WO2023008043A1 - Terminal device, method, and integrated circuit - Google Patents

Terminal device, method, and integrated circuit Download PDF

Info

Publication number
WO2023008043A1
WO2023008043A1 PCT/JP2022/025569 JP2022025569W WO2023008043A1 WO 2023008043 A1 WO2023008043 A1 WO 2023008043A1 JP 2022025569 W JP2022025569 W JP 2022025569W WO 2023008043 A1 WO2023008043 A1 WO 2023008043A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrc
bwp
terminal device
cell group
entity
Prior art date
Application number
PCT/JP2022/025569
Other languages
French (fr)
Japanese (ja)
Inventor
秀和 坪井
昇平 山田
恭輔 井上
拓真 河野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2023538353A priority Critical patent/JPWO2023008043A1/ja
Publication of WO2023008043A1 publication Critical patent/WO2023008043A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to terminal devices, methods and integrated circuits.
  • This application claims priority to Japanese Patent Application No. 2021-125590 filed in Japan on July 30, 2021, the content of which is incorporated herein.
  • 3GPP 3rd Generation Partnership Project
  • E-UTRA Evolved Universal LTE Terrestrial Radio Access
  • RAT radio access technology
  • 3GPP is still conducting technical studies and establishing standards for extension techniques for E-UTRA (Non-Patent Document 2).
  • E-UTRA is also called Long Term Evolution (LTE: registered trademark), and E-UTRA extension technologies are sometimes called LTE-Advanced (LTE-A) and LTE-Advanced Pro (LTE-A Pro). .
  • NR New Radio, or NR Radio access
  • 5G 5th Generation
  • 3GPP is still conducting technical studies and establishing standards for NR extension technology (Non-Patent Document 1).
  • a dual connectivity (also called multi-connectivity) technology in which one or more base station devices and terminal devices communicate using multiple cell groups.
  • a terminal device in order to perform communication in each cell group, a terminal device needs to monitor whether there is a message addressed to itself in each cell group.
  • a terminal device needs to constantly monitor a plurality of cell groups so that communication can be performed with low delay when large-capacity data communication occurs, and there is a problem of consuming a lot of power. Therefore, a technique for performing or stopping monitoring of some cell groups at low frequency (cell group deactivation technique) is being studied.
  • One aspect of the present invention has been made in view of the circumstances described above, and one object thereof is to provide a terminal device, a base station device, a method, and an integrated circuit capable of efficiently performing communication control.
  • one aspect of the present invention takes the following measures. That is, one aspect of the present invention is a terminal device in which a secondary cell group is set from a base station device, and a data radio bearer (DRB) associated with a packet data convergence protocol (PDCP) entity is the secondary cell group and a PDCP layer processing unit that notifies a radio resource control (RRC) layer processing unit that uplink data for the DRB has arrived based on the fact that the DRB is the DRB and that the secondary cell group is deactivated. , the RRC layer processing unit for generating an RRC message for notifying the base station apparatus that uplink data to be transmitted is in the secondary cell group based on the notification; and transmitting the RRC message to the base station apparatus. and a transmitter.
  • DRB data radio bearer
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • one aspect of the present invention is a method applied to a terminal device in which a secondary cell group is set from a base station device, wherein a data radio bearer (DRB) associated with a packet data convergence protocol (PDCP) entity is and notifying a radio resource control (RRC) layer processing unit that uplink data for the DRB has arrived based on the DRB of the secondary cell group and the deactivation of the secondary cell group.
  • DRB data radio bearer
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • one aspect of the present invention is an integrated circuit implemented in a terminal device in which a secondary cell group is set from a base station device, and is a data radio bearer (DRB) associated with a packet data convergence protocol (PDCP) entity.
  • DRB data radio bearer
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • the terminal device, method, and integrated circuit can realize efficient communication control processing.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the invention
  • FIG. FIG. 4 is a diagram of an example of NR UP protocol configuration according to an embodiment of the present invention
  • FIG. 3 is a diagram of an example of the NRCP protocol configuration according to the embodiment of the present invention
  • the block diagram which shows the structure of the terminal device in embodiment of this invention. 1 is a block diagram showing the configuration of a base station apparatus according to an embodiment of the present invention
  • An example of ASN.1 description of an RRC reconfiguration message in an embodiment of the present invention An example of ASN.1 description of the cell group setting information element in the embodiment of the present invention.
  • An example of ASN.1 description of SpCell settings in the embodiment of the present invention An example of ASN.1 description of a reset information element with synchronization in an embodiment of the present invention.
  • An example of ASN.1 description of the SCell configuration information element in the embodiment of the present invention An example of processing of a terminal device according to an embodiment of the present invention.
  • An example of processing of a terminal device according to an embodiment of the present invention An example of processing of a terminal device according to an embodiment of the present invention.
  • the following description relates to the name of each node and entity, processing, etc. when the radio access technology is E-UTRA or NR. It may be applied to access technologies.
  • the name of each node or entity in this description may be another name.
  • FIG. 1 is an example of a schematic diagram of a communication system according to an embodiment of the present invention. It should be noted that the functions of each node, radio access technology, core network, interface, etc. described using FIG. 1 are part of the functions closely related to the embodiment of the present invention, and may have other functions.
  • NR106 may be a radio access technology.
  • NR 106 may also be the air interface between UE 122 and gNB 108 .
  • the air interface between UE 122 and gNB 108 may be called the Uu interface.
  • a gNB (g Node B) 108 may be a base station device of NR 106 .
  • gNB 108 may have the NR protocol described below.
  • the NR protocol may consist of an NR user plane (User Plane: UP) protocol, which will be described later, and an NR control plane (Control Plane: CP) protocol, which will be described later.
  • gNB 108 may terminate NR user plane protocols and NR control plane protocols to UE 122 .
  • 5GC110 may be a core network.
  • Interface 116 is the interface between gNB 108 and 5GC 110 and may be referred to as the NG interface.
  • Interface 116 may include a control plane interface through which control signals pass, and/or a user plane interface through which user data passes.
  • the control plane interface of interface 116 may terminate at the Access and Mobility Management Function (AMF: not shown) within 5GC 110 .
  • the user plane interface of interface 116 may terminate at a User Plane Function (UPF: not shown) within 5GC 110 .
  • the control plane interface of interface 116 may be referred to as the NG-C interface.
  • the user plane interface of interface 116 may be called the NG-U interface.
  • one or more gNBs 108 may be connected to the 5GC 110 via the interface 116. There may be interfaces between gNBs 108 that connect to the 5GC 110 (not shown). An interface between multiple gNBs 108 connected to a 5GC 110 may be called an Xn interface.
  • UE 122 may be a terminal device capable of receiving broadcast information and paging messages transmitted from gNB 108. Also, the UE 122 may be a terminal device capable of wireless connection with the gNB 108 . Also, the UE 122 may be a terminal device capable of establishing wireless connections with multiple gNBs 108 at the same time. UE 122 may have the NR protocol. Note that the wireless connection may include a Radio Resource Control (RRC) connection.
  • RRC Radio Resource Control
  • radio connection may be established by establishing a radio bearer (RB) between UE122 and gNB108.
  • a radio bearer used for the CP may be called a signaling radio bearer (SRB).
  • a radio bearer used for UP may be called a data radio bearer (DRB Data Radio Bearer).
  • Each radio bearer may be assigned a radio bearer identity (ID).
  • the SRB radio bearer identifier may be called an SRB identity (SRB ID).
  • a DRB radio bearer identifier may be called a DRB identity (DRB ID).
  • each DRB established between UE122 and gNB108 is further included in one of the PDU (Packet Data Unit) sessions established within 5GC110.
  • PDU Packet Data Unit
  • Each DRB may be mapped with one, multiple QoS flows, or no QoS flows.
  • Each PDU session may be identified with a PDU session identifier (Identity, Identifier, or ID).
  • Each QoS flow may also be identified by a QoS flow identifier (Identity, Identifier, or ID).
  • the same QoS may be guaranteed for data such as IP packets and Ethernet frames passing through the same QoS flow.
  • the gNB 108 is also simply referred to as a base station device, and the UE 122 is also simply referred to as a terminal device or UE.
  • Figures 2 and 3 are diagrams showing an example of the NR protocol configuration according to the embodiment of the present invention. Note that the functions of each protocol described using FIGS. 2 and 3 are part of the functions closely related to the embodiment of the present invention, and may include other functions.
  • an uplink (UL) may be a link from a terminal device to a base station device.
  • a downlink (DL) may be a link from a base station apparatus to a terminal apparatus.
  • a sidelink (SL) may be a link from terminal to terminal.
  • FIG. 2 is a diagram of the NR User Plane (UP) protocol stack.
  • the NR UP protocol may be the protocol between UE 122 and gNB 108, as shown in FIG. That is, the NR UP protocol may be a protocol that terminates at the gNB 108 on the network side.
  • the NR UP protocol stack consists of a physical layer PHY300, a medium access control layer MAC302, a radio link control layer RLC304, and packet data convergence. It may include PDCP 306, which is a protocol (Packet Data Convergence Protocol) layer, and SDAP 310, which is a Service Data Adaptation Protocol layer.
  • PDCP 306 which is a protocol (Packet Data Convergence Protocol) layer
  • SDAP 310 which is a Service Data Adaptation Protocol layer.
  • Fig. 3 is a diagram of the NR Control Plane (CP) protocol configuration.
  • the radio resource control layer, RRC 308 may be the protocol between the UE 122 and the gNB 108. That is, RRC 308 may be a protocol that terminates at gNB 108 on the network side.
  • the non-AS layer NAS 312 may be the protocol between the UE 122 and AMF. That is, the NAS 312 may be a protocol that terminates with AMF on the network side.
  • the AS (Access Stratum) layer may be a layer that terminates between the UE 122 and the gNB 108. That is, the AS layer is a layer including part or all of PHY200, MAC202, RLC204, PDCP206 and RRC208 and/or a layer including part or all of PHY300, MAC302, RLC304, PDCP306, SDAP310 and RRC308. you can
  • An entity that has some or all of the functionality of the MAC layer may be called a MAC entity.
  • An entity that has some or all of the functionality of the RLC layer may be called an RLC entity.
  • An entity that has some or all of the functionality of the PDCP layer may be called a PDCP entity.
  • An entity that has some or all of the functionality of the SDAP layer may be called an SDAP entity.
  • An entity that has some or all of the functionality of the RRC layer may be called an RRC entity.
  • the MAC entity, RLC entity, PDCP entity, SDAP entity, and RRC entity may be simply referred to as MAC, RLC, PDCP, SDAP, and RRC, respectively.
  • the data provided to the lower layer from MAC, RLC, PDCP, and SDAP may be called MAC PDU (Protocol Data Unit), RLC PDU, PDCP PDU, and SDAP PDU, respectively.
  • the data provided from lower layers to MAC, RLC, PDCP, and SDAP may also be called MAC PDU, RLC PDU, PDCP PDU, and SDAP PDU, respectively.
  • the data provided from the upper layer to MAC, RLC, PDCP, and SDAP may be called MAC SDU (Service Data Unit), RLC SDU, PDCP SDU, and SDAP SDU, respectively.
  • MAC SDU data provided from MAC, RLC, PDCP, and SDAP to upper layers
  • MAC SDU data provided from MAC, RLC, PDCP, and SDAP to upper layers
  • RLC SDU data provided from MAC, RLC, PDCP, and SDAP to upper layers
  • a segmented RLC SDU may also be referred to as an RLC SDU segment.
  • the PHY of the terminal device may have a function of receiving data transmitted from the PHY of the base station device via a downlink (DL) physical channel.
  • the PHY of the terminal device may have a function of transmitting data to the PHY of the base station device via an uplink (UL) physical channel.
  • a PHY may be connected to a high-level MAC via a Transport Channel.
  • the PHY may pass data to the MAC over transport channels.
  • the PHY may also be provided with data from the MAC over the transport channel.
  • RNTI Radio Network Temporary Identifier
  • the physical channels used for wireless communication between the terminal device and the base station device may include the following physical channels.
  • PBCH Physical Broadcast CHannel
  • PDCCH Physical Downlink Control CHannel
  • PDSCH Physical Downlink Shared CHannel
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • the PBCH may be used to broadcast system information required by terminal equipment.
  • the PBCH may be used to report the time index (SSB-Index) within the period of the synchronization signal block (SS/PBCH block, also called SSB).
  • SSB-Index time index within the period of the synchronization signal block
  • the PDCCH may be used to transmit (or carry) downlink control information (DCI) in downlink radio communication (radio communication from the base station device to the terminal device).
  • DCI downlink control information
  • one or more DCIs (which may also be referred to as DCI formats) may be defined for transmission of downlink control information. That is, a field for downlink control information may be defined as DCI and mapped to information bits.
  • a PDCCH may be sent in a PDCCH candidate.
  • a terminal may monitor a set of PDCCH candidates in a serving cell. Monitoring the set of PDCCH candidates may mean attempting to decode the PDCCH according to some DCI format.
  • the DCI format may be used for PUSCH scheduling in the serving cell. PUSCH may be used for transmission of user data, transmission of RRC messages to be described later, and the like.
  • the PUCCH may be used to transmit uplink control information (UCI) in uplink radio communication (radio communication from a terminal device to a base station device).
  • the uplink control information may include channel state information (CSI: Channel State Information) used to indicate the state of the downlink channel.
  • the uplink control information may include a scheduling request (SR: Scheduling Request) used to request UL-SCH (UL-SCH: Uplink Shared CHannel) resources.
  • SR Scheduling Request
  • UL-SCH Uplink Shared CHannel
  • the uplink control information may include HARQ-ACK (Hybrid Automatic Repeat reQuest ACKnowledgement).
  • the PDSCH may be used to transmit downlink data (DL-SCH: Downlink Shared CHannel) from the MAC layer. Also, in the case of downlink, it may be used for transmission of system information (SI: System Information), random access response (RAR: Random Access Response), and the like.
  • SI System Information
  • RAR Random Access Response
  • PUSCH may be used to transmit HARQ-ACK and/or CSI together with uplink data (UL-SCH: Uplink Shared CHannel) or uplink data from the MAC layer.
  • PUSCH may also be used to transmit CSI only, or HARQ-ACK and CSI only. That is, PUSCH may be used to transmit UCI only.
  • PDSCH or PUSCH may also be used to transmit RRC signaling (also referred to as RRC messages) and MAC control elements.
  • RRC signaling transmitted from the base station apparatus may be signaling common to multiple terminal apparatuses within the cell.
  • the RRC signaling transmitted from the base station apparatus may be signaling dedicated to a certain terminal apparatus (also referred to as dedicated signaling). That is, terminal device-specific (UE-specific) information may be transmitted using signaling dedicated to a certain terminal device.
  • PUSCH may also be used to transmit UE Capability in the uplink.
  • the PRACH may be used to transmit random access preambles.
  • PRACH may be used to indicate initial connection establishment procedures, handover procedures, connection re-establishment procedures, synchronization (timing adjustments) for uplink transmissions, and requests for PUUCH resources. good.
  • a MAC may be referred to as a MAC sublayer.
  • the MAC may have the function of mapping various logical channels (Logical Channel) to the corresponding transport channels.
  • a logical channel may be identified by a logical channel identifier (Logical Channel Identity or Logical Channel ID).
  • a MAC may be connected to an upper RLC via a logical channel (logical channel).
  • Logical channels may be divided into control channels for transmitting control information and traffic channels for transmitting user information according to the type of information to be transmitted.
  • Logical channels may also be divided into uplink logical channels and downlink logical channels.
  • the MAC may have the ability to multiplex MAC SDUs belonging to one or more different logical channels and provide them to the PHY.
  • the MAC may also have the function of demultiplexing the MAC PDUs provided by the PHY and providing them to upper layers via the logical channel to which each MAC SDU belongs.
  • the MAC may also have a function to perform error correction through HARQ (Hybrid Automatic Repeat reQuest).
  • the MAC may also have a Scheduling Information Report function for reporting scheduling information.
  • the MAC may have a function of performing priority processing between terminal devices using dynamic scheduling.
  • the MAC may have a function of performing priority processing between logical channels within one terminal device.
  • the MAC may have a function of prioritizing overlapping resources within one terminal device.
  • MAC may have a function to identify Multicast/Broadcast Service (MBS).
  • MMS Multicast/Broadcast Service
  • MAC may have a function to select a transport format.
  • MAC has a function of performing discontinuous reception (DRX) and/or discontinuous transmission (DTX: discontinuous transmission), a function of executing random access (RA) procedure, notifying information of transmittable power, power It may have a headroom report (Power Headroom Report: PHR) function, a buffer status report (BSR) function that notifies the amount of data in the transmission buffer, and so on.
  • DRX discontinuous reception
  • DTX discontinuous transmission
  • RA random access
  • PHR headroom report
  • BSR buffer status report
  • the MAC may have a Bandwidth Adaptation (BA) function.
  • the MAC PDU may also include a MAC control element (MAC control element: MAC CE), which is an element for performing control in MAC.
  • MAC control element MAC CE
  • Uplink Uplink
  • DL Downlink
  • BCCH Broadcast Control Channel
  • SI System Information
  • a PCCH may be a downlink logical channel for carrying paging messages.
  • a CCCH (Common Control Channel) may be a logical channel for transmitting control information between a terminal device and a base station device.
  • CCCH may be used when the terminal does not have an RRC connection.
  • CCCH may also be used between the base station apparatus and a plurality of terminal apparatuses.
  • DCCH Dedicated Control Channel
  • DCCH is a logical channel for transmitting dedicated control information in a one-to-one (point-to-point) bi-directional manner between a terminal device and a base station device. It's okay.
  • Dedicated control information may be control information dedicated to each terminal device.
  • DCCH may be used when a terminal device has an RRC connection.
  • a DTCH (Dedicated Traffic Channel) may be a logical channel for transmitting user data on a one-to-one (point-to-point) basis between a terminal device and a base station device.
  • a DTCH may be a logical channel for transmitting dedicated user data.
  • Dedicated user data may be user data dedicated to each terminal device.
  • DTCH may exist in both uplink and downlink.
  • CCCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
  • UL-SCH Uplink Shared Channel
  • the DCCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
  • UL-SCH Uplink Shared Channel
  • DTCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
  • UL-SCH Uplink Shared Channel
  • BCCH may be mapped to BCH (Broadcast Channel), which is a downlink transport channel, and/or DL-SCH (Downlink Shared Channel).
  • BCH Broadcast Channel
  • DL-SCH Downlink Shared Channel
  • PCCH may be mapped to PCH (Paging Channel), which is a downlink transport channel.
  • PCH Packet Control Channel
  • CCCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • the DCCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • DTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • RLC may be referred to as an RLC sublayer.
  • the RLC may have a function to add a sequence number independent of the sequence number added by PDCP to the data provided by the upper layer PDCP. Also, RLC may have a function of segmenting data provided from PDCP and providing it to a lower layer. The RLC may also have a function of reassembling data provided from lower layers and providing the reassembled data to upper layers. The RLC may also have a data retransmission function and/or a retransmission request function (Automatic Repeat reQuest: ARQ).
  • ARQ Automatic Repeat reQuest
  • RLC may have a function to correct errors by ARQ.
  • the control information sent from the RLC receiver to the sender for ARQ indicating the data that needs to be retransmitted may be referred to as a status report.
  • a status report transmission instruction sent from the RLC transmitting side to the receiving side can be called a poll.
  • the RLC may also have the capability to detect data duplication.
  • RLC may also have a function of discarding data.
  • RLC may have three modes: Transparent Mode (TM), Unacknowledged Mode (UM), and Acknowledged Mode (AM).
  • TM Transparent Mode
  • UM Unacknowledged Mode
  • AM Acknowledged Mode
  • the TM does not divide the data received from the upper layer, and does not need to add an RLC header.
  • a TM RLC entity is a uni-directional entity and may be configured as a transmitting TM RLC entity or as a receiving TM RLC entity.
  • a UM RLC entity may be a unidirectional entity or a bi-directional entity. If the UM RLC entity is a unidirectional entity, the UM RLC entity may be configured as a transmitting UM RLC entity or as a receiving UM RLC entity. If the UM RLC entity is a bidirectional entity, the UM RRC entity may be configured as a UM RLC entity consisting of a transmitting side and a receiving side.
  • the AM RLC entity is a bi-directional entity and may be configured as an AM RLC consisting of a transmitting side and a receiving side.
  • TMD PDU Data provided to the lower layer by TM and/or data provided from the lower layer may be called TMD PDU.
  • Data provided in UM to lower layers and/or data provided by lower layers may also be referred to as UMD PDUs.
  • UMD PDUs Data provided to lower layers by AM or data provided from lower layers.
  • AMD PDUs Data provided to lower layers by AM or data provided from lower layers.
  • RLC PDUs may include RLC PDUs for data and RLC PDUs for control.
  • An RLC PDU for data may be called an RLC DATA PDU (RLC Data PDU).
  • the control RLC PDU may be called an RLC CONTROL PDU.
  • PDCP may be referred to as a PDCP sublayer.
  • PDCP may have a function to maintain sequence numbers. PDCP may also have a header compression/decompression function for efficiently transmitting user data such as IP packets and Ethernet frames over a wireless section.
  • a protocol used for IP packet header compression/decompression may be called ROHC (Robust Header Compression) protocol.
  • the protocol used for Ethernet frame header compression/decompression may be called EHC (Ethernet (registered trademark) Header Compression) protocol.
  • PDCP may also have data encryption/decryption functions.
  • PDCP may have data integrity protection and integrity verification functions.
  • PDCP may also have a re-ordering function.
  • PDCP may also have a retransmission function for PDCP SDUs.
  • PDCP may also have a function of discarding data using a discard timer.
  • PDCP may also have a duplication function.
  • PDCP may also have a function of discarding duplicated received data.
  • a PDCP entity is a bi-directional entity and may consist of a transmitting PDCP entity and a receiving PDCP entity.
  • PDCP PDUs may include data PDCP PDUs and control PDCP PDUs.
  • a PDCP PDU for data may be called a PDCP DATA PDU (PDCP Data PDU, PDCP Data PDU).
  • the PDCP PDU for control may be called a PDCP CONTROL PDU (PDCP Control PDU).
  • SDAP is the Service Data Adaptation Protocol Layer (Service Data Adaptation Protocol Layer).
  • SDAP is mapping between downlink QoS flows and data radio bearers (DRBs) sent from the 5GC 110 to the terminal device via the base station device, and/or from the terminal device via the base station device. It may have the ability to map uplink QoS flows sent to the 5GC 110 to the DRB. SDAP may also have the function of storing mapping rule information. SDAP may also have a function to mark QoS flow identifiers (QoS Flow ID: QFI).
  • SDAP PDUs may include data SDAP PDUs and control SDAP PDUs. A data SDAP PDU may be called an SDAP DATA PDU. A control SDAP PDU may also be called an SDAP CONTROL PDU. There may be one SDAP entity in the terminal device per PDU session. Also, the SDAP entity of the terminal device may include a transmitting SDAP entity that processes uplink data and a receiving SDAP entity that processes downlink data.
  • RRC may have a function to broadcast system information about AS and NAS.
  • RRC may have a paging function initiated by the 5GC110.
  • RRC may have an RRC connection management function.
  • RRC may have security features including key management.
  • RRC may have a radio bearer control function.
  • RRC may have a cell group control function.
  • RRC may have a mobility control function.
  • the RRC may have terminal equipment measurement reporting and terminal equipment measurement reporting control functions.
  • RRC may have QoS management functions.
  • RRC may have radio link failure detection and recovery functionality.
  • RRC may implement each function using RRC messages.
  • RRC messages may be sent using the logical channel BCCH, may be sent using the logical channel PCCH, may be sent using the logical channel CCCH, or may be sent using the logical channel CCCH, based on the message type. It may be sent using the channel's DCCH.
  • the RRC message sent using BCCH may include, for example, a master information block (Master Information Block: MIB), each type of system information block (System Information Block: SIB) may be included, and others of RRC messages may be included.
  • RRC messages sent using the PCCH may include, for example, paging messages and other RRC messages.
  • RRC messages sent in the uplink (UL) direction using CCCH include, for example, an RRC Setup Request message for requesting establishment of an RRC connection, a RRC Setup Request message for requesting resumption of a suspended RRC connection.
  • RRC Resume Request message, RRC Reestablishment Request message for requesting re-establishment of RRC connection, RRC System Information Request message for requesting system information message required by terminal equipment (RRC System Info Request) message may be included.
  • An RRC message sent in the uplink (UL) direction using CCCH may also include other RRC messages.
  • RRC messages sent in the downlink (DL) direction using CCCH include, for example, an RRC Reject message that rejects RRC connection establishment or RRC connection resumption, and an RRC setup for establishing SRB1, which will be described later. (RRC Setup) message, etc. may be included.
  • An RRC message sent in the downlink (DL) direction using CCCH may also include other RRC messages.
  • RRC messages sent in the uplink (UL) direction using DCCH include, for example, a Measurement Report message used for notification of measurement results by the terminal equipment, and a message indicating successful completion of reconfiguration of the RRC connection.
  • RRC Reconfiguration Complete message used to confirm RRC Setup Complete message used to confirm successful completion of RRC connection establishment , RRC Reestablishment Complete message used to confirm successful completion of RRC connection re-establishment, confirm successful completion of RRC connection re-establishment
  • a UE Capability Information message used to transfer capabilities may be included.
  • the RRC message sent in the uplink (UL) direction using DCCH may include other RRC messages.
  • RRC messages sent in the downlink (DL) direction using DCCH include, for example, an RRC Reconfiguration message used to command modification of an RRC connection, RRC connection release, Or RRC Release message used to instruct suspension of RRC connection, RRC Resume message used to resume suspended RRC connection, used for re-establishing SRB1 described later RRC Reestablishment message, Security Mode Command message used to direct the activation of AS security, UE used to request notification of the radio access capabilities of the terminal equipment. UE Capability Inquiry message, etc. may be included.
  • RRC messages sent in the downlink (DL) direction using DCCH may also include other RRC messages.
  • a NAS may have an authentication function. Also, the NAS may have a function of performing mobility management. The NAS may also have a security control function.
  • each layer may be included in another layer (layer).
  • an IP layer a TCP (Transmission Control Protocol) layer above the IP layer, a UDP (User Datagram Protocol) layer, and the like may exist in layers (not shown) above the AS layer of the terminal device.
  • An Ethernet layer may exist in a layer above the AS layer of the terminal device. It may be called a PDU layer (PDU layer) above the AS layer of the terminal device.
  • the PDU layers may include IP layer, TCP layer, UDP layer, Ethernet layer, and so on.
  • Application layers may exist in higher layers such as the IP layer, TCP layer, UDP layer, Ethernet layer, and PDU layer.
  • the application layer may include SIP (Session Initiation Protocol) and SDP (Session Description Protocol) used in IMS (IP Multimedia Subsystem), which is one of the service networks standardized by 3GPP.
  • the application layer may include protocols such as RTP (Real-time Transport Protocol) used for media communication and/or RTCP (Real-time Transport Control Protocol) and HTTP (HyperText Transfer Protocol) for media communication control.
  • the application layer may also include codecs for various media.
  • the RRC layer may be a higher layer than the SDAP layer.
  • UE 122 may be in RRC_CONNECTED state.
  • a state in which an RRC connection is established may include a state in which the UE 122 holds part or all of the UE context described below.
  • states in which an RRC connection is established may include states in which UE 122 is able to transmit and/or receive unicast data.
  • UE 122 may also be in RRC_INACTIVE state when the RRC connection is suspended.
  • UE 122 may be in RRC_INACTIVE state when UE 122 is connected to 5GC and the RRC connection is dormant.
  • a UE 122 may be in the RRC_IDLE state when the UE 122 is neither in the RRC_CONNECTED state nor in the RRC_INACTIVE state.
  • RRC_CONNECTED state, RRC_INACTIVE state, and RRC_IDLE state may be called RRC connected mode, RRC inactive mode, and RRC idle mode, respectively. If there is no fear, the RRC_CONNECTED, RRC_INACTIVE and RRC_IDLE states may simply be called connected, inactive and idle modes, respectively.
  • the UE AS context held by UE 122 includes the current RRC settings, current security context, PDCP state including ROHC (RObust Header Compression) state, C-RNTI (Cell Radio Network Temporary Identifier), cell identifier (cellIdentity), and physical cell identifier of the connection source PCell, all or part of which may be information.
  • the UE AS context held by the gNB 108 may include the same information as part or all of the information included in the UE AS context held by the UE 122 .
  • the UE AS context held by the gNB 108 may contain information different from the information contained in the UE AS context held by the UE 122 .
  • the security context consists of the cryptographic key at the AS level, the Next Hop parameter (NH), the Next Hop Chaining Counter parameter (NCC) used to derive the access key for the next hop, the identifier of the selected AS level cryptographic algorithm, and the replay protection. may contain information for some or all of the counters used for
  • a cell group that is set by the base station device for the terminal device will be explained.
  • a cell group may consist of only one special cell (Special Cell: SpCell).
  • a cell group may consist of one SpCell and one or more secondary cells (SCells). That is, a cell group may consist of one SpCell and optionally one or more SCells.
  • MCG Master Cell Group
  • SCell secondary cells
  • a MAC entity may mean a Primary Cell (PCell).
  • SCG Secondary Cell Group
  • SpCell may mean a Primary SCG Cell (PSCell).
  • SpCell may also mean PCell if the MAC entity is not associated with a cell group.
  • PCell, PSCell and SCell are serving cells.
  • a SpCell may support PUCCH transmission and contention-based Random Access.
  • a SpCell may remain activated at all times.
  • a PCell may be a cell used for an RRC connection establishment procedure when a terminal device in the RRC idle state transitions to the RRC connected state.
  • the PCell may be a cell used for the RRC connection re-establishment procedure in which the terminal device re-establishes the RRC connection.
  • the PCell may be a cell used for a random access procedure during handover.
  • a PSCell may be a cell used in a random access procedure when adding a secondary node (SN), which will be described later.
  • the SpCell may also be a cell used for purposes other than the above.
  • CA carrier aggregation
  • a cell group may be added to the terminal device from the base station device.
  • DC is a technique of performing data communication using radio resources of cell groups respectively configured by a first base station apparatus (first node) and a second base station apparatus (second node).
  • MR-DC may be a technology involved in DC.
  • the first base station device may additionally configure the second base station device for the terminal device.
  • the first base station device may be called a master node (Master Node: MN).
  • MCG master cell group
  • the second base station device may be called a secondary node (SN).
  • a cell group configured by secondary nodes may be called a secondary cell group (SCG).
  • SCG secondary cell group
  • the cell group set in the terminal device may be called MCG.
  • SpCell configured in the terminal device may be PCell.
  • MR-DC may include DC using E-UTRA for MCG and NR for SCG.
  • MR-DC may include DC using NR for MCG and E-UTRA for SCG.
  • MR-DCs may include DCs with NR for both MCG and SCG.
  • Examples of MR-DC using E-UTRA for MCG and NR for SCG include EN-DC (E-UTRA-NR Dual Connectivity) using EPC in the core network and NGEN-DC using 5GC in the core network. There may be DC (NG-RAN E-UTRA-NR Dual Connectivity).
  • An example of MR-DC using NR for MCG and E-UTRA for SCG may be NE-DC (NR-E-UTRA Dual Connectivity) using 5GC for the core network.
  • An example of MR-DC using NR for both MCG and SCG may be NR-DC (NR-NR Dual Connectivity) using 5GC for the core network.
  • one MAC entity may exist for each cell group.
  • the MAC entity for the MCG in the terminal may always be established in the terminal in all states (RRC idle state, RRC connected state, RRC inactive state, etc.).
  • the MAC entity for the SCG in the terminal device may be created by the terminal device when the SCG is configured in the terminal device.
  • the MAC entity for each cell group of the terminal device may be set by an RRC message received by the terminal device from the base station apparatus.
  • the MAC entity for MCG may be the E-UTRA MAC entity.
  • the MAC entity for the SCG may be the NR MAC entity.
  • the MAC entity for MCG may be the NR MAC entity.
  • the MAC entity for the SCG may be an E-UTRA MAC entity.
  • MAC entities for MCG and SCG may both be NR MAC entities.
  • the existence of one MAC entity for each cell group can be rephrased as the existence of one MAC entity for each SpCell. Also, one MAC entity for each cell group may be rephrased as one MAC entity for each SpCell.
  • SRB0 to SRB2 may be defined as SRBs of E-UTRA, and SRBs other than these may be defined.
  • SRB0 to SRB3 may be defined as SRBs of NR, and SRBs other than these may be defined.
  • SRB0 may be the SRB for RRC messages transmitted and/or received using the CCCH of the logical channel.
  • SRB1 may be the SRB for RRC messages and for NAS messages before the establishment of SRB2.
  • RRC messages sent and/or received using SRB1 may include piggybacked NAS messages.
  • the DCCH of the logical channel may be used for RRC messages and NAS messages transmitted and/or received using SRB1.
  • SRB2 may be an SRB for NAS messages and for RRC messages containing logged measurement information.
  • the DCCH of the logical channel may be used for RRC messages and NAS messages transmitted and/or received using SRB2.
  • SRB2 may be transmitted and/or received at a lower priority than SRB1.
  • SRB3 may be an SRB used to transmit and/or receive a specific RRC message when a DC such as EN-DC, NGEN-DC, NR-DC is configured in the terminal device.
  • the DCCH of the logical channel may be used for RRC messages and NAS messages transmitted and/or received using SRB3.
  • SRBs may be prepared for other uses.
  • the DRB may be a radio bearer for user data.
  • Logical channel DTCH may be used for RRC messages transmitted and/or received using DRB.
  • Radio bearers may include RLC bearers. Also, “include” of the RLC bearer in the radio bearer and “associate” of the RLC bearer with the radio bearer may be interchanged.
  • An RLC bearer may consist of one or two RLC entities and logical channels. The RLC entity when there are two RLC entities in the RLC bearer may be a TM RLC entity and/or a transmitting RLC entity and a receiving RLC entity in a unidirectional UM mode RLC entity.
  • SRB0 may consist of one RLC bearer.
  • An SRB0 RLC bearer may consist of a TM RLC entity and a logical channel.
  • SRB0 may always be established in the terminal in all states (RRC idle state, RRC connected state and RRC inactive state).
  • SRB1 may be established and/or set in the terminal device based on the RRC message received from the base station device when the terminal device transitions from the RRC idle state to the RRC connected state.
  • SRB1 may consist of one PDCP entity and one or more RLC bearers.
  • the SRB1 RLC bearer may consist of an AM RLC entity and a logical channel.
  • SRB2 may be established and/or set in the terminal device by an RRC message received by the terminal device in the RRC connected state with AS security activated from the base station device.
  • SRB2 may consist of one PDCP entity and one or more RLC bearers.
  • An SRB2 RLC bearer may consist of an AM RLC entity and a logical channel.
  • the PDCP on the base station device side of SRB1 and SRB2 may be placed in the master node.
  • SRB3 is when a secondary node in EN-DC, NGEN-DC, or NR-DC is added, or when the secondary node is changed, the terminal device in the RRC connection state with AS security activated becomes the base station.
  • One may be established and/or configured in a terminal device based on RRC messages received from the device.
  • SRB3 may be a direct SRB between the terminal device and the secondary node.
  • SRB3 may consist of one PDCP entity and one or more RLC bearers.
  • An SRB3 RLC bearer may consist of an AM RLC entity and a logical channel.
  • the PDCP on the base station device side of SRB3 may be placed in the secondary node.
  • One or more DRBs may be established and/or configured in the terminal device based on the RRC message received from the base station device by the terminal device in the RRC connected state with AS security activated.
  • a DRB may consist of one PDCP entity and one or more RLC bearers.
  • a DRB RLC bearer may consist of an AM or UM RLC entity and a logical channel.
  • the radio bearer in which PDCP is placed in the master node may be called the MN terminated (terminated) bearer.
  • a radio bearer in which PDCP is placed in a secondary node may be called an SN terminated (terminated) bearer.
  • a radio bearer in which the RLC bearer exists only in the MCG may be called an MCG bearer.
  • a radio bearer whose RLC bearer exists only in the SCG may be called an SCG bearer.
  • a radio bearer in which RLC bearers exist in both MCG and SCG may be called a split bearer.
  • the terminal device when a plurality of RLC bearers associated with a certain radio bearer are configured in the terminal device, information indicating to which RLC bearer the primary path is configured is transmitted to the terminal device by an RRC message received from the base station device. The device may be notified.
  • the RLC entity handling the RLC bearers of the primary path may be called the primary RLC entity.
  • the bearer types of SRB1 and SRB2 established/and configured in the terminal device may be MN-terminated MCG bearer and/or MN-terminated split bearer.
  • the SRB3 bearer type established/or configured in the terminal device may be an SN-terminated SCG bearer.
  • the DRB bearer type established/or configured in the terminal device may be any of all bearer types.
  • a DRB established and/or configured in a terminal device may be associated with one PDU session.
  • SDAP entities, PDCP entities, RLC entities, and logical channels established and/or configured in the terminal may be established and/or configured by RRC messages received by the terminal from the base station.
  • a network configuration in which the master node is gNB108 and 5GC110 is the core network can be called NR or NR/5GC.
  • the master node described above may refer to a base station apparatus that communicates with terminal apparatuses.
  • a handover may be a process in which a UE 122 in RRC Connected state changes serving cells. Handover may occur when UE 122 receives an RRC message from gNB 108 indicating a handover.
  • An RRC message that instructs handover is a message related to RRC connection reconfiguration that includes an information element that instructs handover (for example, mobility control information (MobilityControlInfo) in E-UTRA, or reconfiguration with synchronization (ReconfigurationWithSync) in NR).
  • the RRC message instructing handover may be a message indicating movement to another RAT cell (for example, MobilityFromEUTRACommand or MobilityFromNRCommand).
  • handover can be rephrased as reconfiguration with sync.
  • the conditions under which UE 122 can perform handover include some or all of when AS security is activated, when SRB2 is established, and at least one DRB is established. you can
  • the terminal device may perform processing that does not change the serving cell based on the RRC message instructing handover. That is, the terminal device may perform a handover process with the same cell as the current serving cell as the target cell.
  • FIG. 4 is a diagram showing an example flow of procedures for various settings in RRC according to the embodiment of the present invention.
  • FIG. 4 is an example flow when an RRC message is sent from the base station apparatus (gNB 108) to the terminal apparatus (UE 122).
  • the base station device creates an RRC message (step S400).
  • the creation of the RRC message in the base station apparatus may be performed in order for the base station apparatus to distribute broadcast information (SI: System Information) and paging information.
  • SI System Information
  • the creation of the RRC message in the base station apparatus may be performed so that the base station apparatus causes a specific terminal apparatus to perform processing.
  • the processing to be performed on a specific terminal device may include, for example, security-related settings, RRC connection reconfiguration, handover to a different RAT, RRC connection suspension, RRC connection release, and the like.
  • RRC connection reset processing includes, for example, radio bearer control (establishment, change, release, etc.), cell group control (establishment, addition, change, release, etc.), measurement setting, handover, security key update, etc. may be included.
  • the creation of the RRC message in the base station apparatus may be performed in response to the RRC message transmitted from the terminal apparatus.
  • the response to the RRC message sent from the terminal device may include, for example, a response to the RRC setup request, a response to the RRC reconnection request, a response to the RRC resume request, and the like.
  • the RRC message contains information (parameters) for various information notifications and settings. These parameters may be called fields and/or information elements and may be described using the ASN.1 (Abstract Syntax Notation One) notation scheme.
  • the base station device then transmits the created RRC message to the terminal device (step S402).
  • the terminal device performs processing, such as setting, if necessary (step S404).
  • the terminal device that has performed the processing may transmit an RRC message for response to the base station device (not shown).
  • the RRC message is not limited to the above examples, and may be used for other purposes.
  • RRC messages on the master node side are used to transfer RRC messages for SCG side settings (cell group settings, radio bearer settings, measurement settings, etc.) to and from the terminal equipment.
  • SCG side settings cell group settings, radio bearer settings, measurement settings, etc.
  • the master node side NR RRC message transmitted and received between the gNB 108 and the UE 122 may include the secondary node side NR RRC message in the form of a container.
  • the information in the RRC message for the configuration on the SCG side included in the RRC message on the master node side may be sent and/or received between the master node and the secondary node.
  • FIG. 7 is an example of ASN.1 description representing fields and/or information elements related to radio bearer setup included in the message related to RRC connection reconfiguration in NR in FIG.
  • ⁇ omitted> and ⁇ omitted> indicate that other information is omitted, not part of the ASN.1 notation.
  • Information elements may be omitted even where there is no description of ⁇ omitted> or ⁇ omitted>.
  • the example of ASN.1 in the embodiment of the present invention is an example of notation of the parameters of the RRC message in the embodiment of the present invention, and other names and other notations may be used.
  • the ASN.1 example shows only examples of main information closely related to one aspect of the present invention in order to avoid complicating the explanation. Note that all parameters described in ASN.1 may be referred to as information elements without distinguishing between fields, information elements, and the like.
  • the message regarding RRC connection reconfiguration may be an RRC reconfiguration message in NR or an RRC connection reconfiguration message in E-UTRA.
  • a master cell group (MCG) and a secondary cell group (SCG) are set by the aforementioned message regarding RRC connection reconfiguration.
  • Cell deactivation does not apply to SpCells, but may apply to SCells. Alternatively, cell deactivation may not apply to PCells but may apply to PSCells. In this case, cell deactivation may be performed differently for SpCells and SCells.
  • Cell activation and deactivation may be handled by a MAC entity that exists for each cell group.
  • the SCell configured in the terminal device may be activated and/or deactivated by (A), (B), and/or (C) below.
  • C SCell state (sCellState) set for each SCell by an RRC message (SCell is activated based on the inclusion of the SCell state field in the SCell configuration)
  • the MAC entity of the terminal device may perform some or all of the following processing (AD) for each SCell set in the cell group.
  • AD processing
  • processing AD (1) If the RRC parameter (SCell state) is set to activated when the SCell is configured, or if a MAC CE that activates the SCell is received, the MAC entity of UE 122 processes (AD-1 )I do. Otherwise, if a MAC CE is received that deactivates the SCell, or if the SCell inactivity timer expires in an active SCell, the MAC entity of UE 122 takes action (AD-2).
  • the MAC entity of the terminal device may perform some or all of (1) to (3) below.
  • this SCell was in an inactive state before receiving a MAC CE that activates this SCell, or if the RRC parameters ( sCellState) is set to activated, the MAC entity of UE 122 performs processing (AD-1-1).
  • UE 122's MAC entity starts or restarts (if already started) the SCell inactivity timer associated with that SCell.
  • the Active DL BWP is not a Dormant BWP, the suspended Type 1 Configured Uplink Grant associated with this SCell according to the stored configuration. If present, the UE 122's MAC entity (re)initializes it. and) the MAC entity of UE 122 triggers the PHR.
  • the MAC entity of the terminal device may perform some or all of (1) to (3) below. (1) If the BWP indicated by the first active downlink BWP identifier (firstActiveDownlinkBWP-Id) set in the RRC message for that SCell is not set to Dormant BWP, the MAC of UE 122 The entity performs processing (AD-1-1-1).
  • the MAC of UE 122 If the BWP indicated by the first active downlink BWP identifier (firstActiveDownlinkBWP-Id) set in the RRC message for that SCell is set to Dormant BWP, the MAC of UE 122 The entity stops this serving cell's BWP-Inactivity Timer (bwp-InactivityTimer) if it is running. (3) The MAC entity of UE 122 receives the downlink BWP indicated by the first active downlink BWP identifier (firstActiveDownlinkBWP-Id) configured in the RRC message for that SCell and the first active uplink BWP identifier. Activate the uplink BWP indicated by (firstActiveUplinkBWP-Id).
  • the MAC entity of the terminal device may activate the SCell at predetermined timing and apply (execute) normal SCell operations including some or all of (A) to (E) below.
  • SRS Sounding Reference Signal
  • B Channel State Information
  • C PDCCH monitoring for this SCell
  • D PDCCH monitoring for this SCell (etc.) (if scheduling for this SCell is done in the serving cell of (E) If PUCCH is configured, PUCCH transmission on this SCell
  • the MAC entity of the terminal device may perform some or all of (A) to (D) below.
  • the MAC entity of the terminal device may perform some or all of (A) to (D) below.
  • A) Do not transmit SRS on this SCell.
  • B) Do not report CSI for this SCell.
  • C) Do not transmit PUCCH, UL-SCH and/or RACH on this SCell.
  • D) Do not monitor the PDCCH of this SCell and/or the PDCCH for this SCell.
  • the SCell is activated and deactivated by the processing (AD) performed by the MAC entity.
  • the initial state of the SCell may be set by an RRC message.
  • the SCell inactivity timer will be explained.
  • the value of the SCell inactivity timer (information regarding the time when the timer is considered to have expired) may be notified by the RRC message.
  • the time notified without stopping the timer after starting or restarting the timer in the above process (AD) (here 40ms) has elapsed, the timer is considered expired.
  • the SCell deactivation timer may also be a timer named sCellDeactivationTimer.
  • the BWP may be part or all of the bandwidth of the serving cell.
  • a BWP may also be called a carrier BWP.
  • a terminal device may be configured with one or more BWPs.
  • a certain BWP may be set by information included in the broadcast information associated with the synchronization signal detected in the initial cell search.
  • a certain BWP may be a frequency bandwidth associated with a frequency for initial cell search.
  • Some BWPs may also be configured with RRC signaling (eg Dedicated RRC signaling).
  • the downlink BWP (DL BWP) and the uplink BWP (UL BWP) may be configured separately.
  • one or more uplink BWPs may be associated with one or more downlink BWPs.
  • the association between the uplink BWP and the downlink BWP may be a default association, may be an association by RRC signaling (for example, Dedicated RRC signaling), or may be associated by physical layer signaling (for example, downlink The association may be based on downlink control information (DCI) notified by a control channel, or a combination thereof.
  • DCI downlink control information
  • a BWP may consist of a group of consecutive physical radio blocks (PRB: Physical Resource Block).
  • parameters of the BWP (one or more BWPs) of each component carrier may be set for the terminal device in the connected state.
  • the parameters of the BWP of each component carrier include (A) the type of cyclic prefix, (B) the subcarrier spacing, (C) the frequency position of the BWP (for example, the start position or center frequency position on the low frequency side of the BWP) ( D) BWP bandwidth (for example, the number of PRBs), (E) control signal resource setting information, and (F) SS block center frequency position, may be included in part or all.
  • the resource configuration information of the control signal may be included in the BWP configuration of at least some or all of the PCell and/or PSCell.
  • the parameters (C) and (F) above for the frequency position, for example, ARFCN may be used, or an offset from a specific subcarrier of the serving cell may be used.
  • the offset unit may be a subcarrier unit or a resource block unit. Also, both ARFCN and offset may be set.
  • a terminal device may transmit and/or receive in an active BWP (Active BWP) out of one or more set BWPs.
  • active BWP active BWP
  • the activated downlink BWP is also called Active DL BWP.
  • the activated uplink BWP is also called Active UL BWP.
  • One or more BWPs may be configured in one serving cell. BWP switching in the serving cell is used to activate deactivated BWPs (also referred to as inactive BWPs) and deactivate activated BWPs.
  • deactivated BWPs also referred to as inactive BWPs
  • BWP switching may be controlled by the PDCCH indicating downlink allocation or uplink grant, the BWP inactivity timer, RRC signaling, or the MAC entity itself for initiation of random access procedures.
  • Active BWP of the serving cell is indicated by RRC or PDCCH.
  • Dormant BWP Entering a dormant BWP or leaving a dormant BWP is performed by BWP switching. This control is performed by the PDCCH for each SCell or for each group called Dormancy SCell Group. Configuration of dormant SCell groups is indicated by RRC signaling. Dormant BWP may also be applied only to SCells. Note that a dormant BWP does not change a certain BWP to a dormant state, but may be interpreted as one BWP set for dormant use among one or more BWPs set for the UE. . Also, there may be a plurality of BWPs set in the UE for sleep use.
  • a certain BWP is a dormant BWP may be indicated by not including a specific parameter in the BWP configuration.
  • the PDCCH-Config information element which is an information element for setting UE-specific (Specific) PDCCH parameters, included in the configuration of the downlink BWP, it is determined that the BWP is a dormant BWP. can be shown.
  • some of the parameters included in the PDCCH-Config information element which is an information element for configuring UE-specific PDCCH parameters included in the downlink BWP configuration, are not configured (not included). ) to indicate that the BWP is a dormant BWP.
  • some or all of the search space settings that define where and/or how to search for PDCCH candidates are configured by the PDCCH-Config information element as a BWP configuration. Not set (not included) may indicate that the BWP is a dormant BWP.
  • SpCells such as PCells and PSCells and settings of dormant BWPs for PUCCH SCells that can transmit PUCCH may not be supported.
  • a UE that has received a PDCCH indicating to exit from a dormant BWP outside a certain set period (active time) in SpCell uses the downlink BWP indicated by the first downlink BWP identifier notified in advance by RRC signaling. Activate.
  • a UE that has received a PDCCH in SpCell indicating that it will leave a dormant BWP within a certain set period (active time) uses the downlink BWP indicated by the second downlink BWP identifier notified in advance by RRC signaling. Activate.
  • a UE that receives a PDCCH indicating entry into a dormant BWP activates the downlink BWP indicated by the third downlink BWP identifier (dormantDownlinkBWP-Id) previously notified by RRC signaling.
  • Entry into and exit from the above-mentioned dormant BWP is performed by BWP switching, and when activating a new BWP, the previously active BWP is deactivated. That is, when exiting a dormant BWP, the dormant BWP is deactivated, and when entering a dormant BWP, the dormant BWP is activated.
  • a UE configured with discontinuous reception (DRX) in SpCell may monitor PDCCH in Active BWP of SpCell to detect a certain DCI format (e.g. DCI format 2_6) outside DRX active time. good.
  • the DCI format CRC may be scrambled with a certain RNTI (eg PS-RNTI).
  • a UE in which a dormant SCell group is set determines switching of Active DL BWP based on the bitmap information included in the DCI format 2_6 payload.
  • bit in the bitmap is associated with one dormant SCell group and the bit is 1, if the Active DL BWP is a dormant BWP, perform a BWP switch to another preset BWP, If an Active DL BWP is not a dormant BWP, it may stay on that BWP.
  • a BWP switch may also be performed such that if the bit is 0, the Active DL BWP becomes the Dormant BWP.
  • UE does not have to monitor PDCCH for the purpose of detecting DCI format 2_6 during DRX active time.
  • a UE configured for discontinuous reception (DRX) in SpCell may monitor PDCCH in Active BWP of SpCell to detect certain DCI formats (for example, DCI formats 0_1 and 1_1) during DRX active time.
  • the DCI format CRC may be scrambled with an RNTI (eg, C-RNTI or MCS-C-RNTI).
  • RNTI eg, C-RNTI or MCS-C-RNTI.
  • a UE in which a dormant SCell group is set determines switching of Active DL BWP based on the bitmap information included in the payload of DCI format 0_1 or DCI format 1_1.
  • a bit in the bitmap is associated with one dormant SCell group and the bit is 1, if the Active DL BWP is a dormant BWP, perform a BWP switch to another preset BWP, If an Active DL BWP is not a dormant BWP, it may stay on that BWP.
  • a BWP switch may also be performed such that if the bit is 0, the Active DL BWP becomes the Dormant BWP.
  • the "another preset BWP" may be a BWP different from the "another preset BWP" used in the description of the DCI format 2_6.
  • the UE does not have to monitor PDCCH for the purpose of detecting DCI format 0_1 and DCI format 1_1 outside the DRX active time.
  • Monitoring the PDCCH indicating exiting the dormant BWP means monitoring the PDCCH for detection of DCI format 2_6 outside the DRX active time, and DCI format 0_1 and DCI format 1_1 during the DRX active time. monitoring of the PDCCH for the purpose of detecting
  • the MAC entity shall, if the BWP is activated (is an Active BWP) and that BWP is not a dormant BWP, any of (A) through (H) below: Or you can do it all.
  • A Transmit UL-SCH on that BWP.
  • B If a PRACH occasion is configured, send RACH on that BWP.
  • C Monitor the PDCCH on that BWP.
  • D If PUCCH is configured, transmit PUCCH on that BWP.
  • E Report CSI on its BWP.
  • SRS If SRS is configured, send SRS on that BWP.
  • G Receive DL-SCH on that BWP.
  • H Initialize configured uplink grants of grant type 1 that have been set and suspended in that BWP.
  • the MAC entity shall, if the BWP is activated (is an Active BWP) and that BWP is a dormant BWP, one of (A) through (G) below: You can do part or all.
  • A Stop the BWP inactivity timer for the serving cell of this BWP if it is running.
  • B Do not monitor PDCCH for that BWP.
  • C Do not monitor the PDCCH for that BWP.
  • D Do not receive DL-SCH on that BWP.
  • F Do not send SRS on that BWP.
  • G Do not transmit UL-SCH on that BWP.
  • the MAC entity may do some or all of (A) through (I) below if the BWP is deactivated.
  • A Do not transmit UL-SCH on that BWP.
  • B Do not send RACH on that BWP.
  • C Do not monitor PDCCH on that BWP.
  • D Do not transmit PUCCH on that BWP.
  • E Do not report CSI on that BWP.
  • F Do not send SRS on that BWP.
  • G Do not receive DL-SCH on that BWP.
  • H Clear the configured uplink grant of grant type 2 set in that BWP.
  • I Suspend the configured uplink grant of grant type 1 for that deactivated BWP (inactive BWP).
  • the MAC entity may perform some or all of the following (A) through (E) on selected carriers of this serving cell.
  • (A) If the PRACH transmission resource (occasion) is not set for the Active UL BWP, (A1) switch the Active UL BWP to the BWP indicated by the RRC parameter (initialUplinkBWP), and (A2) If the serving cell is a SpCell, switch the Active UL BWP to the BWP indicated by the RRC parameter initialDownlinkBWP.
  • the MAC entity performs the following processing (A) for each activated serving cell for which the BWP inactivity timer is set.
  • the BWP inactivity timer may also be a timer named bwp-InactivityTimer.
  • A-1) if, in Active DL BWP, received PDCCH addressed to C-RNTI or CS-RNTI indicating downlink assignment or uplink grant, or if for Active DL BWP received a PDCCH addressed to a C-RNTI or CS-RNTI indicating a downlink assignment or uplink grant, or if a MAC PDU was sent with a configured uplink grant, or If a MAC PDU is received with configured downlink allocation, the MAC entity performs the following (A-1-1) processing.
  • A-1-1-1 If the random access procedure associated with this serving cell is not in progress, or if the random access procedure in progress associated with this serving cell is received by the PDCCH addressed to the C-RNTI Once successfully completed, start or restart the BWP inactivity timer associated with the Active DL BWP.
  • A-2) If the BWP inactivity timer associated with the Active DL BWP expires (Expire), the MAC entity performs the following processing (A-2-1).
  • A-2-1 If defaultDownlinkBWP-Id is set, BWP switching is performed to BWP indicated by this defaultDownlinkBWP-Id, otherwise BWP switching is performed to initialDownlinkBWP.
  • the MAC entity may perform the following processing (A).
  • A If the default downlink BWP identifier (defaultDownlinkBWP-Id) is set, the switched Active DL BWP is not the BWP indicated by the identifier (dormantDownlinkBWP-Id), and if the switched Active DL BWP is dormantDownlinkBWP- If not the BWP indicated by Id, start or restart the BWP inactivity timer associated with the Active DL BWP.
  • defaultDownlinkBWP-Id defaultDownlinkBWP-Id
  • the SCell's dormancy is achieved by activating the dormant BWP in this SCell. Also, even when the SCell is in a dormant state, CSI measurement, automatic gain control (AGC), and beam control (beam management) including beam failure recovery may be performed in this SCell.
  • AGC automatic gain control
  • beam control beam management
  • FIGS. 8 to 12 are examples of ASN.1 descriptions representing fields and/or information elements related to the addition of SCG PSCells and zero or more SCells, which are included in messages related to RRC connection reconfiguration in NR. .
  • the messages and/or information elements in each figure differ from the actual message structure and/or information element structure, and some structured fields and information elements are expanded. and/or omit fields or information elements not directly relevant to the description.
  • an RRC reconfiguration message may be used to add a PSCell of an SCG and zero or more SCells.
  • the RRC reconfiguration message may include some or all of the information (A) to (E) below. Also, the RRC reconfiguration message may include other information.
  • C Secondary cell group setting (secondaryCellGroup)
  • D Setting the master cell group (masterCellGroup)
  • E RRC configuration of secondary cell group in MR-DC (mrdc-SecondaryCellGroupConfig)
  • the SCG setting may be notified by the above (C) setting of the RRCReconfiguration message generated by the secondary node. Also, when the RRC reconfiguration message is notified to the terminal device in SRB1, the SCG setting is such that the RRC reconfiguration message generated by the secondary node is added to the above (E) of the RRCReconfiguration message generated by the master node. May be included and notified. Also, other messages may be used for setting up the SCG.
  • the configuration of the above secondary cell group may be given in a cell group configuration information element (CellGroupConfigIE).
  • CellGroupConfigIE CellGroupConfig Information element
  • the cell group setting information element may include some or all of the following information (A) to (H). Also, the cell group setting information element may contain other information.
  • A Cell group identifier (cellGroupId)
  • B Settings for adding and/or modifying RLC bearers (rlc-BearerToAddModList)
  • C Setting for RLC bearer release (rlc-BearerToReleaseList)
  • D MAC configuration for this cell group (mac-CellGroupConfig)
  • E PHY configuration for this cell group (physicalCellGroupConfig)
  • F SpCell configuration (spCellConfig)
  • G Settings for adding and modifying SCells (sCellToAddModList)
  • H Setting for SCell release (sCellToReleaseList)
  • SpCells may be added and/or set by the SpCell settings in (F) above, and SCells may be added, modified, and/or released by the settings in (G) and (H) above. They may also be done by other messages.
  • the above SpCell settings may include some or all of the following information (A) to (D).
  • the SpCell configuration may also include other information.
  • the above information element of reset with synchronization may include some or all of the following information (A) to (D). Further, the reset information with synchronization may include other information.
  • A SpCell cell-specific parameter configuration (spCellConfigCommon)
  • B New terminal identifier (UE-Identity) value (newUE-Identity)
  • C Timer T304 value (t304)
  • D RACH terminal device specific parameter setting (rach-ConfigDedicated)
  • the setting of the RACH terminal device-specific parameters described above may include parameters (CFRA) used for contention-free random access. Note that if this CFRA is not included in the configuration, the terminal device may perform contention-based random access in a random access procedure. CFRA may include RA Occasion information used in collision-free random access.
  • the configuration of cell-specific parameters of the SpCell above may be given by an information element (ServingCellConfigCommon IE) used to configure the cell-specific parameters of the serving cell.
  • Information elements used to configure cell-specific parameters of the serving cell may include some or all of the following information (A) to (D), as shown in FIG. Other information may also be included in the information element used to configure cell-specific parameters for the serving cell.
  • A Physical cell identifier (physCellId)
  • B Common downlink parameters in cells (downlinkConfigCommon)
  • C Common uplink parameters in cells (uplinkConfigCommon)
  • D Configuration of SCell terminal device-specific parameters (including some cell-specific parameters)
  • sCellConfigDedicated (E) SSB subcarrier spacing information (ssbSubcarrierSpacing)
  • Downlink common parameters in a cell may include downlink frequency information (frequencyInfoDL) and/or initial downlink BWP information (initialDownlinkBWP).
  • the downlink frequency information may include information on the SSB frequency used in this serving cell.
  • SCellConfigIE SCell configuration information elements
  • the SCell configuration information element may include some or all of the following information (A) to (D). Also, the SCell configuration information element may include other information.
  • A Identifier for identifying SCell (sCellIndex)
  • B SCell cell-specific parameter configuration (sCellConfigCommon)
  • C Configuration of SCell terminal device-specific parameters (including some cell-specific parameters)
  • sCellConfigDedicated (D) Information indicating SCell activation/deactivation (sCellState-r16)
  • the RRC entity of the terminal device that has received the RRCReconfiguration message may perform some or all of (A) to (F) below.
  • a terminal device that receives the RRCReconfiguration message may perform other processing.
  • radioBearerConfig is included in RRCReconfiguration, configure radio bearers based on this radioBearerConfig.
  • D Set the content to be included in the RRC reconfiguration complete message.
  • the RRC entity of the terminal device may perform some or all of (A) to (G) below.
  • C If the CellGroupConfig contains rlc-BearerToAddModList, perform RLC bearer addition and/or modification based on this rlc-BearerToAddModList.
  • D If CellGroupConfig contains mac-CellGroupConfig, configure the MAC entity of this cell group based on this mac-CellGroupConfig.
  • E If sCellToReleaseList is included in CellGroupConfig, release the SCell based on this sCellToReleaseList.
  • F If spCellConfig is included in CellGroupConfig, set SpCell based on this spCellConfig.
  • G If CellGroupConfig contains sCellToAddModList, then perform SCell addition and/or modification based on this sCellToAddModList.
  • the RRC entity of the terminal device may perform some or all of (A) to (G) below.
  • D If downlink frequency information (frequencyInfoDL) is not included in reconfigurationWithSync, the cell indicated by the physical cell identifier (physCellId) included in reconfigurationWithSync in the SSB frequency of the original SpCell (Source SpCell), Determine that it is the target SpCell.
  • E Start downlink synchronization of the target SpCell.
  • F Acquire the MIB of the target SpCell.
  • G If no specific bearer (DAPS bearer) has been configured. Execute some or all of (1) to (4) below. (1) reset the MAC entity for this cell group; (2) If a SCell not included in SCellToAddModList is set in this cell group, this SCell is made inactive. (3) apply the value of newUE-Identity as the C-RNTI for this cell group; (4) Configure lower layers based on the received spCellConfigCommon.
  • the state in which the SCG is deactivated may be included as part of the RRC_CONNECTED state.
  • the state in which the SCG is deactivated means that the terminal device performs the following (A) to (J) in all cells of the SCG SpCell (PSCell) and / or the SCG may be in a state of implementing part or all of Also, in a state in which an SCG is deactivated, all SCells configured for terminals in that SCG may be deactivated.
  • A Do not transmit SRS in that cell.
  • B Do not report CSI for that cell.
  • C do not transmit PUCCH, UL-SCH, and/or RACH on that cell;
  • D Do not monitor the PDCCH for that cell and/or the PDCCH for that cell.
  • E the cell's PDCCH addressed to the C-RNTI, MCS-C-RNTI, and/or CS-RNTI indicating an uplink grant for UL-SCH transmission in that cell, and/or that cell; Do not monitor PDCCH for
  • F No Automatic Gain Control
  • G Do not perform beam management, including beam failure recovery, in that cell.
  • H Do not perform Radio Link Monitoring (RLM) in that cell.
  • I Make the BWP set to the dormant BWP in the cell the activated BWP (also referred to as the Active BWP).
  • J Do not monitor C-RNTI on PDCCH in the activated dormant BWP of that cell.
  • entering the SCG inactive state may be referred to as entering an inactivated SCG.
  • the SCG inactive state may be a state in which the active BWPs of all cells of the SCG are dormant BWPs.
  • the above-mentioned SCG inactive state transitions from the SCG activated state (SCG active state) described later when an RRC entity or another entity instructs to enter the deactivated SCG may be in a state where
  • the SCG activated state may be included as part of the RRC_CONNECTED state.
  • the state in which the SCG is activated means that the terminal device performs the following (A) to (J) in the SpCell (PSCell) of the SCG and/or any cell of the SCG It may be in a state in which part or all of it is implemented.
  • (C) transmit PUCCH, UL-SCH and/or RACH on that cell;
  • (D) monitor the PDCCH for that cell and/or the PDCCH for that cell;
  • (G) Perform beam management, including beam failure recovery, in that cell.
  • (H) perform radio link monitoring (RLM) in the cell;
  • (J) Monitor the C-RNTI on the PDCCH in the activated BWP of that cell.
  • entering the SCG active state may be called entering the activated SCG.
  • the SCG active state may be a state in which the SCG SpCell and/or one or more SCell Active BWPs are not dormant BWPs.
  • the above-mentioned SCG inactive state is a state in which the SCG is inactivated (SCG inactive state ) may be a transition state.
  • the terminal device may transition the SCG to the inactive state based on receiving some or all of the following information (A) to (B) (in other words, the SCG is inactive may be changed).
  • the message and control elements including the information may be notified from the SCG to the terminal device, or may be notified to the terminal device from a cell group other than the SCG. Also, the information may be notified to the terminal device by an RRC message, MAC control element, or physical control channel.
  • A Information instructing SCG inactivation
  • B Information instructing SpCell inactivation
  • the terminal device may transition the SCG from the active state to the inactive state based on the timer for deactivating the SCG. Also, the terminal device may transition the SCG from the active state to the inactive state based on a timer related to PSCell deactivation.
  • the terminal device may transition the SCG from the inactive state to the active state based on receiving some or all of the following (A) to (D) information (in other words, the SCG may be activated).
  • a message or control element including the above information may be notified to the terminal device from a cell group other than the SCG.
  • the above information may be notified to the terminal device using an RRC message, MAC control element, or physical control channel.
  • (A) Information instructing activation of SCG (B) Information instructing to resume from inactive state of SCG (C) Information instructing activation of SpCell (D) Inactivated state of SpCell information to restart from
  • the terminal device may cause the SCG to transition from the inactive state to the active state based on the timer for deactivating the SCG. Also, the terminal device may transition the SCG from the inactive state to the active state based on a timer related to PSCell deactivation.
  • the terminal device may transition the SCG from the inactive state to the active state when starting a random access procedure caused by a scheduling request triggered to transmit a MAC PDU containing a MAC SDU. Also, the terminal device may transition the SCG from the inactive state to the active state when starting the random access procedure.
  • the terminal device may transition the SCG from the inactive state to the active state when starting a random access procedure caused by a scheduling request (in other words, initiated by the MAC entity itself).
  • the MAC entity of the terminal device sends an instruction to activate the SCG, an instruction to resume the deactivated SCG, an instruction to resume SpCell from dormancy, and/or other information to the RRC entity of the terminal device, It may be obtained from the PHY entity and/or other MAC entities.
  • the deactivation of the SCG may be the activation of a specific BWP (for example, dormant BWP) of SpCells in the cell group.
  • Inactivation of SCG may also be referred to as SCG dormant or SCG suspension.
  • All uplink transmissions may be paused (suspended) in the SCG when the SCG is in a deactivated state.
  • information about that SCG may be sent in another cell group (eg, MCG).
  • the information about that SCG may be sent in that SCG that has left the deactivated state (activated SCG).
  • activated SCG the information about that SCG may be sent in that SCG that has left the deactivated state (activated SCG).
  • some or all of the radio bearers associated with the RLC bearers of the SCG may be paused (suspended).
  • the random access procedure in the SpCell may be initiated in the deactivated SCG by triggering a scheduling request by the MAC entity to send a MAC PDU containing the MAC CE or directly by the MAC entity. good too. At this time, the MAC PDU may not contain the MAC SDU.
  • the SCG in which the random access procedure in the SpCell (PSCell) is deactivated by triggering a scheduling request to transmit a MAC PDU containing data (MAC SDU) from higher layers such as user data and RRC messages. may be started at
  • Resuming the SCG from an inactivated state may be referred to as leaving the dormant SCG. Also, resuming from the inactivated state of the SCG may be BWP switching from a dormant BWP to another (non-dormant BWP) BWP in the SpCell of the cell group.
  • SCG activation the resumption of SCG from an inactivated state
  • SCG re-activation the resumption of SCG from an inactivated state
  • a terminal device that performs SCG deactivation may perform some or all of the following processes (A) to (F) in the SCG.
  • A All SCells are inactivated.
  • B Assume that all of the SCell inactivity timers associated with the active SCell have expired.
  • C Assume that all SCell inactivity timers associated with the dormant SCell have expired.
  • D Do not start or restart the SCell inactivity timers associated with all SCells.
  • E Ignore MAC CEs that activate SCells. For example, in the processing (AD), if MAC CE for activating SCell is received and SCG deactivation is not instructed (or SCG is not deactivated), processing ( AD-1) is performed.
  • AD-2 Execute the above process (AD-2). For example, when inactivation of SCG is instructed (or SCG is inactivated) in the processing (AD-2), processing (AD-2) is performed.
  • a terminal device that resumes an SCG from an inactivated state may perform some or all of the following (A) to (D) processes in the SCG.
  • A) Execute processing (AD-1) to activate all SCells.
  • B) Leave all SCells inactive. However, since it is not in an inactivated state, for example, in the processing (AD), when a MAC CE for activating SCell is received, deactivation of SCG is not instructed (or SCG is inactivated is not in the state of being completed), processing (AD-1) may be performed.
  • FIG. 5 is a block diagram showing the configuration of the terminal device (UE 122) according to the embodiment of the present invention. In order to avoid complicating the description, FIG. 5 shows only main components closely related to one embodiment of the present invention.
  • UE 122 shown in FIG. 5 includes a receiving unit 500 that receives an RRC message or the like from a base station device, a processing unit 502 that performs processing according to parameters included in the received message, and a transmitting unit that transmits the RRC message or the like to the base station device. consists of 504.
  • the base station apparatus described above may be the gNB 108 .
  • processing unit 502 may include some or all of the functionality of various layers (eg, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer). That is, the processing unit 502 includes part or all of the physical layer processing unit, MAC layer processing unit, RLC layer processing unit, PDCP layer processing unit, SDAP layer processing unit, RRC layer processing unit, and NAS layer processing unit. can be
  • FIG. 6 is a block diagram showing the configuration of the base station apparatus according to the embodiment of the present invention. In order to avoid complicating the description, FIG. 6 shows only main components closely related to one embodiment of the present invention.
  • the base station apparatus described above may be the gNB 108 .
  • the base station apparatus shown in FIG. 6 includes a transmission unit 600 that transmits an RRC message and the like to UE 122, and a processing unit that creates an RRC message including parameters and transmits it to UE 122, thereby allowing processing unit 502 of UE 122 to perform processing. 602 and a receiver 604 that receives RRC messages and the like from the UE 122 .
  • processing unit 602 may include some or all of the functionality of various layers (eg, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer). That is, the processing unit 602 includes part or all of the physical layer processing unit, MAC layer processing unit, RLC layer processing unit, PDCP layer processing unit, SDAP layer processing unit, RRC layer processing unit, and NAS layer processing unit. can be
  • FIG. 14 is a diagram showing an example of processing of the terminal device (UE 122) according to the embodiment of the present invention.
  • the transmitting SDAP entity of the terminal device receives the first SDAP SDU for the first QoS flow from the SDAP upper layer of the terminal device (step S1400).
  • the transmitting SDAP entity of the terminal device maps the SDAP SDU to the default DRB if there is no rule for the first QoS flow in the QoS flow-DRB mapping rules it retains (step S1402 ).
  • a maximum of one default DRB for a PDU session may be set in the terminal device by the configuration (radioBearerConfig) for adding, modifying, and/or releasing radio bearers included in the RRC reconfiguration message.
  • the SDAP SDU is mapped to the first QoS flow according to the rule. is mapped to the DRB associated with (step S1404).
  • the transmitting SDAP entity of the terminal device constructs an uplink SDAP data PDU using the first SDAP SDU (step S1406).
  • the SDAP entity of the terminal device notifies the RRC layer of the terminal device or the The upper layer is notified (step S1408).
  • the SDAP entity of the terminal device sends the constructed SDAP data PDU to a lower layer of the SDAP of the terminal device (such as the PDCP layer or the RLC layer) based on the fact that the DRB to which the SDAP SDU is mapped does not satisfy the first condition. (step S1410).
  • the first condition may be any one of the following conditions (A) to (H) or a combination thereof.
  • SCG (E) transmission on the cell group of the RLC bearer associated with that DRB is suspended; (F) if multiple RLC entities are associated with that DRB, the primary RLC entity is deactivated; (G) If more than one RLC bearer is associated with that DRB, the DRB's primary path is set to a deactivated cell group (e.g. SCG) (H) If multiple RLC bearers are associated with that DRB, the primary path of that DRB is set to a cell group whose transmission is suspended (e.g. SCG)
  • the entity of the RRC layer of the terminal device or the upper layer of SDAP which was notified of the arrival of the uplink data in step S1408, performs processing to activate the deactivated cell group.
  • the RRC entity notified of the arrival of uplink data is provided with information requesting activation of the deactivated cell group (and/or indicating that uplink data has occurred in the deactivated cell group information) may be transmitted to the base station apparatus, for example, using the MCG signaling radio bearer.
  • the RRC layer of the terminal device that has been notified of the arrival of uplink data may initiate a procedure for activating a deactivated cell group.
  • an SDAP higher layer entity of the terminal device that has been notified of the arrival of uplink data may instruct the RRC layer to start the cell group activation procedure.
  • the RRC layer of the terminal device, which has been notified of the arrival of uplink data may instruct the MAC layer to initiate a random access procedure in a cell of the deactivated cell group.
  • processing of the entity notified of the arrival of uplink data in step S1408 is, for example, based on the information regarding the possibility of autonomous activation of the cell group notified (set) from the base station device, which processing is performed. It may be decided whether to do so.
  • step S1408 the SDAP entity that has notified the RRC layer of the terminal device or the upper layer of SDAP that the uplink data for this DRB has arrived indicates that the DRB to which the SDAP SDU is mapped meets the first condition. is not satisfied, the constructed SDAP data PDU may be submitted to the SDAP lower layer of the terminal device (e.g. PDCP layer or RLC layer), regardless of whether the first condition is satisfied. Instead, the constructed SDAP data PDU may be submitted to the SDAP lower layer (eg PDCP layer or RLC layer) of the terminal device.
  • the SDAP lower layer of the terminal device e.g. PDCP layer or RLC layer
  • the arrival of uplink data for this DRB may be other information.
  • that uplink data for this DRB has arrived may be any of the following information (A) to (D), a combination thereof, or information other than this: .
  • (A) Arrival of uplink data in a cell group whose transmission is suspended (B) Arrival of uplink data for a suspended radio bearer (C) Activation of a deactivated cell group is required (D) Uplink data cannot be transmitted to this DRB
  • FIG. 15 is a diagram showing an example of processing of the terminal device (UE 122) according to the embodiment of the present invention.
  • the transmitting PDCP entity of the terminal device receives the PDCP SDU from the higher layer of PDCP of the terminal device (step S1500).
  • the transmitting PDCP entity of the terminal device may perform header compression, encryption, and/or integrity protection of PDCP SDUs as necessary (step S1502).
  • the transmitting PDCP entity of the terminal device detects that uplink data for this radio bearer has arrived based on the fact that the radio bearer associated with this transmitting PDCP entity satisfies a first condition to be described later. is notified to the upper layer (for example, RRC) (step S1504).
  • the upper layer for example, RRC
  • the transmitting PDCP entity of the terminal device transmits the PDCP PDU constructed based on the PDCP SDU to the RLC entity of the terminal device based on the fact that the radio bearer associated with this transmitting PDCP entity does not satisfy the first condition described later. Submit (step S1506).
  • the first condition may be any one of the following conditions (A) to (H) or a combination thereof.
  • the radio bearer and/or transmission of the radio bearer is suspended
  • the radio bearer is a bearer of a deactivated cell group (eg SCG)
  • C the radio bearer, and /or the transmission of that radio bearer is suspended based on the cell group (e.g. SCG) being deactivated
  • D the radio bearer is the RLC bearer of the deactivated cell group (e.g. SCG)
  • E transmission in the cell group of the RLC bearer associated with that radio bearer is suspended
  • F if multiple RLC entities are associated with that radio bearer, Primary RLC entity is in a deactivated cell group (e.g.
  • SCG SCG
  • G If multiple RLC bearers are associated with that radio bearer, the cell whose primary path for that radio bearer is deactivated set to a group (e.g. SCG) (H) If multiple RLC bearers are associated with that radio bearer, the primary path of that radio bearer is set to a cell group (e.g. SCG) whose transmission is suspended. ing
  • the entity of the PDCP upper layer (for example, the RRC layer) of the terminal device that was notified of the arrival of the uplink data in step S1504 performs processing to activate the inactivated cell group.
  • the RRC entity notified of the arrival of uplink data is provided with information requesting activation of the deactivated cell group (and/or indicating that uplink data has occurred in the deactivated cell group information) may be transmitted to the base station apparatus, for example, using the MCG signaling radio bearer.
  • an entity in a PDCP higher layer (for example, the RRC layer) of the terminal device that is notified of the arrival of uplink data may initiate a cell group activation procedure.
  • an entity in a higher layer of PDCP (eg, RRC layer) of the terminal device that is notified of the arrival of uplink data instructs the MAC layer to start a random access procedure in the deactivated cell group.
  • the processing of the entity notified of the arrival of the uplink data in step S1504 is, for example, based on the information regarding the possibility of autonomous activation of the cell group notified (set) from the base station device, which processing is performed. It may be decided whether to do so.
  • the PDCP entity that has notified the upper layer of PDCP (eg, RRC) of the terminal device that the uplink data for this DRB has arrived is the radio bearer associated with this PDCP entity.
  • the constructed PDCP PDU may be submitted to the RLC entity of the terminal device based on the fact that the first condition is not satisfied, or the constructed PDCP PDU may be submitted to the terminal device regardless of whether the first condition is satisfied may be submitted to any RLC entity.
  • the arrival of uplink data for this radio bearer in step S1504 may be other information.
  • ⁇ that uplink data for this radio bearer has arrived'' may be any of the following information (A) to (D), or a combination thereof, or information other than this: good.
  • D Uplink data cannot be transmitted to this DRB
  • radio bearer in the above description may be DRB, SRB, or both DRB and SRB.
  • A may be rephrased as B” may include the meaning of rephrasing B as A in addition to rephrasing A as B.
  • C may be D
  • C may be E
  • F may be G
  • G may be H
  • F may be H
  • condition "A” and the condition “B” are contradictory conditions, the condition “B” may be expressed as the “other” condition of the condition "A”. good.
  • a first embodiment of the present invention is a terminal device in which a secondary cell group is set from a base station device, and a data radio bearer (a SDAP layer processing unit that notifies a radio resource control (RRC) layer processing unit that uplink data for the DRB has arrived based on the DRB) satisfying a first condition; and based on the notification, the secondary cell
  • the RRC layer processing unit generates an RRC message for group activation, and a transmission unit transmits the RRC message to the base station apparatus, wherein the first condition is that the data radio bearer is Suspended due to inactivation of the cell group.
  • a second embodiment of the present invention is a method applied to a terminal device to which a secondary cell group has been set from a base station device, in which a service data adaptation protocol service data unit (SDAP SDU) is mapped.
  • SDAP SDU service data adaptation protocol service data unit
  • RRC radio resource control
  • a third embodiment of the present invention is an integrated circuit implemented in a terminal device to which a secondary cell group has been set from a base station device, in which a service data adaptation protocol service data unit (SDAP SDU) is mapped.
  • SDAP SDU service data adaptation protocol service data unit
  • RRC radio resource control
  • a program that runs on a device is a program that controls a Central Processing Unit (CPU) or the like to function a computer so as to realize the functions of the above-described embodiments according to one aspect of the present invention. There may be.
  • the program or information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) during processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD), and
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • part of the devices in the above-described embodiments may be realized by a computer.
  • a program for realizing this control function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed.
  • the "computer system” here is a computer system built in the device, and includes hardware such as an operating system and peripheral devices.
  • the "computer-readable recording medium” may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
  • “computer-readable recording medium” means a medium that dynamically stores programs for a short period of time, such as a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line. , such as a volatile memory inside a computer system serving as a server or a client in that case, which holds the program for a certain period of time.
  • the program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system.
  • each functional block or feature of the apparatus used in the embodiments described above may be implemented or performed in an electrical circuit, typically an integrated circuit or multiple integrated circuits.
  • Electrical circuits designed to perform the functions described herein may be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof.
  • a general purpose processor may be a microprocessor, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • the general-purpose processor or each circuit described above may be composed of digital circuits or may be composed of analog circuits.
  • an integrated circuit technology that replaces current integrated circuits emerges due to advances in semiconductor technology, it is also possible to use integrated circuits based on this technology.
  • the present invention is not limited to the above-described embodiments.
  • an example of the device is described, but the present invention is not limited to this, and stationary or non-movable electronic devices installed indoors and outdoors, such as AV equipment, kitchen equipment, It can be applied to terminal devices or communication devices such as cleaning/washing equipment, air conditioning equipment, office equipment, vending machines, and other household equipment.
  • One aspect of the present invention is, for example, a communication system, a communication device (e.g., a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (e.g., a communication chip), or a program, etc. be able to.
  • a communication device e.g., a mobile phone device, a base station device, a wireless LAN device, or a sensor device
  • an integrated circuit e.g., a communication chip
  • a program etc. be able to.
  • 106NR 108 gNB 110 5GC 116 interfaces 122 UEs 300 PHYs 302 MAC 304 RLC 306 PDCP 308 RRC 310 SDAP 312 NAS 500, 604 receiver 502, 602 processor 504, 600 transmitter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal device wherein if a data radio bearer (DRB) associated with a packet data convergence protocol (PDCP) entity is a DRB of a secondary cell group and the secondary cell group has been deactivated, a radio resource control (RRC) layer processing unit is notified that uplink data for the DRB has arrived, and, on the basis of this notification, an RRC message notifying a base station device that uplink data to be transmitted is present in the secondary cell group is generated, and the RRC message is transmitted to the base station device.

Description

端末装置、方法、および、集積回路TERMINAL DEVICE, METHOD AND INTEGRATED CIRCUIT
 本発明は、端末装置、方法、および、集積回路に関する。
 本願は、2021年7月30日に日本に出願された特願2021-125590号について優先権を主張し、その内容をここに援用する。
The present invention relates to terminal devices, methods and integrated circuits.
This application claims priority to Japanese Patent Application No. 2021-125590 filed in Japan on July 30, 2021, the content of which is incorporated herein.
 セルラ移動通信システムの標準化プロジェクトである、第3世代パートナーシッププロジェクト(3rd Generation Partnership Project:3GPP)において、無線アクセス、コアネットワーク、サービス等を含む、セルラ移動通信システムの技術検討及び規格策定が行われている。 In the 3rd Generation Partnership Project (3GPP), a standardization project for cellular mobile communication systems, technical studies and standardization of cellular mobile communication systems, including radio access, core networks, services, etc., are being conducted. there is
 例えば、E-UTRA(Evolved UniversaLTErrestrial Radio Access)は、3GPPにおいて、第3.9世代および第4世代向けセルラ移動通信システム向け無線アクセス技術(Radio Access Technology:RAT)として、技術検討及び規格策定が開始された。現在も3GPPにおいて、E-UTRAの拡張技術の技術検討及び規格策定が行われている(非特許文献2)。なお、E-UTRAは、Long Term Evolution(LTE:登録商標)とも称し、E-UTRAの拡張技術をLTE-Advanced(LTE-A)、LTE-Advanced Pro(LTE-A Pro)と称することもある。 For example, E-UTRA (Evolved Universal LTE Terrestrial Radio Access) is a radio access technology (RAT) for 3.9th and 4th generation cellular mobile communication systems. . At present, 3GPP is still conducting technical studies and establishing standards for extension techniques for E-UTRA (Non-Patent Document 2). E-UTRA is also called Long Term Evolution (LTE: registered trademark), and E-UTRA extension technologies are sometimes called LTE-Advanced (LTE-A) and LTE-Advanced Pro (LTE-A Pro). .
 また、NR(New Radio、またはNR Radio access)は、3GPPにおいて、第5世代(5th Generation:5G)向けセルラ移動通信システム向け無線アクセス技術として、技術検討及び規格策定が開始された。現在も3GPPにおいて、NRの拡張技術の技術検討及び規格策定が行われている(非特許文献1)。  In addition, NR (New Radio, or NR Radio access) has started technical study and standardization as a radio access technology for 5th Generation (5G) cellular mobile communication systems at 3GPP. At present, 3GPP is still conducting technical studies and establishing standards for NR extension technology (Non-Patent Document 1).
 NRの拡張技術として大容量のデータ通信を可能とするために、複数のセルグループを用いて一つまたは複数の基地局装置と端末装置とが通信するデュアルコネクティビティ(マルチコネクティビティとも称する)技術がある。このデュアルコネクティビティでは、それぞれのセルグループで通信を行うために、端末装置はそれぞれのセルグループにおいて自分宛のメッセージの有無をモニタする必要がある。端末装置は大容量のデータ通信が発生したときに低遅延で通信できるように、常に複数のセルグループのモニタを行う必要があり、多くの電力を消費する問題があった。そのため、一部のセルグループのモニタを低頻度で行う、または停止する技術(セルグループの不活性化(Deactivation)技術)の検討が行われている。 In order to enable large-capacity data communication as an NR extension technology, there is a dual connectivity (also called multi-connectivity) technology in which one or more base station devices and terminal devices communicate using multiple cell groups. . In this dual connectivity, in order to perform communication in each cell group, a terminal device needs to monitor whether there is a message addressed to itself in each cell group. A terminal device needs to constantly monitor a plurality of cell groups so that communication can be performed with low delay when large-capacity data communication occurs, and there is a problem of consuming a lot of power. Therefore, a technique for performing or stopping monitoring of some cell groups at low frequency (cell group deactivation technique) is being studied.
 しかしながら、セルグループが不活性化された状態において、そのセルグループで使われる無線ベアラおよびまたはセルグループの送信が休止(サスペンド)されることにより、上りリンクのデータが発生したことをどのように検出して処理するかについては開示されていない。 However, how is it possible to detect that uplink data is generated when the cell group is deactivated and the transmission of the radio bearer and/or the cell group used by the cell group is suspended? It is not disclosed whether the
 本発明の一態様は、上記した事情に鑑みてなされたもので、通信制御を効率的に行うことができる端末装置、基地局装置、方法、集積回路を提供することを目的の一つとする。 One aspect of the present invention has been made in view of the circumstances described above, and one object thereof is to provide a terminal device, a base station device, a method, and an integrated circuit capable of efficiently performing communication control.
 上記の目的を達成するために、本発明の一態様は、以下のような手段を講じた。すなわち本発明の一態様は、基地局装置からセカンダリセルグループが設定された端末装置であって、パケットデータコンバージェンスプロトコル(PDCP)エンティティに紐づけられたデータ無線ベアラ(DRB)が、前記セカンダリセルグループのDRBであることと、前記セカンダリセルグループが不活性化されていることに基づき、前記DRBに対する上りリンクデータが到着したことを無線リソース制御(RRC)層処理部に通知するPDCP層処理部と、前記通知に基づき、送信する上りリンクデータが前記セカンダリセルグループにあることを前記基地局装置に通知するRRCメッセージを生成する前記RRC層処理部と、前記RRCメッセージを前記基地局装置に送信する送信部とを備えることである。 In order to achieve the above object, one aspect of the present invention takes the following measures. That is, one aspect of the present invention is a terminal device in which a secondary cell group is set from a base station device, and a data radio bearer (DRB) associated with a packet data convergence protocol (PDCP) entity is the secondary cell group and a PDCP layer processing unit that notifies a radio resource control (RRC) layer processing unit that uplink data for the DRB has arrived based on the fact that the DRB is the DRB and that the secondary cell group is deactivated. , the RRC layer processing unit for generating an RRC message for notifying the base station apparatus that uplink data to be transmitted is in the secondary cell group based on the notification; and transmitting the RRC message to the base station apparatus. and a transmitter.
 また本発明の一態様は、基地局装置からセカンダリセルグループが設定された端末装置に適用される方法であって、パケットデータコンバージェンスプロトコル(PDCP)エンティティに紐づけられたデータ無線ベアラ(DRB)が、前記セカンダリセルグループのDRBであることと、前記セカンダリセルグループが不活性化されていることに基づき、前記DRBに対する上りリンクデータが到着したことを無線リソース制御(RRC)層処理部に通知するステップと、前記通知に基づき、送信する上りリンクデータが前記セカンダリセルグループにあることを前記基地局装置に通知するRRCメッセージを生成するステップと、前記RRCメッセージを前記基地局装置に送信するステップとを備えることである。 Further, one aspect of the present invention is a method applied to a terminal device in which a secondary cell group is set from a base station device, wherein a data radio bearer (DRB) associated with a packet data convergence protocol (PDCP) entity is and notifying a radio resource control (RRC) layer processing unit that uplink data for the DRB has arrived based on the DRB of the secondary cell group and the deactivation of the secondary cell group. generating an RRC message for notifying the base station apparatus that uplink data to be transmitted is in the secondary cell group based on the notification; and transmitting the RRC message to the base station apparatus. is to provide
 また本発明の一態様は、基地局装置からセカンダリセルグループが設定された端末装置に実装される集積回路であって、パケットデータコンバージェンスプロトコル(PDCP)エンティティに紐づけられたデータ無線ベアラ(DRB)が、前記セカンダリセルグループのDRBであることと、前記セカンダリセルグループが不活性化されていることに基づき、前記DRBに対する上りリンクデータが到着したことを無線リソース制御(RRC)層処理部に通知する機能と、前記通知に基づき、送信する上りリンクデータが前記セカンダリセルグループにあることを前記基地局装置に通知するRRCメッセージを生成する機能と、前記RRCメッセージを前記基地局装置に送信する機能とを前記端末装置に発揮させることである。 Further, one aspect of the present invention is an integrated circuit implemented in a terminal device in which a secondary cell group is set from a base station device, and is a data radio bearer (DRB) associated with a packet data convergence protocol (PDCP) entity. is the DRB of the secondary cell group, and based on the fact that the secondary cell group is deactivated, notifies the radio resource control (RRC) layer processing unit that uplink data for the DRB has arrived. a function of generating an RRC message for notifying the base station apparatus that uplink data to be transmitted is in the secondary cell group based on the notification; and a function of transmitting the RRC message to the base station apparatus. and to the terminal device.
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 In addition, these generic or specific aspects may be realized by systems, devices, methods, integrated circuits, computer programs, or recording media. may be realized by any combination of
 本発明の一態様によれば、端末装置、方法、および集積回路は、効率的な通信制御処理を実現することができる。 According to one aspect of the present invention, the terminal device, method, and integrated circuit can realize efficient communication control processing.
本発明の実施の形態に係る通信システムの概略図。1 is a schematic diagram of a communication system according to an embodiment of the invention; FIG. 本発明の実施の形態に係るNR UPプロトコル構成の一例の図。FIG. 4 is a diagram of an example of NR UP protocol configuration according to an embodiment of the present invention; 本発明の実施の形態に係るNR CPプロトコル構成の一例の図。FIG. 3 is a diagram of an example of the NRCP protocol configuration according to the embodiment of the present invention; 本発明の実施の形態に係るRRCにおける、各種設定のための手順の一例を示す図。The figure which shows an example of the procedure for various settings in RRC which concerns on embodiment of this invention. 本発明の実施の形態における端末装置の構成を示すブロック図。The block diagram which shows the structure of the terminal device in embodiment of this invention. 本発明の実施の形態における基地局装置の構成を示すブロック図。1 is a block diagram showing the configuration of a base station apparatus according to an embodiment of the present invention; FIG. 本発明の実施の形態におけるNRでのRRC接続の再設定に関するメッセージに含まれるASN.1記述の一例。An example of ASN.1 description included in a message regarding RRC connection reconfiguration in NR according to an embodiment of the present invention. 本発明の実施の形態におけるRRC再設定メッセージのASN.1記述の一例。An example of ASN.1 description of an RRC reconfiguration message in an embodiment of the present invention. 本発明の実施の形態におけるセルグループ設定情報要素のASN.1記述の一例。An example of ASN.1 description of the cell group setting information element in the embodiment of the present invention. 本発明の実施の形態におけるSpCellの設定のASN.1記述の一例。An example of ASN.1 description of SpCell settings in the embodiment of the present invention. 本発明の実施の形態における同期付再設定情報要素のASN.1記述の一例。An example of ASN.1 description of a reset information element with synchronization in an embodiment of the present invention. 本発明の実施の形態におけるServingCellConfigCommon情報要素のASN.1記述の一例。An example of ASN.1 description of the ServingCellConfigCommon information element in the embodiment of the present invention. 本発明の実施の形態におけるSCell設定情報要素のASN.1記述の一例。An example of ASN.1 description of the SCell configuration information element in the embodiment of the present invention. 本発明の実施の形態における、端末装置の処理の一例。An example of processing of a terminal device according to an embodiment of the present invention. 本発明の実施の形態における、端末装置の処理の一例。An example of processing of a terminal device according to an embodiment of the present invention.
 以下、本発明の実施の一形態について、図面を参照して詳細に説明する。 Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.
 なお、以下の説明は、無線アクセス技術がE-UTRA又はNRである場合における、各ノードやエンティティの名称、及び処理等に関するものであるが、これに限らず、以下の説明は、他の無線アクセス技術に適用されてもよい。本説明における各ノードやエンティティの名称は、別の名称であってもよい。 The following description relates to the name of each node and entity, processing, etc. when the radio access technology is E-UTRA or NR. It may be applied to access technologies. The name of each node or entity in this description may be another name.
 図1は本発明の実施の形態に係る通信システムの概略図の一例である。なお、図1を用いて説明する各ノード、無線アクセス技術、コアネットワーク、インタフェース等の機能は、本発明の実施形態に密接に関わる一部の機能であり、他の機能を持ってよい。 FIG. 1 is an example of a schematic diagram of a communication system according to an embodiment of the present invention. It should be noted that the functions of each node, radio access technology, core network, interface, etc. described using FIG. 1 are part of the functions closely related to the embodiment of the present invention, and may have other functions.
 NR106は無線アクセス技術であってよい。またNR106は、UE122とgNB108との間のエアインタフェース(air interface)であってよい。UE122とgNB108との間のエアインタフェースをUuインタフェースと呼んでよい。gNB(g Node B)108は、NR106の基地局装置であってよい。gNB108は、後述のNRプロトコルを持ってよい。NRプロトコルは、後述のNRユーザプレーン(User Plane:UP)プロトコル、及び後述のNR制御プレーン(Control Plane:CP)プロトコルから構成されてよい。gNB108は、UE122に対し、NRユーザプレーンプロトコル、及びNR制御プレーンプロトコルを終端してよい。 NR106 may be a radio access technology. NR 106 may also be the air interface between UE 122 and gNB 108 . The air interface between UE 122 and gNB 108 may be called the Uu interface. A gNB (g Node B) 108 may be a base station device of NR 106 . gNB 108 may have the NR protocol described below. The NR protocol may consist of an NR user plane (User Plane: UP) protocol, which will be described later, and an NR control plane (Control Plane: CP) protocol, which will be described later. gNB 108 may terminate NR user plane protocols and NR control plane protocols to UE 122 .
 5GC110は、コア網であってよい。インタフェース116はgNB108と5GC110の間のインタフェース(interface)であり、NGインタフェースと呼ばれてよい。インタフェース116には、制御信号が通る制御プレーンインタフェース、及び/又はユーザデータが通るユーザプレーンインタフェースが存在してよい。インタフェース116の制御プレーンインタフェースは5GC110内のAccess and mobility Management Function(AMF:不図示)で終端してよい。インタフェース116のユーザプレーンインタフェースは5GC110内のUser Plane Function(UPF:不図示)で終端してよい。インタフェース116の制御プレーンインタフェースをNG-Cインタフェースと呼んでよい。インタフェース116のユーザプレーンインタフェースをNG-Uインタフェースと呼んでよい。  5GC110 may be a core network. Interface 116 is the interface between gNB 108 and 5GC 110 and may be referred to as the NG interface. Interface 116 may include a control plane interface through which control signals pass, and/or a user plane interface through which user data passes. The control plane interface of interface 116 may terminate at the Access and Mobility Management Function (AMF: not shown) within 5GC 110 . The user plane interface of interface 116 may terminate at a User Plane Function (UPF: not shown) within 5GC 110 . The control plane interface of interface 116 may be referred to as the NG-C interface. The user plane interface of interface 116 may be called the NG-U interface.
 なお、1つ又は複数のgNB108が5GC110にインタフェース116を介して接続されてよい。5GC110に接続する複数のgNB108の間に、インタフェースが存在してよい(不図示)。5GC110に接続する複数のgNB108間のインタフェースをXnインタフェースと呼んでよい。 Note that one or more gNBs 108 may be connected to the 5GC 110 via the interface 116. There may be interfaces between gNBs 108 that connect to the 5GC 110 (not shown). An interface between multiple gNBs 108 connected to a 5GC 110 may be called an Xn interface.
 UE122はgNB108から送信される報知情報や、ページングメッセージを受信する事が可能な端末装置であってよい。またUE122は、gNB108との無線接続が可能な端末装置であってよい。またUE122は、複数のgNB108と無線接続を同時に行う事が可能な端末装置であってよい。UE122はNRプロトコルを持ってよい。なお、無線接続とは、Radio Resource Control(RRC)接続を含んでよい。  UE 122 may be a terminal device capable of receiving broadcast information and paging messages transmitted from gNB 108. Also, the UE 122 may be a terminal device capable of wireless connection with the gNB 108 . Also, the UE 122 may be a terminal device capable of establishing wireless connections with multiple gNBs 108 at the same time. UE 122 may have the NR protocol. Note that the wireless connection may include a Radio Resource Control (RRC) connection.
 UE122が、gNB108と通信する場合、UE122と、gNB108との間に無線ベアラ(RB:Radio Bearer)を確立することにより、無線接続を行ってよい。CPに用いられる無線ベアラは、シグナリング無線ベアラ(SRB:Signaling Radio Bearer)と呼ばてよい。UPに用いられる無線ベアラは、データ無線ベアラ(DRB Data Radio Bearer)と呼ばれてよい。各無線ベアラには、無線ベアラ識別子(Identity:ID)が割り当てられてよい。SRB用無線ベアラ識別子は、SRB識別子(SRB Identity、またはSRB ID)と呼ばれてよい。DRB用無線ベアラ識別子は、DRB識別子(DRB Identity、またはDRB ID)と呼ばれてよい。 When UE122 communicates with gNB108, radio connection may be established by establishing a radio bearer (RB) between UE122 and gNB108. A radio bearer used for the CP may be called a signaling radio bearer (SRB). A radio bearer used for UP may be called a data radio bearer (DRB Data Radio Bearer). Each radio bearer may be assigned a radio bearer identity (ID). The SRB radio bearer identifier may be called an SRB identity (SRB ID). A DRB radio bearer identifier may be called a DRB identity (DRB ID).
 UE122が通信を行うgNB108の接続先コア網が5GC110である場合、UE122と、gNB108との間に確立された各DRBは、更に5GC110内に確立されるPDU(Packet Data Unit)セッションの一つに紐づけられてよい。各PDUセッションには、一つ又は複数のQoSフローが存在してよい。各DRBは、一つ又は複数のQoSフローと対応づけ(map)されてよいし、どのQoSフローとも対応づけされなくてもよい。各PDUセッションは、PDUセッション識別子(Identity、Identifier、またはID)で識別されてよい。また各QoSフローは、QoSフロー識別子(Identity、Identifier、またはID)で識別されてよい。また同一のQoSフローを通るIPパケットや、イーサネットフレーム等のデータに同一のQoSが保証されてよい。 If the core network connected to gNB108 with which UE122 communicates is 5GC110, each DRB established between UE122 and gNB108 is further included in one of the PDU (Packet Data Unit) sessions established within 5GC110. can be linked. There may be one or more QoS flows in each PDU session. Each DRB may be mapped with one, multiple QoS flows, or no QoS flows. Each PDU session may be identified with a PDU session identifier (Identity, Identifier, or ID). Each QoS flow may also be identified by a QoS flow identifier (Identity, Identifier, or ID). Also, the same QoS may be guaranteed for data such as IP packets and Ethernet frames passing through the same QoS flow.
 なお、以下の説明において、gNB108を単に基地局装置とも称し、UE122を単に端末装置又はUEとも称する。 In the following description, the gNB 108 is also simply referred to as a base station device, and the UE 122 is also simply referred to as a terminal device or UE.
 図2および図3は本発明の実施形態に係るNRプロトコル構成の一例を示す図である。なお図2および図3を用いて説明する各プロトコルの機能は、本発明の実施形態に密接に関わる一部の機能であり、他の機能を含んでよい。本発明の実施の形態において、上りリンク(uplink:UL)とは端末装置から基地局装置へのリンクであってよい。本発明の実施の形態において、下りリンク(downlink:DL)とは基地局装置から端末装置へのリンクであってよい。本発明の実施の形態において、サイドリンク(sidelink:SL)とは端末装置から端末装置へのリンクであってよい。  Figures 2 and 3 are diagrams showing an example of the NR protocol configuration according to the embodiment of the present invention. Note that the functions of each protocol described using FIGS. 2 and 3 are part of the functions closely related to the embodiment of the present invention, and may include other functions. In the embodiment of the present invention, an uplink (UL) may be a link from a terminal device to a base station device. In the embodiment of the present invention, a downlink (DL) may be a link from a base station apparatus to a terminal apparatus. In embodiments of the present invention, a sidelink (SL) may be a link from terminal to terminal.
 図2はNRユーザプレーン(User Plane:UP)プロトコルスタックの図である。図2に示す通り、NR UPプロトコルは、UE122とgNB108の間のプロトコルであってよい。すなわちNR UPプロトコルは、ネットワーク側ではgNB108で終端するプロトコルであってよい。図2に示す通り、NR UPプロトコルスタックは、物理(Physical)層であるPHY300、媒体アクセス制御(Medium Access Control)層であるMAC302、無線リンク制御(Radio Link Control)層であるRLC304、パケットデータ収束プロトコル(Packet Data Convergence Protocol)層である、PDCP306、及びサービスデータ適応プロトコル(Service Data Adaptation Protocol)層であるSDAP310を含んで構成されてよい。 Figure 2 is a diagram of the NR User Plane (UP) protocol stack. The NR UP protocol may be the protocol between UE 122 and gNB 108, as shown in FIG. That is, the NR UP protocol may be a protocol that terminates at the gNB 108 on the network side. As shown in Figure 2, the NR UP protocol stack consists of a physical layer PHY300, a medium access control layer MAC302, a radio link control layer RLC304, and packet data convergence. It may include PDCP 306, which is a protocol (Packet Data Convergence Protocol) layer, and SDAP 310, which is a Service Data Adaptation Protocol layer.
 図3はNR制御プレーン(Control Plane:CP)プロトコル構成の図である。図3に示す通り、NR CPプロトコルにおいて、無線リソース制御層であるRRC308は、UE122とgNB108の間のプロトコルであってよい。即ちRRC308は、ネットワーク側ではgNB108で終端するプロトコルであってよい。またNR CPプロトコルにおいて、非AS層であるNAS312は、UE122とAMFとの間のプロトコルであってよい。即ちNAS312は、ネットワーク側ではAMFで終端するプロトコルであってよい。 Fig. 3 is a diagram of the NR Control Plane (CP) protocol configuration. As shown in FIG. 3, in the NR CP protocol, the radio resource control layer, RRC 308, may be the protocol between the UE 122 and the gNB 108. That is, RRC 308 may be a protocol that terminates at gNB 108 on the network side. Also in the NR CP protocol, the non-AS layer NAS 312 may be the protocol between the UE 122 and AMF. That is, the NAS 312 may be a protocol that terminates with AMF on the network side.
 なおAS(Access Stratum)層とは、UE122とgNB108との間で終端する層であってよい。即ちAS層とは、PHY200、MAC202、RLC204、PDCP206、及びRRC208の一部又は全てを含む層、および/またはPHY300、MAC302、RLC304、PDCP306、SDAP310、及びRRC308の一部又は全てを含む層であってよい。 Note that the AS (Access Stratum) layer may be a layer that terminates between the UE 122 and the gNB 108. That is, the AS layer is a layer including part or all of PHY200, MAC202, RLC204, PDCP206 and RRC208 and/or a layer including part or all of PHY300, MAC302, RLC304, PDCP306, SDAP310 and RRC308. you can
 NRのAS層におけるエンティティ(entity)について説明する。MAC層の機能の一部又は全てを持つエンティティのことをMACエンティティと呼んでよい。RLC層の機能の一部又は全てを持つエンティティのことをRLCエンティティと呼んでよい。PDCP層の機能の一部又は全てを持つエンティティのことをPDCPエンティティと呼んでよい。SDAP層の機能の一部又は全てを持つエンティティのことをSDAPエンティティと呼んでよい。RRC層の機能の一部又は全てを持つエンティティのことをRRCエンティティと呼んでよい。MACエンティティ、RLCエンティティ、PDCPエンティティ、SDAPエンティティ、RRCエンティティを、それぞれ単に、MAC、RLC、PDCP、SDAP、RRCと呼ぶ場合がある。  The entity in the NR AS layer will be explained. An entity that has some or all of the functionality of the MAC layer may be called a MAC entity. An entity that has some or all of the functionality of the RLC layer may be called an RLC entity. An entity that has some or all of the functionality of the PDCP layer may be called a PDCP entity. An entity that has some or all of the functionality of the SDAP layer may be called an SDAP entity. An entity that has some or all of the functionality of the RRC layer may be called an RRC entity. The MAC entity, RLC entity, PDCP entity, SDAP entity, and RRC entity may be simply referred to as MAC, RLC, PDCP, SDAP, and RRC, respectively.
 なお、MAC、RLC、PDCP、SDAPから下位層に提供されるデータのことを、それぞれMAC PDU(Protocol Data Unit)、RLC PDU、PDCP PDU、SDAP PDUと呼んでよい。また、MAC、RLC、PDCP、SDAPに下位層から提供されるデータのことを、それぞれMAC PDU、RLC PDU、PDCP PDU、SDAP PDUと呼んでよい。また、MAC、RLC、PDCP、SDAPに上位層から提供されるデータのことを、それぞれMAC SDU(Service Data Unit)、RLC SDU、PDCP SDU、SDAP SDUと呼んでよい。また、MAC、RLC、PDCP、SDAPから上位層に提供するデータのことを、それぞれMAC SDU、RLC SDU、PDCP SDU、SDAP SDUと呼んでよい。また、セグメントされたRLC SDUのことをRLC SDUセグメントと呼んでよい。 The data provided to the lower layer from MAC, RLC, PDCP, and SDAP may be called MAC PDU (Protocol Data Unit), RLC PDU, PDCP PDU, and SDAP PDU, respectively. The data provided from lower layers to MAC, RLC, PDCP, and SDAP may also be called MAC PDU, RLC PDU, PDCP PDU, and SDAP PDU, respectively. Also, the data provided from the upper layer to MAC, RLC, PDCP, and SDAP may be called MAC SDU (Service Data Unit), RLC SDU, PDCP SDU, and SDAP SDU, respectively. Also, data provided from MAC, RLC, PDCP, and SDAP to upper layers may be called MAC SDU, RLC SDU, PDCP SDU, and SDAP SDU, respectively. A segmented RLC SDU may also be referred to as an RLC SDU segment.
 PHYの機能の一例について説明する。端末装置のPHYは基地局装置のPHYから、下りリンク(Downlink:DL)物理チャネル(Physical Channel)を介して伝送されたデータを受信する機能を有してよい。端末装置のPHYは基地局装置のPHYに対し、上りリンク(Uplink:UL)物理チャネルを介してデータを送信する機能を有してよい。PHYは上位のMACと、トランスポートチャネル(Transport Channel)で接続されてよい。PHYはトランスポートチャネルを介してMACにデータを受け渡してよい。またPHYはトランスポートチャネルを介してMACからデータを提供されてよい。PHYにおいて、様々な制御情報を識別するために、RNTI(Radio Network Temporary Identifier)が用いられてよい。 I will explain an example of PHY functions. The PHY of the terminal device may have a function of receiving data transmitted from the PHY of the base station device via a downlink (DL) physical channel. The PHY of the terminal device may have a function of transmitting data to the PHY of the base station device via an uplink (UL) physical channel. A PHY may be connected to a high-level MAC via a Transport Channel. The PHY may pass data to the MAC over transport channels. The PHY may also be provided with data from the MAC over the transport channel. In the PHY, RNTI (Radio Network Temporary Identifier) may be used to identify various control information.
 ここで、物理チャネルについて説明する。 Here, the physical channel will be explained.
 端末装置と基地局装置との無線通信に用いられる物理チャネルには、以下の物理チャネルが含まれてよい。 The physical channels used for wireless communication between the terminal device and the base station device may include the following physical channels.
  PBCH(物理報知チャネル:Physical Broadcast CHannel)
  PDCCH(物理下りリンク制御チャネル:Physical Downlink Control CHannel)
  PDSCH(物理下りリンク共用チャネル:Physical Downlink Shared CHannel)
  PUCCH(物理上りリンク制御チャネル:Physical Uplink Control CHannel)
  PUSCH(物理上りリンク共用チャネル:Physical Uplink Shared CHannel)
  PRACH(物理ランダムアクセスチャネル:Physical Random Access CHannel)
PBCH (Physical Broadcast CHannel)
PDCCH (Physical Downlink Control CHannel)
PDSCH (Physical Downlink Shared CHannel)
PUCCH (Physical Uplink Control CHannel)
PUSCH (Physical Uplink Shared CHannel)
PRACH (Physical Random Access CHannel)
 PBCHは、端末装置が必要とするシステム情報を報知するために用いられてよい。 The PBCH may be used to broadcast system information required by terminal equipment.
 また、NRにおいて、PBCHは、同期信号のブロック(SS/PBCHブロック、SSBとも称する)の周期内の時間インデックス(SSB-Index)を報知するために用いられてよい。 In addition, in NR, the PBCH may be used to report the time index (SSB-Index) within the period of the synchronization signal block (SS/PBCH block, also called SSB).
 PDCCHは、下りリンクの無線通信(基地局装置から端末装置への無線通信)において、下りリンク制御情報(Downlink Control Information:DCI)を送信する(または運ぶ)ために用いられてよい。ここで、下りリンク制御情報の送信に対して、一つまたは複数のDCI(DCIフォーマットと称してもよい)が定義されてよい。すなわち、下りリンク制御情報に対するフィールドがDCIとして定義され、情報ビットへマップされてよい。PDCCHは、PDCCH候補(candidate)において送信されてよい。端末装置は、サービングセルにおいてPDCCH候補のセットをモニタしてよい。PDCCH候補のセットをモニタするとは、あるDCIフォーマットにしたがってPDCCHのデコードを試みることを意味してよい。DCIフォーマットは、サービングセルにおけるPUSCHのスケジューリングのために用いられてもよい。PUSCHは、ユーザデータの送信や、後述するRRCメッセージの送信のためなどに使われてよい。 The PDCCH may be used to transmit (or carry) downlink control information (DCI) in downlink radio communication (radio communication from the base station device to the terminal device). Here, one or more DCIs (which may also be referred to as DCI formats) may be defined for transmission of downlink control information. That is, a field for downlink control information may be defined as DCI and mapped to information bits. A PDCCH may be sent in a PDCCH candidate. A terminal may monitor a set of PDCCH candidates in a serving cell. Monitoring the set of PDCCH candidates may mean attempting to decode the PDCCH according to some DCI format. The DCI format may be used for PUSCH scheduling in the serving cell. PUSCH may be used for transmission of user data, transmission of RRC messages to be described later, and the like.
 PUCCHは、上りリンクの無線通信(端末装置から基地局装置への無線通信)において、上りリンク制御情報(Uplink Control Information:UCI)を送信するために用いられてよい。ここで、上りリンク制御情報には、下りリンクのチャネルの状態を示すために用いられるチャネル状態情報(CSI:Channel State Information)が含まれてもよい。また、上りリンク制御情報には、UL-SCH(UL-SCH:Uplink Shared CHannel)リソースを要求するために用いられるスケジューリング要求(SR:Scheduling Request)が含まれてもよい。また、上りリンク制御情報には、HARQ-ACK(Hybrid Automatic Repeat reQuest ACKnowledgement)が含まれてもよい。 The PUCCH may be used to transmit uplink control information (UCI) in uplink radio communication (radio communication from a terminal device to a base station device). Here, the uplink control information may include channel state information (CSI: Channel State Information) used to indicate the state of the downlink channel. Also, the uplink control information may include a scheduling request (SR: Scheduling Request) used to request UL-SCH (UL-SCH: Uplink Shared CHannel) resources. Also, the uplink control information may include HARQ-ACK (Hybrid Automatic Repeat reQuest ACKnowledgement).
 PDSCHは、MAC層からの下りリンクデータ(DL-SCH:Downlink Shared CHannel)の送信に用いられてよい。また、下りリンクの場合にはシステム情報(SI:System Information)やランダムアクセス応答(RAR:Random Access Response)などの送信に用いられてよい。 The PDSCH may be used to transmit downlink data (DL-SCH: Downlink Shared CHannel) from the MAC layer. Also, in the case of downlink, it may be used for transmission of system information (SI: System Information), random access response (RAR: Random Access Response), and the like.
 PUSCHは、MAC層からの上りリンクデータ(UL-SCH:Uplink Shared CHannel)または上りリンクデータと共にHARQ-ACKおよび/またはCSIを送信するために用いられてもよい。またPUSCHは、CSIのみ、または、HARQ-ACKおよびCSIのみを送信するために用いられてもよい。すなわちPUSCHは、UCIのみを送信するために用いられてもよい。また、PDSCHまたはPUSCHは、RRCシグナリング(RRCメッセージとも称する)、およびMACコントロールエレメントを送信するために用いられてもよい。ここで、PDSCHにおいて、基地局装置から送信されるRRCシグナリングは、セル内における複数の端末装置に対して共通のシグナリングであってもよい。また、基地局装置から送信されるRRCシグナリングは、ある端末装置に対して専用のシグナリング(dedicated signalingとも称する)であってもよい。すなわち、端末装置固有(UEスペシフィック)の情報は、ある端末装置に対して専用のシグナリングを用いて送信されてもよい。また、PUSCHは、上りリンクにおいてUEの能力(UE Capability)の送信に用いられてもよい。 PUSCH may be used to transmit HARQ-ACK and/or CSI together with uplink data (UL-SCH: Uplink Shared CHannel) or uplink data from the MAC layer. PUSCH may also be used to transmit CSI only, or HARQ-ACK and CSI only. That is, PUSCH may be used to transmit UCI only. PDSCH or PUSCH may also be used to transmit RRC signaling (also referred to as RRC messages) and MAC control elements. Here, in the PDSCH, RRC signaling transmitted from the base station apparatus may be signaling common to multiple terminal apparatuses within the cell. Also, the RRC signaling transmitted from the base station apparatus may be signaling dedicated to a certain terminal apparatus (also referred to as dedicated signaling). That is, terminal device-specific (UE-specific) information may be transmitted using signaling dedicated to a certain terminal device. PUSCH may also be used to transmit UE Capability in the uplink.
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられてもよい。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、上りリンク送信に対する同期(タイミング調整)、およびPUUCHリソースの要求を示すために用いられてもよい。 The PRACH may be used to transmit random access preambles. PRACH may be used to indicate initial connection establishment procedures, handover procedures, connection re-establishment procedures, synchronization (timing adjustments) for uplink transmissions, and requests for PUUCH resources. good.
 MACの機能の一例について説明する。MACは、MAC副層(サブレイヤ)と呼ばれてよい。 I will explain an example of MAC functions. A MAC may be referred to as a MAC sublayer.
 MACは、多様な論理チャネル(ロジカルチャネル:Logical Channel)を、対応するトランスポートチャネルに対してマッピングを行う機能を持ってよい。論理チャネルは、論理チャネル識別子(Logical Channel Identity、又はLogical Channel ID)によって識別されてよい。MACは上位のRLCと、論理チャネル(ロジカルチャネル)で接続されてよい。論理チャネルは、伝送される情報の種類によって、制御情報を伝送する制御チャネルと、ユーザ情報を伝送するトラフィックチャネルに分けられてよい。また論理チャネルは、上りリンク論理チャネルと、下りリンク論理チャネルに分けられてよい。MACは、一つ又は複数の異なる論理チャネルに所属するMAC SDUを多重化(multiplexing)して、PHYに提供する機能を持ってよい。またMACは、PHYから提供されたMAC PDUを逆多重化(demultiplexing)し、各MAC SDUが所属する論理チャネルを介して上位レイヤに提供する機能を持ってよい。 The MAC may have the function of mapping various logical channels (Logical Channel) to the corresponding transport channels. A logical channel may be identified by a logical channel identifier (Logical Channel Identity or Logical Channel ID). A MAC may be connected to an upper RLC via a logical channel (logical channel). Logical channels may be divided into control channels for transmitting control information and traffic channels for transmitting user information according to the type of information to be transmitted. Logical channels may also be divided into uplink logical channels and downlink logical channels. The MAC may have the ability to multiplex MAC SDUs belonging to one or more different logical channels and provide them to the PHY. The MAC may also have the function of demultiplexing the MAC PDUs provided by the PHY and providing them to upper layers via the logical channel to which each MAC SDU belongs.
 またMACは、HARQ(Hybrid Automatic Repeat reQuest)を通して誤り訂正を行う機能を持ってよい。またMACは、スケジューリング情報(scheduling information)をレポートする、スケジューリング情報レポート(Scheduling Information Report)機能を持ってよい。MACは、動的スケジューリングを用いて、端末装置間の優先処理を行う機能を持ってよい。またMACは、一つの端末装置内の論理チャネル間の優先処理を行う機能を持ってよい。MACは、一つの端末装置内でオーバーラップしたリソースの優先処理を行う機能を持ってよい。  MAC may also have a function to perform error correction through HARQ (Hybrid Automatic Repeat reQuest). The MAC may also have a Scheduling Information Report function for reporting scheduling information. The MAC may have a function of performing priority processing between terminal devices using dynamic scheduling. Also, the MAC may have a function of performing priority processing between logical channels within one terminal device. The MAC may have a function of prioritizing overlapping resources within one terminal device.
 MACは、マルチキャスト/ブロードキャストサービス(Multicast Broadcast Service:MBS)を識別する機能を持ってよい。  MAC may have a function to identify Multicast/Broadcast Service (MBS).
 MACは、トランスポートフォーマットを選択する機能を持ってよい。MACは、間欠受信(DRX:Discontinuous Reception)および/または間欠送信(DTX:Discontinuous Transmission)を行う機能、ランダムアクセス(Random Access:RA)手順を実行する機能、送信可能電力の情報を通知する、パワーヘッドルームレポート(Power Headroom Report:PHR)機能、送信バッファのデータ量情報を通知する、バッファステイタスレポート(Buffer Status Report:BSR)機能、などを持ってよい。  MAC may have a function to select a transport format. MAC has a function of performing discontinuous reception (DRX) and/or discontinuous transmission (DTX: discontinuous transmission), a function of executing random access (RA) procedure, notifying information of transmittable power, power It may have a headroom report (Power Headroom Report: PHR) function, a buffer status report (BSR) function that notifies the amount of data in the transmission buffer, and so on.
 MACは帯域適応(Bandwidth Adaptation:BA)機能を持ってよい。またMAC PDUには、MACにおいて制御を行うための要素である、MAC制御要素(MACコントロールエレメント:MAC CE)が含まれてよい。  MAC may have a Bandwidth Adaptation (BA) function. The MAC PDU may also include a MAC control element (MAC control element: MAC CE), which is an element for performing control in MAC.
 E-UTRAおよび/またはNRで用いられる、上りリンク(UL:Uplink)、および/または下りリンク(DL:Downlink)用論理チャネルについて説明する。  Explain the uplink (UL: Uplink) and/or downlink (DL: Downlink) logical channels used in E-UTRA and/or NR.
 BCCH(Broadcast Control Channel)は、システム情報(SI:System Information)等の、制御情報を報知(broadcast)するための下りリンク論理チャネルであってよい。  BCCH (Broadcast Control Channel) may be a downlink logical channel for broadcasting control information such as system information (SI: System Information).
 PCCH(Paging Control Channel)は、ページング(Paging)メッセージを運ぶための下りリンク論理チャネルであってよい。 A PCCH (Paging Control Channel) may be a downlink logical channel for carrying paging messages.
 CCCH(Common Control Channel)は、端末装置と基地局装置との間で制御情報を送信するための論理チャネルであってよい。CCCHは、端末装置が、RRC接続を有しない場合に用いられてよい。またCCCHは基地局装置と複数の端末装置との間で使われてよい。 A CCCH (Common Control Channel) may be a logical channel for transmitting control information between a terminal device and a base station device. CCCH may be used when the terminal does not have an RRC connection. CCCH may also be used between the base station apparatus and a plurality of terminal apparatuses.
 DCCH(Dedicated Control Channel)は、端末装置と基地局装置との間で、1対1(point-to-point)の双方向(bi-directional)で、専用制御情報を送信するための論理チャネルであってよい。専用制御情報とは、各端末装置専用の制御情報であってよい。DCCHは、端末装置が、RRC接続を有する場合に用いられてよい。 DCCH (Dedicated Control Channel) is a logical channel for transmitting dedicated control information in a one-to-one (point-to-point) bi-directional manner between a terminal device and a base station device. It's okay. Dedicated control information may be control information dedicated to each terminal device. DCCH may be used when a terminal device has an RRC connection.
 DTCH(Dedicated Traffic Channel)は、端末装置と基地局装置との間で、1対1(point-to-point)で、ユーザデータを送信するための論理チャネルであってよい。DTCHは専用ユーザデータを送信するための論理チャネルであってよい。専用ユーザデータとは、各端末装置専用のユーザデータであってよい。DTCHは上りリンク、下りリンク両方に存在してよい。 A DTCH (Dedicated Traffic Channel) may be a logical channel for transmitting user data on a one-to-one (point-to-point) basis between a terminal device and a base station device. A DTCH may be a logical channel for transmitting dedicated user data. Dedicated user data may be user data dedicated to each terminal device. DTCH may exist in both uplink and downlink.
 NRにおける上りリンクの、論理チャネルとトランスポートチャネルのマッピングについて説明する。  Explain the uplink mapping of logical channels and transport channels in NR.
 CCCHは、上りリンクトランスポートチャネルである、UL-SCH(Uplink Shared Channel)にマップされてよい。 CCCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
 DCCHは、上りリンクトランスポートチャネルである、UL-SCH(Uplink Shared Channel)にマップされてよい。 The DCCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
 DTCHは、上りリンクトランスポートチャネルである、UL-SCH(Uplink Shared Channel)にマップされてよい。 DTCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
 E-UTRAおよび/またはNRにおける下りリンクの、論理チャネルとトランスポートチャネルのマッピングについて説明する。  Explains the mapping of downlink logical channels and transport channels in E-UTRA and/or NR.
 BCCHは、下りリンクトランスポートチャネルであるBCH(Broadcast Channel)、および/またはDL-SCH(Downlink Shared Channel)にマップされてよい。  BCCH may be mapped to BCH (Broadcast Channel), which is a downlink transport channel, and/or DL-SCH (Downlink Shared Channel).
 PCCHは、下りリンクトランスポートチャネルであるPCH(Paging Channel)にマップされてよい。 PCCH may be mapped to PCH (Paging Channel), which is a downlink transport channel.
 CCCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされてよい。 CCCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 DCCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされてよい。 The DCCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 DTCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされてよい。 DTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 RLCの機能の一例について説明する。RLCは、RLC副層(サブレイヤ)と呼ばれてよい。 Explain an example of RLC functions. RLC may be referred to as an RLC sublayer.
 RLCは、上位レイヤのPDCPから提供されたデータに、PDCPで付加されたシーケンス番号とは独立したシーケンス番号を付加する機能を持ってよい。またRLCは、PDCPから提供されたデータ分割(Segmentation)し、下位レイヤに提供する機能を持ってよい。またRLCは、下位レイヤから提供されたデータに対し、再組立て(reassembly)を行い、上位レイヤに提供する機能を持ってよい。またRLCは、データの再送機能および/または再送要求機能(Automatic Repeat reQuest:ARQ)を持ってよい。 The RLC may have a function to add a sequence number independent of the sequence number added by PDCP to the data provided by the upper layer PDCP. Also, RLC may have a function of segmenting data provided from PDCP and providing it to a lower layer. The RLC may also have a function of reassembling data provided from lower layers and providing the reassembled data to upper layers. The RLC may also have a data retransmission function and/or a retransmission request function (Automatic Repeat reQuest: ARQ).
 またRLCは、ARQによりエラー訂正を行う機能を持ってよい。ARQを行うために、RLCの受信側から送信側に送られる、再送が必要なデータを示す制御情報を、ステータスレポートと言ってよい。またRLCの送信側から受信側に送られる、ステータスレポート送信指示のことをポール(poll)と言ってよい。またRLCは、データ重複の検出を行う機能を持ってよい。またRLCはデータ破棄の機能を持ってよい。 Also, RLC may have a function to correct errors by ARQ. The control information sent from the RLC receiver to the sender for ARQ indicating the data that needs to be retransmitted may be referred to as a status report. Also, a status report transmission instruction sent from the RLC transmitting side to the receiving side can be called a poll. The RLC may also have the capability to detect data duplication. RLC may also have a function of discarding data.
 RLCには、トランスパレントモード(TM:Transparent Mode)、非応答モード(UM:Unacknowledged Mode)、応答モード(AM:Acknowledged Mode)の3つのモードがあってよい。 RLC may have three modes: Transparent Mode (TM), Unacknowledged Mode (UM), and Acknowledged Mode (AM).
 TMでは上位層から受信したデータの分割は行われず、RLCヘッダの付加は行われなくてよい。TM RLCエンティティは単方向(uni-directional)のエンティティであって、送信(transmitting)TM RLCエンティティとして、又は受信(receiving)TM RLCエンティティとして設定されてよい。  The TM does not divide the data received from the upper layer, and does not need to add an RLC header. A TM RLC entity is a uni-directional entity and may be configured as a transmitting TM RLC entity or as a receiving TM RLC entity.
 UMでは上位層から受信したデータの分割および/または結合、RLCヘッダの付加等は行われるが、データの再送制御は行われなくてよい。UM RLCエンティティは単方向のエンティティであってもよいし双方向(bi-directional)のエンティティであってもよい。UM RLCエンティティが単方向のエンティティである場合、UM RLCエンティティは送信UM RLCエンティティとして、又は受信UM RLCエンティティとして設定されてよい。UM RLCエンティティが双方向のエンティティである場合、UM RRCエンティティは送信(transmitting)サイド及び受信(receiving)サイドから構成されるUM RLCエンティティとして設定されてよい。  In UM, the data received from the upper layer is divided and/or combined, the RLC header is added, etc., but data retransmission control does not have to be performed. A UM RLC entity may be a unidirectional entity or a bi-directional entity. If the UM RLC entity is a unidirectional entity, the UM RLC entity may be configured as a transmitting UM RLC entity or as a receiving UM RLC entity. If the UM RLC entity is a bidirectional entity, the UM RRC entity may be configured as a UM RLC entity consisting of a transmitting side and a receiving side.
 AMでは上位層から受信したデータの分割および/または結合、RLCヘッダの付加、データの再送制御等が行われてよい。AM RLCエンティティは双方向のエンティティであって、送信(transmitting)サイド及び受信(receiving)サイドから構成されるAM RLCとして設定されてよい。 In AM, division and/or combination of data received from the upper layer, addition of RLC headers, data retransmission control, etc. may be performed. The AM RLC entity is a bi-directional entity and may be configured as an AM RLC consisting of a transmitting side and a receiving side.
 なお、TMで下位層に提供するデータ、および/または下位層から提供されるデータのことをTMD PDUと呼んでよい。またUMで下位層に提供するデータ、および/または下位層から提供されるデータのことをUMD PDUと呼んでよい。またAMで下位層に提供するデータ、又は下位層から提供されるデータのことをAMD PDUと呼んでよい。 Data provided to the lower layer by TM and/or data provided from the lower layer may be called TMD PDU. Data provided in UM to lower layers and/or data provided by lower layers may also be referred to as UMD PDUs. Data provided to lower layers by AM or data provided from lower layers may be referred to as AMD PDUs.
 RLC PDUには、データ用RLC PDUと制御用RLC PDUがあってよい。データ用RLC PDUを、RLC DATA PDU(RLC Data PDU、RLCデータPDU)と呼んでよい。また制御用RLC PDUを、RLC CONTROL PDU(RLC Control PDU、RLCコントロールPDU、RLC制御PDU)と呼んでよい。 RLC PDUs may include RLC PDUs for data and RLC PDUs for control. An RLC PDU for data may be called an RLC DATA PDU (RLC Data PDU). Also, the control RLC PDU may be called an RLC CONTROL PDU.
 PDCPの機能の一例について説明する。PDCPは、PDCP副層(サブレイヤ)と呼ばれてよい。 An example of PDCP functions will be explained. PDCP may be referred to as a PDCP sublayer.
 PDCPは、シーケンス番号のメンテナンスを行う機能を持ってよい。またPDCPは、IPパケット(IP Packet)や、イーサネットフレーム等のユーザデータを無線区間で効率的に伝送するための、ヘッダ圧縮・解凍機能を持ってもよい。IPパケットのヘッダ圧縮・解凍に用いられるプロトコルをROHC(Robust Header Compression)プロトコルと呼んでよい。またイーサネットフレームヘッダ圧縮・解凍に用いられるプロトコルをEHC(Ethernet(登録商標) Header Compression)プロトコルと呼んでよい。また、PDCPは、デ-タの暗号化・復号化の機能を持ってもよい。また、PDCPは、デ-タの完全性保護・完全性検証の機能を持ってもよい。またPDCPは、リオーダリング(re-ordering)の機能を持ってよい。またPDCPは、PDCP SDUの再送機能を持ってよい。またPDCPは、破棄タイマー(discard timer)を用いたデータ破棄を行う機能を持ってよい。またPDCPは、多重化(Duplication)機能を持ってよい。またPDCPは、重複受信したデータを破棄する機能を持ってよい。 PDCP may have a function to maintain sequence numbers. PDCP may also have a header compression/decompression function for efficiently transmitting user data such as IP packets and Ethernet frames over a wireless section. A protocol used for IP packet header compression/decompression may be called ROHC (Robust Header Compression) protocol. Also, the protocol used for Ethernet frame header compression/decompression may be called EHC (Ethernet (registered trademark) Header Compression) protocol. PDCP may also have data encryption/decryption functions. In addition, PDCP may have data integrity protection and integrity verification functions. PDCP may also have a re-ordering function. PDCP may also have a retransmission function for PDCP SDUs. PDCP may also have a function of discarding data using a discard timer. PDCP may also have a duplication function. PDCP may also have a function of discarding duplicated received data.
 PDCPエンティティは双方向のエンティティであって、送信(transmitting)PDCPエンティティ、及び受信(receiving)PDCPエンティティから構成されてよい。PDCP PDUには、データ用PDCP PDUと制御用PDCP PDUがあってよい。データ用PDCP PDUを、PDCP DATA PDU(PDCPData PDU、PDCPデータPDU)と呼んでよい。また制御用PDCP PDUを、PDCP CONTROL PDU(PDCP Control PDU、PDCPコントロールPDU、PDCP制御PDU)と呼んでよい。 A PDCP entity is a bi-directional entity and may consist of a transmitting PDCP entity and a receiving PDCP entity. PDCP PDUs may include data PDCP PDUs and control PDCP PDUs. A PDCP PDU for data may be called a PDCP DATA PDU (PDCP Data PDU, PDCP Data PDU). Also, the PDCP PDU for control may be called a PDCP CONTROL PDU (PDCP Control PDU).
 SDAPの機能の一例について説明する。SDAPは、サービスデータ適応プロトコル層(サービスデータ適応プロトコルレイヤ)である。 An example of SDAP functions will be explained. SDAP is the Service Data Adaptation Protocol Layer (Service Data Adaptation Protocol Layer).
 SDAPは、5GC110から基地局装置を介して端末装置に送られるダウンリンクのQoSフローとデータ無線ベアラ(DRB)との対応付け(マッピング:mapping)、および/または端末装置から基地局装置を介して5GC110に送られるアップリンクのQoSフローと、DRBとのマッピングを行う機能を持ってよい。またSDAPはマッピングルール情報を格納する機能を持ってよい。またSDAPはQoSフロー識別子(QoS Flow ID:QFI)のマーキングを行う機能を持ってよい。なお、SDAP PDUには、データ用SDAP PDUと制御用SDAP PDUがあってよい。データ用SDAP PDUをSDAP DATA PDU(SDAP Data PDU、SDAPデータPDU)と呼んでよい。また制御用SDAP PDUをSDAP CONTROL PDU(SDAP Control PDU、SDAPコントロールPDU、SDAP制御PDU)と呼んでよい。端末装置のSDAPエンティティは、PDUセッションに対して一つ存在してよい。また、端末装置のSDAPエンティティには、上りリンクデータの処理を行う送信SDAPエンティティ(transmitting SDAP entity)と、下りリンクデータの処理を行う受信SDAPエンティティ(receiving SDAP entity)とが含まれてよい。 SDAP is mapping between downlink QoS flows and data radio bearers (DRBs) sent from the 5GC 110 to the terminal device via the base station device, and/or from the terminal device via the base station device. It may have the ability to map uplink QoS flows sent to the 5GC 110 to the DRB. SDAP may also have the function of storing mapping rule information. SDAP may also have a function to mark QoS flow identifiers (QoS Flow ID: QFI). SDAP PDUs may include data SDAP PDUs and control SDAP PDUs. A data SDAP PDU may be called an SDAP DATA PDU. A control SDAP PDU may also be called an SDAP CONTROL PDU. There may be one SDAP entity in the terminal device per PDU session. Also, the SDAP entity of the terminal device may include a transmitting SDAP entity that processes uplink data and a receiving SDAP entity that processes downlink data.
 RRCの機能の一例について説明する。 I will explain an example of RRC functions.
 RRCは、ASおよびNASに関するシステム情報の報知(ブロードキャスト:broadcast)機能を持ってよい。RRCは、5GC110によって開始される呼び出し(ページング:Paging)機能を持ってよい。RRCは、RRC接続管理機能を持ってよい。RRCは鍵管理(key management)を含むセキュリティ機能をもってよい。RRCは、無線ベアラ制御機能を持ってよい。RRCは、セルグループ制御機能を持ってよい。RRCは、モビリティ(mobility)制御機能を持ってよい。RRCは端末装置測定のレポーティング及び端末装置測定レポーティング制御機能を持ってよい。RRCは、QoS管理機能を持ってよい。RRCは、無線リンク失敗の検出及び復旧の機能を持ってよい。RRCは、RRCメッセージを用いて、各機能を実現してよい。  RRC may have a function to broadcast system information about AS and NAS. RRC may have a paging function initiated by the 5GC110. RRC may have an RRC connection management function. RRC may have security features including key management. RRC may have a radio bearer control function. RRC may have a cell group control function. RRC may have a mobility control function. The RRC may have terminal equipment measurement reporting and terminal equipment measurement reporting control functions. RRC may have QoS management functions. RRC may have radio link failure detection and recovery functionality. RRC may implement each function using RRC messages.
 RRCメッセージは、メッセージの種類に基づき、論理チャネルのBCCHを用いて送られてよいし、論理チャネルのPCCHを用いて送られてよいし、論理チャネルのCCCHを用いて送られてよいし、論理チャネルのDCCHを用いて送られてよい。 RRC messages may be sent using the logical channel BCCH, may be sent using the logical channel PCCH, may be sent using the logical channel CCCH, or may be sent using the logical channel CCCH, based on the message type. It may be sent using the channel's DCCH.
 BCCHを用いて送られるRRCメッセージには、例えばマスター情報ブロック(Master Information Block:MIB)が含まれてよいし、各タイプのシステム情報ブロック(System Information Block:SIB)が含まれてよいし、他のRRCメッセージが含まれてもよい。PCCHを用いて送られるRRCメッセージには、例えばページングメッセージが含まれてよいし、他のRRCメッセージが含まれてもよい。 The RRC message sent using BCCH may include, for example, a master information block (Master Information Block: MIB), each type of system information block (System Information Block: SIB) may be included, and others of RRC messages may be included. RRC messages sent using the PCCH may include, for example, paging messages and other RRC messages.
 CCCHを用いてアップリンク(UL)方向に送られるRRCメッセージには、例えばRRC接続の確立を要求するためのRRCセットアップ要求 (RRC Setup Request) メッセージ、一時休止されたRRC接続の再開を要求するためのRRC再開要求 (RRC Resume Request) メッセージ、RRC接続の再確立を要求するためのRRC再確立要求 (RRC Reestablishment Request) メッセージ、端末装置が必要とするシステム情報メッセージを要求するためのRRCシステム情報要求 (RRC System Info Request) メッセージなどが含まれてよい。またCCCHを用いてアップリンク(UL)方向に送られるRRCメッセージには、他のRRCメッセージが含まれてもよい。 RRC messages sent in the uplink (UL) direction using CCCH include, for example, an RRC Setup Request message for requesting establishment of an RRC connection, a RRC Setup Request message for requesting resumption of a suspended RRC connection. RRC Resume Request message, RRC Reestablishment Request message for requesting re-establishment of RRC connection, RRC System Information Request message for requesting system information message required by terminal equipment (RRC System Info Request) message may be included. An RRC message sent in the uplink (UL) direction using CCCH may also include other RRC messages.
 CCCHを用いてダウンリンク(DL)方向に送られるRRCメッセージには、例えば、RRC接続の確立またはRRC接続の再開を拒絶するRRC拒絶 (RRC Reject) メッセージ、後述するSRB1を確立するためのRRCセットアップ (RRC Setup) メッセージ、などが含まれてよい。またCCCHを用いてダウンリンク(DL)方向に送られるRRCメッセージには、他のRRCメッセージが含まれてもよい。 RRC messages sent in the downlink (DL) direction using CCCH include, for example, an RRC Reject message that rejects RRC connection establishment or RRC connection resumption, and an RRC setup for establishing SRB1, which will be described later. (RRC Setup) message, etc. may be included. An RRC message sent in the downlink (DL) direction using CCCH may also include other RRC messages.
 DCCHを用いてアップリンク(UL)方向に送られるRRCメッセージには、例えば端末装置による測定結果の通知に用いられる測定報告 (Measurement Report) メッセージ、RRC接続の再設定が成功裏に完了したことを確認(confirm)するために用いられるRRC再設定完了 (RRC Reconfiguration Complete) メッセージ、RRC接続の確立が成功裏に完了したことを確認(confirm)するために用いられるRRCセットアップ完了 (RRC Setup Complete) メッセージ、RRC接続の再確立が成功裏に完了したことを確認(confirm)するために用いられるRRC再確立完了 (RRC Reestablishment Complete) メッセージ、RRC接続の再開が成功裏に完了したことを確認(confirm)するために用いられるRRC再開完了 (RRC Resume Complete) メッセージ、セキュリティモードコマンドが成功裏に完了したことを確認(confirm)するために用いられるセキュリティモード完了 (Security Mode Complete) メッセージ、端末装置の無線アクセス能力を転送(transfer)するために用いられるUE能力情報 (UE Capability Information) メッセージなどが含まれてよい。またDCCHを用いてアップリンク(UL)方向に送られるRRCメッセージには、他のRRCメッセージが含まれてもよい。 RRC messages sent in the uplink (UL) direction using DCCH include, for example, a Measurement Report message used for notification of measurement results by the terminal equipment, and a message indicating successful completion of reconfiguration of the RRC connection. RRC Reconfiguration Complete message used to confirm, RRC Setup Complete message used to confirm successful completion of RRC connection establishment , RRC Reestablishment Complete message used to confirm successful completion of RRC connection re-establishment, confirm successful completion of RRC connection re-establishment RRC Resume Complete message used to confirm the successful completion of the security mode command, Security Mode Complete message used to confirm the successful completion of the security mode command, radio access of the terminal equipment A UE Capability Information message used to transfer capabilities may be included. Also, the RRC message sent in the uplink (UL) direction using DCCH may include other RRC messages.
 DCCHを用いてダウンリンク(DL)方向に送られるRRCメッセージには、例えばRRC接続の修正(modify)を指図(command)するために用いられるRRC再設定 (RRC Reconfiguration) メッセージ、RRC接続の解放、またはRRC接続の休止(suspension)を指図するために用いられるRRC解放 (RRC Release) メッセージ、休止したRRC接続の再開に用いられるRRC再開(RRCResume) メッセージ、後述するSRB1の再確立のために用いられるRRC再確立 (RRC Reestablishment) メッセージ、ASセキュリティの活性化(activation)を指図するために用いられるセキュリティモードコマンド (Security Mode Command) メッセージ、端末装置の無線アクセス能力の通知を要求するために用いられるUE能力照会 (UE Capability Enquiry)メッセージ、などが含まれてよい。またDCCHを用いてダウンリンク(DL)方向に送られるRRCメッセージには、他のRRCメッセージが含まれてもよい。 RRC messages sent in the downlink (DL) direction using DCCH include, for example, an RRC Reconfiguration message used to command modification of an RRC connection, RRC connection release, Or RRC Release message used to instruct suspension of RRC connection, RRC Resume message used to resume suspended RRC connection, used for re-establishing SRB1 described later RRC Reestablishment message, Security Mode Command message used to direct the activation of AS security, UE used to request notification of the radio access capabilities of the terminal equipment. UE Capability Inquiry message, etc. may be included. RRC messages sent in the downlink (DL) direction using DCCH may also include other RRC messages.
 NASの機能の一例について説明する。NASは、認証機能を持ってよい。またNASは、モビリティ(mobility)管理を行う機能を持ってよい。またNASは、セキュリティ制御の機能を持ってよい。 An example of NAS functions will be explained. A NAS may have an authentication function. Also, the NAS may have a function of performing mobility management. The NAS may also have a security control function.
 前述のPHY、MAC、RLC、PDCP、SDAP、RRC、NASの機能は一例であり、各機能の一部あるいは全てが実装されなくてもよい。また、各層(各レイヤ)の機能の一部あるいは全部が他の層(レイヤ)に含まれてもよい。  The above PHY, MAC, RLC, PDCP, SDAP, RRC, and NAS functions are examples, and some or all of the functions may not be implemented. Also, part or all of the functions of each layer (each layer) may be included in another layer (layer).
 なお、端末装置のAS層の上位層(不図示)にはIPレイヤ、及びIPレイヤより上のTCP(Transmission Control Protocol)レイヤ、UDP(User Datagram Protocol)レイヤ、などが存在してよい。また端末装置のAS層の上位層には、イーサネット層が存在してよい。端末装置のAS層の上位層PDU層(PDUレイヤ)と呼んでよい。PDUレイヤにはIPレイヤ、TCPレイヤ、UDPレイヤ、イーサネットレイヤ等が含まれてよい。IPレイヤ、TCPレイヤ、UDPレイヤ、イーサネットレイヤ、PDUレイヤ等の上位層に、アプリケーションレイヤが存在してよい。アプリケーションレイヤには、3GPPにおいて規格化されているサービス網の一つである、IMS(IP Multimedia Subsystem)で用いられるSIP(Session Initiation Protocol)やSDP(Session Description Protocol)が含まれてよい。またアプリケーション層にはメディア通信に用いられるRTP(Real-time Transport Protocol)、および/またはメディア通信制御にRTCP(Real-time Transport Control Protocol)、HTTP(HyperText Transfer Protocol)等のプロトコルが含まれてよい。またアプリケーションレイヤには、各種メディアのコーデック等が含まれてよい。またRRCレイヤはSDAPレイヤの上位レイヤであってよい。 Note that an IP layer, a TCP (Transmission Control Protocol) layer above the IP layer, a UDP (User Datagram Protocol) layer, and the like may exist in layers (not shown) above the AS layer of the terminal device. An Ethernet layer may exist in a layer above the AS layer of the terminal device. It may be called a PDU layer (PDU layer) above the AS layer of the terminal device. The PDU layers may include IP layer, TCP layer, UDP layer, Ethernet layer, and so on. Application layers may exist in higher layers such as the IP layer, TCP layer, UDP layer, Ethernet layer, and PDU layer. The application layer may include SIP (Session Initiation Protocol) and SDP (Session Description Protocol) used in IMS (IP Multimedia Subsystem), which is one of the service networks standardized by 3GPP. The application layer may include protocols such as RTP (Real-time Transport Protocol) used for media communication and/or RTCP (Real-time Transport Control Protocol) and HTTP (HyperText Transfer Protocol) for media communication control. . The application layer may also include codecs for various media. Also, the RRC layer may be a higher layer than the SDAP layer.
 次にNRにおけるUE122の状態および状態遷移について説明する。 Next, the states and state transitions of UE 122 in NR will be explained.
 5GCに接続するUE122は、RRC接続が確立されている(RRC connection has been established)とき、UE122はRRC_CONNECTED状態であってよい。RRC接続が確立されている状態とは、UE122が、後述のUEコンテキストの一部又は全てを保持している状態を含んでよい。またRRC接続が確立されている状態とは、UE122がユニキャストデータを送信、および/または受信できる状態を含んでよい。またUE122は、RRC接続が休止(サスペンド:suspend)しているとき、UE122はRRC_INACTIVE状態であってよい。また、UE122がRRC_INACTIVE状態になるのは、UE122が5GCに接続している場合で、RRC接続が休止されているときであってよい。UE122が、RRC_CONNECTED状態でも、RRC_INACTIVE状態でも無いとき、UE122はRRC_IDLE状態であってよい。 For UE 122 connecting to 5GC, when RRC connection has been established, UE 122 may be in RRC_CONNECTED state. A state in which an RRC connection is established may include a state in which the UE 122 holds part or all of the UE context described below. Also, states in which an RRC connection is established may include states in which UE 122 is able to transmit and/or receive unicast data. UE 122 may also be in RRC_INACTIVE state when the RRC connection is suspended. Also, UE 122 may be in RRC_INACTIVE state when UE 122 is connected to 5GC and the RRC connection is dormant. A UE 122 may be in the RRC_IDLE state when the UE 122 is neither in the RRC_CONNECTED state nor in the RRC_INACTIVE state.
 なお、RRC_CONNECTED状態、RRC_INACTIVE状態、RRC_IDLE状態のことをそれぞれ、RRC接続状態(RRC connected mode)、RRC不活性状態(RRC inactive mode)、RRCアイドル状態(RRC idle mode)と呼んでよいし、誤認の恐れがない場合は、RRC_CONNECTED状態、RRC_INACTIVE状態、RRC_IDLE状態のことをそれぞれ、単に、接続状態(connected mode)、不活性状態(inactive mode)、アイドル状態(idle mode)と呼んでよい。 Note that the RRC_CONNECTED state, RRC_INACTIVE state, and RRC_IDLE state may be called RRC connected mode, RRC inactive mode, and RRC idle mode, respectively. If there is no fear, the RRC_CONNECTED, RRC_INACTIVE and RRC_IDLE states may simply be called connected, inactive and idle modes, respectively.
 UE122が保持するUEのASコンテキストは、現在のRRC設定、現在のセキュリティコンテキスト、ROHC(RObust Header Compression)状態を含むPDCP状態、接続元(Source)のPCellで使われていたC-RNTI(Cell Radio Network Temporary Identifier)、セル識別子(cellIdentity)、接続元のPCellの物理セル識別子、のすべてあるいは一部を含む情報であってよい。なお、gNB108が保持するUEのASコンテキストは、UE122が保持するUEのASコンテキストに含まれる情報の一部または全部と同じ情報を含んでよい。また、gNB108が保持するUEのASコンテキストは、UE122が保持するUEのASコンテキストに含まれる情報とは異なる情報が含まれてもよい。 The UE AS context held by UE 122 includes the current RRC settings, current security context, PDCP state including ROHC (RObust Header Compression) state, C-RNTI (Cell Radio Network Temporary Identifier), cell identifier (cellIdentity), and physical cell identifier of the connection source PCell, all or part of which may be information. Note that the UE AS context held by the gNB 108 may include the same information as part or all of the information included in the UE AS context held by the UE 122 . Also, the UE AS context held by the gNB 108 may contain information different from the information contained in the UE AS context held by the UE 122 .
 セキュリティコンテキストは、ASレベルにおける暗号鍵、NH(Next Hop parameter)、次ホップのアクセス鍵導出に用いられるNCC(Next Hop Chaining Counter parameter)、選択されたASレベルの暗号化アルゴリズムの識別子、リプレイ保護のために用いられるカウンター、の一部または全部の情報を含んでよい。 The security context consists of the cryptographic key at the AS level, the Next Hop parameter (NH), the Next Hop Chaining Counter parameter (NCC) used to derive the access key for the next hop, the identifier of the selected AS level cryptographic algorithm, and the replay protection. may contain information for some or all of the counters used for
 端末装置に対し基地局装置から設定される、セルグループ(Cell Group)について説明する。セルグループは、1つの特別なセル(Special Cell:SpCell)のみで構成されてもよい。またセルグループは、1つのSpCellと、1つ又は複数のセカンダリセル(Secondary Cell:SCell)とで構成されてよい。即ちセルグループは、1つのSpCellと、必要に応じて(optionally)1つ又は複数のSCellから構成されてよい。なおMACエンティティがマスターセルグループ(Master Cell Group:MCG)に関連付けられている場合、SpCellはプライマリセル(Primary Cell:PCell)を意味してよい。またMACエンティティがセカンダリセルグループ(Secondary Cell Group:SCG)に関連付けられている場合、SpCellはプライマリSCGセル(Primary SCG Cell:PSCell)を意味してよい。またMACエンティティがセルグループに関連付けられていない場合、SpCellはPCellを意味してよい。PCell、PSCellおよびSCellはサービングセルである。SpCellはPUCCH送信および衝突型ランダムアクセス(contention-based Random Access)をサポートしてよい。SpCellは常に活性化された状態であってもよい。PCellはRRCアイドル状態の端末装置がRRC接続状態に遷移する際の、RRC接続確立手順に用いられるセルであってよい。またPCellは、端末装置がRRC接続の再確立を行う、RRC接続再確立手順に用いられるセルであってよい。またPCellは、ハンドオーバの際のランダムアクセス手順に用いられるセルであってよい。PSCellは、後述するセカンダリノード(Secondary Node:SN)追加の際に、ランダムアクセス手順に用いられるセルであってよい。またSpCellは、上記以外の用途に用いられるセルであってもよい。なお、セルグループがSpCell及び1つ以上のSCellから構成される場合、このセルグループにはキャリアアグリゲーション(carrier aggregation:CA)が設定されていると言ってよい。また、CAが設定されている端末装置において、SpCellに対して追加の無線リソースを提供しているセルはSCellを意味してよい。 A cell group that is set by the base station device for the terminal device will be explained. A cell group may consist of only one special cell (Special Cell: SpCell). Also, a cell group may consist of one SpCell and one or more secondary cells (SCells). That is, a cell group may consist of one SpCell and optionally one or more SCells. Note that when a MAC entity is associated with a Master Cell Group (MCG), SpCell may mean a Primary Cell (PCell). Also, when the MAC entity is associated with a Secondary Cell Group (SCG), SpCell may mean a Primary SCG Cell (PSCell). SpCell may also mean PCell if the MAC entity is not associated with a cell group. PCell, PSCell and SCell are serving cells. A SpCell may support PUCCH transmission and contention-based Random Access. A SpCell may remain activated at all times. A PCell may be a cell used for an RRC connection establishment procedure when a terminal device in the RRC idle state transitions to the RRC connected state. Also, the PCell may be a cell used for the RRC connection re-establishment procedure in which the terminal device re-establishes the RRC connection. Also, the PCell may be a cell used for a random access procedure during handover. A PSCell may be a cell used in a random access procedure when adding a secondary node (SN), which will be described later. The SpCell may also be a cell used for purposes other than the above. Note that when a cell group is composed of SpCells and one or more SCells, it can be said that carrier aggregation (CA) is configured in this cell group. Also, in a terminal device in which CA is configured, a cell that provides additional radio resources to SpCell may mean SCell.
 デュアルコネクティビティ(Dual Connectivity:DC)や、Multi-Radio Dual Connectivity(MR-DC)が行われる場合、端末装置に対して基地局装置からセルグループの追加が行われてよい。DCとは、第1の基地局装置(第1のノード)と第2の基地局装置(第2のノード)がそれぞれ構成するセルグループの無線リソースを利用してデータ通信を行う技術であってよい。MR-DCはDCに含まれる技術であってよい。DCを行うために、第1の基地局装置が、端末装置に対して、第2の基地局装置を追加で設定してよい。第1の基地局装置のことをマスターノード(Master Node:MN)と呼んでよい。またマスターノードが構成するセルグループをマスターセルグループ(Master Cell Group:MCG)と呼んでよい。第2の基地局装置のことをセカンダリノード(Secondary Node:SN)と呼んでよい。またセカンダリノードが構成するセルグループをセカンダリセルグループ(Secondary Cell Group:SCG)と呼んでよい。なお、マスターノードとセカンダリノードは同じ基地局装置内に構成されていてもよい。 When Dual Connectivity (DC) or Multi-Radio Dual Connectivity (MR-DC) is performed, a cell group may be added to the terminal device from the base station device. DC is a technique of performing data communication using radio resources of cell groups respectively configured by a first base station apparatus (first node) and a second base station apparatus (second node). good. MR-DC may be a technology involved in DC. In order to perform DC, the first base station device may additionally configure the second base station device for the terminal device. The first base station device may be called a master node (Master Node: MN). Also, a cell group configured by a master node may be called a master cell group (MCG). The second base station device may be called a secondary node (SN). Also, a cell group configured by secondary nodes may be called a secondary cell group (SCG). Note that the master node and the secondary node may be configured within the same base station apparatus.
 また、DCが設定されていない場合において、端末装置に設定されるセルグループのことをMCGと呼んでもよい。また、DCが設定されていない場合において、端末装置に設定されるSpCellはPCellであってよい。 Also, when DC is not set, the cell group set in the terminal device may be called MCG. Also, when DC is not configured, SpCell configured in the terminal device may be PCell.
 なお、MR-DCは、MCGにE-UTRA、SCGにNRを用いたDCを含んでよい。MR-DCは、MCGにNR、SCGにE-UTRAを用いたDCを含んでよい。MR-DCは、MCG及びSCGの両方にNRを用いたDCを含んでよい。MCGにE-UTRA、SCGにNRを用いるMR-DCの例として、コア網にEPCを用いるEN-DC(E-UTRA-NR Dual Connectivity)があってよいし、コア網に5GCを用いるNGEN-DC(NG-RAN E-UTRA-NR Dual Connectivity)があってよい。またMCGにNR、SCGにE-UTRAを用いるMR-DCの例として、コア網に5GCを用いるNE-DC(NR-E-UTRA Dual Connectivity)があってよい。またMCG及びSCGの両方にNRを用いるMR-DCの例として、コア網に5GCを用いるNR-DC(NR-NR Dual Connectivity)があってよい。 MR-DC may include DC using E-UTRA for MCG and NR for SCG. MR-DC may include DC using NR for MCG and E-UTRA for SCG. MR-DCs may include DCs with NR for both MCG and SCG. Examples of MR-DC using E-UTRA for MCG and NR for SCG include EN-DC (E-UTRA-NR Dual Connectivity) using EPC in the core network and NGEN-DC using 5GC in the core network. There may be DC (NG-RAN E-UTRA-NR Dual Connectivity). An example of MR-DC using NR for MCG and E-UTRA for SCG may be NE-DC (NR-E-UTRA Dual Connectivity) using 5GC for the core network. An example of MR-DC using NR for both MCG and SCG may be NR-DC (NR-NR Dual Connectivity) using 5GC for the core network.
 なお端末装置において、MACエンティティは各セルグループに対して1つ存在してよい。例えば端末装置にDC又はMR-DCが設定される場合において、MCGに対する1つのMACエンティティと、SCGに対する1つのMACエンティティとが存在してよい。端末装置におけるMCGに対するMACエンティティは、全ての状態(RRCアイドル状態、RRC接続状態、及びRRC不活性状態など)の端末装置において、常に確立されていてよい。また端末装置におけるSCGに対するMACエンティティは、端末装置にSCGが設定される際、端末装置によって生成(create)されてよい。また端末装置の各セルグループに対するMACエンティティは、端末装置が基地局装置から受け取るRRCメッセージにより設定されてよい。EN-DC、及びNGEN-DCにおいて、MCGに対するMACエンティティはE-UTRA MACエンティティであってよい。また、SCGに対するMACエンティティはNR MACエンティティであってよい。NE-DCにおいて、MCGに対するMACエンティティはNR MACエンティティであってよい。また、SCGに対するMACエンティティはE-UTRA MACエンティティであってよい。NR-DCにおいて、MCG及びSCGに対するMACエンティティは、ともにNR MACエンティティであってよい。 Note that in the terminal device, one MAC entity may exist for each cell group. For example, when DC or MR-DC is configured in the terminal device, there may be one MAC entity for MCG and one MAC entity for SCG. The MAC entity for the MCG in the terminal may always be established in the terminal in all states (RRC idle state, RRC connected state, RRC inactive state, etc.). Also, the MAC entity for the SCG in the terminal device may be created by the terminal device when the SCG is configured in the terminal device. Also, the MAC entity for each cell group of the terminal device may be set by an RRC message received by the terminal device from the base station apparatus. In EN-DC and NGEN-DC, the MAC entity for MCG may be the E-UTRA MAC entity. Also, the MAC entity for the SCG may be the NR MAC entity. In NE-DC, the MAC entity for MCG may be the NR MAC entity. Also, the MAC entity for the SCG may be an E-UTRA MAC entity. In NR-DC, MAC entities for MCG and SCG may both be NR MAC entities.
 なお、MACエンティティが各セルグループに対して1つ存在することを、MACエンティティが各SpCellに対して1つ存在すると言い換えてもよい。また、各セルグループに対する1つのMACエンティティを、各SpCellに対する1つのMACエンティティと言い換えてもよい。 The existence of one MAC entity for each cell group can be rephrased as the existence of one MAC entity for each SpCell. Also, one MAC entity for each cell group may be rephrased as one MAC entity for each SpCell.
 無線ベアラについて説明する。E-UTRAのSRBにはSRB0からSRB2が定義されてよいし、これ以外のSRBが定義されてよい。NRのSRBにはSRB0からSRB3が定義されてよいし、これ以外のSRBが定義されてよい。 I will explain the radio bearer. SRB0 to SRB2 may be defined as SRBs of E-UTRA, and SRBs other than these may be defined. SRB0 to SRB3 may be defined as SRBs of NR, and SRBs other than these may be defined.
 SRB0は、論理チャネルのCCCHを用いて送信、および/または受信されるRRCメッセージのためのSRBであってよい。 SRB0 may be the SRB for RRC messages transmitted and/or received using the CCCH of the logical channel.
 SRB1は、RRCメッセージのため、及びSRB2の確立前のNASメッセージのためのSRBであってよい。SRB1を用いて送信、および/または受信されるRRCメッセージには、ピギーバックされたNASメッセージが含まれてよい。SRB1を用いて送信、および/または受信されるRRCメッセージやNASメッセージには、論理チャネルのDCCHが用いられてよい。 SRB1 may be the SRB for RRC messages and for NAS messages before the establishment of SRB2. RRC messages sent and/or received using SRB1 may include piggybacked NAS messages. The DCCH of the logical channel may be used for RRC messages and NAS messages transmitted and/or received using SRB1.
 SRB2は、NASメッセージのため、及び記録測定情報(logged measurement information)を含むRRCメッセージのためのSRBであってよい。SRB2を用いて送信、および/または受信されるRRCメッセージやNASメッセージには、論理チャネルのDCCHが用いられてよい。また、SRB2はSRB1よりも低い優先度で送信、および/または受信されてよい。 SRB2 may be an SRB for NAS messages and for RRC messages containing logged measurement information. The DCCH of the logical channel may be used for RRC messages and NAS messages transmitted and/or received using SRB2. Also, SRB2 may be transmitted and/or received at a lower priority than SRB1.
 SRB3は、EN-DC、NGEN-DC、NR-DCなどのDCが端末装置に設定されているときに、特定のRRCメッセージを送信、および/または受信するために用いられるSRBであってよい。SRB3を用いて送信、および/または受信されるRRCメッセージやNASメッセージには、論理チャネルのDCCHが用いられてよい。 SRB3 may be an SRB used to transmit and/or receive a specific RRC message when a DC such as EN-DC, NGEN-DC, NR-DC is configured in the terminal device. The DCCH of the logical channel may be used for RRC messages and NAS messages transmitted and/or received using SRB3.
 また、その他の用途のために他のSRBが用意されてもよい。 Also, other SRBs may be prepared for other uses.
 DRBは、ユーザデータのための無線ベアラであってよい。DRBを用いて送信、および/または受信が行われるRRCメッセージには、論理チャネルのDTCHが用いられてもよい。 The DRB may be a radio bearer for user data. Logical channel DTCH may be used for RRC messages transmitted and/or received using DRB.
 端末装置における無線ベアラについて説明する。無線ベアラにはRLCベアラが含まれてよい。また、無線ベアラにRLCベアラが含まれる(include)ことと、無線ベアラにRLCベアラが対応付けられる(associate)こととは互いに言い換えられてよい。RLCベアラは1つ又は2つのRLCエンティティと論理チャネルで構成されてよい。RLCベアラにRLCエンティティが2つ存在する場合のRLCエンティティはTM RLCエンティティ、および/または単方向UMモードのRLCエンティティにおける、送信RLCエンティティ及び受信RLCエンティティであってよい。  The radio bearer in the terminal device will be explained. Radio bearers may include RLC bearers. Also, "include" of the RLC bearer in the radio bearer and "associate" of the RLC bearer with the radio bearer may be interchanged. An RLC bearer may consist of one or two RLC entities and logical channels. The RLC entity when there are two RLC entities in the RLC bearer may be a TM RLC entity and/or a transmitting RLC entity and a receiving RLC entity in a unidirectional UM mode RLC entity.
 SRB0は1つのRLCベアラから構成されてよい。SRB0のRLCベアラはTMのRLCエンティティ、及び論理チャネルから構成されてよい。SRB0は全ての状態(RRCアイドル状態、RRC接続状態、及びRRC不活性状態)の端末装置において、常に確立されてよい。  SRB0 may consist of one RLC bearer. An SRB0 RLC bearer may consist of a TM RLC entity and a logical channel. SRB0 may always be established in the terminal in all states (RRC idle state, RRC connected state and RRC inactive state).
 SRB1は端末装置がRRCアイドル状態からRRC接続状態に遷移する際、基地局装置から受信するRRCメッセージに基づき、端末装置に1つ確立および/または設定されてよい。SRB1は1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されてよい。SRB1のRLCベアラはAMのRLCエンティティ、及び論理チャネルから構成されてよい。 One SRB1 may be established and/or set in the terminal device based on the RRC message received from the base station device when the terminal device transitions from the RRC idle state to the RRC connected state. SRB1 may consist of one PDCP entity and one or more RLC bearers. The SRB1 RLC bearer may consist of an AM RLC entity and a logical channel.
 SRB2はASセキュリティが活性化されたRRC接続状態の端末装置が基地局装置から受信するRRCメッセージにより、端末装置に1つ確立および/または設定されてよい。SRB2は1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されてよい。SRB2のRLCベアラはAMのRLCエンティティ、及び論理チャネルから構成されてよい。 One SRB2 may be established and/or set in the terminal device by an RRC message received by the terminal device in the RRC connected state with AS security activated from the base station device. SRB2 may consist of one PDCP entity and one or more RLC bearers. An SRB2 RLC bearer may consist of an AM RLC entity and a logical channel.
 なお、SRB1及びSRB2の基地局装置側のPDCPはマスターノードに置かれてよい。SRB3はEN-DC、又はNGEN-DC、又はNR-DCにおけるセカンダリノードが追加される際、又はセカンダリノードが変更される際に、ASセキュリティが活性化されたRRC接続状態の端末装置が基地局装置から受信するRRCメッセージに基づき、端末装置に1つ確立および/または設定されてよい。SRB3は端末装置とセカンダリノードとの間のダイレクトSRBであってよい。SRB3は1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されてよい。SRB3のRLCベアラはAMのRLCエンティティ、及び論理チャネルから構成されてよい。SRB3の基地局装置側のPDCPはセカンダリノードに置かれてよい。 The PDCP on the base station device side of SRB1 and SRB2 may be placed in the master node. SRB3 is when a secondary node in EN-DC, NGEN-DC, or NR-DC is added, or when the secondary node is changed, the terminal device in the RRC connection state with AS security activated becomes the base station. One may be established and/or configured in a terminal device based on RRC messages received from the device. SRB3 may be a direct SRB between the terminal device and the secondary node. SRB3 may consist of one PDCP entity and one or more RLC bearers. An SRB3 RLC bearer may consist of an AM RLC entity and a logical channel. The PDCP on the base station device side of SRB3 may be placed in the secondary node.
 ASセキュリティが活性化されたRRC接続状態の端末装置が基地局装置から受信するRRCメッセージに基づき、DRBが端末装置に1つ又は複数確立および/または設定されてよい。DRBは1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されてよい。DRBのRLCベアラはAM又はUMのRLCエンティティ、及び論理チャネルから構成されてよい。 One or more DRBs may be established and/or configured in the terminal device based on the RRC message received from the base station device by the terminal device in the RRC connected state with AS security activated. A DRB may consist of one PDCP entity and one or more RLC bearers. A DRB RLC bearer may consist of an AM or UM RLC entity and a logical channel.
 なお、MR-DCにおいて、マスターノードにPDCPが置かれる無線ベアラのことを、MN終端(ターミネティド:terminated)ベアラと呼んでよい。また、MR-DCにおいて、セカンダリノードにPDCPが置かれる無線ベアラのことを、SN終端(ターミネティド:terminated)ベアラと呼んでよい。なお、MR-DCにおいて、RLCベアラがMCGにのみ存在する無線ベアラのことを、MCGベアラ(MCG bearer)と呼んでよい。また、MR-DCにおいて、RLCベアラがSCGにのみ存在する無線ベアラのことを、SCGベアラ(SCG bearer)と呼んでよい。またDCにおいて、RLCベアラがMCG及びSCG両方に存在する無線ベアラのことをスプリットベアラ(split bearer)と呼んでよい。また、ある無線ベアラに対応づけられるRLCベアラが、端末装置に複数設定される場合に、基地局装置から受信するRRCメッセージによって、何れのRLCベアラにプライマリパスが設定されるかを示す情報が端末装置に通知されてよい。プライマリパスのRLCベアラを処理するRLCエンティティをプライマリRLCエンティティと呼んでよい。 In addition, in MR-DC, the radio bearer in which PDCP is placed in the master node may be called the MN terminated (terminated) bearer. Also, in MR-DC, a radio bearer in which PDCP is placed in a secondary node may be called an SN terminated (terminated) bearer. In MR-DC, a radio bearer in which the RLC bearer exists only in the MCG may be called an MCG bearer. Also, in MR-DC, a radio bearer whose RLC bearer exists only in the SCG may be called an SCG bearer. Also, in DC, a radio bearer in which RLC bearers exist in both MCG and SCG may be called a split bearer. Further, when a plurality of RLC bearers associated with a certain radio bearer are configured in the terminal device, information indicating to which RLC bearer the primary path is configured is transmitted to the terminal device by an RRC message received from the base station device. The device may be notified. The RLC entity handling the RLC bearers of the primary path may be called the primary RLC entity.
 端末装置にMR-DCが設定される場合、端末装置に確立/及び又は設定されるSRB1及びSRB2のベアラタイプは、MN終端MCGベアラおよび/またはMN終端スプリットベアラであってよい。また端末装置にMR-DCが設定される場合、端末装置に確立/及び又は設定されるSRB3のベアラタイプは、SN終端SCGベアラであってよい。また端末装置にMR-DCが設定される場合、端末装置に確立/及び又は設定されるDRBのベアラタイプは、全てのベアラタイプのうちの何れかであってよい。 When MR-DC is configured in the terminal device, the bearer types of SRB1 and SRB2 established/and configured in the terminal device may be MN-terminated MCG bearer and/or MN-terminated split bearer. Also, when MR-DC is configured in the terminal device, the SRB3 bearer type established/or configured in the terminal device may be an SN-terminated SCG bearer. Also, when MR-DC is configured in the terminal device, the DRB bearer type established/or configured in the terminal device may be any of all bearer types.
 なおNRにおいて、端末装置に確立および/または設定されるDRBは1つのPDUセッションに紐づけられよい。端末装置において確立および/または設定されるSDAPエンティティ、PDCPエンティティ、RLCエンティティ、及び論理チャネルは、端末装置が基地局装置から受信するRRCメッセージにより確立および/または設定されてよい。 Note that in NR, a DRB established and/or configured in a terminal device may be associated with one PDU session. SDAP entities, PDCP entities, RLC entities, and logical channels established and/or configured in the terminal may be established and/or configured by RRC messages received by the terminal from the base station.
 なお、マスターノードがgNB108で5GC110をコア網とするネットワーク構成をNR、又はNR/5GCと呼んでよい。MR-DCが設定されない場合において、上述のマスターノードとは、端末装置と通信を行う基地局装置のことを指してよい。 A network configuration in which the master node is gNB108 and 5GC110 is the core network can be called NR or NR/5GC. When MR-DC is not configured, the master node described above may refer to a base station apparatus that communicates with terminal apparatuses.
 次にNRにおけるハンドオーバについて説明する。ハンドオーバとはRRC接続状態のUE122がサービングセルを変更する処理であってよい。ハンドオーバは、UE122がgNB108より、ハンドオーバを指示するRRCメッセージを受信した時に行われてよい。ハンドオーバを指示するRRCメッセージとは、ハンドオーバを指示する情報要素(例えばE-UTRAにおける、モビリティ制御情報(MobilityControlInfo)、又はNRにおける同期付再設定(ReconfigurationWithSync))を含むRRC接続の再設定に関するメッセージのことであってよい。また、ハンドオーバを指示するRRCメッセージとは、他のRATのセルへの移動を示すメッセージ(例えばMobilityFromEUTRACommand、又はMobilityFromNRCommand)のことであってもよい。またハンドオーバのことを同期付再設定(reconfiguration with sync)と言い換えてよい。またUE122がハンドオーバを行うことができる条件に、ASセキュリティが活性化されている時、SRB2が確立されている時、少なくとも一つのDRBが確立していることのうちの一部又は全てが含まれてよい。 Next, handover in NR will be explained. A handover may be a process in which a UE 122 in RRC Connected state changes serving cells. Handover may occur when UE 122 receives an RRC message from gNB 108 indicating a handover. An RRC message that instructs handover is a message related to RRC connection reconfiguration that includes an information element that instructs handover (for example, mobility control information (MobilityControlInfo) in E-UTRA, or reconfiguration with synchronization (ReconfigurationWithSync) in NR). It can be Also, the RRC message instructing handover may be a message indicating movement to another RAT cell (for example, MobilityFromEUTRACommand or MobilityFromNRCommand). Also, handover can be rephrased as reconfiguration with sync. Also, the conditions under which UE 122 can perform handover include some or all of when AS security is activated, when SRB2 is established, and at least one DRB is established. you can
 なお、端末装置は、ハンドオーバを指示するRRCメッセージに基づいて、サービングセルが変更されない処理を実行してもよい。すなわち、現在のサービングセルと同一のセルをターゲットのセルとしたハンドオーバ処理が端末装置によって実行されてもよい。 Note that the terminal device may perform processing that does not change the serving cell based on the RRC message instructing handover. That is, the terminal device may perform a handover process with the same cell as the current serving cell as the target cell.
 端末装置と基地局装置との間で送受信される、RRCメッセージのフローについて説明する。図4は、本発明の実施の形態に係るRRCにおける、各種設定のための手順(procedure)のフローの一例を示す図である。図4は、基地局装置(gNB108)から端末装置(UE122)にRRCメッセージが送られる場合のフローの一例である。 Explain the flow of RRC messages that are transmitted and received between the terminal device and the base station device. FIG. 4 is a diagram showing an example flow of procedures for various settings in RRC according to the embodiment of the present invention. FIG. 4 is an example flow when an RRC message is sent from the base station apparatus (gNB 108) to the terminal apparatus (UE 122).
 図4において、基地局装置はRRCメッセージを作成する(ステップS400)。基地局装置におけるRRCメッセージの作成は、基地局装置が報知情報(SI:System Information)やページング情報を配信するために行われてよい。また基地局装置におけるRRCメッセージの作成は、基地局装置が特定の端末装置に対して処理を行わせるために行われてよい。特定の端末装置に対して行わせる処理には、例えばセキュリティに関する設定、RRC接続の再設定、異なるRATへのハンドオーバ、RRC接続の休止、RRC接続の解放などの処理が含まれてよい。RRC接続の再設定処理には、例えば無線ベアラの制御(確立、変更、解放など)、セルグループの制御(確立、追加、変更、解放など)、メジャメント設定、ハンドオーバ、セキュリティ鍵更新、などの処理が含まれてよい。また基地局装置におけるRRCメッセージの作成は、端末装置から送信されたRRCメッセージへの応答のために行われてよい。端末装置から送信されたRRCメッセージへの応答には、例えばRRCセットアップ要求への応答、RRC再接続要求への応答、RRC再開要求への応答などが含まれてよい。RRCメッセージには各種情報通知や設定のための情報(パラメータ)が含まれる。これらのパラメータは、フィールドおよび/または情報要素呼ばれてよく、ASN.1(Abstract Syntax Notation One)という記述方式を用いて記述されてよい。  In FIG. 4, the base station device creates an RRC message (step S400). The creation of the RRC message in the base station apparatus may be performed in order for the base station apparatus to distribute broadcast information (SI: System Information) and paging information. Also, the creation of the RRC message in the base station apparatus may be performed so that the base station apparatus causes a specific terminal apparatus to perform processing. The processing to be performed on a specific terminal device may include, for example, security-related settings, RRC connection reconfiguration, handover to a different RAT, RRC connection suspension, RRC connection release, and the like. RRC connection reset processing includes, for example, radio bearer control (establishment, change, release, etc.), cell group control (establishment, addition, change, release, etc.), measurement setting, handover, security key update, etc. may be included. Also, the creation of the RRC message in the base station apparatus may be performed in response to the RRC message transmitted from the terminal apparatus. The response to the RRC message sent from the terminal device may include, for example, a response to the RRC setup request, a response to the RRC reconnection request, a response to the RRC resume request, and the like. The RRC message contains information (parameters) for various information notifications and settings. These parameters may be called fields and/or information elements and may be described using the ASN.1 (Abstract Syntax Notation One) notation scheme.
 図4において、次に基地局装置は、作成したRRCメッセージを端末装置に送信する(ステップS402)。次に端末装置は受信したRRCメッセージに従って、設定などの処理が必要な場合には処理を行う(ステップS404)。処理を行った端末装置は、基地局装置に対し、応答のためのRRCメッセージを送信してよい(不図示)。 In FIG. 4, the base station device then transmits the created RRC message to the terminal device (step S402). Next, according to the received RRC message, the terminal device performs processing, such as setting, if necessary (step S404). The terminal device that has performed the processing may transmit an RRC message for response to the base station device (not shown).
 RRCメッセージは、上述の例に限らず、他の目的に使われてよい。 The RRC message is not limited to the above examples, and may be used for other purposes.
 なおMR-DCにおいて、マスターノード側のRRCメッセージが、SCG側の設定(セルグループ設定、無線ベアラ設定、測定設定など)のためのRRCメッセージを、端末装置との間で転送するために用いられてもよい。例えばNR-DCにおいて、gNB108とUE122との間で送受信されるマスターノード側のNRのRRCメッセージに、セカンダリノード側のNRのRRCメッセージがコンテナの形で含まれてよい。マスターノード側のRRCメッセージに含まれるSCG側の設定のためのRRCメッセージの情報は、マスターノードとセカンダリノードの間で送信、および/または受信されてよい。 In MR-DC, RRC messages on the master node side are used to transfer RRC messages for SCG side settings (cell group settings, radio bearer settings, measurement settings, etc.) to and from the terminal equipment. may For example, in NR-DC, the master node side NR RRC message transmitted and received between the gNB 108 and the UE 122 may include the secondary node side NR RRC message in the form of a container. The information in the RRC message for the configuration on the SCG side included in the RRC message on the master node side may be sent and/or received between the master node and the secondary node.
 RRC接続の再設定に関するRRCメッセージに含まれる、パラメータの一例を説明する。図7は、図4において、NRでのRRC接続の再設定に関するメッセージに含まれる、無線ベアラ設定に関するフィールド、および/または情報要素を表すASN.1記述の一例である。本発明の実施の形態におけるASN.1の例で、<略>及び<中略>とは、ASN.1の表記の一部ではなく、他の情報を省略していることを示す。なお<略>又は<中略>という記載の無い所でも、情報要素が省略されていてよい。本発明の実施の形態においてASN.1の例は、本発明の実施形態におけるRRCメッセージのパラメータの一例を表記したものであり、他の名称や他の表記が用いられてよい。またASN.1の例は、説明が煩雑になることを避けるために、本発明の一形態と密接に関連する主な情報に関する例のみを示す。なお、ASN.1で記述されるパラメータを、フィールド、情報要素等に区別せず、全て情報要素と言う場合がある。RRC接続の再設定に関するメッセージとは、NRにおけるRRC再設定メッセージであってよいし、E-UTRAにおけるRRCコネクション再設定メッセージであってよい。 An example of the parameters included in the RRC message regarding reconfiguration of the RRC connection will be explained. FIG. 7 is an example of ASN.1 description representing fields and/or information elements related to radio bearer setup included in the message related to RRC connection reconfiguration in NR in FIG. In the examples of ASN.1 in the embodiments of the present invention, <omitted> and <omitted> indicate that other information is omitted, not part of the ASN.1 notation. Information elements may be omitted even where there is no description of <omitted> or <omitted>. The example of ASN.1 in the embodiment of the present invention is an example of notation of the parameters of the RRC message in the embodiment of the present invention, and other names and other notations may be used. In addition, the ASN.1 example shows only examples of main information closely related to one aspect of the present invention in order to avoid complicating the explanation. Note that all parameters described in ASN.1 may be referred to as information elements without distinguishing between fields, information elements, and the like. The message regarding RRC connection reconfiguration may be an RRC reconfiguration message in NR or an RRC connection reconfiguration message in E-UTRA.
 セルの活性化(Activation)および不活性化(Deactivation)について説明する。デュアルコネクティビティで通信する端末装置において、前述のRRC接続の再設定に関するメッセージによって、マスターセルグループ(MCG)の設定とセカンダリセルグループ(SCG)が設定される。 Explain the activation and deactivation of cells. In a terminal device that communicates with dual connectivity, a master cell group (MCG) and a secondary cell group (SCG) are set by the aforementioned message regarding RRC connection reconfiguration.
 セルの不活性化は、SpCellには適用されず、SCellに適用されてよい。あるいは、セルの不活性化は、PCellには適用されず、PSCellには適用されてもよい。この場合、セルの不活性化は、SpCellとSCellとで異なる処理であってもよい。 Cell deactivation does not apply to SpCells, but may apply to SCells. Alternatively, cell deactivation may not apply to PCells but may apply to PSCells. In this case, cell deactivation may be performed differently for SpCells and SCells.
 セルの活性化および不活性化はセルグループ毎に存在するMACエンティティで処理されてよい。端末装置に設定されたSCellは下記(A)、(B)、および/または(C)によって活性化および/または不活性化されてよい。
  (A)SCell活性化/不活性化を示すMAC CEの受信
  (B)PUCCHが設定されていないSCellごとに設定されるSCell不活性タイマー(タイマーが満了することに基づいてSCellが不活性化される)
  (C)RRCメッセージによってSCellごとに設定されるSCell状態(sCellState)(SCellの設定にSCell状態のフィールドが含まれることに基づいてSCellが活性化される)
Cell activation and deactivation may be handled by a MAC entity that exists for each cell group. The SCell configured in the terminal device may be activated and/or deactivated by (A), (B), and/or (C) below.
(A) Receipt of MAC CE indicating SCell activation/deactivation (B) SCell inactivity timer set for each SCell for which PUCCH is not set (SCell is deactivated based on timer expiration) a)
(C) SCell state (sCellState) set for each SCell by an RRC message (SCell is activated based on the inclusion of the SCell state field in the SCell configuration)
 具体的には、端末装置のMACエンティティはセルグループに設定された各SCellに対して以下の処理(AD)の各処理の一部または全部をおこなってよい。 Specifically, the MAC entity of the terminal device may perform some or all of the following processing (AD) for each SCell set in the cell group.
 (処理AD)
  (1)もし、SCellが設定される際に、RRCパラメータ(SCell状態)がactivatedに設定されている、またはSCellを活性化させるMAC CEを受信した場合、UE122のMACエンティティは処理(AD-1)を行う。そうでなく、もし、SCellを不活性化させるMAC CEを受信した、または、もし、活性状態のSCellにおいてSCell不活性タイマーが満了したら、UE122のMACエンティティは処理(AD-2)を行う。
  (2)もし、活性状態のSCellのPDCCHによって上りリンクグラントまたは下りリンク割り当てが通知されたら、または、もし、あるサービングセルのPDCCHによって、活性状態のSCellに対する上りリンクグラントまたは下りリンク割り当てが通知されたら、または、もし、設定された上りリンクグラントにおいてMAC PDUが送信されたら、または、もし、設定された下りリンク割り当てにおいてMAC PDUが受信されたら、UE122のMACエンティティはそのSCellに関連付けられたSCell不活性タイマーを再スタートする。
  (3)もし、SCellが不活性状態となったら、UE122のMACエンティティは処理(AD-3)を行う。
(processing AD)
(1) If the RRC parameter (SCell state) is set to activated when the SCell is configured, or if a MAC CE that activates the SCell is received, the MAC entity of UE 122 processes (AD-1 )I do. Otherwise, if a MAC CE is received that deactivates the SCell, or if the SCell inactivity timer expires in an active SCell, the MAC entity of UE 122 takes action (AD-2).
(2) if an uplink grant or downlink allocation for an active SCell is signaled by the PDCCH of an active SCell, or if an uplink grant or downlink allocation for an active SCell is signaled by the PDCCH of a certain serving cell; Or, if a MAC PDU is sent in a configured uplink grant or if a MAC PDU is received in a configured downlink allocation, the MAC entity of UE 122 will send a SCell Disable associated with that SCell. Restart the liveness timer.
(3) If the SCell becomes inactive, the MAC entity of UE 122 performs processing (AD-3).
 (処理AD-1)
  端末装置のMACエンティティは、下記(1)から(3)の一部または全部を実行(Perform)してよい。
  (1)もし、NRにおいて、このSCellを活性化させるMAC CEを受信する前にこのSCellが不活性状態であった、または、もし、SCell設定の際にそのSCellに設定されているRRCパラメータ(sCellState)がactivatedに設定されているならば、UE122のMACエンティティは処理(AD-1-1)を行う。
  (2)UE122のMACエンティティは、そのSCellに対応付けられたSCell不活性タイマーをスタート、または(すでにスタートしている場合は)再スタートする。
  (3)もし、Active DL BWPが休眠BWP(Dormant BWP)でない場合、ストアされている設定(stored configuration)に従って、このSCellに対応付けられている、サスペンドされたタイプ1コンフィギュアード上りリンクグラントが存在すれば、)UE122のMACエンティティは、これを(再)初期化する。そして)UE122のMACエンティティは、PHRをトリガする。
(Processing AD-1)
The MAC entity of the terminal device may perform some or all of (1) to (3) below.
(1) If, in NR, this SCell was in an inactive state before receiving a MAC CE that activates this SCell, or if the RRC parameters ( sCellState) is set to activated, the MAC entity of UE 122 performs processing (AD-1-1).
(2) UE 122's MAC entity starts or restarts (if already started) the SCell inactivity timer associated with that SCell.
(3) If the Active DL BWP is not a Dormant BWP, the suspended Type 1 Configured Uplink Grant associated with this SCell according to the stored configuration. If present, the UE 122's MAC entity (re)initializes it. and) the MAC entity of UE 122 triggers the PHR.
 (処理AD-1-1)
  端末装置のMACエンティティは、下記(1)から(3)の一部または全部を実行(Perform)してよい。
  (1)もし、そのSCellに対してRRCメッセージで設定されている第1アクティブ下りリンクBWP識別子(firstActiveDownlinkBWP-Id)で示されるBWPが、休眠(Dormant)BWPに設定されていないなら、UE122のMACエンティティは処理(AD-1-1-1)を行う。
  (2)もし、そのSCellに対してRRCメッセージで設定されている第1アクティブ下りリンクBWP識別子(firstActiveDownlinkBWP-Id)で示されるBWPが、休眠(Dormant)BWPに設定されているなら、UE122のMACエンティティは、もし、このサービングセルのBWP不活性タイマー(bwp-InactivityTimer)が走っているなら、これを止める。
  (3) UE122のMACエンティティは、そのSCellに対してRRCメッセージで設定されている、第1アクティブ下りリンクBWP識別子(firstActiveDownlinkBWP-Id)で示される下りリンクのBWPと、第1アクティブ上りリンクBWP識別子(firstActiveUplinkBWP-Id)で示される上りリンクのBWPを活性化させる。
(Processing AD-1-1)
The MAC entity of the terminal device may perform some or all of (1) to (3) below.
(1) If the BWP indicated by the first active downlink BWP identifier (firstActiveDownlinkBWP-Id) set in the RRC message for that SCell is not set to Dormant BWP, the MAC of UE 122 The entity performs processing (AD-1-1-1).
(2) If the BWP indicated by the first active downlink BWP identifier (firstActiveDownlinkBWP-Id) set in the RRC message for that SCell is set to Dormant BWP, the MAC of UE 122 The entity stops this serving cell's BWP-Inactivity Timer (bwp-InactivityTimer) if it is running.
(3) The MAC entity of UE 122 receives the downlink BWP indicated by the first active downlink BWP identifier (firstActiveDownlinkBWP-Id) configured in the RRC message for that SCell and the first active uplink BWP identifier. Activate the uplink BWP indicated by (firstActiveUplinkBWP-Id).
 (処理AD-1-1-1)
  端末装置のMACエンティティは、既定のタイミングでSCellを活性状態にして、下記(A)から(E)の一部または全部を含む通常のSCell動作(Operation)を適用(実施)してよい。
   (A)このSCellにおけるサウンディング参照信号(SRS)の送信
   (B)このSCellのためのチャネル状態情報(CSI)の報告
   (C)このSCellにおけるPDCCHのモニタ
   (D)このSCellに対するPDCCHのモニタ(他のサービングセルにおいてこのSCellに対するスケジュールが行われる場合)
   (E)もしPUCCHが設定されていれば、このSCellにおけるPUCCH送信
(Processing AD-1-1-1)
The MAC entity of the terminal device may activate the SCell at predetermined timing and apply (execute) normal SCell operations including some or all of (A) to (E) below.
(A) Sounding Reference Signal (SRS) transmission for this SCell (B) Channel State Information (CSI) reporting for this SCell (C) PDCCH monitoring for this SCell (D) PDCCH monitoring for this SCell (etc.) (if scheduling for this SCell is done in the serving cell of
(E) If PUCCH is configured, PUCCH transmission on this SCell
 (処理AD-2)
  端末装置のMACエンティティは、下記(A)から(D)の一部または全部を実行(Perform)してよい。
   (A)既定のタイミングでこのSCellを不活性化する。
   (B)このSCellに対応付けられたSCell不活性タイマーを停止する。
   (C)このSCellに対応付けられたすべてのActive BWPを不活性化する。
   (D)このSCellに対応付けられたHARQのバッファをフラッシュする。
(Processing AD-2)
The MAC entity of the terminal device may perform some or all of (A) to (D) below.
(A) Inactivate this SCell at a predetermined timing.
(B) Stop the SCell inactivity timer associated with this SCell.
(C) Deactivate all Active BWPs associated with this SCell.
(D) Flush the HARQ buffer associated with this SCell.
 (処理AD-3)
  端末装置のMACエンティティは、下記(A)から(D)の一部または全部を実行(Perform)してよい。
   (A)このSCellでSRSを送信しない。
   (B)このSCellのためのCSIを報告しない。
   (C)このSCellでPUCCH、UL-SCH、および/またはRACHを送信しない。
   (D)このSCellのPDCCH、および/またはこのSCellに対するPDCCHのモニタをしない。
(Processing AD-3)
The MAC entity of the terminal device may perform some or all of (A) to (D) below.
(A) Do not transmit SRS on this SCell.
(B) Do not report CSI for this SCell.
(C) Do not transmit PUCCH, UL-SCH and/or RACH on this SCell.
(D) Do not monitor the PDCCH of this SCell and/or the PDCCH for this SCell.
 上記のように、MACエンティティが処理(AD)を行うことにより、SCellの活性化および不活性化が行われる。 As described above, the SCell is activated and deactivated by the processing (AD) performed by the MAC entity.
 また前述のようにSCellが追加される場合にRRCメッセージによってSCellの初期状態が設定されてもよい。 Also, as described above, when an SCell is added, the initial state of the SCell may be set by an RRC message.
 ここで、SCell不活性タイマーについて説明する。PUCCHが設定されないSCellに対しては、RRCメッセージによって、SCell不活性タイマーの値(タイマーが満了したとみなされる時間に関する情報)が通知されてよい。例えば、RRCメッセージでSCell不活性タイマーの値として40msを示す情報が通知された場合、上記処理(AD)において、タイマーをスタートまたは再スタートしてからタイマーが停止することなく通知された時間(ここでは40ms)が経過したしたときに、タイマーが満了したとみなされる。また、SCell不活性タイマーは、sCellDeactivationTimerという名称のタイマーであってもよい。 Here, the SCell inactivity timer will be explained. For SCells for which PUCCH is not configured, the value of the SCell inactivity timer (information regarding the time when the timer is considered to have expired) may be notified by the RRC message. For example, when information indicating 40 ms is notified as the value of the SCell inactivity timer in the RRC message, the time notified without stopping the timer after starting or restarting the timer in the above process (AD) (here 40ms) has elapsed, the timer is considered expired. The SCell deactivation timer may also be a timer named sCellDeactivationTimer.
 帯域部分(BWP)について説明する。 Explain the band part (BWP).
 BWPはサービングセルの帯域の一部あるいは全部の帯域であってよい。また、BWPはキャリアBWP(Carrier BWP)と呼称されてもよい。端末装置には、1つまたは複数のBWPが設定されてよい。あるBWPは初期セルサーチで検出された同期信号に対応づけられた報知情報に含まれる情報によって設定されてもよい。また、あるBWPは初期セルサーチを行う周波数に対応づけられた周波数帯域幅であってもよい。また、あるBWPはRRCシグナリング(例えばDedicated RRC signaling)で設定されてもよい。また、下りリンクのBWP(DL BWP)と上りリンクのBWP(UL BWP)とが個別に設定されてもよい。また、1つまたは複数の上りリンクのBWPが1つまたは複数の下りリンクのBWPと対応づけられてよい。また、上りリンクのBWPと下りリンクのBWPとの対応づけは既定の対応づけであってもよいし、RRCシグナリング(例えばDedicated RRC signaling)による対応付けでもよいし、物理層のシグナリング(例えば下りリンク制御チャネルで通知される下りリンク制御情報(DCI)による対応付けであってもよいし、それらの組み合わせであってもよい。 The BWP may be part or all of the bandwidth of the serving cell. A BWP may also be called a carrier BWP. A terminal device may be configured with one or more BWPs. A certain BWP may be set by information included in the broadcast information associated with the synchronization signal detected in the initial cell search. Also, a certain BWP may be a frequency bandwidth associated with a frequency for initial cell search. Some BWPs may also be configured with RRC signaling (eg Dedicated RRC signaling). Also, the downlink BWP (DL BWP) and the uplink BWP (UL BWP) may be configured separately. Also, one or more uplink BWPs may be associated with one or more downlink BWPs. Further, the association between the uplink BWP and the downlink BWP may be a default association, may be an association by RRC signaling (for example, Dedicated RRC signaling), or may be associated by physical layer signaling (for example, downlink The association may be based on downlink control information (DCI) notified by a control channel, or a combination thereof.
 BWPは連続する物理無線ブロック(PRB:Physical Resource Block)のグループで構成されてよい。また、接続状態の端末装置に対して、各コンポーネントキャリアのBWP(1つまたは複数のBWP)のパラメータが設定されてよい。各コンポーネントキャリアのBWPのパラメータには、(A)サイクリックプレフィックスの種類、(B)サブキャリア間隔、(C)BWPの周波数位置(例えば、BWPの低周波数側の開始位置または中央周波数位置) (D)BWPの帯域幅(例えばPRB数)、(E)制御信号のリソース設定情報、(F)SSブロックの中心周波数位置、の一部あるいは全部が含まれてよい。また、制御信号のリソース設定情報が、少なくともPCellおよび/またはPSCellの一部あるいは全部のBWPの設定に含まれてもよい。上記(C)および(F)のパラメータについて、周波数位置は、例えば、ARFCNが用いられてもよいし、サービングセルの特定のサブキャリアからのオフセットが用いられてもよい。また、オフセットの単位はサブキャリア単位であってもよいし、リソースブロック単位でもよい。また、ARFCNとオフセットの両方が設定されてもよい。 A BWP may consist of a group of consecutive physical radio blocks (PRB: Physical Resource Block). Also, parameters of the BWP (one or more BWPs) of each component carrier may be set for the terminal device in the connected state. The parameters of the BWP of each component carrier include (A) the type of cyclic prefix, (B) the subcarrier spacing, (C) the frequency position of the BWP (for example, the start position or center frequency position on the low frequency side of the BWP)  ( D) BWP bandwidth (for example, the number of PRBs), (E) control signal resource setting information, and (F) SS block center frequency position, may be included in part or all. Also, the resource configuration information of the control signal may be included in the BWP configuration of at least some or all of the PCell and/or PSCell. For the parameters (C) and (F) above, for the frequency position, for example, ARFCN may be used, or an offset from a specific subcarrier of the serving cell may be used. Also, the offset unit may be a subcarrier unit or a resource block unit. Also, both ARFCN and offset may be set.
 端末装置は、1つまたは複数の設定されたBWPのうち、アクティブなBWP(Active BWP)において送信、および/または受信をおこなってよい。端末装置に関連付けられている一つのサービングセルに対して設定された1つまたは複数のBWPのうち、ある時間において、最大で1つの上りリンクBWP、および/または最大で1つの下りリンクBWP、とがアクティブなBWPとなるように設定されてもよい。活性化された下りリンクのBWPをAcitve DL BWPとも称する。活性化された上りリンクBWPをActive UL BWPとも称する。 A terminal device may transmit and/or receive in an active BWP (Active BWP) out of one or more set BWPs. Among one or more BWPs configured for one serving cell associated with the terminal device, at a given time, at most one uplink BWP and/or at most one downlink BWP, and May be set to be the active BWP. The activated downlink BWP is also called Active DL BWP. The activated uplink BWP is also called Active UL BWP.
 次にBWPの不活性化について説明する。1つのサービングセルにおいて、1つまたは複数のBWPが設定されてよい。サービングセルにおけるBWP切り替え(BWP switching)は、不活性化されたBWP(インアクティブ(Inactive)BWPとも称する)を活性化して、活性化されていたBWPを不活性化するために用いられる。 Next, I will explain the inactivation of BWP. One or more BWPs may be configured in one serving cell. BWP switching in the serving cell is used to activate deactivated BWPs (also referred to as inactive BWPs) and deactivate activated BWPs.
 BWP切り替えは、下りリンク割り当てまたは上りリンクグラントを示すPDCCH、BWP不活性タイマー、RRCシグナリング、またはランダムアクセス手順の開始のためのMACエンティティ自身、によって制御されてよい。サービングセルのActive BWPは、RRCまたはPDCCHによって示される。 BWP switching may be controlled by the PDCCH indicating downlink allocation or uplink grant, the BWP inactivity timer, RRC signaling, or the MAC entity itself for initiation of random access procedures. Active BWP of the serving cell is indicated by RRC or PDCCH.
 次に休眠(Dormant)BWPについて説明する。休眠BWPへの入場(Entering)または休眠BWPからの退出(Leaving)は、BWP切り替えによって実行される。この制御はPDCCHによって、SCellごと、または休眠SCellグループ(Dormancy SCell Group)と呼ばれるグループごとに行われる。休眠SCellグループの設定は、RRCシグナリングによって示される。また、休眠BWPはSCellにのみ適用されてもよい。なお、休眠BWPとはあるBWPを休眠状態に変化させるものではなく、UEに対して設定される1つまたは複数のBWPのうち、休眠用途に設定される1つのBWPであると解釈してよい。また、休眠用途としてUEに設定されるBWPは、複数あってもよい。 Next, I will explain the Dormant BWP. Entering a dormant BWP or leaving a dormant BWP is performed by BWP switching. This control is performed by the PDCCH for each SCell or for each group called Dormancy SCell Group. Configuration of dormant SCell groups is indicated by RRC signaling. Dormant BWP may also be applied only to SCells. Note that a dormant BWP does not change a certain BWP to a dormant state, but may be interpreted as one BWP set for dormant use among one or more BWPs set for the UE. . Also, there may be a plurality of BWPs set in the UE for sleep use.
 あるBWPが休眠BWPであることは、BWPの設定に特定のパラメータが含まれないことによって示されてもよい。例えば、下りリンクBWPの設定に含まれる、UE固有(Specific)なPDCCHのパラメータを設定するための情報要素であるPDCCH-Config情報要素が含まれないことによって、そのBWPが休眠BWPであることを示してもよい。また、例えば、下りリンクBWPの設定に含まれる、UE固有(Specific)なPDCCHのパラメータを設定するための情報要素であるPDCCH-Config情報要素に含まれるパラメータの一部が設定されない(含まれない)ことによって、そのBWPが休眠BWPであることを示してもよい。例えば、あるBWPの設定として、PDCCH-Config情報要素によって設定される、どこで、および/またはどのように、PDCCHの候補を検索(Search)するかを定義するサーチスペースに関する設定の一部または全部が設定されない(含まれない)ことによって、そのBWPが休眠BWPであることを示してもよい。  A certain BWP is a dormant BWP may be indicated by not including a specific parameter in the BWP configuration. For example, by not including the PDCCH-Config information element, which is an information element for setting UE-specific (Specific) PDCCH parameters, included in the configuration of the downlink BWP, it is determined that the BWP is a dormant BWP. can be shown. Also, for example, some of the parameters included in the PDCCH-Config information element, which is an information element for configuring UE-specific PDCCH parameters included in the downlink BWP configuration, are not configured (not included). ) to indicate that the BWP is a dormant BWP. For example, some or all of the search space settings that define where and/or how to search for PDCCH candidates are configured by the PDCCH-Config information element as a BWP configuration. Not set (not included) may indicate that the BWP is a dormant BWP.
 また、ある設定では、PCellやPSCellなどのSpCell及びPUCCHの送信がおこなえるPUCCH SCellへの休眠BWPの設定はサポートされないようにしてもよい。 In addition, in certain settings, SpCells such as PCells and PSCells and settings of dormant BWPs for PUCCH SCells that can transmit PUCCH may not be supported.
 ある設定された期間(アクティブ時間)の外で休眠BWPから退出することを示すPDCCHをSpCellで受信したUEは、予めRRCシグナリングで通知された第1の下りリンクBWP識別子で示される下りリンクBWPを活性化する。 A UE that has received a PDCCH indicating to exit from a dormant BWP outside a certain set period (active time) in SpCell uses the downlink BWP indicated by the first downlink BWP identifier notified in advance by RRC signaling. Activate.
 ある設定された期間(アクティブ時間)の内で休眠BWPから退出することを示すPDCCHをSpCellで受信したUEは、予めRRCシグナリングで通知された第2の下りリンクBWP識別子で示される下りリンクBWPを活性化する。 A UE that has received a PDCCH in SpCell indicating that it will leave a dormant BWP within a certain set period (active time) uses the downlink BWP indicated by the second downlink BWP identifier notified in advance by RRC signaling. Activate.
 休眠BWPに入場することを示すPDCCHを受信したUEは、予めRRCシグナリングで通知された第3の下りリンクBWP識別子(dormantDownlinkBWP-Id)で示される下りリンクBWPを活性化する。 A UE that receives a PDCCH indicating entry into a dormant BWP activates the downlink BWP indicated by the third downlink BWP identifier (dormantDownlinkBWP-Id) previously notified by RRC signaling.
 上記の休眠BWPへの入場と退出は、BWP切り替えによって行われ、新たなBWPを活性化する際に、それまで活性状態であったBWPが不活性化される。すなわち、休眠BWPから退出する場合、休眠BWPが不活性化され、休眠BWPに入場する場合、休眠BWPが活性化される。 Entry into and exit from the above-mentioned dormant BWP is performed by BWP switching, and when activating a new BWP, the previously active BWP is deactivated. That is, when exiting a dormant BWP, the dormant BWP is deactivated, and when entering a dormant BWP, the dormant BWP is activated.
 ここで、休眠BWPに入場することを示すPDCCHと休眠BWPから退場することを示すPDCCHについて説明する。 Here, we will explain the PDCCH that indicates entering a dormant BWP and the PDCCH that indicates leaving a dormant BWP.
 例えば、SpCellにおいて間欠受信(DRX)が設定されているUEは、DRXのアクティブタイムの外において、あるDCIフォーマット(例えばDCIフォーマット2_6)を検出するためにSpCellのActive BWPでPDCCHをモニタしてもよい。前記DCIフォーマットのCRCはあるRNTI(例えばPS-RNTI)でスクランブルされていてもよい。休眠SCellグループが設定されたUEは、DCIフォーマット2_6のペイロードに含まれるビットマップ情報に基づき、Active DL BWPの切り替えを判断する。例えば、ビットマップのあるビットがひとつの休眠SCellグループに紐づけられ、ビットが1である場合に、Active DL BWPが休眠BWPであれば、あらかじめ設定された別のBWPにBWP切り替えを実行し、Active DL BWPが休眠BWPでなければ、そのBWPにとどまるようにしてもよい。また、ビットが0である場合に、Active DL BWPが休眠BWPになるようにBWP切り替えを実行してもよい。 For example, a UE configured with discontinuous reception (DRX) in SpCell may monitor PDCCH in Active BWP of SpCell to detect a certain DCI format (e.g. DCI format 2_6) outside DRX active time. good. The DCI format CRC may be scrambled with a certain RNTI (eg PS-RNTI). A UE in which a dormant SCell group is set determines switching of Active DL BWP based on the bitmap information included in the DCI format 2_6 payload. For example, if a bit in the bitmap is associated with one dormant SCell group and the bit is 1, if the Active DL BWP is a dormant BWP, perform a BWP switch to another preset BWP, If an Active DL BWP is not a dormant BWP, it may stay on that BWP. A BWP switch may also be performed such that if the bit is 0, the Active DL BWP becomes the Dormant BWP.
 UEはDRXのアクティブタイムにおいて、DCIフォーマット2_6の検出を目的としたPDCCHのモニタをしなくてもよい。  UE does not have to monitor PDCCH for the purpose of detecting DCI format 2_6 during DRX active time.
 SpCellにおいて間欠受信(DRX)が設定されているUEは、DRXのアクティブタイムにおいて、あるDCIフォーマット(例えばDCIフォーマット0_1及び1_1)を検出するためにSpCellのActive BWPでPDCCHをモニタしてもよい。前記DCIフォーマットのCRCはあるRNTI(例えばC-RNTIまたはMCS-C-RNTI)でスクランブルされていてもよい。休眠SCellグループが設定されたUEは、DCIフォーマット0_1またはDCIフォーマット1_1のペイロードに含まれるビットマップ情報に基づき、Active DL BWPの切り替えを判断する。例えば、ビットマップのあるビットがひとつの休眠SCellグループに紐づけられ、ビットが1である場合に、Active DL BWPが休眠BWPであれば、あらかじめ設定された別のBWPにBWP切り替えを実行し、Active DL BWPが休眠BWPでなければ、そのBWPにとどまるようにしてもよい。また、ビットが0である場合に、Active DL BWPが休眠BWPになるようにBWP切り替えを実行してもよい。また、前記「あらかじめ設定された別のBWP」は、DCIフォーマット2_6の説明で用いた「あらかじめ設定された別のBWP」とは異なるBWPであってよい。 A UE configured for discontinuous reception (DRX) in SpCell may monitor PDCCH in Active BWP of SpCell to detect certain DCI formats (for example, DCI formats 0_1 and 1_1) during DRX active time. The DCI format CRC may be scrambled with an RNTI (eg, C-RNTI or MCS-C-RNTI). A UE in which a dormant SCell group is set determines switching of Active DL BWP based on the bitmap information included in the payload of DCI format 0_1 or DCI format 1_1. For example, if a bit in the bitmap is associated with one dormant SCell group and the bit is 1, if the Active DL BWP is a dormant BWP, perform a BWP switch to another preset BWP, If an Active DL BWP is not a dormant BWP, it may stay on that BWP. A BWP switch may also be performed such that if the bit is 0, the Active DL BWP becomes the Dormant BWP. Also, the "another preset BWP" may be a BWP different from the "another preset BWP" used in the description of the DCI format 2_6.
 UEはDRXのアクティブタイムの外において、DCIフォーマット0_1及びDCIフォーマット1_1の検出を目的としたPDCCHのモニタをしなくてもよい。 The UE does not have to monitor PDCCH for the purpose of detecting DCI format 0_1 and DCI format 1_1 outside the DRX active time.
 休眠BWPを抜けることを示すPDCCHをモニタすることとは、DRXのアクティブタイムの外でDCIフォーマット2_6の検出を目的としたPDCCHのモニタをし、DRXのアクティブタイムにおいて、DCIフォーマット0_1及びDCIフォーマット1_1の検出を目的としたPDCCHのモニタをすることであってよい。 Monitoring the PDCCH indicating exiting the dormant BWP means monitoring the PDCCH for detection of DCI format 2_6 outside the DRX active time, and DCI format 0_1 and DCI format 1_1 during the DRX active time. monitoring of the PDCCH for the purpose of detecting
 BWPが設定された活性化された各サービングセルにおいて、MACエンティティは、もし、BWPが活性化され(Active BWPであり)、そのBWPが休眠BWPでないなら、下記(A)から(H)の一部または全部をおこなってよい。
  (A)そのBWPでUL-SCHを送信する。
  (B)もしPRACHオケージョンが設定されているなら、そのBWPでRACHを送信する。
  (C)そのBWPでPDCCHをモニタする。
  (D)もしPUCCHが設定されているなら、そのBWPでPUCCHを送信する。
  (E)そのBWPでCSIを報告する。
  (F)もしSRSが設定されているなら、そのBWPでSRSを送信する。
  (G)そのBWPでDL-SCHを受信する。
  (H)そのBWPで設定されてサスペンドされた、グラントタイプ1のコンフィギュアード上りリンクグラントを初期化する。
For each activated serving cell with a BWP configured, the MAC entity shall, if the BWP is activated (is an Active BWP) and that BWP is not a dormant BWP, any of (A) through (H) below: Or you can do it all.
(A) Transmit UL-SCH on that BWP.
(B) If a PRACH occasion is configured, send RACH on that BWP.
(C) Monitor the PDCCH on that BWP.
(D) If PUCCH is configured, transmit PUCCH on that BWP.
(E) Report CSI on its BWP.
(F) If SRS is configured, send SRS on that BWP.
(G) Receive DL-SCH on that BWP.
(H) Initialize configured uplink grants of grant type 1 that have been set and suspended in that BWP.
 BWPが設定された活性化された各サービングセルにおいて、MACエンティティは、もし、BWPが活性化され(Active BWPであり)、そのBWPが休眠BWPであるなら、下記(A)から(G)の一部または全部をおこなってよい。
  (A)このBWPのサービングセルのBWP不活性タイマーが走っているなら止める。
  (B)そのBWPのPDCCHをモニタしない。
  (C)そのBWPのためのPDCCHをモニタしない。
  (D)そのBWPでDL-SCHを受信しない。
  (F)そのBWPでSRSを送信しない。
  (G)そのBWPでUL-SCHを送信しない。
  (H)そのBWPでRACHを送信しない。
  (I)そのBWPでPUCCHを送信しない。
  (J)そのSCellに関連付けられたコンフィギュアード下りリンク割り当ておよびグラントタイプ2のコンフィギュアード上りリンクグラントをそれぞれクリアする。
  (K)そのSCellに関連付けられたグラントタイプ1のコンフィギュアード上りリンクグラントをサスペンドする。
  (L)もしビーム失敗に関する設定が設定されていたら、ビーム失敗(Beam Failure)を検出(Detect)し、もしビーム失敗が検出されたらビーム失敗回復(Beam Failure Recovery)を実行する。
For each activated serving cell with a BWP configured, the MAC entity shall, if the BWP is activated (is an Active BWP) and that BWP is a dormant BWP, one of (A) through (G) below: You can do part or all.
(A) Stop the BWP inactivity timer for the serving cell of this BWP if it is running.
(B) Do not monitor PDCCH for that BWP.
(C) Do not monitor the PDCCH for that BWP.
(D) Do not receive DL-SCH on that BWP.
(F) Do not send SRS on that BWP.
(G) Do not transmit UL-SCH on that BWP.
(H) Do not send RACH on that BWP.
(I) Do not transmit PUCCH on that BWP.
(J) Clear the Configured Downlink Assignments and Configured Uplink Grants of Grant Type 2 associated with that SCell, respectively.
(K) Suspend the configured uplink grant of grant type 1 associated with that SCell.
(L) Detect Beam Failure if settings for beam failure are set, and perform Beam Failure Recovery if beam failure is detected.
 MACエンティティは、もし、BWPが不活性化されたら、下記(A)から(I)の一部または全部をおこなってよい。
  (A)そのBWPでUL-SCHを送信しない。
  (B)そのBWPでRACHを送信しない。
  (C)そのBWPでPDCCHをモニタしない。
  (D)そのBWPでPUCCHを送信しない。
  (E)そのBWPでCSIを報告しない。
  (F)そのBWPでSRSを送信しない。
  (G)そのBWPでDL-SCHを受信しない。
  (H)そのBWPで設定された、グラントタイプ2のコンフィギュアード上りリンクグラントをクリアする。
  (I)その不活性化されたBWP(インアクティブBWP)のグラントタイプ1のコンフィギュアード上りリンクグラントをサスペンドする。
The MAC entity may do some or all of (A) through (I) below if the BWP is deactivated.
(A) Do not transmit UL-SCH on that BWP.
(B) Do not send RACH on that BWP.
(C) Do not monitor PDCCH on that BWP.
(D) Do not transmit PUCCH on that BWP.
(E) Do not report CSI on that BWP.
(F) Do not send SRS on that BWP.
(G) Do not receive DL-SCH on that BWP.
(H) Clear the configured uplink grant of grant type 2 set in that BWP.
(I) Suspend the configured uplink grant of grant type 1 for that deactivated BWP (inactive BWP).
 次にBWPが設定されたUEにおけるランダムアクセス手順について説明する。あるサービングセルにおいてランダムアクセス手順を開始するときにMACエンティティはこのサービングセルの選択したキャリアにおいて、次の(A)から(E)の一部または全部の処理をおこなってよい。
  (A)もし、PRACHを送信するリソース(オケージョン)が、Active UL BWPに対して設定されていなければ、(A1)Active UL BWPをRRCのパラメータ(initialUplinkBWP)によって示されるBWPに切り替え、(A2)もし、サービングセルがSpCellであれば、Active UL BWPをRRCのパラメータ初期下りリンクBWP(initialDownlinkBWP)によって示されるBWPに切り替える。
  (B)もし、PRACHを送信するリソース(オケージョン)がActive UL BWPに対して設定されていれば、もし、サービングセルがSpCellであり、Active DL BWPとActive UL BWPとが同じ識別子(bwp-Id)を持たなければ、Active DL BWPをActive UL BWPの識別子と同じ識別子のBWPに切り替える。
  (C)もしこのサービングセルのActive DL BWPに対応付けられたBWP不活性タイマーが走っていたらこのタイマーを止める。
  (D)もしサービングセルがSCellなら、もしSpCellのActive DL BWPに対応付けられたBWP不活性タイマーが走っていたらこのタイマーを止める。
  (E)SpCellのActive DL BWPとこのサービングセルのActive UL BWP上でランダムアクセスプロシージャを実行する。
Next, a random access procedure in the UE with BWP set will be described. When initiating a random access procedure in a serving cell, the MAC entity may perform some or all of the following (A) through (E) on selected carriers of this serving cell.
(A) If the PRACH transmission resource (occasion) is not set for the Active UL BWP, (A1) switch the Active UL BWP to the BWP indicated by the RRC parameter (initialUplinkBWP), and (A2) If the serving cell is a SpCell, switch the Active UL BWP to the BWP indicated by the RRC parameter initialDownlinkBWP.
(B) If the resource (occasion) for transmitting PRACH is configured for Active UL BWP, if the serving cell is SpCell and Active DL BWP and Active UL BWP have the same identifier (bwp-Id) If not, switch the Active DL BWP to a BWP with the same identifier as the Active UL BWP.
(C) If the BWP inactivity timer associated with this serving cell's Active DL BWP is running, stop this timer.
(D) If the serving cell is a SCell, stop the BWP inactivity timer associated with the SpCell's Active DL BWP if it is running.
(E) Execute a random access procedure on the SpCell's Active DL BWP and this serving cell's Active UL BWP.
 次にBWP不活性タイマーについて説明する。BWP不活性タイマーが設定された活性化されたサービングセル(Activated Serving Cell)の各々に対してMACエンティティは、次の(A)の処理をおこなう。また、BWP不活性タイマーは、bwp-InactivityTimerという名称のタイマーであってもよい。
  (A)もし、デフォルト下りリンクBWPの識別子(defaultDownlinkBWP-Id)が設定されており、Active DL BWPが識別子(dormantDownlinkBWP-Id)で示されるBWPでない、または、もしデフォルト下りリンクBWPの識別子(defaultDownlinkBWP-Id)が設定されておらず、Active DL BWPがinitialDownlinkBWPでなく、Active DL BWPが識別子(dormantDownlinkBWP-Id)で示されるBWPでないなら、MACエンティティは次の(A-1)および(A-2)の処理をおこなう。
  (A-1)もし、Active DL BWPで、下りリンク割り当て(Assignment)または上りリンクグラントを示す、C-RNTIまたはCS-RNTIにアドレスされたPDCCHを受信した、または、もし、Active DL BWPのための、下りリンク割り当てまたは上りリンクグラントを示す、C-RNTIまたはCS-RNTIにアドレスされたPDCCHを受信したなら、または、もし、コンフィギュアード上りリンクグラントでMAC PDUが送信されたなら、または、もし、コンフィギュアード下りリンク割り当てでMAC PDUが受信されたなら、MACエンティティは次の(A-1-1)の処理をおこなう。
  (A-1-1)もし、このサービングセルに関連付けられたランダムアクセス手順が実行中でない、または、このサービングセルに関連付けられた実行中のランダムアクセス手順が、C-RNTIにアドレスされたPDCCHの受信によって成功裏に完了(Successfully completed)したら、Active DL BWPに関連付けられたBWP不活性タイマーをスタートまたは再スタートする。
  (A-2)もし、Active DL BWPに関連付けられたBWP不活性タイマーが満了(Expire)したら、MACエンティティは次の(A-2-1)の処理をおこなう。
  (A-2-1)もし、defaultDownlinkBWP-Idが設定されていたら、このdefaultDownlinkBWP-Idで示されるBWPにBWP切り替えをおこない、そうでないなら、initialDownlinkBWPにBWP切り替えをおこなう。
Next, the BWP inactivity timer will be described. The MAC entity performs the following processing (A) for each activated serving cell for which the BWP inactivity timer is set. The BWP inactivity timer may also be a timer named bwp-InactivityTimer.
(A) If the default downlink BWP identifier (defaultDownlinkBWP-Id) is configured and the Active DL BWP is not the BWP indicated by the identifier (dormantDownlinkBWP-Id), or if the default downlink BWP identifier (defaultDownlinkBWP- Id) is not set, the Active DL BWP is not the initialDownlinkBWP, and the Active DL BWP is not the BWP indicated by the identifier (dormantDownlinkBWP-Id), then the MAC entity follows (A-1) and (A-2) process.
(A-1) if, in Active DL BWP, received PDCCH addressed to C-RNTI or CS-RNTI indicating downlink assignment or uplink grant, or if for Active DL BWP received a PDCCH addressed to a C-RNTI or CS-RNTI indicating a downlink assignment or uplink grant, or if a MAC PDU was sent with a configured uplink grant, or If a MAC PDU is received with configured downlink allocation, the MAC entity performs the following (A-1-1) processing.
(A-1-1) If the random access procedure associated with this serving cell is not in progress, or if the random access procedure in progress associated with this serving cell is received by the PDCCH addressed to the C-RNTI Once successfully completed, start or restart the BWP inactivity timer associated with the Active DL BWP.
(A-2) If the BWP inactivity timer associated with the Active DL BWP expires (Expire), the MAC entity performs the following processing (A-2-1).
(A-2-1) If defaultDownlinkBWP-Id is set, BWP switching is performed to BWP indicated by this defaultDownlinkBWP-Id, otherwise BWP switching is performed to initialDownlinkBWP.
 また、MACエンティティは、もし、BWP切り替えのためのPDCCHを受信し、Active DL BWPを切り替えたら、次の(A)の処理をおこなってよい。
  (A)もしデフォルト下りリンクBWPの識別子(defaultDownlinkBWP-Id)が設定されており、切り替えたActive DL BWPが識別子(dormantDownlinkBWP-Id)で示されるBWPでない、かつ、もし切り替えたActive DL BWPがdormantDownlinkBWP-Idで示されるBWPでないなら、Active DL BWPに関連付けられたBWP不活性タイマーをスタートまたは再スタートする。
Also, if the MAC entity receives the PDCCH for BWP switching and switches the Active DL BWP, it may perform the following processing (A).
(A) If the default downlink BWP identifier (defaultDownlinkBWP-Id) is set, the switched Active DL BWP is not the BWP indicated by the identifier (dormantDownlinkBWP-Id), and if the switched Active DL BWP is dormantDownlinkBWP- If not the BWP indicated by Id, start or restart the BWP inactivity timer associated with the Active DL BWP.
 SCellの休眠は、このSCellにおいて休眠BWPを活性化することによっておこなわれる。また、SCellを休眠した状態であっても、このSCellにおけるCSIの測定、自動増幅制御(Automatic Gain Control:AGC)、およびビーム失敗回復を含むビーム制御(ビームマネジメント)はおこなわれてよい。 The SCell's dormancy is achieved by activating the dormant BWP in this SCell. Also, even when the SCell is in a dormant state, CSI measurement, automatic gain control (AGC), and beam control (beam management) including beam failure recovery may be performed in this SCell.
 次に端末装置にSCGのPSCellおよび0個以上のSCellを追加する方法について説明する。 Next, we will explain how to add an SCG PSCell and zero or more SCells to a terminal device.
 SCGのPSCellおよび0個以上のSCell の追加は、RRC接続の再設定に関するRRCメッセージによって行われてよい。図8から図12は、NRでのRRC接続の再設定に関するメッセージに含まれる、SCGのPSCellおよび0個以上のSCell の追加に関するフィールド、および/または情報要素を表すASN.1記述の一例である。 The addition of PSCells and 0 or more SCells of the SCG may be performed by RRC messages regarding reconfiguration of RRC connections. Figures 8 to 12 are examples of ASN.1 descriptions representing fields and/or information elements related to the addition of SCG PSCells and zero or more SCells, which are included in messages related to RRC connection reconfiguration in NR. .
 なお、説明が煩雑になることを避けるため、各図のメッセージおよび/または情報要素は、実際のメッセージ構造および/または情報要素構造とは異なり、一部の構造化されたフィールドや情報要素が展開されている場合、および/または説明に直接関係しないフィールドや情報要素が省略されている場合がある。 To avoid complicating the explanation, the messages and/or information elements in each figure differ from the actual message structure and/or information element structure, and some structured fields and information elements are expanded. and/or omit fields or information elements not directly relevant to the description.
 図8に示すように、SCGのPSCellおよび0個以上のSCell を追加するために、RRC再設定メッセージ(RRCReconfigurationメッセージ)が使われてよい。RRC再設定メッセージには、下記(A)から(E)の情報の一部または全部が含まれてよい。また、RRC再設定メッセージにはそれ以外の情報が含まれてもよい。
  (A)RRCトランザクションの識別子(rrc-TransactionIdentifier)
  (B)無線ベアラを追加、修正、解放するための設定(radioBearerConfig)
  (C)セカンダリセルグループの設定(secondaryCellGroup)
  (D)マスターセルグループの設定(masterCellGroup)
  (E)MR-DCにおけるセカンダリセルグループのRRC設定(mrdc-SecondaryCellGroupConfig)
As shown in FIG. 8, an RRC reconfiguration message (RRCReconfiguration message) may be used to add a PSCell of an SCG and zero or more SCells. The RRC reconfiguration message may include some or all of the information (A) to (E) below. Also, the RRC reconfiguration message may include other information.
(A) RRC transaction identifier (rrc-TransactionIdentifier)
(B) Settings for adding, modifying, and releasing radio bearers (radioBearerConfig)
(C) Secondary cell group setting (secondaryCellGroup)
(D) Setting the master cell group (masterCellGroup)
(E) RRC configuration of secondary cell group in MR-DC (mrdc-SecondaryCellGroupConfig)
 RRC再設定メッセージがSRB3で端末装置に通知される場合には、SCGの設定は、セカンダリノードによって生成されたRRCReconfigurationメッセージの上記(C)の設定によって通知されてよい。また、RRC再設定メッセージがSRB1で端末装置に通知される場合には、SCGの設定は、マスターノードによって生成されたRRCReconfigurationメッセージの上記(E)に、セカンダリノードによって生成されたRRC再設定メッセージが含まれて通知されてよい。また、SCGの設定のために他のメッセージが用いられてもよい。 When the RRC reconfiguration message is notified to the terminal device in SRB3, the SCG setting may be notified by the above (C) setting of the RRCReconfiguration message generated by the secondary node. Also, when the RRC reconfiguration message is notified to the terminal device in SRB1, the SCG setting is such that the RRC reconfiguration message generated by the secondary node is added to the above (E) of the RRCReconfiguration message generated by the master node. May be included and notified. Also, other messages may be used for setting up the SCG.
 上記のセカンダリセルグループの設定は、セルグループ設定情報要素(CellGroupConfigIE)で与えられてよい。図9に示すように、セルグループ設定情報要素には、下記(A)から(H)の情報の一部または全部が含まれてよい。また、セルグループ設定情報要素にはそれ以外の情報が含まれてもよい。
  (A)セルグループの識別子(cellGroupId)
  (B)RLCベアラの追加および/または修正のための設定(rlc-BearerToAddModList)
  (C)RLCベアラの解放のための設定(rlc-BearerToReleaseList)
  (D)このセルグループのMACの設定(mac-CellGroupConfig)
  (E)このセルグループのPHYの設定(physicalCellGroupConfig)
  (F)SpCellの設定(spCellConfig)
  (G)SCellの追加、修正のための設定(sCellToAddModList)
  (H)SCellの解放のための設定(sCellToReleaseList)
The configuration of the above secondary cell group may be given in a cell group configuration information element (CellGroupConfigIE). As shown in FIG. 9, the cell group setting information element may include some or all of the following information (A) to (H). Also, the cell group setting information element may contain other information.
(A) Cell group identifier (cellGroupId)
(B) Settings for adding and/or modifying RLC bearers (rlc-BearerToAddModList)
(C) Setting for RLC bearer release (rlc-BearerToReleaseList)
(D) MAC configuration for this cell group (mac-CellGroupConfig)
(E) PHY configuration for this cell group (physicalCellGroupConfig)
(F) SpCell configuration (spCellConfig)
(G) Settings for adding and modifying SCells (sCellToAddModList)
(H) Setting for SCell release (sCellToReleaseList)
 上記(F)のSpCellの設定によってSpCellが追加および/または設定され、上記(G)および(H)の設定によって、SCellが追加、修正、および/または解放されてよい。また、他のメッセージによってそれらがなされてもよい。 SpCells may be added and/or set by the SpCell settings in (F) above, and SCells may be added, modified, and/or released by the settings in (G) and (H) above. They may also be done by other messages.
 上記のSpCellの設定には、図10に示すように、下記(A)から(D)の情報の一部または全部が含まれてよい。また、SpCellの設定にはそれ以外の情報が含まれてもよい。
  (A)サービングセル同士を識別するためのインデックス(servCellIndex)
  (B)同期付再設定(reconfigurationWithSync)
  (C)無線リンク失敗の判定などに用いられるタイマーの値および定数の情報(rlf-TimersAndConstants)
  (D)SpCellの端末装置固有パラメータの設定(spCellConfigDedicated)
As shown in FIG. 10, the above SpCell settings may include some or all of the following information (A) to (D). The SpCell configuration may also include other information.
(A) Index (servCellIndex) for identifying serving cells
(B) ReconfigurationWithSync
(C) Timer value and constant information (rlf-TimersAndConstants) used for determining radio link failure, etc.
(D) SpCell terminal device specific parameter setting (spCellConfigDedicated)
 上記の同期付再設定の情報要素には、図11に示すように、下記(A)から(D)の情報の一部または全部が含まれてよい。また、同期付再設定情報にはそれ以外の情報が含まれてもよい。
  (A)SpCellのセル固有パラメータの設定(spCellConfigCommon)
  (B)新しい端末識別子(UE-Identity)の値(newUE-Identity)
  (C)タイマーT304の値(t304)
  (D)RACHの端末装置固有パラメータの設定(rach-ConfigDedicated)
As shown in FIG. 11, the above information element of reset with synchronization may include some or all of the following information (A) to (D). Further, the reset information with synchronization may include other information.
(A) SpCell cell-specific parameter configuration (spCellConfigCommon)
(B) New terminal identifier (UE-Identity) value (newUE-Identity)
(C) Timer T304 value (t304)
(D) RACH terminal device specific parameter setting (rach-ConfigDedicated)
 上記のRACHの端末装置固有パラメータの設定には、無衝突(Contintion free)ランダムアクセスのために用いられるパラメータ(CFRA)が含まれてよい。なお、このCFRAが設定に含まれない場合は、端末装置はランダムアクセス手順で衝突型(Contition based)ランダムアクセスを実行してよい。CFRAには無衝突ランダムアクセスで用いられるRAオケージョン(Occasion)の情報が含まれてよい。 The setting of the RACH terminal device-specific parameters described above may include parameters (CFRA) used for contention-free random access. Note that if this CFRA is not included in the configuration, the terminal device may perform contention-based random access in a random access procedure. CFRA may include RA Occasion information used in collision-free random access.
 上記のSpCellのセル固有パラメータの設定は、サービングセルのセル固有パラメータを設定するために用いられる情報要素(ServingCellConfigCommon IE)によって与えられてよい。サービングセルのセル固有パラメータを設定するために用いられる情報要素には、図12に示すように、下記(A)から(D)の情報の一部または全部が含まれてよい。また、サービングセルのセル固有パラメータを設定するために用いられる情報要素にはそれ以外の情報が含まれてもよい。
  (A)物理セル識別子(physCellId)
  (B)セルにおける下りリンク共通のパラメータ(downlinkConfigCommon)
  (C)セルにおける上りリンク共通のパラメータ(uplinkConfigCommon)
  (D)SCellの端末装置固有パラメータ(一部セル固有パラメータを含む)の設定(sCellConfigDedicated)
  (E)SSBのサブキャリア間隔情報(ssbSubcarrierSpacing)
The configuration of cell-specific parameters of the SpCell above may be given by an information element (ServingCellConfigCommon IE) used to configure the cell-specific parameters of the serving cell. Information elements used to configure cell-specific parameters of the serving cell may include some or all of the following information (A) to (D), as shown in FIG. Other information may also be included in the information element used to configure cell-specific parameters for the serving cell.
(A) Physical cell identifier (physCellId)
(B) Common downlink parameters in cells (downlinkConfigCommon)
(C) Common uplink parameters in cells (uplinkConfigCommon)
(D) Configuration of SCell terminal device-specific parameters (including some cell-specific parameters) (sCellConfigDedicated)
(E) SSB subcarrier spacing information (ssbSubcarrierSpacing)
 セルにおける下りリンク共通のパラメータには、下りリンクの周波数情報(frequencyInfoDL)、および/または初期下りリンクBWPの情報(initialDownlinkBWP)が含まれてよい。下りリンクの周波数情報にはこのサービングセルで用いられるSSBの周波数の情報が含まれてもよい。 Downlink common parameters in a cell may include downlink frequency information (frequencyInfoDL) and/or initial downlink BWP information (initialDownlinkBWP). The downlink frequency information may include information on the SSB frequency used in this serving cell.
 上記のSCellの追加、修正のための設定は、一つ以上のSCell設定情報要素(SCellConfigIE)によって与えられてよい。SCell設定情報要素には、図13に示すように、下記(A)から(D)の情報の一部または全部が含まれてよい。また、SCell設定情報要素にはそれ以外の情報が含まれてもよい。
  (A)SCellを識別する識別子(sCellIndex)
  (B)SCellのセル固有パラメータの設定(sCellConfigCommon)
  (C)SCellの端末装置固有パラメータ(一部セル固有パラメータを含む)の設定(sCellConfigDedicated)
  (D)SCellの活性・不活性化を指示する情報(sCellState-r16)
The configuration for adding and modifying the above SCells may be given by one or more SCell configuration information elements (SCellConfigIE). As shown in FIG. 13, the SCell configuration information element may include some or all of the following information (A) to (D). Also, the SCell configuration information element may include other information.
(A) Identifier for identifying SCell (sCellIndex)
(B) SCell cell-specific parameter configuration (sCellConfigCommon)
(C) Configuration of SCell terminal device-specific parameters (including some cell-specific parameters) (sCellConfigDedicated)
(D) Information indicating SCell activation/deactivation (sCellState-r16)
 一例として、上記のRRCメッセージおよび情報要素を用いたSCGのPSCellおよび0個以上のSCellを追加する手順を説明する。なお、説明で用いられるRRCメッセージおよび情報要素は一例であり、実施される場合の名称や構造がこれに限定されるものではない。 As an example, the procedure for adding an SCG PSCell and 0 or more SCells using the above RRC message and information elements will be explained. Note that the RRC messages and information elements used in the description are examples, and the names and structures when implemented are not limited to these.
 RRCReconfigurationメッセージを受信した端末装置のRRCエンティティは、下記(A)から(F)の一部または全部を実行(Perform)してよい。RRCReconfigurationメッセージを受信した端末装置は、それ以外の処理を実行してもよい。
  (A)もし、RRCReconfigurationにmasterCellGroupが含まれていたら、このmasterCellGroupに基づき、マスターセルグループに対して処理(BD-1)を実行する。
  (B)もし、RRCReconfigurationにsecondaryCellGroupが含まれていたら、このsecondaryCellGroupに基づき、セカンダリセルグループに対して処理(BD-1)を実行する。
  (C)もし、RRCReconfigurationにradioBearerConfigが含まれていたら、このradioBearerConfigに基づき無線ベアラを設定する。
  (D)RRC再設定完了メッセージに含めるコンテンツをセットする。
  (E)もし、受信したセカンダリセルグループの設定のSpCellの設定(spCellConfig)にreconfigurationWithSyncが含まれていたら、そのSpCellにおいてランダムアクセス手順を開始する。
  (F)もし、MCGまたはSCGのSpCellの設定(spCellConfig)にreconfigurationWithSyncが含まれており、NRのセルグループにおいて上記ランダムアクセス手順が成功裏に完了したら、そのセルグループのタイマーT304を停止する。
The RRC entity of the terminal device that has received the RRCReconfiguration message may perform some or all of (A) to (F) below. A terminal device that receives the RRCReconfiguration message may perform other processing.
(A) If masterCellGroup is included in RRCReconfiguration, process (BD-1) is executed for the master cell group based on this masterCellGroup.
(B) If secondaryCellGroup is included in RRCReconfiguration, the process (BD-1) is executed for the secondary cell group based on this secondaryCellGroup.
(C) If radioBearerConfig is included in RRCReconfiguration, configure radio bearers based on this radioBearerConfig.
(D) Set the content to be included in the RRC reconfiguration complete message.
(E) If reconfigurationWithSync is included in the SpCell configuration (spCellConfig) of the received secondary cell group configuration, the random access procedure is started in that SpCell.
(F) If reconfigurationWithSync is included in the MCG or SCG SpCell configuration (spCellConfig) and the random access procedure is successfully completed in the NR cell group, timer T304 of that cell group is stopped.
 (処理BD-1)
  端末装置のRRCエンティティは、下記(A)から(G)の一部または全部を実行(Perform)してよい。
  (A)もし、CellGroupConfigが、reconfigurationWithSyncを含むspCellConfigを含んでいたら、端末装置のRRCエンティティは、下記(1)から(3)の一部または全部を実行(Perform)する。
   (1)処理(BD-2)を実行する。
   (2)すべてのサスペンドされた無線ベアラを再開(Resume)させる。
   (3)すべての無線ベアラに対するSCGの送信が、もしサスペンドされていたら再開させる。
  (B)もし、CellGroupConfigにrlc-BearerToReleaseListが含まれていたら、このrlc-BearerToReleaseListに基づき、RLCベアラの解放を実行する。
  (C)もし、CellGroupConfigにrlc-BearerToAddModListが含まれていたら、このrlc-BearerToAddModListに基づき、RLCベアラの追加および/または修正を実行する。
  (D)もし、CellGroupConfigにmac-CellGroupConfigが含まれていたら、このmac-CellGroupConfigに基づき、このセルグループのMACエンティティを設定する。
  (E)もし、CellGroupConfigにsCellToReleaseListが含まれていたら、このsCellToReleaseListに基づき、SCellの解放を実行する。
  (F)もし、CellGroupConfigにspCellConfigが含まれていたら、このspCellConfigに基づき、SpCellを設定する。
  (G)もし、CellGroupConfigにsCellToAddModListが含まれていたら、このsCellToAddModListに基づき、SCellの追加および/または修正を実行する。
(Processing BD-1)
The RRC entity of the terminal device may perform some or all of (A) to (G) below.
(A) If CellGroupConfig includes spCellConfig including reconfigurationWithSync, the RRC entity of the terminal device performs some or all of (1) to (3) below.
(1) Execute processing (BD-2).
(2) Resume all suspended radio bearers.
(3) Resume SCG transmission for all radio bearers if suspended.
(B) If rlc-BearerToReleaseList is included in CellGroupConfig, release the RLC bearer based on this rlc-BearerToReleaseList.
(C) If the CellGroupConfig contains rlc-BearerToAddModList, perform RLC bearer addition and/or modification based on this rlc-BearerToAddModList.
(D) If CellGroupConfig contains mac-CellGroupConfig, configure the MAC entity of this cell group based on this mac-CellGroupConfig.
(E) If sCellToReleaseList is included in CellGroupConfig, release the SCell based on this sCellToReleaseList.
(F) If spCellConfig is included in CellGroupConfig, set SpCell based on this spCellConfig.
(G) If CellGroupConfig contains sCellToAddModList, then perform SCell addition and/or modification based on this sCellToAddModList.
 (処理BD-2)
  端末装置のRRCエンティティは、下記(A)から(G)の一部または全部を実行(Perform)してよい。
  (A)もし、ASセキュリティが活性化されていなければ、RRC_IDLEに遷移するための処理を実行してプロシージャを終了する。
  (B)(設定の対象となる)SpCellのためのタイマーT304をreconfigurationWithSyncに含まれるt304の値を用いてスタートする。
  (C)もし、下りリンクの周波数情報(frequencyInfoDL)がreconfigurationWithSyncに含まれていたら、frequencyInfoDLで示されるSSB周波数における、reconfigurationWithSyncに含まれる物理セル識別子(physCellId)で示されるセルを、ターゲットのSpCellであると判断する。
  (D)もし、下りリンクの周波数情報(frequencyInfoDL)がreconfigurationWithSyncに含まれていなければ、元のSpCell(Source SpCell)のSSB周波数における、reconfigurationWithSyncに含まれる物理セル識別子(physCellId)で示されるセルを、ターゲットのSpCellであると判断する。
  (E)ターゲットのSpCellの下りリンク同期を開始する。
  (F)ターゲットSpCellのMIBを取得(Aquire)する。
  (G)もし特定のベアラ(DAPSベアラ)が設定されていなければ。下記の(1)から(4)の一部または全部を実行する。
   (1)このセルグループのMACエンティティをリセットする。
   (2)もし、このセルグループに、SCellToAddModListに含まれないSCellが設定されていたら、このSCellを不活性状態とする。
   (3) newUE-Identityの値をこのセルグループのC-RNTIとして適用する。
   (4)受信したspCellConfigCommonに基づき下位レイヤを設定する。
(Processing BD-2)
The RRC entity of the terminal device may perform some or all of (A) to (G) below.
(A) If AS security is not activated, execute processing to transition to RRC_IDLE and terminate the procedure.
(B) Start timer T304 for the SpCell (to be configured) using the value of t304 included in reconfigurationWithSync.
(C) If downlink frequency information (frequencyInfoDL) is included in reconfigurationWithSync, the cell indicated by the physical cell identifier (physCellId) included in reconfigurationWithSync in the SSB frequency indicated by frequencyInfoDL is the target SpCell. I judge.
(D) If downlink frequency information (frequencyInfoDL) is not included in reconfigurationWithSync, the cell indicated by the physical cell identifier (physCellId) included in reconfigurationWithSync in the SSB frequency of the original SpCell (Source SpCell), Determine that it is the target SpCell.
(E) Start downlink synchronization of the target SpCell.
(F) Acquire the MIB of the target SpCell.
(G) If no specific bearer (DAPS bearer) has been configured. Execute some or all of (1) to (4) below.
(1) reset the MAC entity for this cell group;
(2) If a SCell not included in SCellToAddModList is set in this cell group, this SCell is made inactive.
(3) apply the value of newUE-Identity as the C-RNTI for this cell group;
(4) Configure lower layers based on the received spCellConfigCommon.
 次にSCGの活性化(Activation)、および不活性化(Deactivation)について説明する。 Next, I will explain the activation and deactivation of the SCG.
 NRにおいて、SCGが不活性化された状態(SCG不活性状態)は、RRC_CONNECTED状態の一部として含まれてもよい。 In NR, the state in which the SCG is deactivated (SCG inactive state) may be included as part of the RRC_CONNECTED state.
 NRにおいて、SCGが不活性化された状態(SCG不活性状態)とは、端末装置が、そのSCGのSpCell(PSCell)、および/またはそのSCGのすべてのセルにおいて下記(A)から(J)の一部または全部を実施する状態であってよい。また、SCGが不活性化された状態において、そのSCGにおいて端末に設定されているすべてのSCellは不活性化されてもよい。
  (A)そのセルにおいてSRSを送信しない。
  (B)そのセルのためのCSIを報告しない。
  (C)そのセルでPUCCH、UL-SCH、および/またはRACHを送信しない。
  (D) そのセルのPDCCH、および/またはそのセルに対するPDCCHをモニタしない。
  (E) そのセルでのUL-SCH送信のための上りリンクグラントを示すC-RNTI、MCS-C-RNTI、および/またはCS-RNTIにアドレスされた、そのセルのPDCCH、および/またはそのセルに対するPDCCHをモニタしない。
  (F)そのセルで、自動増幅制御(Automatic Gain Control:AGC)を行わない。
  (G)そのセルで、ビーム失敗回復を含むビーム制御(ビームマネジメント)を行わない。
  (H)そのセルで、無線リンクモニタリング(Radio Link Monitoring:RLM)を行わない。
  (I) そのセルで、休眠BWPに設定されたBWPを活性化されたBWP(Active BWPとも称する)とする。
  (J) そのセルの活性化された休眠BWPにおいてC-RNTIをPDCCHでモニタしない。
In NR, the state in which the SCG is deactivated (SCG inactive state) means that the terminal device performs the following (A) to (J) in all cells of the SCG SpCell (PSCell) and / or the SCG may be in a state of implementing part or all of Also, in a state in which an SCG is deactivated, all SCells configured for terminals in that SCG may be deactivated.
(A) Do not transmit SRS in that cell.
(B) Do not report CSI for that cell.
(C) do not transmit PUCCH, UL-SCH, and/or RACH on that cell;
(D) Do not monitor the PDCCH for that cell and/or the PDCCH for that cell.
(E) the cell's PDCCH addressed to the C-RNTI, MCS-C-RNTI, and/or CS-RNTI indicating an uplink grant for UL-SCH transmission in that cell, and/or that cell; Do not monitor PDCCH for
(F) No Automatic Gain Control (AGC) in the cell.
(G) Do not perform beam management, including beam failure recovery, in that cell.
(H) Do not perform Radio Link Monitoring (RLM) in that cell.
(I) Make the BWP set to the dormant BWP in the cell the activated BWP (also referred to as the Active BWP).
(J) Do not monitor C-RNTI on PDCCH in the activated dormant BWP of that cell.
 また、SCG不活性状態になることを、不活性化されたSCGへの入場(Entering)と呼んでもよい。また、SCG不活性状態は、SCGのすべてのセルのActive BWPが休眠BWPである状態であってもよい。また、上述のSCG不活性状態は、RRCエンティティ、または他のエンティティから不活性化されたSCGへの入場が指示された場合に、後述するSCGが活性化された状態(SCG活性状態)から遷移する状態であってもよい。  In addition, entering the SCG inactive state may be referred to as entering an inactivated SCG. Also, the SCG inactive state may be a state in which the active BWPs of all cells of the SCG are dormant BWPs. In addition, the above-mentioned SCG inactive state transitions from the SCG activated state (SCG active state) described later when an RRC entity or another entity instructs to enter the deactivated SCG may be in a state where
 NRにおいて、SCGが活性化された状態(SCG活性状態)は、RRC_CONNECTED状態の一部として含まれてよい。 In NR, the SCG activated state (SCG active state) may be included as part of the RRC_CONNECTED state.
 NRにおいて、SCGが活性化された状態(SCG活性状態)とは、端末装置が、そのSCGのSpCell(PSCell)、および/またはそのSCGの何れかのセルにおいて下記(A)から(J)の一部または全部を実施する状態であってよい。
  (A)そのセルにおいてSRSを送信する。
  (B)そのセルのためのCSIを報告する。
  (C)そのセルでPUCCH、UL-SCH、および/またはRACHを送信する。
  (D)そのセルのPDCCH、および/またはそのセルに対するPDCCHをモニタする。
  (E)そのセルでのUL-SCH送信のための上りリンクグラントを示すC-RNTI、MCS-C-RNTI、および/またはCS-RNTIにアドレスされた、そのセルのPDCCH、および/またはそのセルに対するPDCCHをモニタする。
  (F)そのセルで自動増幅制御(Automatic Gain Control:AGC)を行う。
  (G)そのセルで、ビーム失敗回復を含むビーム制御(ビームマネジメント)を行う。
  (H)そのセルで、無線リンクモニタリング(Radio Link Monitoring:RLM)を行う。
  (I)そのセルで、休眠BWPに設定されたBWPを活性化されたBWP(Active BWP)としない。
  (J) そのセルの活性化されたBWPにおいてC-RNTIをPDCCHでモニタする。
In NR, the state in which the SCG is activated (SCG active state) means that the terminal device performs the following (A) to (J) in the SpCell (PSCell) of the SCG and/or any cell of the SCG It may be in a state in which part or all of it is implemented.
(A) transmit SRS in that cell;
(B) Report the CSI for that cell.
(C) transmit PUCCH, UL-SCH and/or RACH on that cell;
(D) monitor the PDCCH for that cell and/or the PDCCH for that cell;
(E) the cell's PDCCH addressed to the C-RNTI, MCS-C-RNTI, and/or CS-RNTI indicating an uplink grant for UL-SCH transmission in that cell, and/or that cell; monitor the PDCCH for
(F) Perform Automatic Gain Control (AGC) on the cell.
(G) Perform beam management, including beam failure recovery, in that cell.
(H) perform radio link monitoring (RLM) in the cell;
(I) In that cell, the BWP set to the dormant BWP is not set to the activated BWP (Active BWP).
(J) Monitor the C-RNTI on the PDCCH in the activated BWP of that cell.
 また、SCG活性状態になることを、活性化されたSCGへの入場(Entering)と呼んでもよい。また、SCG活性状態は、SCGのSpCellおよび/または1個以上のSCellのActive BWPが休眠BWPでない状態であってもよい。また、上述のSCG不活性状態は、RRCエンティティ、または他のエンティティから不活性化されたSCGからの退場(Leaving)が指示された場合に、SCGが不活性化された状態(SCG不活性状態)から遷移する状態であってもよい。 Also, entering the SCG active state may be called entering the activated SCG. Also, the SCG active state may be a state in which the SCG SpCell and/or one or more SCell Active BWPs are not dormant BWPs. In addition, the above-mentioned SCG inactive state is a state in which the SCG is inactivated (SCG inactive state ) may be a transition state.
 NRにおいて、端末装置は、以下の(A)から(B)の一部または全部の情報を受信することに基づいて、SCGを不活性状態に遷移させてもよい(言い換えると、SCGを不活性化してもよい)。なお、前記情報を含むメッセージや制御要素は、当該SCGから端末装置に通知されてもよいし、当該SCG以外のセルグループから端末装置に通知されてもよい。また、前記情報はRRCメッセージ、MAC制御要素、または物理制御チャネルで端末装置に通知されてもよい。
  (A)SCGの不活性化を指示する情報
  (B)SpCellの不活性化を指示する情報
In NR, the terminal device may transition the SCG to the inactive state based on receiving some or all of the following information (A) to (B) (in other words, the SCG is inactive may be changed). Note that the message and control elements including the information may be notified from the SCG to the terminal device, or may be notified to the terminal device from a cell group other than the SCG. Also, the information may be notified to the terminal device by an RRC message, MAC control element, or physical control channel.
(A) Information instructing SCG inactivation (B) Information instructing SpCell inactivation
 また、端末装置は、SCGの不活性化に関するタイマーに基づいて、SCGを活性状態から不活性状態に遷移させてもよい。また、端末装置は、PSCellの不活性化に関するタイマーに基づいて、SCGを活性状態から不活性状態に遷移させてもよい。 Also, the terminal device may transition the SCG from the active state to the inactive state based on the timer for deactivating the SCG. Also, the terminal device may transition the SCG from the active state to the inactive state based on a timer related to PSCell deactivation.
 NRにおいて、端末装置は、以下の(A)から(D)の一部または全部の情報を受信することに基づいて、SCGを不活性状態から活性状態に遷移させてもよい(言い換えると、SCGを活性化してもよい)。なお、上記情報を含むメッセージや制御要素は、当該SCG以外のセルグループから端末装置に通知されてもよい。また、上記情報はRRCメッセージ、MAC制御要素、または物理制御チャネルで端末装置に通知されてもよい。
  (A)SCGの活性化を指示する情報
  (B)SCGの不活性化状態からの再開(Resume)を指示する情報
  (C)SpCellの活性化を指示する情報
  (D)SpCellの不活性化状態からの再開を指示する情報
In NR, the terminal device may transition the SCG from the inactive state to the active state based on receiving some or all of the following (A) to (D) information (in other words, the SCG may be activated). Note that a message or control element including the above information may be notified to the terminal device from a cell group other than the SCG. Also, the above information may be notified to the terminal device using an RRC message, MAC control element, or physical control channel.
(A) Information instructing activation of SCG (B) Information instructing to resume from inactive state of SCG (C) Information instructing activation of SpCell (D) Inactivated state of SpCell information to restart from
 また、端末装置は、SCGの不活性化に関するタイマーに基づいて、SCGを不活性状態から活性状態に遷移させてもよい。また、端末装置は、PSCellの不活性化に関するタイマーに基づいて、SCGを不活性状態から活性状態に遷移させてもよい。 Also, the terminal device may cause the SCG to transition from the inactive state to the active state based on the timer for deactivating the SCG. Also, the terminal device may transition the SCG from the inactive state to the active state based on a timer related to PSCell deactivation.
 また、端末装置は、MAC SDUが含まれるMAC PDUを送信するためにトリガされたスケジューリングリクエストに起因するランダムアクセス手順を開始する場合に、SCGを不活性状態から活性状態に遷移させてもよい。また、端末装置は、ランダムアクセス手順を開始する場合に、SCGを不活性状態から活性状態に遷移させてもよい。 Also, the terminal device may transition the SCG from the inactive state to the active state when starting a random access procedure caused by a scheduling request triggered to transmit a MAC PDU containing a MAC SDU. Also, the terminal device may transition the SCG from the inactive state to the active state when starting the random access procedure.
 また、端末装置は、スケジューリングリクエストに起因する(言い換えると、MACエンティティ自身が開始した)ランダムアクセス手順を開始する場合に、SCGを不活性状態から活性状態に遷移させてもよい。また、端末装置のMACエンティティは、SCGを活性化する指示、不活性化されたSCGの再開の指示、SpCellの休眠状態からの再開の指示、および/またはその他の情報を端末装置のRRCエンティティ、PHYエンティティ、および/または他のMACエンティティから取得してもよい。 Also, the terminal device may transition the SCG from the inactive state to the active state when starting a random access procedure caused by a scheduling request (in other words, initiated by the MAC entity itself). In addition, the MAC entity of the terminal device sends an instruction to activate the SCG, an instruction to resume the deactivated SCG, an instruction to resume SpCell from dormancy, and/or other information to the RRC entity of the terminal device, It may be obtained from the PHY entity and/or other MAC entities.
 なお、SCGの不活性化とは、当該セルグループのSpCellの特定のBWP(例えば休眠BWP)が活性化されることであってもよい。また、SCGの不活性化は、SCGの休眠(Dormant)、またはSCGの休止(SCG suspention)と称されてもよい。 It should be noted that the deactivation of the SCG may be the activation of a specific BWP (for example, dormant BWP) of SpCells in the cell group. Inactivation of SCG may also be referred to as SCG dormant or SCG suspension.
 SCGが不活性化された状態であるときには、SCGにおいてすべての上りリンク送信が休止(サスペンド)されてもよい。この場合、そのSCGに関する情報は、他のセルグループ(例えばMCG)において送信されてもよい。または、そのSCGに関する情報は、不活性化された状態から退出(Leaving)したそのSCG(活性化されたSCG)において送信されてもよい。また、SCGが不活性化された状態であるときには、SCGのRLCベアラに対応付けられた無線ベアラの一部または全部が休止(サスペンド)されてもよい。 All uplink transmissions may be paused (suspended) in the SCG when the SCG is in a deactivated state. In this case, information about that SCG may be sent in another cell group (eg, MCG). Alternatively, the information about that SCG may be sent in that SCG that has left the deactivated state (activated SCG). Also, when the SCG is in a deactivated state, some or all of the radio bearers associated with the RLC bearers of the SCG may be paused (suspended).
 MACエンティティによるMAC CEを含むMAC PDUを送信するためのスケジューリングリクエストのトリガによって、またはMACエンティティによってダイレクトに、SpCell(PSCell)におけるランダムアクセス手順が不活性化されたSCGにおいて開始される場合があってもよい。このとき、MAC PDUにはMAC SDUが含まれないかもしれない。 The random access procedure in the SpCell (PSCell) may be initiated in the deactivated SCG by triggering a scheduling request by the MAC entity to send a MAC PDU containing the MAC CE or directly by the MAC entity. good too. At this time, the MAC PDU may not contain the MAC SDU.
 また一方で、ユーザデータやRRCメッセージなどの上位レイヤからのデータ(MAC SDU)を含むMAC PDUを送信するためのスケジューリングリクエストのトリガによって、SpCell(PSCell)におけるランダムアクセス手順が不活性化されたSCGにおいて開始される場合があってもよい。 On the other hand, the SCG in which the random access procedure in the SpCell (PSCell) is deactivated by triggering a scheduling request to transmit a MAC PDU containing data (MAC SDU) from higher layers such as user data and RRC messages. may be started at
 SCGの不活性化された状態からの再開(SCGの活性化)は、休眠SCGからの退出(Leaving)と称してもよい。また、SCGの不活性化された状態からの再開とは、当該セルグループのSpCellにおいて休眠BWPから他の(休眠BWPでない)BWPにBWPスイッチすることであってもよい。 Resuming the SCG from an inactivated state (activating the SCG) may be referred to as leaving the dormant SCG. Also, resuming from the inactivated state of the SCG may be BWP switching from a dormant BWP to another (non-dormant BWP) BWP in the SpCell of the cell group.
 また、SCGの不活性化された状態からの再開は、SCGの活性化(SCG Activation)、またはSCGの再活性化(SCG re-activation)と称されてもよい。 In addition, the resumption of SCG from an inactivated state may be referred to as SCG activation or SCG re-activation.
 SCGの不活性化を実行する端末装置は、当該SCGにおいて、以下の(A)から(F)の一部または全部の処理を実行してよい。
  (A)すべてのSCellを不活性状態とする。
  (B)活性状態のSCellに関連付けられたSCell不活性タイマーのすべてが満了したとみなす。
  (C)休眠状態のSCellに関連付けられたSCell不活性タイマーのすべてが満了したとみなす。
  (D)すべてのSCellに関連付けられたSCell不活性タイマーをスタートまたは再スタートしない。
  (E)SCellを活性化させるMAC CEを無視する。例えば、前記処理(AD)において、SCellを活性化させるMAC CEを受信して、かつ、SCGの不活性化を指示されてない(またはSCGが不活性化された状態でない)場合に、処理(AD-1)を行う。
  (F)前記処理(AD-2)を実行する。例えば、前記処理(AD)において、SCGの不活性化を指示された(またはSCGが不活性化された状態となった)場合に、処理(AD-2)を行う。
A terminal device that performs SCG deactivation may perform some or all of the following processes (A) to (F) in the SCG.
(A) All SCells are inactivated.
(B) Assume that all of the SCell inactivity timers associated with the active SCell have expired.
(C) Assume that all SCell inactivity timers associated with the dormant SCell have expired.
(D) Do not start or restart the SCell inactivity timers associated with all SCells.
(E) Ignore MAC CEs that activate SCells. For example, in the processing (AD), if MAC CE for activating SCell is received and SCG deactivation is not instructed (or SCG is not deactivated), processing ( AD-1) is performed.
(F) Execute the above process (AD-2). For example, when inactivation of SCG is instructed (or SCG is inactivated) in the processing (AD-2), processing (AD-2) is performed.
 SCGの不活性化された状態からの再開を実行する端末装置は、当該SCGにおいて、以下の(A)から(D)の一部または全部の処理を実行してよい。
  (A)すべてのSCellを活性状態とするために、処理(AD-1)を実行する。
  (B)すべてのSCellを不活性状態のままとする。ただし、不活性化された状態ではないので、例えば、前記処理(AD)において、SCellを活性化させるMAC CEを受信した場合、SCGの不活性化を指示されてない(またはSCGが不活性化された状態でない)ので、処理(AD-1)を行うようにしてもよい。
  (C)SCGの不活性化された状態からの再開をRRCメッセージに基づいて実行する場合、このRRCメッセージに、一部または全部のSCellに対するランダムアクセスに関するパラメータが含まれるなら、通知されたパラメータに基づき、対象のSCellにおいてランダムアクセス手順を開始する。
  (D)SCGの不活性化された状態からの再開をRRCメッセージに基づいて実行する場合、このRRCメッセージに、SCellの状態を指定する情報が含まれるなら、各SCellの状態を活性状態にするか不活性状態にするかを、その情報に基づき判断する。
A terminal device that resumes an SCG from an inactivated state may perform some or all of the following (A) to (D) processes in the SCG.
(A) Execute processing (AD-1) to activate all SCells.
(B) Leave all SCells inactive. However, since it is not in an inactivated state, for example, in the processing (AD), when a MAC CE for activating SCell is received, deactivation of SCG is not instructed (or SCG is inactivated is not in the state of being completed), processing (AD-1) may be performed.
(C) When performing resumption from the SCG deactivated state based on the RRC message, if this RRC message contains parameters related to random access to some or all SCells, the notified parameters Based on this, a random access procedure is initiated in the target SCell.
(D) When resuming the SCG from a deactivated state based on an RRC message, if this RRC message contains information specifying the state of the SCell, set the state of each SCell to the active state. based on that information.
 以上の説明をベースとして、本発明の様々な実施の形態を説明する。なお、以下の説明で省略される各処理については上記で説明した各処理が適用されてよい。 Various embodiments of the present invention will be described based on the above description. In addition, each process demonstrated above may be applied about each process abbreviate|omitted by the following description.
 図5は本発明の実施の形態における端末装置(UE122)の構成を示すブロック図である。なお、説明が煩雑になることを避けるために、図5では、本発明の一形態と密接に関連する主な構成部のみを示す。 FIG. 5 is a block diagram showing the configuration of the terminal device (UE 122) according to the embodiment of the present invention. In order to avoid complicating the description, FIG. 5 shows only main components closely related to one embodiment of the present invention.
 図5に示すUE122は、基地局装置よりRRCメッセージ等を受信する受信部500、及び受信したメッセージに含まれるパラメータに従って処理を行う処理部502、および基地局装置にRRCメッセージ等を送信する送信部504から成る。上述の基地局装置とは、gNB108であってよい。また、処理部502には様々な層(例えば、物理層、MAC層、RLC層、PDCP層、SDAP層、RRC層、およびNAS層)の機能の一部または全部が含まれてよい。すなわち、処理部502には、物理層処理部、MAC層処理部、RLC層処理部、PDCP層処理部、SDAP層処理部、RRC層処理部、およびNAS層処理部の一部または全てが含まれてよい。 UE 122 shown in FIG. 5 includes a receiving unit 500 that receives an RRC message or the like from a base station device, a processing unit 502 that performs processing according to parameters included in the received message, and a transmitting unit that transmits the RRC message or the like to the base station device. consists of 504. The base station apparatus described above may be the gNB 108 . Also, processing unit 502 may include some or all of the functionality of various layers (eg, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer). That is, the processing unit 502 includes part or all of the physical layer processing unit, MAC layer processing unit, RLC layer processing unit, PDCP layer processing unit, SDAP layer processing unit, RRC layer processing unit, and NAS layer processing unit. can be
 図6は本発明の実施の形態における基地局装置の構成を示すブロック図である。なお、説明が煩雑になることを避けるために、図6では、本発明の一形態と密接に関連する主な構成部のみを示す。上述の基地局装置とは、gNB108であってよい。 FIG. 6 is a block diagram showing the configuration of the base station apparatus according to the embodiment of the present invention. In order to avoid complicating the description, FIG. 6 shows only main components closely related to one embodiment of the present invention. The base station apparatus described above may be the gNB 108 .
 図6に示す基地局装置は、UE122へRRCメッセージ等を送信する送信部600、及びパラメータを含むRRCメッセージを作成し、UE122に送信することにより、UE122の処理部502に処理を行わせる処理部602、およびUE122からRRCメッセージ等を受信する受信部604から成る。また、処理部602には様々な層(例えば、物理層、MAC層、RLC層、PDCP層、SDAP層、RRC層、およびNAS層)の機能の一部または全部が含まれてよい。すなわち、処理部602には、物理層処理部、MAC層処理部、RLC層処理部、PDCP層処理部、SDAP層処理部、RRC層処理部、およびNAS層処理部の一部または全部が含まれてよい。 The base station apparatus shown in FIG. 6 includes a transmission unit 600 that transmits an RRC message and the like to UE 122, and a processing unit that creates an RRC message including parameters and transmits it to UE 122, thereby allowing processing unit 502 of UE 122 to perform processing. 602 and a receiver 604 that receives RRC messages and the like from the UE 122 . Also, processing unit 602 may include some or all of the functionality of various layers (eg, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer). That is, the processing unit 602 includes part or all of the physical layer processing unit, MAC layer processing unit, RLC layer processing unit, PDCP layer processing unit, SDAP layer processing unit, RRC layer processing unit, and NAS layer processing unit. can be
 以下に本発明の実施の形態における、端末装置の処理の様々な例を説明する。 Various examples of processing of the terminal device according to the embodiment of the present invention will be described below.
 図14は本発明の実施の形態における、端末装置(UE122)の処理の一例を示す図である。 FIG. 14 is a diagram showing an example of processing of the terminal device (UE 122) according to the embodiment of the present invention.
 図14の処理において、端末装置の送信SDAPエンティティは、端末装置のSDAPの上位レイヤから第1のQoSフローに対する第1のSDAP SDUを受けとる(ステップS1400)。 In the process of FIG. 14, the transmitting SDAP entity of the terminal device receives the first SDAP SDU for the first QoS flow from the SDAP upper layer of the terminal device (step S1400).
 端末装置の送信SDAPエンティティは、保持している、QoSフローとDRBとのマッピングルールに、前記第1のQoSフローのためのルールが存在しない場合、前記SDAP SDUをデフォルトDRBにマップする(ステップS1402)。なお、RRC再設定メッセージに含まれる、無線ベアラを追加、修正、および/または解放するための設定(radioBearerConfig)により、PDUセッションに対して最大1つのデフォルトDRBが端末装置に設定されてよい。 The transmitting SDAP entity of the terminal device maps the SDAP SDU to the default DRB if there is no rule for the first QoS flow in the QoS flow-DRB mapping rules it retains (step S1402 ). Note that a maximum of one default DRB for a PDU session may be set in the terminal device by the configuration (radioBearerConfig) for adding, modifying, and/or releasing radio bearers included in the RRC reconfiguration message.
 端末装置の送信SDAPエンティティは、保持している、QoSフローとDRBとのマッピングルールに前記第1のQoSフローのためのルールが存在する場合、前記SDAP SDUを前記ルールによって前記第1のQoSフローに対応付けられたDRBにマップする(ステップS1404)。 If a rule for the first QoS flow exists in the QoS flow-DRB mapping rule held by the transmitting SDAP entity of the terminal device, the SDAP SDU is mapped to the first QoS flow according to the rule. is mapped to the DRB associated with (step S1404).
 端末装置の送信SDAPエンティティは、前記第1のSDAP SDUを用いて上りリンクSDAP dataPDUを構築(construct)する(ステップS1406)。 The transmitting SDAP entity of the terminal device constructs an uplink SDAP data PDU using the first SDAP SDU (step S1406).
 端末装置のSDAPエンティティは、前記SDAP SDUがマップされたDRBが、後述する第1の条件を満たすことに基づき、このDRBに対する上りリンクデータが到着したことを、端末装置のRRC層、またはSDAPの上位レイヤに通知する(ステップS1408)。 The SDAP entity of the terminal device notifies the RRC layer of the terminal device or the The upper layer is notified (step S1408).
 端末装置のSDAPエンティティは、前記SDAP SDUがマップされたDRBが、前記第1の条件を満たさないことに基づき、構築したSDAP data PDUを端末装置のSDAPの下位レイヤ(例えばPDCP層またはRLC層)に提出(submit)する(ステップS1410)。 The SDAP entity of the terminal device sends the constructed SDAP data PDU to a lower layer of the SDAP of the terminal device (such as the PDCP layer or the RLC layer) based on the fact that the DRB to which the SDAP SDU is mapped does not satisfy the first condition. (step S1410).
 前記第1の条件は、以下の(A)から(H)の条件の何れか、またはそれらの組み合わせであってよい。
  (A)そのDRB、および/またはそのDRBの送信がサスペンドされている
  (B)そのDRBが不活性化されたセルグループ(例えばSCG)のベアラである
  (C)そのDRB、および/またはそのDRBの送信が、セルグループ(例えばSCG)が不活性化されたことに基づきサスペンドされている
  (D)そのDRBが、不活性化されたセルグループ(例えばSCG)のRLCベアラと対応付けられている
  (E)そのDRBに対応付けられているRLCベアラのセルグループでの送信がサスペンドされている
  (F)複数のRLCエンティティがそのDRBに対応付けられている場合、プライマリRLCエンティティが不活性化されたセルグループ(例えばSCG)に存在する
  (G) 複数のRLCベアラがそのDRBに対応付けられている場合、そのDRBのプライマリパスが不活性化されたセルグループ(例えばSCG)に設定されている
  (H) 複数のRLCベアラがそのDRBに対応付けられている場合、そのDRBのプライマリパスが送信がサスペンドされたセルグループ(例えばSCG)に設定されている
The first condition may be any one of the following conditions (A) to (H) or a combination thereof.
(A) the DRB and/or transmission of the DRB is suspended (B) the DRB is a deactivated cell group (e.g. SCG) bearer (C) the DRB and/or the DRB is suspended based on the cell group (e.g. SCG) being deactivated (D) the DRB is associated with the RLC bearer of the deactivated cell group (e.g. SCG) (E) transmission on the cell group of the RLC bearer associated with that DRB is suspended; (F) if multiple RLC entities are associated with that DRB, the primary RLC entity is deactivated; (G) If more than one RLC bearer is associated with that DRB, the DRB's primary path is set to a deactivated cell group (e.g. SCG) (H) If multiple RLC bearers are associated with that DRB, the primary path of that DRB is set to a cell group whose transmission is suspended (e.g. SCG)
 ステップS1408で上りリンクデータの到着を通知された、端末装置のRRC層、またはSDAPの上位レイヤのエンティティは、不活性化されたセルグループを活性化するための処理を行う。例えば、上りリンクデータの到着を通知されたRRCエンティティは、不活性化されたセルグループの活性化を要求する情報(および/または不活性化されたセルグループで上りリンクデータが発生したことを示す情報)を含むRRCメッセージを、例えばMCGのシグナリング無線ベアラを用いて、基地局装置に送信してもよい。また、例えば、上りリンクデータの到着を通知された、端末装置のRRC層は、不活性化されたセルグループの活性化の手順を開始してもよい。また、例えば、上りリンクデータの到着を通知された、端末装置のSDAPの上位レイヤのエンティティは、セルグループの活性化の手順を開始するようRRC層に指示してもよい。また、例えば、上りリンクデータの到着を通知された、端末装置のRRC層は、不活性化されたセルグループのセルにおいてランダムアクセス手順を開始するようMAC層に指示してもよい。 The entity of the RRC layer of the terminal device or the upper layer of SDAP, which was notified of the arrival of the uplink data in step S1408, performs processing to activate the deactivated cell group. For example, the RRC entity notified of the arrival of uplink data is provided with information requesting activation of the deactivated cell group (and/or indicating that uplink data has occurred in the deactivated cell group information) may be transmitted to the base station apparatus, for example, using the MCG signaling radio bearer. Also, for example, the RRC layer of the terminal device that has been notified of the arrival of uplink data may initiate a procedure for activating a deactivated cell group. Also, for example, an SDAP higher layer entity of the terminal device that has been notified of the arrival of uplink data may instruct the RRC layer to start the cell group activation procedure. Also, for example, the RRC layer of the terminal device, which has been notified of the arrival of uplink data, may instruct the MAC layer to initiate a random access procedure in a cell of the deactivated cell group.
 また、ステップS1408で上りリンクデータの到着を通知されたエンティティの前記処理は、例えば基地局装置から通知(設定)されたセルグループの自律的な活性化の可否に関する情報に基づき、何れの処理を行うかが決定されてもよい。 Further, the processing of the entity notified of the arrival of uplink data in step S1408 is, for example, based on the information regarding the possibility of autonomous activation of the cell group notified (set) from the base station device, which processing is performed. It may be decided whether to do so.
 なお、ステップS1408において、このDRBに対する上りリンクデータが到着したことを、端末装置のRRC層、またはSDAPの上位レイヤに通知したSDAPエンティティは、前記SDAP SDUがマップされたDRBが、第1の条件を満たさないことに基づき、構築したSDAP data PDUを端末装置のSDAPの下位レイヤ(例えばPDCP層またはRLC層)に提出(submit)してもよいし、第1の条件を満たすか否かにかかわらず、構築したSDAP data PDUを端末装置のSDAPの下位レイヤ(例えばPDCP層またはRLC層)に提出(submit)してもよい。 In addition, in step S1408, the SDAP entity that has notified the RRC layer of the terminal device or the upper layer of SDAP that the uplink data for this DRB has arrived indicates that the DRB to which the SDAP SDU is mapped meets the first condition. is not satisfied, the constructed SDAP data PDU may be submitted to the SDAP lower layer of the terminal device (e.g. PDCP layer or RLC layer), regardless of whether the first condition is satisfied. Instead, the constructed SDAP data PDU may be submitted to the SDAP lower layer (eg PDCP layer or RLC layer) of the terminal device.
 また、ステップS1408における、「このDRBに対する上りリンクデータが到着したこと」は、他の情報であってもよい。例えば、「このDRBに対する上りリンクデータが到着したこと」は、以下の(A)から(D)の情報の何れか、またはそれらの組み合わせであってよいし、これ以外の情報であってもよい。
  (A)送信がサスペンドされたセルグループにおける上りリンクデータが到着したこと
  (B)サスペンドされた無線ベアラに対する上りリンクデータが到着したこと
  (C)不活性化されたセルグループの活性化が必要であること
  (D)このDRBに対する上りリンクデータの送信が行えないこと
Also, "the arrival of uplink data for this DRB" in step S1408 may be other information. For example, "that uplink data for this DRB has arrived" may be any of the following information (A) to (D), a combination thereof, or information other than this: .
(A) Arrival of uplink data in a cell group whose transmission is suspended (B) Arrival of uplink data for a suspended radio bearer (C) Activation of a deactivated cell group is required (D) Uplink data cannot be transmitted to this DRB
 これにより、端末装置が不活性化されたセルグループに対応付けられた無線ベアラの上りリンクの送信を効率的におこなうことができる。 As a result, it is possible to efficiently perform uplink transmission of the radio bearer associated with the cell group in which the terminal device is deactivated.
 図15は本発明の実施の形態における、端末装置(UE122)の処理の一例を示す図である。 FIG. 15 is a diagram showing an example of processing of the terminal device (UE 122) according to the embodiment of the present invention.
 図15の処理において、端末装置の送信PDCPエンティティは、端末装置のPDCPの上位レイヤからPDCP SDUを受けとる(ステップS1500)。 In the process of FIG. 15, the transmitting PDCP entity of the terminal device receives the PDCP SDU from the higher layer of PDCP of the terminal device (step S1500).
 端末装置の送信PDCPエンティティは、必要に応じて、PDCP SDUのヘッダ圧縮、暗号化、および/または完全性保護を実行してよい(ステップS1502)。 The transmitting PDCP entity of the terminal device may perform header compression, encryption, and/or integrity protection of PDCP SDUs as necessary (step S1502).
 端末装置の送信PDCPエンティティは、この送信PDCPエンティティに対応付けられた無線ベアラが、後述する第1の条件を満たすことに基づき、この無線ベアラに対する上りリンクデータが到着したことを、端末装置のPDCPの上位レイヤ(例えばRRC)に通知する(ステップS1504)。 The transmitting PDCP entity of the terminal device detects that uplink data for this radio bearer has arrived based on the fact that the radio bearer associated with this transmitting PDCP entity satisfies a first condition to be described later. is notified to the upper layer (for example, RRC) (step S1504).
 端末装置の送信PDCPエンティティは、この送信PDCPエンティティに対応付けられた無線ベアラが、後述する第1の条件を満たさないことに基づき、PDCP SDUに基づき構築されたPDCP PDUを端末装置のRLCエンティティに提出する(ステップS1506)。 The transmitting PDCP entity of the terminal device transmits the PDCP PDU constructed based on the PDCP SDU to the RLC entity of the terminal device based on the fact that the radio bearer associated with this transmitting PDCP entity does not satisfy the first condition described later. Submit (step S1506).
 前記第1の条件は、以下の(A)から(H)の条件の何れか、またはそれらの組み合わせであってよい。
  (A)その無線ベアラ、および/またはその無線ベアラの送信がサスペンドされている
  (B)その無線ベアラが不活性化されたセルグループ(例えばSCG)のベアラである
  (C)その無線ベアラ、および/またはその無線ベアラの送信が、セルグループ(例えばSCG)が不活性化されたことに基づきサスペンドされている
  (D)その無線ベアラが、不活性化されたセルグループ(例えばSCG)のRLCベアラと対応付けられている
  (E)その無線ベアラに対応付けられているRLCベアラのセルグループでの送信がサスペンドされている
  (F)複数のRLCエンティティがその無線ベアラに対応付けられている場合、プライマリRLCエンティティが不活性化されたセルグループ(例えばSCG)に存在する
  (G) 複数のRLCベアラがその無線ベアラに対応付けられている場合、その無線ベアラのプライマリパスが不活性化されたセルグループ(例えばSCG)に設定されている
  (H) 複数のRLCベアラがその無線ベアラに対応付けられている場合、その無線ベアラのプライマリパスが送信がサスペンドされたセルグループ(例えばSCG)に設定されている
The first condition may be any one of the following conditions (A) to (H) or a combination thereof.
(A) the radio bearer and/or transmission of the radio bearer is suspended (B) the radio bearer is a bearer of a deactivated cell group (eg SCG) (C) the radio bearer, and /or the transmission of that radio bearer is suspended based on the cell group (e.g. SCG) being deactivated (D) the radio bearer is the RLC bearer of the deactivated cell group (e.g. SCG) (E) transmission in the cell group of the RLC bearer associated with that radio bearer is suspended (F) if multiple RLC entities are associated with that radio bearer, Primary RLC entity is in a deactivated cell group (e.g. SCG) (G) If multiple RLC bearers are associated with that radio bearer, the cell whose primary path for that radio bearer is deactivated set to a group (e.g. SCG) (H) If multiple RLC bearers are associated with that radio bearer, the primary path of that radio bearer is set to a cell group (e.g. SCG) whose transmission is suspended. ing
 ステップS1504で上りリンクデータの到着を通知された、端末装置のPDCPの上位レイヤ(例えばRRC層)のエンティティは、不活性化されたセルグループを活性化するための処理を行う。例えば、上りリンクデータの到着を通知されたRRCエンティティは、不活性化されたセルグループの活性化を要求する情報(および/または不活性化されたセルグループで上りリンクデータが発生したことを示す情報)を含むRRCメッセージを、例えばMCGのシグナリング無線ベアラを用いて、基地局装置に送信してもよい。また、例えば、上りリンクデータの到着を通知された、端末装置のPDCPの上位レイヤ(例えばRRC層)のエンティティは、セルグループの活性化の手順を開始してもよい。また、例えば、上りリンクデータの到着を通知された、端末装置のPDCPの上位レイヤ(例えばRRC層)のエンティティは、不活性化されたセルグループにおいてランダムアクセス手順を開始するようMAC層に指示してもよい。 The entity of the PDCP upper layer (for example, the RRC layer) of the terminal device that was notified of the arrival of the uplink data in step S1504 performs processing to activate the inactivated cell group. For example, the RRC entity notified of the arrival of uplink data is provided with information requesting activation of the deactivated cell group (and/or indicating that uplink data has occurred in the deactivated cell group information) may be transmitted to the base station apparatus, for example, using the MCG signaling radio bearer. Also, for example, an entity in a PDCP higher layer (for example, the RRC layer) of the terminal device that is notified of the arrival of uplink data may initiate a cell group activation procedure. Also, for example, an entity in a higher layer of PDCP (eg, RRC layer) of the terminal device that is notified of the arrival of uplink data instructs the MAC layer to start a random access procedure in the deactivated cell group. may
 また、ステップS1504で上りリンクデータの到着を通知されたエンティティの前記処理は、例えば基地局装置から通知(設定)されたセルグループの自律的な活性化の可否に関する情報に基づき、何れの処理を行うかが決定されてもよい。 Further, the processing of the entity notified of the arrival of the uplink data in step S1504 is, for example, based on the information regarding the possibility of autonomous activation of the cell group notified (set) from the base station device, which processing is performed. It may be decided whether to do so.
 なお、ステップS1504において、このDRBに対する上りリンクデータが到着したことを、端末装置のPDCPの上位レイヤ(例えばRRC)に通知したPDCPエンティティは、このPDCPエンティティに対応付けられた無線ベアラが、第1の条件を満たさないことに基づき、構築したPDCP PDUを端末装置のRLCエンティティに提出(submit)してもよいし、第1の条件を満たすか否かにかかわらず、構築したPDCP PDUを端末装置のRLCエンティティに提出してもよい。 Note that, in step S1504, the PDCP entity that has notified the upper layer of PDCP (eg, RRC) of the terminal device that the uplink data for this DRB has arrived is the radio bearer associated with this PDCP entity. The constructed PDCP PDU may be submitted to the RLC entity of the terminal device based on the fact that the first condition is not satisfied, or the constructed PDCP PDU may be submitted to the terminal device regardless of whether the first condition is satisfied may be submitted to any RLC entity.
 また、ステップS1504における、「この無線ベアラに対する上りリンクデータが到着したこと」は、他の情報であってもよい。例えば、「この無線ベアラに対する上りリンクデータが到着したこと」は、以下の(A)から(D)の情報の何れか、またはそれらの組み合わせであってよいし、これ以外の情報であってもよい。
  (A)送信がサスペンドされたセルグループにおける上りリンクデータが到着したこと
  (B)サスペンドされた無線ベアラに対する上りリンクデータが到着したこと
  (C)不活性化されたセルグループの活性化が必要であること
  (D)このDRBに対する上りリンクデータの送信が行えないこと
Also, "the arrival of uplink data for this radio bearer" in step S1504 may be other information. For example, ``that uplink data for this radio bearer has arrived'' may be any of the following information (A) to (D), or a combination thereof, or information other than this: good.
(A) Arrival of uplink data in a cell group whose transmission is suspended (B) Arrival of uplink data for a suspended radio bearer (C) Activation of a deactivated cell group is required (D) Uplink data cannot be transmitted to this DRB
 これにより、端末装置が不活性化されたセルグループに対応付けられた無線ベアラの上りリンクの送信を効率的におこなうことができる。 As a result, it is possible to efficiently perform uplink transmission of the radio bearer associated with the cell group in which the terminal device is deactivated.
 上記説明における無線ベアラは、特に注記がない限り、DRBであってもよいし、SRBであってもよいし、DRB及びSRBであってもよい。 Unless otherwise noted, the radio bearer in the above description may be DRB, SRB, or both DRB and SRB.
 また上記説明において、「紐づける」、「対応付ける」、「関連付ける」等の表現は、互いに換言されてもよい。 Also, in the above description, expressions such as "associate", "associate", and "associate" may be replaced with each other.
 上記説明における「休眠状態」を「不活性状態」と言い換えてよいし、「休眠状態から再開した状態」を「活性状態」と言い換えてもよい。また上記説明において、「活性化」、「不活性化」をそれぞれ「活性状態」、「不活性状態」と言い換えてもよい。 The "dormant state" in the above description may be replaced with the "inactive state", and the "state resumed from the dormant state" may be replaced with the "active state". In the above description, "activation" and "inactivation" may be replaced with "active state" and "inactive state", respectively.
 上記説明における「XからYに遷移する」を「XからYとなる」と言い換えてもよい。  In the above explanation, "transition from X to Y" can be rephrased as "transition from X to Y".
 また上記説明における各処理の例、又は各処理のフローの例において、ステップの一部または全ては実行されなくてもよい。また上記説明における各処理の例、又は各処理のフローの例において、ステップの順番は異なってもよい。また上記説明における各処理の例、又は各処理のフローの例において、各ステップ内の一部または全ての処理は実行されなくてもよい。また上記説明における各処理の例、又は各処理のフローの例において、各ステップ内の処理の順番は異なってもよい。 Also, in the example of each process or the example of the flow of each process in the above description, some or all of the steps may not be executed. In addition, the order of the steps may be different in the example of each process or the example of the flow of each process in the above description. In addition, in the examples of each process or the example of the flow of each process in the above description, some or all of the processes in each step may not be executed. Further, in the example of each process or the example of the flow of each process in the above description, the order of the processes in each step may be different.
 なお、上記説明において、「AをBと言い換えてよい」は、AをBと言い換えることに加え、BをAと言い換える意味も含んでよい。また上記説明において、「CはDであってよい」と「CはEであってよい」とが記載されている場合には、「DはEであってよい」ことを含んでもよい。また上記説明において、「FはGであってよい」と「GはHであってよい」とが記載されている場合には、「FはHであってもよい」ことを含んでもよい。 In addition, in the above explanation, "A may be rephrased as B" may include the meaning of rephrasing B as A in addition to rephrasing A as B. In addition, in the above description, when "C may be D" and "C may be E" may include "D may be E". Further, in the above description, when "F may be G" and "G may be H" may include "F may be H".
 また上記説明において、「A」という条件と、「B」という条件が、相反する条件の場合には、「B」という条件は、「A」という条件の「その他」の条件として表現されてもよい。 Also, in the above explanation, if the condition "A" and the condition "B" are contradictory conditions, the condition "B" may be expressed as the "other" condition of the condition "A". good.
 以下、本発明の実施形態における、端末装置、および、方法の種々の態様について説明する。 Various aspects of the terminal device and method in the embodiments of the present invention will be described below.
 (1)本発明の第1の実施の様態は、基地局装置からセカンダリセルグループが設定された端末装置であって、サービスデータ適応プロトコルサービスデータユニット(SDAP SDU)がマップされたデータ無線ベアラ(DRB)が第1の条件を満たすことに基づき、前記DRBに対する上りリンクデータが到着したことを無線リソース制御(RRC)層処理部に通知するSDAP層処理部と、前記通知に基づき、前記セカンダリセルグループの活性化のためのRRCメッセージを生成する前記RRC層処理部と、前記RRCメッセージを前記基地局装置に送信する送信部とを備え、前記第1の条件は、前記データ無線ベアラが前記セカンダリセルグループが不活性化されたことに起因してサスペンドされていることである。 (1) A first embodiment of the present invention is a terminal device in which a secondary cell group is set from a base station device, and a data radio bearer ( a SDAP layer processing unit that notifies a radio resource control (RRC) layer processing unit that uplink data for the DRB has arrived based on the DRB) satisfying a first condition; and based on the notification, the secondary cell The RRC layer processing unit generates an RRC message for group activation, and a transmission unit transmits the RRC message to the base station apparatus, wherein the first condition is that the data radio bearer is Suspended due to inactivation of the cell group.
 (2)本発明の第2の実施の様態は、基地局装置からセカンダリセルグループが設定された端末装置に適用される方法であって、サービスデータ適応プロトコルサービスデータユニット(SDAP SDU)がマップされたデータ無線ベアラ(DRB)が第1の条件を満たすことに基づき、前記DRBに対する上りリンクデータが到着したことを無線リソース制御(RRC)層処理部に通知するステップと、前記通知に基づき、前記セカンダリセルグループの活性化のためのRRCメッセージを生成するステップと、前記RRCメッセージを前記基地局装置に送信するステップとを備え、前記第1の条件は、前記データ無線ベアラが前記セカンダリセルグループが不活性化されたことに起因してサスペンドされていることである。 (2) A second embodiment of the present invention is a method applied to a terminal device to which a secondary cell group has been set from a base station device, in which a service data adaptation protocol service data unit (SDAP SDU) is mapped. a step of notifying a radio resource control (RRC) layer processing unit that uplink data for the DRB has arrived based on the data radio bearer (DRB) satisfying a first condition; generating an RRC message for activation of a secondary cell group; and transmitting the RRC message to the base station apparatus, wherein the first condition is that the data radio bearer is activated by the secondary cell group. It is suspended due to being deactivated.
 (3)本発明の第3の実施の様態は、基地局装置からセカンダリセルグループが設定された端末装置に実装される集積回路であって、サービスデータ適応プロトコルサービスデータユニット(SDAP SDU)がマップされたデータ無線ベアラ(DRB)が第1の条件を満たすことに基づき、前記DRBに対する上りリンクデータが到着したことを無線リソース制御(RRC)層処理部に通知する機能と、前記通知に基づき、前記セカンダリセルグループの活性化のためのRRCメッセージを生成する機能と、前記RRCメッセージを前記基地局装置に送信する機能とを前記端末装置に発揮させ、前記第1の条件は、前記データ無線ベアラが前記セカンダリセルグループが不活性化されたことに起因してサスペンドされていることである。 (3) A third embodiment of the present invention is an integrated circuit implemented in a terminal device to which a secondary cell group has been set from a base station device, in which a service data adaptation protocol service data unit (SDAP SDU) is mapped. A function of notifying a radio resource control (RRC) layer processing unit that uplink data for the DRB has arrived based on the fact that the data radio bearer (DRB) received satisfies a first condition, and based on the notification, causing the terminal device to exhibit a function of generating an RRC message for activation of the secondary cell group and a function of transmitting the RRC message to the base station device; is suspended due to the secondary cell group being deactivated.
 本発明の一態様に関わる装置で動作するプログラムは、本発明の一態様に関わる上述した実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであってもよい。プログラムあるいはプログラムによって取り扱われる情報は、処理時に一時的にRandom Access Memory(RAM)などの揮発性メモリに読み込まれ、あるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。 A program that runs on a device according to one aspect of the present invention is a program that controls a Central Processing Unit (CPU) or the like to function a computer so as to realize the functions of the above-described embodiments according to one aspect of the present invention. There may be. The program or information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) during processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD), and The CPU reads, modifies, and writes accordingly.
 なお、上述した実施形態における装置の一部、をコンピュータで実現するようにしてもよい。その場合、この制御機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体等のいずれであってもよい。 It should be noted that part of the devices in the above-described embodiments may be realized by a computer. In that case, a program for realizing this control function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed. The "computer system" here is a computer system built in the device, and includes hardware such as an operating system and peripheral devices. Further, the "computer-readable recording medium" may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
 さらに「コンピュータが読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。 Furthermore, "computer-readable recording medium" means a medium that dynamically stores programs for a short period of time, such as a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line. , such as a volatile memory inside a computer system serving as a server or a client in that case, which holds the program for a certain period of time. Further, the program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system.
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、すなわち典型的には集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、代わりにプロセッサは従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであってもよい。汎用用途プロセッサ、または前述した各回路は、デジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Also, each functional block or feature of the apparatus used in the embodiments described above may be implemented or performed in an electrical circuit, typically an integrated circuit or multiple integrated circuits. Electrical circuits designed to perform the functions described herein may be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof. A general purpose processor may be a microprocessor, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. The general-purpose processor or each circuit described above may be composed of digital circuits or may be composed of analog circuits. In addition, when an integrated circuit technology that replaces current integrated circuits emerges due to advances in semiconductor technology, it is also possible to use integrated circuits based on this technology.
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用できる。 It should be noted that the present invention is not limited to the above-described embodiments. In the embodiments, an example of the device is described, but the present invention is not limited to this, and stationary or non-movable electronic devices installed indoors and outdoors, such as AV equipment, kitchen equipment, It can be applied to terminal devices or communication devices such as cleaning/washing equipment, air conditioning equipment, office equipment, vending machines, and other household equipment.
 以上、本発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明の一態様は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes and the like are included within the scope of the present invention. Further, one aspect of the present invention can be modified in various ways within the scope of the claims, and an embodiment obtained by appropriately combining technical means disclosed in different embodiments can also be Included in the scope. Further, it also includes a configuration in which the elements described in the above embodiments are replaced with the elements having the same effect.
 本発明の一態様は、例えば、通信システム、通信機器(例えば、携帯電話装置、基地局装置、無線LAN装置、或いはセンサーデバイス)、集積回路(例えば、通信チップ)、又はプログラム等において、利用することができる。 One aspect of the present invention is, for example, a communication system, a communication device (e.g., a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (e.g., a communication chip), or a program, etc. be able to.
106 NR
108 gNB
110 5GC
116 インタフェース
122 UE
300 PHY
302 MAC
304 RLC
306 PDCP
308 RRC
310 SDAP
312 NAS
500、604 受信部
502、602 処理部
504、600 送信部
106NR
108 gNB
110 5GC
116 interfaces
122 UEs
300 PHYs
302 MAC
304 RLC
306 PDCP
308 RRC
310 SDAP
312 NAS
500, 604 receiver
502, 602 processor
504, 600 transmitter

Claims (3)

  1.  基地局装置からセカンダリセルグループが設定された端末装置であって、
     パケットデータコンバージェンスプロトコル(PDCP)エンティティに紐づけられたデータ無線ベアラ(DRB)が、前記セカンダリセルグループのDRBであることと、前記セカンダリセルグループが不活性化されていることに基づき、前記DRBに対する上りリンクデータが到着したことを無線リソース制御(RRC)層処理部に通知するPDCP層処理部と、
     前記通知に基づき、送信する上りリンクデータが前記セカンダリセルグループにあることを前記基地局装置に通知するRRCメッセージを生成する前記RRC層処理部と、
     前記RRCメッセージを前記基地局装置に送信する送信部とを備える
     端末装置。
    A terminal device in which a secondary cell group is set from a base station device,
    A data radio bearer (DRB) associated with a packet data convergence protocol (PDCP) entity is the DRB of the secondary cell group, and based on the fact that the secondary cell group is deactivated, to the DRB a PDCP layer processing unit that notifies a radio resource control (RRC) layer processing unit that uplink data has arrived;
    the RRC layer processing unit that generates an RRC message that notifies the base station device that uplink data to be transmitted is in the secondary cell group based on the notification;
    A terminal device, comprising: a transmission unit that transmits the RRC message to the base station device.
  2.  基地局装置からセカンダリセルグループが設定された端末装置に適用される方法であって、
     パケットデータコンバージェンスプロトコル(PDCP)エンティティに紐づけられたデータ無線ベアラ(DRB)が、前記セカンダリセルグループのDRBであることと、前記セカンダリセルグループが不活性化されていることに基づき、前記DRBに対する上りリンクデータが到着したことを無線リソース制御(RRC)層処理部に通知するステップと、
     前記通知に基づき、送信する上りリンクデータが前記セカンダリセルグループにあることを前記基地局装置に通知するRRCメッセージを生成するステップと、
     前記RRCメッセージを前記基地局装置に送信するステップとを備える
     方法。
    A method applied to a terminal device in which a secondary cell group is set from a base station device,
    A data radio bearer (DRB) associated with a packet data convergence protocol (PDCP) entity is the DRB of the secondary cell group, and based on the fact that the secondary cell group is deactivated, to the DRB notifying a radio resource control (RRC) layer processor that uplink data has arrived;
    generating an RRC message for notifying the base station apparatus that uplink data to be transmitted is in the secondary cell group based on the notification;
    and transmitting the RRC message to the base station apparatus.
  3.  基地局装置からセカンダリセルグループが設定された端末装置に実装される集積回路であって、
     パケットデータコンバージェンスプロトコル(PDCP)エンティティに紐づけられたデータ無線ベアラ(DRB)が、前記セカンダリセルグループのDRBであることと、前記セカンダリセルグループが不活性化されていることに基づき、前記DRBに対する上りリンクデータが到着したことを無線リソース制御(RRC)層処理部に通知する機能と、
     前記通知に基づき、送信する上りリンクデータが前記セカンダリセルグループにあることを前記基地局装置に通知するRRCメッセージを生成する機能と、
     前記RRCメッセージを前記基地局装置に送信する機能とを前記端末装置に発揮させる
     集積回路。
    An integrated circuit mounted in a terminal device in which a secondary cell group is set from a base station device,
    A data radio bearer (DRB) associated with a packet data convergence protocol (PDCP) entity is the DRB of the secondary cell group, and based on the fact that the secondary cell group is deactivated, to the DRB A function of notifying a radio resource control (RRC) layer processing unit that uplink data has arrived;
    A function of generating an RRC message for notifying the base station apparatus that uplink data to be transmitted is in the secondary cell group based on the notification;
    An integrated circuit that causes the terminal device to exhibit a function of transmitting the RRC message to the base station device.
PCT/JP2022/025569 2021-07-30 2022-06-27 Terminal device, method, and integrated circuit WO2023008043A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023538353A JPWO2023008043A1 (en) 2021-07-30 2022-06-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-125590 2021-07-30
JP2021125590 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023008043A1 true WO2023008043A1 (en) 2023-02-02

Family

ID=85087856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025569 WO2023008043A1 (en) 2021-07-30 2022-06-27 Terminal device, method, and integrated circuit

Country Status (2)

Country Link
JP (1) JPWO2023008043A1 (en)
WO (1) WO2023008043A1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Activation of deactivated SCG", 3GPP DRAFT; R2-2103895, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20210412 - 20210420, 2 April 2021 (2021-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052175219 *

Also Published As

Publication number Publication date
JPWO2023008043A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
WO2022071234A1 (en) Terminal device, communication method, and base station device
WO2022080306A1 (en) Terminal device, base station device, and method
WO2022080419A1 (en) Terminal device, base station device, and method
WO2022085663A1 (en) Method and integrated circuit
WO2022210285A1 (en) Terminal device, method, and integrated circuit
WO2023008043A1 (en) Terminal device, method, and integrated circuit
WO2022080341A1 (en) Terminal device, base station device, and method
WO2023013292A1 (en) Terminal device, base station device, and method
WO2023132370A1 (en) Terminal device, method, and integrated circuit
WO2023106315A1 (en) Terminal device, base station device, and method
WO2023042747A1 (en) Terminal device, base station device, and method
WO2023136231A1 (en) Terminal device, method, and integrated circuit
WO2023042752A1 (en) Terminal device, base station device, and method
WO2023112531A1 (en) Terminal device, method, and integrated circuit
WO2023063342A1 (en) Terminal device, base station device, and method
WO2023100981A1 (en) Terminal device, method, and integrated circuit
WO2023112792A1 (en) Terminal device, method, and integrated circuit
WO2023063345A1 (en) Terminal device, base station device, and method
WO2022196550A1 (en) Terminal device, base station device, and method
WO2023153410A1 (en) Terminal device, method, and integrated circuit
WO2023189963A1 (en) Terminal device, method, and integrated circuit
WO2024005010A1 (en) Terminal device, method, and integrated circuit
WO2024009884A1 (en) Terminal device, method, and integrated circuit
WO2024005069A1 (en) Terminal device, method, and integrated circuit
WO2024070447A1 (en) Terminal device, method, and integrated circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538353

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE