig is included in CellGroupConfig, set SpCell based on this spCellConfig.
  • G If CellGroupConfig contains sCellToAddModList, then perform SCell addition and/or modification based on this sCellToAddModList.
  • the RRC entity of the terminal device may perform some or all of (A) to () below.
  • A) If AS security is not activated, execute processing to transition to RRC_IDLE and terminate the procedure.
  • B) Start timer T304 for the SpCell (to be configured) using the value of t304 included in reconfigurationWithSync.
  • C) If downlink frequency information (frequencyInfoDL) is included in reconfigurationWithSync, the cell indicated by the physical cell identifier (physCellId) included in reconfigurationWithSync in the SSB frequency indicated by frequencyInfoDL is the target SpCell. I judge.
  • D If downlink frequency information (frequencyInfoDL) is not included in reconfigurationWithSync, the cell indicated by the physical cell identifier (physCellId) included in reconfigurationWithSync in the SSB frequency of the original SpCell (Source SpCell), Determine that it is the target SpCell.
  • E Start downlink synchronization of the target SpCell.
  • F Acquire the MIB of the target SpCell.
  • G If no specific bearer (DAPS bearer) has been configured. Execute some or all of (1) to (4) below. (1) reset the MAC entity for this cell group; (2) If a SCell not included in SCellToAddModList is set in this cell group, this SCell is made inactive. (3) apply the value of newUE-Identity as the C-RNTI for this cell group; (4) Configure lower layers based on the received spCellConfigCommon.
  • timer T304 may exist for each cell group.
  • the RRC message may notify the value of a certain timer (here, timer T304) (time information when the timer expires). For example, if information indicating 1000ms as the value of the timer is notified by the RRC message, if the notified time (1000ms in this example) passes without stopping the timer after starting or restarting the timer, You can assume that the timer has expired.
  • the terminal device may start the timer T304 of the cell group to which the reconfigurationWithSync setting is applied based on the reception of the RRC reconfiguration message including reconfigurationWithSync.
  • the terminal device may stop the timer T304 of the cell group to which the reconfigurationWithSync setting is applied based on the successful completion of random access to the target SpCell indicated by reconfigurationWithSync.
  • the terminal device may stop the timer T304 of the SCG based on the release of the SCG.
  • the terminal device may execute the RRC connection re-establishment procedure if the MCG timer T304 expires and a specific bearer (DAPS bearer) is not set.
  • DAPS bearer a specific bearer
  • the terminal device may notify the network of the failure of reconfiguration with synchronization by starting the SCG failure information procedure when the SCG timer T304 expires.
  • the RRC entity of the terminal device performs the following processing (A) if the MCG transmission is not suspended, and performs the following processing (B ).
  • This procedure may be referred to as the SCG failure information procedure.
  • This procedure may be used to inform the E-UTRAN or NR master node about the SCG failure experienced by the terminal equipment.
  • the RRC entity of the terminal device initiates this procedure to report SCG failure when MCG or SCG transmission is not suspended and any of the following conditions (A) to (D) are met: You can (A) Detected SCG radio link failure (B) Detected failure of SCG configuration with synchronization (C) Detected failure of SCG configuration (D) Integrity check on SRB3 from lower layer of SCG check) failure was notified
  • the RRC entity of the terminal device initiating this procedure performs some or all of the following (A) to (E).
  • SCGFailureInformation SCG Failure Information
  • the RRC lower layer of the terminal device may transmit the SCG failure information (SCGFailureInformation) message to the base station device.
  • SCGFailureInformation SCG failure information
  • the base station apparatus uses an RRC reconfiguration message of RRC signaling (radio resource control signal) (included in the RRC reconfiguration message) to the terminal device to provide measurement configuration information.
  • Send elements also called measurement settings.
  • the terminal device performs measurement, event evaluation, and measurement reporting for the serving cell and neighboring cells (including listed cells and/or detected cells) according to the information included in the notified measurement configuration.
  • a list cell is a cell listed as a measurement object (a cell notified from the base station apparatus to the terminal apparatus as a neighboring cell list).
  • a detected cell is a cell that is detected by the terminal equipment at the frequency and subcarrier interval indicated by the measurement object but is not listed in the measurement object (the terminal equipment itself that is not notified as a neighbor cell list). detected cells).
  • the measurement configuration for the MCG is included in the first RRC reconfiguration message, and the field indicating information about the SCG of the MR-DC included in the first RRC reconfiguration message contains the encapsulated SCG
  • An RRC reconfiguration message (second RRC reconfiguration message) is included, and the second RRC reconfiguration message may include the measurement configuration for the SCG.
  • the first RRC reconfiguration message notifying the MCG measurement configuration and the first RRC reconfiguration message notifying the SCG measurement configuration may be the same RRC reconfiguration message, or at different timings. It may be a different RRC reconfiguration message to be notified.
  • the MCG measurement configuration may be notified in SRB1, and the SCG measurement configuration may be notified in SRB3.
  • the terminal device may have a variable VarMeasConfig to hold the notified measurement settings. Also, the terminal device may have a variable VarMeasReportList to hold the measurement information that meets the report conditions. The terminal device may be notified of the measurement configuration for each cell group.
  • a variable VarMeasConfig for holding each measurement setting set for each cell group (or for a cell group, or linked to a cell group) and for holding measurement information that matches the reporting conditions of each measurement setting. variables VarMeasReportList, and for each cell group.
  • Measurements include three types (intra-frequency measurements, inter-frequency measurements, inter-radio access technology measurements).
  • Intra-frequency measurements are measurements at the same subcarrier spacing as the serving cell in the serving cell's downlink frequency (downlink frequency).
  • Inter-frequency measurements are measurements at frequencies different from the downlink frequency of the serving cell, or at different subcarrier spacings on the same frequency.
  • Inter-radio access technology measurements are measurements in a different radio technology (eg UTRA, GERAN, CDMA2000, E-UTRA, etc.) than the radio technology (eg NR) of the serving cell.
  • Measurement configuration includes add and/or modify list of measurement identifiers (measId), delete list of measurement identifiers, add and/or modify list of measurement objects, delete list of measurement objects, and reporting configurations. , a list of deletions of reporting configurations, a quantity configuration (quantityConfig), a measurement gap configuration (measGapConfig), and a serving cell quality threshold (s-Measure) configuration.
  • the quantity configuration (quantityConfig) specifies the third layer filter coefficient (L3 filtering coefficient) when the measurement objects (Measurement objects) are NR and/or E-UTRA.
  • the third layer filter coefficient (L3 filtering coefficient) defines the ratio (percentage) between the latest measurement result and the past filtering measurement result.
  • the filtering result is used for event evaluation in the terminal device.
  • the measurement gap configuration (measGapConfig) includes information on the length and cycle of measurement gaps.
  • the measurement gap setting may be set independently for each terminal device or for each predetermined frequency range.
  • the measurement identifier (measId) is used to associate (or associate or link) measurement objects and reporting configurations, specifically, the measurement object identifier ( measObjectId) and the report configuration identifier (reportConfigId).
  • a measurement identifier (measId) is associated with one measurement object identifier (measObjectId) and one report configuration identifier (reportConfigId).
  • Measurement configurations can be added/modified/deleted in relation to measurement identifiers (measId), measurement objects (Measurement objects), and reporting configurations.
  • the measurement identifier deletion list included in the measurement configuration includes the measurement identifier list, and the terminal device performs the following (A) to (C) for each measurement identifier included in the measurement identifier deletion list. process.
  • (A) Delete the entry of this measurement identifier from the variable VarMeasConfig of the cell group subject to measurement configuration.
  • (B) Delete the measurement report entry for this measurement identifier from the variable VarMeasReportList of the cell group subject to measurement configuration, if it is included.
  • timer T321 is a timer that is started when a measurement configuration including a report configuration for the purpose of measuring the cell global identifier is received.
  • this timer is stopped when the identifier of the reporting configuration for the purpose of measuring the cell global identifier is included in the deletion list of the reporting configuration, which will be described later, or when the detected cell does not broadcast SIB1.
  • the measurement identifier addition and/or modification list included in the measurement configuration includes the measurement identifier list, and the terminal device shall perform the following for each measurement identifier included in the measurement identifier addition and/or modification list: Perform processing from (A) to (C). (A) If a measurement identifier entry matching this measurement identifier exists in the list of measurement identifiers contained in the variable VarMeasConfig of the cell group subject to the measurement configuration, the received value for this measurement identifier (the Replace the entry with the value received for this measId). Otherwise, add a new entry for this measurement identifier to the variable VarMeasConfig of the cell group subject to the measurement configuration.
  • the measurement object removal list (measObjectToRemoveList) included in the measurement configuration is a field containing information to remove the specified measurement object identifier (measObjectId) and the measurement objects corresponding to the specified measurement object identifier (measObjectId). is. At this time, all the measurement identifiers (measId) of the cell group subject to the measurement configuration associated with the specified measurement object identifier (measObjectId) may be deleted. This field can simultaneously specify multiple measurement object identifiers (measObjectId).
  • the measurement object addition and/or modification list (measObjectToAddModList) contained in the measurement configuration modifies the measurement objects specified by the measurement object identifier (measObjectId) or modifies the measurement objects specified by the measurement object identifier (measObjectId).
  • the report configuration deletion list (reportConfigToRemoveList) included in the measurement configuration is a field that contains information for deleting the specified reporting configuration identifier (reportConfigId) and the reporting configuration corresponding to the specified reporting configuration identifier (reportConfigId). is. At this time, all measurement identifiers (measId) associated with the specified report configuration identifier (reportConfigId) are deleted. This command can specify multiple report configuration identifiers (reportConfigId) at the same time.
  • the add and/or modify reporting configuration list modifies the reporting configurations specified by the reporting configuration identifier (reportConfigId) or modifies the reporting configurations specified by the reporting configuration identifier (reportConfigId).
  • the add and/or modify reporting configuration list modifies the reporting configurations specified by the reporting configuration identifier (reportConfigId) or modifies the reporting configurations specified by the reporting configuration identifier (reportConfigId).
  • the measurement identifier deletion list (measIdToRemoveList) is a command to delete the specified measurement identifier (measId).
  • the measurement target identifier (measObjectId)
  • the report configuration identifier (reportConfigId) associated with the specified measurement identifier (measId) are maintained without being deleted.
  • This command can specify multiple measurement identifiers (measId) at the same time.
  • the measurement identifier addition and/or modification list (measIdToAddModifyList) is modified to map the specified measurement identifier (measId) to the specified measurement object identifier (measObjectId) and the specified report configuration identifier (reportConfigId), or
  • This command associates the specified measurement object identifier (measObjectId) and the specified report configuration identifier (reportConfigId) with the specified measurement identifier (measId) and adds the specified measurement identifier (measId).
  • This command can specify multiple measurement identifiers (measId) at the same time.
  • Measurement objects are set (defined) for each RAT and frequency. Note that when the RAT is NR, the measurement target may be set for each frequency and subcarrier interval. Also, the reporting configurations may include specifications for NR and specifications for RATs other than NR.
  • Measurement objects include measurement object identifier (measObjectId), measurement object NR (measObjectNR) whose measurement object is NR, and measurement object EUTRA (measObjectEUTRA) whose measurement object is E-UTRA.
  • the measurement target is UTRA (measObjectUTRA) whose measurement target is UTRA, GERAN (measObjectGERAN) whose measurement target is GERAN, CDMA2000 (measObjectCDMA2000) whose measurement target is CDMA2000, and WLAN may include part or all of the WLAN to be measured (measObjectWLAN).
  • the measurement object identifier (measObjectId) is an identifier used to identify the settings of measurement objects.
  • the setting of measurement objects is specified for each radio access technology (RAT) and frequency, and for each subcarrier interval in NR, as described above. Measurement objects may be specified separately for E-UTRA, UTRA, GERAN, CDMA2000.
  • a measurement object NR (measObjectNR), which is a measurement object for NR, defines information that applies to the NR's serving cell and neighboring cells. It should be noted that which measurement target identifier corresponds to the serving cell is indicated by an information element (for example, serving cell configuration) included in the RRC message including the measurement configuration and/or the RRC message not including the measurement configuration. you can
  • Measurement object NR includes frequency information (ssbFrequency) of blocks (SSB) including synchronization signals, SSB subcarrier spacing (ssbSubcarrierSpacing), information on the list of cells to be measured, and information on the blacklist excluded from measurement. Some or all of the information, information about the whitelist to measure against, may be included.
  • Information on the list of cells to be measured includes information on event evaluations and cells subject to measurement reports.
  • the information about the list of cells to be measured includes physical cell IDs, cellIndividualOffsets (indicating measurement offset values applied to adjacent cells), and the like.
  • the reporting configurations include a reporting configuration identifier (reportConfigId) and a reporting configuration NR (reportConfigNR) associated with the reporting configuration identifier (reportConfigId).
  • a reporting configuration identifier is an identifier used to identify reporting configurations related to measurement.
  • the reporting configuration for measurement may include a specification for NR and a specification for RAT other than NR (part or all of UTRA, GERAN, CDMA2000, E-UTRA).
  • a reporting configuration NR (reportConfigNR), which is a reporting configuration for NR, defines event triggering criteria used for measurement reporting in NR.
  • the report configuration NR includes event identifier (eventId), trigger quantity (triggerQuantity), hysteresis (hysteresis), trigger time (timeToTrigger), report quantity (reportQuantity), maximum number of report cells (maxReportCells), report interval (reportInterval), the number of reports (reportAmount), part or all of them may be included.
  • event triggered reporting is a method of reporting measurements when event trigger conditions are met.
  • event triggered periodic reporting in which measurements are reported a certain number of times at regular intervals when event trigger conditions are met.
  • TriggerQuantity is the quantity used to evaluate the event trigger condition. That is, reference signal received power (RSRP) or reference signal received quality (RSRQ) is specified. That is, the terminal device measures the downlink synchronization signal using the quantity specified by this trigger quantity (triggerQuantity), and determines whether the event trigger condition specified by the event identifier (eventId) is satisfied. judge. Hysteresis is a parameter used in event trigger conditions. Trigger time (timeToTrigger) indicates the period in which the event trigger condition should be satisfied. ReportQuantity indicates the quantity reported in the measurement report.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the quantity specified by the trigger quantity (triggerQuantity), reference signal received power (RSRP) or reference signal received quality (RSRQ) is specified.
  • the maximum number of report cells (maxReportCells) indicates the maximum number of cells to be included in the measurement report.
  • the report interval (reportInterval) is used for periodic reporting or event triggered periodic reporting, and reports are performed periodically at intervals indicated by the report interval (reportInterval).
  • the number of reports (reportAmount) specifies the number of times that periodic reporting will be performed, if necessary.
  • threshold parameters and offset parameters (a1_Threshold, a2_Threshold, a3_Offset, a4_Threshold, a5_Threshold1, a5_Threshold2, a6_Offset, c1_Threshold, c2_Offset) used in the event trigger conditions are specified together with the event identifier (eventId) in the report configuration NR (reportConfigNR). , may be notified to the terminal device.
  • a plurality of event trigger conditions for measurement reports are defined, each of which has a joining condition and a leaving condition. That is, a terminal device that has satisfied the subscription condition for the event specified by the base station device transmits a measurement report to the base station device. Also, if the terminal device that has satisfied the leaving condition for the event specified by the base station device is set to trigger a report when the leaving condition is met by the base station device (if reportOnLeave is included in the report settings) ), a measurement report is transmitted to the base station apparatus.
  • reporting configuration InterRAT which is the reporting configuration for RATs other than NR, defines multiple event triggering criteria used for measurement reporting in RATs other than NR. For example, if the measurement result of neighboring cells (other RATs) is better than the threshold b1_Threshold set for each RAT after applying each parameter, event B1 occurs. In addition, if the PCell measurement result is worse than the threshold b2_Threshold1 after applying each parameter and the measurement result of the adjacent cell (other RAT) is better than the threshold b2_Threshold2 set for each RAT after applying each parameter, an event B2 occurs.
  • the base station apparatus may or may not notify the serving cell quality threshold (s-Measure).
  • a serving cell quality threshold (s-Measure) is set in the terminal device by the base station apparatus, and the quality (RSRP value) after Layer 3 filtering of the PCell, which is the serving cell, is higher than the serving cell quality threshold (s-Measure).
  • the serving cell quality threshold (s-Measure) is not set in the terminal apparatus by the base station apparatus, the terminal apparatus measures neighboring cells regardless of the quality (RSRP value) of the serving cell.
  • the terminal shall initiate the measurement reporting procedure when the event trigger condition is satisfied, when the first measurement result of the periodic report becomes available, when the timer for periodic reporting or timer T321 expires, etc. may start.
  • the purpose of the measurement report procedure is to transfer a measurement report from the terminal to the network.
  • the measurement report includes measurement results. A measurement result is set for each measurement identifier for which the measurement reporting procedure has been triggered.
  • a measurement result may include a measurement identifier (measId), a list of serving measurement target measurement results (measResultServingMO), and a neighboring cell measurement result (measResultNeighCellNR).
  • the neighbor cell measurement results may include either a list of NR measurement results or a list of E-UTRA measurement results.
  • the NR measurement result and the E-UTRA measurement result include some or all of the information of the physical cell identifier, the cell measurement result, and the cell global identifier.
  • the serving measurement object measurement result (measResultServingMO) is the measurement result of the measurement object associated with the serving cell, and may include some or all of the serving cell identifier, the serving cell measurement result, and the best neighbor cell measurement result. .
  • the measurement result as described above is set and SRB3 is set if the terminal is set to EN-DC. If yes, submit a measurement report message containing said measurement result to the lower layer for transmission through SRB3 and terminate the procedure; if SRB3 is not configured, send a measurement report message to the E-UTRA RRC message. It is encapsulated (embedded) and submitted to the lower layer through the E-UTRA MCG.
  • the terminal device is configured with NR-DC and the measurement configuration that triggered this measurement report is associated with SCG (Associated), including the measurement results through SRB3 for transmission if SRB3 is configured
  • SCG Associated
  • the measurement report message is submitted to the lower layer and the procedure ends, and if SRB3 is not set, the measurement report message is encapsulated in the NR MCG RRC message and sent to the lower layer through the NR MCG. Submit to layer.
  • the state in which the SCG is deactivated may be included as part of the RRC_CONNECTED state.
  • the state in which the SCG is deactivated means that the terminal device has the following (A) in the SpCell (PSCell) of the SCG, and / or in all cells of the SCG (J) may be implemented in part or in whole.
  • D Do not monitor the PDCCH for that cell and/or the PDCCH for that cell.
  • E the cell's PDCCH addressed to the C-RNTI, MCS-C-RNTI, and/or CS-RNTI indicating an uplink grant for UL-SCH transmission in that cell, and/or that cell; Do not monitor PDCCH for
  • F No Automatic Gain Control
  • G Do not perform beam management, including beam failure recovery, in that cell.
  • H Do not perform Radio Link Monitoring (RLM) in that cell.
  • RLM Radio Link Monitoring
  • the SCG when the SCG is in an inactive state, different processing may be performed while the time alignment timer is running in that SCG and while the time alignment timer is stopped (including the expired state). For example, while the SCG is inactive and the time alignment timer is running, CSI is reported in the SpCell of this SCG, and while the SCG is inactive and the time alignment timer is stopped, the SpCell of this SCG CSI reporting may not be implemented in Also, for example, while the SCG is inactive and the time alignment timer is running, RLM is performed in this SCG SpCell, and while the SCG is inactive and the time alignment timer is stopped, the SpCell of this SCG may not implement RLM.
  • the terminal device may not perform processing involving the start of the random access procedure when it is in the SCG inactive state.
  • the timer may be another timer that is started, for example, when the SCG is instructed to be deactivated or when the SCG is deactivated.
  • the timer may be a MAC entity managed timer.
  • entering the SCG inactive state may be referred to as entering an inactivated SCG.
  • the SCG inactive state may be a state in which the Active BWP of the SpCell of the SCG is a specific BWP.
  • the above-described SCG inactive state is a state in which the SCG to be described later transitions from an activated state (SCG active state) when an RRC entity instructs to enter an inactivated SCG. good too.
  • the SCG activated state may be included as part of the RRC_CONNECTED state.
  • the SCG activated state means that the terminal device is in the SCG SpCell (PSCell) and / or in any cell of the SCG from (A) below It may be in a state to implement part or all of (J).
  • SCG active state means that the terminal device is in the SCG SpCell (PSCell) and / or in any cell of the SCG from (A) below It may be in a state to implement part or all of (J).
  • (C) transmit PUCCH, UL-SCH and/or RACH on that cell;
  • (D) monitor the PDCCH for that cell and/or the PDCCH for that cell;
  • (G) Perform beam management, including beam failure recovery, in that cell.
  • (H) perform radio link monitoring (RLM) in the cell;
  • (J) Monitor the C-RNTI on the PDCCH in the activated BWP of that cell.
  • entering the SCG active state may be called entering the activated SCG.
  • the SCG active state may be a state in which the SCG SpCell and/or one or more SCell Active BWPs are not dormant BWPs.
  • the above-mentioned SCG inactive state is a state in which the SCG transitions from the inactivated state (SCG inactive state) when the RRC entity instructs to leave the deactivated SCG. may be
  • the terminal device may transition the SCG to an inactive state based on receiving part or all of (A) to (B) below (in other words, the SCG may be deactivated).
  • the messages and control elements (A) to (C) below may be notified to the terminal device from a cell group other than the SCG.
  • each piece of information may be notified to the terminal device using an RRC message, MAC control element, or physical control channel.
  • A) Information instructing deactivation of SCG (B) Information instructing deactivation of SpCell (C) Information instructing switching of Active BWP of SpCell to a specific BWP
  • the terminal device may transition the SCG from the active state to the inactive state based on the timer for deactivating the SCG. Also, the terminal device may transition the SCG from the active state to the inactive state based on a timer related to PSCell deactivation.
  • the terminal device may transition the SCG from the inactive state to the active state when starting a random access procedure by the MAC entity itself (for example, due to a scheduling request).
  • the MAC entity of the terminal device sends an instruction to activate the SCG, an instruction to wake up from the deactivated SCG, an instruction to wake up from SpCell dormancy, and/or other information to the RRC entity of the terminal device. may be obtained from
  • the terminal device may transition the SCG from the inactive state to the active state based on receiving some or all of (A) to (D) below (in other words , may activate the SCG).
  • the following messages (A) to (D) and control elements may be notified to the terminal device from a cell group other than the SCG. Also, each piece of information may be notified to the terminal device using an RRC message, MAC control element, or physical control channel.
  • A) Information instructing SCG activation (B) Information instructing SCG to resume from inactive state (C) Information instructing SpCell activation (D) SpCell inactive state information that instructs the return from
  • the terminal device may cause the SCG to transition from the inactive state to the active state based on the timer for deactivating the SCG. Also, the terminal device may transition the SCG from the inactive state to the active state based on a timer related to PSCell deactivation.
  • the terminal device may transition the SCG from the inactive state to the active state when starting a random access procedure caused by a scheduling request triggered to transmit a MAC PDU containing a MAC SDU. Also, the terminal device may transition the SCG from the inactive state to the active state when starting the random access procedure.
  • the terminal device may transition the SCG from the inactive state to the active state when starting a random access procedure caused by a scheduling request (in other words, initiated by the MAC entity itself).
  • the MAC entity of the terminal device sends an instruction to activate the SCG, an instruction to wake up from the deactivated SCG, an instruction to wake up from SpCell dormancy, and/or other information to the RRC entity of the terminal device. may be obtained from
  • Inactivation of the SCG may be referred to as entering the dormant SCG (Dormant SCG). Also, deactivation of the SCG may be activation of dormant BWPs of SpCells of the cell group. Inactivation of SCG may also be referred to as SCG dormant or SCG suspension.
  • All uplink transmissions may be stopped in the SCG when the SCG is deactivated and at least the time alignment timer is stopped.
  • information about that SCG may be sent in another cell group (eg, MCG).
  • the information about that SCG may be sent in that SCG that has left the deactivated state (activated SCG).
  • the random access procedure in the SpCell may be initiated in the deactivated SCG by triggering a scheduling request by the MAC entity to send a MAC PDU containing the MAC CE or directly by the MAC entity. good too. At this time, the MAC PDU may not contain the MAC SDU.
  • the SCG in which the random access procedure in the SpCell (PSCell) is deactivated by triggering a scheduling request to transmit a MAC PDU containing data (MAC SDU) from higher layers such as user data and RRC messages. may be started at
  • the return of the SCG from the inactivated state may be referred to as leaving the dormant SCG.
  • returning from the inactivated state of the SCG may be BWP switching from a dormant BWP to another (non-dormant BWP) BWP in the SpCell of the cell group.
  • SCG activation Activation of SCG
  • SCG Re-activation SCG re-activation
  • a terminal device that performs SCG deactivation may perform some or all of the following processes (A) to (Q) in the SCG.
  • E Ignore MAC CEs that activate SCells. For example, in the processing (AD), if MAC CE for activating SCell is received and SCG deactivation is not instructed (or SCG is not deactivated), processing ( AD-1) is performed.
  • (F) Execute the above process (AD-2). For example, when inactivation of SCG is instructed (or SCG is inactivated) in the processing (AD-2), processing (AD-2) is performed.
  • (G) Switch the Active BWP of a particular SCell to Dormant BWP (ie put this SCell to Dormant state).
  • a specific SCell may be an SCell designated by the base station apparatus, or an SCell in which a Dormant BWP is set.
  • (H) Switch the SpCell's Active BWP to a specific BWP.
  • the specific BWP may be the BWP designated by the base station apparatus, the BWP set as the First Active BWP, or the Initial BWP.
  • the BWP to be switched may be only the DL BWP, or both the DLBWP and the UL BWP.
  • (I) Deactivate all BWPs of SpCell. That is, when the SCell is deactivated, all BWPs of this SCell are deactivated, and the same process is performed on the SpCell.
  • (J) Abort the random access procedure in progress.
  • (K) Abort the random access procedure in progress and consider this random access procedure to be successfully completed.
  • (M) Do not suspend at least some SCG bearers (for example, DRB) set in the terminal device.
  • N When PDCP duplication is set and the PDCP duplication is activated, the deactivation of the PDCP duplication is notified to the upper layer (eg, RLC layer, PDCP layer) .
  • O Reset MAC.
  • P Stop the BSR-related timer (eg, periodicBSR-Timer and/or retxBSR-Timer) if it is running.
  • Q Re-establish the RLC corresponding to the SCG bearer.
  • a terminal device that restores an SCG from an inactivated state may execute some or all of the following processes (A) to (F) in the SCG.
  • A) Execute processing (AD-1) to activate all SCells.
  • B) Leave all SCells inactive. However, since it is not in an inactivated state, for example, in the processing (AD), when a MAC CE for activating SCell is received, deactivation of SCG is not instructed (or SCG is inactivated is not in the state of being completed), processing (AD-1) may be performed.
  • (F) Activate the BWP set as the SpCell's First Active BWP.
  • (G) Resume at least some SCG bearers (for example, SRB3) set in the terminal device.
  • SCG bearers for example, SRB3
  • H If PDCP duplication is set and the PDCP duplication is deactivated based on the deactivation of the SCG, the activation of the PDCP duplication is activated by the upper layer (for example, RLC layer, PDCP layer).
  • FIG. 5 is a block diagram showing the configuration of the terminal device (UE 122) according to the embodiment of the present invention. In order to avoid complicating the description, FIG. 5 shows only main components closely related to one embodiment of the present invention.
  • UE 122 shown in FIG. 5 includes a receiving unit 500 that receives an RRC message or the like from a base station device, a processing unit 502 that performs processing according to parameters included in the received message, and a transmitting unit that transmits the RRC message or the like to the base station device. consists of 504.
  • the base station apparatus described above may be eNB 102 or gNB 108 .
  • processing unit 502 may include some or all of the functionality of various layers (eg, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer).
  • the processing unit 502 includes part or all of the physical layer processing unit, MAC layer processing unit, RLC layer processing unit, PDCP layer processing unit, SDAP processing unit, RRC layer processing unit, and NAS layer processing unit. you can UE 122 may also include a measurement unit (not shown) for making measurements.
  • FIG. 6 is a block diagram showing the configuration of the base station apparatus according to the embodiment of the present invention. In order to avoid complicating the description, FIG. 6 shows only main components closely related to one embodiment of the present invention.
  • the base station apparatus described above may be eNB 102 or gNB 108 .
  • the base station apparatus shown in FIG. 6 includes a transmission unit 600 that transmits an RRC message and the like to UE 122, and a processing unit that creates an RRC message including parameters and transmits it to UE 122, thereby allowing processing unit 502 of UE 122 to perform processing. 602 and a receiver 604 that receives RRC messages and the like from the UE 122 .
  • processing unit 602 may include some or all of the functionality of various layers (eg, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer). That is, the processing unit 602 includes part or all of the physical layer processing unit, MAC layer processing unit, RLC layer processing unit, PDCP layer processing unit, SDAP processing unit, RRC layer processing unit, and NAS layer processing unit. you can
  • the "MAC entity” used in the following description shall be the MAC entity of the cell group to be activated/deactivated in the terminal device (UE 122) unless otherwise specified. Also, the “RRC entity” used in the following description shall be the RRC entity of the terminal device (UE 122) unless otherwise specified.
  • FIG. 15 is a diagram showing an example of processing of the terminal device according to the embodiment of the present invention.
  • the RRC entity of the terminal device receives a first notification from a lower layer entity (eg MAC entity, PHY entity) (step S1500).
  • a lower layer entity eg MAC entity, PHY entity
  • the RRC entity of the terminal device receives the first notification from the MAC entity of the cell group (for example, the secondary cell group) corresponding to the lower layer entity that notified the first notification. 1, it generates an RRC message requesting the network to activate the secondary cell group (step S1502). Note that if there is only one cell group to be deactivated in the UE 122, it is not necessary to identify which secondary cell it is in the above process.
  • the first notification may be notified by the MAC entity of UE122.
  • the MAC entity may be activated based on the MAC entity's cell group being deactivated and uplink data for any logical channel of the MAC entity's cell group becoming available. may notify the RRC entity of the first notification.
  • the MAC entity notifies the RRC entity of a first notification based on the MAC entity's cell group being deactivated and at least one scheduling request pending at the MAC entity. You may
  • the RRC entity instead of generating an RRC message requesting cell group activation, the RRC entity generates an RRC message containing information indicating that uplink data exists in an inactive cell group, for example. may generate a message.
  • the RRC entity may generate the RRC message in the process of Fig. 15 as an RRC message for the master node. Also, the RRC entity may generate the RRC message in FIG. 15 as the RRC message for the secondary node and include the generated RRC message in the container in the RRC message for the master node. The RRC entity may submit the generated RRC message to lower layers for transmission. RRC messages submitted to the lower layers may be transmitted by transmitter 504 of UE 122 to the base station apparatus.
  • the transmitted base station device may be a master node.
  • the receiving unit 604 of the base station device may receive the RRC message from the UE122.
  • the processing unit 602 of the base station apparatus may determine whether to activate the deactivated cell group based on the received RRC message.
  • FIG. 16 is a diagram showing an example of processing of the terminal device according to the embodiment of the present invention.
  • the RRC entity of the terminal device receives a second notification from a lower layer entity (eg MAC entity) (step S1600).
  • a lower layer entity eg MAC entity
  • the RRC entity of the terminal device receives the second notification from the cell group (for example, the MAC entity of the secondary cell group) corresponding to the lower layer entity that notified the second notification. 2, the secondary cell group) is considered to be activated (step S1602).
  • the cell group for example, the MAC entity of the secondary cell group
  • the secondary cell group is considered to be activated (step S1602).
  • the terminal device can activate the cell group at an appropriate timing.
  • the first notification may be notified by the MAC entity of UE122.
  • the MAC entity may indicate, for example, PUCCH transmission due to a scheduling request, initiation of a random access procedure (or successful completion of a random access procedure), and/or SpCell beam failure in a deactivated cell group.
  • a second notification may be sent to the RRC entity based on the initiation of the random access procedure for recovery (or the successful completion of the random access procedure).
  • the RRC entity may, for example, resume some bearers (for example, SRB3) that have been suspended based on the assumption that the cell group has been activated.
  • the RRC entity by considering that the cell group has been activated, for example, disabled measurement configuration (for example, part of the measurement target and / or part of the report configuration) It may be enabled autonomously.
  • FIG. 17 is a diagram showing an example of processing of the terminal device according to the embodiment of the present invention.
  • the MAC entity of the terminal device (UE 122) recognizes that the cell group will be deactivated (step S1700).
  • the MAC entity of the terminal device (UE 122) aborts (Aborts) the random access procedure being executed in the cell group based on the deactivation of the cell group. (Step S1702).
  • the MAC entity of UE 122 may recognize the deactivation of the cell group by notification from the RRC entity.
  • the MAC entity of UE 122 may recognize cell group deactivation by MAC CE received from the base station apparatus.
  • the MAC entity of UE 122 may recognize cell group deactivation based on the deactivation or expiration of a particular timer.
  • the MAC entity of UE 122 may recognize cell group deactivation based on the above combinations.
  • the MAC entity aborts the random access procedure running in the cell group based on the cell group being deactivated, and the random access procedure is successfully completed. may be considered to have
  • the MAC entity may also abort beam failure recovery procedures in progress in a cell group based on the cell group being deactivated. At that time, the beam failure recovery procedure may be considered successful.
  • the MAC entity may perform some or all of the following processes (A) to (F) based on the cell group being deactivated. .
  • F Cancel the beam failure recovery procedure if it has been triggered.
  • the terminal device may control activation/deactivation of the secondary cell group using a timer in the RRC entity and/or MAC entity.
  • a timer may be prepared for each cell group, or one timer may be prepared for each terminal device.
  • the value set in the timer may be reported from the base station apparatus using an RRC message (for example, an RRCReconfiguration message).
  • the value set in the timer may be reported from the base station apparatus.
  • the value set in the timer may be the default value described in the specification.
  • the terminal device may have a default value described in the specification as a default value, and use this default value when it is not set in the base station device.
  • the terminal device may start or restart a timer based on the secondary cell group being deactivated and activated. From the base station apparatus, autonomous (in other words, triggered and/or initiated by the determination of the terminal) secondary cell group activation by the terminal and/or autonomous (in other words, triggered and/or initiated by the determination of the terminal) / or is started), the terminal device that is allowed to deactivate the secondary cell group activates the secondary cell group based on this timer not running (that the timer has expired), and / Alternatively, inactivation may be performed.
  • the terminal device may start or restart the timer based on the deactivation of the secondary cell group.
  • a terminal device permitted to deactivate the secondary cell group activates and/or deactivates the secondary cell group based on the fact that this timer is not running (the timer has expired). You may do so.
  • the terminal device may start or restart a timer based on activation of the secondary cell group.
  • a terminal device permitted to deactivate the secondary cell group activates and/or deactivates the secondary cell group based on the fact that this timer is not running (the timer has expired). You may do so.
  • the terminal device when the value of the timer is set to 0, the terminal device is permitted to activate the autonomous secondary cell group and/or deactivate the autonomous secondary cell group from the base station device. You can judge that it is not. Also, for example, when the value of the timer is set to infinity, the terminal device activates the autonomous secondary cell group and/or deactivates the autonomous secondary cell group from the base station device may be determined not to be permitted. Further, for example, when the timer value is not set from the base station device, the terminal device receives autonomous secondary cell group activation and/or autonomous secondary cell group deactivation from the base station device. You may decide that it is not permitted.
  • the base station apparatus sets a specific value for the timer and notifies the terminal apparatus (or does not notify the timer value), thereby allowing the terminal apparatus to autonomously activate and/or deactivate the cell group. can be controlled. Note that whether or not the terminal device can autonomously activate and/or deactivate the cell group may be notified from the base station device to the terminal device using a parameter other than the timer.
  • the terminal device determines that the secondary cell group is deactivated. may suspend some or all of the SCG bearers (SRB and/or DRB where the RLC bearer resides only in the SCG) when the Further, for example, based on the fact that the base station device permits autonomous secondary cell group activation and/or autonomous secondary cell group deactivation, the terminal device deactivates the secondary cell group. may not suspend some or all of the SCG bearers (SRBs and/or DRBs whose RLC bearers are present only in the SCG).
  • the terminal device based on whether or not the base station device permits the activation of the autonomous secondary cell group and/or the deactivation of the autonomous secondary cell group, the terminal device, in the process of FIG. 17, It may be determined whether or not to abort the random access procedure being executed.
  • the terminal device in the process of FIG. 17, It may be determined whether or not to execute some or all of the following processes (A) to (F).
  • the network (base station device) to efficiently control the autonomous activation and/or deactivation of cell groups by terminal devices.
  • the activation of the autonomous secondary cell group by the terminal device described above is, for example, due to the presence of uplink data in the inactivated secondary cell group (for example, triggering a scheduling request). Activation of the secondary cell group may be initiated with Further, the aforementioned autonomous activation of the secondary cell group by the terminal device may be, for example, activation of the secondary cell group initiated based on the remaining battery level of the terminal device or the temperature of the terminal device. Note that the autonomous activation of the secondary cell group may be rephrased as activation of the secondary cell initiated by the terminal device (UE initiated SCG activation).
  • the above-described autonomous deactivation of the secondary cell group by the terminal device is, for example, deactivation of the secondary cell group that is started based on the absence of uplink data in the activated secondary cell group. It's okay. Further, the above-described autonomous deactivation of the secondary cell group by the terminal device is, for example, the remaining battery level of the terminal device or the deactivation of the secondary cell group that is started based on the temperature of the terminal device. good. Note that autonomous activation of a secondary cell group may be rephrased as deactivation of a secondary cell initiated by a terminal device (UE initiated SCG Deactivation).
  • the terminal device performs uplink transmission (for example, due to a scheduling request) in this secondary cell group based on the activation of the secondary cell group.
  • transmission of PUCCH or random access preamble may be started.
  • the terminal device may activate this secondary cell group based on uplink transmission in the deactivated secondary cell group (for example, PUCCH or random access preamble transmission resulting from a scheduling request).
  • the terminal device based on having transmitted a random access preamble (or having indicated the transmission of the random access preamble to the PHY entity) in a cell of the deactivated secondary cell group (eg, PSCell or PUCCH SCell), this The secondary cell group may be considered activated and start monitoring the PDCCH.
  • the terminal device may change the bearer setting to deactivate this secondary cell group. For example, when an SCG bearer is configured, the terminal device may change the bearer type of this SCG bearer to a split bearer based on deactivating the secondary cell group. Further, for example, when the terminal device has an SCG bearer configured, based on deactivating the secondary cell group, the bearer type of this SCG bearer is changed to a split bearer, and the PDCP entity sends the PDCP to the RLC entity of the MCG. May be set to submit PDUs. At this time, the bearer setting may be changed based on a predetermined rule, or the changed bearer setting may be notified in advance from the base station apparatus by an RRC message. In addition, when the secondary cell group is deactivated by the autonomous deactivation of the secondary cell group by the terminal device, the terminal device notifies the base station device that the secondary cell group has been deactivated, and then the bearer setting may be changed.
  • the MAC entity deactivates the PDCP duplication based on deactivating the secondary cell group ( Deactivation) may be notified to an upper layer (for example, PDCP layer). Also, at this time, if the primary path is set to a deactivated secondary cell group, the terminal device may reset the primary path to another cell group.
  • the cell group identifier of the reconfigured primary path may be, for example, the MCG identifier.
  • the cell group identifier of the reconfigured primary path may be, for example, a cell group identifier preconfigured in the terminal device by an RRC message.
  • the above process is suitable when the terminal device autonomously deactivates the secondary cell group (that is, when the terminal device triggers and starts deactivation of the secondary cell group). It is not limited and is also applicable in the case of network directed deactivation.
  • the terminal device when the secondary cell group is deactivated by the terminal device's autonomous deactivation of the secondary cell group, the terminal device notifies the base station device that the secondary cell group has been deactivated, and then Processing may be performed.
  • the terminal device autonomously deactivates the secondary cell group (that is, when the terminal device triggers and starts deactivation of the secondary cell group), one of (A) to (C) below Deactivation of secondary cell groups may be triggered and/or not initiated based on meeting some or all conditions. Also, if the network instructs to deactivate a secondary cell, the secondary cell group may be deactivated regardless of the following conditions.
  • A PDCP duplication is set and activated.
  • B PDCP duplication is set, the PDCP duplication is deactivated, and the primary path is set to this secondary cell group.
  • An SCG bearer is configured for this secondary cell group.
  • the radio bearer in the above description may be DRB, SRB, or both DRB and SRB.
  • SCG SpCell may be replaced with “PSCell”.
  • A may be rephrased as B” may include the meaning of rephrasing B as A in addition to rephrasing A as B.
  • C may be D
  • C may be E
  • F may be G
  • G may be H
  • F may be H
  • condition "B” is expressed as “other” condition of condition "A”.
  • a first embodiment of the present invention is a terminal device in which a master cell group and a secondary cell group are configured from a network, and receives an RRC message including a first timer value from the network.
  • a receiving unit and a processing unit that performs processing based on the RRC message, and the processing unit is based on the fact that the first timer is set to a specific value. Deeming activation and/or deactivation of a cell group not permitted, setting the first timer to a value other than the specific value, and activating and/or deactivating a secondary cell group.
  • the terminal Do not initiate activation and/or deactivation of secondary cell groups initiated at the discretion of the device.
  • a second embodiment of the present invention is a method applied to a terminal device in which a master cell group and a secondary cell group are configured from a network, including the value of a first timer from the network
  • a secondary cell group comprising a step of receiving an RRC message and a step of performing processing based on the RRC message, and based on the fact that a specific value is set in the first timer, the secondary cell group started by the terminal device's judgment is not permitted, the first timer is set to a value other than the specific value, and the secondary cell group is activated and/or deactivated.
  • the terminal device Do not initiate decision-initiated secondary cell group activation and/or deactivation.
  • a third embodiment of the present invention is an integrated circuit mounted in a terminal device in which a master cell group and a secondary cell group are set from a network, and receives the value of the first timer from the network.
  • the function of receiving an RRC message including the RRC message and the function of performing processing based on the RRC message are exhibited by the terminal device, and based on the fact that the first timer is set to a specific value, the terminal device determines Deeming that activation and/or deactivation of the secondary cell group to be initiated is not permitted, the first timer is set to a value other than the specific value, and activating and/or deactivating the secondary cell group or based on performing deactivation, starting or restarting said first timer, and based on said first timer running, activating and/or deactivating a secondary cell group. do not initiate secondary cell group activation and/or deactivation initiated by the terminal device's decision.
  • a fourth embodiment of the present invention is a base station apparatus that communicates with a terminal apparatus, comprising: a processing unit that generates an RRC message including a first timer value; , wherein the processing unit activates and/or deactivates a secondary cell group initiated by a determination of the terminal device based on setting a specific value to the first timer indicates to the terminal device that the
  • a fifth embodiment of the present invention is a method applied to a base station apparatus that communicates with a terminal apparatus, comprising: generating an RRC message including a first timer value; and allowing activation and/or deactivation of a secondary cell group initiated by a terminal device decision based on setting a specific value to the first timer. Indicate to the terminal not to.
  • a sixth embodiment of the present invention is an integrated circuit implemented in a base station device that communicates with a terminal device, comprising: a function of generating an RRC message including a first timer value; Activation of a secondary cell group started by the terminal device's judgment based on the base station device having a function of transmitting the RRC message to the device and setting a specific value to the first timer; / or indicate to the terminal device that deactivation is not allowed.
  • a program that runs on a device is a program that controls a Central Processing Unit (CPU) or the like to function a computer so as to realize the functions of the above-described embodiments according to one aspect of the present invention. There may be.
  • the program or information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) during processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD), and
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • part of the devices in the above-described embodiments may be realized by a computer.
  • a program for realizing this control function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed.
  • the "computer system” here is a computer system built in the device, and includes hardware such as an operating system and peripheral devices.
  • the "computer-readable recording medium” may be any of semiconductor recording media, optical recording media, magnetic recording media, and the like.
  • “computer-readable recording medium” means a medium that dynamically stores programs for a short period of time, such as a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line. , such as a volatile memory inside a computer system serving as a server or a client in that case, which holds the program for a certain period of time.
  • the program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system.
  • each functional block or feature of the apparatus used in the embodiments described above may be implemented or performed in an electrical circuit, typically an integrated circuit or multiple integrated circuits.
  • Electrical circuits designed to perform the functions described herein may be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof.
  • a general purpose processor may be a microprocessor, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • the general-purpose processor or each circuit described above may be composed of digital circuits or may be composed of analog circuits.
  • an integrated circuit technology that replaces current integrated circuits emerges due to advances in semiconductor technology, it is also possible to use integrated circuits based on this technology.
  • the present invention is not limited to the above-described embodiments.
  • an example of the device is described, but the present invention is not limited to this, and stationary or non-movable electronic devices installed indoors and outdoors, such as AV equipment, kitchen equipment, It can be applied to terminal devices or communication devices such as cleaning/washing equipment, air conditioning equipment, office equipment, vending machines, and other household equipment.
  • One aspect of the present invention is, for example, a communication system, a communication device (e.g., a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (e.g., a communication chip), or a program, etc. be able to.
  • a communication device e.g., a mobile phone device, a base station device, a wireless LAN device, or a sensor device
  • an integrated circuit e.g., a communication chip
  • a program etc. be able to.
  • E-UTRA 102 eNB 104 EPCs 106NR 108 gNB 110 5GC 112, 114, 116, 118, 120, 124 interfaces 122 UEs 200, 300 PHYs 202, 302 MACs 204, 304 RLC 206, 306 PDCP 208, 308 RRC 310 SDAP 210, 312 NAS 500, 604 receiver 502, 602 processor 504, 600 transmitter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal device, to which a master cell group and a secondary cell group are set, deems, on the basis of a specific value having been set for a first timer that is set by a base station device, that activation and/or deactivation of the secondary cell group initiated at the discretion of the terminal device is not permitted.

Description

端末装置、基地局装置、および、方法TERMINAL DEVICE, BASE STATION DEVICE, AND METHOD
 本発明は、端末装置、基地局装置、および、方法に関する。
 本願は、2021年4月1日に日本に出願された特願2021-62889号について優先権を主張し、その内容をここに援用する。
The present invention relates to a terminal device, base station device and method.
This application claims priority to Japanese Patent Application No. 2021-62889 filed in Japan on April 1, 2021, the content of which is incorporated herein.
 セルラ移動通信システムの標準化プロジェクトである、第3世代パートナーシッププロジェクト(3rd Generation Partnership Project:3GPP)において、無線アクセス、コアネットワーク、サービス等を含む、セルラ移動通信システムの技術検討及び規格策定が行われている。 In the 3rd Generation Partnership Project (3GPP), a standardization project for cellular mobile communication systems, technical studies and standardization of cellular mobile communication systems, including radio access, core networks, services, etc., are being conducted. there is
 例えば、E-UTRA(Evolved Universal Terrestrial Radio Access)は、3GPPにおいて、第3.9世代および第4世代向けセルラ移動通信システム向け無線アクセス技術(Radio Access Technology: RAT)として、技術検討及び規格策定が開始された。現在も3GPPにおいて、E-UTRAの拡張技術の技術検討及び規格策定が行われている。なお、E-UTRAは、Long Term Evolution(LTE: 登録商標)とも称し、拡張技術をLTE-Advanced(LTE-A)、LTE-Advanced Pro(LTE-A Pro)と称する事もある。(非特許文献2等) For example, E-UTRA (Evolved Universal Terrestrial Radio Access) is a radio access technology (RAT) for 3.9th and 4th generation cellular mobile communication systems under 3GPP. rice field. At present, 3GPP is still conducting technical studies and establishing standards for extension technologies for E-UTRA. E-UTRA is also called Long Term Evolution (LTE: registered trademark), and extended technologies are sometimes called LTE-Advanced (LTE-A) and LTE-Advanced Pro (LTE-A Pro). (Non-Patent Document 2, etc.)
 また、NR(New Radio、またはNR Radio access)は、3GPPにおいて、第5世代(5th Generation: 5G)向けセルラ移動通信システム向け無線アクセス技術(Radio Access Technology: RAT)として、技術検討及び規格策定が開始された。現在も3GPPにおいて、NRの拡張技術の技術検討及び規格策定が行われている。(非特許文献1等) In addition, NR (New Radio, or NR Radio access) is under technical review and standardization as Radio Access Technology (RAT) for 5th Generation (5G) cellular mobile communication systems at 3GPP. started. At present, 3GPP is still conducting technical studies and establishing standards for NR extension technology. (Non-Patent Document 1, etc.)
 NRの拡張技術として大容量のデータ通信を可能とするために、複数のセルグループを用いて一つまたは複数の基地局装置と端末装置とが通信するデュアルコネクティビティ(マルチコネクティビティとも称する)技術がある。このデュアルコネクティビティでは、それぞれのセルグループで通信を行うために、端末装置はそれぞれのセルグループにおいて自分宛のメッセージの有無をモニタする必要がある。端末装置は大容量のデータ通信が発生したときに低遅延で通信できるように、常に複数のセルグループのモニタを行う必要があり、多くの電力を消費する問題があった。そのため、一部のセルグループのモニタを低頻度で行う、または停止する技術(セルグループの不活性化(Deactivation)技術)の検討が行われている。 In order to enable large-capacity data communication as an NR extension technology, there is a dual connectivity (also called multi-connectivity) technology in which one or more base station devices and terminal devices communicate using multiple cell groups. . In this dual connectivity, in order to perform communication in each cell group, a terminal device needs to monitor whether there is a message addressed to itself in each cell group. A terminal device needs to constantly monitor a plurality of cell groups so that communication can be performed with low delay when large-capacity data communication occurs, and there is a problem of consuming a lot of power. Therefore, a technique for performing or stopping monitoring of some cell groups at low frequency (cell group deactivation technique) is being studied.
 セルグループの不活性状態における端末装置の動作に加え、不活性状態から活性化する(復帰する)際の端末装置の動作についても検討が進められている。 In addition to the operation of the terminal equipment in the inactive state of the cell group, the operation of the terminal equipment when activating (recovering) from the inactive state is also being studied.
 セルグループの不活性状態において、端末装置は、セルグループが活性状態となった際に速やかに通信を行うために必要な処理を行う必要がある。 In the inactive state of the cell group, the terminal equipment needs to perform the processing necessary to promptly communicate when the cell group becomes active.
 本発明の一態様は、上記した事情に鑑みてなされたもので、通信制御を効率的に行うことができる端末装置、基地局装置、方法、集積回路を提供することを目的の一つとする。 One aspect of the present invention has been made in view of the circumstances described above, and one object thereof is to provide a terminal device, a base station device, a method, and an integrated circuit capable of efficiently performing communication control.
 上記の目的を達成するために、本発明の一態様は、以下のような手段を講じた。すなわち本発明の一態様は、ネットワークからマスターセルグループとセカンダリセルグループとが設定される端末装置であって、前記ネットワークから第1のタイマーの値を含むRRCメッセージを受信する受信部と、前記RRCメッセージに基づき処理を行う処理部とを備え、前記処理部は、前記第1のタイマーに特定の値が設定されていることに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化が許可されないとみなし、前記第1のタイマーに前記特定の値でない値が設定されていること、および、セカンダリセルグループの活性化および/または不活性化を行うことに基づき、前記第1のタイマーをスタートまたは再スタートさせ、前記第1のタイマーが走っていることに基づき、セカンダリセルグループの活性化および/または不活性化を行うことに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化を開始しない。 In order to achieve the above object, one aspect of the present invention takes the following measures. That is, one aspect of the present invention is a terminal device in which a master cell group and a secondary cell group are configured from a network, a receiving unit that receives an RRC message including a first timer value from the network, and the RRC a processing unit that performs processing based on the message, the processing unit activates a secondary cell group that is started by the terminal device's judgment based on the fact that the first timer is set to a specific value; / or considering that deactivation is not allowed, based on setting the first timer to a value other than the specific value, and activating and/or deactivating a secondary cell group; Start or restart the first timer, based on the first timer is running, based on the activation and / or deactivation of the secondary cell group, initiated by the terminal device's judgment not initiate secondary cell group activation and/or deactivation.
 また本発明の一態様は、ネットワークからマスターセルグループとセカンダリセルグループとが設定される端末装置に適用される方法であって、前記ネットワークから第1のタイマーの値を含むRRCメッセージを受信するステップと、前記RRCメッセージに基づき処理を行うステップとを備え、前記第1のタイマーに特定の値が設定されていることに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化が許可されないとみなし、前記第1のタイマーに前記特定の値でない値が設定されていること、および、セカンダリセルグループの活性化および/または不活性化を行うことに基づき、前記第1のタイマーをスタートまたは再スタートさせ、前記第1のタイマーが走っていることに基づき、セカンダリセルグループの活性化および/または不活性化を行うことに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化を開始しない。 Also, one aspect of the present invention is a method applied to a terminal device in which a master cell group and a secondary cell group are configured from a network, the step of receiving an RRC message including a first timer value from the network. And a step of performing processing based on the RRC message, and based on the fact that the first timer is set to a specific value, activation of the secondary cell group started by the terminal device's judgment and / or Based on determining that deactivation is not permitted, setting the first timer to a value other than the specific value, and activating and/or deactivating a secondary cell group, the first 1 timer is started or restarted, and the secondary cell group is activated and/or deactivated based on the fact that the first timer is running. Do not initiate cell group activation and/or deactivation.
 また本発明の一態様は、ネットワークからマスターセルグループとセカンダリセルグループとが設定される端末装置に実装される集積回路であって、前記ネットワークから第1のタイマーの値を含むRRCメッセージを受信する機能と、前記RRCメッセージに基づき処理を行う機能とを前記端末装置に発揮させ、前記第1のタイマーに特定の値が設定されていることに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化が許可されないとみなし、前記第1のタイマーに前記特定の値でない値が設定されていること、および、セカンダリセルグループの活性化および/または不活性化を行うことに基づき、前記第1のタイマーをスタートまたは再スタートさせ、前記第1のタイマーが走っていることに基づき、セカンダリセルグループの活性化および/または不活性化を行うことに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化を開始しない。 Further, one aspect of the present invention is an integrated circuit implemented in a terminal device in which a master cell group and a secondary cell group are configured from a network, and receives an RRC message including a first timer value from the network. A secondary cell group that is started by the determination of the terminal device based on the fact that the terminal device exhibits the function and the function of performing processing based on the RRC message, and the specific value is set in the first timer is not permitted, the first timer is set to a value other than the specific value, and the secondary cell group is activated and/or deactivated. Based on that, starting or restarting the first timer, and based on the fact that the first timer is running, based on activating and / or deactivating the secondary cell group, the terminal device Do not initiate decision-initiated secondary cell group activation and/or deactivation.
 また本発明の一態様は、端末装置と通信する基地局装置であって、第1のタイマーの値を含むRRCメッセージを生成する処理部と、前記端末装置に前記RRCメッセージを送信する送信部とを備え、前記処理部は、前記第1のタイマーに特定の値を設定することに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化を許可しないことを前記端末装置に示す。 Further, one aspect of the present invention is a base station apparatus that communicates with a terminal device, comprising: a processing unit that generates an RRC message including a first timer value; and a transmission unit that transmits the RRC message to the terminal device. wherein the processing unit does not allow activation and / or deactivation of the secondary cell group started by the terminal device's judgment based on setting a specific value to the first timer Shown on the terminal device.
 また本発明の一態様は、端末装置と通信する基地局装置に適用される方法であって、第1のタイマーの値を含むRRCメッセージを生成するステップと、前記端末装置に前記RRCメッセージを送信するステップとを備え、前記第1のタイマーに特定の値を設定することに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化を許可しないことを前記端末装置に示す。 Further, one aspect of the present invention is a method applied to a base station apparatus that communicates with a terminal apparatus, comprising: generating an RRC message including a value of a first timer; and transmitting the RRC message to the terminal apparatus. and setting a specific value to the first timer to disallow activation and/or deactivation of a secondary cell group initiated by a determination of the terminal device. shown in
 また本発明の一態様は、端末装置と通信する基地局装置に実装される集積回路であって、第1のタイマーの値を含むRRCメッセージを生成する機能と、前記端末装置に前記RRCメッセージを送信する機能とを前記基地局装置に発揮させ、前記第1のタイマーに特定の値を設定することに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化を許可しないことを前記端末装置に示す。 Further, one aspect of the present invention is an integrated circuit implemented in a base station device that communicates with a terminal device, comprising a function of generating an RRC message including a value of a first timer, and transmitting the RRC message to the terminal device. Activation and/or deactivation of the secondary cell group initiated by the determination of the terminal device is caused by causing the base station device to exhibit the function of transmitting and setting a specific value to the first timer. Indicates to the terminal device that it is not permitted.
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 In addition, these generic or specific aspects may be realized by systems, devices, methods, integrated circuits, computer programs, or recording media. may be realized by any combination of
 本発明の一態様によれば、端末装置、基地局装置、方法、および集積回路は、効率的な通信制御処理を実現することができる。 According to one aspect of the present invention, the terminal device, base station device, method, and integrated circuit can realize efficient communication control processing.
本発明の実施の形態に係る通信システムの概略図。1 is a schematic diagram of a communication system according to an embodiment of the invention; FIG. 本発明の実施の形態に係るE-UTRAプロトコル構成の一例の図。A diagram of an example of the E-UTRA protocol configuration according to an embodiment of the present invention. 本発明の実施形態に係るNRプロトコル構成の一例の図。FIG. 3 is a diagram of an example of NR protocol configuration according to an embodiment of the present invention; 本発明の実施の形態に係るRRCにおける、各種設定のための手順のフローの一例を示す図。The figure which shows an example of the flow of the procedure for various settings in RRC which concerns on embodiment of this invention. 本発明の実施の形態における端末装置の構成を示すブロック図。The block diagram which shows the structure of the terminal device in embodiment of this invention. 本発明の実施の形態における基地局装置の構成を示すブロック図。1 is a block diagram showing the configuration of a base station apparatus according to an embodiment of the present invention; FIG. 本発明の実施の形態におけるNRでのRRCコネクションの再設定に関するメッセージに含まれるASN.1記述の一例。An example of ASN.1 description included in a message regarding reconfiguration of an RRC connection in NR according to an embodiment of the present invention. 本発明の実施の形態におけるE-UTRAでのRRCコネクションの再設定に関するメッセージに含まれるASN.1記述の一例。1 is an example of ASN.1 description included in a message regarding RRC connection reconfiguration in E-UTRA according to an embodiment of the present invention. 本発明の実施の形態におけるRRC再設定メッセージのASN.1記述の一例。An example of ASN.1 description of an RRC reconfiguration message in an embodiment of the present invention. 本発明の実施の形態におけるセルグループ設定情報要素のASN.1記述の一例。An example of ASN.1 description of the cell group setting information element in the embodiment of the present invention. 本発明の実施の形態におけるSpCellの設定のASN.1記述の一例。An example of ASN.1 description of SpCell settings in the embodiment of the present invention. 本発明の実施の形態における同期付再設定情報要素のASN.1記述の一例。An example of ASN.1 description of a reset information element with synchronization in an embodiment of the present invention. 本発明の実施の形態におけるServingCellConfigCommon情報要素のASN.1記述の一例。An example of ASN.1 description of the ServingCellConfigCommon information element in the embodiment of the present invention. 本発明の実施の形態におけるSCell設定情報要素のASN.1記述の一例。An example of ASN.1 description of the SCell configuration information element in the embodiment of the present invention. 本発明の実施の形態における、端末装置の処理の一例。An example of processing of a terminal device according to an embodiment of the present invention. 本発明の実施の形態における、端末装置の処理の一例。An example of processing of a terminal device according to an embodiment of the present invention. 本発明の実施の形態における、端末装置の処理の一例。An example of processing of a terminal device according to an embodiment of the present invention.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 LTE(およびLTE-A、LTE-A Pro)とNRは、異なる無線アクセス技術(Radio Access Technology:RAT)として定義されてよい。またNRは、LTEに含まれる技術として定義されてもよい。またLTEは、NRに含まれる技術として定義されてもよい。また、NRとMulti Radio Dual connectivity(MR-DC)で接続可能なLTEは、従来のLTEと区別されてよい。また、コアネットワークに5GCを用いるLTEは、コアネットワークにEPCを用いる従来のLTEと区別されてよい。なお従来のLTEとは、3GPPにおけるリリース15以降に規格化された技術を実装していないLTEのことであってよい。本発明の実施形態はNR、LTEおよび他のRATに適用されてよい。以下の説明では、LTEおよびNRに関連する用語を用いて説明するが、本発明の実施形態は他の用語を用いる他の技術において適用されてもよい。また本発明の実施形態でのE-UTRAという用語は、LTEという用語に置き換えられてよいし、LTEという用語はE-UTRAという用語に置き換えられてよい。 LTE (and LTE-A, LTE-A Pro) and NR may be defined as different Radio Access Technologies (RAT). NR may also be defined as a technology included in LTE. LTE may also be defined as a technology included in NR. Also, LTE that can be connected by NR and Multi Radio Dual connectivity (MR-DC) may be distinguished from conventional LTE. Also, LTE using 5GC for the core network may be distinguished from conventional LTE using EPC for the core network. Note that conventional LTE may refer to LTE that does not implement the technology standardized after Release 15 of 3GPP. Embodiments of the present invention may be applied to NR, LTE and other RATs. Although the following description uses terminology related to LTE and NR, embodiments of the present invention may be applied in other technologies using other terminology. Also, the term E-UTRA in the embodiments of the present invention may be replaced with the term LTE, and the term LTE may be replaced with the term E-UTRA.
 なお、本発明の実施の形態において、無線アクセス技術がE-UTRA又はNRである場合の各ノードやエンティティの名称、及び各ノードやエンティティにおける処理等について説明するが、本発明の実施の形態は他の無線アクセス技術に用いられてよい。本発明の実施の形態における各ノードやエンティティの名称は、別の名称であってもよい。 In addition, in the embodiment of the present invention, the name of each node and entity when the radio access technology is E-UTRA or NR, and the processing in each node and entity will be described. It may be used for other radio access technologies. The name of each node or entity in the embodiment of the present invention may be another name.
 図1は本発明の実施の形態に係る通信システムの概略図である。なお図1を用いて説明する各ノード、無線アクセス技術、コアネットワーク、インタフェース等の機能は、本発明の実施形態に密接に関わる一部の機能であり、他の機能を持ってよい。 FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention. It should be noted that the functions of each node, radio access technology, core network, interface, etc. described using FIG. 1 are part of the functions closely related to the embodiment of the present invention, and may have other functions.
 E-UTRA100は無線アクセス技術であってよい。またE-UTRA100は、UE122とeNB102との間のエアインタフェース(air interface)であってよい。UE122とeNB102との間のエアインタフェースをUuインタフェースと呼んでよい。eNB(E-UTRAN Node B)102は、E-UTRA100の基地局装置であってよい。eNB102は、後述のE-UTRAプロトコルを持ってよい。E-UTRAプロトコルは、後述のE-UTRAユーザプレーン(User Plane:UP)プロトコル、及び後述のE-UTRA制御プレーン(Control Plane:CP)プロトコルから構成されてもよい。eNB102は、UE122に対し、E-UTRAユーザプレーン(User Plane:UP)プロトコル、及びE-UTRA制御プレーン(Control Plane:CP)プロトコルを終端してよい。eNBで構成される無線アクセスネットワークをE-UTRANと呼んでもよい。  E-UTRA100 may be a radio access technology. E-UTRA 100 may also be the air interface between UE 122 and eNB 102 . The air interface between UE 122 and eNB 102 may be called the Uu interface. The eNB (E-UTRAN Node B) 102 may be a base station device of the E-UTRA 100. The eNB 102 may have the E-UTRA protocol described below. The E-UTRA protocol may consist of an E-UTRA user plane (User Plane: UP) protocol described later and an E-UTRA control plane (Control Plane: CP) protocol described later. eNB 102 may terminate E-UTRA User Plane (UP) and E-UTRA Control Plane (CP) protocols to UE 122 . A radio access network composed of eNBs may be called E-UTRAN.
 EPC(Evolved Packet Core)104は、コア網であってよい。インタフェース112はeNB102とEPC104の間のインタフェース(interface)であり、S1インタフェースと呼ばれてよい。インタフェース112には、制御信号が通る制御プレーンインタフェース、および/または(and/or)ユーザデータが通るユーザプレーンインタフェースが存在してよい。インタフェース112の制御プレーンインタフェースはEPC104内のMobility Management Entity(MME:不図示)で終端してよい。インタフェース112のユーザプレーンインタフェースはEPC104内のサービングゲートウェイ(S-GW:不図示)で終端してよい。インタフェース112の制御プレーンインタフェースをS1-MMEインタフェースと呼んでよい。インタフェース112のユーザプレーンインタフェースをS1-Uインタフェースと呼んでよい。 The EPC (Evolved Packet Core) 104 may be a core network. Interface 112 is the interface between eNB 102 and EPC 104 and may be referred to as the S1 interface. Interface 112 may include a control plane interface through which control signals pass, and/or a user plane interface through which user data passes. The control plane interface of interface 112 may terminate at a Mobility Management Entity (MME; not shown) within EPC 104 . The user plane interface of interface 112 may terminate at a serving gateway (S-GW; not shown) within EPC 104 . The control plane interface of interface 112 may be called the S1-MME interface. The user plane interface of interface 112 may be called the S1-U interface.
 なお、1つ又は複数のeNB102がEPC104にインタフェース112を介して接続されてよい。EPC104に接続する複数のeNB102の間に、インタフェースが存在してよい(不図示)。EPC104に接続する複数のeNB102間のインタフェースを、X2インタフェースと呼んでよい。 Note that one or more eNBs 102 may be connected to the EPC 104 via the interface 112. Interfaces may exist between multiple eNBs 102 that connect to the EPC 104 (not shown). An interface between multiple eNBs 102 connected to an EPC 104 may be called an X2 interface.
 NR106は無線アクセス技術であってよい。またNR106は、UE122とgNB108との間のエアインタフェース(air interface)であってよい。UE122とgNB108との間のエアインタフェースをUuインタフェースと呼んでよい。gNB(g Node B)108は、NR106の基地局装置であってよい。gNB108は、後述のNRプロトコルを持ってよい。NRプロトコルは、後述のNRユーザプレーン(User Plane:UP)プロトコル、及び後述のNR制御プレーン(Control Plane:CP)プロトコルから構成されてよい。gNB108は、UE122に対し、NRユーザプレーン(User Plane:UP)プロトコル、及びNR制御プレーン(Control Plane:CP)プロトコルを終端してよい。 NR106 may be a radio access technology. NR 106 may also be the air interface between UE 122 and gNB 108 . The air interface between UE 122 and gNB 108 may be called the Uu interface. A gNB (g Node B) 108 may be a base station device of NR 106 . gNB 108 may have the NR protocol described below. The NR protocol may consist of an NR user plane (User Plane: UP) protocol, which will be described later, and an NR control plane (Control Plane: CP) protocol, which will be described later. gNB 108 may terminate NR User Plane (UP) and NR Control Plane (CP) protocols to UE 122 .
 5GC110は、コア網であってよい。インタフェース116はgNB108と5GC110の間のインタフェース(interface)であり、NGインタフェースと呼ばれてよい。インタフェース116には、制御信号が通る制御プレーンインタフェース、および/またはユーザデータが通るユーザプレーンインタフェースが存在してよい。インタフェース116の制御プレーンインタフェースは5GC110内のAccess and mobility Management Function(AMF:不図示)で終端してよい。インタフェース116のユーザプレーンインタフェースは5GC110内のUser Plane Function(UPF:不図示)で終端してよい。インタフェース116の制御プレーンインタフェースをNG-Cインタフェースと呼んでよい。インタフェース116のユーザプレーンインタフェースをNG-Uインタフェースと呼んでよい。  5GC110 may be a core network. Interface 116 is the interface between gNB 108 and 5GC 110 and may be referred to as the NG interface. Interface 116 may include a control plane interface through which control signals pass, and/or a user plane interface through which user data passes. The control plane interface of interface 116 may terminate at the Access and Mobility Management Function (AMF: not shown) within 5GC 110 . The user plane interface of interface 116 may terminate at a User Plane Function (UPF: not shown) within 5GC 110 . The control plane interface of interface 116 may be referred to as the NG-C interface. The user plane interface of interface 116 may be called the NG-U interface.
 なお、1つ又は複数のgNB108が5GC110にインタフェース116を介して接続されてよい。5GC110に接続する複数のgNB108の間に、インタフェースが存在してよい(不図示)。5GC110に接続する複数のgNB108間のインタフェースをXnインタフェースと呼んでよい。 Note that one or more gNBs 108 may be connected to the 5GC 110 via the interface 116. There may be interfaces between gNBs 108 that connect to the 5GC 110 (not shown). An interface between multiple gNBs 108 connected to a 5GC 110 may be called an Xn interface.
 eNB102は5GC110に接続する機能を持ってよい。5GC110に接続する機能をもつeNB102を、ng-eNBと呼んでよい。インタフェース114はeNB102と5GC110の間のインタフェースで、NGインタフェースと呼ばれてよい。インタフェース114には、制御信号が通る制御プレーンインタフェース、および/またはユーザデータが通るユーザプレーンインタフェースが存在してよい。インタフェース114の制御プレーンインタフェースは5GC110内のAccess and mobility Management Function(AMF:不図示)で終端してよい。インタフェース114のユーザプレーンインタフェースは5GC110内のUser Plane Function(UPF:不図示)で終端してよい。インタフェース114の制御プレーンインタフェースをNG-Cインタフェースと呼んでよい。インタフェース114のユーザプレーンインタフェースをNG-Uインタフェースと呼んでよい。ng-eNBまたはgNBで構成される無線アクセスネットワークをNG-RANと称してもよい。NG-RAN、E-UTRAN、 eNB、 ng-eNBおよびgNBなどを単にネットワークと称してもよい。 The eNB102 may have the function of connecting to the 5GC110. The eNB 102 with the function of connecting to the 5GC 110 may be called ng-eNB. Interface 114 is the interface between eNB 102 and 5GC 110 and may be called the NG interface. Interface 114 may include a control plane interface through which control signals pass, and/or a user plane interface through which user data passes. The control plane interface of interface 114 may terminate at the Access and Mobility Management Function (AMF: not shown) within 5GC 110 . The user plane interface of interface 114 may terminate at a User Plane Function (UPF: not shown) within 5GC 110 . The control plane interface of interface 114 may be referred to as the NG-C interface. The user plane interface of interface 114 may be called the NG-U interface. A radio access network composed of ng-eNBs or gNBs may be referred to as NG-RAN. NG-RAN, E-UTRAN, eNB, ng-eNB, gNB, etc. may simply be referred to as networks.
 なお、1つ又は複数のeNB102が5GC110にインタフェース114を介して接続されてよい。5GC110に接続する複数のeNB102の間に、インタフェースが存在してよい(不図示)。5GC110に接続する複数のeNB102の間のインタフェースを、Xnインタフェースと呼んでよい。また5GC110に接続するeNB102と、5GC110に接続するgNB108は、インタフェース120で接続されてよい。5GC110に接続するeNB102と、5GC110に接続するgNB108の間のインタフェース120は、Xnインタフェースと呼ばれてよい。 Note that one or more eNBs 102 may be connected to the 5GC 110 via the interface 114. There may be interfaces between multiple eNBs 102 that connect to the 5GC 110 (not shown). An interface between multiple eNBs 102 connected to a 5GC 110 may be called an Xn interface. Also, eNB 102 connected to 5GC 110 and gNB 108 connected to 5GC 110 may be connected via interface 120 . The interface 120 between the eNB 102 connected to the 5GC 110 and the gNB 108 connected to the 5GC 110 may be referred to as the Xn interface.
 gNB108はEPC104に接続する機能を持ってよい。EPC104に接続する機能をもつgNB108を、en-gNBと呼んでよい。インタフェース118はgNB108とEPC104の間のインタフェースで、S1インタフェースと呼ばれてよい。インタフェース118には、ユーザデータが通るユーザプレーンインタフェースが存在してよい。インタフェース118のユーザプレーンインタフェースはEPC104内のS-GW(不図示)で終端してよい。インタフェース118のユーザプレーンインタフェースをS1-Uインタフェースと呼んでよい。またEPC104に接続するeNB102と、EPC104に接続するgNB108は、インタフェース120で接続されてよい。EPC104に接続するeNB102と、EPC104に接続するgNB108の間のインタフェース120はX2インタフェースと呼ばれてよい。 gNB108 may have the ability to connect to EPC104. A gNB 108 with the ability to connect to an EPC 104 may be called an en-gNB. Interface 118 is the interface between gNB 108 and EPC 104 and may be referred to as the S1 interface. Interface 118 may include a user plane interface through which user data passes. The user plane interface of interface 118 may terminate at an S-GW (not shown) within EPC 104 . The user plane interface of interface 118 may be called the S1-U interface. Also, the eNB 102 connected to the EPC 104 and the gNB 108 connected to the EPC 104 may be connected via an interface 120 . The interface 120 between the eNB 102 that connects to the EPC 104 and the gNB 108 that connects to the EPC 104 may be referred to as the X2 interface.
 インタフェース124はEPC104と5GC110間のインタフェースであり、CPのみ、又はUPのみ、又はCP及びUP両方を通すインタフェースであってよい。また、インタフェース114、インタフェース116、インタフェース118、インタフェース120、及びインタフェース124等のうちの一部又は全てのインタフェースは、通信事業者等が提供する通信システムに応じて存在しない場合があってよい。 The interface 124 is the interface between the EPC 104 and the 5GC 110, and may be an interface through CP only, UP only, or both CP and UP. Also, some or all of interfaces 114, 116, 118, 120, 124, etc. may not be present depending on the communication system provided by the carrier.
 UE122はeNB102、および/またはgNB108から送信される報知情報や、ページングメッセージを受信することが可能な端末装置であってよい。またUE122は、eNB102、および/またはgNB108との無線接続が可能な端末装置であってよい。またUE122は、eNB102との無線接続、及びgNB108と無線接続を同時に行うことが可能な端末装置であってよい。UE122はE-UTRAプロトコル、および/またはNRプロトコルを持ってよい。なお、無線接続とは、Radio Resource Control(RRC)接続であってよい。 UE122 may be a terminal device capable of receiving broadcast information and paging messages transmitted from eNB102 and/or gNB108. UE 122 may also be a terminal device capable of wireless connection with eNB 102 and/or gNB 108 . Also, the UE 122 may be a terminal device capable of simultaneously establishing wireless connection with the eNB 102 and wireless connection with the gNB 108 . UE 122 may have E-UTRA and/or NR protocols. Note that the wireless connection may be a Radio Resource Control (RRC) connection.
 UE122が、eNB102、および/またはgNB108と通信する場合、UE122と、eNB102、および/またはgNB108との間に無線ベアラ(RB:Radio Bearer)を確立することにより、無線接続を行ってよい。CPに用いられる無線ベアラは、シグナリング無線ベアラ(SRB:Signaling RadioBearer)と呼ばてよい。またUPに用いられる無線ベアラは、データ無線ベアラ(DRB Data Radio Bearer)と呼ばれてよい。各無線ベアラには、無線ベアラ識別子(Identity:ID)が割り当てられてよい。SRB用無線ベアラ識別子は、SRB識別子(SRB Identity、またはSRB ID)と呼ばれてよい。DRB用無線ベアラ識別子は、DRB識別子(DRB Identity、またはDRB ID)と呼ばれてよい。 When UE122 communicates with eNB102 and/or gNB108, radio connection may be established by establishing a radio bearer (RB) between UE122 and eNB102 and/or gNB108. A radio bearer used for the CP may be called a signaling radio bearer (SRB). A radio bearer used for UP may also be called a data radio bearer (DRB Data Radio Bearer). Each radio bearer may be assigned a radio bearer identity (ID). The SRB radio bearer identifier may be called an SRB identity (SRB ID). A DRB radio bearer identifier may be called a DRB identity (DRB ID).
 またUE122は、eNB102および/またはgNB108を介して、EPC104、および/または5GC110との接続が可能な端末装置であってよい。UE122が通信を行うeNB102、および/またはgNB108の接続先コア網がEPC104である場合、UE122と、eNB102、および/またはgNB108との間に確立された各DRBは、更にEPC104内を経由する各EPS(Evolved Packet System)ベアラと一意に紐づけられてよい。各EPSベアラは、EPSベアラ識別子(Identity、またはID)で識別されてよい。また同一のEPSベアラを通るIPパケットや、イーサネット(登録商標)フレーム等のデータには同一のQoSが保証されてよい。 Also, UE 122 may be a terminal device capable of connecting with EPC 104 and/or 5GC 110 via eNB 102 and/or gNB 108. When the connection destination core network of eNB 102 and/or gNB 108 with which UE 122 communicates is EPC 104, each DRB established between UE 122 and eNB 102 and/or gNB 108 further passes through EPC 104. (Evolved Packet System) May be uniquely associated with the bearer. Each EPS bearer may be identified by an EPS bearer identifier (Identity, or ID). Also, the same QoS may be guaranteed for data such as IP packets and Ethernet (registered trademark) frames passing through the same EPS bearer.
 また、UE122が通信を行うeNB102、および/またはgNB108の接続先コア網が5GC110である場合、UE122と、eNB102、および/またはgNB108との間に確立された各DRBは、更に5GC110内に確立されるPDU(Packet Data Unit)セッションの一つに紐づけられてよい。各PDUセッションには、一つ又は複数のQoSフローが存在してよい。各DRBは、一つ又は複数のQoSフローと対応付け(map)されてよいし、どのQoSフローと対応づけられなくてよい。各PDUセッションは、PDUセッション識別子(Identity、Identifier、またはID)で識別されてよい。また各QoSフローは、QoSフロー識別子Identity、Identifier、またはID)で識別されてよい。また同一のQoSフローを通るIPパケットや、イーサネットフレーム等のデータに同一のQoSが保証されてよい。 In addition, when the connection destination core network of eNB102 and/or gNB108 with which UE122 communicates is 5GC110, each DRB established between UE122 and eNB102 and/or gNB108 is further established within 5GC110. may be associated with one of the PDU (Packet Data Unit) sessions. There may be one or more QoS flows in each PDU session. Each DRB may be mapped to one or more QoS flows, or may not be mapped to any QoS flows. Each PDU session may be identified with a PDU session identifier (Identity, Identifier, or ID). Each QoS flow may also be identified by a QoS flow identifier (Identity, Identifier, or ID). Also, the same QoS may be guaranteed for data such as IP packets and Ethernet frames passing through the same QoS flow.
 EPC104には、PDUセッションおよび/またはQoSフローは存在しなくてよい。また5GC110にはEPSベアラは存在しなくてよい。UE122がEPC104と接続している際、UE122はEPSベアラの情報を持つが、PDUセッションおよび/またはQoSフローの内の情報は持たなくてよい。またUE122が5GC110と接続している際、UE122はPDUセッションおよび/またはQoSフローの内の情報を持つが、EPSベアラの情報は持たなくてよい。  The EPC 104 does not need to have PDU sessions and/or QoS flows. Also, 5GC110 does not need to have an EPS bearer. When UE 122 is connected with EPC 104, UE 122 has information of EPS bearers, but may not have information within PDU sessions and/or QoS flows. Also, when the UE 122 is connected to the 5GC 110, the UE 122 may have information in PDU sessions and/or QoS flows, but not EPS bearer information.
 なお、以下の説明において、eNB102および/またはgNB108を単に基地局装置とも称し、UE122を単に端末装置又はUEとも称する。 In the following description, eNB 102 and/or gNB 108 are also simply referred to as base station apparatuses, and UE 122 is simply referred to as terminal apparatus or UE.
 図2は本発明の実施形態に係るE-UTRAプロトコル構成(protocol architecture)の一例の図である。また図3は本発明の実施形態に係るNRプロトコル構成の一例の図である。なお図2および/または図3を用いて説明する各プロトコルの機能は、本発明の実施形態に密接に関わる一部の機能であり、他の機能を持っていてよい。なお、本発明の実施の形態において、上りリンク(uplink:UL)とは端末装置から基地局装置へのリンクであってよい。また本発明の各実施の形態において、下りリンク(downlink:DL)とは基地局装置から端末装置へのリンクであってよい。 FIG. 2 is a diagram of an example of E-UTRA protocol architecture according to an embodiment of the present invention. Also, FIG. 3 is a diagram of an example of the NR protocol configuration according to the embodiment of the present invention. Note that the functions of each protocol described using FIG. 2 and/or FIG. 3 are part of the functions closely related to the embodiment of the present invention, and may have other functions. In addition, in the embodiment of the present invention, an uplink (UL) may be a link from a terminal device to a base station device. Also, in each embodiment of the present invention, the downlink (DL) may be a link from a base station apparatus to a terminal apparatus.
 図2(A)はE-UTRAユーザプレーン(UP)プロトコルスタックの図である。図2(A)に示す通り、E-UTRAN UPプロトコルは、UE122とeNB102の間のプロトコルであってよい。即ちE-UTRANUPプロトコルは、ネットワーク側ではeNB102で終端するプロトコルであってよい。図2(A)に示す通り、E-UTRAユーザプレーンプロトコルスタックは、無線物理層(無線物理レイヤ)であるPHY(Physical layer)200、媒体アクセス制御層(媒体アクセス制御レイヤ)であるMAC(Medium Access Control)202、無線リンク制御層(無線リンク制御レイヤ)であるRLC(Radio Link Control)204、及びパケットデータ収束プロトコル層(パケットデータ収束プロトコルレイヤ)である、PDCP(Packet Data Convergence Protocol)206から構成されてよい。  Figure 2(A) is a diagram of the E-UTRA User Plane (UP) protocol stack. The E-UTRAN UP protocol may be the protocol between UE 122 and eNB 102, as shown in FIG. 2(A). That is, the E-UTRANUP protocol may be a protocol that terminates at the eNB 102 on the network side. As shown in Figure 2(A), the E-UTRA user plane protocol stack consists of a PHY (Physical layer) 200 that is a radio physical layer (radio physical layer), a MAC (Medium) that is a medium access control layer (medium access control layer). Access Control) 202, RLC (Radio Link Control) 204 which is a radio link control layer (radio link control layer), and PDCP (Packet Data Convergence Protocol) 206 which is a packet data convergence protocol layer may be configured.
 図3(A)はNRユーザプレーン(UP)プロトコルスタックの図である。図3(A)に示す通り、NRUPプロトコルは、UE122とgNB108の間のプロトコルであってよい。即ちNR UPプロトコルは、ネットワーク側ではgNB108で終端するプロトコルであってよい。図3(A)に示す通り、E-UTRAユーザプレーンプロトコルスタックは、無線物理層であるPHY300、媒体アクセス制御層であるMAC302、無線リンク制御層であるRLC304、パケットデータ収束プロトコル層である、PDCP306、及びサービスデータ適応プロトコル層(サービスデータ適応プロトコルレイヤ)SDAP(Service Data Adaptation Protocol)310であるから構成されてよい。  Figure 3(A) is a diagram of the NR user plane (UP) protocol stack. The NRUP protocol may be the protocol between UE 122 and gNB 108, as shown in FIG. 3(A). That is, the NR UP protocol may be a protocol that terminates at the gNB 108 on the network side. As shown in FIG. 3(A), the E-UTRA user plane protocol stack consists of PHY 300, which is a radio physical layer, MAC 302, which is a medium access control layer, RLC 304, which is a radio link control layer, and PDCP 306, which is a packet data convergence protocol layer. , and a service data adaptation protocol layer (SDAP) (Service Data Adaptation Protocol) 310 .
 図2(B)はE-UTRA制御プレーン(CP)プロトコル構成の図である。図2(B)に示す通り、E-UTRAN CPプロトコルにおいて、無線リソース制御層(無線リソース制御レイヤ)であるRRC(Radio Resource Control)208は、UE122とeNB102の間のプロトコルであってよい。即ちRRC208は、ネットワーク側ではeNB102で終端するプロトコルであってよい。またE-UTRAN CPプロトコルにおいて、非AS(Access Stratum)層(非ASレイヤ)であるNAS(Non Access Stratum)210は、UE122とMMEとの間のプロトコルであってよい。即ちNAS210は、ネットワーク側ではMMEで終端するプロトコルであってよい。  Figure 2(B) is a diagram of the E-UTRA control plane (CP) protocol configuration. As shown in FIG. 2(B), in the E-UTRAN CP protocol, RRC (Radio Resource Control) 208, which is a radio resource control layer (radio resource control layer), may be a protocol between UE 122 and eNB 102. That is, RRC 208 may be a protocol that terminates at eNB 102 on the network side. Also, in the E-UTRAN CP protocol, NAS (Non Access Stratum) 210, which is a non-AS (Access Stratum) layer (non-AS layer), may be a protocol between UE 122 and MME. That is, the NAS 210 may be a protocol that terminates at the MME on the network side.
 図3(B)はNR制御プレーン(CP)プロトコル構成の図である。図3(B)に示す通り、NR CPプロトコルにおいて、無線リソース制御層であるRRC308は、UE122とgNB108の間のプロトコルであってよい。即ちRRC308は、ネットワーク側ではgNB108で終端するプロトコルであってよい。またE-UTRAN CPプロトコルにおいて、非AS層であるNAS312は、UE122とAMFとの間のプロトコルであってよい。即ちNAS312は、ネットワーク側ではAMFで終端するプロトコルであってよい。  Fig. 3(B) is a diagram of the NR control plane (CP) protocol configuration. As shown in FIG. 3(B), in the NR CP protocol, RRC 308, which is a radio resource control layer, may be a protocol between UE 122 and gNB 108. That is, RRC 308 may be a protocol that terminates at gNB 108 on the network side. Also in the E-UTRAN CP protocol, the non-AS layer NAS 312 may be the protocol between the UE 122 and AMF. That is, the NAS 312 may be a protocol that terminates with AMF on the network side.
 なおAS(Access Stratum)層とは、UE122とeNB102および/またはgNB108との間で終端する層であってよい。即ちAS層とは、PHY200、MAC202、RLC204、PDCP206、及びRRC208の一部又は全てを含む層、および/またはPHY300、MAC302、RLC304、PDCP306、SDAP310、及びRRC308の一部又は全てを含む層であってよい。 Note that the AS (Access Stratum) layer may be a layer that terminates between UE 122 and eNB 102 and/or gNB 108. That is, the AS layer is a layer including part or all of PHY200, MAC202, RLC204, PDCP206 and RRC208 and/or a layer including part or all of PHY300, MAC302, RLC304, PDCP306, SDAP310 and RRC308. you can
 なお本発明の実施の形態において、以下E-UTRAのプロトコルとNRのプロトコルを区別せず、PHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)と言う用語を用いる場合がある。この場合、PHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)は其々E-UTRAプロトコルのPHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)であってよいし、NRプロトコルの、PHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)であってよい。またSDAP(SDAP層)は、NRプロトコルのSDAP(SDAP層)であってよい。 In the embodiments of the present invention, PHY (PHY layer), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), RRC ( RRC layer) and NAS (NAS layer) are sometimes used. In this case, PHY (PHY layer), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), RRC (RRC layer), and NAS (NAS layer) are the PHY (PHY layer) of the E-UTRA protocol. ), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), RRC (RRC layer), NAS (NAS layer), NR protocol, PHY (PHY layer), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), RRC (RRC layer), NAS (NAS layer). Also, the SDAP (SDAP layer) may be the SDAP (SDAP layer) of the NR protocol.
 また本発明の実施の形態において、以下E-UTRAのプロトコルとNRのプロトコルを区別する場合、PHY200、MAC202、RLC204、PDCP206、及びRRC208を、それぞれE-UTRA用PHY又はLTE用PHY、E-UTRA用MAC又はLTE用MAC、E-UTRA用RLC又はLTE用RLC、E-UTRA用PDCP又はLTE用PDCP、及びE-UTRA用RRC又はLTE用RRCと呼ぶこともある。またPHY200、MAC202、RLC204、PDCP206、及びRRC208を、それぞれE-UTRA PHY又はLTE PHY、E-UTRA MAC又はLTE MAC、E-UTRA RLC又はLTE RLC、E-UTRA PDCP又はLTE PDCP、及びE-UTRA RRC又はLTE RRCなどと記述する場合もある。また、E-UTRAのプロトコルとNRのプロトコルを区別する場合、PHY300、MAC302、RLC304、PDCP306、RRC308を、それぞれNR用PHY、NR用MAC、NR用RLC、NR用RLC、及びNR用RRCと呼ぶこともある。またPHY200、MAC302、RLC304、PDCP306、及びRRC308を、それぞれNR PHY、NR MAC、NR RLC、NR PDCP、NR RRCなどと記述する場合もある。 Further, in the embodiment of the present invention, when distinguishing between E-UTRA protocol and NR protocol, PHY 200, MAC 202, RLC 204, PDCP 206, and RRC 208 are respectively defined as PHY for E-UTRA or PHY for LTE, E-UTRA MAC for LTE or MAC for LTE, RLC for E-UTRA or RLC for LTE, PDCP for E-UTRA or PDCP for LTE, and RRC for E-UTRA or RRC for LTE. PHY200, MAC202, RLC204, PDCP206 and RRC208 respectively E-UTRA PHY or LTE PHY, E-UTRA MAC or LTE MAC, E-UTRA RLC or LTE RLC, E-UTRA PDCP or LTE PDCP and E-UTRA It may also be described as RRC or LTE RRC. Also, when distinguishing between the E-UTRA protocol and the NR protocol, PHY 300, MAC 302, RLC 304, PDCP 306, and RRC 308 are called PHY for NR, MAC for NR, RLC for NR, RLC for NR, and RRC for NR, respectively. Sometimes. PHY 200, MAC 302, RLC 304, PDCP 306, and RRC 308 may also be described as NR PHY, NR MAC, NR RLC, NR PDCP, NR RRC, etc., respectively.
 E-UTRAおよび/またはNRのAS層におけるエンティティ(entity)について説明する。MAC層の機能の一部又は全てを持つエンティティのことをMACエンティティと呼んでよい。RLC層の機能の一部又は全てを持つエンティティのことをRLCエンティティと呼んでよい。PDCP層の機能の一部又は全てを持つエンティティのことをPDCPエンティティと呼んでよい。SDAP層の機能の一部又は全てを持つエンティティのことをSDAPエンティティと呼んでよい。RRC層の機能の一部又は全てを持つエンティティのことをRRCエンティティと呼んでよい。MACエンティティ、RLCエンティティ、PDCPエンティティ、SDAPエンティティ、RRCエンティティを、それぞれMAC、RLC、PDCP、SDAP、RRCと言い換えてよい。 Explain the entities in the AS layer of E-UTRA and/or NR. An entity that has some or all of the functionality of the MAC layer may be called a MAC entity. An entity that has some or all of the functionality of the RLC layer may be called an RLC entity. An entity that has some or all of the functionality of the PDCP layer may be called a PDCP entity. An entity that has some or all of the functionality of the SDAP layer may be called an SDAP entity. An entity that has some or all of the functionality of the RRC layer may be called an RRC entity. The MAC entity, RLC entity, PDCP entity, SDAP entity, and RRC entity may be replaced with MAC, RLC, PDCP, SDAP, and RRC, respectively.
 なお、MAC、RLC、PDCP、SDAPから下位層に提供されるデータ、および/またはMAC、RLC、PDCP、SDAPに下位層から提供されるデータのことを、それぞれMAC PDU(Protocol Data Unit)、RLC PDU、PDCP PDU、SDAP PDUと呼んでよい。また、MAC、RLC、PDCP、SDAPに上位層から提供されるデータ、および/またはMAC、RLC、PDCP、SDAPから上位層に提供するデータのことを、それぞれMAC SDU(Service Data Unit)、RLC SDU、PDCP SDU、SDAP SDUと呼んでよい。また、セグメントされたRLC SDUのことをRLC SDUセグメントと呼んでよい。 The data provided from MAC, RLC, PDCP, SDAP to the lower layer and/or the data provided from the lower layer to MAC, RLC, PDCP, SDAP are respectively referred to as MAC PDU (Protocol Data Unit), RLC You may call them PDUs, PDCP PDUs, and SDAP PDUs. In addition, MAC SDU (Service Data Unit) and RLC SDU refer to data provided from upper layers to MAC, RLC, PDCP, and SDAP and/or data provided from MAC, RLC, PDCP, and SDAP to upper layers, respectively. , PDCP SDU, and SDAP SDU. A segmented RLC SDU may also be referred to as an RLC SDU segment.
 PHYの機能の一例について説明する。端末装置のPHYは基地局装置のPHYから、下りリンク(Downlink:DL)物理チャネル(Physical Channel)を介して伝送されたデータを受信する機能を有してよい。端末装置のPHYは基地局装置のPHYに対し、上りリンク(Uplink:UL)物理チャネルを介してデータを送信する機能を有してよい。PHYは上位のMACと、トランスポートチャネル(Transport Channel)で接続されてよい。PHYはトランスポートチャネルを介してMACにデータを受け渡してよい。またPHYはトランスポートチャネルを介してMACからデータを提供されてよい。PHYにおいて、様々な制御情報を識別するために、RNTI(Radio Network Temporary Identifier)が用いられてよい。 I will explain an example of PHY functions. The PHY of the terminal device may have a function of receiving data transmitted from the PHY of the base station device via a downlink (DL) physical channel. The PHY of the terminal device may have a function of transmitting data to the PHY of the base station device via an uplink (UL) physical channel. A PHY may be connected to a high-level MAC via a Transport Channel. The PHY may pass data to the MAC over transport channels. The PHY may also be provided with data from the MAC over the transport channel. In the PHY, RNTI (Radio Network Temporary Identifier) may be used to identify various control information.
 ここで、物理チャネルについて説明する。 Here, the physical channel will be explained.
 端末装置と基地局装置との無線通信に用いられる物理チャネルには、以下の物理チャネルが含まれてよい。 The physical channels used for wireless communication between the terminal device and the base station device may include the following physical channels.
  PBCH(物理報知チャネル:Physical Broadcast CHannel)
  PDCCH(物理下りリンク制御チャネル:Physical Downlink Control CHannel)
  PDSCH(物理下りリンク共用チャネル:Physical Downlink Shared CHannel)
  PUCCH(物理上りリンク制御チャネル:Physical Uplink Control CHannel)
  PUSCH(物理上りリンク共用チャネル:Physical Uplink Shared CHannel)
  PRACH(物理ランダムアクセスチャネル:Physical Random Access CHannel)
PBCH (Physical Broadcast CHannel)
PDCCH (Physical Downlink Control CHannel)
PDSCH (Physical Downlink Shared CHannel)
PUCCH (Physical Uplink Control CHannel)
PUSCH (Physical Uplink Shared CHannel)
PRACH (Physical Random Access CHannel)
 PBCHは、端末装置が必要とするシステム情報を報知するために用いられてよい。 The PBCH may be used to broadcast system information required by terminal equipment.
 また、NRにおいて、PBCHは、同期信号のブロック(SS/PBCHブロック、SSBとも称する)の周期内の時間インデックス(SSB-Index)を報知するために用いられてよい。 In addition, in NR, the PBCH may be used to report the time index (SSB-Index) within the period of the synchronization signal block (SS/PBCH block, also called SSB).
 PDCCHは、下りリンクの無線通信(基地局装置から端末装置への無線通信)において、下りリンク制御情報(Downlink Control Information:DCI)を送信する(または運ぶ)ために用いられてよい。ここで、下りリンク制御情報の送信に対して、一つまたは複数のDCI(DCIフォーマットと称してもよい)が定義されてよい。すなわち、下りリンク制御情報に対するフィールドがDCIとして定義され、情報ビットへマップされてよい。PDCCHは、PDCCH候補(candidate)において送信されてよい。端末装置は、サービングセルにおいてPDCCH候補のセットをモニタしてよい。PDCCH候補のセットをモニタするとは、あるDCIフォーマットに応じてPDCCHのデコードを試みることを意味してよい。DCIフォーマットは、サービングセルにおけるPUSCHのスケジューリングのために用いられてもよい。PUSCHは、ユーザデータの送信や、後述するRRCメッセージの送信などのために使われてよい。 The PDCCH may be used to transmit (or carry) downlink control information (DCI) in downlink radio communication (radio communication from the base station device to the terminal device). Here, one or more DCIs (which may also be referred to as DCI formats) may be defined for transmission of downlink control information. That is, a field for downlink control information may be defined as DCI and mapped to information bits. A PDCCH may be sent in a PDCCH candidate. A terminal may monitor a set of PDCCH candidates in a serving cell. Monitoring a set of PDCCH candidates may mean attempting to decode the PDCCH according to a certain DCI format. The DCI format may be used for PUSCH scheduling in the serving cell. PUSCH may be used for transmission of user data, transmission of RRC messages to be described later, and the like.
 PUCCHは、上りリンクの無線通信(端末装置から基地局装置への無線通信)において、上りリンク制御情報(Uplink Control Information:UCI)を送信するために用いられてよい。ここで、上りリンク制御情報には、下りリンクのチャネルの状態を示すために用いられるチャネル状態情報(CSI:Channel State Information)が含まれてもよい。また、上りリンク制御情報には、UL-SCH(UL-SCH:Uplink Shared CHannel)リソースを要求するために用いられるスケジューリングリクエスト(SR:Scheduling Request)が含まれてもよい。また、上りリンク制御情報には、HARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)が含まれてもよい。 The PUCCH may be used to transmit uplink control information (UCI) in uplink radio communication (radio communication from a terminal device to a base station device). Here, the uplink control information may include channel state information (CSI: Channel State Information) used to indicate the state of the downlink channel. The uplink control information may also include a scheduling request (SR: Scheduling Request) used to request UL-SCH (UL-SCH: Uplink Shared CHannel) resources. Also, the uplink control information may include HARQ-ACK (Hybrid Automatic Repeat request ACKnowledgement).
 PDSCHは、MAC層からの下りリンクデータ(DL-SCH:Downlink Shared CHannel)の送信に用いられてよい。また、下りリンクの場合にはシステム情報(SI:System Information)やランダムアクセス応答(RAR:Random Access Response)などの送信に用いられてよい。 The PDSCH may be used to transmit downlink data (DL-SCH: Downlink Shared CHannel) from the MAC layer. Also, in the case of downlink, it may be used for transmission of system information (SI: System Information), random access response (RAR: Random Access Response), and the like.
 PUSCHは、MAC層からの上りリンクデータ(UL-SCH:Uplink Shared CHannel)または上りリンクデータと共にHARQ-ACKおよび/またはCSIを送信するために用いられてもよい。またPUSCHは、CSIのみ、または、HARQ-ACKおよびCSIのみを送信するために用いられてもよい。すなわちPUSCHは、UCIのみを送信するために用いられてもよい。また、PDSCHまたはPUSCHは、RRCシグナリング(RRCメッセージとも称する)、およびMAC制御要素(MACコントロールエレメント:MAC CE)を送信するために用いられてもよい。ここで、PDSCHにおいて、基地局装置から送信されるRRCシグナリングは、セル内における複数の端末装置に対して共通のシグナリングであってもよい。また、基地局装置から送信されるRRCシグナリングは、ある端末装置に対して専用のシグナリング(dedicated signalingとも称する)であってもよい。すなわち、端末装置固有(UEスペシフィック)の情報は、ある端末装置に対して専用のシグナリングを用いて送信されてもよい。また、PUSCHは、上りリンクにおいてUEの能力(UE Capability)の送信に用いられてもよい。 PUSCH may be used to transmit HARQ-ACK and/or CSI together with uplink data (UL-SCH: Uplink Shared CHannel) or uplink data from the MAC layer. PUSCH may also be used to transmit CSI only, or HARQ-ACK and CSI only. That is, PUSCH may be used to transmit UCI only. PDSCH or PUSCH may also be used to transmit RRC signaling (also referred to as RRC messages) and MAC Control Elements (MAC Control Elements: MAC CE). Here, in the PDSCH, RRC signaling transmitted from the base station apparatus may be signaling common to multiple terminal apparatuses within the cell. Also, the RRC signaling transmitted from the base station apparatus may be signaling dedicated to a certain terminal apparatus (also referred to as dedicated signaling). That is, terminal device-specific (UE-specific) information may be transmitted using signaling dedicated to a certain terminal device. PUSCH may also be used to transmit UE Capability in the uplink.
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられてもよい。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、上りリンク送信に対する同期(タイミング調整)、およびPUSCH(UL-SCH)リソースの要求を示すために用いられてもよい。 The PRACH may be used to transmit random access preambles. PRACH is used to indicate initial connection establishment procedures, handover procedures, connection re-establishment procedures, synchronization (timing adjustments) for uplink transmissions, and requests for PUSCH (UL-SCH) resources. may be used for
 E-UTRAおよび/またはNRで用いられる、上りリンク(UL:Uplink)、および/または下りリンク(DL:Downlink)用論理チャネルについて説明する。  Explain the uplink (UL: Uplink) and/or downlink (DL: Downlink) logical channels used in E-UTRA and/or NR.
 BCCH(Broadcast Control Channel)は、システム情報(SI:System Information)等の、制御情報を報知(broadcast)するための下りリンク論理チャネルであってよい。  BCCH (Broadcast Control Channel) may be a downlink logical channel for broadcasting control information such as system information (SI: System Information).
 PCCH(Paging Control Channel)は、ページング(Paging)メッセージを運ぶための下りリンク論理チャネルであってよい。 A PCCH (Paging Control Channel) may be a downlink logical channel for carrying paging messages.
 CCCH(Common Control Channel)は、端末装置と基地局装置との間で制御情報を送信するための論理チャネルであってよい。CCCHは、端末装置が、RRC接続を有しない場合に用いられてよい。またCCCHは基地局装置と複数の端末装置との間で使われてよい。 A CCCH (Common Control Channel) may be a logical channel for transmitting control information between a terminal device and a base station device. CCCH may be used when the terminal does not have an RRC connection. CCCH may also be used between the base station apparatus and a plurality of terminal apparatuses.
 DCCH(Dedicated Control Channel)は、端末装置と基地局装置との間で、1対1(point-to-point)の双方向(bi-directional)で、専用制御情報を送信するための論理チャネルであってよい。専用制御情報とは、各端末装置専用の制御情報であってよい。DCCHは、端末装置が、RRC接続を有する場合に用いられてよい。 DCCH (Dedicated Control Channel) is a logical channel for transmitting dedicated control information in a one-to-one (point-to-point) bi-directional manner between a terminal device and a base station device. It's okay. Dedicated control information may be control information dedicated to each terminal device. DCCH may be used when a terminal device has an RRC connection.
 DTCH(Dedicated Traffic Channel)は、端末装置と基地局装置との間で、1対1(point-to-point)で、ユーザデータを送信するための論理チャネルであってよい。DTCHは専用ユーザデータを送信するための論理チャネルであってよい。専用ユーザデータとは、各端末装置専用のユーザデータであってよい。DTCHは上りリンク、下りリンク両方に存在してよい。 A DTCH (Dedicated Traffic Channel) may be a logical channel for transmitting user data on a one-to-one (point-to-point) basis between a terminal device and a base station device. A DTCH may be a logical channel for transmitting dedicated user data. Dedicated user data may be user data dedicated to each terminal device. DTCH may exist in both uplink and downlink.
 MTCH(Multicast Traffic Channel)は、基地局装置から端末装置に対し、データを送信するための1対多(point-to-multipoint)の下りリンクチャネルであってよい。MTCHはマルチキャスト用論理チャネルであってよい。MTCHは、端末装置がMBMSを受信する場合にのみ、該当端末装置によって使われてよい。 MTCH (Multicast Traffic Channel) may be a point-to-multipoint downlink channel for transmitting data from base station devices to terminal devices. MTCH may be a multicast logical channel. MTCH may be used by the corresponding terminal only when the terminal receives MBMS.
 MCCH(Multicast Control Channel)は、基地局装置から端末装置へ、一つ又は複数のMTCHに対するMBMS制御情報を送るための、1対多(point-to-multipoint)の下りリンクチャネルであってよい。MCCHはマルチキャスト用論理チャネルであってよい。MCCHは端末装置がMBMSを受信する、又は端末装置がMBMSを受信することに興味がある時にのみ、該当端末装置によって使われてよい。 A MCCH (Multicast Control Channel) may be a point-to-multipoint downlink channel for sending MBMS control information for one or more MTCHs from a base station apparatus to a terminal apparatus. MCCH may be a multicast logical channel. The MCCH may be used by the terminal only when the terminal receives MBMS or is interested in receiving MBMS.
 SC-MTCH(Single Cell Multicast Traffic Channel)は、基地局装置から端末装置に対し、SC-PTMを用いてデータを送信するための1対多(point-to-multipoint)の下りリンクチャネルであってよい。SC-MTCHはマルチキャスト用論理チャネルであってよい。SC-MTCHは、端末装置がSC-PTM(Single Cell Point-To-Multipoint)を用いてMBMSを受信する場合にのみ、該当端末装置によって使われてよい。 SC-MTCH (Single Cell Multicast Traffic Channel) is a point-to-multipoint downlink channel for transmitting data from a base station apparatus to a terminal apparatus using SC-PTM. good. SC-MTCH may be a multicast logical channel. SC-MTCH may be used by the corresponding terminal device only when the terminal device receives MBMS using SC-PTM (Single Cell Point-To-Multipoint).
 SC-MCCH(Single Cell Multicast Control Channel)は、基地局装置から端末装置へ、一つ又は複数のSC-MTCHに対するMBMS制御情報を送るための、1対多(point-to-multipoint)の下りリンクチャネルであってよい。SC-MCCHはマルチキャスト用論理チャネルであってよい。SC-MCCHは端末装置がSC-PTMを用いてMBMSを受信する、又は端末装置がSC-PTMを用いてMBMSを受信することに興味がある時にのみ、該当端末装置によって使われてよい。 SC-MCCH (Single Cell Multicast Control Channel) is a point-to-multipoint downlink for sending MBMS control information for one or more SC-MTCH from the base station apparatus to the terminal apparatus. can be a channel. SC-MCCH may be a multicast logical channel. The SC-MCCH may be used by the terminal only when the terminal receives MBMS using SC-PTM or when the terminal is interested in receiving MBMS using SC-PTM.
 E-UTRAおよび/またはNRにおける上りリンクの、論理チャネルとトランスポートチャネルのマッピングについて説明する。  Explains the uplink mapping of logical channels and transport channels in E-UTRA and/or NR.
 CCCHは、上りリンクトランスポートチャネルである、UL-SCH(Uplink Shared Channel)にマップされてよい。 CCCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
 DCCHは、上りリンクトランスポートチャネルである、UL-SCH(Uplink Shared Channel)にマップされてよい。 The DCCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
 DTCHは、上りリンクトランスポートチャネルである、UL-SCH(Uplink Shared Channel)にマップされてよい。 DTCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
 E-UTRAおよび/またはNRにおける下りリンクの、論理チャネルとトランスポートチャネルのマッピングについて説明する。  Explains the mapping of downlink logical channels and transport channels in E-UTRA and/or NR.
 BCCHは、下りリンクトランスポートチャネルであるBCH(Broadcast Channel)、および/またはDL-SCH(Downlink Shared Channel)にマップされてよい。 BCCH may be mapped to BCH (Broadcast Channel), which is a downlink transport channel, and/or DL-SCH (Downlink Shared Channel).
 PCCHは、下りリンクトランスポートチャネルであるPCH(Paging Channel)にマップされてよい。 PCCH may be mapped to PCH (Paging Channel), which is a downlink transport channel.
 CCCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされてよい。 CCCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 DCCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされてよい。 The DCCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 DTCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされてよい。 DTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 MTCHは、下りリンクトランスポートチャネルであるMCH(Multicast Channel)にマップされてよい。 MTCH may be mapped to MCH (Multicast Channel), which is a downlink transport channel.
 MCCHは、下りリンクトランスポートチャネルであるMCH(Multicast Channel)にマップされてよい。 MCCH may be mapped to MCH (Multicast Channel), which is a downlink transport channel.
 SC-MTCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされてよい。  SC-MTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 SC-MTCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされてよい。  SC-MTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 MACの機能の一例について説明する。MACは、MAC副層(サブレイヤ)と呼ばれてよい。 I will explain an example of MAC functions. A MAC may be referred to as a MAC sublayer.
 MACは、多様な論理チャネル(ロジカルチャネル:Logical Channel)を、対応するトランスポートチャネルに対してマッピングを行う機能を持ってよい。論理チャネルは、論理チャネル識別子(Logical Channel Identity、又はLogical Channel ID)によって識別されてよい。MACは上位のRLCと、論理チャネル(ロジカルチャネル)で接続されてよい。論理チャネルは、伝送される情報の種類によって、制御情報を伝送する制御チャネルと、ユ-ザ情報を伝送するトラフィックチャネルに分けられてよい。また論理チャネルは、上りリンク論理チャネルと、下りリンク論理チャネルに分けられてよい。MACは、一つ又は複数の異なる論理チャネルに所属するMAC SDUを多重化(multiplexing)して、PHYに提供する機能を持ってよい。またMACは、PHYから提供されたMAC PDUを逆多重化(demultiplexing)し、各MAC SDUが所属する論理チャネルを介して上位レイヤに提供する機能を持ってよい。 The MAC may have the function of mapping various logical channels (Logical Channel) to the corresponding transport channels. A logical channel may be identified by a logical channel identifier (Logical Channel Identity or Logical Channel ID). A MAC may be connected to an upper RLC via a logical channel (logical channel). Logical channels may be divided into control channels for transmitting control information and traffic channels for transmitting user information according to the type of information to be transmitted. Logical channels may also be divided into uplink logical channels and downlink logical channels. The MAC may have the ability to multiplex MAC SDUs belonging to one or more different logical channels and provide them to the PHY. The MAC may also have the function of demultiplexing the MAC PDUs provided by the PHY and providing them to upper layers via the logical channel to which each MAC SDU belongs.
 またMACは、HARQ(Hybrid Automatic Repeat reQuest)を通して誤り訂正を行う機能を持ってよい。またMACは、動的スケジューリングを用いて、端末装置間の優先処理を行う機能を持ってよい。またMACは、一つの端末装置内の論理チャネル間の優先処理を行う機能を持ってよい。MACは、一つの端末装置内でオーバーラップしたリソースの優先処理を行う機能を持ってよい。  MAC may also have a function to perform error correction through HARQ (Hybrid Automatic Repeat reQuest). Also, the MAC may have a function of performing priority processing between terminal devices using dynamic scheduling. Also, the MAC may have a function of performing priority processing between logical channels within one terminal device. The MAC may have a function of prioritizing overlapping resources within one terminal device.
 E-UTRA MACはMultimedia Broadcast Multicast Services(MBMS)を識別する機能を持ってよい。またNR MACは、マルチキャスト/ブロードキャストサービス(Multicast Broadcast Service:MBS)を識別する機能を持ってよい。  E-UTRA MAC may have the ability to identify Multimedia Broadcast Multicast Services (MBMS). The NR MAC may also have a function of identifying Multicast/Broadcast Service (MBS).
 MACは、トランスポートフォーマットを選択する機能を持ってよい。MACは、間欠受信(DRX:Discontinuous Reception)および/または間欠送信(DTX:Discontinuous Transmission)を行う機能、ランダムアクセス(Random Access:RA)手順を実行する機能、送信可能電力の情報を通知する、パワーヘッドルームレポーティング(Power Headroom Reporting)機能、送信バッファのデータ量情報を通知する、バッファステータスレポーティング(Buffer Status Reporting)機能、などを持ってよい。  MAC may have a function to select a transport format. MAC has a function of performing discontinuous reception (DRX) and/or discontinuous transmission (DTX: discontinuous transmission), a function of executing random access (RA) procedure, notifying information of transmittable power, power It may have a power headroom reporting function, a buffer status reporting function that notifies the amount of data in the transmission buffer, and so on.
 NR MACは帯域適応(Bandwidth Adaptation:BA)機能を持ってよい。またE-UTRA MACで用いられるMAC PDUフォーマットとNR MACで用いられるMAC PDUフォーマットは異なってよい。またMAC PDUには、MACにおいて制御を行うための要素である、MAC制御要素(MACコントロールエレメント:MAC CE)が含まれてよい。  NR MAC may have a Bandwidth Adaptation (BA) function. Also, the MAC PDU format used in E-UTRA MAC and the MAC PDU format used in NR MAC may be different. The MAC PDU may also include a MAC control element (MAC control element: MAC CE), which is an element for performing control in MAC.
 バッファステータスレポーティング手順(BSR手順)、およびバッファステータスレポート(Buffer Status Report:BSR)について説明する。BSR手順は、サービングgNB(基地局装置)にMACエンティティ内の上りリンクデータボリュームについての情報を提供するために用いられてよい。 Explains the buffer status reporting procedure (BSR procedure) and the buffer status report (Buffer Status Report: BSR). The BSR procedure may be used to provide the serving gNB (base station equipment) with information about the uplink data volume within the MAC entity.
 各論理チャネルはRRCから提供されるパラメータ(logicalChannelGroup)を用いて一つの論理チャネルグループ(Logical Channel Group:LCG)に割り当てられてよい。LCGの最大数は8個であってよい。端末装置のMACエンティティは、RLCおよびPDCPにおけるデータボリューム計算の手順によって(according to the data volume calculation procedure)、論理チャネルに対する利用可能な上りリンクデータの量(the amount of UL data availablefor a logical channel)を決定してよい。 Each logical channel may be assigned to one logical channel group (Logical Channel Group: LCG) using a parameter (logicalChannelGroup) provided by RRC. The maximum number of LCGs can be eight. The MAC entity of the terminal equipment shall calculate the amount of UL data available for a logical channel according to the data volume calculation procedure in RLC and PDCP. You can decide.
 下記の(A)から(D)の何れかの条件を満たすことに基づいてBSRがトリガされてよい。
  (A)あるLCGに属するある論理チャネルのための上りリンクデータが端末装置のMACエンティティに対して利用可能(Available)になり、(1)この上りリンクデータが、何れのLCGに属する利用可能な上りリンクデータを含む論理チャネルの優先度よりも高い優先度の論理チャネルに属するとき、または(2)LCGに属する何れの論理チャネルも利用可能な上りリンクデータを含まないとき。(この条件でトリガされるBSRはレギュラーBSRであってよい。)
  (B)上りリンクリソースが割り当てられ、パディングビットの数がバッファステータスレポートMAC CE(BSR MAC CE)にそのサブヘッダを加えた数以上であるとき。(この条件でトリガされるBSRはパディングBSRであってよい。)
  (C)BSRの制御に用いられるタイマー(retxBSR-Timer)が満了し、LCGに属する論理チャネルの少なくとも一つが上りリンクデータを含むとき。(この条件でトリガされるBSRはレギュラーBSRであってよい。)
  (D)BSRの制御に用いられるタイマー(periodicBSR-Timer)が満了したとき。(この条件でトリガされるBSRは定期BSRであってよい。)
A BSR may be triggered based on meeting any of the following conditions (A) through (D).
(A) Uplink data for a certain logical channel belonging to a certain LCG becomes available (Available) to the MAC entity of the terminal device, and (1) This uplink data belongs to any LCG and becomes available. (2) when any logical channel belonging to the LCG contains no available uplink data; (The BSR triggered by this condition may be a regular BSR.)
(B) when uplink resources are allocated and the number of padding bits is equal to or greater than the buffer status report MAC CE (BSR MAC CE) plus its subheader; (A BSR triggered by this condition may be a padding BSR.)
(C) When the timer (retxBSR-Timer) used for BSR control expires and at least one of the logical channels belonging to the LCG contains uplink data. (The BSR triggered by this condition may be a regular BSR.)
(D) When the timer used to control the BSR (periodicBSR-Timer) expires. (BSRs triggered by this condition may be periodic BSRs.)
 レギュラーBSRおよび定期BSRに対して、端末装置のMACエンティティは、BSRを含むMAC PDUが構築されるときに二つ以上のLCGが送信に利用可能なデータを持つなら、送信に利用可能なデータを持つすべてのLCGのためのLong BSRをレポートしてよい。レギュラーBSRおよび定期BSRに対して、端末装置のMACエンティティは、BSRを含むMAC PDUが構築されるときに二つ以上のLCGが送信に利用可能なデータを持たないなら、Short BSRをレポートしてよい。 For Regular BSR and Periodic BSR, the MAC entity of the terminal shall indicate data available for transmission if more than one LCG has data available for transmission when the MAC PDU containing the BSR is constructed. May report Long BSR for all LCGs with For Regular BSR and Periodic BSR, the terminal MAC entity shall report Short BSR if two or more LCGs have no data available for transmission when the MAC PDU containing the BSR is constructed. good.
 パディングBSRに対して、端末装置のMACエンティティは、パディングビット数、Short BSRのサイズ、およびLong BSRのサイズに基づき、Short Truncated BSRをレポートするか、Long Truncated BSRをレポートするか、Short BSRをレポートするか、Long BSRをレポートするかを決定してよい。 For padding BSR, the MAC entity of the terminal device reports Short Truncated BSR, reports Long Truncated BSR, or reports Short BSR, based on the number of padding bits, the size of Short BSR, and the size of Long BSR. or report a Long BSR.
 retxBSR-Timerの満了に基づいてトリガされるBSRに対して、端末装置のMACエンティティは、BSRがトリガされたときに、BSRをトリガした論理チャネルが、送信に利用可能なデータを持つ最も高い優先度の論理チャネルであるとみなしてよい。 For BSR triggered based on expiry of the retxBSR-Timer, the MAC entity of the terminal device shall indicate when the BSR is triggered that the logical channel that triggered the BSR has the highest priority with data available for transmission. may be considered to be a logical channel of
 端末装置のMACエンティティは、少なくとも一つのBSRがトリガされそのBSRがキャンセルされておらず、UL-SCHリソースが新しい送信のために利用可能であり、そのUL-SCHリソースは論理チャネル優先順位付け(logical channel prioritization)の結果としてBSR MAC CEとそのサブヘッダを収容することができること、に基づいて下記(A)から(C)の一部または全部の処理を行ってよい。
  (A)一つまたは複数のBSR MAC CEを生成する、または、一つまたは複数のBSR MAC CE生成を他のエンティティに指示する
  (B)すべての生成されたBSRがLong Truncated BSRおよびShort Truncated BSRである場合を除き、periodicBSR-Timerをスタートまたは再スタートさせる
  (C)retxBSR-Timerをスタートまたは再スタートさせる
The MAC entity of the terminal device indicates that at least one BSR has been triggered and that BSR has not been canceled, that UL-SCH resources are available for new transmissions, and that UL-SCH resources are assigned logical channel prioritization ( Some or all of the following (A) to (C) may be performed based on the fact that the BSR MAC CE and its subheaders can be accommodated as a result of logical channel prioritization.
(A) Generate one or more BSR MAC CEs or instruct other entities to generate one or more BSR MAC CEs (B) All generated BSRs are Long Truncated BSRs and Short Truncated BSRs Starts or restarts the periodicBSR-Timer, unless (C) Starts or restarts the retxBSR-Timer
 たとえ複数のイベント(条件)によって複数のBSRがトリガされたときでも、MAC PDUは、最大一つのBSR MAC CEを含んでよい。レギュラーBSRおよび定期BSRはパディングBSRを超える優先順位を持ってよい。 A MAC PDU may contain at most one BSR MAC CE, even when multiple BSRs are triggered by multiple events (conditions). Regular BSRs and Periodic BSRs may have priority over Padding BSRs.
 端末装置のMACエンティティは、何れかのUL-SCHで新しいデータの送信のためのグラントを受信することに基づいて、retxBSR-Timerを再スタートさせてよい。 The MAC entity of the terminal device may restart the retxBSR-Timer based on receiving a grant for transmission of new data on any UL-SCH.
 パワーヘッドルームレポーティング手順(PHR手順)、およびパワーヘッドルームレポート(Power Headroom Report:PHR)について説明する。PHR手順は、サービングgNB(基地局装置)に下記の(A)から(C)の情報の一部または全部を提供するために使われてよい。
  (A)名目上の(nominal)UEの最大送信電力と活性化されたサービングセル毎のUL-SCHの送信電力の推定値との差
  (B)名目上の(nominal)UEの最大送信電力と他のMACエンティティのSpCell上のUL-SCHおよび/またはPUCCHの送信電力の推定値との差
  (C)名目上の(nominal)UEの最大送信電力と活性化されたサービングセル毎のSRSの送信電力の推定値との差
Power Headroom Reporting Procedure (PHR Procedure) and Power Headroom Report (PHR) are explained. The PHR procedure may be used to provide the serving gNB (base station equipment) with some or all of the information (A) to (C) below.
(A) The difference between the nominal UE maximum transmit power and the estimate of the UL-SCH transmit power for each activated serving cell (B) The nominal UE maximum transmit power and others (C) between the nominal UE maximum transmit power and the SRS transmit power per activated serving cell difference from estimate
 前記(A)、(B)、(C)の情報をそれぞれタイプ1パワーヘッドルーム、タイプ2パワーヘッドルーム、タイプ3パワーヘッドルームと称してもよい。また、前記(A)から(C)の一部または全部を含む情報をパワーヘッドルームと称してもよい。 The above information (A), (B), and (C) may be referred to as type 1 power headroom, type 2 power headroom, and type 3 power headroom, respectively. Also, information including part or all of (A) to (C) may be referred to as power headroom.
 パワーヘッドルームのタイプ、対象のセルおよびそのセルにおける最大送信電力の情報の組をただ一つ含むMAC CEをSingle Entry PHR MAC CEと称してもよい。また、パワーヘッドルームのタイプ、対象のセルおよびそのセルにおける最大送信電力の情報の組を複数含むMAC CEをMultiple Entry PHR MAC CEと称してもよい。 A MAC CE that contains only one set of information on the type of power headroom, the cell of interest, and the maximum transmission power in that cell may be referred to as a Single Entry PHR MAC CE. Also, a MAC CE that includes multiple sets of information on the power headroom type, target cell, and maximum transmission power in that cell may be referred to as Multiple Entry PHR MAC CE.
 どのMACエンティティに対しても、あるMACエンティティにおいて上りリンクが設定されていて、RRCメッセージで設定されている第1下りリンクBWP識別子(firstActiveDownlinkBWP-Id)で示されるBWPが休眠(Dormant)BWPに設定されていないあるSCellが活性化された場合に、UEのMACエンティティはPHRをトリガしてもよい。また、PSCellが新たに追加または変更された場合に、UEのMACエンティティはPHRをトリガしてもよい。 For any MAC entity, an uplink is set in a certain MAC entity, and the BWP indicated by the first downlink BWP identifier (firstActiveDownlinkBWP-Id) set in the RRC message is set to Dormant BWP. The UE's MAC entity may trigger a PHR when a SCell that is not activated is activated. Also, when a PSCell is newly added or changed, the MAC entity of the UE may trigger PHR.
 どのMACエンティティに対しても、あるMACエンティティにおいて上りリンクが設定されているあるSCellの活性化されたBWPが休眠(DL)BWPから休眠でないDL BWPに変更された場合に、UEのMACエンティティはPHRをトリガしてもよい。上記のBWPの変更はBWPの切り替えとして表現されてもよい。 For any MAC entity, the UE's MAC entity shall May trigger PHR. The above BWP change may be expressed as a BWP switch.
 もしMACエンティティが新たな送信のために割り当てられた上りリンクのリソースを持っているのであれば、UEのMACエンティティは下記の(A)、(B)の一部または全部の処理をおこなってよい。
  (A)もしこの上りリンクのリソースが、最後にMACがリセットされてから最初のものであれば、タイマー(phr-PeriodicTimer)を開始する。
  (B)もしPHR手順によって、最低でも一つのPHRがトリガされ、このトリガがキャンセルされていないこと、および、論理チャネルの優先度を考慮したうえで、割り当てられた上りリンクリソースがPHRのためのMAC CEとそのサブヘッダとを収容できることに基づいて、下記の(B-1)から(B-5)の一部または全部の処理をおこなう。
  (B-1)もし収容されるMAC CEがMultiple Entry PHR MAC CEであるならば、下記の(B-1-1)から(B-1-3)の一部または全部の処理をおこなう。
   (B-1-1)同一UEの任意のMACエンティティに関連付けられた、上りリンクが設定されている活性化された各サービングセルのうち、活性化されたDL BWPが休眠(DL)BWPでないものに関して、NRサービングセルおよびE-UTRAサービングセルに対して対応付けられた上りリンクキャリアのためのタイプ1またはタイプ3パワーヘッドルームの値を取得し、もしサービングセルを関連付けているMACエンティティがこのサービングセル上での送信のために割り当てられた上りリンクのリソースを持つ、または同一UEの別のMACエンティティが設定されていて、このサービングセル上での送信のために割り当てられた上りリンクのリソースを持ち、このサービングセルでの実送信のために使われる電力を基に最大送信電力を計算することが上位レイヤで決められているのであれば、物理レイヤからこの最大送信電力の値を取得する。
   (B-1-2)もし同一UEの別のMACエンティティのSpCellのためのタイプ2パワーヘッドルームをUEがレポートしてもよいのであれば、このMACエンティティがE-UTRAのMACエンティティであればそのタイプ2パワーヘッドルームの値を取得し、さらにこのMACエンティティのSpCellでの実送信のために使われる電力を基に最大送信電力を計算することが上位レイヤで決められているのであれば、物理レイヤからこの最大送信電力の値を取得する。
   (B-1-3)論理チャネルの優先度を考慮したうえで物理レイヤからレポートされた値を基にMultiple Entry PHR MAC CEを生成し送信する。
  (B-2)もし収容されるMAC CEがSingle Entry PHR MAC CEであるならば、PCellに対して対応付けられた上りリンクキャリアのためのタイプ1パワーヘッドルームの値と対応付けられた最大送信電力の値を物理レイヤから取得し、論理チャネルの優先度を考慮したうえでこれらの値を基にSingle Entry PHR MAC CEを生成し送信する。
  (B-3)タイマー(phr-PeriodicTimer)を開始(Start)あるいは再開始(Restart)する。
  (B-4)タイマー(phr-ProhibitTimer)を開始(Start)あるいは再開始(Restart)する。
  (B-5)トリガされたすべてのPHRをキャンセルする。
If the MAC entity has uplink resources allocated for the new transmission, the MAC entity of the UE may perform some or all of (A) and (B) below. .
(A) If this uplink resource is the first since the last MAC reset, start a timer (phr-PeriodicTimer).
(B) If at least one PHR has been triggered by the PHR procedure and this trigger has not been canceled, and the assigned uplink resources are allocated for the PHR, taking into account the priority of the logical channels. Some or all of the following (B-1) to (B-5) are performed based on the ability to accommodate the MAC CE and its subheader.
(B-1) If the MAC CE to be accommodated is a Multiple Entry PHR MAC CE, perform some or all of the following (B-1-1) to (B-1-3) processing.
(B-1-1) Regarding each activated serving cell in which an uplink is configured, which is associated with an arbitrary MAC entity of the same UE and whose activated DL BWP is not a dormant (DL) BWP , obtains the type 1 or type 3 power headroom values for the uplink carriers associated with the NR serving cell and the E-UTRA serving cell, and if the MAC entity associating the serving cell is transmitting on this serving cell or another MAC entity of the same UE is configured and has uplink resources allocated for transmission on this serving cell and has uplink resources assigned for transmission on this serving cell. If the upper layer determines that the maximum transmission power is calculated based on the power used for the actual transmission, the value of this maximum transmission power is obtained from the physical layer.
(B-1-2) If the UE may report type 2 power headroom for SpCells of another MAC entity of the same UE, if this MAC entity is an E-UTRA MAC entity If it is determined by higher layers to obtain the value of the Type 2 power headroom and then calculate the maximum transmit power based on the power used for actual transmission on this MAC entity's SpCell, Get the value of this maximum transmit power from the physical layer.
(B-1-3) Generate and transmit a Multiple Entry PHR MAC CE based on the value reported from the physical layer after considering the priority of the logical channel.
(B-2) If the accommodated MAC CE is a Single Entry PHR MAC CE, the type 1 power headroom value for the uplink carrier associated with the PCell and the associated maximum transmission. Power values are obtained from the physical layer, and a Single Entry PHR MAC CE is generated and transmitted based on these values, taking into account the priority of logical channels.
(B-3) Start (Start) or restart (Restart) the timer (phr-PeriodicTimer).
(B-4) Start or restart the timer (phr-ProhibitTimer).
(B-5) Cancel all triggered PHRs.
 スケジューリングリクエスト(Scheduling Request:SR)は端末装置が新しい送信のためのUL-SCHリソースを要求するために用いられてよい。 A Scheduling Request (SR) may be used by a terminal device to request UL-SCH resources for a new transmission.
 端末装置のMACエンティティは、ゼロ、一つ、または複数のSR設定が設定されてよい。SR設定は、異なるBWPおよびセル全体のSRに対するPUCCHリソースのセットを含んでよい。一つの論理チャネルまたはビーム失敗回復に対して、最大一つのSRのためのPUCCHリソースがBWP毎に設定されてよい。  The MAC entity of the terminal device may be configured with zero, one, or multiple SR settings. The SR configuration may include a set of PUCCH resources for different BWPs and cell-wide SRs. For one logical channel or beam failure recovery, PUCCH resources for at most one SR may be configured per BWP.
 SRがトリガされたとき、そのSRがキャンセルされるまで、そのSRはペンディングしている(Pending SRである)とみなしてよい。 When an SR is triggered, it may be considered pending (it is a Pending SR) until the SR is cancelled.
 端末装置のMACエンティティは、SRを送信するときに活性化されているBWP(Active BWP)のPUCCHリソースのみが有効であるとみなしてよい。 The MAC entity of the terminal device may consider that only the PUCCH resources of the BWP (Active BWP) that are activated when transmitting the SR are valid.
 端末装置のMACエンティティは、少なくとも一つのSRがペンディングしていることと、Pending SRのための有効なPUCCHリソース設定を持っていないことに基づいて、SpCellにおいてランダムアクセスプロシージャを開始してPending SRをキャンセルしてよい。 Based on the fact that at least one SR is pending and that it does not have a valid PUCCH resource configuration for the Pending SR, the MAC entity of the terminal equipment initiates a random access procedure in the SpCell to send the Pending SR. You can cancel.
 RLCの機能の一例について説明する。RLCは、RLC副層(サブレイヤ)と呼ばれてよい。 Explain an example of RLC functions. RLC may be referred to as an RLC sublayer.
 E-UTRA RLCは、上位レイヤのPDCPから提供されたデータを、分割(Segmentation)および/または結合(Concatenation)し、下位層(下位レイヤ)に提供する機能を持ってよい。E-UTRA RLCは、下位レイヤから提供されたデータに対し、再組立て(reassembly)及びリオーダリング(re-ordering)を行い、上位レイヤに提供する機能を持ってよい。 The E-UTRA RLC may have the function of segmenting and/or concatenating the data provided from the upper layer PDCP and providing it to the lower layer. E-UTRA RLC may have the function of reassembling and re-ordering data provided from lower layers and providing it to upper layers.
 NR RLCは、上位レイヤのPDCPから提供されたデータに、PDCPで付加されたシーケンス番号とは独立したシーケンス番号を付加する機能を持ってよい。またNR RLCは、PDCPから提供されたデータ分割(Segmentation)し、下位レイヤに提供する機能を持ってよい。またNRRLCは、下位レイヤから提供されたデータに対し、再組立て(reassembly)を行い、上位レイヤに提供する機能を持ってよい。またRLCは、データの再送機能および/または再送要求機能(Automatic Repeat reQuest:ARQ)を持ってよい。 NR RLC may have a function to add a sequence number independent of the sequence number added by PDCP to the data provided by PDCP in the upper layer. Also, the NR RLC may have a function of segmenting data provided from PDCP and providing it to lower layers. The NRRLC may also have a function of reassembling data provided from lower layers and providing the reassembled data to higher layers. The RLC may also have a data retransmission function and/or a retransmission request function (Automatic Repeat reQuest: ARQ).
 またRLCは、ARQによりエラー訂正を行う機能を持ってよい。ARQを行うために、RLCの受信側から送信側に送られる、再送が必要なデータを示す制御情報を、ステータスレポートと言ってよい。またRLCの送信側から受信側に送られる、ステータスレポート送信指示のことをポール(poll)と言ってよい。またRLCは、データ重複の検出を行う機能を持ってよい。またRLCはデータ破棄の機能を持ってよい。 Also, RLC may have a function to correct errors by ARQ. The control information sent from the RLC receiver to the sender for ARQ indicating the data that needs to be retransmitted may be referred to as a status report. Also, a status report transmission instruction sent from the RLC transmitting side to the receiving side can be called a poll. The RLC may also have the capability to detect data duplication. RLC may also have a function of discarding data.
 RLCには、トランスパレントモード(TM:Transparent Mode)、非応答モード(UM:Unacknowledged Mode)、応答モード(AM:Acknowledged Mode)の3つのモードがあってよい。 RLC may have three modes: Transparent Mode (TM), Unacknowledged Mode (UM), and Acknowledged Mode (AM).
 TMでは上位層から受信したデータの分割は行わず、RLCヘッダの付加は行わなくてよい。TM RLCエンティティは単方向(uni-directional)のエンティティであって、送信(transmitting)TM RLCエンティティとして、又は受信(receiving)TM RLCエンティティとして設定されてよい。  The TM does not divide the data received from the upper layer, and does not need to add an RLC header. A TM RLC entity is a uni-directional entity and may be configured as a transmitting TM RLC entity or as a receiving TM RLC entity.
 UMでは上位層から受信したデータの分割および/または結合、RLCヘッダの付加等は行うが、データの再送制御は行わなくてよい。UM RLCエンティティは単方向のエンティティであってもよいし双方向(bi-directional)のエンティティであってもよい。UM RLCエンティティが単方向のエンティティである場合、UM RLCエンティティは送信UM RLCエンティティとして、又は受信UM RLCエンティティとして設定されてよい。UM RLCエンティティが双方向のエンティティである場合、UM RRCエンティティは送信(transmitting)サイド及び受信(receiving)サイドから構成されるUM RLCエンティティとして設定されてよい。  The UM divides and/or combines the data received from the upper layer, adds an RLC header, etc., but does not need to perform data retransmission control. A UM RLC entity may be a unidirectional entity or a bi-directional entity. If the UM RLC entity is a unidirectional entity, the UM RLC entity may be configured as a transmitting UM RLC entity or as a receiving UM RLC entity. If the UM RLC entity is a bidirectional entity, the UM RRC entity may be configured as a UM RLC entity consisting of a transmitting side and a receiving side.
 AMでは上位層から受信したデータの分割および/または結合、RLCヘッダの付加、データの再送制御等を行ってよい。AM RLCエンティティは双方向のエンティティであって、送信(transmitting)サイド及び受信(receiving)サイドから構成されるAM RLCとして設定されてよい。 The AM may divide and/or combine the data received from the upper layer, add an RLC header, control data retransmission, etc. The AM RLC entity is a bi-directional entity and may be configured as an AM RLC consisting of a transmitting side and a receiving side.
 なお、TMで下位層に提供するデータ、および/または下位層から提供されるデータのことをTMD PDUと呼んでよい。またUMで下位層に提供するデータ、および/または下位層から提供されるデータのことをUMD PDUと呼んでよい。またAMで下位層に提供するデータ、又は下位層から提供されるデータのことをAMD PDUと呼んでよい。 Data provided to the lower layer by TM and/or data provided from the lower layer may be called TMD PDU. Data provided in UM to lower layers and/or data provided by lower layers may also be referred to as UMD PDUs. Data provided to lower layers by AM or data provided from lower layers may be referred to as AMD PDUs.
 E-UTRA RLCで用いられるRLC PDUフォーマットとNR RLCで用いられるRLC PDUフォーマットは異なってよい。またRLC PDUには、データ用RLC PDUと制御用RLC PDUがあってよい。データ用RLC PDUを、RLC DATA PDU(RLC Data PDU、RLCデータPDU)と呼んでよい。また制御用RLC PDUを、RLC CONTROL PDU(RLC Control PDU、RLCコントロールPDU、RLC制御PDU)と呼んでよい。 The RLC PDU format used in E-UTRA RLC and the RLC PDU format used in NR RLC may differ. RLC PDUs may also include RLC PDUs for data and RLC PDUs for control. An RLC PDU for data may be called an RLC DATA PDU (RLC Data PDU). Also, the control RLC PDU may be called an RLC CONTROL PDU.
 PDCPの機能の一例について説明する。PDCPは、PDCP副層(サブレイヤ)と呼ばれてよい。 An example of PDCP functions will be explained. PDCP may be referred to as a PDCP sublayer.
 PDCPは、シーケンス番号のメンテナンスを行う機能を持ってよい。またPDCPは、IPパケット(IP Packet)や、イーサネットフレーム等のユーザデータを無線区間で効率的に伝送するための、ヘッダ圧縮・解凍機能を持ってもよい。IPパケットのヘッダ圧縮・解凍に用いられるプロトコルをROHC(Robust Header Compression)プロトコルと呼んでよい。 PDCP may have a function to maintain sequence numbers. PDCP may also have a header compression/decompression function for efficiently transmitting user data such as IP packets and Ethernet frames over a wireless section. A protocol used for IP packet header compression/decompression may be called ROHC (Robust Header Compression) protocol.
 またイーサネットフレームヘッダ圧縮・解凍に用いられるプロトコルをEHC(Ethernet(登録商標) Header Compression)プロトコルと呼んでよい。また、PDCPは、デ-タの暗号化・復号化の機能を持ってもよい。また、PDCPは、デ-タの完全性保護・完全性検証の機能を持ってもよい。またPDCPは、リオーダリング(re-ordering)の機能を持ってよい。またPDCPは、PDCP SDUの再送機能を持ってよい。またPDCPは、破棄タイマー(discard timer)を用いたデータ破棄を行う機能を持ってよい。またPDCPは、複製(Duplication)機能を持ってよい。またPDCPは、重複受信したデータを破棄する機能を持ってよい。 Also, the protocol used for Ethernet frame header compression/decompression may be called the EHC (Ethernet (registered trademark) Header Compression) protocol. PDCP may also have data encryption/decryption functions. In addition, PDCP may have data integrity protection and integrity verification functions. PDCP may also have a re-ordering function. PDCP may also have a retransmission function for PDCP SDUs. PDCP may also have a function of discarding data using a discard timer. PDCP may also have a duplication function. PDCP may also have a function of discarding duplicated received data.
 PDCPエンティティは双方向のエンティティであって、送信(transmitting)PDCPエンティティ、及び受信(receiving)PDCPエンティティから構成されてよい。またE-UTRA PDCPで用いられるPDCP PDUフォーマットとNR PDCPで用いられるPDCP PDUフォーマットは異なってよい。またPDCP PDUには、データ用PDCP PDUと制御用PDCP PDUがあってよい。データ用PDCP PDUを、PDCP DATA PDU(PDCP Data PDU、PDCPデータPDU)と呼んでよい。また制御用PDCP PDUを、PDCP CONTROL PDU(PDCP Control PDU、PDCPコントロールPDU、PDCP制御PDU)と呼んでよい。 A PDCP entity is a bi-directional entity and may consist of a transmitting PDCP entity and a receiving PDCP entity. Also, the PDCP PDU format used in E-UTRA PDCP and the PDCP PDU format used in NR PDCP may be different. PDCP PDUs may include data PDCP PDUs and control PDCP PDUs. A PDCP PDU for data may be called a PDCP DATA PDU (PDCP Data PDU). Also, the PDCP PDU for control may be called a PDCP CONTROL PDU (PDCP Control PDU).
 PDCP複製(PDCP duplication)について説明する。端末装置において、RRCによって無線ベアラに対する複製(Duplication)が設定されたとき、元のRLCエンティティ(Primary RLCentity)に加え、少なくとも一つの追加のRLCエンティティ(Secondary RLC entity)が、複製されたPDCP PDUを処理するために、無線ベアラに追加されてよい。このとき、(追加されたRLCエンティティを含め)すべてのRLCエンティティが同じRLCモードを持ってよい。 Explain PDCP duplication. In the terminal device, when duplication is set for the radio bearer by RRC, in addition to the original RLC entity (Primary RLC entity), at least one additional RLC entity (Secondary RLC entity) receives the duplicated PDCP PDU. It may be added to the radio bearer for processing. At this time, all RLC entities (including added RLC entities) may have the same RLC mode.
 DRBに対する複製が設定されるとき、RRCによってPDCP複製の状態(ActivatedかDeactivatedの何れか)が同時に設定されてよい。その設定後、PDCP複製の状態はMAC CEによって動的に制御されてよい。 When replication to DRB is configured, the status of PDCP replication (either Activated or Deactivated) may be configured by RRC at the same time. After that setting, the state of PDCP replication may be dynamically controlled by MAC CE.
 SRBに対する複製が設定されるとき、PDCP複製の状態は常にActivedであって、動的に制御されなくてもよい。  When replication is set for SRB, the state of PDCP replication is always Actived and does not need to be dynamically controlled.
 複製がActivatedであるとき、オリジナルのPDCP PDUと複製されたPDCP PDUとは異なるキャリアで送信されてよい。例えばMR-DCが設定された端末装置では、オリジナルのPDCP PDUと複製されたPDCP PDUとが、異なるセルグループのセルにおいて送信されてよい。 When replication is Activated, the original PDCP PDU and the replicated PDCP PDU may be sent on different carriers. For example, in a terminal device configured with MR-DC, original PDCP PDUs and replicated PDCP PDUs may be transmitted in cells of different cell groups.
 また、端末装置のRRCエンティティは、RRCメッセージによって、無線ベアラに対する複製(Duplication)が設定されてよい。このとき、RRCメッセージにはプライマリパスの情報として、セルグループの識別子、および/または論理チャネルの識別子が含まれてよい。プライマリパスとは、プライマリRLCエンティティのセルグループ識別子および論理チャネル識別子を示す情報であってよい。PDCP複製のことをPDCP重複、またはPDCP多重と称してもよい。 Also, the RRC entity of the terminal device may set duplication for the radio bearer by means of an RRC message. At this time, the RRC message may include a cell group identifier and/or a logical channel identifier as primary path information. A primary path may be information that indicates the cell group identifier and logical channel identifier of the primary RLC entity. PDCP duplication may also be referred to as PDCP duplication or PDCP multiplexing.
 SDAPの機能の一例について説明する。SDAPは、サービスデータ適応プロトコル層(サービスデータ適応プロトコルレイヤ)である。 An example of SDAP functions will be explained. SDAP is the Service Data Adaptation Protocol Layer (Service Data Adaptation Protocol Layer).
 SDAPは、5GC110から基地局装置を介して端末装置に送られるダウンリンクのQoSフローとデータ無線ベアラ(DRB)との対応付け(マッピング:mapping)、および/または端末装置から基地局装置を介して5GC110に送られるアップリンクのQoSフローと、DRBとのマッピングを行う機能を持ってよい。またSDAPはマッピングルール情報を格納する機能を持ってよい。またSDAPはQoSフロー識別子(QoS Flow ID:QFI)のマーキングを行う機能を持ってよい。なお、SDAP PDUには、データ用SDAP PDUと制御用SDAP PDUがあってよい。データ用SDAP PDUをSDAP DATA PDU(SDAP Data PDU、SDAPデータPDU)と呼んでよい。また制御用SDAP PDUをSDAP CONTROL PDU(SDAP Control PDU、SDAPコントロールPDU、SDAP制御PDU)と呼んでよい。なお端末装置のSDAPエンティティは、PDUセッションに対して一つ存在してよい。 SDAP is mapping between downlink QoS flows and data radio bearers (DRBs) sent from the 5GC 110 to the terminal device via the base station device, and/or from the terminal device via the base station device. It may have the ability to map uplink QoS flows sent to the 5GC 110 to the DRB. SDAP may also have the function of storing mapping rule information. SDAP may also have a function to mark QoS flow identifiers (QoS Flow ID: QFI). SDAP PDUs may include data SDAP PDUs and control SDAP PDUs. A data SDAP PDU may be called an SDAP DATA PDU. A control SDAP PDU may also be called an SDAP CONTROL PDU. Note that one SDAP entity of the terminal device may exist for each PDU session.
 RRCの機能の一例について説明する。 I will explain an example of RRC functions.
 RRCは、報知(ブロードキャスト:broadcast)機能を持ってよい。RRCは、EPC104および/または5GC110からの呼び出し(ページング:Paging)機能を持ってよい。RRCは、gNB108又は5GC100に接続するeNB102からの呼び出し(ページング:Paging)機能を持ってよい。またRRCは、RRC接続管理機能を持ってよい。またRRCは、無線ベアラ制御機能を持ってよい。 RRC may have a broadcast function. RRC may have call (paging) functionality from EPC 104 and/or 5GC 110 . RRC may have a paging function from eNB102 connected to gNB108 or 5GC100. RRC may also have an RRC connection management function. RRC may also have a radio bearer control function.
 またRRCは、セルグループ制御機能を持ってよい。またRRCは、モビリティ(mobility)制御機能を持ってよい。またRRCは端末装置測定レポーティング及び端末装置測定レポーティング制御機能を持ってよい。またRRCは、QoS管理機能を持ってよい。またRRCは、無線リンク失敗の検出及び復旧の機能を持ってよい。  RRC may also have a cell group control function. RRC may also have a mobility control function. RRC may also have terminal measurement reporting and terminal measurement reporting control functions. RRC may also have QoS management functions. RRC may also have radio link failure detection and recovery functionality.
 RRCは、RRCメッセージを用いて、報知、ページング、RRC接続管理、無線ベアラ制御、セルグループ制御、モビィティ制御、端末装置測定レポーティング及び端末装置測定レポーティング制御、QoS管理、無線リンク失敗の検出及び復旧等を行ってよい。なお、E-UTRA RRCで用いられるRRCメッセージやパラメータは、NR RRCで用いられるRRCメッセージやパラメータと異なってよい。 RRC uses RRC messages for broadcasting, paging, RRC connection management, radio bearer control, cell group control, mobility control, terminal equipment measurement reporting and terminal equipment measurement reporting control, QoS management, radio link failure detection and recovery, etc. may be performed. Note that the RRC messages and parameters used in E-UTRA RRC may differ from the RRC messages and parameters used in NR RRC.
 RRCメッセージは、論理チャネルのBCCHを用いて送られてよいし、論理チャネルのPCCHを用いて送られてよいし、論理チャネルのCCCHを用いて送られてよいし、論理チャネルのDCCHを用いて送られてよいし、論理チャネルのMCCHを用いて送られてよい。 The RRC message may be sent using the logical channel's BCCH, may be sent using the logical channel's PCCH, may be sent using the logical channel's CCCH, or may be sent using the logical channel's DCCH. It may be sent using the MCCH of the logical channel.
 BCCHを用いて送られるRRCメッセージには、例えばマスター情報ブロック(Master Information Block:MIB)が含まれてよいし、各タイプのシステム情報ブロック(System Information Block:SIB)が含まれてよいし、他のRRCメッセージが含まれてよい。PCCHを用いて送られるRRCメッセージには、例えばページングメッセージが含まれてよいし、他のRRCメッセージが含まれてよい。 The RRC message sent using BCCH may include, for example, a master information block (Master Information Block: MIB), each type of system information block (System Information Block: SIB) may be included, and others of RRC messages may be included. RRC messages sent using the PCCH may include, for example, paging messages and other RRC messages.
 CCCHを用いてアップリンク(UL)方向送られるRRCメッセージには、例えばRRCセットアップ要求メッセージ(RRC Setup Request)、RRC再開要求メッセージ(RRC Resume Request)、RRC再確立要求メッセージ(RRC Reestablishment Request)、RRCシステム情報要求メッセージ(RRC System Info Request)などが含まれてよい。また例えばRRC接続要求メッセージ(RRC Connection Request)、RRCコネクション再開要求メッセージ(RRC Connection Resume Request)、RRC接続再確立要求メッセージ(RRC Connection Reestablishment Request)などが含まれてよい。また他のRRCメッセージが含まれてよい。 RRC messages sent in the uplink (UL) direction using CCCH include, for example, RRC Setup Request, RRC Resume Request, RRC Reestablishment Request, RRC A system information request message (RRC System Info Request) may be included. Also, for example, RRC Connection Request, RRC Connection Resume Request, RRC Connection Reestablishment Request, etc. may be included. Other RRC messages may also be included.
 CCCHを用いてダウンリンク(DL)方向送られるRRCメッセージには、例えばRRC接続拒絶メッセージ(RRC Connection Reject)、RRC接続セットアップメッセージ(RRC Connection Setup)、RRCコネクション再確立メッセージ(RRC Connection Reestablishment)、RRCコネクション再確立拒絶メッセージ(RRC Connection Reestablishment Reject)などが含まれてよい。また例えばRRC拒絶メッセージ(RRC Reject)、RRCセットアップメッセージ(RRC Setup)などが含まれてよい。また他のRRCメッセージが含まれてよい。 RRC messages sent in the downlink (DL) direction using CCCH include, for example, RRC Connection Reject, RRC Connection Setup, RRC Connection Reestablishment, RRC A connection re-establishment rejection message (RRC Connection Reestablishment Reject) may be included. Also, for example, an RRC rejection message (RRC Reject), an RRC setup message (RRC Setup), etc. may be included. Other RRC messages may also be included.
 DCCHを用いてアップリンク(UL)方向送られるRRCメッセージには、例えば測定報告メッセージ(Measurement Report)、RRCコネクション再設定完了メッセージ(RRC Connection Reconfiguration Complete)、RRC接続セットアップ完了メッセージ(RRC Connection SetupComplete)、RRC接続再確立完了メッセージ(RRC Connection Reestablishment Complete)、セキュリティモード完了メッセージ(Security Mode Complete)、UE能力情報メッセージ(UE Capability Information)などが含まれてよい。 RRC messages sent in the uplink (UL) direction using DCCH include, for example, a Measurement Report message, an RRC Connection Reconfiguration Complete message, an RRC Connection Setup Complete message, An RRC Connection Reestablishment Complete message, a Security Mode Complete message, a UE Capability Information message, etc. may be included.
 また例えば測定報告メッセージ(Measurement Report)、RRC再設定完了メッセージ(RRC Reconfiguration Complete)、RRCセットアップ完了メッセージ(RRC Setup Complete)、RRC再確立完了メッセージ(RRC Reestablishment Complete)、RRC再開完了メッセージ(RRC Resume Complete)、セキュリティモード完了メッセージ(Security Mode Complete)、UE能力情報メッセージ(UE Capability Information)などが含まれてよい。また他のRRCメッセージが含まれてよい。 Also for example Measurement Report message, RRC Reconfiguration Complete message, RRC Setup Complete message, RRC Reestablishment Complete message, RRC Resume Complete message ), a security mode complete message (Security Mode Complete), a UE capability information message (UE Capability Information), and the like. Other RRC messages may also be included.
 DCCHを用いてダウンリンク(DL)方向送られるRRCメッセージには、例えばRRC接続再設定メッセージ(RRC Connection Reconfiguration)、RRC接続解放メッセージ(RRC ConnectionRelease)、セキュリティモードコマンドメッセージ(Security Mode Command)、UE能力照会メッセージ(UE Capability Enquiry)などが含まれてよい。 RRC messages sent in the downlink (DL) direction using DCCH include, for example, RRC Connection Reconfiguration, RRC ConnectionRelease, Security Mode Command, UE Capabilities. An inquiry message (UE Capability Inquiry) may be included.
 また例えRRC再設定メッセージ(RRC Reconfiguration)、RRC再開メッセージ(RRC Resume)、RRC解放メッセージ(RRC Release)、RRC再確立メッセージ(RRC Reestablishment)、セキュリティモードコマンドメッセージ(Security Mode Command)、UE能力照会メッセージ(UE Capability Enquiry)などが含まれてよい。また他のRRCメッセージが含まれてよい。 Also for example RRC Reconfiguration message, RRC Resume message, RRC Release message, RRC Reestablishment message, Security Mode Command message, UE Capability Inquiry message. (UE Capability Enquiry), etc. may be included. Other RRC messages may also be included.
 NASの機能の一例について説明する。NASは、認証機能を持ってよい。またNASは、モビリティ(mobility)管理を行う機能を持ってよい。またNASは、セキュリティ制御の機能を持ってよい。 An example of NAS functions will be explained. A NAS may have an authentication function. Also, the NAS may have a function of performing mobility management. The NAS may also have a security control function.
 前述のPHY、MAC、RLC、PDCP、SDAP、RRC、NASの機能は一例であり、各機能の一部あるいは全てが実装されなくてもよい。また、各層(各レイヤ)の機能の一部あるいは全部が他の層(レイヤ)に含まれてもよい。  The above PHY, MAC, RLC, PDCP, SDAP, RRC, and NAS functions are examples, and some or all of the functions may not be implemented. Also, part or all of the functions of each layer (each layer) may be included in another layer (layer).
 なお、端末装置のAS層の上位層(不図示)にはIPレイヤ、及びIPレイヤより上のTCP(Transmission Control Protocol)レイヤ、UDP(User Datagram Protocol)レイヤ、などが存在してよい。また端末装置のAS層の上位層には、イーサネット層が存在してよい。 Note that an IP layer, a TCP (Transmission Control Protocol) layer above the IP layer, a UDP (User Datagram Protocol) layer, and the like may exist in layers (not shown) above the AS layer of the terminal device. An Ethernet layer may exist in a layer above the AS layer of the terminal device.
 端末装置のAS層の上位層をPDU層(PDUレイヤ)と呼んでよい。PDUレイヤにはIPレイヤ、TCPレイヤ、UDPレイヤ、イーサネットレイヤ等が含まれてよい。IPレイヤ、TCPレイヤ、UDPレイヤ、イーサネットレイヤ、PDUレイヤ等の上位層に、アプリケーションレイヤが存在してよい。 The layer above the AS layer of the terminal device may be called the PDU layer (PDU layer). The PDU layers may include IP layer, TCP layer, UDP layer, Ethernet layer, and so on. Application layers may exist in higher layers such as the IP layer, TCP layer, UDP layer, Ethernet layer, and PDU layer.
 アプリケーションレイヤには、3GPPにおいて規格化されているサービス網の一つである、IMS(IP Multimedia Subsystem)で用いられるSIP(Session Initiation Protocol)やSDP(Session Description Protocol)が含まれてよい。またアプリケーション層にはメディア通信に用いられるRTP(Real-time Transport Protocol)、および/またはメディア通信制御にRTCP(Real-time Transport Control Protocol)、HTTP(HyperText Transfer Protocol)等のプロトコルが含まれてよい。またアプリケーションレイヤには、各種メディアのコーデック等が含まれてよい。 The application layer may include SIP (Session Initiation Protocol) and SDP (Session Description Protocol) used in IMS (IP Multimedia Subsystem), which is one of the service networks standardized by 3GPP. The application layer may include protocols such as RTP (Real-time Transport Protocol) used for media communication and/or RTCP (Real-time Transport Control Protocol) and HTTP (HyperText Transfer Protocol) for media communication control. . The application layer may also include codecs for various media.
 またRRCレイヤはSDAPレイヤの上位レイヤであってよい。 Also, the RRC layer may be a higher layer than the SDAP layer.
 次にLTE及びNRにおけるUE122の状態および状態遷移について説明する。 Next, the states and state transitions of UE 122 in LTE and NR will be explained.
 EPC、又は5GCに接続するUE122は、RRC接続が設立されている(RRC connection has beenestablished)とき、UE122はRRC_CONNECTED状態であってよい。RRC接続が設立されている状態とは、UE122が、後述のUEコンテキストの一部又は全てを保持している状態を含んでよい。またRRC接続が設立されている状態とは、UE122がユニキャストデータを送信、および/または受信できる状態を含んでよい。またUE122は、RRC接続が休止(サスペンド:suspend)しているとき、UE122はRRC_INACTIVE状態であってよい。また、UE122がRRC_INACTIVE状態になるのは、UE122が5GCに接続している場合で、RRC接続が休止しているときであってよい。UE122が、RRC_CONNECTED状態でも、RRC_INACTIVE状態でも無いとき、UE122はRRC_IDLE状態であってよい。 For UE 122 connecting to EPC or 5GC, when RRC connection has been established, UE 122 may be in RRC_CONNECTED state. A state in which an RRC connection is established may include a state in which the UE 122 holds some or all of the UE contexts described below. Also, states in which an RRC connection is established may include states in which UE 122 is able to transmit and/or receive unicast data. UE 122 may also be in RRC_INACTIVE state when the RRC connection is suspended. Also, UE 122 may be in RRC_INACTIVE state when UE 122 is connected to 5GC and the RRC connection is dormant. A UE 122 may be in the RRC_IDLE state when the UE 122 is neither in the RRC_CONNECTED state nor in the RRC_INACTIVE state.
 なお、UE122がEPCに接続している場合、RRC_INACTIVE状態を持たないが、E-UTRANによってRRC接続の休止が開始されてもよい。UE122がEPCに接続している場合、RRC接続が休止されるとき、UE122はUEのASコンテキストと復帰(リジューム:resume)に用いる識別子(resumeIdentity)を保持してRRC_IDLE状態に遷移してよい。UE122のRRCレイヤの上位レイヤ(例えばNASレイヤ)は、UE122がUEのASコンテキストを保持しており、かつE-UTRANによってRRC接続の復帰が許可(Permit)されており、かつUE122がRRC_IDLE状態からRRC_CONNECTED状態に遷移する必要があるとき、休止されたRRC接続の復帰を開始してもよい。 Note that if UE 122 is connected to EPC, it does not have the RRC_INACTIVE state, but E-UTRAN may initiate dormancy of the RRC connection. If the UE 122 is connected to EPC, when the RRC connection is suspended, the UE 122 may retain the AS context of the UE and an identifier (resumeIdentity) used for resume and transition to the RRC_IDLE state. A layer higher than the RRC layer of UE 122 (for example, NAS layer) confirms that UE 122 holds the AS context of the UE, and that the E-UTRAN permits recovery of the RRC connection, and that UE 122 exits the RRC_IDLE state. When it needs to transition to the RRC_CONNECTED state, it may initiate the resumption of a dormant RRC connection.
 EPC104に接続するUE122と、5GC110に接続するUE122とで、RRC接続の休止の定義が異なってよい。また、UE122がEPCに接続している場合(RRC_IDLE状態で休止している場合)と、UE122が5GCに接続している場合(RRC_INACTIVE状態で休止している場合)とで、UE122がRRC接続の休止から復帰する手順のすべてあるいは一部が異なってよい。 The UE 122 connected to the EPC 104 and the UE 122 connected to the 5GC 110 may have different definitions of pausing the RRC connection. In addition, when UE122 is connected to EPC (when sleeping in RRC_IDLE state) and when UE122 is connected to 5GC (when sleeping in RRC_INACTIVE state), UE122 is not connected to RRC. All or part of the procedure for returning from hibernation may be different.
 なお、RRC_CONNECTED状態、RRC_INACTIVE状態、RRC_IDLE状態のことをそれぞれ、RRC接続状態(RRC connected mode)、RRC不活性状態(RRC inactive mode)、RRCアイドル状態(RRC idle mode)と呼んでよいし、誤認する恐れがない場合は、単に、接続状態(connected mode)、不活性状態(inactive mode)、アイドル状態(idle mode)と呼んでよい。 Note that the RRC_CONNECTED state, RRC_INACTIVE state, and RRC_IDLE state may be called RRC connected mode, RRC inactive mode, and RRC idle mode, respectively, and may be misidentified. If there is no fear, it may simply be called connected mode, inactive mode, or idle mode.
 UE122が保持するUEのASコンテキストは、現在のRRC設定、現在のセキュリティコンテキスト、ROHC(RObust Header Compression)状態を含むPDCP状態、接続元(Source)のPCellで使われていたC-RNTI(Cell Radio Network Temporary Identifier)、セル識別子(cellIdentity)、接続元のPCellの物理セル識別子、のすべてあるいは一部を含む情報であってよい。なお、eNB102およびgNB108の内のいずれかまたは全ての保持するUEのASコンテキストは、UE122が保持するUEのASコンテキストと同じ情報を含んでもよいし、UE122が保持するUEのASコンテキストに含まれる情報とは異なる情報が含まれてもよい。 The UE AS context held by UE 122 includes the current RRC settings, current security context, PDCP state including ROHC (RObust Header Compression) state, C-RNTI (Cell Radio Network Temporary Identifier), cell identifier (cellIdentity), and physical cell identifier of the connection source PCell, all or part of which may be information. Note that the UE AS context held by either or all of the eNB 102 and gNB 108 may contain the same information as the UE AS context held by the UE 122, or the information contained in the UE AS context held by the UE 122. may contain different information.
 セキュリティコンテキストとは、ASレベルにおける暗号鍵、NH(Next Hop parameter)、次ホップのアクセス鍵導出に用いられるNCC(Next Hop Chaining Counter parameter)、選択されたASレベルの暗号化アルゴリズムの識別子、リプレイ保護のために用いられるカウンター、のすべてあるいは一部を含む情報であってよい。 A security context consists of a cryptographic key at the AS level, NH (Next Hop parameter), NCC (Next Hop Chaining Counter parameter) used to derive the access key for the next hop, an identifier for the selected AS level encryption algorithm, and replay protection. may be information including all or part of the counters used for
 端末装置に対し基地局装置から設定される、セルグループ(Cell Group)について説明する。 A cell group that is set by the base station device for the terminal device will be explained.
 セルグループは、1つのスペシャルセル(Special Cell:SpCell)のみで構成されてもよい。またセルグループは、1つのSpCellと、1つ又は複数のセカンダリセル(Secondary Cell:SCell)とで構成されてもよい。即ちセルグループは、1つのSpCellと、必要に応じて(optionally)1つ又は複数のSCellから構成されてよい。 A cell group may consist of only one special cell (Special Cell: SpCell). A cell group may also consist of one SpCell and one or more secondary cells (SCells). That is, a cell group may consist of one SpCell and optionally one or more SCells.
 なおMACエンティティがマスターセルグループ(Master Cell Group:MCG)に関連付けられている場合、SpCellはプライマリセル(Primary Cell:PCell)を意味してよい。またMACエンティティがセカンダリセルグループ(Secondary Cell Group:SCG)に関連付けられている場合、SpCellはプライマリSCGセル(Primary SCG Cell:PSCell)を意味してよい。またMACエンティティがセルグループに関連付けられていない場合、SpCellはPCellを意味してよい。PCell、PSCellおよびSCellはサービングセルである。  When the MAC entity is associated with the Master Cell Group (MCG), the SpCell may mean the Primary Cell (PCell). Also, when the MAC entity is associated with a Secondary Cell Group (SCG), SpCell may mean a Primary SCG Cell (PSCell). SpCell may also mean PCell if the MAC entity is not associated with a cell group. PCell, PSCell and SCell are serving cells.
 SpCellはPUCCH送信およびコンテンション基準ランダムアクセス(contention-based Random Access)をサポートしてよい。SpCellは常に活性化された状態であってもよい。 A SpCell may support PUCCH transmission and contention-based Random Access. A SpCell may remain activated at all times.
 PCellはRRCアイドル状態の端末装置がRRC接続状態に遷移する際の、RRC接続確立手順に用いられるセルであってよい。またPCellは、端末装置がRRC接続の再確立を行う、RRC接続再確立手順に用いられるセルであってよい。またPCellは、ハンドオーバの際のランダムアクセス手順に用いられるセルであってよい。 A PCell may be a cell used for the RRC connection establishment procedure when a terminal device in the RRC idle state transitions to the RRC connected state. Also, the PCell may be a cell used for the RRC connection re-establishment procedure in which the terminal device re-establishes the RRC connection. Also, the PCell may be a cell used for a random access procedure during handover.
 PSCellは、後述するセカンダリノード(Secondary Node:SN)追加の際に、ランダムアクセス手順に用いられるセルであってよい。またSpCellは、上述の用途以外の用途に用いられるセルであってよい。 A PSCell may be a cell used in a random access procedure when adding a secondary node (SN), which will be described later. Also, the SpCell may be a cell that is used for purposes other than those described above.
 なお、セルグループがSpCell及び1つ以上のSCellから構成される場合、このセルグループにはキャリアアグリゲーション(carrier aggregation:CA)が設定されていると言ってよい。また、CAが設定されている端末装置に対して、SpCellに対して追加の無線リソースを提供しているセルはSCellを意味してよい。 If a cell group consists of SpCells and one or more SCells, it can be said that carrier aggregation (CA) is configured for this cell group. Also, a cell that provides an additional radio resource to a SpCell for a terminal device in which CA is configured may mean an SCell.
 RRCによって設定されているサービングセルのグループで、その中の上りリンクが設定されているセルに対し同じタイミング参照セル(timing reference cell)および同じタイミングアドバンスの値を使用しているセルグループのことをタイミングアドバンスグループ(Timing Advance Group:TAG)と呼んでよい。またMACエンティティのSpCellを含むTAGはプライマリタイミングアドバンスグループ(Primary Timing Advance Group:PTAG)を意味してよい。また上記PTAG以外のTAGはセカンダリタイミングアドバンスグループ(Secondary Timing Advance Group:STAG)を意味してよい。 A group of serving cells configured by RRC that uses the same timing reference cell and the same timing advance value for the cells in which uplink is configured. You can call it the Advance Group (Timing Advance Group: TAG). Also, the TAG containing the SpCell of the MAC entity may mean the Primary Timing Advance Group (PTAG). Also, TAGs other than the PTAG may mean Secondary Timing Advance Group (STAG).
 またDual Connectivity(DC)や、Multi-Radio Dual Connectivity(MR-DC)が行われる場合、端末装置対し基地局装置からセルグループの追加が行われてよい。DCとは、第1の基地局装置(第1のノード)と第2の基地局装置(第2のノード)がそれぞれ構成するセルグループの無線リソースを利用してデータ通信を行う技術であってよい。MR-DCはDCに含まれる技術であってよい。DCを行うために、第1の基地局装置が第2の基地局装置を追加してよい。第1の基地局装置のことをマスターノード(Master Node:MN)と呼んでよい。 Also, when Dual Connectivity (DC) or Multi-Radio Dual Connectivity (MR-DC) is performed, a cell group may be added to the terminal device from the base station device. DC is a technique of performing data communication using radio resources of cell groups respectively configured by a first base station apparatus (first node) and a second base station apparatus (second node). good. MR-DC may be a technology involved in DC. A first base station apparatus may add a second base station apparatus to perform DC. The first base station device may be called a master node (Master Node: MN).
 またマスターノードが構成するセルグループをマスターセルグループ(Master Cell Group:MCG)と呼んでよい。第2の基地局装置のことをセカンダリノード(Secondary Node:SN)と呼んでよい。またセカンダリノードが構成するセルグループをセカンダリセルグループ(Secondary Cell Group:SCG)と呼んでよい。なお、マスターノードとセカンダリノードは同じ基地局装置内に構成されていてもよい。 Also, a cell group composed of master nodes may be called a master cell group (MCG). The second base station device may be called a secondary node (SN). Also, a cell group configured by secondary nodes may be called a secondary cell group (SCG). Note that the master node and the secondary node may be configured within the same base station apparatus.
 また、DCが設定されていない場合において、端末装置に設定されるセルグループのことをMCGと呼んでよい。また、DCが設定されていない場合において、端末装置に設定されるSpCellはPCellであってよい。 Also, when DC is not set, the cell group set in the terminal device may be called MCG. Also, when DC is not configured, SpCell configured in the terminal device may be PCell.
 なお、MR-DCとは、MCGにE-UTRA、SCGにNRを用いたDCを行う技術であってよい。またMR-DCとは、MCGにNR、SCGにE-UTRAを用いたDCを行う技術であってもよい。またMR-DCとは、MCG及びSCGの両方にNRを用いたDCを行う技術であってもよい。MCGにE-UTRA、SCGにNRを用いるMR-DCの例として、コア網にEPCを用いるEN-DC(E-UTRA-NR Dual Connectivity)があってよいし、コア網に5GCを用いるNGEN-DC(NG-RAN E-UTRA-NR Dual Connectivity)があってよい。  MR-DC may be a technology that performs DC using E-UTRA for MCG and NR for SCG. Also, MR-DC may be a technique of performing DC using NR for MCG and E-UTRA for SCG. MR-DC may also be a technique of performing DC using NR for both MCG and SCG. Examples of MR-DC using E-UTRA for MCG and NR for SCG include EN-DC (E-UTRA-NR Dual Connectivity) using EPC in the core network and NGEN-DC using 5GC in the core network. There may be DC (NG-RAN E-UTRA-NR Dual Connectivity).
 またMCGにNR、SCGにE-UTRAを用いるMR-DCの例として、コア網に5GCを用いるNE-DC(NR-E-UTRA Dual Connectivity)があってよい。またMCG及びSCGの両方にNRを用いるMR-DCの例として、コア網に5GCを用いるNR-DC(NR-NR Dual Connectivity)があってよい。 Also, an example of MR-DC that uses NR for MCG and E-UTRA for SCG may be NE-DC (NR-E-UTRA Dual Connectivity) that uses 5GC for the core network. An example of MR-DC using NR for both MCG and SCG may be NR-DC (NR-NR Dual Connectivity) using 5GC for the core network.
 なお端末装置において、MACエンティティは各セルグループに対して1つ存在してよい。例えば端末装置にDC又はMR-DCが設定される場合において、MCGに対する1つのMACエンティティ、及びSCGに対する1つのMACエンティティが存在してよい。 Note that in the terminal device, one MAC entity may exist for each cell group. For example, when DC or MR-DC is configured in the terminal device, there may be one MAC entity for MCG and one MAC entity for SCG.
 端末装置におけるMCGに対するMACエンティティは、全ての状態(RRCアイドル状態、RRC接続状態、及びRRC不活性状態など)の端末装置において、常に確立されていてよい。また端末装置におけるSCGに対するMACエンティティは、端末装置にSCGが設定される際、端末装置によって生成(create)されてよい。  The MAC entity for the MCG in the terminal device may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.). Also, the MAC entity for the SCG in the terminal device may be created by the terminal device when the SCG is configured in the terminal device.
 また端末装置の各セルグループに対するMACエンティティは、端末装置が基地局装置からRRCメッセージを受け取ることにより設定が行われてよい。EN-DC、及びNGEN-DCにおいて、MCGに対するMACエンティティはE-UTRA MACエンティティであってもよく、SCGに対するMACエンティティはNR MACエンティティであってよい。また、NE-DCにおいて、MCGに対するMACエンティティはNR MACエンティティであってもよく、SCGに対するMACエンティティはE-UTRA MACエンティティであってよい。 Also, the MAC entity for each cell group of the terminal device may be set by the terminal device receiving an RRC message from the base station device. In EN-DC and NGEN-DC, the MAC entity for MCG may be the E-UTRA MAC entity and the MAC entity for SCG may be the NR MAC entity. Also, in the NE-DC, the MAC entity for MCG may be the NR MAC entity and the MAC entity for SCG may be the E-UTRA MAC entity.
 またNR-DCにおいて、MCG及びSCGに対するMACエンティティは共にNR MACエンティティであってよい。なお、MACエンティティが各セルグループに対して1つ存在することを、MACエンティティは各SpCellに対して1つ存在すると言い換えてよい。また、各セルグループに対する1つのMACエンティティを、各SpCellに対する1つのMACエンティティと言い換えてよい。 Also, in NR-DC, both MAC entities for MCG and SCG may be NR MAC entities. Note that one MAC entity for each cell group can be rephrased as one MAC entity for each SpCell. Also, one MAC entity for each cell group may be rephrased as one MAC entity for each SpCell.
 無線ベアラについて説明する。E-UTRAのSRBにはSRB0からSRB2が定義されてよいし、これ以外のSRBが定義されてよい。NRのSRBにはSRB0からSRB3が定義されてよいし、これ以外のSRBが定義されてよい。 I will explain the radio bearer. SRB0 to SRB2 may be defined as SRBs of E-UTRA, and SRBs other than these may be defined. SRB0 to SRB3 may be defined as SRBs of NR, and SRBs other than these may be defined.
 SRB0は、論理チャネルのCCCHを用いて送信、および/または受信が行われる、RRCメッセージのためのSRBであってよい。 SRB0 may be the SRB for RRC messages that are transmitted and/or received using the CCCH of the logical channel.
 SRB1は、RRCメッセージのため、及びSRB2の確立前のNASメッセージのためのSRBであってよい。SRB1を用いて送信、および/または受信が行われるRRCメッセージには、ピギーバックされたNASメッセージが含まれてよい。SRB1を用いて送信、および/または受信される全てのRRCメッセージやNASメッセージには、論理チャネルのDCCHが用いられてよい。 SRB1 may be the SRB for RRC messages and for NAS messages before the establishment of SRB2. RRC messages sent and/or received using SRB1 may include piggybacked NAS messages. All RRC and NAS messages transmitted and/or received using SRB1 may use the DCCH of the logical channel.
 SRB2は、NASメッセージのため、及び記録測定情報(logged measurement information)を含むRRCメッセージのためのSRBであってよい。SRB2を用いて送信、および/または受信される全てのRRCメッセージやNASメッセージには、論理チャネルのDCCHが用いられてよい。また、SRB2はSRB1よりも低い優先度であってよい。 SRB2 may be an SRB for NAS messages and for RRC messages containing logged measurement information. All RRC and NAS messages transmitted and/or received using SRB2 may use the DCCH of the logical channel. Also, SRB2 may have a lower priority than SRB1.
 SRB3は、端末装置に、EN-DC、NGEN-DC、NR-DCなどが設定されているときの特定のRRCメッセージを送信、および/または受信するためのSRBであってよい。SRB3を用いて送信、および/または受信される全てのRRCメッセージやNASメッセージには、論理チャネルのDCCHが用いられてよい。また、その他の用途のために他のSRBが用意されてもよい。DRBは、ユーザデータのための無線ベアラであってよい。DRBを用いて送信、および/または受信が行われるRRCメッセージには、論理チャネルのDTCHが用いられてもよい。 SRB3 may be an SRB for transmitting and/or receiving a specific RRC message when EN-DC, NGEN-DC, NR-DC, etc. are set in the terminal device. All RRC and NAS messages transmitted and/or received using SRB3 may use the DCCH of the logical channel. Other SRBs may also be provided for other uses. A DRB may be a radio bearer for user data. Logical channel DTCH may be used for RRC messages transmitted and/or received using DRB.
 端末装置における無線ベアラについて説明する。無線ベアラにはRLCベアラが含まれてよい。RLCベアラは1つ又は2つのRLCエンティティと論理チャネルで構成されてよい。RLCベアラにRLCエンティティが2つ存在する場合のRLCエンティティはTM RLCエンティティ、および/または単方向UMモードのRLCエンティティにおける、送信RLCエンティティ及び受信RLCエンティティであってよい。  The radio bearer in the terminal device will be explained. Radio bearers may include RLC bearers. An RLC bearer may consist of one or two RLC entities and logical channels. The RLC entity when there are two RLC entities in the RLC bearer may be a TM RLC entity and/or a transmitting RLC entity and a receiving RLC entity in a unidirectional UM mode RLC entity.
 SRB0は1つのRLCベアラから構成されてよい。SRB0のRLCベアラはTMのRLCエンティティ、及び論理チャネルから構成されてよい。SRB0は全ての状態(RRCアイドル状態、RRC接続状態、及びRRC不活性状態など)の端末装置において、常に確立されていてよい。  SRB0 may consist of one RLC bearer. An SRB0 RLC bearer may consist of a TM RLC entity and a logical channel. SRB0 may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.).
 SRB1は端末装置がRRCアイドル状態からRRC接続状態に遷移する際、基地局装置から受信するRRCメッセージにより、端末装置に1つ確立および/または設定されてよい。SRB1は1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されてよい。SRB1のRLCベアラはAMのRLCエンティティ、及び論理チャネルから構成されてよい。 One SRB1 may be established and/or set in the terminal device by an RRC message received from the base station device when the terminal device transitions from the RRC idle state to the RRC connected state. SRB1 may consist of one PDCP entity and one or more RLC bearers. The SRB1 RLC bearer may consist of an AM RLC entity and a logical channel.
 SRB2はASセキュリティが活性化されたRRC接続状態の端末装置が基地局装置から受信するRRCメッセージにより、端末装置に1つ確立および/または設定されてよい。SRB2は1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されてよい。SRB2のRLCベアラはAMのRLCエンティティ、及び論理チャネルから構成されてよい。なお、SRB1及びSRB2の基地局装置側のPDCPはマスターノードに置かれてよい。 One SRB2 may be established and/or set in the terminal device by an RRC message received by the terminal device in the RRC connected state with AS security activated from the base station device. SRB2 may consist of one PDCP entity and one or more RLC bearers. An SRB2 RLC bearer may consist of an AM RLC entity and a logical channel. Note that PDCPs on the base station device side of SRB1 and SRB2 may be placed in the master node.
 SRB3はEN-DC、又はNGEN-DC、又はNR-DCにおけるセカンダリノードが追加される際、又はセカンダリノードが変更される際に、ASセキュリティが活性化されたRRC接続状態の端末装置が基地局装置から受信するRRCメッセージにより、端末装置に1つ確立および/または設定されてよい。SRB3は端末装置とセカンダリノードとの間のダイレクトSRBであってよい。SRB3は1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されてよい。SRB3のRLCベアラはAMのRLCエンティティ、及び論理チャネルから構成されてよい。SRB3の基地局装置側のPDCPはセカンダリノードに置かれてよい。 SRB3 is when a secondary node in EN-DC, NGEN-DC, or NR-DC is added, or when the secondary node is changed, the terminal device in the RRC connection state with AS security activated becomes the base station. One may be established and/or configured in the terminal by RRC messages received from the device. SRB3 may be a direct SRB between the terminal device and the secondary node. SRB3 may consist of one PDCP entity and one or more RLC bearers. An SRB3 RLC bearer may consist of an AM RLC entity and a logical channel. The PDCP on the base station device side of SRB3 may be placed in the secondary node.
 DRBはASセキュリティが活性化されたRRC接続状態の端末装置が基地局装置から受信するRRCメッセージにより、端末装置に1つ又は複数確立および/または設定されてよい。DRBは1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されてよい。DRBのRLCベアラはAM又はUMのRLCエンティティ、及び論理チャネルから構成されてよい。 One or more DRBs may be established and/or set in the terminal device by an RRC message received from the base station device by the terminal device in the RRC connected state with AS security activated. A DRB may consist of one PDCP entity and one or more RLC bearers. A DRB RLC bearer may consist of an AM or UM RLC entity and a logical channel.
 なお、MR-DCにおいて、マスターノードにPDCPが置かれる無線ベアラのことを、MN終端(ターミネティド:terminated)ベアラと呼んでよい。また、MR-DCにおいて、セカンダリノードにPDCPが置かれる無線ベアラのことを、SN終端(ターミネティド:terminated)ベアラと呼んでよい。なお、MR-DCにおいて、RLCベアラがMCGにのみ存在する無線ベアラのことを、MCGベアラ(MCG bearer)と呼んでよい。また、MR-DCにおいて、RLCベアラがSCGにのみ存在する無線ベアラのことを、SCGベアラ(SCG bearer)と呼んでよい。またDCにおいて、RLCベアラがMCG及びSCG両方に存在する無線ベアラのことをスプリットベアラ(split bearer)と呼んでよい。 In addition, in MR-DC, the radio bearer in which PDCP is placed in the master node may be called the MN terminated (terminated) bearer. Also, in MR-DC, a radio bearer in which PDCP is placed in a secondary node may be called an SN terminated (terminated) bearer. In MR-DC, a radio bearer in which the RLC bearer exists only in the MCG may be called an MCG bearer. Also, in MR-DC, a radio bearer whose RLC bearer exists only in the SCG may be called an SCG bearer. Also, in DC, a radio bearer in which RLC bearers exist in both MCG and SCG may be called a split bearer.
 端末装置にMR-DCが設定される場合、端末装置に確立/及び又は設定されるSRB1及びSRB2のベアラタイプは、MN終端MCGベアラおよび/またはMN終端スプリットベアラであってよい。また端末装置にMR-DCが設定される場合、端末装置に確立/及び又は設定されるSRB3のベアラタイプは、SN終端SCGベアラであってよい。また端末装置にMR-DCが設定される場合、端末装置に確立/及び又は設定されるDRBのベアラタイプは、全てのベアラタイプのうちの何れかであってよい。 When MR-DC is configured in the terminal device, the bearer types of SRB1 and SRB2 established/and configured in the terminal device may be MN-terminated MCG bearer and/or MN-terminated split bearer. Also, when MR-DC is configured in the terminal device, the SRB3 bearer type established/or configured in the terminal device may be an SN-terminated SCG bearer. Also, when MR-DC is configured in the terminal device, the DRB bearer type established/or configured in the terminal device may be any of all bearer types.
 E-UTRAで構成されるセルグループに確立および/または設定されるRLCベアラに対し、確立および/または設定されるRLCエンティティは、E-UTRA RLCであってよい。またNRで構成されるセルグループに確立および/または設定されるRLCベアラに対し、確立および/または設定されるRLCエンティティは、NR RLCであってよい。 For an RLC bearer established and/or configured in a cell group configured with E-UTRA, the RLC entity established and/or configured may be E-UTRA RLC. Also, for an RLC bearer established and/or configured in a cell group configured with NR, the RLC entity established and/or configured may be NR RLC.
 端末装置にEN-DCが設定され場合、MN終端MCGベアラに対し確立および/または設定されるPDCPエンティティは、E-UTRA PDCP又はNR PDCPの何れかであってよい。また端末装置にEN-DCが設定される場合、その他のベアラタイプの無線ベアラ、即ちMN終端スプリットベアラ、MN終端SCGベアラ、SN終端MCGベアラ、SN終端スプリットベアラ、及びSN終端SCGベアラ、に対して確立および/または設定されるPDCPは、NR PDCPであってよい。 When EN-DC is configured in the terminal device, the PDCP entity established and/or configured for the MN-terminated MCG bearer may be either E-UTRA PDCP or NR PDCP. For other bearer type radio bearers, i.e. MN terminated split bearer, MN terminated SCG bearer, SN terminated MCG bearer, SN terminated split bearer and SN terminated SCG bearer, when EN-DC is configured in the terminal equipment. The PDCP established and/or configured by the NR may be the NR PDCP.
 また端末装置にNGEN-DC、又はNE-DC、又はNR-DCが設定される場合、全てのベアラタイプにおける無線ベアラに対して確立および/または設定されるPDCPエンティティは、NR PDCPであってよい。 Also, when NGEN-DC, NE-DC, or NR-DC is configured in the terminal device, the PDCP entity established and/or configured for radio bearers in all bearer types may be NR PDCP. .
 なおNRにおいて、端末装置に確立および/または設定されるDRBは1つのPDUセッションに紐づけられよい。端末装置において1つのPDUセッションに対し、1つのSDAPエンティティが確立および/または設定されてよい。端末装置に確立および/または設定SDAPエンティティ、PDCPエンティティ、RLCエンティティ、及び論理チャネルは、端末装置が基地局装置から受信するRRCメッセージにより確立および/または設定されてよい。 Note that in NR, a DRB established and/or configured in a terminal device may be associated with one PDU session. One SDAP entity may be established and/or configured for one PDU session in the terminal device. Established and/or Configured in a Terminal An SDAP entity, a PDCP entity, an RLC entity, and a logical channel may be established and/or configured by an RRC message that the terminal receives from a base station.
 なお、MR-DCが設定されるか否かに関わらず、マスターノードがeNB102でEPC104をコア網とするネットワーク構成をE-UTRA/EPCと呼んでよい。またマスターノードがeNB102で5GC110をコア網とするネットワーク構成をE-UTRA/5GCと呼んでよい。またマスターノードがgNB108で5GC110をコア網とするネットワーク構成をNR、又はNR/5GCと呼んでよい。MR-DCが設定されない場合において、上述のマスターノードとは、端末装置と通信を行う基地局装置のことを指してよい。 Regardless of whether or not MR-DC is set, a network configuration in which the master node is eNB 102 and EPC 104 is the core network may be called E-UTRA/EPC. A network configuration in which the master node is eNB 102 and 5GC 110 is the core network may be called E-UTRA/5GC. A network configuration in which the master node is gNB 108 and 5GC 110 is the core network may be called NR or NR/5GC. When MR-DC is not configured, the master node described above may refer to a base station apparatus that communicates with terminal apparatuses.
 次にLTE及びNRにおけるハンドオーバについて説明する。 Next, handover in LTE and NR will be explained.
 ハンドオーバとはRRC接続状態のUE122がサービングセルを変更する処理であってよい。ハンドオーバは、UE122がeNB102、および/またはgNB108より、ハンドオーバを指示するRRCメッセージを受信した時に行われてよい。ハンドオーバを指示するRRCメッセージとは、ハンドオーバを指示するパラメータ(例えばMobilityControlInfoという名称の情報要素、又はReconfigurationWithSyncという名称の情報要素)を含むRRCコネクションの再設定に関するメッセージのことであってよい。 A handover may be a process in which the UE 122 in the RRC connected state changes the serving cell. Handover may occur when UE 122 receives an RRC message from eNB 102 and/or gNB 108 indicating a handover. The RRC message that instructs handover may be a message regarding reconfiguration of the RRC connection that includes a parameter that instructs handover (for example, an information element named MobilityControlInfo or an information element named ReconfigurationWithSync).
 なお上述のMobilityControlInfoという名称の情報要素のことを、モビリティ制御設定情報要素、又はモビリティ制御設定、又はモビリティ制御情報と言い換えてよい。なお上述のReconfigurationWithSyncという名称の情報要素のことを同期付再設定情報要素、又は同期付再設定と言い換えてよい。またハンドオーバを指示するRRCメッセージとは、他のRATのセルへの移動を示すメッセージ(例えばMobilityFromEUTRACommand、又はMobilityFromNRCommand)のことであってよい。またハンドオーバのことを同期付再設定(reconfiguration with sync)と言い換えてよい。 The information element named MobilityControlInfo described above may be rephrased as a mobility control setting information element, a mobility control setting, or mobility control information. Note that the above information element named ReconfigurationWithSync may be rephrased as reset information element with synchronization or reset with synchronization. Also, the RRC message instructing handover may be a message indicating movement to another RAT cell (for example, MobilityFromEUTRACommand or MobilityFromNRCommand). Also, handover can be rephrased as reconfiguration with sync.
 またUE122がハンドオーバを行うことができる条件に、ASセキュリティが活性化されている時、SRB2が確立されている時、少なくとも一つのDRBが確立していることのうちの一部又は全てを含んでよい。 In addition, the conditions under which UE 122 can perform handover include some or all of when AS security is activated, when SRB2 is established, and at least one DRB is established. good.
 なお、端末装置は、ハンドオーバを指示するRRCメッセージに基づいて、サービングセルが変更されない処理を実行してもよい。すなわち、現在のサービングセルと同一のセルをターゲットのセルとしたハンドオーバ処理が端末装置によって実行されてもよい。 Note that the terminal device may perform processing that does not change the serving cell based on the RRC message instructing handover. That is, the terminal device may perform a handover process with the same cell as the current serving cell as the target cell.
 端末装置のMACエンティティにおける上りリンクの時間整合(Uplink Time Alignment)について説明する。  The uplink Time Alignment in the MAC entity of the terminal device will be explained.
 端末装置のMACエンティティは、RRCによって上りリンク時間整合の維持(Maintenance)のための以下のパラメータが設定されてよい。
  TAGごとの時間整合タイマー(timeAlignmentTimner):MACエンティティが、このタイマーに対応付けられたTAGに属するサービングセルの上りリンクの時間整合がとれているとみなす(換言すると、上りリンクの同期がとれているとみなす)時間を制御するために用いられるタイマー。
The MAC entity of the terminal device may be configured with the following parameters for maintenance of uplink time alignment by RRC.
Per TAG time alignment timer (timeAlignmentTimner): The MAC entity considers the uplink of the serving cell belonging to the TAG associated with this timer to be uplink time aligned (in other words, uplink synchronized). A timer used to control time.
 端末装置のMACエンティティは、上りリンク時間整合の維持のために、以下の(A)から(D)の一部または全部を実行する。
  (A)タイミングアドバンスコマンドMAC制御要素を受信し、もし、指示されたTAGで、下りリンクと上りリンクの間のタイミングアドバンスを示すパラメータ(N_TA)が維持されているなら、(1)この指示されたTAGのためのタイミングアドバンスコマンドを適用し、(2)この指示されたTAGに対応づけられた時間整合タイマーをスタートまたは再スタートする。
  (B)あるTAGに属するサービングセルのためのランダムアクセス応答メッセージ、または、SpCellのためのMSGB、でタイミングアドバンスコマンドを受信したとき、以下の(B-1)から(B-3)の一部または全部を実行してよい。
   (B-1)もし、ランダムアクセスプリアンブルが衝突型(Contention-based)ランダムアクセスプリアンブルの中からMACエンティティによって選ばれたのではないなら、以下の(B-1-1)から(B-1-2)の処理を行う。
    (B-1-1)このTAGに対するタイミングアドバンスコマンドを適用する。
    (B-1-2)このTAGに対応づけられた時間整合タイマーをスタートまたは再スタートする。
   (B-2)(B-1)の条件に合致せず、このTAGに対応付けられた時間整合タイマーが走っていないなら、以下の(B-2-1)から(B-2-3)の処理をおこなう。
    (B-2-1)このTAGに対するタイミングアドバンスコマンドを適用する。
    (B-2-2)このTAGに対応づけられた時間整合タイマーをスタートする。
    (B-2-3)ランダムアクセス手順における衝突解決(Contention Resolution)が成功しなかったとみなしたとき、または、UE衝突解決識別子(UE contention Resolution Identity)MAC制御要素を含むMAC PDUのためのHARQフィードバックを送信したあとに、SI要求のための衝突解決が成功したとみなしたとき、このTAGに対応づけられた時間整合タイマーをストップする。
   (B-3)(B-1)および(B-2)のいずれの条件にも合致しないなら、受信したタイミングアドバンスコマンドを無視する。
  (C)絶対(Absolute)タイミングアドバンスコマンドを、C-RNTI MAC制御要素を含むMSGA送信の返信として受信したとき、(1)PTAGに対するタイミングアドバンスコマンドを適用し、(2)PTAGに対応付けられた時間整合タイマーをスタートまたは再スタートする。
  (D)時間整合タイマーが満了したとき、以下の(D-1)から(D-2)の一部または全部を実行してよい。
   (D-1)もし、PTAGに対応付けられた時間整合タイマーが満了したなら、以下の(D-1-1)から(D-1-8)の処理の一部または全部を実行してよい。
    (D-1-1)すべてのサービングセルのすべてのHARQバッファをフラッシュする。
    (D-1-2)もし、何れかのサービングセルにPUCCHが設定されていたなら、すべてのサービングセルのPUCCHをリリースすることを端末装置のRRCエンティティに通知する。
    (D-1-3) もし、何れかのサービングセルにSRSが設定されていたなら、すべてのサービングセルのSRSをリリースすることを端末装置のRRCエンティティに通知する。
    (D-1-4)すべての設定されたConfigured downlink assignmentとConfigured uplink grantをクリアする。
    (D-1-5) セミパーシステントCSI報告のためのすべてのPUSCHリソースをクリアする。
    (D-1-6)すべての走っている時間整合タイマーが満了したとみなす。
    (D-1-7)すべてのTAGのN_TAを維持する。
    (D-1-8)もし、不活性化されたセカンダリセルグループのPTAGの時間整合タイマーが満了したなら、このセカンダリセルグループのセルにおけるビーム失敗の検出および/または回復を行わない。
   (D-2)(D-1)の条件に合致せず、もし、STAGに対応付けられた時間整合タイマーが満了したなら、このTAGに属するすべてのサービングセルに対して、以下の(D-2-1)から(D-2-6)の一部または全部を実行してよい。
    (D-2-1) すべてのHARQバッファをフラッシュする。
    (D-2-2) もし、PUCCHが設定されていたなら、これをリリースすることを端末装置のRRCエンティティに通知する。
    (D-2-3) もし、SRSが設定されていたなら、これをリリースすることを端末装置のRRCエンティティに通知する。
    (D-2-4) すべての設定されたConfigured downlink assignmentとConfigured uplink grantをクリアする。
    (D-2-5) セミパーシステントCSI報告のためのすべてのPUSCHリソースをクリアする。
    (D-2-6) このTAGのN_TAを維持する。
The MAC entity of the terminal device performs some or all of (A) to (D) below in order to maintain uplink time alignment.
(A) receives a timing advance command MAC control element, and if the indicated TAG maintains a parameter (N_TA) indicating timing advance between downlink and uplink, then (1) this indicated (2) start or restart the time alignment timer associated with this indicated TAG;
(B) When a timing advance command is received in the random access response message for the serving cell belonging to a certain TAG or the MSGB for the SpCell, some of (B-1) to (B-3) below or You can do all.
(B-1) If the random access preamble is not selected by the MAC entity from contention-based random access preambles, the following (B-1-1) to (B-1- 2) is processed.
(B-1-1) Apply the timing advance command for this TAG.
(B-1-2) Start or restart the time alignment timer associated with this TAG.
(B-2) If the condition of (B-1) is not met and the time alignment timer associated with this TAG is not running, then (B-2-1) to (B-2-3) below process.
(B-2-1) Apply the timing advance command for this TAG.
(B-2-2) Start the time alignment timer associated with this TAG.
(B-2-3) HARQ feedback for MAC PDU containing UE contention resolution identifier (UE contention Resolution Identity) MAC control element, or when contention resolution in the random access procedure is deemed not successful , stop the time alignment timer associated with this TAG when the collision resolution for the SI request is deemed successful.
(B-3) If none of the conditions (B-1) and (B-2) are met, ignore the received timing advance command.
(C) When an Absolute timing advance command is received in reply to an MSGA transmission containing a C-RNTI MAC control element, (1) apply the timing advance command to the PTAG and (2) apply the timing advance command to the PTAG. Start or restart the time alignment timer.
(D) When the time alignment timer expires, some or all of (D-1) to (D-2) below may be performed.
(D-1) If the time alignment timer associated with the PTAG expires, some or all of the following processes (D-1-1) to (D-1-8) may be executed. .
(D-1-1) Flush all HARQ buffers of all serving cells.
(D-1-2) If PUCCH is configured in any serving cell, notify the RRC entity of the terminal device that the PUCCH of all serving cells will be released.
(D-1-3) If SRS is configured in any serving cell, notify the RRC entity of the terminal device that the SRS of all serving cells will be released.
(D-1-4) Clear all configured configured downlink assignments and configured uplink grants.
(D-1-5) Clear all PUSCH resources for semi-persistent CSI reporting.
(D-1-6) Assume that all running time alignment timers have expired.
(D-1-7) Maintain N_TA of all TAGs.
(D-1-8) If the time alignment timer of the PTAG of the deactivated secondary cell group expires, do not perform beam failure detection and/or recovery in cells of this secondary cell group.
(D-2) If the condition of (D-1) is not met and the time alignment timer associated with the STAG expires, for all serving cells belonging to this TAG, the following (D-2 Part or all of -1) to (D-2-6) may be performed.
(D-2-1) Flush all HARQ buffers.
(D-2-2) If PUCCH has been set, notify the RRC entity of the terminal device that it will be released.
(D-2-3) If the SRS has been set, notify the RRC entity of the terminal device that it will be released.
(D-2-4) Clear all configured configured downlink assignments and configured uplink grants.
(D-2-5) Clear all PUSCH resources for semi-persistent CSI reporting.
(D-2-6) Maintain N_TA of this TAG.
 端末装置のMACエンティティは、このMACのTAG間の上りリンクタイミングの最大差、または、端末装置の何れかのMACエンティティのTAG間の上りリンクタイミングの最大差が上限を超えた結果、SCellでの上りリンク送信を停止したとき、このSCellに対応付けられたTAGの時間整合タイマーは満了したとみなしてよい。 As a result of the maximum difference in uplink timing between TAGs of this MAC or the maximum difference in uplink timing between TAGs of any MAC entity of the terminal device exceeding the upper limit, the MAC entity of the terminal device is When uplink transmission is stopped, it may be considered that the time alignment timer of the TAG associated with this SCell has expired.
 端末装置のMACエンティティは、あるSCellの属するTAGに対応付けられた時間整合タイマーが走っていないとき、このSCellにおいて、ランダムアクセスプリアンブルとMSGAの送信以外の送信を実行しない。さらに、端末装置のMACエンティティは、PTAGに対応付けられた時間整合タイマーが走っていないとき、SpCellにおけるランダムアクセスプリアンブルとMSGAの送信以外のすべての送信を実行しない。  When the time alignment timer associated with the TAG to which a certain SCell belongs is not running, the MAC entity of the terminal device does not perform transmission other than the random access preamble and MSGA transmission in this SCell. In addition, the MAC entity of the terminal does not perform any transmission other than the random access preamble and MSGA transmissions in the SpCell when the time alignment timer associated with the PTAG is not running.
 端末装置と基地局装置との間で送受信される、RRCメッセージのフローについて説明する。図4は、本発明の実施の形態に係るRRCにおける、各種設定のための手順(procedure)のフローの一例を示す図である。図4は、基地局装置(eNB102、および/またはgNB108)から端末装置(UE122)にRRCメッセージが送られる場合のフローの一例である。 Explain the flow of RRC messages that are transmitted and received between the terminal device and the base station device. FIG. 4 is a diagram showing an example flow of procedures for various settings in RRC according to the embodiment of the present invention. FIG. 4 is an example flow when an RRC message is sent from the base station apparatus (eNB 102 and/or gNB 108) to the terminal apparatus (UE 122).
 図4において、基地局装置はRRCメッセージを作成する(ステップS400)。基地局装置におけるRRCメッセージの作成は、基地局装置が報知情報(SI:System Information)やページング情報を配信するため行われてよい。また基地局装置におけるRRCメッセージの作成は、基地局装置が特定の端末装置に対して処理を行わせるために行われてよい。特定の端末装置に対して行わせる処理は、例えばセキュリティに関する設定、RRC接続の再設定、異なるRATへのハンドオーバ、RRC接続の休止、RRC接続の解放などの処理を含んでよい。  In FIG. 4, the base station device creates an RRC message (step S400). The creation of the RRC message in the base station apparatus may be performed in order for the base station apparatus to distribute system information (SI) and paging information. Also, the creation of the RRC message in the base station apparatus may be performed so that the base station apparatus causes a specific terminal apparatus to perform processing. The processing to be performed on a specific terminal device may include, for example, security-related settings, RRC connection reconfiguration, handover to a different RAT, RRC connection suspension, RRC connection release, and the like.
 RRC接続の再設定処理には、例えば無線ベアラの制御(確立、変更、解放など)、セルグループの制御(確立、追加、変更、解放など)、メジャメント設定、ハンドオーバ、セキュリティ鍵更新、などの処理が含まれてよい。また基地局装置におけるRRCメッセージの作成は、端末装置から送信されたRRCメッセージへの応答のために行われてよい。端末装置から送信されたRRCメッセージへの応答は、例えばRRCセットアップ要求への応答、RRC再接続要求への応答、RRC再開要求への応答などを含んでよい。 RRC connection reset processing includes, for example, radio bearer control (establishment, change, release, etc.), cell group control (establishment, addition, change, release, etc.), measurement setting, handover, security key update, etc. may be included. Also, the creation of the RRC message in the base station apparatus may be performed in response to the RRC message transmitted from the terminal apparatus. The response to the RRC message sent from the terminal device may include, for example, a response to the RRC setup request, a response to the RRC reconnection request, a response to the RRC resume request, and the like.
 RRCメッセージには各種情報通知や設定のための情報(パラメータ)が含まれる。これらのパラメータは、フィールドおよび/または情報要素呼ばれてよく、ASN.1(Abstract Syntax Notation One)という記述方式を用いて記述されてよい。 The RRC message contains information (parameters) for various information notifications and settings. These parameters may be called fields and/or information elements and may be described using the ASN.1 (Abstract Syntax Notation One) notation scheme.
 図4において、次に基地局装置は、作成したRRCメッセージを端末装置に送信する(ステップS402)。次に端末装置は受信した上述のRRCメッセージに従って、設定などの処理が必要な場合には処理を行う(ステップS404)。処理を行った端末装置は、基地局装置に対し、応答のためのRRCメッセージを送信してよい(不図示)。 In FIG. 4, the base station device then transmits the created RRC message to the terminal device (step S402). Next, the terminal device performs processing such as setting according to the received RRC message, if necessary (step S404). The terminal device that has performed the processing may transmit an RRC message for response to the base station device (not shown).
 RRCメッセージは、上述の例に限らず、他の目的に使われてよい。 The RRC message is not limited to the above examples, and may be used for other purposes.
 なおMR-DCにおいて、マスターノード側のRRCが、SCG側の設定(セルグループ設定、無線ベアラ設定、測定設定など)のためのRRCメッセージを、端末装置との間で転送するのに用いられてよい。例えばEN-DC、又はNGEN-DCにおいて、eNB102とUE122との間で送受信されるE-UTRAのRRCメッセージに、NRのRRCメッセージがコンテナの形で含まれてよい。またNE-DCにおいて、gNB108とUE122との間で送受信されるNRのRRCメッセージに、E-UTRAのRRCメッセージがコンテナの形で含まれてよい。SCG側の設定のためのRRCメッセージは、マスターノードとセカンダリノードの間で送受信されてよい。 In MR-DC, RRC on the master node side is used to transfer RRC messages for SCG side settings (cell group settings, radio bearer settings, measurement settings, etc.) to and from the terminal equipment. good. For example, in EN-DC or NGEN-DC, E-UTRA RRC messages sent and received between eNB 102 and UE 122 may include NR RRC messages in the form of containers. Also, in the NE-DC, the NR RRC message transmitted and received between the gNB 108 and the UE 122 may include the E-UTRA RRC message in the form of a container. RRC messages for SCG side configuration may be sent and received between the master node and the secondary node.
 なお、MR-DCを利用する場合に限らず、eNB102からUE122に送信されるE-UTRA用RRCメッセージに、NR用RRCメッセージが含まれていてよいし、gNB108からUE122に送信されるNR用RRCメッセージに、E-UTRA用RRCメッセージが含まれていてよい。 In addition, not only when using MR-DC, the RRC message for E-UTRA transmitted from eNB 102 to UE 122 may include the RRC message for NR, and the RRC message for NR transmitted from gNB 108 to UE 122 may be included. The message may include an RRC message for E-UTRA.
 RRCコネクションの再設定に関するRRCメッセージに含まれる、パラメータの一例を説明する。 An example of the parameters included in the RRC message regarding reconfiguration of the RRC connection will be explained.
 図7は、図4において、NRでのRRCコネクションの再設定に関するメッセージに含まれる、無線ベアラ設定に関するフィールド、および/または情報要素を表すASN.1記述の一例である。 Fig. 7 is an example of ASN.1 description representing fields and/or information elements related to radio bearer setup included in the message related to RRC connection reconfiguration in NR in Fig. 4.
 また図8は、図4において、E-UTRAでのRRCコネクションの再設定に関するメッセージに含まれる、無線ベアラ設定に関するフィールド、および/または情報要素を表すASN.1記述の一例である。 Figure 8 is an example of ASN.1 description representing fields and/or information elements related to radio bearer setup included in the message related to RRC connection reconfiguration in E-UTRA in Figure 4.
 図7、図8に限らず、本発明の実施の形態におけるASN.1の例で、<略>及び<中略>とは、ASN.1の表記の一部ではなく、他の情報を省略していることを示す。なお<略>又は<中略>という記載の無い所でも、情報要素が省略されていてよい。なお本発明の実施の形態においてASN.1の例はASN.1表記方法に正しく従ったものではない。本発明の実施の形態においてASN.1の例は、本発明の実施形態におけるRRCメッセージのパラメータの一例を表記したものであり、他の名称や他の表記が用いられてよい。またASN.1の例は、説明が煩雑になることを避けるために、本発明の一形態と密接に関連する主な情報に関する例のみを示す。 Not limited to FIGS. 7 and 8, in the examples of ASN.1 in the embodiments of the present invention, <omitted> and <omitted> are not part of the ASN.1 notation, and other information is omitted. indicates that Information elements may be omitted even where there is no description of <omitted> or <omitted>. Note that the ASN.1 example in the embodiment of the present invention does not correctly follow the ASN.1 notation method. The example of ASN.1 in the embodiment of the present invention is an example of notation of the parameters of the RRC message in the embodiment of the present invention, and other names and other notations may be used. In addition, the ASN.1 example shows only examples of main information closely related to one aspect of the present invention in order to avoid complicating the explanation.
 なお、ASN.1で記述されるパラメータを、フィールド、情報要素等に区別せず、全て情報要素と言う場合がある。また本発明の実施の形態において、RRCメッセージに含まれる、ASN.1で記述されるフィールド、情報要素等を、情報と言い換えてもよく、パラメータと言い換えてもよい。なおRRCコネクションの再設定に関するメッセージとは、NRにおけるRRC再設定メッセージであってよいし、E-UTRAにおけるRRCコネクション再設定メッセージであってよい。  In some cases, the parameters described in ASN.1 are all referred to as information elements without distinguishing between fields, information elements, etc. Further, in the embodiment of the present invention, fields described in ASN.1, information elements, etc. included in the RRC message may be called information or parameters. Note that the message regarding RRC connection reconfiguration may be an RRC reconfiguration message in NR or an RRC connection reconfiguration message in E-UTRA.
 セルの活性化(Activation)および不活性化(Deactivation)について説明する。デュアルコネクティビティで通信する端末装置において、前述のRRCコネクションの再設定に関するメッセージによって、マスターセルグループ(MCG)の設定とセカンダリセルグループ(SCG)が設定される。各セルグループは、特別なセル(SpCell)とそれ以外の0個以上のセル(セカンダリセル:SCell)とで構成されてよい。MCGのSpCellはPCellとも称する。SCGのSpCellはPSCellとも称する。セルの不活性化は、SpCellには適用されず、SCellに適用されてよい。 Explain the activation and deactivation of cells. In a terminal device that communicates with dual connectivity, a master cell group (MCG) and a secondary cell group (SCG) are set by the above-described message regarding RRC connection reconfiguration. Each cell group may consist of a special cell (SpCell) and zero or more other cells (secondary cells: SCells). SpCell of MCG is also called PCell. SpCell of SCG is also called PSCell. Cell deactivation does not apply to SpCells, but may apply to SCells.
 また、セルの不活性化は、PCellには適用されず、PSCellには適用されてもよい。この場合、セルの不活性化は、SpCellとSCellとで異なる処理であってもよい。 Also, cell deactivation may not be applied to PCells, but may be applied to PSCells. In this case, cell deactivation may be performed differently for SpCells and SCells.
 セルの活性化および不活性化はセルグループ毎に存在するMACエンティティで処理されてよい。端末装置に設定されたSCellは下記(A)、(B)、および/または(C)によって活性化および/または不活性化されてよい。
  (A)SCell活性化/不活性化を示すMAC CEの受信
  (B)PUCCHが設定されていないSCellごとに設定されるSCell不活性タイマー(タイマーが満了することに基づいてSCellが不活性化される)
  (C)RRCメッセージによってSCellごとに設定されるSCell状態(sCellState)(SCellの設定にSCell状態のフィールドが含まれることに基づいてSCellが活性化される)
Cell activation and deactivation may be handled by a MAC entity that exists for each cell group. The SCell configured in the terminal device may be activated and/or deactivated by (A), (B), and/or (C) below.
(A) Receipt of MAC CE indicating SCell activation/deactivation (B) SCell inactivity timer set for each SCell for which PUCCH is not set (SCell is deactivated based on timer expiration) a)
(C) SCell state (sCellState) set for each SCell by an RRC message (SCell is activated based on the inclusion of the SCell state field in the SCell configuration)
 具体的には、端末装置のMACエンティティはセルグループに設定された各SCellに対して以下の処理(AD)の各処理の一部または全部をおこなってよい。 Specifically, the MAC entity of the terminal device may perform some or all of the following processing (AD) for each SCell set in the cell group.
 (処理AD)
  (1)もし、SCellが設定される際に、RRCパラメータ(SCell状態)がactivatedに設定されている、またはSCellを活性化させるMAC CEを受信した場合、UE122のMACエンティティは処理(AD-1)を行う。そうでなく、もし、SCellを不活性化させるMAC CEを受信した、または、もし、活性状態のSCellにおいてSCell不活性タイマーが満了したら、UE122のMACエンティティは処理(AD-2)を行う。
  (2)もし、活性状態のSCellのPDCCHによって上りリンクグラントまたは下りリンク割り当てが通知されたら、または、もし、あるサービングセルのPDCCHによって、活性状態のSCellに対する上りリンクグラントまたは下りリンク割り当てが通知されたら、または、もし、設定された上りリンクグラントにおいてMAC PDUが送信されたら、または、もし、設定された下りリンク割り当てにおいてMAC PDUが受信されたら、UE122のMACエンティティはそのSCellに関連付けられたSCell不活性タイマーを再スタートする。
  (3)もし、SCellが不活性状態となったら、UE122のMACエンティティは処理(AD-3)を行う。
(processing AD)
(1) If the RRC parameter (SCell state) is set to activated when the SCell is configured, or if a MAC CE that activates the SCell is received, the MAC entity of UE 122 processes (AD-1 )I do. Otherwise, if a MAC CE is received that deactivates the SCell, or if the SCell inactivity timer expires in an active SCell, the MAC entity of UE 122 takes action (AD-2).
(2) if an uplink grant or downlink allocation for an active SCell is signaled by the PDCCH of an active SCell, or if an uplink grant or downlink allocation for an active SCell is signaled by the PDCCH of a certain serving cell; Or, if a MAC PDU is sent in a configured uplink grant or if a MAC PDU is received in a configured downlink allocation, the MAC entity of UE 122 will send a SCell Disable associated with that SCell. Restart the liveness timer.
(3) If the SCell becomes inactive, the MAC entity of UE 122 performs processing (AD-3).
 (処理AD-1)
  端末装置のMACエンティティは、下記(1)から(3)の一部または全部を実行(Perform)してよい。
  (1)もし、NRにおいて、このSCellを活性化させるMAC CEを受信する前にこのSCellが不活性状態であった、または、もし、SCell設定の際にそのSCellに設定されているRRCパラメータ(sCellState)がactivatedに設定されているならば、UE122のMACエンティティは処理(AD-1-1)を行う。
  (2)UE122のMACエンティティは、そのSCellに対応付けられたSCell不活性タイマーをスタート、または(すでにスタートしている場合は)再スタートする。
  (3)もし、Active DL BWPが休眠BWP(Dormant BWP)でない場合、ストアされている設定(stored configuration)に従って、このSCellに対応付けられている、サスペンドされたタイプ1コンフィギュアード上りリンクグラントが存在すれば、)UE122のMACエンティティは、これを(再)初期化する。そして)UE122のMACエンティティは、PHRをトリガする。
(Processing AD-1)
The MAC entity of the terminal device may perform some or all of (1) to (3) below.
(1) If, in NR, this SCell was in an inactive state before receiving a MAC CE that activates this SCell, or if the RRC parameters ( sCellState) is set to activated, the MAC entity of UE 122 performs processing (AD-1-1).
(2) UE 122's MAC entity starts or restarts (if already started) the SCell inactivity timer associated with that SCell.
(3) If the Active DL BWP is not a Dormant BWP, the suspended Type 1 Configured Uplink Grant associated with this SCell according to the stored configuration. If present, the UE 122's MAC entity (re)initializes it. and) the MAC entity of UE 122 triggers the PHR.
 (処理AD-1-1)
  端末装置のMACエンティティは、下記(1)から(3)の一部または全部を実行(Perform)してよい。
  (1)もし、そのSCellに対してRRCメッセージで設定されている第1アクティブ下りリンクBWP識別子(firstActiveDownlinkBWP-Id)で示されるBWPが、休眠(Dormant)BWPに設定されていないなら、UE122のMACエンティティは処理(AD-1-1-1)を行う。
  (2)もし、そのSCellに対してRRCメッセージで設定されている第1アクティブ下りリンクBWP識別子(firstActiveDownlinkBWP-Id)で示されるBWPが、休眠(Dormant)BWPに設定されているなら、UE122のMACエンティティは、もし、このサービングセルのBWP不活性タイマー(bwp-InactivityTimer)が走っているなら、これを止める。
  (3) UE122のMACエンティティは、そのSCellに対してRRCメッセージで設定されている、第1アクティブ下りリンクBWP識別子(firstActiveDownlinkBWP-Id)で示される下りリンクのBWPと、第1アクティブ上りリンクBWP識別子(firstActiveUplinkBWP-Id)で示される上りリンクのBWPを活性化させる。
(Processing AD-1-1)
The MAC entity of the terminal device may perform some or all of (1) to (3) below.
(1) If the BWP indicated by the first active downlink BWP identifier (firstActiveDownlinkBWP-Id) set in the RRC message for that SCell is not set to Dormant BWP, the MAC of UE 122 The entity performs processing (AD-1-1-1).
(2) If the BWP indicated by the first active downlink BWP identifier (firstActiveDownlinkBWP-Id) set in the RRC message for that SCell is set to Dormant BWP, the MAC of UE 122 The entity stops this serving cell's BWP-Inactivity Timer (bwp-InactivityTimer) if it is running.
(3) The MAC entity of UE 122 receives the downlink BWP indicated by the first active downlink BWP identifier (firstActiveDownlinkBWP-Id) configured in the RRC message for that SCell and the first active uplink BWP identifier. Activate the uplink BWP indicated by (firstActiveUplinkBWP-Id).
 (処理AD-1-1-1)
  端末装置のMACエンティティは、既定のタイミングでSCellを活性状態にして、下記(A)から(E)の一部または全部を含む通常のSCell動作(Operation)を適用(実施)してよい。
   (A)このSCellにおけるサウンディング参照信号(SRS)の送信
   (B)このSCellのためのチャネル状態情報(CSI)の報告
   (C)このSCellにおけるPDCCHのモニタ
   (D)このSCellに対するPDCCHのモニタ(他のサービングセルにおいてこのSCellに対するスケジュールが行われる場合)
   (E)もしPUCCHが設定されていれば、このSCellにおけるPUCCH送信
(Processing AD-1-1-1)
The MAC entity of the terminal device may activate the SCell at predetermined timing and apply (execute) normal SCell operations including some or all of (A) to (E) below.
(A) Sounding Reference Signal (SRS) transmission for this SCell (B) Channel State Information (CSI) reporting for this SCell (C) PDCCH monitoring for this SCell (D) PDCCH monitoring for this SCell (etc.) (if scheduling for this SCell is done in the serving cell of
(E) If PUCCH is configured, PUCCH transmission on this SCell
 (処理AD-2)
  端末装置のMACエンティティは、下記(A)から(D)の一部または全部を実行(Perform)してよい。
   (A)既定のタイミングでこのSCellを不活性化する。
   (B)このSCellに対応付けられたSCell不活性タイマーを停止する。
   (C)このSCellに対応付けられたすべてのActive BWPを不活性化する。
   (D)このSCellに対応付けられたHARQのバッファをフラッシュする。
(Processing AD-2)
The MAC entity of the terminal device may perform some or all of (A) to (D) below.
(A) Inactivate this SCell at a predetermined timing.
(B) Stop the SCell inactivity timer associated with this SCell.
(C) Deactivate all Active BWPs associated with this SCell.
(D) Flush the HARQ buffer associated with this SCell.
 (処理AD-3)
  端末装置のMACエンティティは、下記(A)から(D)の一部または全部を実行(Perform)してよい。
   (A)このSCellでSRSを送信しない。
   (B)このSCellのためのCSIを報告しない。
   (C)このSCellでPUCCH、UL-SCH、および/またはRACHを送信しない。
   (D)このSCellのPDCCH、および/またはこのSCellに対するPDCCHのモニタをしない。
(Processing AD-3)
The MAC entity of the terminal device may perform some or all of (A) to (D) below.
(A) Do not transmit SRS on this SCell.
(B) Do not report CSI for this SCell.
(C) Do not transmit PUCCH, UL-SCH and/or RACH on this SCell.
(D) Do not monitor the PDCCH of this SCell and/or the PDCCH for this SCell.
 上記のように、MACエンティティが処理(AD)を行うことにより、SCellの活性化および不活性化が行われる。 As described above, the SCell is activated and deactivated by the processing (AD) performed by the MAC entity.
 また前述のようにSCellが追加される場合にRRCメッセージによってSCellの初期状態が設定されてもよい。 Also, as described above, when an SCell is added, the initial state of the SCell may be set by an RRC message.
 ここで、SCell不活性タイマーについて説明する。PUCCHが設定されないSCellに対しては、RRCメッセージによって、SCell不活性タイマーの値(タイマーが満了したとみなされる時間に関する情報)が通知されてよい。例えば、RRCメッセージでSCell不活性タイマーの値として40msを示す情報が通知された場合、上記処理(AD)において、タイマーをスタートまたは再スタートしてからタイマーが停止することなく通知された時間(ここでは40ms)が経過したしたときに、タイマーが満了したとみなされる。また、SCell不活性タイマーは、sCellDeactivationTimerという名称のタイマーであってもよい。 Here, the SCell inactivity timer will be explained. For SCells for which PUCCH is not configured, the value of the SCell inactivity timer (information regarding the time when the timer is considered to have expired) may be notified by the RRC message. For example, when information indicating 40 ms is notified as the value of the SCell inactivity timer in the RRC message, the time notified without stopping the timer after starting or restarting the timer in the above process (AD) (here 40ms) has elapsed, the timer is considered expired. The SCell deactivation timer may also be a timer named sCellDeactivationTimer.
 ここで、帯域部分(BWP)について説明する。 Here, the bandwidth part (BWP) will be explained.
 BWPはサービングセルの帯域の一部あるいは全部の帯域であってよい。また、BWPはキャリアBWP(Carrier BWP)と呼称されてもよい。端末装置には、1つまたは複数のBWPが設定されてよい。あるBWPは初期セルサーチで検出された同期信号に対応づけられた報知情報に含まれる情報によって設定されてもよい。また、あるBWPは初期セルサーチを行う周波数に対応づけられた周波数帯域幅であってもよい。また、あるBWPはRRCシグナリング(例えばDedicated RRC signaling)で設定されてもよい。 The BWP may be part or all of the bandwidth of the serving cell. A BWP may also be called a carrier BWP. A terminal device may be configured with one or more BWPs. A certain BWP may be set by information included in the broadcast information associated with the synchronization signal detected in the initial cell search. Also, a certain BWP may be a frequency bandwidth associated with a frequency for initial cell search. Some BWPs may also be configured with RRC signaling (eg Dedicated RRC signaling).
 また、下りリンクのBWP(DL BWP)と上りリンクのBWP(UL BWP)とが個別に設定されてもよい。また、1つまたは複数の上りリンクのBWPが1つまたは複数の下りリンクのBWPと対応づけられてよい。また、上りリンクのBWPと下りリンクのBWPとの対応づけは既定の対応づけであってもよいし、RRCシグナリング(例えばDedicated RRC signaling)による対応付けでもよいし、物理層のシグナリング(例えば下りリンク制御チャネルで通知される下りリンク制御情報(DCI)による対応付けであってもよいし、それらの組み合わせであってもよい。 Also, the downlink BWP (DL BWP) and the uplink BWP (UL BWP) may be set individually. Also, one or more uplink BWPs may be associated with one or more downlink BWPs. Further, the association between the uplink BWP and the downlink BWP may be a default association, may be an association by RRC signaling (for example, Dedicated RRC signaling), or may be associated by physical layer signaling (for example, downlink The association may be based on downlink control information (DCI) notified by a control channel, or a combination thereof.
 BWPは連続する物理無線ブロック(PRB:Physical Resource Block)のグループで構成されてよい。また、接続状態の端末装置に対して、各コンポーネントキャリアのBWP(1つまたは複数のBWP)のパラメータが設定されてよい。 A BWP may consist of a group of consecutive physical radio blocks (PRB: Physical Resource Block). Also, parameters of the BWP (one or more BWPs) of each component carrier may be set for the terminal device in the connected state.
 各コンポーネントキャリアのBWPのパラメータには、(A)サイクリックプレフィックスの種類、(B)サブキャリア間隔、(C)BWPの周波数位置(例えば、BWPの低周波数側の開始位置または中央周波数位置)(周波数位置は例えば、ARFCNが用いられてもよいし、サービングセルの特定のサブキャリアからのオフセットが用いられてもよい。また、オフセットの単位はサブキャリア単位であってもよいし、リソースブロック単位でもよい。また、ARFCNとオフセットの両方が設定されるかもしれない。)、(D)BWPの帯域幅(例えばPRB数)、(E)制御信号のリソース設定情報、(F)SSブロックの中心周波数位置(周波数位置は例えば、ARFCNが用いられてもよいし、サービングセルの特定のサブキャリアからのオフセットが用いられてもよい。 The BWP parameters for each component carrier include (A) the type of cyclic prefix, (B) the subcarrier spacing, (C) the frequency position of the BWP (e.g., the start position or center frequency position on the low frequency side of the BWP) ( For the frequency position, for example, ARFCN may be used, or an offset from a specific subcarrier of the serving cell may be used.In addition, the offset unit may be a subcarrier unit or a resource block unit. Also, both ARFCN and offset may be set.), (D) BWP bandwidth (e.g. number of PRBs), (E) control signal resource configuration information, (F) SS block center frequency. The location (frequency location, for example, ARFCN may be used, or an offset from a specific subcarrier of the serving cell may be used.
 また、オフセットの単位はサブキャリア単位であってもよいし、リソースブロック単位でもよい。また、ARFCNとオフセットの両方が設定されるかもしれない。)、の一部あるいは全部が含まれてよい。また、制御信号のリソース設定情報が、少なくともPCellおよび/またはPSCellの一部あるいは全部のBWPの設定に含まれてもよい。 Also, the offset unit may be a subcarrier unit or a resource block unit. Also, both ARFCN and offset may be set. ), may be included in part or in whole. Also, the resource configuration information of the control signal may be included in the BWP configuration of at least some or all of the PCell and/or PSCell.
 端末装置は、1つまたは複数の設定されたBWPのうち、アクティブなBWP(Active BWP)において送受信をおこなってよい。端末装置に関連付けられている一つのサービングセルに対して設定された1つまたは複数のBWPのうち、ある時間において、最大で1つの上りリンクBWP、および/または最大で1つの下りリンクBWPとがアクティブなBWPとなるように設定されてもよい。活性化された下りリンクのBWPをAcitve DL BWPとも称する。活性化された上りリンクBWPをActive UL BWPとも称する。 A terminal device may transmit and receive in an active BWP (Active BWP) out of one or more set BWPs. Among one or more BWPs configured for one serving cell associated with a terminal device, at most one uplink BWP and/or at most one downlink BWP is active at a certain time. BWP may be set. The activated downlink BWP is also called Active DL BWP. The activated uplink BWP is also called Active UL BWP.
 次にBWPの不活性化について説明する。1つのサービングセルにおいて、1つまたは複数のBWPが設定されてよい。サービングセルにおけるBWP切り替え(BWP switching)は、不活性化されたBWP(インアクティブ(Inactive)BWPとも称する)を活性化して、活性化されていたBWPを不活性化するために用いられる。 Next, I will explain the inactivation of BWP. One or more BWPs may be configured in one serving cell. BWP switching in the serving cell is used to activate deactivated BWPs (also referred to as inactive BWPs) and deactivate activated BWPs.
 BWP切り替えは、下りリンク割り当てまたは上りリンクグラントを示すPDCCH、BWP不活性タイマー、RRCシグナリング、またはランダムアクセス手順の開始のためにMACエンティティそれ自身によって制御される。サービングセルのActive BWPは、RRCまたはPDCCHによって示される。 BWP switching is controlled by the MAC entity itself for PDCCH indicating downlink assignment or uplink grant, BWP inactivity timer, RRC signaling, or initiation of random access procedures. Active BWP of the serving cell is indicated by RRC or PDCCH.
 次に休眠(Dormant)BWPについて説明する。休眠BWPへの入場(Entering)または休眠BWPからの退出(Leaving)は、BWP切り替えによってなされる。この制御はPDCCHによって、SCellごと、または休眠SCellグループ(Dormancy SCell Group)と呼ばれるグループごとに行われる。休眠SCellグループの設定は、RRCシグナリングによって示される。また、現在の仕様では休眠BWPはSCellにのみ適用される。なお、休眠BWPとはあるBWPを休眠状態に変化させるものではなく、UEに対して設定される1つまたは複数のBWPのうち、休眠用として設定される1つのBWPであると解釈してよい。また、休眠用としてUEに設定されるBWPは、複数あってもよい。 Next, I will explain the Dormant BWP. Entering a dormant BWP or leaving a dormant BWP is done by BWP switching. This control is performed by the PDCCH for each SCell or for each group called Dormancy SCell Group. Configuration of dormant SCell groups is indicated by RRC signaling. Also, in the current specification Dormant BWP applies only to SCells. Note that a dormant BWP does not change a certain BWP to a dormant state, but may be interpreted as one BWP set for dormancy among one or more BWPs set for the UE. . Also, there may be a plurality of BWPs set in the UE for sleep.
 あるBWPが休眠BWPであることは、BWPの設定に特定のパラメータが含まれないことによって示されてもよい。例えば、下りリンクBWPの設定に含まれる、UE固有(Specific)なPDCCHのパラメータを設定するための情報要素であるPDCCH-Config情報要素が含まれないことによって、そのBWPが休眠BWPであることを示してもよい。また、例えば、下りリンクBWPの設定に含まれる、UE固有(Specific)なPDCCHのパラメータを設定するための情報要素であるPDCCH-Config情報要素に含まれるパラメータの一部が設定されない(含まれない)ことによって、そのBWPが休眠BWPであることを示してもよい。例えば、あるBWPの設定として、PDCCH-Config情報要素によって設定される、どこで、および/またはどのように、PDCCHの候補を検索(Search)するかを定義するサーチスペースに関する設定の一部または全部が設定されない(含まれない)ことによって、そのBWPが休眠BWPであることを示してもよい。  A certain BWP is a dormant BWP may be indicated by not including a specific parameter in the BWP configuration. For example, by not including the PDCCH-Config information element, which is an information element for setting UE-specific (Specific) PDCCH parameters, included in the configuration of the downlink BWP, it is determined that the BWP is a dormant BWP. can be shown. Also, for example, some of the parameters included in the PDCCH-Config information element, which is an information element for configuring UE-specific PDCCH parameters included in the downlink BWP configuration, are not configured (not included). ) to indicate that the BWP is a dormant BWP. For example, some or all of the search space settings that define where and/or how to search for PDCCH candidates are configured by the PDCCH-Config information element as a BWP configuration. Not set (not included) may indicate that the BWP is a dormant BWP.
 また、ある設定では、PCellやPSCellなどのSpCell及びPUCCHの送信がおこなえるPUCCH SCellへの休眠BWPの設定はサポートされないようにしてもよい。 In addition, in certain settings, SpCells such as PCells and PSCells and settings of dormant BWPs for PUCCH SCells that can transmit PUCCH may not be supported.
 ある設定された期間(アクティブ時間)の外で休眠BWPから退出することを示すPDCCHをSpCellで受信したUEは、予めRRCシグナリングで通知された第1の下りリンクBWP識別子で示される下りリンクBWPを活性化する。 A UE that has received a PDCCH indicating to exit from a dormant BWP outside a certain set period (active time) in SpCell uses the downlink BWP indicated by the first downlink BWP identifier notified in advance by RRC signaling. Activate.
 ある設定された期間(アクティブ時間)の内で休眠BWPから退出することを示すPDCCHをSpCellで受信したUEは、予めRRCシグナリングで通知された第2の下りリンクBWP識別子で示される下りリンクBWPを活性化する。 A UE that has received a PDCCH in SpCell indicating that it will leave a dormant BWP within a certain set period (active time) uses the downlink BWP indicated by the second downlink BWP identifier notified in advance by RRC signaling. Activate.
 休眠BWPに入場することを示すPDCCHを受信したUEは、予めRRCシグナリングで通知された第3の下りリンクBWP識別子(dormantDownlinkBWP-Id)で示される下りリンクBWPを活性化する。 A UE that receives a PDCCH indicating entry into a dormant BWP activates the downlink BWP indicated by the third downlink BWP identifier (dormantDownlinkBWP-Id) previously notified by RRC signaling.
 上記の休眠BWPへの入場と退出は、BWP切り替えによって行われ、新たなBWPを活性化する際に、それまで活性状態であったBWPが不活性化される。すなわち、休眠BWPから退出する場合、休眠BWPが不活性化され、休眠BWPに入場する場合、休眠BWPが活性化される。 Entry into and exit from the above-mentioned dormant BWP is performed by BWP switching, and when activating a new BWP, the previously active BWP is deactivated. That is, when exiting a dormant BWP, the dormant BWP is deactivated, and when entering a dormant BWP, the dormant BWP is activated.
 ここで、休眠BWPに入場することを示すPDCCHと休眠BWPから退場することを示すPDCCHについて説明する。 Here, we will explain the PDCCH that indicates entering a dormant BWP and the PDCCH that indicates leaving a dormant BWP.
 例えば、SpCellにおいて間欠受信(DRX)が設定されているUEは、DRXのアクティブタイムの外において、あるDCIフォーマット(例えばDCIフォーマット2_6)を検出するためにSpCellのActive BWPでPDCCHをモニタしてもよい。前記DCIフォーマットのCRCはあるRNTI(例えばPS-RNTI)でスクランブルされていてもよい。 For example, a UE configured with discontinuous reception (DRX) in SpCell may monitor PDCCH in Active BWP of SpCell to detect a certain DCI format (e.g. DCI format 2_6) outside DRX active time. good. The DCI format CRC may be scrambled with a certain RNTI (eg PS-RNTI).
 休眠SCellグループが設定されたUEは、DCIフォーマット2_6のペイロードに含まれるビットマップ情報に基づき、Active DL BWPの切り替えを判断する。例えば、ビットマップのあるビットがひとつの休眠SCellグループに紐づけられ、ビットが1である場合に、Active DL BWPが休眠BWPであれば、あらかじめ設定された別のBWPにBWP切り替えを実行し、Active DL BWPが休眠BWPでなければ、そのBWPにとどまるようにしてもよい。また、ビットが0である場合に、Active DL BWPが休眠BWPになるようにBWP切り替えを実行してもよい。 A UE with a dormant SCell group set determines whether to switch to Active DL BWP based on the bitmap information included in the DCI format 2_6 payload. For example, if a bit in the bitmap is associated with one dormant SCell group and the bit is 1, if the Active DL BWP is a dormant BWP, perform a BWP switch to another preset BWP, If an Active DL BWP is not a dormant BWP, it may stay on that BWP. A BWP switch may also be performed such that if the bit is 0, the Active DL BWP becomes the Dormant BWP.
 UEはDRXのアクティブタイムにおいて、DCIフォーマット2_6の検出を目的としたPDCCHのモニタをしなくてもよい。  UE does not have to monitor PDCCH for the purpose of detecting DCI format 2_6 during DRX active time.
 SpCellにおいて間欠受信(DRX)が設定されているUEは、DRXのアクティブタイムにおいて、あるDCIフォーマット(例えばDCIフォーマット0_1及び1_1)を検出するためにSpCellのActive BWPでPDCCHをモニタしてもよい。前記DCIフォーマットのCRCはあるRNTI(例えばC-RNTIまたはMCS-C-RNTI)でスクランブルされていてもよい。休眠SCellグループが設定されたUEは、DCIフォーマット0_1またはDCIフォーマット1_1のペイロードに含まれるビットマップ情報に基づき、Active DL BWPの切り替えを判断する。 A UE configured for discontinuous reception (DRX) in SpCell may monitor PDCCH in Active BWP of SpCell to detect certain DCI formats (for example, DCI formats 0_1 and 1_1) during DRX active time. The DCI format CRC may be scrambled with an RNTI (eg, C-RNTI or MCS-C-RNTI). A UE in which a dormant SCell group is set determines switching of Active DL BWP based on the bitmap information included in the payload of DCI format 0_1 or DCI format 1_1.
 例えば、ビットマップのあるビットがひとつの休眠SCellグループに紐づけられ、ビットが1である場合に、Active DL BWPが休眠BWPであれば、あらかじめ設定された別のBWPにBWP切り替えを実行し、Active DL BWPが休眠BWPでなければ、そのBWPにとどまるようにしてもよい。また、ビットが0である場合に、Active DL BWPが休眠BWPになるようにBWP切り替えを実行してもよい。また、前記「あらかじめ設定された別のBWP」は、DCIフォーマット2_6の説明で用いた「あらかじめ設定された別のBWP」とは異なるBWPであってよい。 For example, if a bit in the bitmap is associated with one dormant SCell group and the bit is 1, if the Active DL BWP is a dormant BWP, perform a BWP switch to another preset BWP, If an Active DL BWP is not a dormant BWP, it may stay on that BWP. A BWP switch may also be performed such that if the bit is 0, the Active DL BWP becomes the Dormant BWP. Also, the "another preset BWP" may be a BWP different from the "another preset BWP" used in the description of the DCI format 2_6.
 UEはDRXのアクティブタイムの外において、DCIフォーマット0_1及びDCIフォーマット1_1の検出を目的としたPDCCHのモニタをしなくてもよい。 The UE does not have to monitor PDCCH for the purpose of detecting DCI format 0_1 and DCI format 1_1 outside the DRX active time.
 休眠BWPを抜けることを示すPDCCHをモニタすることとは、DRXのアクティブタイムの外でDCIフォーマット2_6の検出を目的としたPDCCHのモニタをし、DRXのアクティブタイムにおいて、DCIフォーマット0_1及びDCIフォーマット1_1の検出を目的としたPDCCHのモニタをすることであってよい。 Monitoring the PDCCH indicating exiting the dormant BWP means monitoring the PDCCH for detection of DCI format 2_6 outside the DRX active time, and DCI format 0_1 and DCI format 1_1 during the DRX active time. monitoring of the PDCCH for the purpose of detecting
 BWPが設定された活性化された各サービングセルにおいて、MACエンティティは、もし、BWPが活性化され(Active BWPであり)、そのBWPが休眠BWPでないなら、下記(A)から(H)の一部または全部をおこなってよい。
  (A)そのBWPでUL-SCHを送信する。
  (B)もしPRACHオケージョンが設定されているなら、そのBWPでRACHを送信する。
  (C)そのBWPでPDCCHをモニタする。
  (D)もしPUCCHが設定されているなら、そのBWPでPUCCHを送信する。
  (E)そのBWPでCSIを報告する。
  (F)もしSRSが設定されているなら、そのBWPでSRSを送信する。
  (G)そのBWPでDL-SCHを受信する。
  (H)そのBWPで設定されてサスペンドされた、グラントタイプ1のコンフィギュアード上りリンクグラントを初期化する。
For each activated serving cell with a BWP configured, the MAC entity shall, if the BWP is activated (is an Active BWP) and that BWP is not a dormant BWP, any of (A) through (H) below: Or you can do it all.
(A) Transmit UL-SCH on that BWP.
(B) If a PRACH occasion is configured, send RACH on that BWP.
(C) Monitor the PDCCH on that BWP.
(D) If PUCCH is configured, transmit PUCCH on that BWP.
(E) Report CSI on its BWP.
(F) If SRS is configured, send SRS on that BWP.
(G) Receive DL-SCH on that BWP.
(H) Initialize configured uplink grants of grant type 1 that have been set and suspended in that BWP.
 BWPが設定された活性化された各サービングセルにおいて、MACエンティティは、もし、BWPが活性化され(Active BWPであり)、そのBWPが休眠BWPであるなら、下記(A)から(G)の一部または全部をおこなってよい。
  (A)このBWPのサービングセルのBWP不活性タイマーが走っているなら止める。
  (B)そのBWPのPDCCHをモニタしない。
  (C)そのBWPのためのPDCCHをモニタしない。
  (D)そのBWPでDL-SCHを受信しない。
  (F)そのBWPでSRSを送信しない。
  (G)そのBWPでUL-SCHを送信しない。
  (H)そのBWPでRACHを送信しない。
  (I)そのBWPでPUCCHを送信しない。
  (J)そのSCellに関連付けられたコンフィギュアード下りリンク割り当ておよびグラントタイプ2のコンフィギュアード上りリンクグラントをそれぞれクリアする。
  (K)そのSCellに関連付けられたグラントタイプ1のコンフィギュアード上りリンクグラントをサスペンドする。
  (L)もしビーム失敗に関する設定が設定されていたら、ビーム失敗(Beam Failure)を検出(Detect)し、もしビーム失敗が検出されたらビーム失敗回復(Beam Failure Recovery)を実行する。
For each activated serving cell with a BWP configured, the MAC entity shall, if the BWP is activated (is an Active BWP) and that BWP is a dormant BWP, one of (A) through (G) below: You can do part or all.
(A) Stop the BWP inactivity timer for the serving cell of this BWP if it is running.
(B) Do not monitor PDCCH for that BWP.
(C) Do not monitor the PDCCH for that BWP.
(D) Do not receive DL-SCH on that BWP.
(F) Do not send SRS on that BWP.
(G) Do not transmit UL-SCH on that BWP.
(H) Do not send RACH on that BWP.
(I) Do not transmit PUCCH on that BWP.
(J) Clear the Configured Downlink Assignments and Configured Uplink Grants of Grant Type 2 associated with that SCell, respectively.
(K) Suspend the configured uplink grant of grant type 1 associated with that SCell.
(L) Detect Beam Failure if settings for beam failure are set, and perform Beam Failure Recovery if beam failure is detected.
 MACエンティティは、もし、BWPが不活性化されたら、下記(A)から(I)の一部または全部をおこなってよい。
  (A)そのBWPでUL-SCHを送信しない。
  (B)そのBWPでRACHを送信しない。
  (C)そのBWPでPDCCHをモニタしない。
  (D)そのBWPでPUCCHを送信しない。
  (E)そのBWPでCSIを報告しない。
  (F)そのBWPでSRSを送信しない。
  (G)そのBWPでDL-SCHを受信しない。
  (H)そのBWPで設定された、グラントタイプ2のコンフィギュアード上りリンクグラントをクリアする。
  (I)その不活性化されたBWP(インアクティブBWP)のグラントタイプ1のコンフィギュアード上りリンクグラントをサスペンドする。
The MAC entity may do some or all of (A) through (I) below if the BWP is deactivated.
(A) Do not transmit UL-SCH on that BWP.
(B) Do not send RACH on that BWP.
(C) Do not monitor PDCCH on that BWP.
(D) Do not transmit PUCCH on that BWP.
(E) Do not report CSI on that BWP.
(F) Do not send SRS on that BWP.
(G) Do not receive DL-SCH on that BWP.
(H) Clear the configured uplink grant of grant type 2 set in that BWP.
(I) Suspend the configured uplink grant of grant type 1 for that deactivated BWP (inactive BWP).
 次にBWPが設定されたUEにおけるランダムアクセス手順について説明する。あるサービングセルにおいてランダムアクセス手順を開始するときにMACエンティティはこのサービングセルの選択したキャリアにおいて、次の(A)から(E)の一部または全部の処理をおこなってよい。
  (A)もし、PRACHを送信するリソース(オケージョン)が、Active UL BWPに対して設定されていなければ、(A1)Active UL BWPをRRCのパラメータ(initialUplinkBWP)によって示されるBWPに切り替え、(A2)もし、サービングセルがSpCellであれば、Active UL BWPをRRCのパラメータ初期下りリンクBWP(initialDownlinkBWP)によって示されるBWPに切り替える。
  (B)もし、PRACHを送信するリソース(オケージョン)がActive UL BWPに対して設定されていれば、もし、サービングセルがSpCellであり、Active DL BWPとActive UL BWPとが同じ識別子(bwp-Id)を持たなければ、Active DL BWPをActive UL BWPの識別子と同じ識別子のBWPに切り替える。
  (C)もしこのサービングセルのActive DL BWPに対応付けられたBWP不活性タイマーが走っていたらこのタイマーを止める。
  (D)もしサービングセルがSCellなら、もしSpCellのActive DL BWPに対応付けられたBWP不活性タイマーが走っていたらこのタイマーを止める。
  (E)SpCellのActive DL BWPとこのサービングセルのActive UL BWP上でランダムアクセスプロシージャを実行する。
Next, a random access procedure in the UE with BWP set will be described. When initiating a random access procedure in a serving cell, the MAC entity may perform some or all of the following (A) through (E) on selected carriers of this serving cell.
(A) If the PRACH transmission resource (occasion) is not set for the Active UL BWP, (A1) switch the Active UL BWP to the BWP indicated by the RRC parameter (initialUplinkBWP), and (A2) If the serving cell is a SpCell, switch the Active UL BWP to the BWP indicated by the RRC parameter initialDownlinkBWP.
(B) If the resource (occasion) for transmitting PRACH is configured for Active UL BWP, if the serving cell is SpCell and Active DL BWP and Active UL BWP have the same identifier (bwp-Id) If not, switch the Active DL BWP to a BWP with the same identifier as the Active UL BWP.
(C) If the BWP inactivity timer associated with this serving cell's Active DL BWP is running, stop this timer.
(D) If the serving cell is a SCell, stop the BWP inactivity timer associated with the SpCell's Active DL BWP if it is running.
(E) Execute a random access procedure on the SpCell's Active DL BWP and this serving cell's Active UL BWP.
 次にBWP不活性タイマーについて説明する。BWP不活性タイマーが設定された活性化されたサービングセル(Activated Serving Cell)の各々に対してMACエンティティは、次の(A)の処理をおこなう。また、BWP不活性タイマーは、bwp-InactivityTimerという名称のタイマーであってもよい。
  (A)もし、デフォルト下りリンクBWPの識別子(defaultDownlinkBWP-Id)が設定されており、Active DL BWPが識別子(dormantDownlinkBWP-Id)で示されるBWPでない、または、もしデフォルト下りリンクBWPの識別子(defaultDownlinkBWP-Id)が設定されておらず、Active DL BWPがinitialDownlinkBWPでなく、Active DL BWPが識別子(dormantDownlinkBWP-Id)で示されるBWPでないなら、MACエンティティは次の(A-1)および(A-2)の処理をおこなう。
  (A-1)もし、Active DL BWPで、下りリンク割り当て(Assignment)または上りリンクグラントを示す、C-RNTIまたはCS-RNTIにアドレスされたPDCCHを受信した、または、もし、Active DL BWPのための、下りリンク割り当てまたは上りリンクグラントを示す、C-RNTIまたはCS-RNTIにアドレスされたPDCCHを受信した、または、もし、コンフィギュアード上りリンクグラントでMAC PDUが送信された、またはコンフィギュアード下りリンク割り当てでMAC PDUが受信されたなら、MACエンティティは次の(A-1-1)の処理をおこなう。
  (A-1-1)もし、このサービングセルに関連付けられたランダムアクセス手順が実行中でない、または、このサービングセルに関連付けられた実行中のランダムアクセス手順が、C-RNTIにアドレスされたPDCCHの受信によって成功裏に完了(Successfully completed)したら、Active DL BWPに関連付けられたBWP不活性タイマーをスタートまたは再スタートする。
  (A-2)もし、Active DL BWPに関連付けられたBWP不活性タイマーが満了(Expire)したら、MACエンティティは次の(A-2-1)の処理をおこなう。
  (A-2-1)もし、defaultDownlinkBWP-Idが設定されていたら、このdefaultDownlinkBWP-Idで示されるBWPにBWP切り替えをおこない、そうでないなら、initialDownlinkBWPにBWP切り替えをおこなう。
Next, the BWP inactivity timer will be described. The MAC entity performs the following processing (A) for each activated serving cell for which the BWP inactivity timer is set. The BWP inactivity timer may also be a timer named bwp-InactivityTimer.
(A) If the default downlink BWP identifier (defaultDownlinkBWP-Id) is configured and the Active DL BWP is not the BWP indicated by the identifier (dormantDownlinkBWP-Id), or if the default downlink BWP identifier (defaultDownlinkBWP- Id) is not set, the Active DL BWP is not the initialDownlinkBWP, and the Active DL BWP is not the BWP indicated by the identifier (dormantDownlinkBWP-Id), then the MAC entity follows (A-1) and (A-2) process.
(A-1) if, in Active DL BWP, received PDCCH addressed to C-RNTI or CS-RNTI indicating downlink assignment or uplink grant, or if for Active DL BWP received a PDCCH addressed to a C-RNTI or CS-RNTI indicating a downlink assignment or uplink grant, or if a MAC PDU was sent with a configured uplink grant or if a configured If a MAC PDU is received for downlink allocation, the MAC entity performs the following (A-1-1) processing.
(A-1-1) If the random access procedure associated with this serving cell is not in progress, or if the random access procedure in progress associated with this serving cell is received by the PDCCH addressed to the C-RNTI Once successfully completed, start or restart the BWP inactivity timer associated with the Active DL BWP.
(A-2) If the BWP inactivity timer associated with the Active DL BWP expires (Expire), the MAC entity performs the following processing (A-2-1).
(A-2-1) If defaultDownlinkBWP-Id is set, BWP switching is performed to BWP indicated by this defaultDownlinkBWP-Id, otherwise BWP switching is performed to initialDownlinkBWP.
 また、MACエンティティは、もし、BWP切り替えのためのPDCCHを受信し、Active DL BWPを切り替えたら、次の(A)の処理をおこなってよい。
  (A)もしデフォルト下りリンクBWPの識別子(defaultDownlinkBWP-Id)が設定されており、切り替えたActive DL BWPが識別子(dormantDownlinkBWP-Id)で示されるBWPでない、かつ、もし切り替えたActive DL BWPがdormantDownlinkBWP-Idで示されるBWPでないなら、Active DL BWPに関連付けられたBWP不活性タイマーをスタートまたは再スタートする。
Also, if the MAC entity receives the PDCCH for BWP switching and switches the Active DL BWP, it may perform the following processing (A).
(A) If the default downlink BWP identifier (defaultDownlinkBWP-Id) is set, the switched Active DL BWP is not the BWP indicated by the identifier (dormantDownlinkBWP-Id), and if the switched Active DL BWP is dormantDownlinkBWP- If not the BWP indicated by Id, start or restart the BWP inactivity timer associated with the Active DL BWP.
 RRC接続した端末装置による無線リンク失敗(RLF:Radio Link Failure)に関する動作の一例について説明する。 An example of operation related to a radio link failure (RLF: Radio Link Failure) by an RRC-connected terminal device will be explained.
 端末装置は、在圏する基地局装置から、サービングセルの物理層の問題(Physical layer problems)の検出のためのタイマー(例えばT310やT313)の値(t310やt313)、同期外(OoS:out-of?sync)の検出回数の閾値であるN310やN313、同期中(IS:in?sync)の検出回数の閾値であるN311やN314などの情報を報知情報やユーザ個別へのRRCメッセージによって取得する。また、前記タイマーの値や回数の閾値はデフォルトの値が設定されてもよい。また、EUTRAとNRとでタイマーの名前は異なってよい。 The terminal device receives the value (t310 or t313) of the timer (for example, T310 or T313) for detecting physical layer problems of the serving cell from the serving base station device, the value (t310 or t313), out of synchronization (OoS: out- of?sync) detection count thresholds N310 and N313, and synchronization (IS: in?sync) detection count thresholds N311 and N314, etc. are acquired from broadcast information and RRC messages for individual users. . Also, default values may be set for the timer value and the threshold for the number of times. Also, the name of the timer may be different between EUTRA and NR.
 無線リンク監視のために、端末装置の物理層処理部は、例えば受信した参照信号の受信電力および/または同期信号の受信電力および/またはパケットの誤り率などの情報に基づき、サービングセルの無線リンク品質が特定の期間(例えばTEvaluate_Qout=200ms)を越えて特定の閾値(Qout)より悪いと推定(estimate)されるときに、上位レイヤであるRRC層処理部に対して「同期外(out-of-sync)」を通知する。また、物理層処理部は、例えば受信した参照信号の受信電力および/または同期信号の受信電力および/またはパケットの誤り率などの情報に基づき、サービングセルの無線リンク品質が特定の期間(例えばTEvaluate_Qin=100ms)を越えて特定の閾値(Qin)を超えると推定されるときに、上位レイヤであるRRC層処理部に対して「同期中(in-sync)」を通知する。なお、物理層処理部は、同期外あるいは同期中の上位レイヤへの通知を特定の間隔(例えばTReport_sync=10ms)以上あけて行うようにしてもよい。 For radio link monitoring, the physical layer processing unit of the terminal device determines the radio link quality of the serving cell based on information such as the received power of the received reference signal and/or the received power of the synchronization signal and/or the packet error rate. is estimated to be worse than a certain threshold (Qout) over a certain period (e.g., TEvaluate_Qout = 200 ms), an “out-of-sync (out-of- sync)”. In addition, the physical layer processing unit, for example, based on information such as the received power of the received reference signal and / or the received power of the synchronization signal and / or the packet error rate, the radio link quality of the serving cell for a specific period (for example, TEvaluate_Qin = 100ms) and a specific threshold value (Qin) is estimated, the RRC layer processing unit, which is a higher layer, is notified of "in-sync". Note that the physical layer processing unit may notify the out-of-synchronization or in-synchronization upper layer at a specific interval (for example, TReport_sync=10 ms) or longer.
 ここで、例えば、閾値Qoutは、下りリンクの無線リンクが確実(reliably)には受信できず、さらに、既定のパラメータに基づく仮定(hypothetical)の下りリンク制御チャネル(PDCCH)の送信のブロック誤り率(Block error rate)が第1の特定の割合となるレベルとして定義されてもよい。また、例えば、閾値Qinは、下りリンクの無線リンク品質が著しく(significantly)Qoutの状態よりも確実に受信でき、さらに、既定のパラメータに基づく仮定の下りリンク制御チャネルの送信のブロック誤り率が第2の特定の割合となるレベルとして定義されてもよい。また、使用される周波数やサブキャリア間隔、サービスの種別などに基づき複数のブロック誤り率(閾値Qoutと閾値Qinのレベル)が定義されてもよい。また、第1の特定の割合、および/または第2の特定の割合は仕様書において定められる既定の値であってもよい。また、第1の特定の割合、および/または第2の特定の割合は基地局装置から端末装置に通知または報知される値であってもよい。 Here, for example, the threshold Qout is the block error rate of a hypothetical downlink control channel (PDCCH) transmission that the downlink radio link cannot reliably receive and also based on predetermined parameters. (Block error rate) may be defined as the level at which the first specified percentage. Also, for example, the threshold Qin is set so that the downlink radio link quality can be received more reliably than in a state of Qout when the downlink radio link quality is significantly higher, and furthermore, the block error rate of transmission of the hypothetical downlink control channel based on predetermined parameters is the second It may be defined as a level that is a specific percentage of two. Also, a plurality of block error rates (threshold Qout and threshold Qin levels) may be defined based on the frequencies used, subcarrier intervals, service types, and the like. Also, the first specific percentage and/or the second specific percentage may be default values defined in the specification. Also, the first specific ratio and/or the second specific ratio may be values notified or broadcast from the base station apparatus to the terminal apparatus.
 端末装置は、サービングセル(例えばPCellおよび/またはPSCell)において、ある種類の参照信号(例えばセル固有の参照信号(CRS))を用いて無線リンク監視を行なってもよい。また、端末装置は、サービングセル(例えばPCellおよび/またはPSCell)における無線リンク監視にどの参照信号を用いるかを示す設定(無線リンク監視設定:RadioLinkMonitoringConfig)を基地局装置から受け取り、設定された1つまたは複数の参照信号(ここではRLM-RSと称する)を用いて無線リンク監視を行なってもよい。また、端末装置は、その他の信号を用いて無線リンク監視を行なってもよい。端末装置の物理層処理部は、サービングセル(例えばPCellおよび/またはPSCell)において同期中となる条件を満たしている場合には、同期中を上位レイヤに通知してもよい。 A terminal device may perform radio link monitoring using a certain type of reference signal (eg, cell-specific reference signal (CRS)) in a serving cell (eg, PCell and/or PSCell). Also, the terminal device receives from the base station device a configuration (radio link monitoring configuration: RadioLinkMonitoringConfig) indicating which reference signal is to be used for radio link monitoring in the serving cell (for example, PCell and/or PSCell), and sets one or Radio link monitoring may be performed using multiple reference signals (referred to herein as RLM-RS). Also, the terminal device may perform radio link monitoring using other signals. The physical layer processing unit of the terminal device may notify the upper layer that synchronization is in progress when the conditions for being in synchronization are satisfied in the serving cell (for example, PCell and/or PSCell).
 前記監視設定:RadioLinkMonitoringConfig)は、下りリンクのBWPごとに設定されてよい。端末装置は、Active DL BWPであるBWPに対して設定された監視設定に基づき無線リンク監視を実施してよい。端末装置は、特定の条件において、既定のBWPまたは基地局装置から指定されたBWPに対して設定された監視設定に基づき無線リンク監視を実施してもよい。 The monitoring setting: RadioLinkMonitoringConfig) may be set for each downlink BWP. A terminal device may perform radio link monitoring based on monitoring settings configured for a BWP that is an Active DL BWP. A terminal device may perform radio link monitoring based on a monitoring setting set for a default BWP or a BWP designated by a base station device under specific conditions.
 前記無線リンク監視設定には、監視の目的を示す情報と、参照信号を示す識別子情報とが含まれてよい。例えば、監視の目的には、無線リンク失敗を監視する目的、ビームの失敗を監視する目的、あるいはその両方の目的、などが含まれてよい。また、例えば、参照信号を示す識別子情報は、セルの同期信号ブロック(Synchronization Signal Block:SSB)の識別子(SSB-Index)を示す情報が含まれてよい。すなわち、参照信号には同期信号が含まれてよい。また、例えば、参照信号を示す識別子情報は、端末装置に設定されたチャネル状態情報参照信号(CSI-RS)に紐づけられた識別子を示す情報が含まれてよい。 The radio link monitoring setting may include information indicating the purpose of monitoring and identifier information indicating the reference signal. For example, monitoring purposes may include monitoring radio link failures, beam failures, or both. Also, for example, the identifier information indicating the reference signal may include information indicating the identifier (SSB-Index) of the synchronization signal block (SSB) of the cell. That is, the reference signal may include the synchronization signal. Also, for example, identifier information indicating a reference signal may include information indicating an identifier associated with a channel state information reference signal (CSI-RS) configured in a terminal device.
 プライマリセルにおいて、端末装置のRRC層処理部は、物理層処理部から通知される同期外を既定回数(N310回)連続して受け取った場合にタイマー(T310)を開始(Start)あるいは再開始(Restart)してよい。また、端末装置のRRC層処理部は、既定回数(N311回)連続して同期中を受け取った場合にタイマー(T310)を停止(Stop)してよい。端末装置のRRC層処理部は、タイマー(T310)が満了(Expire)した場合に、アイドル状態への遷移あるいはRRC接続の再確立手順を実施するようにしてもよい。例えば、AS Securityの確立状態に応じて端末装置の動作が異なってもよい。AS Securityが未確立の場合、端末装置はRRC IDLE状態に遷移し、AS Securityが確立済みの場合、端末装置は、RRC接続の再確立(Re?establishment)手順を実行してもよい。また、前記タイマーT310を開始または再開始する判断において、特定の複数のタイマーの何れも走っていないことを条件に加えてもよい。 In the primary cell, the RRC layer processing unit of the terminal device starts (Start) or restarts (Start) or restarts ( Restart). In addition, the RRC layer processing unit of the terminal device may stop the timer (T310) when receiving the synchronizing signal continuously for a predetermined number of times (N311 times). When the timer (T310) expires, the RRC layer processing unit of the terminal device may transition to the idle state or execute the RRC connection re-establishment procedure. For example, the operation of the terminal device may differ depending on the AS Security establishment state. If AS Security has not been established, the terminal device transitions to the RRC IDLE state, and if AS Security has already been established, the terminal device may perform an RRC connection re-establishment procedure. Further, in determining whether to start or restart the timer T310, it may be added as a condition that none of a plurality of specific timers is running.
 また、プライマリセカンダリセルにおいて、端末装置のRRC層処理部は、物理層処理部から通知される同期外を既定回数(N313回)連続して受け取った場合にタイマー(T313)を開始(Start)あるいは再開始(Restart)してもよい。また、端末装置のRRC層処理部は、既定回数(N314回)連続して同期中を受け取った場合にタイマー(T313)を停止(Stop)してもよい。端末装置のRRC層処理部は、タイマー(T313)が満了(Expire)した場合に、SCG障害をネットワークに通知するためのSCG障害情報手順(SCG failure information procedure)を実行してよい。なお、SCG障害はSCG失敗とも称する。また、SCG障害情報手順は、SCG失敗情報手順とも称する。 Further, in the primary secondary cell, the RRC layer processing unit of the terminal device starts (Start) the timer (T313) when continuously receiving out of synchronization notified from the physical layer processing unit a predetermined number of times (N313 times) or It may be restarted. In addition, the RRC layer processing unit of the terminal device may stop the timer (T313) when receiving synchronizing messages continuously for a predetermined number of times (N314 times). The RRC layer processing unit of the terminal device may execute an SCG failure information procedure for notifying the network of the SCG failure when the timer (T313) expires. Note that SCG failure is also referred to as SCG failure. The SCG failure information procedure is also referred to as the SCG failure information procedure.
 また、SpCell(MCGにおけるPCell、およびSCGにおけるPSCell)において、端末装置のRRC層処理部は、各SpCellにおいて物理層処理部から通知される同期外を既定回数(N310回)連続して受け取った場合に当該SpCellのタイマー(T310)を開始(Start)あるいは再開始(Restart)してもよい。また、端末装置のRRC層処理部は、各SpCellにおいて既定回数(N311回)連続して同期中を受け取った場合に当該SpCellのタイマー(T310)を停止(Stop)してもよい。端末装置のRRC層処理部は、各SpCellのタイマー(T310)が満了(Expire)した場合に、SpCellがPCellであれば、アイドル状態への遷移あるいはRRC接続の再確立手順を実施するようにしてもよい。また、SpCellがPSCellであれば、SCG障害をネットワークに通知するためのSCG障害情報手順(SCG failure information procedure)を実行してよい。 In addition, in SpCell (PCell in MCG and PSCell in SCG), when the RRC layer processing unit of the terminal device receives out of synchronization notified from the physical layer processing unit in each SpCell a predetermined number of times (N310 times) consecutively The SpCell timer (T310) may be started (Start) or restarted (Restart). In addition, the RRC layer processing section of the terminal device may stop the timer (T310) of the SpCell when receiving a predetermined number of consecutive times (N311 times) in each SpCell. When the timer (T310) of each SpCell expires (Expire), the RRC layer processing unit of the terminal device, if the SpCell is a PCell, transitions to the idle state or performs a re-establishment procedure of the RRC connection. good too. Also, if the SpCell is a PSCell, an SCG failure information procedure for notifying the network of an SCG failure may be executed.
 また、例えば、早期の物理層問題を検出するために、端末装置のRRC層処理部は、物理層処理部から通知される早期同期外を既定回数(N310回)連続して受け取った場合にタイマー(T314)を開始(Start)してもよい。また、端末装置のRRC層処理部は、T314が走っているときに既定回数(N311回)連続して同期中を受け取った場合にタイマー(T314)を停止(Stop)してもよい。 In addition, for example, in order to detect an early physical layer problem, the RRC layer processing unit of the terminal device timer (T314) may be started. In addition, the RRC layer processing unit of the terminal device may stop the timer (T314) if it receives a predetermined number of times (N311 times) consecutively while T314 is running.
 また、前記RLM-RSは明示的にあるいは暗示的にネットワークから設定されない場合には未定義であってもよい。端末装置は、ネットワーク(例えば基地局装置)からRLM-RSの設定がなされない場合には既定の条件に合う参照信号を用いた無線リンク監視をおこなってよい。 Also, the RLM-RS may be undefined if not explicitly or implicitly set from the network. A terminal device may perform radio link monitoring using a reference signal that meets predetermined conditions when RLM-RS is not set by a network (for example, a base station device).
 また、RLM-RSは、無線リンク監視で用いられる参照信号であり、複数のRLM-RSが端末装置に設定されてもよい。1つのRLM-RSのリソースは、1つのSSブロックまたは1つのCSI-RSのリソース(またはポート)であってもよい。 Also, the RLM-RS is a reference signal used in radio link monitoring, and multiple RLM-RSs may be configured in the terminal device. One RLM-RS resource may be one SS block or one CSI-RS resource (or port).
 また、CRSを用いた無線リンク監視がEUTRAのセルで行われ、RLM-RSを用いた無線リンク監視がNRのセルで行われてよいが、これに限定されない。 In addition, radio link monitoring using CRS may be performed in EUTRA cells and radio link monitoring using RLM-RS may be performed in NR cells, but the present invention is not limited to this.
 無線リンク監視に基づく無線リンク失敗の検出について説明する。 Describes the detection of radio link failures based on radio link monitoring.
 端末装置は、MCGにおいて、タイマーT310が満了(Expire)したとき、またはタイマーT312が満了したとき、または複数の特定のタイマーが何れも走っていないときにMCGのMAC層からランダムアクセスの問題が通知されたとき、またはSRBまたはDRBの再送が最大再送回数に達したことがMCGのRLC層から通知されたとき、端末装置はMCGにおいて無線リンク失敗が検出されたと判断する。前記特定のタイマーはタイマーT310と、タイマーT312を含まない。 In the MCG, the terminal device is notified of a random access problem from the MAC layer of the MCG when the timer T310 expires, when the timer T312 expires, or when none of a plurality of specific timers is running. or when it is notified from the RLC layer of the MCG that the maximum number of retransmissions of the SRB or DRB has been reached, the terminal device determines that a radio link failure has been detected in the MCG. The specific timers do not include timer T310 and timer T312.
 端末装置は、SCGにおいて、タイマーT310が満了(Expire)したとき、またはSCGにおいてタイマーT312が満了したとき、または複数の特定のタイマーが何れも走っていないときにSCGのMAC層からランダムアクセスの問題が通知されたとき、またはSRBまたはDRBの再送が最大再送回数に達したことがSCGのRLC層から通知されたとき、端末装置はSCGにおいて無線リンク失敗が検出されたと判断する。前記特定のタイマーはタイマーT310と、タイマーT312を含まない。 The terminal device, in the SCG, when the timer T310 expires (Expire), or when the timer T312 expires in the SCG, or from the MAC layer of the SCG when none of the specific timers run or when it is notified from the RLC layer of the SCG that the number of retransmissions of SRB or DRB has reached the maximum number of retransmissions, the terminal device determines that a radio link failure has been detected in the SCG. The specific timers do not include timer T310 and timer T312.
 ランダムアクセスの問題は、MACエンティティにおいて、ランダムアクセスプリアンブルの再送回数が既定の回数に達したときに、そのランダムアクセスプリアンブル送信がSpCellで行われていたならば、そのSpCellを含むセルグループのMACエンティティから上位レイヤ(ここではRRCエンティティ)に通知されてよい。 The problem of random access is that when the number of retransmissions of the random access preamble reaches a predetermined number in the MAC entity, if the random access preamble transmission is performed in the SpCell, the MAC entity of the cell group containing the SpCell to the higher layer (here the RRC entity).
 端末装置は、MCGにおいて無線リンク失敗が検出されたと判断すると、無線リンク失敗情報として様々な情報を蓄積(Store)する。そして、もしASのセキュリティが活性化(Activate)していないなら、解放理由を「その他」に設定してRRC_CONNECTEDを離れる処理を開始する。もしASセキュリティが活性化しているなら、RRC接続再確立の手順を開始する。 When the terminal device determines that a wireless link failure has been detected in the MCG, it stores various information as wireless link failure information. Then, if AS security is not activated, it sets the release reason to "Other" and starts the process of leaving RRC_CONNECTED. If AS security is activated, initiate the RRC connection re-establishment procedure.
 端末装置は、タイマーT313が満了(Expire)したとき、またはSCGのMAC層からランダムアクセスの問題が通知されたとき、または再送が最大再送回数に達したことがSCGのRLC層から通知されたとき、端末装置はSCGにおいて無線リンク失敗が検出されたと判断して、SCG無線リンク失敗として関連する情報を基地局装置に報告するための処理を開始する。 The terminal device, when the timer T313 expires (Expire), when the MAC layer of the SCG is notified of a random access problem, or when the RLC layer of the SCG is notified that the maximum number of retransmissions has been reached , the terminal device determines that a radio link failure has been detected in the SCG, and starts processing to report relevant information as an SCG radio link failure to the base station device.
 次にビーム失敗(Beam failure)の検出(Detection)およびリカバリ(Recovery)の手順について説明する。 Next, we will explain the beam failure detection (Detection) and recovery (Recovery) procedures.
 MACエンティティにおいて、サービングセルごとにビーム失敗回復手順がRRCによって設定されてもよい。ビーム失敗は、下位レイヤ(PHY層)からMACエンティティに通知されるビーム失敗インスタンス通知をカウントすることによって検出される。MACエンティティはビーム失敗検出のために各サービングセルで下記の(A)、(B)、(C)の一部または全部の処理をおこなってよい。
  (A)もし、下位レイヤからビーム失敗インスタンス通知を受信したら、タイマー(beamFailureDetectionTimer)をスタートまたは再スタートし、カウンタ(BFI-COUNTER)を一つ加算する。もしBFI_COUNTERの値が設定された閾値(beamFailureInstanceMaxCount)以上であれば、下記の(A-1)の処理をおこなう。
  (A-1)もし、サービングセルがSCellなら、このサービングセルに対するビーム失敗回復(BFR)をトリガし、そうでなければ、SpCellでランダムアクセス手順を開始する。
  (B)もし、このサービングセルに対する、beamFailureDetectionTimerが満了した、または、もし、beamFailureDetectionTimer、beamFailureInstanceMaxCount、および/またはビーム失敗検出のための参照信号の設定が上位レイヤによって変更されたら、BFI_COUNTERを0に設定する。
  (C)もし、サービングセルがSpCellであり、ランダムアクセス手順(プロシージャ)が成功裏に完了したら、BFI_COUNTERを0に設定し、タイマー(beamFailureRecoveryTimer)を停止し、ビーム失敗回復手順が成功裏に完了したとみなす。そうでなく、もし、サービングセルがSCellで、SCellのビーム失敗回復のための情報(例えばSCell BFR MAC CEに含まれる情報)を送信するための、新しい上りリンクグラントを示すC-RNTIにアドレスされたPDCCHを受信したら、または、SCellが不活性状態であれば、BFI_COUNTERを0に設定し、ビーム失敗回復手順が成功裏に完了したとみなし、このサービングセルに対してトリガされたすべてのビーム失敗回復(BFR)をキャンセルする。
At the MAC entity, beam failure recovery procedures may be configured by RRC for each serving cell. Beam failure is detected by counting beam failure instance notifications signaled to the MAC entity from lower layers (PHY layer). The MAC entity may perform some or all of (A), (B), and (C) below in each serving cell for beam failure detection.
(A) If a beam failure instance notification is received from the lower layer, start or restart a timer (beamFailureDetectionTimer) and increment a counter (BFI-COUNTER) by one. If the value of BFI_COUNTER is equal to or greater than the set threshold (beamFailureInstanceMaxCount), the following processing (A-1) is performed.
(A-1) If the serving cell is a SCell, trigger beam failure recovery (BFR) for this serving cell, else initiate a random access procedure on the SpCell.
(B) Set BFI_COUNTER to 0 if the beamFailureDetectionTimer for this serving cell has expired or if the beamFailureDetectionTimer, beamFailureInstanceMaxCount, and/or the reference signal settings for beam failure detection have been changed by upper layers.
(C) If the serving cell is a SpCell and the random access procedure (procedure) is successfully completed, set BFI_COUNTER to 0 and stop the timer (beamFailureRecoveryTimer) to indicate that the beam failure recovery procedure has been successfully completed. I reckon. Else, if the serving cell is a SCell and is addressed to a C-RNTI indicating a new uplink grant to transmit information for beam failure recovery of the SCell (e.g. information contained in the SCell BFR MAC CE) Once the PDCCH is received or if the SCell is in inactive state, set BFI_COUNTER to 0, consider the beam failure recovery procedure to be successfully completed, and all beam failure recovery triggered for this serving cell ( BFR).
 MACエンティティは、もし、ビーム失敗回復手順によって少なくとも1つのビーム失敗回復(BFR)がトリガされており、それがキャンセルされていないことに基づき、下記の(A)の処理をおこなう。
  (A)もし、UL-SCHリソースが論理チャネルの優先度を考慮したうえでSCellのBFR MAC CEとそのサブヘッダを含めることができるのであれば、SCellのBFR MAC CEとそのサブヘッダを含める。そうでなければ、もし、UL-SCHリソースが論理チャネルの優先度を考慮したうえでSCellのトランケートしたBFR MAC CEとそのサブヘッダを含めることができるのであれば、SCellのトランケートしたBFR MAC CEとそのサブヘッダを含める。そうでなければ、SCellビーム失敗回復のためのスケジューリングリクエストをトリガする。
If at least one beam failure recovery (BFR) has been triggered by the beam failure recovery procedure and has not been canceled, the MAC entity performs (A) below.
(A) If the UL-SCH resource can include the BFR MAC CE of the SCell and its subheader considering the priority of the logical channel, then the BFR MAC CE of the SCell and its subheader are included. Otherwise, if the UL-SCH resource can contain the SCell's truncated BFR MAC CE and its subheaders considering the logical channel priority, then the SCell's truncated BFR MAC CE and its Include subheaders. Otherwise, trigger a scheduling request for SCell beam failure recovery.
 SCellの休眠は、このSCellにおいて休眠BWPを活性化することによっておこなわれる。また、SCellを休眠した状態であっても、このSCellにおけるCSIの測定、自動増幅制御(Automatic Gain Control:AGC)、およびビーム失敗回復を含むビーム制御(ビームマネジメント)はおこなわれてよい。 The SCell's dormancy is achieved by activating the dormant BWP in this SCell. Also, even when the SCell is in a dormant state, CSI measurement, automatic gain control (AGC), and beam control (beam management) including beam failure recovery may be performed in this SCell.
 次に端末装置にSCGのPSCellおよび0個以上のSCellを追加する方法について説明する。 Next, we will explain how to add an SCG PSCell and zero or more SCells to a terminal device.
 SCGのPSCellおよび0個以上のSCell の追加は、RRCコネクションの再設定に関するRRCメッセージによって行われてよい。図9から図13は、NRでのRRCコネクションの再設定に関するメッセージに含まれる、SCGのPSCellおよび0個以上のSCell の追加に関するフィールド、および/または情報要素を表すASN.1記述の一例である。  The addition of PSCells and 0 or more SCells of the SCG may be performed by RRC messages regarding reconfiguration of RRC connections. Figures 9 to 13 are examples of ASN.1 descriptions representing fields and/or information elements related to the addition of SCG PSCells and zero or more SCells, which are included in messages related to RRC connection reconfiguration in NR. .
 なお、説明が煩雑になることを避けるため、各図のメッセージおよび/または情報要素は、実際のメッセージ構造および/または情報要素構造とは異なり、一部の構造化されたフィールドや情報要素が展開されている場合、および/または説明に直接関係しないフィールドや情報要素が省略されている場合がある。 To avoid complicating the explanation, the messages and/or information elements in each figure differ from the actual message structure and/or information element structure, and some structured fields and information elements are expanded. and/or omit fields or information elements not directly relevant to the description.
 図9に示すように、SCGのPSCellおよび0個以上のSCell を追加するために、RRC再設定メッセージ(RRCReconfigurationメッセージ)が使われてよい。RRC再設定メッセージには、下記(A)から(E)の情報の一部または全部が含まれてよい。また、RRC再設定メッセージにはそれ以外の情報が含まれてもよい。
  (A)RRCトランザクションの識別子(rrc-TransactionIdentifier)
  (B)無線ベアラを追加、修正、解放するための設定(radioBearerConfig)
  (C)セカンダリセルグループの設定(secondaryCellGroup)
  (D)マスターセルグループの設定(masterCellGroup)
  (E)MR-DCにおけるセカンダリセルグループのRRC設定(mrdc-SecondaryCellGroupConfig)
As shown in FIG. 9, an RRC reconfiguration message (RRCReconfiguration message) may be used to add the SCG PSCell and zero or more SCells. The RRC reconfiguration message may include some or all of the information (A) to (E) below. Also, the RRC reconfiguration message may include other information.
(A) RRC transaction identifier (rrc-TransactionIdentifier)
(B) Settings for adding, modifying, and releasing radio bearers (radioBearerConfig)
(C) Secondary cell group setting (secondaryCellGroup)
(D) Setting the master cell group (masterCellGroup)
(E) RRC configuration of secondary cell group in MR-DC (mrdc-SecondaryCellGroupConfig)
 RRC再設定メッセージがSRB3で端末装置に通知される場合には、SCGの設定は、RRCReconfigurationメッセージの上記(C)の設定によって通知されてよい。また、RRC再設定メッセージがSRB1で端末装置に通知される場合には、SCGの設定は、マスターノードによって生成されたRRCReconfigurationメッセージの上記(E)に含まれる、セカンダリノードによって生成されたRRC再設定メッセージによって通知されてよい。このとき、セカンダリノードによって生成されたRRC再設定メッセージに含まれる上記(C)の設定によってSCGの設定が通知されてよい。また、SCGの設定のために別のメッセージが用いられてもよい。 When the RRC reconfiguration message is notified to the terminal device in SRB3, the SCG setting may be notified by the above (C) setting of the RRC Reconfiguration message. Also, when the RRC reconfiguration message is notified to the terminal device in SRB1, the SCG configuration is the RRC reconfiguration generated by the secondary node, included in the above (E) of the RRCReconfiguration message generated by the master node. May be notified by message. At this time, the SCG setting may be notified by the above setting (C) included in the RRC reconfiguration message generated by the secondary node. Also, another message may be used for setting up the SCG.
 上記のセカンダリセルグループの設定は、セルグループ設定情報要素(CellGroupConfigIE)で与えられてよい。図10に示すように、セルグループ設定情報要素には、下記(A)から(H)の情報の一部または全部が含まれてよい。また、セルグループ設定情報要素にはそれ以外の情報が含まれてもよい。
  (A)セルグループの識別子(cellGroupId)
  (B)RLCベアラの追加および/または修正のための設定(rlc-BearerToAddModList)
  (C)RLCベアラの解放のための設定(rlc-BearerToReleaseList)
  (D)このセルグループのMACの設定(mac-CellGroupConfig)
  (E)このセルグループのPHYの設定(physicalCellGroupConfig)
  (F)SpCellの設定(spCellConfig)
  (G)SCellの追加、修正のための設定(sCellToAddModList)
  (H)SCellの解放のための設定(sCellToReleaseList)
The configuration of the above secondary cell group may be given in a cell group configuration information element (CellGroupConfigIE). As shown in FIG. 10, the cell group setting information element may include some or all of the following information (A) to (H). Also, the cell group setting information element may contain other information.
(A) Cell group identifier (cellGroupId)
(B) Settings for adding and/or modifying RLC bearers (rlc-BearerToAddModList)
(C) Setting for RLC bearer release (rlc-BearerToReleaseList)
(D) MAC configuration for this cell group (mac-CellGroupConfig)
(E) PHY configuration for this cell group (physicalCellGroupConfig)
(F) SpCell configuration (spCellConfig)
(G) Settings for adding and modifying SCells (sCellToAddModList)
(H) Setting for SCell release (sCellToReleaseList)
 上記(F)のSpCellの設定によってSpCellが追加および/または設定され、上記(G)および(H)の設定によって、SCellが追加、修正、および/または解放されてよい。また、他のメッセージによってそれらがなされてもよい。 SpCells may be added and/or set by the SpCell settings in (F) above, and SCells may be added, modified, and/or released by the settings in (G) and (H) above. They may also be done by other messages.
 上記のSpCellの設定には、図11に示すように、下記(A)から(D)の情報の一部または全部が含まれてよい。また、SpCellの設定にはそれ以外の情報が含まれてもよい。
  (A)サービングセル同士を識別するためのインデックス(servCellIndex)
  (B)同期付再設定(reconfigurationWithSync)
  (C)無線リンク失敗の判定などに用いられるタイマーの値および定数の情報(rlf-TimersAndConstants)
  (D)SpCellの端末装置固有パラメータの設定(spCellConfigDedicated)
As shown in FIG. 11, the above SpCell settings may include some or all of the following information (A) to (D). The SpCell configuration may also include other information.
(A) Index (servCellIndex) for identifying serving cells
(B) ReconfigurationWithSync
(C) Timer value and constant information (rlf-TimersAndConstants) used for determining radio link failure, etc.
(D) SpCell terminal device specific parameter setting (spCellConfigDedicated)
 上記の同期付再設定の情報要素には、図12に示すように、下記(A)から(D)の情報の一部または全部が含まれてよい。また、同期付再設定情報にはそれ以外の情報が含まれてもよい。
  (A)SpCellのセル固有パラメータの設定(spCellConfigCommon)
  (B)新しい端末識別子(UE-Identity)の値(newUE-Identity)
  (C)タイマーT304の値(t304)
  (D)RACHの端末装置固有パラメータの設定(rach-ConfigDedicated)
As shown in FIG. 12, the above information element of reset with synchronization may include some or all of the following information (A) to (D). Further, the reset information with synchronization may include other information.
(A) SpCell cell-specific parameter configuration (spCellConfigCommon)
(B) New terminal identifier (UE-Identity) value (newUE-Identity)
(C) Timer T304 value (t304)
(D) RACH terminal device specific parameter setting (rach-ConfigDedicated)
 上記のRACHの端末装置固有パラメータの設定には、無衝突(Contintion free)ランダムアクセスのために用いられるパラメータ(CFRA)が含まれてよい。なお、このCFRAが設定に含まれない場合は、端末装置はランダムアクセス手順で衝突型(Contition based)ランダムアクセスを実行してよい。CFRAには無衝突ランダムアクセスで用いられるRAオケージョン(Occasion)の情報が含まれてよい。 The setting of the RACH terminal device-specific parameters described above may include parameters (CFRA) used for contention-free random access. Note that if this CFRA is not included in the configuration, the terminal device may perform contention-based random access in a random access procedure. CFRA may include RA Occasion information used in collision-free random access.
 上記のSpCellの端末装置固有パラメータの設定を示す情報要素(ServingCellConfig IE)には、下記(A)から(C)の情報の一部または全部が含まれてよい。
  (A)初期下りリンクBWPの情報(initialDownlinkBWP)
  (B)下りリンクBWPの追加・変更の情報(downlinkBWP-ToAddModList)
  (C)第1活性下りリンクBWP(First Active DL BWP)の識別子情報(firstActiveDownlinkBWP-Id)
The information element (ServingCellConfig IE) indicating the configuration of the SpCell terminal device-specific parameter may include some or all of the following information (A) to (C).
(A) Initial downlink BWP information (initialDownlinkBWP)
(B) Downlink BWP addition/modification information (downlinkBWP-ToAddModList)
(C) Identifier information (firstActiveDownlinkBWP-Id) of the first active downlink BWP (First Active DL BWP)
 上記初期下りリンクBWPの情報は、端末装置特有(UE-Specific)の初期下りリンクBWP(BWP識別子#0)のための設定である。端末装置は、もし、いずれかのオプショナルなIEがこの初期下りリンクBWPの情報に含まれて設定されたら、BWP識別子#0がRRCで設定されたBWPであるとみなしてよい。 The above initial downlink BWP information is a setting for a terminal device-specific (UE-Specific) initial downlink BWP (BWP identifier #0). If any optional IE is included in this initial downlink BWP information and configured, the terminal device may consider BWP identifier #0 to be the BWP configured by RRC.
 第1活性下りリンクBWPの識別子は、SpCellに対して第1活性下りリンクBWPの識別子情報が設定される場合、この情報を含むRRC再設定を実行するとき(Upon performing the RRC reconfiguration)に、活性化(Activate)される下りリンクBWPの識別子である。また、SCellに対して第1活性下りリンクBWPの識別子情報が設定される場合、SCellが活性化されるときにこの識別子情報で示される下りリンクBWPが活性化される。また、SpCellに対して第1活性下りリンクBWPの識別子情報が設定される場合、SCGが活性化されるときにこの識別子情報で示されるSpCellの下りリンクBWPが活性化されてもよい。また、上りリンクも同様に、第1活性上りリンクBWPの識別子情報が端末装置に設定されてよい。第1活性上りリンクBWPの識別子情報は第1活性下りリンクBWPの識別子情報と同じ情報要素または異なる情報要素で端末装置に設定されてよい。第1活性下りリンクBWPの識別子情報で設定されるBWP識別子と第1活性上りリンクBWPの識別子情報で設定されるBWP識別子は同じ値であってもよいし、異なる値であってもよい。SpCellに対して第1活性上りリンクBWPの識別子情報が設定される場合、SCGが活性化されるときにこの識別子情報で示されるSpCellの上りリンクBWPが活性化されてもよい。このとき、第1活性下りリンクBWPの識別子情報で設定されるBWP識別子と第1活性上りリンクBWPの識別子情報で設定されるBWP識別子は同じ値であってもよい。 If the first active downlink BWP identifier information is configured for the SpCell, the identifier of the first active downlink BWP is activated when performing the RRC reconfiguration including this information (Upon performing the RRC reconfiguration). This is the identifier of the downlink BWP to be activated. Also, when the identifier information of the first active downlink BWP is set for the SCell, the downlink BWP indicated by this identifier information is activated when the SCell is activated. Also, when the identifier information of the first active downlink BWP is set for the SpCell, the downlink BWP of the SpCell indicated by this identifier information may be activated when the SCG is activated. Similarly, in the uplink, the identifier information of the first active uplink BWP may be set in the terminal device. The identifier information of the first active downlink BWP may be configured in the terminal device in the same information element as the identifier information of the first active downlink BWP or in a different information element. The BWP identifier set in the identifier information of the first active downlink BWP and the BWP identifier set in the identifier information of the first active uplink BWP may be the same value or may be different values. When the identifier information of the first active uplink BWP is set for the SpCell, the uplink BWP of the SpCell indicated by this identifier information may be activated when the SCG is activated. At this time, the BWP identifier set in the identifier information of the first active downlink BWP and the BWP identifier set in the identifier information of the first active uplink BWP may have the same value.
 上記のSpCellのセル固有パラメータの設定は、サービングセルのセル固有パラメータを設定するために用いられる情報要素(ServingCellConfigCommon IE)によって与えられてよい。サービングセルのセル固有パラメータを設定するために用いられる情報要素には、図13に示すように、下記(A)から(D)の情報の一部または全部が含まれてよい。また、サービングセルのセル固有パラメータを設定するために用いられる情報要素にはそれ以外の情報が含まれてもよい。
  (A)物理セル識別子(physCellId)
  (B)セルにおける下りリンク共通のパラメータ(downlinkConfigCommon)
  (C)セルにおける上りリンク共通のパラメータ(uplinkConfigCommon)
  (D)SCellの端末装置固有パラメータ(一部セル固有パラメータを含む)の設定(sCellConfigDedicated)
  (E)SSBのサブキャリア間隔情報(ssbSubcarrierSpacing)
The configuration of cell-specific parameters of the SpCell above may be given by an information element (ServingCellConfigCommon IE) used to configure the cell-specific parameters of the serving cell. Information elements used to configure cell-specific parameters of the serving cell may include some or all of the following information (A) to (D), as shown in FIG. Other information may also be included in the information element used to configure cell-specific parameters for the serving cell.
(A) Physical cell identifier (physCellId)
(B) Common downlink parameters in cells (downlinkConfigCommon)
(C) Common uplink parameters in cells (uplinkConfigCommon)
(D) Configuration of SCell terminal device-specific parameters (including some cell-specific parameters) (sCellConfigDedicated)
(E) SSB subcarrier spacing information (ssbSubcarrierSpacing)
 セルにおける下りリンク共通のパラメータには、下りリンクの周波数情報(frequencyInfoDL)、および/または初期下りリンクBWPの情報(initialDownlinkBWP)が含まれてよい。下りリンクの周波数情報にはこのサービングセルで用いられるSSBの周波数の情報が含まれてもよい。 Downlink common parameters in a cell may include downlink frequency information (frequencyInfoDL) and/or initial downlink BWP information (initialDownlinkBWP). The downlink frequency information may include information on the SSB frequency used in this serving cell.
 上記のSCellの追加、修正のための設定は、一つ以上のSCell設定情報要素(SCellConfigIE)によって与えられてよい。SCell設定情報要素には、図14に示すように、下記(A)から(D)の情報の一部または全部が含まれてよい。また、SCell設定情報要素にはそれ以外の情報が含まれてもよい。
  (A)SCellを識別する識別子(sCellIndex)
  (B)SCellのセル固有パラメータの設定(sCellConfigCommon)
  (C)SCellの端末装置固有パラメータ(一部セル固有パラメータを含む)の設定(sCellConfigDedicated)
  (D)SCellの活性・不活性化を指示する情報(sCellState-r16)
The configuration for adding and modifying the above SCells may be given by one or more SCell configuration information elements (SCellConfigIE). As shown in FIG. 14, the SCell configuration information element may include some or all of the following information (A) to (D). Also, the SCell configuration information element may include other information.
(A) Identifier for identifying SCell (sCellIndex)
(B) SCell cell-specific parameter configuration (sCellConfigCommon)
(C) Configuration of SCell terminal device-specific parameters (including some cell-specific parameters) (sCellConfigDedicated)
(D) Information indicating SCell activation/deactivation (sCellState-r16)
 一例として、上記のRRCメッセージおよび情報要素を用いたSCGのPSCellおよび0個以上のSCellを追加する手順を説明する。なお、説明で用いられるRRCメッセージおよび情報要素は一例であり、実施される場合の名称や構造がこれに限定されるものではない。 As an example, the procedure for adding an SCG PSCell and 0 or more SCells using the above RRC message and information elements will be explained. Note that the RRC messages and information elements used in the description are examples, and the names and structures when implemented are not limited to these.
 RRCReconfigurationメッセージを受信した端末装置のRRCエンティティは、下記(A)から(F)の一部または全部を実行(Perform)してよい。RRCReconfigurationメッセージを受信した端末装置は、それ以外の処理を実行してもよい。
  (A)もし、RRCReconfigurationにmasterCellGroupが含まれていたら、このmasterCellGroupに基づき、マスターセルグループに対して処理(BD-1)を実行する。
  (B)もし、RRCReconfigurationにsecondaryCellGroupが含まれていたら、このsecondaryCellGroupに基づき、セカンダリセルグループに対して処理(BD-1)を実行する。
  (C)もし、RRCReconfigurationにradioBearerConfigが含まれていたら、このradioBearerConfigに基づき無線ベアラを設定する。
  (D)RRC再設定完了メッセージに含めるコンテンツをセットする。
  (E)もし、受信したセカンダリセルグループの設定のSpCellの設定(spCellConfig)にreconfigurationWithSyncが含まれていたら、そのSpCellにおいてランダムアクセス手順を開始する。
  (F)もし、MCGまたはSCGのSpCellの設定(spCellConfig)にreconfigurationWithSyncが含まれており、NRのセルグループにおいて上記ランダムアクセス手順が成功裏に完了したら、そのセルグループのタイマーT304を停止する。
The RRC entity of the terminal device that has received the RRCReconfiguration message may perform some or all of (A) to (F) below. A terminal device that receives the RRCReconfiguration message may perform other processing.
(A) If masterCellGroup is included in RRCReconfiguration, process (BD-1) is executed for the master cell group based on this masterCellGroup.
(B) If secondaryCellGroup is included in RRCReconfiguration, the process (BD-1) is executed for the secondary cell group based on this secondaryCellGroup.
(C) If radioBearerConfig is included in RRCReconfiguration, configure radio bearers based on this radioBearerConfig.
(D) Set the content to be included in the RRC reconfiguration complete message.
(E) If reconfigurationWithSync is included in the SpCell configuration (spCellConfig) of the received secondary cell group configuration, the random access procedure is started in that SpCell.
(F) If reconfigurationWithSync is included in the MCG or SCG SpCell configuration (spCellConfig) and the random access procedure is successfully completed in the NR cell group, timer T304 of that cell group is stopped.
 (処理BD-1)
  端末装置のRRCエンティティは、下記(A)から(G)の一部または全部を実行(Perform)してよい。
  (A)もし、CellGroupConfigが、reconfigurationWithSyncを含むspCellConfigを含んでいたら、端末装置のRRCエンティティは、下記(1)から(3)の一部または全部を実行(Perform)する。
   (1)処理(BD-2)を実行する。
   (2)すべてのサスペンドされた無線ベアラを復帰(Resume)させる。
   (3)すべての無線ベアラに対するSCGの送信が、もしサスペンドされていたら復帰させる。
  (B)もし、CellGroupConfigにrlc-BearerToReleaseListが含まれていたら、このrlc-BearerToReleaseListに基づき、RLCベアラの解放を実行する。
  (C)もし、CellGroupConfigにrlc-BearerToAddModListが含まれていたら、このrlc-BearerToAddModListに基づき、RLCベアラの追加および/または修正を実行する。
  (D)もし、CellGroupConfigにmac-CellGroupConfigが含まれていたら、このmac-CellGroupConfigに基づき、このセルグループのMACエンティティを設定する。
  (E)もし、CellGroupConfigにsCellToReleaseListが含まれていたら、このsCellToReleaseListに基づき、SCellの解放を実行する。
  (F)もし、CellGroupConfigにspCellConfigが含まれていたら、このspCellConfigに基づき、SpCellを設定する。
  (G)もし、CellGroupConfigにsCellToAddModListが含まれていたら、このsCellToAddModListに基づき、SCellの追加および/または修正を実行する。
(Processing BD-1)
The RRC entity of the terminal device may perform some or all of (A) to (G) below.
(A) If CellGroupConfig includes spCellConfig including reconfigurationWithSync, the RRC entity of the terminal device performs some or all of (1) to (3) below.
(1) Execute processing (BD-2).
(2) Resume all suspended radio bearers.
(3) SCG transmission for all radio bearers is resumed if suspended.
(B) If rlc-BearerToReleaseList is included in CellGroupConfig, release the RLC bearer based on this rlc-BearerToReleaseList.
(C) If the CellGroupConfig contains rlc-BearerToAddModList, perform RLC bearer addition and/or modification based on this rlc-BearerToAddModList.
(D) If CellGroupConfig contains mac-CellGroupConfig, configure the MAC entity of this cell group based on this mac-CellGroupConfig.
(E) If sCellToReleaseList is included in CellGroupConfig, release the SCell based on this sCellToReleaseList.
(F) If spCellConfig is included in CellGroupConfig, set SpCell based on this spCellConfig.
(G) If CellGroupConfig contains sCellToAddModList, then perform SCell addition and/or modification based on this sCellToAddModList.
 (処理BD-2)
  端末装置のRRCエンティティは、下記(A)から()の一部または全部を実行(Perform)してよい。
  (A)もし、ASセキュリティが活性化されていなければ、RRC_IDLEに遷移するための処理を実行してプロシージャを終了する。
  (B)(設定の対象となる)SpCellのためのタイマーT304をreconfigurationWithSyncに含まれるt304の値を用いてスタートする。
  (C)もし、下りリンクの周波数情報(frequencyInfoDL)がreconfigurationWithSyncに含まれていたら、frequencyInfoDLで示されるSSB周波数における、reconfigurationWithSyncに含まれる物理セル識別子(physCellId)で示されるセルを、ターゲットのSpCellであると判断する。
  (D)もし、下りリンクの周波数情報(frequencyInfoDL)がreconfigurationWithSyncに含まれていなければ、元のSpCell(Source SpCell)のSSB周波数における、reconfigurationWithSyncに含まれる物理セル識別子(physCellId)で示されるセルを、ターゲットのSpCellであると判断する。
  (E)ターゲットのSpCellの下りリンク同期を開始する。
  (F)ターゲットSpCellのMIBを取得(Aquire)する。
  (G)もし特定のベアラ(DAPSベアラ)が設定されていなければ。下記の(1)から(4)の一部または全部を実行する。
   (1)このセルグループのMACエンティティをリセットする。
   (2)もし、このセルグループに、SCellToAddModListに含まれないSCellが設定されていたら、このSCellを不活性状態とする。
   (3) newUE-Identityの値をこのセルグループのC-RNTIとして適用する。
   (4)受信したspCellConfigCommonに基づき下位レイヤを設定する。
(Processing BD-2)
The RRC entity of the terminal device may perform some or all of (A) to () below.
(A) If AS security is not activated, execute processing to transition to RRC_IDLE and terminate the procedure.
(B) Start timer T304 for the SpCell (to be configured) using the value of t304 included in reconfigurationWithSync.
(C) If downlink frequency information (frequencyInfoDL) is included in reconfigurationWithSync, the cell indicated by the physical cell identifier (physCellId) included in reconfigurationWithSync in the SSB frequency indicated by frequencyInfoDL is the target SpCell. I judge.
(D) If downlink frequency information (frequencyInfoDL) is not included in reconfigurationWithSync, the cell indicated by the physical cell identifier (physCellId) included in reconfigurationWithSync in the SSB frequency of the original SpCell (Source SpCell), Determine that it is the target SpCell.
(E) Start downlink synchronization of the target SpCell.
(F) Acquire the MIB of the target SpCell.
(G) If no specific bearer (DAPS bearer) has been configured. Execute some or all of (1) to (4) below.
(1) reset the MAC entity for this cell group;
(2) If a SCell not included in SCellToAddModList is set in this cell group, this SCell is made inactive.
(3) apply the value of newUE-Identity as the C-RNTI for this cell group;
(4) Configure lower layers based on the received spCellConfigCommon.
 次にタイマーT304について説明する。タイマーT304はセルグループ毎に存在してよい。また、RRCメッセージによって、あるタイマー(ここではタイマーT304)の値(タイマーが満了する時間情報)が通知されてよい。例えば、RRCメッセージによってタイマーの値として1000msを示す情報が通知された場合、タイマーをスタートまたは再スタートしてからタイマーが停止することなく通知された時間(この例では1000ms)が経過した場合に、タイマーが満了したとみなしてよい。 Next, timer T304 will be explained. A timer T304 may exist for each cell group. Also, the RRC message may notify the value of a certain timer (here, timer T304) (time information when the timer expires). For example, if information indicating 1000ms as the value of the timer is notified by the RRC message, if the notified time (1000ms in this example) passes without stopping the timer after starting or restarting the timer, You can assume that the timer has expired.
 端末装置は、reconfigurationWithSyncを含むRRC再設定メッセージを受信したことに基づいて、reconfigurationWithSyncの設定が適用されるセルグループのタイマーT304をスタートしてよい。 The terminal device may start the timer T304 of the cell group to which the reconfigurationWithSync setting is applied based on the reception of the RRC reconfiguration message including reconfigurationWithSync.
 端末装置は、reconfigurationWithSyncで示されるターゲットのSpCellへのランダムアクセスが成功裏に完了したことに基づいてreconfigurationWithSyncの設定が適用されるセルグループのタイマーT304を停止してよい。 The terminal device may stop the timer T304 of the cell group to which the reconfigurationWithSync setting is applied based on the successful completion of random access to the target SpCell indicated by reconfigurationWithSync.
 端末装置は、SCGが解放されたことに基づいて、そのSCGのタイマーT304を停止してよい。 The terminal device may stop the timer T304 of the SCG based on the release of the SCG.
 端末装置は、MCGのタイマーT304が満了(Expire)し、もし特定のベアラ(DAPSベアラ)が設定されていなければ、RRC接続の再確立手順を実行してよい。 The terminal device may execute the RRC connection re-establishment procedure if the MCG timer T304 expires and a specific bearer (DAPS bearer) is not set.
 端末装置は、SCGのタイマーT304が満了(Expire)したら、SCG失敗情報手順(SCG failureinformation procedure)を開始することによって、同期付再設定の失敗についてネットワークに通知してよい。 The terminal device may notify the network of the failure of reconfiguration with synchronization by starting the SCG failure information procedure when the SCG timer T304 expires.
 SCGのタイマーT304が満了したときの端末装置の動作についてさらに説明する。  The operation of the terminal device when the SCG timer T304 expires will be further explained.
 端末装置のRRCエンティティは、もし、セカンダリセルグループのタイマーT304が満了したら、MCG送信がサスペンドされていなければ下記の処理(A)を実行し、MCG送信がサスペンドされていれば下記の処理(B)を実行する。
  (A)rach-ConfigDedicatedで提供された端末装置固有のプリアンブルが設定されていたら、これを解放し、SCG同期付再設定の失敗を報告するために、SCG失敗情報のプロシージャを開始する。
  (B)RRC接続の再確立手順を開始する。
If the timer T304 of the secondary cell group expires, the RRC entity of the terminal device performs the following processing (A) if the MCG transmission is not suspended, and performs the following processing (B ).
(A) Release the terminal-specific preamble provided in rach-ConfigDedicated, if set, and initiate the SCG failure information procedure to report failure of reconfiguration with SCG synchronization.
(B) initiate the RRC connection re-establishment procedure;
 次にSCG失敗情報の手順(プロシージャ)について説明する。このプロシージャはSCG失敗情報プロシージャと称されてもよい。 Next, we will explain the procedure for SCG failure information. This procedure may be referred to as the SCG failure information procedure.
 このプロシージャは、E-UTRANまたはNRのマスターノードに、端末装置が経験したSCG失敗について通知するために用いられてよい。 This procedure may be used to inform the E-UTRAN or NR master node about the SCG failure experienced by the terminal equipment.
 端末装置のRRCエンティティは、MCGまたはSCGの送信がサスペンドされておらず、かつ次の(A)から(D)の何れかの条件に合うときにSCG失敗を報告するために、このプロシージャを開始してよい。
  (A)SCGの無線リンク失敗を検出した
  (B)SCGの同期付設定の失敗を検出した
  (C)SCGの設定の失敗を検出した
  (D)SCGの下位レイヤからSRB3に関する完全性チェック(Integrity check)の失敗が通知された
The RRC entity of the terminal device initiates this procedure to report SCG failure when MCG or SCG transmission is not suspended and any of the following conditions (A) to (D) are met: You can
(A) Detected SCG radio link failure (B) Detected failure of SCG configuration with synchronization (C) Detected failure of SCG configuration (D) Integrity check on SRB3 from lower layer of SCG check) failure was notified
 このプロシージャを開始する端末装置のRRCエンティティは、次の(A)から(E)の一部または全部を実行する。
  (A)すべてのSRBとDRBのためのSCG送信を休止(Suspend)する。
  (B)SCG MACをリセットする。
  (C)このSCGにおけるタイマーT304が走っていたら、これを停止する。
  (D)PSCell変更のための条件付再設定が設定されていたら、この評価を停止する。
  (E)SCG失敗情報(SCGFailureInformation)メッセージに含めるコンテンツを設定し、このメッセージを送信するために下位レイヤに提出(Submit)する。
The RRC entity of the terminal device initiating this procedure performs some or all of the following (A) to (E).
(A) Suspend SCG transmission for all SRBs and DRBs.
(B) Reset the SCG MAC.
(C) If timer T304 in this SCG is running, stop it.
(D) Stop this evaluation if conditional reconfiguration for PSCell change is set.
(E) Configure the content to be included in the SCG Failure Information (SCGFailureInformation) message and submit it to lower layers for transmission.
 端末装置のRRCの下位レイヤは、上記SCG失敗情報(SCGFailureInformation)メッセージを基地局装置に送信してよい。 The RRC lower layer of the terminal device may transmit the SCG failure information (SCGFailureInformation) message to the base station device.
 測定について説明する。基地局装置は、端末装置に対して、RRCシグナリング(無線リソース制御信号)のRRC再設定(RRCReconfiguration)メッセージを使って(RRC再設定メッセージに含めて)、測定(メジャメント)設定(Measurement configuration)情報要素(測定設定とも称する)を送信する。端末装置は、通知された測定設定に含まれる情報に従って、サービングセルおよび隣接セル(リストセル(listed cell)および/または検出セル(detectedcell)を含む)に対する測定、イベント評価、測定報告を行う。リストセルは、測定対象(Measurement object)にリストされたセル(基地局装置から端末装置へ隣接セルリストとして通知されているセル)である。検出セルは、測定対象(Measurement object)によって指示された周波数とサブキャリア間隔において端末装置が検出したが測定対象(Measurementobject)にはリストされていないセル(隣接セルリストとして通知されていない端末装置自身が検出したセル)である。 Explain the measurement. The base station apparatus uses an RRC reconfiguration message of RRC signaling (radio resource control signal) (included in the RRC reconfiguration message) to the terminal device to provide measurement configuration information. Send elements (also called measurement settings). The terminal device performs measurement, event evaluation, and measurement reporting for the serving cell and neighboring cells (including listed cells and/or detected cells) according to the information included in the notified measurement configuration. A list cell is a cell listed as a measurement object (a cell notified from the base station apparatus to the terminal apparatus as a neighboring cell list). A detected cell is a cell that is detected by the terminal equipment at the frequency and subcarrier interval indicated by the measurement object but is not listed in the measurement object (the terminal equipment itself that is not notified as a neighbor cell list). detected cells).
 例えば、(A)第1のRRC再設定メッセージにMCGに対する測定設定が含まれ、第1のRRC再設定メッセージに含まれるMR-DCのSCGに関する情報を示すフィールドに、エンカプセル化されたSCGのRRC再設定メッセージ(第2のRRC再設定メッセージ)が含まれ、この第2のRRC再設定メッセージにSCGに対する測定設定が含まれてよい。このとき、MCGの測定設定を通知する第1のRRC再設定メッセージとSCGの測定設定を通知する第1のRRC再設定メッセージとは、同じRRC再設定メッセージであってもよいし、異なるタイミングで通知される異なるRRC再設定メッセージであってもよい。または、(B)MCGの測定設定がSRB1で通知され、SCGの測定設定がSRB3で通知されてもよい。 For example, (A) the measurement configuration for the MCG is included in the first RRC reconfiguration message, and the field indicating information about the SCG of the MR-DC included in the first RRC reconfiguration message contains the encapsulated SCG An RRC reconfiguration message (second RRC reconfiguration message) is included, and the second RRC reconfiguration message may include the measurement configuration for the SCG. At this time, the first RRC reconfiguration message notifying the MCG measurement configuration and the first RRC reconfiguration message notifying the SCG measurement configuration may be the same RRC reconfiguration message, or at different timings. It may be a different RRC reconfiguration message to be notified. Alternatively, (B) the MCG measurement configuration may be notified in SRB1, and the SCG measurement configuration may be notified in SRB3.
 端末装置は、通知された測定設定を保持するために変数VarMeasConfigを持ってよい。また、端末装置は、報告条件に合致した測定情報を保持するために、変数VarMeasReportListを持ってよい。端末装置は、セルグループごとに測定設定が通知されてよい。セルグループごとに(あるいはセルグループに対して、あるいはセルグループに紐づけられて)設定された各測定設定を保持するための変数VarMeasConfigと各測定設定の報告条件に合致した測定情報を保持するための変数VarMeasReportList、とをセルグループごとに持ってよい。 The terminal device may have a variable VarMeasConfig to hold the notified measurement settings. Also, the terminal device may have a variable VarMeasReportList to hold the measurement information that meets the report conditions. The terminal device may be notified of the measurement configuration for each cell group. A variable VarMeasConfig for holding each measurement setting set for each cell group (or for a cell group, or linked to a cell group) and for holding measurement information that matches the reporting conditions of each measurement setting. variables VarMeasReportList, and for each cell group.
 測定(measurement)には、3つのタイプ(周波数内測定(intra-frequency measurements)、周波数間測定(inter-frequency measurements)、無線アクセス技術間測定(inter-RAT measurements))が含まれる。周波数内測定(intra-frequency measurements)は、サービングセルの下りリンク周波数(下りリンク周波数)におけるサービングセルと同一のサブキャリア間隔での測定である。周波数間測定(inter-frequency measurements)は、サービングセルの下りリンク周波数とは異なる周波数、または同じ周波数で異なるサブキャリア間隔での測定である。無線アクセス技術間測定(inter-RAT measurements)は、サービングセルの無線技術(例えばNR)とは異なる無線技術(例えばUTRA、GERAN、CDMA2000、E-UTRAなど)での測定である。 Measurements include three types (intra-frequency measurements, inter-frequency measurements, inter-radio access technology measurements). Intra-frequency measurements are measurements at the same subcarrier spacing as the serving cell in the serving cell's downlink frequency (downlink frequency). Inter-frequency measurements are measurements at frequencies different from the downlink frequency of the serving cell, or at different subcarrier spacings on the same frequency. Inter-radio access technology measurements (inter-RAT measurements) are measurements in a different radio technology (eg UTRA, GERAN, CDMA2000, E-UTRA, etc.) than the radio technology (eg NR) of the serving cell.
 測定設定には、測定識別子(measId)の追加および/または修正リスト、測定識別子の削除リスト、測定対象(Measurement objects)の追加および/または修正リスト、測定対象の削除リスト、報告設定(Reporting configurations)の追加および/または修正リスト、報告設定の削除リスト、数量設定(quantityConfig)、測定ギャップ設定(measGapConfig)、サービングセル品質閾値(s-Measure)の設定、の一部あるいは全部が含まれてよい。 Measurement configuration includes add and/or modify list of measurement identifiers (measId), delete list of measurement identifiers, add and/or modify list of measurement objects, delete list of measurement objects, and reporting configurations. , a list of deletions of reporting configurations, a quantity configuration (quantityConfig), a measurement gap configuration (measGapConfig), and a serving cell quality threshold (s-Measure) configuration.
<数量設定(quantityConfig)>
 数量設定(quantityConfig)は、測定対象(Measurement objects)がNRおよび/またはE-UTRAの場合、第3層フィルタ係数(L3 filtering coefficient)を指定する。第3層フィルタ係数(L3 filtering coefficient)は、最新の測定結果と、過去のフィルタリング測定結果との比(割合)を規定する。フィルタリング結果は、端末装置でイベント評価に利用される。
<quantity configuration (quantityConfig)>
The quantity configuration (quantityConfig) specifies the third layer filter coefficient (L3 filtering coefficient) when the measurement objects (Measurement objects) are NR and/or E-UTRA. The third layer filter coefficient (L3 filtering coefficient) defines the ratio (percentage) between the latest measurement result and the past filtering measurement result. The filtering result is used for event evaluation in the terminal device.
<測定ギャップ設定(measGapConfig)>
 測定ギャップ設定(measGapConfig)は、測定ギャップの長さや周期の情報が含まれる。測定ギャップ設定は端末装置毎、あるいは既定の周波数範囲毎に独立して設定されてもよい。
<Measurement gap setting (measGapConfig)>
The measurement gap configuration (measGapConfig) includes information on the length and cycle of measurement gaps. The measurement gap setting may be set independently for each terminal device or for each predetermined frequency range.
<測定識別子(measId)>
 ここで、測定識別子(measId)は、測定対象(Measurement objects)と、報告設定(Reporting configurations)とを紐づける(または対応付ける、またはリンクさせる)ために利用され、具体的には、測定対象識別子(measObjectId)と報告設定識別子(reportConfigId)とをリンクさせる。測定識別子(measId)には、一つの測定対象識別子(measObjectId)と一つの報告設定識別子(reportConfigId)が対応付けられる。測定設定は、測定識別子(measId)、測定対象(Measurement objects)、報告設定(Reporting configurations)の関係に対して追加・修正・削除することが可能である。
<measurement identifier (measId)>
Here, the measurement identifier (measId) is used to associate (or associate or link) measurement objects and reporting configurations, specifically, the measurement object identifier ( measObjectId) and the report configuration identifier (reportConfigId). A measurement identifier (measId) is associated with one measurement object identifier (measObjectId) and one report configuration identifier (reportConfigId). Measurement configurations can be added/modified/deleted in relation to measurement identifiers (measId), measurement objects (Measurement objects), and reporting configurations.
 測定設定に含まれる測定識別子の削除リストには、測定識別子のリストが含まれ、端末装置は、測定識別子の削除リストに含まれる各々の測定識別子に対して次の(A)から(C)の処理を行う。(A)測定設定の対象となるセルグループの変数VarMeasConfigからこの測定識別子のエントリーを削除する。(B)もし含まれていれば、測定設定の対象となるセルグループの変数VarMeasReportListからこの測定識別子に対する測定報告のエントリーを削除する。(C)この測定識別子のための周期報告のために用いられるタイマーあるいはタイマーT321を、タイマーがスタートしている場合は停止し、この測定識別子に対する関連情報をリセットする。なお、タイマーT321は、セルグローバル識別子の測定を目的とした報告設定を含む測定設定を受信したときに開始されるタイマーである。また、このタイマーは、後述する報告設定の削除リストにセルグローバル識別子の測定を目的とした報告設定の識別子が含まれる場合や、検出したセルがSIB1を報知していない場合などに停止する。 The measurement identifier deletion list included in the measurement configuration includes the measurement identifier list, and the terminal device performs the following (A) to (C) for each measurement identifier included in the measurement identifier deletion list. process. (A) Delete the entry of this measurement identifier from the variable VarMeasConfig of the cell group subject to measurement configuration. (B) Delete the measurement report entry for this measurement identifier from the variable VarMeasReportList of the cell group subject to measurement configuration, if it is included. (C) stop the timer used for periodic reporting for this measurement identifier or timer T321 if the timer is started and reset the associated information for this measurement identifier; Note that timer T321 is a timer that is started when a measurement configuration including a report configuration for the purpose of measuring the cell global identifier is received. In addition, this timer is stopped when the identifier of the reporting configuration for the purpose of measuring the cell global identifier is included in the deletion list of the reporting configuration, which will be described later, or when the detected cell does not broadcast SIB1.
 測定設定に含まれる測定識別子の追加および/または修正リストには、測定識別子のリストが含まれ、端末装置は、測定識別子の追加および/または修正リストに含まれる各々の測定識別子に対して次の(A)から(C)の処理を行う。(A)もし、この測定識別子と合致する測定識別子のエントリーが測定設定の対象となるセルグループの変数VarMeasConfigに含まれる測定識別子のリストに存在するなら、この測定識別子のための受信した値(the value received for this measId)でエントリーを置き換える。そうでなければ、測定設定の対象となるセルグループの変数VarMeasConfigに、この測定識別子のための新しいエントリーを追加する。(B)もし含まれていれば、測定設定の対象となるセルグループの変数VarMeasReportListから、この測定識別子のための測定報告エントリーを削除する。(C)この測定識別子のための周期報告のために用いられるタイマーあるいはタイマーT321を、タイマーがスタートしている場合は停止し、この測定識別子に対する関連情報をリセットする。 The measurement identifier addition and/or modification list included in the measurement configuration includes the measurement identifier list, and the terminal device shall perform the following for each measurement identifier included in the measurement identifier addition and/or modification list: Perform processing from (A) to (C). (A) If a measurement identifier entry matching this measurement identifier exists in the list of measurement identifiers contained in the variable VarMeasConfig of the cell group subject to the measurement configuration, the received value for this measurement identifier (the Replace the entry with the value received for this measId). Otherwise, add a new entry for this measurement identifier to the variable VarMeasConfig of the cell group subject to the measurement configuration. (B) Delete the measurement report entry for this measurement identifier from the variable VarMeasReportList of the cell group subject to measurement configuration, if it is included. (C) stop the timer used for periodic reporting for this measurement identifier or timer T321 if the timer is started and reset the associated information for this measurement identifier;
 測定設定に含まれる測定対象の削除リスト(measObjectToRemoveList)は、指定された測定対象識別子(measObjectId)および指定された測定対象識別子(measObjectId)に対応する測定対象(Measurement objects)を削除する情報を含むフィールドである。この際、指定された測定対象識別子(measObjectId)に対応付けられた測定設定の対象となるセルグループのすべての測定識別子(measId)は、削除されてよい。このフィールドは、同時に複数の測定対象識別子(measObjectId)の指定が可能である。 The measurement object removal list (measObjectToRemoveList) included in the measurement configuration is a field containing information to remove the specified measurement object identifier (measObjectId) and the measurement objects corresponding to the specified measurement object identifier (measObjectId). is. At this time, all the measurement identifiers (measId) of the cell group subject to the measurement configuration associated with the specified measurement object identifier (measObjectId) may be deleted. This field can simultaneously specify multiple measurement object identifiers (measObjectId).
 測定設定に含まれる測定対象の追加および/または修正リスト(measObjectToAddModList)は、測定対象識別子(measObjectId)で指定された測定対象(Measurement objects)を修正、または、測定対象識別子(measObjectId)で指定された測定対象(Measurement objects)を追加する情報を含むフィールドである。このフィールドは、同時に複数の測定対象識別子(measObjectId)の指定が可能である。 The measurement object addition and/or modification list (measObjectToAddModList) contained in the measurement configuration modifies the measurement objects specified by the measurement object identifier (measObjectId) or modifies the measurement objects specified by the measurement object identifier (measObjectId). A field containing information to add Measurement objects. This field can simultaneously specify multiple measurement object identifiers (measObjectId).
 測定設定に含まれる報告設定の削除リスト(reportConfigToRemoveList)は、指定された報告設定識別子(reportConfigId)および指定された報告設定識別子(reportConfigId)に対応する報告設定(Reporting configurations)を削除する情報を含むフィールドである。この際、指定された報告設定識別子(reportConfigId)に対応付けられたすべての測定識別子(measId)は、削除される。このコマンドは、同時に複数の報告設定識別子(reportConfigId)の指定が可能である。 The report configuration deletion list (reportConfigToRemoveList) included in the measurement configuration is a field that contains information for deleting the specified reporting configuration identifier (reportConfigId) and the reporting configuration corresponding to the specified reporting configuration identifier (reportConfigId). is. At this time, all measurement identifiers (measId) associated with the specified report configuration identifier (reportConfigId) are deleted. This command can specify multiple report configuration identifiers (reportConfigId) at the same time.
 報告設定の追加および/または修正リスト(reportConfigToAddModList)は、報告設定識別子(reportConfigId)で指定された報告設定(Reporting configurations)を修正、または、報告設定識別子(reportConfigId)で指定された報告設定(Reporting configurations)を追加する情報を含むフィールドである。このフィールドは、同時に複数の報告設定識別子(reportConfigId)の指定が可能である。 The add and/or modify reporting configuration list (reportConfigToAddModList) modifies the reporting configurations specified by the reporting configuration identifier (reportConfigId) or modifies the reporting configurations specified by the reporting configuration identifier (reportConfigId). ) is a field containing information to add. This field can specify multiple report configuration identifiers (reportConfigId) at the same time.
 測定識別子の削除リスト(measIdToRemoveList)は、指定された測定識別子(measId)を削除するコマンドである。この際、指定された測定識別子(measId)に対応付けられた測定対象識別子(measObjectId)と報告設定識別子(reportConfigId)は、削除されずに維持される。このコマンドは、同時に複数の測定識別子(measId)の指定が可能である。 The measurement identifier deletion list (measIdToRemoveList) is a command to delete the specified measurement identifier (measId). At this time, the measurement target identifier (measObjectId) and the report configuration identifier (reportConfigId) associated with the specified measurement identifier (measId) are maintained without being deleted. This command can specify multiple measurement identifiers (measId) at the same time.
 測定識別子の追加および/または修正リスト(measIdToAddModifyList)は、指定された測定識別子(measId)を指定された測定対象識別子(measObjectId)と指定された報告設定識別子(reportConfigId)に対応付けるように修正、または、指定された測定対象識別子(measObjectId)と指定された報告設定識別子(reportConfigId)を指定された測定識別子(measId)に対応付けし、指定された測定識別子(measId)を追加するコマンドである。このコマンドは、同時に複数の測定識別子(measId)の指定が可能である。 The measurement identifier addition and/or modification list (measIdToAddModifyList) is modified to map the specified measurement identifier (measId) to the specified measurement object identifier (measObjectId) and the specified report configuration identifier (reportConfigId), or This command associates the specified measurement object identifier (measObjectId) and the specified report configuration identifier (reportConfigId) with the specified measurement identifier (measId) and adds the specified measurement identifier (measId). This command can specify multiple measurement identifiers (measId) at the same time.
<測定対象(Measurement objects)>
 測定対象(Measurement objects)は、RATおよび周波数ごとに設定(規定)される。なお、測定対象は、RATがNRの場合においては、周波数およびサブキャリア間隔ごとに設定されてよい。また、報告設定(Reporting configurations)は、NRに対する規定と、NR以外のRATに対する規定とがあってよい。
<Measurement objects>
Measurement objects are set (defined) for each RAT and frequency. Note that when the RAT is NR, the measurement target may be set for each frequency and subcarrier interval. Also, the reporting configurations may include specifications for NR and specifications for RATs other than NR.
 測定対象(Measurement objects)には、測定対象識別子(measObjectId)と対応付けられた測定対象がNRである測定対象NR(measObjectNR)、測定対象がE-UTRAである測定対象EUTRA(measObjectEUTRA)が含まれてよい。また、測定対象には、測定対象がUTRAである測定対象UTRA(measObjectUTRA)、測定対象がGERANである測定対象GERAN(measObjectGERAN)、測定対象がCDMA2000である測定対象CDMA2000(measObjectCDMA2000)、測定対象がWLANである測定対象WLAN(measObjectWLAN)、の一部あるいは全部が含まれてもよい。 Measurement objects include measurement object identifier (measObjectId), measurement object NR (measObjectNR) whose measurement object is NR, and measurement object EUTRA (measObjectEUTRA) whose measurement object is E-UTRA. you can The measurement target is UTRA (measObjectUTRA) whose measurement target is UTRA, GERAN (measObjectGERAN) whose measurement target is GERAN, CDMA2000 (measObjectCDMA2000) whose measurement target is CDMA2000, and WLAN may include part or all of the WLAN to be measured (measObjectWLAN).
 測定対象識別子(measObjectId)は、測定対象(Measurement objects)の設定を識別するために使用する識別子である。測定対象(Measurement objects)の設定は、前述のように、無線アクセス技術(RAT)および周波数ごと、さらにNRではサブキャリア間隔ごとに規定される。測定対象(Measurement objects)は、E-UTRA、UTRA、GERAN、CDMA2000に対して別途仕様化されてよい。NRに対する測定対象(Measurement objects)である測定対象NR(measObjectNR)は、NRのサービングセルおよび隣接セルに対して適用される情報を規定する。なお、何れの測定対象識別子で示される測定対象がサービングセルに対応するかは測定設定の含まれるRRCメッセージおよび/または測定設定の含まれないRRCメッセージに含まれる情報要素(例えばサービングセル設定)で示されてよい。 The measurement object identifier (measObjectId) is an identifier used to identify the settings of measurement objects. The setting of measurement objects is specified for each radio access technology (RAT) and frequency, and for each subcarrier interval in NR, as described above. Measurement objects may be specified separately for E-UTRA, UTRA, GERAN, CDMA2000. A measurement object NR (measObjectNR), which is a measurement object for NR, defines information that applies to the NR's serving cell and neighboring cells. It should be noted that which measurement target identifier corresponds to the serving cell is indicated by an information element (for example, serving cell configuration) included in the RRC message including the measurement configuration and/or the RRC message not including the measurement configuration. you can
 測定対象NR(measObjectNR)には、同期信号を含むブロック(SSB)の周波数情報(ssbFrequency)、SSBのサブキャリア間隔(ssbSubcarrierSpacing)、測定対象とするセルのリストに関する情報、測定から除外するブラックリストに関する情報、測定を行うホワイトリストに関する情報、の一部あるいは全部が含まれてよい。 Measurement object NR (measObjectNR) includes frequency information (ssbFrequency) of blocks (SSB) including synchronization signals, SSB subcarrier spacing (ssbSubcarrierSpacing), information on the list of cells to be measured, and information on the blacklist excluded from measurement. Some or all of the information, information about the whitelist to measure against, may be included.
 測定対象とするセルのリストに関する情報は、イベント評価や、測定報告の対象となるセルに関する情報を含む。測定対象とするセルのリストに関する情報としては、物理セル識別子(physical cell ID)や、セル固有オフセット(cellIndividualOffset、隣接セルに対して適用する測定オフセット値を示す)などが含まれる。 Information on the list of cells to be measured includes information on event evaluations and cells subject to measurement reports. The information about the list of cells to be measured includes physical cell IDs, cellIndividualOffsets (indicating measurement offset values applied to adjacent cells), and the like.
<報告設定(Reporting configurations)>
 報告設定(Reporting configurations)には、報告設定識別子(reportConfigId)と対応付けられた報告設定NR(reportConfigNR)などが含まれる。
<Reporting configurations>
The reporting configurations include a reporting configuration identifier (reportConfigId) and a reporting configuration NR (reportConfigNR) associated with the reporting configuration identifier (reportConfigId).
 報告設定識別子(reportConfigId)は、測定に関する報告設定(Reporting configurations)を識別するために使用する識別子である。測定に関する報告設定(Reporting configurations)は、前述のように、NRに対する規定と、NR以外のRAT(UTRA、GERAN、CDMA2000、E-UTRA、の一部あるいは全部)に対する規定があってよい。NRに対する報告設定(Reporting configurations)である報告設定NR(reportConfigNR)は、NRにおける測定の報告に利用するイベントのトリガ条件(triggering criteria)を規定する。 A reporting configuration identifier (reportConfigId) is an identifier used to identify reporting configurations related to measurement. As described above, the reporting configuration for measurement may include a specification for NR and a specification for RAT other than NR (part or all of UTRA, GERAN, CDMA2000, E-UTRA). A reporting configuration NR (reportConfigNR), which is a reporting configuration for NR, defines event triggering criteria used for measurement reporting in NR.
 また、報告設定NR(reportConfigNR)には、イベント識別子(eventId)、トリガ量(triggerQuantity)、ヒステリシス(hysteresis)、トリガ時間(timeToTrigger)、報告量(reportQuantity)、最大報告セル数(maxReportCells)、報告間隔(reportInterval)、報告回数(reportAmount)、の一部あるいは全部が含まれてよい。 In addition, the report configuration NR (reportConfigNR) includes event identifier (eventId), trigger quantity (triggerQuantity), hysteresis (hysteresis), trigger time (timeToTrigger), report quantity (reportQuantity), maximum number of report cells (maxReportCells), report interval (reportInterval), the number of reports (reportAmount), part or all of them may be included.
 次に、報告設定NR(reportConfigNR)について説明する。イベント識別子(eventId)は、イベントトリガ報告(event triggered reporting)に関する条件(criteria)を選択するために利用される。ここで、イベントトリガ報告(event triggered reporting)とは、イベントトリガ条件を満たした場合に、測定を報告する方法である。この他に、イベントトリガ条件を満たした場合に、一定間隔で、ある回数だけ測定を報告するというイベントトリガ定期報告(event triggered periodic reporting)もある。 Next, the report setting NR (reportConfigNR) will be explained. The event identifier (eventId) is used to select criteria for event triggered reporting. Here, event triggered reporting is a method of reporting measurements when event trigger conditions are met. In addition to this, there is event triggered periodic reporting, in which measurements are reported a certain number of times at regular intervals when event trigger conditions are met.
 イベント識別子(eventId)によって指定されたイベントトリガ条件を満たした場合、端末装置は、基地局装置に対して、測定報告(measurement report)を行う。トリガ量(triggerQuantity)は、イベントトリガ条件を評価するために利用する量である。すなわち、参照信号受信電力(RSRP)、または、参照信号受信品質(RSRQ)が指定される。すなわち、端末装置は、このトリガ量(triggerQuantity)によって指定された量を利用して、下りリンクの同期信号の測定を行い、イベント識別子(eventId)で指定されたイベントトリガ条件を満たしているか否かを判定する。ヒステリシス(hysteresis)は、イベントトリガ条件で利用されるパラメータである。トリガ時間(timeToTrigger)は、イベントトリガ条件を満たすべき期間を示す。報告量(reportQuantity)は、測定報告(measurement report)において報告する量を示す。ここでは、トリガ量(triggerQuantity)で指定した量、または、参照信号受信電力(RSRP)または参照信号受信品質(RSRQ)が指定される。最大報告セル数(maxReportCells)は、測定報告(measurement report)に含めるセルの最大数を示す。報告間隔(reportInterval)は、定期報告(periodical reporting)またはイベントトリガ定期報告(event triggered periodic reporting)に対して利用され、報告間隔(reportInterval)で示される間隔ごとに定期報告する。報告回数(reportAmount)は、必要に応じて、定期報告(periodical reporting)を行う回数を規定する。 When the event trigger condition specified by the event identifier (eventId) is satisfied, the terminal device makes a measurement report to the base station device. TriggerQuantity is the quantity used to evaluate the event trigger condition. That is, reference signal received power (RSRP) or reference signal received quality (RSRQ) is specified. That is, the terminal device measures the downlink synchronization signal using the quantity specified by this trigger quantity (triggerQuantity), and determines whether the event trigger condition specified by the event identifier (eventId) is satisfied. judge. Hysteresis is a parameter used in event trigger conditions. Trigger time (timeToTrigger) indicates the period in which the event trigger condition should be satisfied. ReportQuantity indicates the quantity reported in the measurement report. Here, the quantity specified by the trigger quantity (triggerQuantity), reference signal received power (RSRP) or reference signal received quality (RSRQ) is specified. The maximum number of report cells (maxReportCells) indicates the maximum number of cells to be included in the measurement report. The report interval (reportInterval) is used for periodic reporting or event triggered periodic reporting, and reports are performed periodically at intervals indicated by the report interval (reportInterval). The number of reports (reportAmount) specifies the number of times that periodic reporting will be performed, if necessary.
 なお、イベントトリガ条件で利用する閾値パラメータやオフセットパラメータ(a1_Threshold、a2_Threshold、a3_Offset、a4_Threshold、a5_Threshold1、a5_Threshold2、a6_Offset、c1_Threshold、c2_Offset)は、報告設定NR(reportConfigNR)において、イベント識別子(eventId)と一緒に、端末装置へ通知されてよい。 Note that the threshold parameters and offset parameters (a1_Threshold, a2_Threshold, a3_Offset, a4_Threshold, a5_Threshold1, a5_Threshold2, a6_Offset, c1_Threshold, c2_Offset) used in the event trigger conditions are specified together with the event identifier (eventId) in the report configuration NR (reportConfigNR). , may be notified to the terminal device.
<イベントトリガ条件について>
 測定報告(measurement report)をするためのイベントトリガ条件が複数定義されており、それぞれ加入条件と離脱条件がある。すなわち、基地局装置から指定されたイベントに対する加入条件を満たした端末装置は、基地局装置に対して測定報告(measurement report)を送信する。また、基地局装置から指定されたイベントに対する離脱条件を満たした端末装置は、基地局装置から離脱条件を満たす場合に報告をトリガするように設定されていた場合(報告設定にreportOnLeaveが含まれる場合)に、基地局装置に対して測定報告(measurement report)を送信する。
<About event trigger conditions>
A plurality of event trigger conditions for measurement reports are defined, each of which has a joining condition and a leaving condition. That is, a terminal device that has satisfied the subscription condition for the event specified by the base station device transmits a measurement report to the base station device. Also, if the terminal device that has satisfied the leaving condition for the event specified by the base station device is set to trigger a report when the leaving condition is met by the base station device (if reportOnLeave is included in the report settings) ), a measurement report is transmitted to the base station apparatus.
 また、NR以外のRATに対する報告設定(Reporting configurations)である報告設定InterRAT(reportConfigInterRAT)には、NR以外のRATにおける測定の報告に利用するイベントのトリガ条件(triggering criteria)が複数定義されている。例えば、隣接セル(他のRAT)の測定結果が、各パラメータの適用後、RAT毎に設定される閾値b1_Thresholdより良い場合、イベントB1が発生する。また、PCellの測定結果が、各パラメータの適用後、閾値b2_Threshold1より悪い且つ隣接セル(他のRAT)の測定結果が、各パラメータの適用後、RAT毎に設定される閾値b2_Threshold2より良い場合、イベントB2が発生する。 In addition, the reporting configuration InterRAT (reportConfigInterRAT), which is the reporting configuration for RATs other than NR, defines multiple event triggering criteria used for measurement reporting in RATs other than NR. For example, if the measurement result of neighboring cells (other RATs) is better than the threshold b1_Threshold set for each RAT after applying each parameter, event B1 occurs. In addition, if the PCell measurement result is worse than the threshold b2_Threshold1 after applying each parameter and the measurement result of the adjacent cell (other RAT) is better than the threshold b2_Threshold2 set for each RAT after applying each parameter, an event B2 occurs.
 なお、基地局装置は、サービングセル品質閾値(s-Measure)を通知する場合と通知しない場合がある。基地局装置によってサービングセル品質閾値(s-Measure)が端末装置に設定され、さらにサービングセル(serving cell)であるPCellのレイヤ3フィルタリング後の品質(RSRP値)がサービングセル品質閾値(s-Measure)よりも低いときに、測定対象によって指示された周波数およびRATの隣接セルの測定を行う。一方、基地局装置によってサービングセル品質閾値(s-Measure)が端末装置に設定されない場合、端末装置は、サービングセルの品質(RSRP値)によらず、隣接セルの測定を行う。 Note that the base station apparatus may or may not notify the serving cell quality threshold (s-Measure). A serving cell quality threshold (s-Measure) is set in the terminal device by the base station apparatus, and the quality (RSRP value) after Layer 3 filtering of the PCell, which is the serving cell, is higher than the serving cell quality threshold (s-Measure). When low, perform neighboring cell measurements on the frequency and RAT indicated by the measurement object. On the other hand, if the serving cell quality threshold (s-Measure) is not set in the terminal apparatus by the base station apparatus, the terminal apparatus measures neighboring cells regardless of the quality (RSRP value) of the serving cell.
<Measurement Resultについて>
 端末装置は、イベントトリガ条件を満たした場合や、周期報告の最初の測定結果が利用可能(Available)になった場合や、周期報告のタイマーやタイマーT321が満了した場合などに測定報告のプロシージャを開始してもよい。測定報告のプロシージャ目的は、ネットワークに対して、端末装置から測定報告(Measurement report)を転送することである。測定報告には、測定結果(Measurement result)が含まれる。測定報告のプロシージャがトリガされたそれぞれの測定識別子に対して、測定結果が設定される。
<About Measurement Results>
The terminal shall initiate the measurement reporting procedure when the event trigger condition is satisfied, when the first measurement result of the periodic report becomes available, when the timer for periodic reporting or timer T321 expires, etc. may start. The purpose of the measurement report procedure is to transfer a measurement report from the terminal to the network. The measurement report includes measurement results. A measurement result is set for each measurement identifier for which the measurement reporting procedure has been triggered.
 測定結果には、測定識別子(measId)、サービング測定対象測定結果(measResultServingMO)のリスト、隣接セル測定結果(measResultNeighCellNR)が含まれてよい。隣接セル測定結果は、NRの測定結果のリストとE-UTRAの測定結果のリストの何れかが含まれてよい。NRの測定結果およびE-UTRAの測定結果には、物理セル識別子、セルの測定結果、セルグローバル識別子の情報の一部あるいは全部が含まれる。サービング測定対象測定結果(measResultServingMO)は、サービングセルに関連付けられた測定対象の測定結果であり、サービングセルの識別子、サービングセルの測定結果、もっともよい隣接セルの測定結果、の一部あるいは全部が含まれてよい。 A measurement result may include a measurement identifier (measId), a list of serving measurement target measurement results (measResultServingMO), and a neighboring cell measurement result (measResultNeighCellNR). The neighbor cell measurement results may include either a list of NR measurement results or a list of E-UTRA measurement results. The NR measurement result and the E-UTRA measurement result include some or all of the information of the physical cell identifier, the cell measurement result, and the cell global identifier. The serving measurement object measurement result (measResultServingMO) is the measurement result of the measurement object associated with the serving cell, and may include some or all of the serving cell identifier, the serving cell measurement result, and the best neighbor cell measurement result. .
 測定報告のプロシージャでは、測定報告のプロシージャがトリガされたそれぞれの測定識別子に対して、上述のような測定結果がセットされ、もし端末装置がEN-DCを設定されているなら、SRB3が設定されていれば送信のためにSRB3を通して前記測定結果を含む測定報告のメッセージを下位レイヤに提出してプロシージャを終了し、SRB3が設定されていなければ、E-UTRAのRRCメッセージに測定報告のメッセージをエンカプセル化して(埋め込ませて)E-UTRAのMCGを通して下位レイヤに提出する。もし、端末装置がNR-DCを設定され、この測定報告をトリガした測定設定がSCGに紐づいている(Assosiated)なら、SRB3が設定されていれば送信のためにSRB3を通して前記測定結果を含む測定報告のメッセージを下位レイヤに提出してプロシージャを終了し、SRB3が設定されていなければ、NRのMCGのRRCメッセージに測定報告のメッセージをエンカプセル化して(埋め込ませて)NRのMCGを通して下位レイヤに提出する。 In the measurement reporting procedure, for each measurement identifier for which the measurement reporting procedure is triggered, the measurement result as described above is set and SRB3 is set if the terminal is set to EN-DC. If yes, submit a measurement report message containing said measurement result to the lower layer for transmission through SRB3 and terminate the procedure; if SRB3 is not configured, send a measurement report message to the E-UTRA RRC message. It is encapsulated (embedded) and submitted to the lower layer through the E-UTRA MCG. If the terminal device is configured with NR-DC and the measurement configuration that triggered this measurement report is associated with SCG (Associated), including the measurement results through SRB3 for transmission if SRB3 is configured The measurement report message is submitted to the lower layer and the procedure ends, and if SRB3 is not set, the measurement report message is encapsulated in the NR MCG RRC message and sent to the lower layer through the NR MCG. Submit to layer.
 次にSCGの活性化(Activation)、および不活性化(Deactivation)の一例について説明する。 Next, an example of SCG activation and deactivation will be explained.
 LTEおよび/またはNRにおいて、SCGが不活性化された状態(SCG不活性状態)は、RRC_CONNECTED状態の一部として含まれてもよい。 In LTE and/or NR, the state in which the SCG is deactivated (SCG inactive state) may be included as part of the RRC_CONNECTED state.
 LTEおよび/またはNRにおいて、SCGが不活性化された状態(SCG不活性状態)とは、端末装置が、そのSCGのSpCell(PSCell)、および/またはそのSCGのすべてのセルにおいて下記(A)から(J)の一部または全部を実施する状態であってよい。
  (A)そのセルにおいてSRSを送信しない。
  (B)そのセルのためのCSIを報告しない。および/またはそのセルにおいてCSIを報告しない。
  (C)そのセルでPUCCH、UL-SCH、および/またはRACHを送信しない。
  (D) そのセルのPDCCH、および/またはそのセルに対するPDCCHをモニタしない。
  (E) そのセルでのUL-SCH送信のための上りリンクグラントを示すC-RNTI、MCS-C-RNTI、および/またはCS-RNTIにアドレスされた、そのセルのPDCCH、および/またはそのセルに対するPDCCHをモニタしない。
  (F)そのセルで、自動増幅制御(Automatic Gain Control:AGC)を行わない。
  (G)そのセルで、ビーム失敗回復を含むビーム制御(ビームマネジメント)を行わない。
  (H)そのセルで、無線リンクモニタリング(Radio Link Monitoring:RLM)を行わない。
  (I) そのセルで、休眠BWPに設定されたBWPを活性化されたBWP(Active BWP)とする。
  (J) そのセルの活性化されたBWPにおいてC-RNTIをPDCCHでモニタしない。
  (K)SRB3を休止(Suspend)した状態にする。
In LTE and / or NR, the state in which the SCG is deactivated (SCG inactive state) means that the terminal device has the following (A) in the SpCell (PSCell) of the SCG, and / or in all cells of the SCG (J) may be implemented in part or in whole.
(A) Do not transmit SRS in that cell.
(B) Do not report CSI for that cell. and/or do not report CSI in that cell.
(C) do not transmit PUCCH, UL-SCH, and/or RACH on that cell;
(D) Do not monitor the PDCCH for that cell and/or the PDCCH for that cell.
(E) the cell's PDCCH addressed to the C-RNTI, MCS-C-RNTI, and/or CS-RNTI indicating an uplink grant for UL-SCH transmission in that cell, and/or that cell; Do not monitor PDCCH for
(F) No Automatic Gain Control (AGC) in the cell.
(G) Do not perform beam management, including beam failure recovery, in that cell.
(H) Do not perform Radio Link Monitoring (RLM) in that cell.
(I) Make the BWP set to the dormant BWP the active BWP (Active BWP) in the cell.
(J) Do not monitor C-RNTI on PDCCH in the activated BWP of that cell.
(K) Put SRB3 in a suspended state.
 また、SCG不活性状態であるとき、そのSCGで時間整合タイマーが走っている間と、時間整合タイマーが停止している(満了した状態を含む)間とで異なる処理を実施してもよい。例えば、SCG不活性状態であり時間整合タイマーが走っている間は、このSCGのSpCellにおいてCSIの報告をおこない、SCG不活性状態であり時間整合タイマーが停止している間は、このSCGのSpCellにおいてCSIの報告を実施しないようにしてもよい。また、例えば、SCG不活性状態であり時間整合タイマーが走っている間は、このSCGのSpCellにおいてRLMをおこない、SCG不活性状態であり時間整合タイマーが停止している間は、このSCGのSpCellにおいてRLMを実施しないようにしてもよい。端末装置は、SCG不活性状態である場合にはランダムアクセス手順の開始を伴う処理をおこなわないようにしてもよい。また、前記タイマーは、例えばSCGの不活性化を指示されたとき、またはSCGを不活性化したときにスタートする他のタイマーであってもよい。前記タイマーはMACエンティティが管理するタイマーであってよい。 Also, when the SCG is in an inactive state, different processing may be performed while the time alignment timer is running in that SCG and while the time alignment timer is stopped (including the expired state). For example, while the SCG is inactive and the time alignment timer is running, CSI is reported in the SpCell of this SCG, and while the SCG is inactive and the time alignment timer is stopped, the SpCell of this SCG CSI reporting may not be implemented in Also, for example, while the SCG is inactive and the time alignment timer is running, RLM is performed in this SCG SpCell, and while the SCG is inactive and the time alignment timer is stopped, the SpCell of this SCG may not implement RLM. The terminal device may not perform processing involving the start of the random access procedure when it is in the SCG inactive state. Alternatively, the timer may be another timer that is started, for example, when the SCG is instructed to be deactivated or when the SCG is deactivated. The timer may be a MAC entity managed timer.
 また、SCG不活性状態になることを、不活性化されたSCGへの入場(Entering)と呼んでもよい。また、SCG不活性状態は、SCGのSpCellのActive BWPが特定のBWPである状態であってもよい。また、上述のSCG不活性状態は、RRCエンティティから不活性化されたSCGへの入場が指示された場合に、後述するSCGが活性化された状態(SCG活性状態)から遷移する状態であってもよい。  In addition, entering the SCG inactive state may be referred to as entering an inactivated SCG. Also, the SCG inactive state may be a state in which the Active BWP of the SpCell of the SCG is a specific BWP. In addition, the above-described SCG inactive state is a state in which the SCG to be described later transitions from an activated state (SCG active state) when an RRC entity instructs to enter an inactivated SCG. good too.
 LTEおよび/またはNRにおいて、SCGが活性化された状態(SCG活性状態)は、RRC_CONNECTED状態の一部として含まれてよい。 In LTE and/or NR, the SCG activated state (SCG active state) may be included as part of the RRC_CONNECTED state.
 LTEおよび/またはNRにおいて、SCGが活性化された状態(SCG活性状態)とは、端末装置が、そのSCGのSpCell(PSCell)、および/またはそのSCGの何れかのセルにおいて下記(A)から(J)の一部または全部を実施する状態であってよい。
  (A)そのセルにおいてSRSを送信する。
  (B)そのセルのためのCSIを報告する。
  (C)そのセルでPUCCH、UL-SCH、および/またはRACHを送信する。
  (D)そのセルのPDCCH、および/またはそのセルに対するPDCCHをモニタする。
  (E)そのセルでのUL-SCH送信のための上りリンクグラントを示すC-RNTI、MCS-C-RNTI、および/またはCS-RNTIにアドレスされた、そのセルのPDCCH、および/またはそのセルに対するPDCCHをモニタする。
  (F)そのセルで自動増幅制御(Automatic Gain Control:AGC)を行う。
  (G)そのセルで、ビーム失敗回復を含むビーム制御(ビームマネジメント)を行う。
  (H)そのセルで、無線リンクモニタリング(Radio Link Monitoring:RLM)を行う。
  (I)そのセルで、休眠BWPに設定されたBWPを活性化されたBWP(Active BWP)としない。
  (J) そのセルの活性化されたBWPにおいてC-RNTIをPDCCHでモニタする。
In LTE and / or NR, the SCG activated state (SCG active state) means that the terminal device is in the SCG SpCell (PSCell) and / or in any cell of the SCG from (A) below It may be in a state to implement part or all of (J).
(A) transmit SRS in that cell;
(B) Report the CSI for that cell.
(C) transmit PUCCH, UL-SCH and/or RACH on that cell;
(D) monitor the PDCCH for that cell and/or the PDCCH for that cell;
(E) the cell's PDCCH addressed to the C-RNTI, MCS-C-RNTI, and/or CS-RNTI indicating an uplink grant for UL-SCH transmission in that cell, and/or that cell; monitor the PDCCH for
(F) Perform Automatic Gain Control (AGC) on the cell.
(G) Perform beam management, including beam failure recovery, in that cell.
(H) perform radio link monitoring (RLM) in the cell;
(I) In that cell, the BWP set to the dormant BWP is not set to the activated BWP (Active BWP).
(J) Monitor the C-RNTI on the PDCCH in the activated BWP of that cell.
 また、SCG活性状態になることを、活性化されたSCGへの入場(Entering)と呼んでもよい。また、SCG活性状態は、SCGのSpCellおよび/または1個以上のSCellのActive BWPが休眠BWPでない状態であってもよい。また、上述のSCG不活性状態は、RRCエンティティから不活性化されたSCGからの退場(Leaving)が指示された場合に、SCGが不活性化された状態(SCG不活性状態)から遷移する状態であってもよい。 Also, entering the SCG active state may be called entering the activated SCG. Also, the SCG active state may be a state in which the SCG SpCell and/or one or more SCell Active BWPs are not dormant BWPs. In addition, the above-mentioned SCG inactive state is a state in which the SCG transitions from the inactivated state (SCG inactive state) when the RRC entity instructs to leave the deactivated SCG. may be
 LTEおよび/またはNRにおいて、端末装置は、以下の(A)から(B)の一部または全部を受信することに基づいて、SCGを不活性状態に遷移させてもよい(言い換えると、SCGを不活性化してもよい)。なお、下記(A)から(C)のメッセージや制御要素は、当該SCG以外のセルグループから端末装置に通知されてもよい。また、各情報はRRCメッセージ、MAC制御要素、または物理制御チャネルで端末装置に通知されてもよい。
  (A)SCGの不活性化を指示する情報
  (B)SpCellの不活性化を指示する情報
  (C)SpCellのActive BWPを特定のBWPにスイッチさせることを指示する情報
In LTE and/or NR, the terminal device may transition the SCG to an inactive state based on receiving part or all of (A) to (B) below (in other words, the SCG may be deactivated). Note that the messages and control elements (A) to (C) below may be notified to the terminal device from a cell group other than the SCG. Also, each piece of information may be notified to the terminal device using an RRC message, MAC control element, or physical control channel.
(A) Information instructing deactivation of SCG (B) Information instructing deactivation of SpCell (C) Information instructing switching of Active BWP of SpCell to a specific BWP
 また、端末装置は、SCGの不活性化に関するタイマーに基づいて、SCGを活性状態から不活性状態に遷移させてもよい。また、端末装置は、PSCellの不活性化に関するタイマーに基づいて、SCGを活性状態から不活性状態に遷移させてもよい。 Also, the terminal device may transition the SCG from the active state to the inactive state based on the timer for deactivating the SCG. Also, the terminal device may transition the SCG from the active state to the inactive state based on a timer related to PSCell deactivation.
 また、端末装置は、MACエンティティ自身による(例えば、スケジューリングリクエストに起因する)ランダムアクセス手順を開始する場合に、SCGを不活性状態から活性状態に遷移させてもよい。また、端末装置のMACエンティティは、SCGを活性化する指示、不活性化されたSCGからの復帰の指示、SpCellの休眠状態からの復帰の指示、および/またはその他の情報を端末装置のRRCエンティティから取得してもよい。 Also, the terminal device may transition the SCG from the inactive state to the active state when starting a random access procedure by the MAC entity itself (for example, due to a scheduling request). In addition, the MAC entity of the terminal device sends an instruction to activate the SCG, an instruction to wake up from the deactivated SCG, an instruction to wake up from SpCell dormancy, and/or other information to the RRC entity of the terminal device. may be obtained from
 LTEおよび/またはNRにおいて、端末装置は、以下の(A)から(D)の一部または全部を受信することに基づいて、SCGを不活性状態から活性状態に遷移させてもよい(言い換えると、SCGを活性化してもよい)。なお、下記(A)から(D)のメッセージや制御要素は、当該SCG以外のセルグループから端末装置に通知されてもよい。また、各情報はRRCメッセージ、MAC制御要素、または物理制御チャネルで端末装置に通知されてもよい。
  (A)SCGの活性化を指示する情報
  (B)SCGの不活性化状態からの復帰(Resume)を指示する情報
  (C)SpCellの活性化を指示する情報
  (D)SpCellの不活性化状態からの復帰を指示する情報
In LTE and/or NR, the terminal device may transition the SCG from the inactive state to the active state based on receiving some or all of (A) to (D) below (in other words , may activate the SCG). Note that the following messages (A) to (D) and control elements may be notified to the terminal device from a cell group other than the SCG. Also, each piece of information may be notified to the terminal device using an RRC message, MAC control element, or physical control channel.
(A) Information instructing SCG activation (B) Information instructing SCG to resume from inactive state (C) Information instructing SpCell activation (D) SpCell inactive state information that instructs the return from
 また、端末装置は、SCGの不活性化に関するタイマーに基づいて、SCGを不活性状態から活性状態に遷移させてもよい。また、端末装置は、PSCellの不活性化に関するタイマーに基づいて、SCGを不活性状態から活性状態に遷移させてもよい。 Also, the terminal device may cause the SCG to transition from the inactive state to the active state based on the timer for deactivating the SCG. Also, the terminal device may transition the SCG from the inactive state to the active state based on a timer related to PSCell deactivation.
 また、端末装置は、MAC SDUが含まれるMAC PDUを送信するためにトリガされたスケジューリングリクエストに起因するランダムアクセス手順を開始する場合に、SCGを不活性状態から活性状態に遷移させてもよい。また、端末装置は、ランダムアクセス手順を開始する場合に、SCGを不活性状態から活性状態に遷移させてもよい。 Also, the terminal device may transition the SCG from the inactive state to the active state when starting a random access procedure caused by a scheduling request triggered to transmit a MAC PDU containing a MAC SDU. Also, the terminal device may transition the SCG from the inactive state to the active state when starting the random access procedure.
 また、端末装置は、スケジューリングリクエストに起因する(言い換えると、MACエンティティ自身が開始した)ランダムアクセス手順を開始する場合に、SCGを不活性状態から活性状態に遷移させてもよい。また、端末装置のMACエンティティは、SCGを活性化する指示、不活性化されたSCGからの復帰の指示、SpCellの休眠状態からの復帰の指示、および/またはその他の情報を端末装置のRRCエンティティから取得してもよい。 Also, the terminal device may transition the SCG from the inactive state to the active state when starting a random access procedure caused by a scheduling request (in other words, initiated by the MAC entity itself). In addition, the MAC entity of the terminal device sends an instruction to activate the SCG, an instruction to wake up from the deactivated SCG, an instruction to wake up from SpCell dormancy, and/or other information to the RRC entity of the terminal device. may be obtained from
 SCGの不活性化は、休眠SCG(Dormant SCG)への入場(Entering)と称してもよい。また、SCGの不活性化とは、当該セルグループのSpCellの休眠BWPが活性化されることであってもよい。また、SCGの不活性化は、SCGの休眠(Dormant)、またはSCGの休止(SCG suspention)と称されてもよい。  Inactivation of the SCG may be referred to as entering the dormant SCG (Dormant SCG). Also, deactivation of the SCG may be activation of dormant BWPs of SpCells of the cell group. Inactivation of SCG may also be referred to as SCG dormant or SCG suspension.
 SCGが不活性化された状態であり、少なくとも時間整合タイマーが停止しているときには、SCGにおいてすべての上りリンク送信が停止されていてもよい。この場合、そのSCGに関する情報は、他のセルグループ(例えばMCG)において送信されてもよい。または、そのSCGに関する情報は、不活性化された状態から退出(Leaving)したそのSCG(活性化されたSCG)において送信されてもよい。 All uplink transmissions may be stopped in the SCG when the SCG is deactivated and at least the time alignment timer is stopped. In this case, information about that SCG may be sent in another cell group (eg, MCG). Alternatively, the information about that SCG may be sent in that SCG that has left the deactivated state (activated SCG).
 MACエンティティによるMAC CEを含むMAC PDUを送信するためのスケジューリングリクエストのトリガによって、またはMACエンティティによってダイレクトに、SpCell(PSCell)におけるランダムアクセス手順が不活性化されたSCGにおいて開始される場合があってもよい。このとき、MAC PDUにはMAC SDUが含まれないかもしれない。 The random access procedure in the SpCell (PSCell) may be initiated in the deactivated SCG by triggering a scheduling request by the MAC entity to send a MAC PDU containing the MAC CE or directly by the MAC entity. good too. At this time, the MAC PDU may not contain the MAC SDU.
 また一方で、ユーザデータやRRCメッセージなどの上位レイヤからのデータ(MAC SDU)を含むMAC PDUを送信するためのスケジューリングリクエストのトリガによって、SpCell(PSCell)におけるランダムアクセス手順が不活性化されたSCGにおいて開始される場合があってもよい。 On the other hand, the SCG in which the random access procedure in the SpCell (PSCell) is deactivated by triggering a scheduling request to transmit a MAC PDU containing data (MAC SDU) from higher layers such as user data and RRC messages. may be started at
 SCGの不活性化された状態からの復帰(SCGの活性化)は、休眠SCGからの退出(Leaving)と称してもよい。また、SCGの不活性化された状態からの復帰とは、当該セルグループのSpCellにおいて休眠BWPから他の(休眠BWPでない)BWPにBWPスイッチすることであってもよい。 The return of the SCG from the inactivated state (activation of the SCG) may be referred to as leaving the dormant SCG. Also, returning from the inactivated state of the SCG may be BWP switching from a dormant BWP to another (non-dormant BWP) BWP in the SpCell of the cell group.
 また、SCGの不活性化された状態からの復帰は、SCGの活性化(SCG Activation)と称されてもよい。また、SCGの活性化(SCG Activation)は、SCGの再活性化(SCG Re-activation)と称されてもよい。 In addition, the return of SCG from an inactivated state may be referred to as SCG activation. Activation of SCG (SCG Activation) may also be referred to as SCG re-activation (SCG Re-activation).
 SCGの不活性化を実行する端末装置は、当該SCGにおいて、以下の(A)から(Q)の一部または全部の処理を実行してよい。
  (A)すべてのSCellを不活性状態とする。
  (B)活性状態のSCellに関連付けられたSCell不活性タイマーのすべてが満了したとみなす。
  (C)休眠状態のSCellに関連付けられたSCell不活性タイマーのすべてが満了したとみなす。
  (D)すべてのSCellに関連付けられたSCell不活性タイマーをスタートまたは再スタートしない。
  (E)SCellを活性化させるMAC CEを無視する。例えば、前記処理(AD)において、SCellを活性化させるMAC CEを受信して、かつ、SCGの不活性化を指示されてない(またはSCGが不活性化された状態でない)場合に、処理(AD-1)を行う。
  (F)前記処理(AD-2)を実行する。例えば、前記処理(AD)において、SCGの不活性化を指示された(またはSCGが不活性化された状態となった)場合に、処理(AD-2)を行う。
  (G)特定のSCellのActive BWPをDormant BWPに切り替える(すなわちこのSCellを休眠状態にする)。特定のSCellとは、基地局装置から指示されたSCellであってもよいし、Dormant BWPが設定されたSCellであってもよい。
  (H)SpCellのActive BWPを特定のBWPに切り替える。特定のBWPは、基地局装置から指定されたBWPであってもよいし、First Active BWPとして設定されたBWPであってもよいし、Initial BWPであってもよい。また、切り替えるBWPはDL BWPだけであってもよいし、DLBWPとUL BWPの両方であってもよい。
  (I)SpCellのすべての BWPをDeactivateする。すなわち、SCellがDeactivateした際にこのSCellのすべてのBWPをDeactivateするのと同様の処理をSpCellに対して行う。
  (J)実行中のランダムアクセス手順を中止(Abort)する。
  (K)実行中のランダムアクセス手順を中止(Abort)して、このランダムアクセス手順が成功裏に完了したとみなす。
  (L)少なくとも端末装置に設定されている一部のSCGベアラ(例えばSRB3)を休止(Suspend)する。
  (M)少なくとも端末装置に設定されている一部のSCGベアラ(例えばDRB)を休止(Suspend)しない。
  (N)PDCP duplicationが設定されており、そのPDCP duplicationが活性化(Activate)されている場合に、そのPDCP duplicationの不活性化(Deactivation)を上位レイヤ(例えばRLCレイヤ、PDCPレイヤ)に通知する。
  (O)MACをリセットする。
  (P)BSRに関連するタイマー(例えばperiodicBSR-Timer、および/またはretxBSR-Timer)が走っていたらそのタイマーを停止する。
  (Q)SCGベアラに対応するRLCを再確立する。
A terminal device that performs SCG deactivation may perform some or all of the following processes (A) to (Q) in the SCG.
(A) All SCells are inactivated.
(B) Assume that all of the SCell inactivity timers associated with the active SCell have expired.
(C) Assume that all SCell inactivity timers associated with the dormant SCell have expired.
(D) Do not start or restart the SCell inactivity timers associated with all SCells.
(E) Ignore MAC CEs that activate SCells. For example, in the processing (AD), if MAC CE for activating SCell is received and SCG deactivation is not instructed (or SCG is not deactivated), processing ( AD-1) is performed.
(F) Execute the above process (AD-2). For example, when inactivation of SCG is instructed (or SCG is inactivated) in the processing (AD-2), processing (AD-2) is performed.
(G) Switch the Active BWP of a particular SCell to Dormant BWP (ie put this SCell to Dormant state). A specific SCell may be an SCell designated by the base station apparatus, or an SCell in which a Dormant BWP is set.
(H) Switch the SpCell's Active BWP to a specific BWP. The specific BWP may be the BWP designated by the base station apparatus, the BWP set as the First Active BWP, or the Initial BWP. Also, the BWP to be switched may be only the DL BWP, or both the DLBWP and the UL BWP.
(I) Deactivate all BWPs of SpCell. That is, when the SCell is deactivated, all BWPs of this SCell are deactivated, and the same process is performed on the SpCell.
(J) Abort the random access procedure in progress.
(K) Abort the random access procedure in progress and consider this random access procedure to be successfully completed.
(L) Suspend at least some SCG bearers (for example, SRB3) set in the terminal device.
(M) Do not suspend at least some SCG bearers (for example, DRB) set in the terminal device.
(N) When PDCP duplication is set and the PDCP duplication is activated, the deactivation of the PDCP duplication is notified to the upper layer (eg, RLC layer, PDCP layer) .
(O) Reset MAC.
(P) Stop the BSR-related timer (eg, periodicBSR-Timer and/or retxBSR-Timer) if it is running.
(Q) Re-establish the RLC corresponding to the SCG bearer.
 SCGの不活性化された状態からの復帰を実行する端末装置は、当該SCGにおいて、以下の(A)から(F)の一部または全部の処理を実行してよい。
  (A)すべてのSCellを活性状態とするために、処理(AD-1)を実行する。
  (B)すべてのSCellを不活性状態のままとする。ただし、不活性化された状態ではないので、例えば、前記処理(AD)において、SCellを活性化させるMAC CEを受信した場合、SCGの不活性化を指示されてない(またはSCGが不活性化された状態でない)ので、処理(AD-1)を行うようにしてもよい。
  (C)SCGの不活性化された状態からの復帰をRRCメッセージに基づいて実行する場合、このRRCメッセージに、一部または全部のSCellに対するランダムアクセスに関するパラメータが含まれるなら、通知されたパラメータに基づき、対象のSCellにおいてランダムアクセス手順を開始する。
  (D)SCGの不活性化された状態からの復帰をRRCメッセージに基づいて実行する場合、このRRCメッセージに、SCellの状態を指定する情報が含まれるなら、各SCellの状態を活性状態にするか不活性状態にするかを、その情報に基づき判断する。
  (E)SpCellのActive BWPを特定のBWPに切り替える。特定のBWPは、基地局装置から指定されたBWPであってもよいし、First Active BWPとして設定されたBWPであってもよい。
  (F)SpCellのFirst Active BWPとして設定されたBWPをActivateする。
  (G)少なくとも端末装置に設定されている一部のSCGベアラ(例えばSRB3)を再開(Resume)する。
  (H)PDCP duplicationが設定されており、SCGの不活性化に基づいてそのPDCP duplicationが不活性化(Deactivate)されていた場合に、そのPDCP duplicationの活性化(Activation)を上位レイヤ(例えばRLCレイヤ、PDCPレイヤ)に通知する。
A terminal device that restores an SCG from an inactivated state may execute some or all of the following processes (A) to (F) in the SCG.
(A) Execute processing (AD-1) to activate all SCells.
(B) Leave all SCells inactive. However, since it is not in an inactivated state, for example, in the processing (AD), when a MAC CE for activating SCell is received, deactivation of SCG is not instructed (or SCG is inactivated is not in the state of being completed), processing (AD-1) may be performed.
(C) If the recovery from the SCG inactivated state is performed based on the RRC message, if this RRC message contains parameters related to random access to some or all of the SCells, the notified parameters Based on this, a random access procedure is initiated in the target SCell.
(D) When the SCG is restored from the inactivated state based on the RRC message, if this RRC message contains information specifying the state of the SCell, the state of each SCell is set to the active state. based on that information.
(E) Switch the SpCell's Active BWP to a specific BWP. The specific BWP may be the BWP designated by the base station apparatus, or the BWP set as the First Active BWP.
(F) Activate the BWP set as the SpCell's First Active BWP.
(G) Resume at least some SCG bearers (for example, SRB3) set in the terminal device.
(H) If PDCP duplication is set and the PDCP duplication is deactivated based on the deactivation of the SCG, the activation of the PDCP duplication is activated by the upper layer (for example, RLC layer, PDCP layer).
 以上の説明をベースとして、本発明の様々な実施の形態を説明する。なお、以下の説明で省略される各処理については上記で説明した各処理が適用されてよい。 Various embodiments of the present invention will be described based on the above description. In addition, each process demonstrated above may be applied about each process abbreviate|omitted by the following description.
 図5は本発明の実施の形態における端末装置(UE122)の構成を示すブロック図である。なお、説明が煩雑になることを避けるために、図5では、本発明の一形態と密接に関連する主な構成部のみを示す。 FIG. 5 is a block diagram showing the configuration of the terminal device (UE 122) according to the embodiment of the present invention. In order to avoid complicating the description, FIG. 5 shows only main components closely related to one embodiment of the present invention.
 図5に示すUE122は、基地局装置よりRRCメッセージ等を受信する受信部500、及び受信したメッセージに含まれるパラメータに従って処理を行う処理部502、および基地局装置にRRCメッセージ等を送信する送信部504から成る。上述の基地局装置とは、eNB102であってもよいし、gNB108であってもよい。また、処理部502には様々な層(例えば、物理層、MAC層、RLC層、PDCP層、SDAP層、RRC層、およびNAS層)の機能の一部または全部が含まれてよい。すなわち、処理部502には、物理層処理部、MAC層処理部、RLC層処理部、PDCP層処理部、SDAP処理部、RRC層処理部、およびNAS層処理部の一部または全てが含まれてよい。また、UE122は、測定を行うための測定部(不図示)を備えてよい。 UE 122 shown in FIG. 5 includes a receiving unit 500 that receives an RRC message or the like from a base station device, a processing unit 502 that performs processing according to parameters included in the received message, and a transmitting unit that transmits the RRC message or the like to the base station device. consists of 504. The base station apparatus described above may be eNB 102 or gNB 108 . Also, processing unit 502 may include some or all of the functionality of various layers (eg, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer). That is, the processing unit 502 includes part or all of the physical layer processing unit, MAC layer processing unit, RLC layer processing unit, PDCP layer processing unit, SDAP processing unit, RRC layer processing unit, and NAS layer processing unit. you can UE 122 may also include a measurement unit (not shown) for making measurements.
 図6は本発明の実施の形態における基地局装置の構成を示すブロック図である。なお、説明が煩雑になることを避けるために、図6では、本発明の一形態と密接に関連する主な構成部のみを示す。上述の基地局装置とは、eNB102であってもよいし、gNB108であってもよい。 FIG. 6 is a block diagram showing the configuration of the base station apparatus according to the embodiment of the present invention. In order to avoid complicating the description, FIG. 6 shows only main components closely related to one embodiment of the present invention. The base station apparatus described above may be eNB 102 or gNB 108 .
 図6に示す基地局装置は、UE122へRRCメッセージ等を送信する送信部600、及びパラメータを含むRRCメッセージを作成し、UE122に送信することにより、UE122の処理部502に処理を行わせる処理部602、およびUE122からRRCメッセージ等を受信する受信部604から成る。また、処理部602には様々な層(例えば、物理層、MAC層、RLC層、PDCP層、SDAP層、RRC層、およびNAS層)の機能の一部または全部が含まれてよい。すなわち、処理部602には、物理層処理部、MAC層処理部、RLC層処理部、PDCP層処理部、SDAP処理部、RRC層処理部、およびNAS層処理部の一部または全部が含まれてよい。 The base station apparatus shown in FIG. 6 includes a transmission unit 600 that transmits an RRC message and the like to UE 122, and a processing unit that creates an RRC message including parameters and transmits it to UE 122, thereby allowing processing unit 502 of UE 122 to perform processing. 602 and a receiver 604 that receives RRC messages and the like from the UE 122 . Also, processing unit 602 may include some or all of the functionality of various layers (eg, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer). That is, the processing unit 602 includes part or all of the physical layer processing unit, MAC layer processing unit, RLC layer processing unit, PDCP layer processing unit, SDAP processing unit, RRC layer processing unit, and NAS layer processing unit. you can
 以下に本発明の実施の形態における、端末装置の処理の様々な例を説明する。 Various examples of processing of the terminal device according to the embodiment of the present invention will be described below.
 以下の説明で用いられる「MACエンティティ」は、特に明示しない限り、端末装置(UE122)における活性化/不活性化の対象となるセルグループのMACエンティティであるものとする。また、以下の説明で用いられる「RRCエンティティ」は、特に明示しない限り、端末装置(UE122)のRRCエンティティであるものとする。 The "MAC entity" used in the following description shall be the MAC entity of the cell group to be activated/deactivated in the terminal device (UE 122) unless otherwise specified. Also, the “RRC entity” used in the following description shall be the RRC entity of the terminal device (UE 122) unless otherwise specified.
 図15は本発明の実施の形態における、端末装置の処理の一例を示す図である。 FIG. 15 is a diagram showing an example of processing of the terminal device according to the embodiment of the present invention.
 端末装置(UE122)のRRCエンティティは、下位レイヤのエンティティ(例えばMACエンティティ、PHYエンティティ)から第1の通知を受けとる(ステップS1500)。 The RRC entity of the terminal device (UE 122) receives a first notification from a lower layer entity (eg MAC entity, PHY entity) (step S1500).
 端末装置(UE122)のRRCエンティティは、第1の通知を受けとったことに基づいて、前記第1の通知を通知した下位レイヤのエンティティに対応するセルグループ(例えば、セカンダリセルグループのMACエンティティから第1の通知を受けとった場合にはそのセカンダリセルグループ)を活性化することをネットワークに要求するRRCメッセージを生成する(ステップS1502)。なお、不活性化されるセルグループがUE122において一つである場合、前記処理に置いて何れのセカンダリセルかを特に識別しなくてもよい。 Based on the reception of the first notification, the RRC entity of the terminal device (UE 122) receives the first notification from the MAC entity of the cell group (for example, the secondary cell group) corresponding to the lower layer entity that notified the first notification. 1, it generates an RRC message requesting the network to activate the secondary cell group (step S1502). Note that if there is only one cell group to be deactivated in the UE 122, it is not necessary to identify which secondary cell it is in the above process.
 これにより、不活性化されたセルグループにおいて上りリンクデータが発生した場合などにおいて、RRCエンティティがネットワークに適切なタイミングでセルグループの活性化を要求することができる。 This allows the RRC entity to request the network to activate the cell group at an appropriate timing, such as when uplink data is generated in a deactivated cell group.
 図15の処理において、前記第1の通知はUE122のMACエンティティによって通知されてもよい。例えば、MACエンティティは、そのMACエンティティのセルグループが不活性化されていること、およびそのMACエンティティのセルグループの何れかの論理チャネルに対する上りリンクデータが利用可能(Available)になったことに基づいて、第1の通知をRRCエンティティに通知してもよい。例えば、MACエンティティは、そのMACエンティティのセルグループが不活性化されていること、およびそのMACエンティティにおいて少なくとも一つのスケジューリングリクエストがペンディングしていることに基づいて、第1の通知をRRCエンティティに通知してもよい。 In the process of FIG. 15, the first notification may be notified by the MAC entity of UE122. For example, the MAC entity may be activated based on the MAC entity's cell group being deactivated and uplink data for any logical channel of the MAC entity's cell group becoming available. may notify the RRC entity of the first notification. For example, the MAC entity notifies the RRC entity of a first notification based on the MAC entity's cell group being deactivated and at least one scheduling request pending at the MAC entity. You may
 また、図15の処理において、RRCエンティティは、セルグループの活性化を要求するRRCメッセージを生成する代わりに、例えば、不活性状態のセルグループに上りリンクデータが存在することを示す情報を含むRRCメッセージを生成してもよい。 Also, in the process of FIG. 15, instead of generating an RRC message requesting cell group activation, the RRC entity generates an RRC message containing information indicating that uplink data exists in an inactive cell group, for example. may generate a message.
 RRCエンティティは、図15の処理におけるRRCメッセージをマスターノードに対するRRCメッセージとして生成してもよい。また、RRCエンティティは、図15におけるRRCメッセージをセカンダリノードに対するRRCメッセージとして生成し、生成したRRCメッセージをマスターノードに対するRRCメッセージ内のコンテナに含めてもよい。RRCエンティティは、生成したRRCメッセージを送信のために下位レイヤに提出(Submit)してよい。下位レイヤに提出されたRRCメッセージはUE122の送信部504によって基地局装置に送信されてよい。送信される基地局装置はマスターノードであってよい。 The RRC entity may generate the RRC message in the process of Fig. 15 as an RRC message for the master node. Also, the RRC entity may generate the RRC message in FIG. 15 as the RRC message for the secondary node and include the generated RRC message in the container in the RRC message for the master node. The RRC entity may submit the generated RRC message to lower layers for transmission. RRC messages submitted to the lower layers may be transmitted by transmitter 504 of UE 122 to the base station apparatus. The transmitted base station device may be a master node.
 基地局装置(eNB102またはgNB108)の受信部604はUE122から前記RRCメッセージを受信してよい。基地局装置の処理部602は、受信したRRCメッセージに基づいて、不活性化されたセルグループを活性化するか否かを判断してもよい。 The receiving unit 604 of the base station device (eNB102 or gNB108) may receive the RRC message from the UE122. The processing unit 602 of the base station apparatus may determine whether to activate the deactivated cell group based on the received RRC message.
 図16は本発明の実施の形態における、端末装置の処理の一例を示す図である。 FIG. 16 is a diagram showing an example of processing of the terminal device according to the embodiment of the present invention.
 端末装置(UE122)のRRCエンティティは、下位レイヤのエンティティ(例えばMACエンティティ)から第2の通知を受けとる(ステップS1600)。 The RRC entity of the terminal device (UE 122) receives a second notification from a lower layer entity (eg MAC entity) (step S1600).
 端末装置(UE122)のRRCエンティティは、第2の通知を受けとったことに基づいて、前記第2の通知を通知した下位レイヤのエンティティに対応するセルグループ(例えば、セカンダリセルグループのMACエンティティから第2の通知を受けとった場合にはそのセカンダリセルグループ)が活性化されたとみなす(ステップS1602)。 Based on the reception of the second notification, the RRC entity of the terminal device (UE 122) receives the second notification from the cell group (for example, the MAC entity of the secondary cell group) corresponding to the lower layer entity that notified the second notification. 2, the secondary cell group) is considered to be activated (step S1602).
 これにより、不活性化されたセルグループにおいて上りリンクデータが発生した場合などにおいて、端末装置が適切なタイミングでセルグループの活性化をおこなうことができる。 As a result, when uplink data is generated in an inactivated cell group, the terminal device can activate the cell group at an appropriate timing.
 図16の処理において、前記第1の通知はUE122のMACエンティティによって通知されてもよい。例えば、MACエンティティは、不活性化されたセルグループにおいて、例えばスケジューリングリクエストに起因するPUCCH送信やランダムアクセス手順の開始(またはランダムアクセス手順が成功裏に完了したこと)、および/またはSpCellのビーム失敗回復のためのランダムアクセス手順の開始(またはランダムアクセス手順が成功裏に完了したこと)に基づいて、第2の通知をRRCエンティティに通知してもよい。 In the process of FIG. 16, the first notification may be notified by the MAC entity of UE122. For example, the MAC entity may indicate, for example, PUCCH transmission due to a scheduling request, initiation of a random access procedure (or successful completion of a random access procedure), and/or SpCell beam failure in a deactivated cell group. A second notification may be sent to the RRC entity based on the initiation of the random access procedure for recovery (or the successful completion of the random access procedure).
 図16の処理において、RRCエンティティは、セルグループが活性化されたとみなすことに基づき、例えば、休止(Suspend)していた一部のベアラ(例えばSRB3)を復帰(Resume)させてもよい。また、RRCエンティティは、セルグループが活性化されたとみなすことにより、例えば、無効化(Disable)されていた測定設定(例えば一部の測定対象の一部、および/または報告設定の一部)を自律的に有効化(Enable)させてもよい。 In the process of FIG. 16, the RRC entity may, for example, resume some bearers (for example, SRB3) that have been suspended based on the assumption that the cell group has been activated. In addition, the RRC entity, by considering that the cell group has been activated, for example, disabled measurement configuration (for example, part of the measurement target and / or part of the report configuration) It may be enabled autonomously.
 図17は本発明の実施の形態における、端末装置の処理の一例を示す図である。 FIG. 17 is a diagram showing an example of processing of the terminal device according to the embodiment of the present invention.
 端末装置(UE122)のMACエンティティは、セルグループが不活性化されることを認識する(ステップS1700)。 The MAC entity of the terminal device (UE 122) recognizes that the cell group will be deactivated (step S1700).
 端末装置(UE122)のMACエンティティは、セルグループが不活性化されることに基づいて、そのセルグループで実行中のランダムアクセス手順を中止(Abort)する。(ステップS1702)。 The MAC entity of the terminal device (UE 122) aborts (Aborts) the random access procedure being executed in the cell group based on the deactivation of the cell group. (Step S1702).
 これにより、不活性化されたセルグループにおいて、SCG失敗を報告するプロシージャの不要な開始を防ぐことができる。 This can prevent unnecessary initiation of procedures for reporting SCG failures in deactivated cell groups.
 図17の処理において、例えば、UE122のMACエンティティは、セルグループの不活性化をRRCエンティティからの通知によって認識してよい。例えば、UE122のMACエンティティは、セルグループの不活性化を基地局装置から受信するMAC CEによって認識してよい。例えば、UE122のMACエンティティは、セルグループの不活性化を特定のタイマーの停止または満了に基づいて認識してよい。例えば、UE122のMACエンティティは、セルグループの不活性化を、前記の組み合わせに基づいて認識してもよい。 In the process of FIG. 17, for example, the MAC entity of UE 122 may recognize the deactivation of the cell group by notification from the RRC entity. For example, the MAC entity of UE 122 may recognize cell group deactivation by MAC CE received from the base station apparatus. For example, the MAC entity of UE 122 may recognize cell group deactivation based on the deactivation or expiration of a particular timer. For example, the MAC entity of UE 122 may recognize cell group deactivation based on the above combinations.
 図17の処理において、MACエンティティは、セルグループが不活性化されることに基づいて、そのセルグループで実行中のランダムアクセス手順を中止(Abort)して、そのランダムアクセス手順が成功裏に成功したとみなしてもよい。また、MACエンティティは、セルグループが不活性化されることに基づいて、そのセルグループで実行中のビーム失敗回復手順を中止(Abort)してもよい。そのとき、そのビーム失敗回復手順が成功裏に成功したとみなしてもよい。 In the process of FIG. 17, the MAC entity aborts the random access procedure running in the cell group based on the cell group being deactivated, and the random access procedure is successfully completed. may be considered to have The MAC entity may also abort beam failure recovery procedures in progress in a cell group based on the cell group being deactivated. At that time, the beam failure recovery procedure may be considered successful.
 さらに、図17の処理において、MACエンティティは、セルグループが不活性化されることに基づいて、端末装置は、以下の(A)から(F)の処理の一部または全部を実行してよい。
  (A)Msg3 bufferをフラッシュ(flush)する。
  (B)MSGA bufferをフラッシュする。
  (C)スケジューリングリクエストがトリガされていたらキャンセルする。
  (D)バッファステータスレポーティング手順がトリガされていたらキャンセルする。
  (E)パワーヘッドレポーティング手順がトリガされていたらキャンセルする。
  (F)ビーム失敗回復手順がトリガされていたらキャンセルする。
Furthermore, in the process of FIG. 17, the MAC entity may perform some or all of the following processes (A) to (F) based on the cell group being deactivated. .
(A) Flush the Msg3 buffer.
(B) Flush the MSGA buffer.
(C) Cancel the scheduling request if it has been triggered.
(D) Cancel the buffer status reporting procedure if it has been triggered.
(E) Cancel the powerhead reporting procedure if it has been triggered.
(F) Cancel the beam failure recovery procedure if it has been triggered.
 端末装置(UE122)は、RRCエンティティおよび/またはMACエンティティにおいて、タイマーを用いたセカンダリセルグループの活性化/不活性化の制御をおこなってもよい。 The terminal device (UE 122) may control activation/deactivation of the secondary cell group using a timer in the RRC entity and/or MAC entity.
 例えば、タイマーは、セルグループごとに用意されてもよいし、端末装置に一つ用意されてもよい。また、タイマーに設定される値は、基地局装置からRRCメッセージ(例えばRRCReconfigurationメッセージ)によって通知されてもよい。また、タイマーに設定される値は、基地局装置から報知されてもよい。また、タイマーに設定される値は、仕様書に記載される既定の値でもよい。また、端末装置は仕様書に記載される既定の値をデフォルト値として持ち、基地局装置に設定されない場合はこのデフォルト値を用いてもよい。 For example, a timer may be prepared for each cell group, or one timer may be prepared for each terminal device. Also, the value set in the timer may be reported from the base station apparatus using an RRC message (for example, an RRCReconfiguration message). Also, the value set in the timer may be reported from the base station apparatus. Also, the value set in the timer may be the default value described in the specification. In addition, the terminal device may have a default value described in the specification as a default value, and use this default value when it is not set in the base station device.
 例えば、端末装置は、セカンダリセルグループが不活性化されること、および活性化されることに基づきタイマーをスタートまたは再スタートさせてよい。基地局装置から、端末装置による自律的な(換言すると端末装置の判断によりトリガおよび/または開始される)セカンダリセルグループの活性化、および/または自律的な(換言すると端末装置の判断によりトリガおよび/または開始される)セカンダリセルグループの不活性化が許可された端末装置は、このタイマーが走っていないこと(タイマーが満了していること)に基づいて、セカンダリセルグループの活性化、および/または不活性化を行うようにしてよい。 For example, the terminal device may start or restart a timer based on the secondary cell group being deactivated and activated. From the base station apparatus, autonomous (in other words, triggered and/or initiated by the determination of the terminal) secondary cell group activation by the terminal and/or autonomous (in other words, triggered and/or initiated by the determination of the terminal) / or is started), the terminal device that is allowed to deactivate the secondary cell group activates the secondary cell group based on this timer not running (that the timer has expired), and / Alternatively, inactivation may be performed.
 また例えば、端末装置は、セカンダリセルグループが不活性化されることに基づきタイマーをスタートまたは再スタートさせてよい。基地局装置から、端末装置による自律的な(換言すると端末装置がトリガおよび/または開始する)セカンダリセルグループの活性化、および/または自律的な(換言すると端末装置がトリガおよび/または開始する)セカンダリセルグループの不活性化が許可された端末装置は、このタイマーが走っていないこと(タイマーが満了していること)に基づいて、セカンダリセルグループの活性化、および/または不活性化を行うようにしてもよい。 Also, for example, the terminal device may start or restart the timer based on the deactivation of the secondary cell group. Autonomous (i.e. terminal triggered and/or initiated) secondary cell group activation by the terminal and/or autonomous (i.e. terminal triggered and/or initiated) from the base station equipment A terminal device permitted to deactivate the secondary cell group activates and/or deactivates the secondary cell group based on the fact that this timer is not running (the timer has expired). You may do so.
 例えば、端末装置は、セカンダリセルグループが活性化されることに基づきタイマーをスタートまたは再スタートさせてよい。基地局装置から、端末装置による自律的な(換言すると端末装置がトリガおよび/または開始する)セカンダリセルグループの活性化、および/または自律的な(換言すると端末装置がトリガおよび/または開始する)セカンダリセルグループの不活性化が許可された端末装置は、このタイマーが走っていないこと(タイマーが満了していること)に基づいて、セカンダリセルグループの活性化、および/または不活性化を行うようにしてもよい。 For example, the terminal device may start or restart a timer based on activation of the secondary cell group. Autonomous (i.e. terminal triggered and/or initiated) secondary cell group activation by the terminal and/or autonomous (i.e. terminal triggered and/or initiated) from the base station equipment A terminal device permitted to deactivate the secondary cell group activates and/or deactivates the secondary cell group based on the fact that this timer is not running (the timer has expired). You may do so.
 これにより、頻繁なセルグループの活性化と不活性化の遷移を抑制することができる。 This makes it possible to suppress frequent activation and deactivation transitions of cell groups.
 また例えば、タイマーの値が0に設定されている場合に、端末装置は、基地局装置から自律的なセカンダリセルグループの活性化、および/または自律的なセカンダリセルグループの不活性化が許可されていないと判断してもよい。また例えば、タイマーの値が無限(infinity)に設定されている場合に、端末装置は、基地局装置から自律的なセカンダリセルグループの活性化、および/または自律的なセカンダリセルグループの不活性化が許可されていないと判断してもよい。また例えば、タイマーの値が基地局装置から設定されていない場合に、端末装置は、基地局装置から自律的なセカンダリセルグループの活性化、および/または自律的なセカンダリセルグループの不活性化が許可されていないと判断してもよい。基地局装置は、タイマーの値に特定の値を設定して端末装置に通知する(またはタイマーの値を通知しない)ことにより、端末装置による自律的なセルグループの活性化および/または不活性化の可否を制御してよい。なお、端末装置による自律的なセルグループの活性化および/または不活性化の可否は、前記タイマー以外のパラメータを用いて基地局装置から端末装置に通知されてもよい。 Also, for example, when the value of the timer is set to 0, the terminal device is permitted to activate the autonomous secondary cell group and/or deactivate the autonomous secondary cell group from the base station device. You can judge that it is not. Also, for example, when the value of the timer is set to infinity, the terminal device activates the autonomous secondary cell group and/or deactivates the autonomous secondary cell group from the base station device may be determined not to be permitted. Further, for example, when the timer value is not set from the base station device, the terminal device receives autonomous secondary cell group activation and/or autonomous secondary cell group deactivation from the base station device. You may decide that it is not permitted. The base station apparatus sets a specific value for the timer and notifies the terminal apparatus (or does not notify the timer value), thereby allowing the terminal apparatus to autonomously activate and/or deactivate the cell group. can be controlled. Note that whether or not the terminal device can autonomously activate and/or deactivate the cell group may be notified from the base station device to the terminal device using a parameter other than the timer.
 また例えば、基地局装置から自律的なセカンダリセルグループの活性化、および/または自律的なセカンダリセルグループの不活性化が許可されていないことに基づいて、端末装置は、セカンダリセルグループが不活性化される場合にSCGベアラ(RLCベアラがSCGにのみ存在するSRBおよび/またはDRB)の一部または全部を休止(Suspend)してもよい。また例えば、基地局装置から自律的なセカンダリセルグループの活性化、および/または自律的なセカンダリセルグループの不活性化が許可されていることに基づいて、端末装置は、セカンダリセルグループが不活性化される場合にSCGベアラ(RLCベアラがSCGにのみ存在するSRBおよび/またはDRB)の一部または全部を休止(Suspend)させないようにしてもよい。 Further, for example, based on the fact that activation of the autonomous secondary cell group and/or deactivation of the autonomous secondary cell group is not permitted from the base station device, the terminal device determines that the secondary cell group is deactivated. may suspend some or all of the SCG bearers (SRB and/or DRB where the RLC bearer resides only in the SCG) when the Further, for example, based on the fact that the base station device permits autonomous secondary cell group activation and/or autonomous secondary cell group deactivation, the terminal device deactivates the secondary cell group. may not suspend some or all of the SCG bearers (SRBs and/or DRBs whose RLC bearers are present only in the SCG).
 また例えば、基地局装置から自律的なセカンダリセルグループの活性化、および/または自律的なセカンダリセルグループの不活性化が許可されているか否かに基づき、端末装置が、図17の処理において、実行中のランダムアクセス手順を中止(Abort)するか否かを判断するようにしてもよい。 Further, for example, based on whether or not the base station device permits the activation of the autonomous secondary cell group and/or the deactivation of the autonomous secondary cell group, the terminal device, in the process of FIG. 17, It may be determined whether or not to abort the random access procedure being executed.
 また例えば、基地局装置から自律的なセカンダリセルグループの活性化、および/または自律的なセカンダリセルグループの不活性化が許可されているか否かに基づき、端末装置が、図17の処理において、以下の(A)から(F)の処理の一部または全部を実行するか否かを判断するようにしてもよい。
  (A)Msg3 bufferをフラッシュ(flush)する。
  (B)MSGA bufferをフラッシュする。
  (C)スケジューリングリクエストがトリガされていたらキャンセルする。
  (D)バッファステータスレポーティング手順がトリガされていたらキャンセルする。
  (E)パワーヘッドレポーティング手順がトリガされていたらキャンセルする。
  (F)ビーム失敗回復手順がトリガされていたらキャンセルする。
Further, for example, based on whether or not the base station device permits the activation of the autonomous secondary cell group and/or the deactivation of the autonomous secondary cell group, the terminal device, in the process of FIG. 17, It may be determined whether or not to execute some or all of the following processes (A) to (F).
(A) Flush the Msg3 buffer.
(B) Flush the MSGA buffer.
(C) Cancel the scheduling request if it has been triggered.
(D) Cancel the buffer status reporting procedure if it has been triggered.
(E) Cancel the powerhead reporting procedure if it has been triggered.
(F) Cancel the beam failure recovery procedure if it has been triggered.
 これにより、端末装置による自律的なセルグループの活性化および/または不活性化をネットワーク(基地局装置)が効率的に制御することができる。 This allows the network (base station device) to efficiently control the autonomous activation and/or deactivation of cell groups by terminal devices.
 なお、前述の端末装置による自律的なセカンダリセルグループの活性化とは、例えば、不活性化されたセカンダリセルグループにおいて、上りリンクデータが存在すること(例えばスケジューリングリクエストがトリガされること)に起因して開始されるセカンダリセルグループの活性化であってよい。また、前述の端末装置による自律的なセカンダリセルグループの活性化とは、例えば、端末装置の電池残量、または端末装置の温度に基づき開始されるセカンダリセルグループの活性化であってもよい。なお、自律的なセカンダリセルグループの活性化は、端末装置によって開始されるセカンダリセルの活性化(UE initiated SCG Activation)と換言されてもよい。 Note that the activation of the autonomous secondary cell group by the terminal device described above is, for example, due to the presence of uplink data in the inactivated secondary cell group (for example, triggering a scheduling request). Activation of the secondary cell group may be initiated with Further, the aforementioned autonomous activation of the secondary cell group by the terminal device may be, for example, activation of the secondary cell group initiated based on the remaining battery level of the terminal device or the temperature of the terminal device. Note that the autonomous activation of the secondary cell group may be rephrased as activation of the secondary cell initiated by the terminal device (UE initiated SCG activation).
 なお、前述の端末装置による自律的なセカンダリセルグループの不活性化とは、例えば、活性化されたセカンダリセルグループにおいて、上りリンクデータが無いことに基づき開始されるセカンダリセルグループの不活性化であってよい。また、前述の端末装置による自律的なセカンダリセルグループの不活性化とは、例えば、端末装置の電池残量、または端末装置の温度に基づき開始されるセカンダリセルグループの不活性化であってもよい。なお、自律的なセカンダリセルグループの活性化は、端末装置によって開始されるセカンダリセルの不活性化(UE initiated SCG Deactivation)と換言されてもよい。 Note that the above-described autonomous deactivation of the secondary cell group by the terminal device is, for example, deactivation of the secondary cell group that is started based on the absence of uplink data in the activated secondary cell group. It's okay. Further, the above-described autonomous deactivation of the secondary cell group by the terminal device is, for example, the remaining battery level of the terminal device or the deactivation of the secondary cell group that is started based on the temperature of the terminal device. good. Note that autonomous activation of a secondary cell group may be rephrased as deactivation of a secondary cell initiated by a terminal device (UE initiated SCG Deactivation).
 なお、前述の端末装置による自律的なセカンダリセルグループの活性化において、例えば、端末装置は、セカンダリセルグループが活性化したことに基づき、このセカンダリセルグループにおいて上りリンク送信(例えばスケジューリングリクエストに起因するPUCCHまたはランダムアクセスプリアンブルの送信)を開始してもよい。 In addition, in the activation of the autonomous secondary cell group by the terminal device described above, for example, the terminal device performs uplink transmission (for example, due to a scheduling request) in this secondary cell group based on the activation of the secondary cell group. transmission of PUCCH or random access preamble) may be started.
 また、例えば、端末装置は、不活性化されたセカンダリセルグループにおける上りリンク送信(例えばスケジューリングリクエストに起因するPUCCHまたはランダムアクセスプリアンブルの送信)に基づいて、このセカンダリセルグループを活性化させてもよい。例えば、端末装置は、不活性化されたセカンダリセルグループのセル(例えばPSCellまたはPUCCH SCell)においてランダムアクセスプリアンブルを送信したこと(あるいはランダムアクセスプリアンブルの送信をPHYエンティティに示したこと)に基づき、このセカンダリセルグループが活性化されたとみなし、PDCCHのモニタリングを開始してもよい。 Also, for example, the terminal device may activate this secondary cell group based on uplink transmission in the deactivated secondary cell group (for example, PUCCH or random access preamble transmission resulting from a scheduling request). . For example, the terminal device, based on having transmitted a random access preamble (or having indicated the transmission of the random access preamble to the PHY entity) in a cell of the deactivated secondary cell group (eg, PSCell or PUCCH SCell), this The secondary cell group may be considered activated and start monitoring the PDCCH.
 また、端末装置は、このセカンダリセルグループを不活性化するために、ベアラの設定を変更してもよい。例えば、端末装置はSCGベアラが設定されている場合に、セカンダリセルグループを不活性化することに基づき、このSCGベアラのベアラタイプをスプリットベアラに変更してもよい。また例えば、端末装置はSCGベアラが設定されている場合に、セカンダリセルグループを不活性化することに基づき、このSCGベアラのベアラタイプをスプリットベアラに変更し、PDCPエンティティがMCGのRLCエンティティにPDCP PDUを提出するように設定してもよい。このとき、ベアラの設定の変更は、既定のルールに基づきおこなわれてもよいし、変更後のベアラの設定が予めRRCメッセージによって基地局装置から通知されていてもよい。なお、端末装置による自律的なセカンダリセルグループの不活性化によってセカンダリセルグループが不活性化される場合、端末装置は、セカンダリセルグループを不活性化したことを基地局装置に通知した後に、ベアラの設定を変更するようにしてもよい。 Also, the terminal device may change the bearer setting to deactivate this secondary cell group. For example, when an SCG bearer is configured, the terminal device may change the bearer type of this SCG bearer to a split bearer based on deactivating the secondary cell group. Further, for example, when the terminal device has an SCG bearer configured, based on deactivating the secondary cell group, the bearer type of this SCG bearer is changed to a split bearer, and the PDCP entity sends the PDCP to the RLC entity of the MCG. May be set to submit PDUs. At this time, the bearer setting may be changed based on a predetermined rule, or the changed bearer setting may be notified in advance from the base station apparatus by an RRC message. In addition, when the secondary cell group is deactivated by the autonomous deactivation of the secondary cell group by the terminal device, the terminal device notifies the base station device that the secondary cell group has been deactivated, and then the bearer setting may be changed.
 これにより、セルグループの不活性化に基づき、端末装置に設定されている無線ベアラの設定を適切に制御することができる。 As a result, it is possible to appropriately control the setting of the radio bearer set in the terminal device based on the deactivation of the cell group.
 また例えば、PDCP duplicationが設定されており、そのPDCP duplicationが活性化(Activate)されている場合に、セカンダリセルグループを不活性化することに基づき、MACエンティティは、そのPDCP duplicationの不活性化(Deactivation)を上位レイヤ(例えばPDCPレイヤ)に通知してもよい。またこのとき、プライマリパスが不活性化されるセカンダリセルグループに設定されている場合、端末装置は、プライマリパスを別のセルグループに再設定してもよい。再設定されるプライマリパスのセルグループ識別子は、例えば、MCGの識別子であってよい。再設定されるプライマリパスのセルグループ識別子は、例えば、RRCメッセージによって端末装置に予め設定されたセルグループ識別子であってよい。なお、前記処理は、端末装置が自律的にセカンダリセルグループを不活性化する場合(すなわち、セカンダリセルグループの不活性化を端末装置がトリガして開始する場合)に好適であるが、これに限定されず、ネットワークによって指示された不活性化の場合にも適用できる。なお、端末装置による自律的なセカンダリセルグループの不活性化によってセカンダリセルグループが不活性化される場合、端末装置は、セカンダリセルグループを不活性化したことを基地局装置に通知した後に、前記処理をおこなうにしてもよい。 Also, for example, when PDCP duplication is set and the PDCP duplication is activated, the MAC entity deactivates the PDCP duplication based on deactivating the secondary cell group ( Deactivation) may be notified to an upper layer (for example, PDCP layer). Also, at this time, if the primary path is set to a deactivated secondary cell group, the terminal device may reset the primary path to another cell group. The cell group identifier of the reconfigured primary path may be, for example, the MCG identifier. The cell group identifier of the reconfigured primary path may be, for example, a cell group identifier preconfigured in the terminal device by an RRC message. Note that the above process is suitable when the terminal device autonomously deactivates the secondary cell group (that is, when the terminal device triggers and starts deactivation of the secondary cell group). It is not limited and is also applicable in the case of network directed deactivation. In addition, when the secondary cell group is deactivated by the terminal device's autonomous deactivation of the secondary cell group, the terminal device notifies the base station device that the secondary cell group has been deactivated, and then Processing may be performed.
 これにより、端末装置に設定されている無線ベアラの設定に基づき、端末装置によるセルグループの不活性化を効率的に制御することができる。 As a result, it is possible to efficiently control cell group deactivation by the terminal device based on the radio bearer settings set in the terminal device.
 また例えば、端末装置が自律的にセカンダリセルグループを不活性化する場合(すなわち、セカンダリセルグループの不活性化を端末装置がトリガして開始する場合)、下記(A)から(C)の一部または全部の条件を満たすことに基づいてセカンダリセルグループの不活性化をトリガ、および/または開始しないようにしてもよい。また、セカンダリセルの不活性化がネットワークによって指示される場合、下記の条件に関わらず、セカンダリセルグループを不活性化するようにしてもよい。
  (A)PDCP duplicationが設定されており、そのPDCP duplicationが活性化(Activate)されている。
  (B)PDCP duplicationが設定されており、そのPDCP duplicationが不活性化(Deactivate)されており、およびプライマリパスがこのセカンダリセルグループに設定されている。
  (C)このセカンダリセルグループにSCGベアラが設定されている。
Further, for example, when the terminal device autonomously deactivates the secondary cell group (that is, when the terminal device triggers and starts deactivation of the secondary cell group), one of (A) to (C) below Deactivation of secondary cell groups may be triggered and/or not initiated based on meeting some or all conditions. Also, if the network instructs to deactivate a secondary cell, the secondary cell group may be deactivated regardless of the following conditions.
(A) PDCP duplication is set and activated.
(B) PDCP duplication is set, the PDCP duplication is deactivated, and the primary path is set to this secondary cell group.
(C) An SCG bearer is configured for this secondary cell group.
 これにより、端末装置に設定されている無線ベアラの設定に基づき、端末装置による自律的なセルグループの不活性化を効率的に制御することができる。 As a result, it is possible to efficiently control the autonomous deactivation of cell groups by the terminal device based on the radio bearer settings set in the terminal device.
 上記説明における無線ベアラは、特に指定がない場合、DRBであってよいし、SRBであってよいし、DRB及びSRBであってよい。 Unless otherwise specified, the radio bearer in the above description may be DRB, SRB, or both DRB and SRB.
 また上記説明において、「紐づける」、「対応付ける」、「関連付ける」等の表現は、互いに換言されてもよい。 Also, in the above description, expressions such as "associate", "associate", and "associate" may be replaced with each other.
 また上記説明において、「SCGのSpCell」を「PSCell」と言い換えてよい。 Also, in the above explanation, "SCG SpCell" may be replaced with "PSCell".
 上記説明における「休眠状態」と「不活性状態」は互いに換言されてもよいし、「休眠状態から復帰した状態」と「活性状態」は互いに換言されてもよい。また上記説明において、「活性化、不活性化」と「活性状態、不活性状態」とは互いに換言されてもよい。 The "dormant state" and "inactive state" in the above description may be interchanged, and the "state recovered from the dormant state" and "active state" may be interchanged. In the above description, "activation, inactivation" and "active state, inactive state" may be interchanged.
 上記説明における「活性化されたBWP」と「Active BWP」は互いに換言されてよい。 "Activated BWP" and "Active BWP" in the above description may be interchanged.
 また、上記説明における各処理の例、または各処理のフローの例において、ステップの一部または全ては実行されなくてもよい。また上記説明における各処理の例、又は各処理のフローの例において、ステップの順番は異なってもよい。また上記説明における各処理の例、又は各処理のフローの例において、各ステップ内の一部または全ての処理は実行されなくてもよい。また上記説明における各処理の例、又は各処理のフローの例において、各ステップ内の処理の順番は異なってもよい。また上記説明において「Aであることに基づいてBを行う」は、「Bを行う」と言い換えられてもよい。即ち「Bを行う」ことは「Aであること」と独立して実行されてもよい。 Also, in the example of each process or the example of the flow of each process in the above description, some or all of the steps may not be executed. In addition, the order of the steps may be different in the example of each process or the example of the flow of each process in the above description. In addition, in the examples of each process or the example of the flow of each process in the above description, some or all of the processes in each step may not be executed. Further, in the example of each process or the example of the flow of each process in the above description, the order of the processes in each step may be different. Also, in the above description, "performing B based on A" may be rephrased as "performing B." That is, "doing B" may be performed independently of "being A."
 なお、上記説明において、「AをBと言い換えてよい」は、AをBと言い換えることに加え、BをAと言い換える意味も含んでよい。また上記説明において、「CはDであってよい」と「CはEであってよい」とが記載されている場合には、「DはEであってよい」ことを含んでもよい。また上記説明において、「FはGであってよい」と「GはHであってよい」とが記載されている場合には、「FはHであってもよい」ことを含んでもよい。 In addition, in the above explanation, "A may be rephrased as B" may include the meaning of rephrasing B as A in addition to rephrasing A as B. In addition, in the above description, when "C may be D" and "C may be E" may include "D may be E". Further, in the above description, when "F may be G" and "G may be H" may include "F may be H".
 また上記説明において、「A」という条件と、「B」という条件とが、同時に満たされない条件の場合には、「B」という条件は、「A」という条件の「その他」の条件として表現されてもよい。 Also, in the above explanation, if condition "A" and condition "B" are not satisfied at the same time, condition "B" is expressed as "other" condition of condition "A". may
 以下、本発明の実施形態における、端末装置、および、方法の種々の態様について説明する。 Various aspects of the terminal device and method in the embodiments of the present invention will be described below.
 (1)本発明の第1の実施の態様は、ネットワークからマスターセルグループとセカンダリセルグループとが設定される端末装置であって、前記ネットワークから第1のタイマーの値を含むRRCメッセージを受信する受信部と、前記RRCメッセージに基づき処理を行う処理部とを備え、前記処理部は、前記第1のタイマーに特定の値が設定されていることに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化が許可されないとみなし、前記第1のタイマーに前記特定の値でない値が設定されていること、および、セカンダリセルグループの活性化および/または不活性化を行うことに基づき、前記第1のタイマーをスタートまたは再スタートさせ、前記第1のタイマーが走っていることに基づき、セカンダリセルグループの活性化および/または不活性化を行うことに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化を開始しない。 (1) A first embodiment of the present invention is a terminal device in which a master cell group and a secondary cell group are configured from a network, and receives an RRC message including a first timer value from the network. A receiving unit and a processing unit that performs processing based on the RRC message, and the processing unit is based on the fact that the first timer is set to a specific value. Deeming activation and/or deactivation of a cell group not permitted, setting the first timer to a value other than the specific value, and activating and/or deactivating a secondary cell group. based on performing, starting or restarting the first timer, based on the first timer running, based on activating and / or deactivating a secondary cell group, the terminal Do not initiate activation and/or deactivation of secondary cell groups initiated at the discretion of the device.
 (2)本発明の第2の実施の態様は、ネットワークからマスターセルグループとセカンダリセルグループとが設定される端末装置に適用される方法であって、前記ネットワークから第1のタイマーの値を含むRRCメッセージを受信するステップと、前記RRCメッセージに基づき処理を行うステップとを備え、前記第1のタイマーに特定の値が設定されていることに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化が許可されないとみなし、前記第1のタイマーに前記特定の値でない値が設定されていること、および、セカンダリセルグループの活性化および/または不活性化を行うことに基づき、前記第1のタイマーをスタートまたは再スタートさせ、前記第1のタイマーが走っていることに基づき、セカンダリセルグループの活性化および/または不活性化を行うことに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化を開始しない。 (2) A second embodiment of the present invention is a method applied to a terminal device in which a master cell group and a secondary cell group are configured from a network, including the value of a first timer from the network A secondary cell group comprising a step of receiving an RRC message and a step of performing processing based on the RRC message, and based on the fact that a specific value is set in the first timer, the secondary cell group started by the terminal device's judgment is not permitted, the first timer is set to a value other than the specific value, and the secondary cell group is activated and/or deactivated. Based on that, starting or restarting the first timer, and based on the fact that the first timer is running, based on activating and / or deactivating the secondary cell group, the terminal device Do not initiate decision-initiated secondary cell group activation and/or deactivation.
 (3)本発明の第3の実施の態様は、ネットワークからマスターセルグループとセカンダリセルグループとが設定される端末装置に実装される集積回路であって、前記ネットワークから第1のタイマーの値を含むRRCメッセージを受信する機能と、前記RRCメッセージに基づき処理を行う機能とを前記端末装置に発揮させ、前記第1のタイマーに特定の値が設定されていることに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化が許可されないとみなし、前記第1のタイマーに前記特定の値でない値が設定されていること、および、セカンダリセルグループの活性化および/または不活性化を行うことに基づき、前記第1のタイマーをスタートまたは再スタートさせ、前記第1のタイマーが走っていることに基づき、セカンダリセルグループの活性化および/または不活性化を行うことに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化を開始しない。 (3) A third embodiment of the present invention is an integrated circuit mounted in a terminal device in which a master cell group and a secondary cell group are set from a network, and receives the value of the first timer from the network. The function of receiving an RRC message including the RRC message and the function of performing processing based on the RRC message are exhibited by the terminal device, and based on the fact that the first timer is set to a specific value, the terminal device determines Deeming that activation and/or deactivation of the secondary cell group to be initiated is not permitted, the first timer is set to a value other than the specific value, and activating and/or deactivating the secondary cell group or based on performing deactivation, starting or restarting said first timer, and based on said first timer running, activating and/or deactivating a secondary cell group. do not initiate secondary cell group activation and/or deactivation initiated by the terminal device's decision.
 (4)本発明の第4の実施の態様は、端末装置と通信する基地局装置であって、第1のタイマーの値を含むRRCメッセージを生成する処理部と、前記端末装置に前記RRCメッセージを送信する送信部とを備え、前記処理部は、前記第1のタイマーに特定の値を設定することに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化を許可しないことを前記端末装置に示す。 (4) A fourth embodiment of the present invention is a base station apparatus that communicates with a terminal apparatus, comprising: a processing unit that generates an RRC message including a first timer value; , wherein the processing unit activates and/or deactivates a secondary cell group initiated by a determination of the terminal device based on setting a specific value to the first timer indicates to the terminal device that the
 (5)本発明の第5の実施の態様は、端末装置と通信する基地局装置に適用される方法であって、第1のタイマーの値を含むRRCメッセージを生成するステップと、前記端末装置に前記RRCメッセージを送信するステップとを備え、前記第1のタイマーに特定の値を設定することに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化を許可しないことを前記端末装置に示す。 (5) A fifth embodiment of the present invention is a method applied to a base station apparatus that communicates with a terminal apparatus, comprising: generating an RRC message including a first timer value; and allowing activation and/or deactivation of a secondary cell group initiated by a terminal device decision based on setting a specific value to the first timer. Indicate to the terminal not to.
 (6)本発明の第6の実施の態様は、端末装置と通信する基地局装置に実装される集積回路であって、第1のタイマーの値を含むRRCメッセージを生成する機能と、前記端末装置に前記RRCメッセージを送信する機能とを前記基地局装置に発揮させ、前記第1のタイマーに特定の値を設定することに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化を許可しないことを前記端末装置に示す。 (6) A sixth embodiment of the present invention is an integrated circuit implemented in a base station device that communicates with a terminal device, comprising: a function of generating an RRC message including a first timer value; Activation of a secondary cell group started by the terminal device's judgment based on the base station device having a function of transmitting the RRC message to the device and setting a specific value to the first timer; / or indicate to the terminal device that deactivation is not allowed.
 本発明の一態様に関わる装置で動作するプログラムは、本発明の一態様に関わる上述した実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであってもよい。プログラムあるいはプログラムによって取り扱われる情報は、処理時に一時的にRandom Access Memory(RAM)などの揮発性メモリに読み込まれ、あるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。 A program that runs on a device according to one aspect of the present invention is a program that controls a Central Processing Unit (CPU) or the like to function a computer so as to realize the functions of the above-described embodiments according to one aspect of the present invention. There may be. The program or information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) during processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD), and The CPU reads, modifies, and writes accordingly.
 なお、上述した実施形態における装置の一部、をコンピュータで実現するようにしてもよい。その場合、この制御機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体等のいずれであってもよい。 It should be noted that part of the devices in the above-described embodiments may be realized by a computer. In that case, a program for realizing this control function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed. The "computer system" here is a computer system built in the device, and includes hardware such as an operating system and peripheral devices. The "computer-readable recording medium" may be any of semiconductor recording media, optical recording media, magnetic recording media, and the like.
 さらに「コンピュータが読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。 Furthermore, "computer-readable recording medium" means a medium that dynamically stores programs for a short period of time, such as a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line. , such as a volatile memory inside a computer system serving as a server or a client in that case, which holds the program for a certain period of time. Further, the program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system.
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、すなわち典型的には集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、代わりにプロセッサは従来型のプロセッサ、コントロ-ラ、マイクロコントロ-ラ、またはステ-トマシンであってもよい。汎用用途プロセッサ、または前述した各回路は、デジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Also, each functional block or feature of the apparatus used in the embodiments described above may be implemented or performed in an electrical circuit, typically an integrated circuit or multiple integrated circuits. Electrical circuits designed to perform the functions described herein may be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof. A general purpose processor may be a microprocessor, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. The general-purpose processor or each circuit described above may be composed of digital circuits or may be composed of analog circuits. In addition, when an integrated circuit technology that replaces current integrated circuits emerges due to advances in semiconductor technology, it is also possible to use integrated circuits based on this technology.
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用できる。 It should be noted that the present invention is not limited to the above-described embodiments. In the embodiments, an example of the device is described, but the present invention is not limited to this, and stationary or non-movable electronic devices installed indoors and outdoors, such as AV equipment, kitchen equipment, It can be applied to terminal devices or communication devices such as cleaning/washing equipment, air conditioning equipment, office equipment, vending machines, and other household equipment.
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明の一態様は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 Although the embodiment of this invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes etc. within the scope of the gist of this invention are also included. Further, one aspect of the present invention can be modified in various ways within the scope of the claims, and an embodiment obtained by appropriately combining technical means disclosed in different embodiments can also be Included in the scope. Further, it also includes a configuration in which the elements described in the above embodiments are replaced with the elements having the same effect.
 本発明の一態様は、例えば、通信システム、通信機器(例えば、携帯電話装置、基地局装置、無線LAN装置、或いはセンサーデバイス)、集積回路(例えば、通信チップ)、又はプログラム等において、利用することができる。 One aspect of the present invention is, for example, a communication system, a communication device (e.g., a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (e.g., a communication chip), or a program, etc. be able to.
100 E-UTRA
102 eNB
104 EPC
106 NR
108 gNB
110 5GC
112、114、116、118、120、124 インタフェース
122 UE
200、300 PHY
202、302 MAC
204、304 RLC
206、306 PDCP
208、308 RRC
310 SDAP
210、312 NAS
500、604 受信部
502、602 処理部
504、600 送信部
100 E-UTRA
102 eNB
104 EPCs
106NR
108 gNB
110 5GC
112, 114, 116, 118, 120, 124 interfaces
122 UEs
200, 300 PHYs
202, 302 MACs
204, 304 RLC
206, 306 PDCP
208, 308 RRC
310 SDAP
210, 312 NAS
500, 604 receiver
502, 602 processor
504, 600 transmitter

Claims (3)

  1.  ネットワークからマスターセルグループとセカンダリセルグループとが設定される端末装置であって、
     前記ネットワークから第1のタイマーの値を含むRRCメッセージを受信する受信部と、
     前記RRCメッセージに基づき処理を行う処理部とを備え、
     前記処理部は、
     前記第1のタイマーに特定の値が設定されていることに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化が許可されないとみなし、
     前記第1のタイマーに前記特定の値でない値が設定されていること、および、セカンダリセルグループの活性化および/または不活性化を行うことに基づき、前記第1のタイマーをスタートまたは再スタートさせ、
     前記第1のタイマーが走っていることに基づき、セカンダリセルグループの活性化および/または不活性化を行うことに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化を開始しない
     端末装置。
    A terminal device in which a master cell group and a secondary cell group are set from a network,
    a receiver that receives an RRC message from the network that includes a first timer value;
    A processing unit that performs processing based on the RRC message,
    The processing unit is
    Deeming that activation and / or deactivation of the secondary cell group initiated by the determination of the terminal device is not permitted based on the fact that the first timer is set to a specific value,
    starting or restarting the first timer based on the fact that the first timer is set to a value other than the specific value and the activation and/or deactivation of a secondary cell group; ,
    Activation and/or deactivation of a secondary cell group initiated by a determination of the terminal device based on the activation and/or deactivation of the secondary cell group based on the running of the first timer A terminal device that does not initiate conversion.
  2.  端末装置と通信する基地局装置であって、
     第1のタイマーの値を含むRRCメッセージを生成する処理部と、
     前記端末装置に前記RRCメッセージを送信する送信部とを備え、
     前記処理部は、
     前記第1のタイマーに特定の値を設定することに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化を許可しないことを前記端末装置に示す
     基地局装置。
    A base station device that communicates with a terminal device,
    a processing unit that generates an RRC message including the value of the first timer;
    A transmission unit that transmits the RRC message to the terminal device,
    The processing unit is
    A base station apparatus that indicates to the terminal apparatus that activation and/or deactivation of a secondary cell group initiated by a determination of the terminal apparatus is not permitted based on setting a specific value to the first timer.
  3.  端末装置と通信する基地局装置に適用される方法であって、
     第1のタイマーの値を含むRRCメッセージを生成するステップと、
     前記端末装置に前記RRCメッセージを送信するステップとを備え、
     前記第1のタイマーに特定の値を設定することに基づき、端末装置の判断により開始されるセカンダリセルグループの活性化および/または不活性化を許可しないことを前記端末装置に示す
     方法。
    A method applied to a base station device that communicates with a terminal device,
    generating an RRC message including the value of the first timer;
    and transmitting the RRC message to the terminal device;
    A method of indicating to the terminal that activation and/or deactivation of a secondary cell group initiated at the discretion of the terminal is not permitted based on setting a specific value to the first timer.
PCT/JP2022/013504 2021-04-01 2022-03-23 Terminal device, base station device, and method WO2022210163A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511057A JPWO2022210163A1 (en) 2021-04-01 2022-03-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021062889 2021-04-01
JP2021-062889 2021-04-01

Publications (1)

Publication Number Publication Date
WO2022210163A1 true WO2022210163A1 (en) 2022-10-06

Family

ID=83456743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013504 WO2022210163A1 (en) 2021-04-01 2022-03-23 Terminal device, base station device, and method

Country Status (2)

Country Link
JP (1) JPWO2022210163A1 (en)
WO (1) WO2022210163A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013516927A (en) * 2010-01-08 2013-05-13 インターデイジタル パテント ホールディングス インコーポレイテッド Method and apparatus for performing discontinuous reception and / or discontinuous transmission for multi-carrier / multi-cell operation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013516927A (en) * 2010-01-08 2013-05-13 インターデイジタル パテント ホールディングス インコーポレイテッド Method and apparatus for performing discontinuous reception and / or discontinuous transmission for multi-carrier / multi-cell operation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Signaling aspect of SCG activation and deactivation", 3GPP DRAFT; R2-2101015, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051974056 *

Also Published As

Publication number Publication date
JPWO2022210163A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
US20230379842A1 (en) Terminal apparatus, communication method, and base station apparatus
WO2022145403A1 (en) Terminal device, base station device, and method
WO2022080419A1 (en) Terminal device, base station device, and method
WO2022210163A1 (en) Terminal device, base station device, and method
WO2022210234A1 (en) Terminal device, method, and integrated circuit
WO2022210285A1 (en) Terminal device, method, and integrated circuit
WO2022145409A1 (en) Terminal device, base station device, and method
WO2022145402A1 (en) Terminal device, base station device, and method
US20240163953A1 (en) Terminal apparatus, method, and integrated circuit
WO2022196550A1 (en) Terminal device, base station device, and method
WO2023063345A1 (en) Terminal device, base station device, and method
WO2023063342A1 (en) Terminal device, base station device, and method
WO2023042752A1 (en) Terminal device, base station device, and method
WO2023008043A1 (en) Terminal device, method, and integrated circuit
WO2023042747A1 (en) Terminal device, base station device, and method
WO2023106315A1 (en) Terminal device, base station device, and method
WO2022085663A1 (en) Method and integrated circuit
WO2023013292A1 (en) Terminal device, base station device, and method
WO2023112531A1 (en) Terminal device, method, and integrated circuit
WO2022080341A1 (en) Terminal device, base station device, and method
WO2022080306A1 (en) Terminal device, base station device, and method
WO2023189963A1 (en) Terminal device, method, and integrated circuit
WO2024009884A1 (en) Terminal device, method, and integrated circuit
WO2024005010A1 (en) Terminal device, method, and integrated circuit
WO2024005069A1 (en) Terminal device, method, and integrated circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780378

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511057

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780378

Country of ref document: EP

Kind code of ref document: A1