WO2022209948A1 - 磁気冷凍装置及び冷凍装置 - Google Patents

磁気冷凍装置及び冷凍装置 Download PDF

Info

Publication number
WO2022209948A1
WO2022209948A1 PCT/JP2022/012220 JP2022012220W WO2022209948A1 WO 2022209948 A1 WO2022209948 A1 WO 2022209948A1 JP 2022012220 W JP2022012220 W JP 2022012220W WO 2022209948 A1 WO2022209948 A1 WO 2022209948A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnet
working material
magnetic working
magnetic field
Prior art date
Application number
PCT/JP2022/012220
Other languages
English (en)
French (fr)
Inventor
三博 田中
茜 上田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280023069.9A priority Critical patent/CN117043525A/zh
Priority to EP22780168.5A priority patent/EP4306875A1/en
Publication of WO2022209948A1 publication Critical patent/WO2022209948A1/ja
Priority to US18/372,519 priority patent/US20240011675A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0022Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a rotating or otherwise moving magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present disclosure relates to magnetic refrigerators and refrigerators.
  • Patent Document 1 from the N pole of the permanent magnet, through the N pole side built-in yoke, the inter-material yoke, the magnetic material accommodated in the material container, the inter-material yoke, and the S pole side built-in yoke in order, the permanent magnet A magnetic heat pump device is disclosed in which the magnetic flux flows to the south pole of the .
  • Patent Document 1 a permanent magnet and a built-in yoke are arranged inside the main body, and a plurality of material containers and inter-material yokes are arranged along the inner peripheral surface of the main body.
  • the length of the magnetic path becomes long, and there is a problem that the size of the entire device increases.
  • the purpose of the present disclosure is to improve the arrangement of magnets so that the magnetic path length can be shortened.
  • a first aspect of the present disclosure includes a plurality of magnetic working substances (11) arranged at intervals in the circumferential direction, relative movement in the circumferential direction with respect to the magnetic working substances (11), and the magnetic working substance (11). and a magnetic field applying section (20) for applying a magnetic field to the substance (11), wherein the magnetic field applying section (20) is arranged axially away from the magnetic working substance (11).
  • 1 member (21) which is arranged between the first member (21) and the magnetic working material (11) and applies a magnetic field so that the magnetic flux flows in the in-plane direction of the magnetic working material (11)
  • a magnetic refrigerator configured to move.
  • the magnetic field applying section (20) has a first member (21), a first magnet (25) and a second magnet (26).
  • the first member (21) is axially spaced from the magnetic working material (11).
  • a first magnet (25) and a second magnet (26) are positioned between the first member (21) and the magnetic working material (11).
  • the first magnet (25) and the second magnet (26) apply a magnetic field such that magnetic flux flows in the in-plane direction of the magnetic working material (11).
  • the first magnet (25) and the second magnet (26) are configured to move relative to the magnetic working material (11) in the circumferential direction.
  • the length of the magnetic path is shortened, so the overall device can be made compact and the magnetic flux density can be improved.
  • assembly is easier than handling a single magnet with a strong magnetic force.
  • a second aspect of the present disclosure is the magnetic refrigeration system of the first aspect, wherein the first magnet (25) and the second magnet (26) are axially aligned with the magnetic working material (11) through which magnetic flux is flowing. When viewed from the direction, they are respectively arranged along both sides of the magnetic working material (11) in the circumferential direction.
  • the magnetic flux can flow along the circumferential direction of the magnetic working material (11). Moreover, it can be assembled using magnets of the same shape.
  • a third aspect of the present disclosure is the magnetic refrigerating device of the second aspect, wherein the first magnet (25) and the second magnet (26) have a radially outer magnet width that is a radially inner magnet width. bigger than
  • the magnetic field strength in the magnetic working material (11) can be made constant by adjusting the magnet width according to the magnetic path length.
  • a fourth aspect of the present disclosure is the magnetic refrigeration system of the first aspect, wherein the first magnet (25) and the second magnet (26) are axially aligned with the magnetic working material (11) through which magnetic flux is flowing. When viewed from the direction, they are arranged respectively along both radial sides of the magnetic working material (11).
  • the magnetic flux can flow along the radial direction of the magnetic working material (11).
  • a fifth aspect of the present disclosure is the magnetic refrigeration apparatus of any one of the first to fourth aspects, wherein the magnetic field applying section (20) has a third magnet (27), and the third magnet (27 ) is arranged between the first magnet (25) and the second magnet (26) when viewed from the axial direction.
  • the magnetic field strength in the magnetic working material (11) can be made strong and constant.
  • a sixth aspect of the present disclosure is the magnetic refrigerating apparatus according to any one of the first to fifth aspects, wherein the magnetic working material (11) includes a yoke having a higher magnetic permeability than the magnetic working material (11) ( 13) is provided, and the yoke (13) is arranged along both sides overlapping the first magnet (25) and the second magnet (26) when viewed from the axial direction.
  • a magnetic field can be uniformly applied to the magnetic working material (11) by passing magnetic flux through the yokes (13) on both sides of the magnetic working material (11).
  • a seventh aspect of the present disclosure includes a magnetic refrigeration system (10) according to any one of the first to sixth aspects, and a heat medium circuit (2) that exchanges heat with the magnetic refrigeration system (10).
  • FIG. 1 is a piping system diagram of a refrigeration system of Embodiment 1.
  • FIG. FIG. 2 is a perspective view showing the configuration of the magnetic refrigerator.
  • FIG. 3 is an exploded perspective view showing the configuration of the magnetic refrigerator.
  • FIG. 4 is a plan view showing the configuration of the magnetic refrigerator. 5 is a cross-sectional view taken along the line AA in FIG. 4.
  • FIG. 6 is a side sectional view showing a modification of Embodiment 1.
  • FIG. FIG. 7 is a perspective view showing the configuration of the magnetic refrigerator of Embodiment 2.
  • FIG. 8 is an exploded perspective view showing the configuration of the magnetic refrigerator.
  • FIG. 11 is a side sectional view showing Modification 1 of Embodiment 2.
  • FIG. 12 is a plan view showing Modification 2 of Embodiment 2.
  • FIG. 13 is a cross-sectional view taken along line CC of FIG. 12.
  • FIG. 14 is a plan view showing the configuration of a magnetic refrigerator according to Embodiment 3.
  • FIG. 15 is a cross-sectional view taken along line DD of FIG. 14.
  • FIG. FIG. 16 is a side cross-sectional view showing a modification of Embodiment 3.
  • FIG. FIG. 17 is a plan view showing the configuration of the magnetic refrigeration system of Embodiment 4.
  • FIG. 18 is a cross-sectional view taken along line EE of FIG. 17.
  • FIG. 18 is a cross-sectional view taken along line EE of FIG. 17.
  • Embodiment 1 ⁇ Embodiment 1>> Embodiment 1 will be described.
  • the refrigeration system (1) has a heat medium circuit (2).
  • a refrigerator (1) is applied to, for example, an air conditioner.
  • the heat medium circuit (2) is filled with a heat medium.
  • the heat medium includes, for example, refrigerant, water, brine, and the like.
  • the refrigeration system (1) includes a low temperature side heat exchanger (3), a high temperature side heat exchanger (4), a pump (5), and a magnetic refrigerator (10).
  • the magnetic refrigerator (10) uses the magnetocaloric effect to adjust the temperature of the heat medium.
  • the heat medium circuit (2) is formed in a closed loop.
  • a pump (5), a low temperature side heat exchanger (3), a magnetic refrigerator (10), and a high temperature side heat exchanger (4) are connected in this order to the heat medium circuit (2).
  • the heat medium circuit (2) includes a low temperature side channel (2a) and a high temperature side channel (2b).
  • the low temperature side channel (2a) connects the temperature control channel (10a) of the magnetic refrigerator (10) and the first port (6a) of the pump (5).
  • the high temperature side channel (2b) connects the temperature control channel (10a) of the magnetic refrigerator (10) and the second port (6b) of the pump (5).
  • the low-temperature side heat exchanger (3) exchanges heat between the heat medium cooled by the magnetic refrigeration system (10) and a predetermined object to be cooled (eg, secondary refrigerant, air, etc.).
  • the high-temperature side heat exchanger (4) exchanges heat between the heat medium heated by the magnetic refrigeration system (10) and a predetermined heating target (eg, secondary refrigerant, air, etc.).
  • the pump (5) alternately and repeatedly performs the first operation and the second operation.
  • the heat medium in the heat medium circuit (2) is conveyed leftward in FIG.
  • the heat medium in the heat medium circuit (2) is conveyed rightward in FIG.
  • the pump (5) constitutes a transport mechanism that reciprocates the heat medium in the heat medium circuit (2).
  • the pump (5) consists of a reciprocating piston pump.
  • the pump (5) has a pump case (6) and a piston (7).
  • the piston (7) is movably arranged inside the pump case (6).
  • the piston (7) partitions the interior of the pump case (6) into a first chamber (S1) and a second chamber (S2).
  • a first port (6a) and a second port (6b) are formed in the pump case (6).
  • the first port (6a) communicates with the first chamber (S1).
  • the first port (6a) is connected to the low temperature side flow path (2a).
  • the second port (6b) communicates with the second chamber (S2).
  • the second port (6b) is connected to the high temperature side flow path (2b).
  • the piston (7) is driven by a drive mechanism (not shown).
  • the piston (7) moves to the first port (6a) side.
  • the volume of the first chamber (S1) decreases and the volume of the second chamber (S2) increases.
  • the heat medium in the first chamber (S1) is discharged through the first port (6a) to the low temperature side flow path (2a).
  • the heat medium in the high temperature side flow path (2b) is sucked into the second chamber (S2) through the second port (6b).
  • the piston (7) moves to the second port (6b) side.
  • the volume of the second chamber (S2) decreases and the volume of the first chamber (S1) increases.
  • the heat medium in the second chamber (S2) is discharged through the second port (6b) to the high temperature side flow path (2b).
  • the heat medium in the low temperature side flow path (2a) is sucked into the first chamber (S1) through the first port (6a).
  • the refrigerator (1) has a control section (8).
  • a control section (8) controls the operation of the pump (5) and the magnetic refrigerator (10) in accordance with a predetermined operation command.
  • the control unit (8) is configured using a microcomputer and a memory device (specifically, a semiconductor memory) that stores software for operating the microcomputer.
  • the magnetic refrigerator (10) includes a magnetic working material (11), a magnetic field applying section (20), and a rotating mechanism (15).
  • the magnetic working material (11) generates heat when a magnetic field is applied.
  • the magnetic working material (11) absorbs heat when the magnetic field is removed.
  • the magnetic working material (11) also generates heat as the applied magnetic field becomes stronger.
  • the magnetic working material (11) also absorbs heat when the applied magnetic field weakens.
  • Materials for the magnetic working substance (11) include, for example, Gd5 ( Ge0.5Si0.5 ) 4 , La( Fe1 - xSix)13, La(Fe1-xCoxSiy ) 13 , La ( Fe 1-x Si x ) 13 H y , Mn(As 0.9 Sb 0.1 ) and the like can be used.
  • a plurality of magnetic working materials (11) are arranged at intervals in the circumferential direction.
  • eight substantially fan-shaped magnetic working substances (11) are arranged at equal intervals in the circumferential direction.
  • a tubular portion (12) is arranged radially inward of the magnetic working substance (11).
  • the cylindrical portion (12) is composed of a cylindrical member extending in the axial direction.
  • a plurality of magnetic working substances (11) are attached to the outer peripheral surface of the tubular portion (12).
  • the rotating mechanism (15) has a rotating shaft (16) and a motor (17).
  • the rotating shaft (16) is connected to a motor (17).
  • the motor (17) rotates the rotating shaft (16).
  • a magnetic field applying section (20) is connected to the rotating shaft (16).
  • the rotary shaft (16) is inserted into the tubular portion (12).
  • the magnetic field application unit (20) rotates around the axis along with the rotating shaft (16), while the magnetic working substance (11) stops.
  • the magnetic field applying section (20) rotates relative to the magnetic working material (11).
  • the magnetic field applying unit (20) is arranged axially away from the magnetic working material (11).
  • the magnetic field applying section (20) applies a magnetic field to the magnetic working substance (11).
  • the magnetic field applying section (20) has a core (21) (first member), a first magnet (25), and a second magnet (26).
  • the core (21) has a central portion (22) and a plurality of protrusions (23).
  • the central portion (22) is composed of a tubular member extending in the axial direction.
  • a rotating shaft (16) is fitted in the central portion (22).
  • the rotating shaft (16) is connected to the central portion (22) of the core (21). Note that the central portion (22) does not have to be made of a magnetic material.
  • the multiple protrusions (23) are made of a magnetic material.
  • the plurality of protrusions (23) protrude radially outward from the central portion (22).
  • the plurality of projections (23) are circumferentially spaced apart.
  • four substantially fan-shaped protrusions (23) are arranged at regular intervals in the circumferential direction.
  • the protrusion (23) is axially spaced from the magnetic working material (11).
  • the radially outer circumferential width of the protrusion (23) of the core (21) is greater than the radially outer circumferential width of the magnetic working material (11).
  • the interval between adjacent protrusions (23) is set to be at least twice the interval between adjacent magnetic working substances (11).
  • a first magnet (25) and a second magnet (26) are arranged between the magnetic working material (11) and the protrusion (23) of the core (21). .
  • the first magnet (25) and the second magnet (26) apply a magnetic field to the magnetic working material (11) so that the magnetic flux flows in the in-plane direction of the magnetic working material (11).
  • first magnet (25) and the second magnet (26) radially extend along both circumferential sides of the protrusion (23) when viewed from the axial direction (see FIG. 4).
  • the first magnet (25) and the second magnet (26) have a radially outer magnet width larger than a radially inner magnet width.
  • the first magnet (25) is arranged so that the side of the magnetic working material (11) (upper side in FIG. 5) is the N pole, and the side of the protrusion (23) of the core (21) (lower side in FIG. 5) is the S pole. placed.
  • the second magnet (26) is arranged so that the S pole is on the side of the magnetic working material (11) (upper side in FIG. 5) and the N pole is on the side of the protrusion (23) of the core (21) (lower side in FIG. 5). placed.
  • the positional relationship between the N pole and S pole of the first magnet (25) and the second magnet (26) may be reversed.
  • the first magnet (25) and the second magnet (26) rotate relative to the magnetic working material (11) in the circumferential direction together with the core (21).
  • magnetic flux flows in the in-plane direction of the magnetic working material (11).
  • the flow of magnetic flux is indicated by dashed arrow lines.
  • the first magnet (25) and the second magnet (26) extend along both sides of the magnetic working material (11) in the circumferential direction when the magnetic working material (11) in which the magnetic flux is flowing is viewed from the axial direction. placed.
  • the magnetic field applying section (20) applies a magnetic field to the magnetic working material (11).
  • magnetic flux flows from the first magnet (25) toward the magnetic working material (11).
  • magnetic flux flows along the circumferential direction inside the magnetic working material (11) from the first magnet (25) toward the second magnet (26).
  • magnetic flux flows along the circumferential direction inside the projection (23) from the second magnet (26) toward the first magnet (25).
  • the magnetic working material (11) to which the magnetic field is applied generates heat.
  • the magnetic field applying section (20) is rotated to bring the first magnet (25) and the second magnet (26) to face the adjacent magnetic working material (11).
  • the magnetic working material (11) to which the magnetic field was first applied absorbs heat as the magnetic field is removed.
  • the adjacent magnetic working material (11) generates heat when a magnetic field is applied.
  • a refrigerating device (1) alternately and repeatedly performs a heating operation and a cooling operation.
  • the period of switching between the heating operation and the cooling operation is set to, for example, about 0.1 second to 1 second.
  • the pump (5) performs the first operation and the magnetic field application section (20) performs the first magnetic field application operation. That is, in the heating operation, the heat medium is discharged from the first port (6a) of the pump (5). At the same time, a magnetic field is applied to the magnetic working material (11).
  • the heat medium in the low-temperature side flow path (2a) is adjusted to the temperature control flow of the magnetic refrigeration system (10). into the road (10a).
  • the heat medium flowing through the temperature control channel (10a) is heated by the magnetic working substance (11).
  • the heat medium heated in the temperature control channel (10a) flows out to the high temperature side channel (2b) and flows through the high temperature side heat exchanger (4).
  • the high-temperature heat medium heats a predetermined heating target (eg, secondary refrigerant, air, etc.).
  • a predetermined heating target eg, secondary refrigerant, air, etc.
  • the heat medium in the high temperature side flow path (2b) is sucked into the second chamber (S2) through the second port (6b) of the pump (5).
  • the pump (5) performs the second operation and the magnetic field application section (20) performs the second magnetic field application operation. That is, in the heating operation, the magnetic field of the magnetic working material (11) is removed at the same time that the heat medium is discharged from the second port (6b) of the pump (5).
  • the heat medium in the high temperature side flow path (2b) is adjusted to the temperature control flow of the magnetic refrigerator (10). into the road (10a).
  • the magnetic working material (11) draws heat from its surroundings. Therefore, the heat medium flowing through the temperature control channel (10a) is cooled by the magnetic working substance (11).
  • the heat medium cooled in the temperature control channel (10a) flows out to the low temperature side channel (2a) and flows through the low temperature side heat exchanger (3).
  • a predetermined cooling object eg, secondary refrigerant, air, etc.
  • the heat medium in the low temperature side flow path (2a) is sucked into the first chamber (S1) through the first port (6a) of the pump (5).
  • the magnetic field applying section (20) has the first member (21) (core), the first magnet (25) and the second magnet (26).
  • the first member (21) is axially spaced from the magnetic working material (11).
  • a first magnet (25) and a second magnet (26) are positioned between the first member (21) and the magnetic working material (11).
  • the first magnet (25) and the second magnet (26) apply a magnetic field such that magnetic flux flows in the in-plane direction of the magnetic working material (11).
  • the first magnet (25) and the second magnet (26) are configured to move relative to the magnetic working material (11) in the circumferential direction.
  • the length of the magnetic path is shortened, so the overall device can be made compact and the magnetic flux density can be improved.
  • assembly becomes easier than handling a single magnet with strong magnetic force.
  • the first magnet (25) and the second magnet (26) are arranged such that when the magnetic working substance (11) in which the magnetic flux is flowing is viewed from the axial direction, the magnetic working substance (11) are arranged along both sides in the circumferential direction of the .
  • the magnetic flux can flow along the circumferential direction of the magnetic working material (11). Moreover, it can be assembled using magnets of the same shape.
  • the first magnet (25) and the second magnet (26) have a magnet width on the radially outer side that is larger than that on the radially inner side.
  • the magnetic field strength in the magnetic working material (11) can be made constant by adjusting the magnet width according to the magnetic path length.
  • the magnetic refrigerator (10) and the heat medium circuit (2) that exchanges heat with the magnetic refrigerator (10) are provided.
  • a refrigerator (1) having a magnetic refrigerator (10) can be provided.
  • the magnetic working material (11) may be provided with a yoke (13).
  • the magnetic working material (11) is provided with a yoke (13) having a higher magnetic permeability than the magnetic working material (11).
  • the yoke (13) is arranged along both sides overlapping the first magnet (25) and the second magnet (26) when viewed in the axial direction.
  • the first magnet (25) and the second magnet (26) are arranged along both circumferential sides of the protrusion (23) of the core (21). Therefore, the yokes (13) are arranged along both circumferential sides of the magnetic working material (11).
  • magnetic flux flows from the first magnet (25) toward the left yoke (13) in FIG.
  • a magnetic flux flows along the circumferential direction inside the magnetic working material (11) from the left yoke (13) toward the right yoke (13).
  • Magnetic flux flows from the right yoke (13) toward the second magnet (26).
  • Magnetic flux flows along the circumferential direction inside the protrusion (23) of the core (21) from the second magnet (26) toward the first magnet (25).
  • a magnetic field can be uniformly applied to the magnetic working material (11) by causing the magnetic flux to flow through the yokes (13) on both sides of the magnetic working material (11).
  • the magnetic refrigerator (10) includes a magnetic working substance (11), a magnetic field applying section (20), and a rotating mechanism (15).
  • the magnetic field applying unit (20) is arranged axially away from the magnetic working material (11).
  • the magnetic field applying section (20) applies a magnetic field to the magnetic working substance (11).
  • the magnetic field applying section (20) has a core (21), a first magnet (25), and a second magnet (26).
  • the core (21) has a central portion (22) and a plurality of protrusions (23).
  • a first magnet (25) and a second magnet (26) are arranged between the magnetic working material (11) and the protrusion (23) of the core (21).
  • the first magnet (25) and the second magnet (26) apply a magnetic field to the magnetic working material (11) so that the magnetic flux flows in the in-plane direction of the magnetic working material (11).
  • the first magnet (25) and the second magnet (26) radially extend along both circumferential sides of the protrusion (23) when viewed in the axial direction (see FIG. 9).
  • the first magnet (25) and the second magnet (26) are formed in a substantially rectangular shape when viewed from the axial direction. That is, the first magnet (25) and the second magnet (26) are formed to have the same magnet width when viewed in the axial direction over the entire length in the radial direction. Thereby, magnets having the same shape can be used as the first magnet (25) and the second magnet (26).
  • the first magnet (25) is arranged so that the side of the magnetic working substance (11) (upper side in FIG. 10) is the N pole, and the side of the protrusion (23) of the core (21) (the lower side in FIG. 10) is the S pole. placed.
  • the second magnet (26) is arranged so that the side of the magnetic working substance (11) (upper side in FIG. 10) is the S pole, and the side of the protrusion (23) of the core (21) (the lower side in FIG. 10) is the N pole. placed.
  • the positional relationship between the N pole and S pole of the first magnet (25) and the second magnet (26) may be reversed.
  • the first magnet (25) and the second magnet (26) rotate relative to the magnetic working material (11) in the circumferential direction together with the core (21).
  • magnetic flux flows in the in-plane direction of the magnetic working material (11).
  • the flow of magnetic flux is indicated by dashed arrow lines.
  • the first magnet (25) and the second magnet (26) extend along both sides of the magnetic working material (11) in the circumferential direction when the magnetic working material (11) in which the magnetic flux is flowing is viewed from the axial direction. placed.
  • the magnetic field applying section (20) applies a magnetic field to the magnetic working substance (11).
  • the magnetic working material (11) may be provided with a yoke (13).
  • the magnetic working material (11) is provided with a yoke (13) having a higher magnetic permeability than the magnetic working material (11).
  • the yoke (13) is arranged along both sides overlapping the first magnet (25) and the second magnet (26) when viewed in the axial direction.
  • the first magnet (25) and the second magnet (26) are arranged along both circumferential sides of the protrusion (23) of the core (21). Therefore, the yokes (13) are arranged along both circumferential sides of the magnetic working material (11).
  • the magnetic field application section (20) may have a third magnet (27).
  • a first magnet (25), a second magnet (26), a second 3 magnets (27) are arranged.
  • the first magnet (25), the second magnet (26), and the third magnet (27) apply a magnetic field to the magnetic working material (11) so that the magnetic flux flows in the in-plane direction of the magnetic working material (11). is applied.
  • first magnet (25) and the second magnet (26) radially extend along both circumferential sides of the protrusion (23) when viewed from the axial direction (see FIG. 12).
  • the third magnet (27) is arranged between the first magnet (25) and the second magnet (26) when viewed in the axial direction.
  • the first magnet (25), the second magnet (26), and the third magnet (27) are formed in a substantially rectangular shape when viewed from the axial direction.
  • the first magnet (25), the second magnet (26), and the third magnet (27) have the same magnet width when viewed in the axial direction over the entire length in the radial direction.
  • the first magnet (25) and the second magnet (26) have an S pole on the side of the magnetic working material (11) (upper side in FIG. 13), and the side of the protrusion (23) of the core (21) (lower side in FIG. 13). is arranged to be the N pole.
  • the third magnet (27) is arranged so that the side of the magnetic working material (11) (upper side in FIG. 13) is the N pole, and the side of the protrusion (23) of the core (21) (lower side in FIG. 13) is the S pole. placed.
  • the positional relationship of the N pole and S pole in the 1st magnet (25), the 2nd magnet (26), and the 3rd magnet (27) can be changed suitably.
  • the first magnet (25), the second magnet (26), and the third magnet (27) rotate relative to the magnetic working substance (11) in the circumferential direction together with the core (21).
  • first magnet (25), the second magnet (26), and the third magnet (27) face the magnetic working substance (11), magnetic flux flows in the in-plane direction of the magnetic working substance (11).
  • the flow of magnetic flux is indicated by dashed arrow lines.
  • magnetic flux flows from the third magnet (27) toward the magnetic working material (11).
  • magnetic flux flows along the circumferential direction inside the magnetic working material (11) from the third magnet (27) toward the first magnet (25) and the second magnet (26).
  • magnetic flux flows along the inside of the protruding portion (23) in the circumferential direction from the first magnet (25) and the second magnet (26) toward the third magnet (27). flows.
  • the magnetic field applying section (20) has the third magnet (27).
  • the third magnet (27) is arranged between the first magnet (25) and the second magnet (26) when viewed in the axial direction.
  • the magnetic field strength in the magnetic working material (11) can be made strong and constant.
  • the magnetic field applying section (20) has a core (21), a first magnet (25) and a second magnet (26).
  • a first magnet (25) and a second magnet (26) are arranged between the magnetic working material (11) and the protrusion (23) of the core (21).
  • the first magnet (25) and the second magnet (26) apply a magnetic field to the magnetic working material (11) so that the magnetic flux flows in the in-plane direction of the magnetic working material (11).
  • first magnet (25) and the second magnet (26) are arranged along both radial sides of the protrusion (23) when viewed from the axial direction (see FIG. 14).
  • the first magnet (25) extends along the radially outer side of the protrusion (23).
  • the second magnet (26) extends along the radially inner side of the protrusion (23).
  • the first magnet (25) is arranged so that the side of the magnetic working material (11) (upper side in FIG. 15) is the N pole, and the side of the projection (23) of the core (21) (lower side in FIG. 15) is the S pole. placed.
  • the second magnet (26) is arranged so that the magnetic working material (11) side (upper side in FIG. 15) is the S pole and the projection (23) side of the core (21) (the lower side in FIG. 15) is the N pole. placed.
  • the positional relationship between the N pole and S pole of the first magnet (25) and the second magnet (26) may be reversed.
  • the first magnet (25) and the second magnet (26) rotate relative to the magnetic working material (11) in the circumferential direction together with the core (21).
  • magnetic flux flows in the in-plane direction of the magnetic working material (11).
  • the flow of magnetic flux is indicated by dashed arrow lines.
  • the first magnet (25) and the second magnet (26) extend along both sides of the magnetic working material (11) in the radial direction when the magnetic working material (11) in which the magnetic flux is flowing is viewed from the axial direction. placed.
  • the magnetic field applying section (20) applies a magnetic field to the magnetic working substance (11).
  • magnetic flux flows from the first magnet (25) toward the magnetic working material (11).
  • magnetic flux flows radially inside the magnetic working material (11) from the first magnet (25) toward the second magnet (26).
  • magnetic flux flows radially inside the protrusion (23) from the second magnet (26) toward the first magnet (25).
  • the first magnet (25) and the second magnet (26) are arranged such that when the magnetic working substance (11) in which the magnetic flux is flowing is viewed from the axial direction, the magnetic working substance (11) ) along both sides in the radial direction, respectively.
  • the magnetic flux can flow along the radial direction of the magnetic working material (11).
  • the magnetic working material (11) may be provided with a yoke (13).
  • the magnetic working material (11) is provided with a yoke (13) having a higher magnetic permeability than the magnetic working material (11).
  • the yoke (13) is arranged along both sides overlapping the first magnet (25) and the second magnet (26) when viewed in the axial direction.
  • the first magnet (25) and the second magnet (26) are arranged along both radial sides of the protrusion (23) of the core (21). Therefore, the yokes (13) are arranged along both radial sides of the magnetic working material (11).
  • a plurality of magnetic working substances (11) are arranged at intervals in the circumferential direction.
  • eight substantially rectangular magnetic working materials (11) are arranged at regular intervals in the circumferential direction.
  • a first magnet (25) and a second magnet (26) are arranged between the magnetic working material (11) and the protrusion (23) of the core (21).
  • the first magnet (25) and the second magnet (26) apply a magnetic field to the magnetic working material (11) so that the magnetic flux flows in the in-plane direction of the magnetic working material (11).
  • first magnet (25) and the second magnet (26) extend radially along both circumferential sides of the protrusion (23) when viewed from the axial direction (see FIG. 18).
  • the first magnet (25) and the second magnet (26) have a radially outer magnet width larger than a radially inner magnet width.
  • the first magnet (25) and the second magnet (26) are at least spaced apart from each other in the circumferential direction of the magnetic working material (11) when the magnetic working material (11) in which the magnetic flux is flowing is viewed from the axial direction. They are arranged so that they partially overlap each other.
  • the magnetic field applying section (20) applies a magnetic field to the magnetic working material (11).
  • first magnet (25) and the second magnet (26) are rotationally moved together with the core (21) in the above embodiment, it is not limited to this form.
  • the magnetic working substance (11) is arranged on both pole sides of the first magnet (25) and the second magnet (26). good too. In this way, by rotating the first magnet (25) and the second magnet (26) relative to the magnetic working substances (11), the number of magnetic working substances (11) to which the magnetic field is applied at the same time can be increased.
  • the present disclosure is useful for magnetic refrigerators and refrigerators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Hard Magnetic Materials (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

磁場印加部(20)は、コア(21)と、第1磁石(25)及び第2磁石(26)とを有する。コア(21)は、磁気作業物質(11)に対して軸方向に離れて配置される。第1磁石(25)及び第2磁石(26)は、コア(21)と磁気作業物質(11)との間に配置される。第1磁石(25)及び第2磁石(26)は、磁気作業物質(11)の面内方向に磁束が流れるように磁場を印加する。第1磁石(25)及び第2磁石(26)は、磁気作業物質(11)に対して周方向に相対移動するように構成される。

Description

磁気冷凍装置及び冷凍装置
 本開示は、磁気冷凍装置及び冷凍装置に関するものである。
 特許文献1には、永久磁石のN極から、N極側内蔵ヨーク、材料間ヨーク、材料容器に収容されている磁性材料、材料間ヨーク、S極側内蔵ヨークを順に経由して、永久磁石のS極へ至るように磁束が流れる磁気ヒートポンプ装置が開示されている。
国際公開第2019/150817号
 ところで、特許文献1の発明では、本体部の内部に永久磁石及び内蔵ヨークを配置し、本体部の内周面に沿って材料容器及び材料間ヨークを複数配置している。そのため、磁路長が長くなってしまい、装置全体として大型化するという問題がある。
 本開示の目的は、磁石の配置を工夫して、磁路長を短くできるようにすることにある。
 本開示の第1の態様は、周方向に間隔をあけて配置された複数の磁気作業物質(11)と、前記磁気作業物質(11)に対して周方向に相対移動するとともに、前記磁気作業物質(11)に対して磁場を印加する磁場印加部(20)と、を備え、前記磁場印加部(20)は、前記磁気作業物質(11)に対して軸方向に離れて配置された第1部材(21)と、前記第1部材(21)と前記磁気作業物質(11)との間に配置され且つ前記磁気作業物質(11)の面内方向に磁束が流れるように磁場を印加する第1磁石(25)及び第2磁石(26)と、を有し、前記第1磁石(25)及び前記第2磁石(26)は、前記磁気作業物質(11)に対して周方向に相対移動するように構成される磁気冷凍装置である。
 第1の態様では、磁場印加部(20)は、第1部材(21)と、第1磁石(25)及び第2磁石(26)とを有する。第1部材(21)は、磁気作業物質(11)に対して軸方向に離れて配置される。第1磁石(25)及び第2磁石(26)は、第1部材(21)と磁気作業物質(11)との間に配置される。第1磁石(25)及び第2磁石(26)は、磁気作業物質(11)の面内方向に磁束が流れるように磁場を印加する。第1磁石(25)及び第2磁石(26)は、磁気作業物質(11)に対して周方向に相対移動するように構成される。
 このようにすれば、磁路長が短くなるため、装置全体としてコンパクト化を図るとともに、磁束密度を向上させることができる。また、複数に分割した磁石を用いることで、磁力の強い1つの磁石を取り扱うよりも、組み立てが容易となる。
 本開示の第2の態様は、第1の態様の磁気冷凍装置において、前記第1磁石(25)及び前記第2磁石(26)は、磁束が流れている前記磁気作業物質(11)を軸方向から見た場合に、前記磁気作業物質(11)の周方向の両辺に沿ってそれぞれ配置される。
 第2の態様では、磁気作業物質(11)の周方向に沿って磁束を流すことができる。また、同一形状の磁石を用いて組み立てることができる。
 本開示の第3の態様は、第2の態様の磁気冷凍装置において、前記第1磁石(25)及び前記第2磁石(26)は、径方向外側の磁石幅が、径方向内側の磁石幅よりも大きい。
 第3の態様では、磁路長に合わせて磁石幅を調整することで、磁気作業物質(11)における磁場強度を一定にできる。
 本開示の第4の態様は、第1の態様の磁気冷凍装置において、前記第1磁石(25)及び前記第2磁石(26)は、磁束が流れている前記磁気作業物質(11)を軸方向から見た場合に、前記磁気作業物質(11)の径方向の両辺に沿ってそれぞれ配置される。
 第4の態様では、磁気作業物質(11)の径方向に沿って磁束を流すことができる。
 本開示の第5の態様は、第1~4の態様のいずれか1つの磁気冷凍装置において、前記磁場印加部(20)は、第3磁石(27)を有し、前記第3磁石(27)は、軸方向から見て、前記第1磁石(25)と前記第2磁石(26)との間に配置される。
 第5の態様では、第3磁石(27)を配置することで、磁気作業物質(11)における磁場強度を強く且つ一定にできる。
 本開示の第6の態様は、第1~5の態様のいずれか1つの磁気冷凍装置において、前記磁気作業物質(11)には、前記磁気作業物質(11)よりも透磁率の高いヨーク(13)が設けられ、前記ヨーク(13)は、軸方向から見て、前記第1磁石(25)及び前記第2磁石(26)と重なり合う両辺に沿って配置される。
 第6の態様では、磁気作業物質(11)の両辺のヨーク(13)に磁束を流すことで、磁気作業物質(11)に対して均一に磁場を印加することができる。
 本開示の第7の態様は、第1~6の態様のいずれか1つの磁気冷凍装置(10)と、前記磁気冷凍装置(10)と熱交換する熱媒体回路(2)と、を備える。
 第7の態様では、磁気冷凍装置(10)を備えた冷凍装置を提供できる。
図1は、実施形態1の冷凍装置の配管系統図である。 図2は、磁気冷凍装置の構成を示す斜視図である。 図3は、磁気冷凍装置の構成を示す分解斜視図である。 図4は、磁気冷凍装置の構成を示す平面図である。 図5は、図4のA-A矢視断面図である。 図6は、実施形態1の変形例を示す側面断面図である。 図7は、実施形態2の磁気冷凍装置の構成を示す斜視図である。 図8は、磁気冷凍装置の構成を示す分解斜視図である。 図9は、磁気冷凍装置の構成を示す平面図である。 図10は、図9のB-B矢視断面図である。 図11は、実施形態2の変形例1を示す側面断面図である。 図12は、実施形態2の変形例2を示す平面図である。 図13は、図12のC-C矢視断面図である。 図14は、実施形態3の磁気冷凍装置の構成を示す平面図である。 図15は、図14のD-D矢視断面図である。 図16は、実施形態3の変形例を示す側面断面図である。 図17は、実施形態4の磁気冷凍装置の構成を示す平面図である。 図18は、図17のE-E矢視断面図である。
 《実施形態1》
 実施形態1について説明する。
 図1に示すように、冷凍装置(1)は、熱媒体回路(2)を備える。冷凍装置(1)は、例えば、空気調和装置に適用される。熱媒体回路(2)には、熱媒体が充填される。熱媒体は、例えば、冷媒、水、ブラインなどを含む。
 冷凍装置(1)は、低温側熱交換器(3)と、高温側熱交換器(4)と、ポンプ(5)と、磁気冷凍装置(10)とを備える。磁気冷凍装置(10)は、磁気熱量効果を利用して熱媒体の温度を調節する。
 熱媒体回路(2)は、閉ループ状に形成される。熱媒体回路(2)には、ポンプ(5)、低温側熱交換器(3)、磁気冷凍装置(10)、高温側熱交換器(4)が順に接続される。
 熱媒体回路(2)は、低温側流路(2a)と、高温側流路(2b)とを含む。低温側流路(2a)は、磁気冷凍装置(10)の温調流路(10a)と、ポンプ(5)の第1ポート(6a)とを接続する。高温側流路(2b)は、磁気冷凍装置(10)の温調流路(10a)と、ポンプ(5)の第2ポート(6b)とを接続する。
 〈低温側熱交換器及び高温側熱交換器〉
 低温側熱交換器(3)は、磁気冷凍装置(10)で冷却された熱媒体と、所定の冷却対象(例えば、二次冷媒や空気など)とを熱交換させる。高温側熱交換器(4)は、磁気冷凍装置(10)で加熱された熱媒体と、所定の加熱対象(例えば、二次冷媒や空気など)とを熱交換させる。
 〈ポンプ〉
 ポンプ(5)は、第1動作と、第2動作とを交互に繰り返し行う。第1動作では、熱媒体回路(2)の熱媒体を図1で左方向に搬送する。第2動作では、熱媒体回路(2)の熱媒体を図1で右方向に搬送する。ポンプ(5)は、熱媒体回路(2)の熱媒体を往復的に流動させる搬送機構を構成する。
 ポンプ(5)は、往復式のピストンポンプで構成される。ポンプ(5)は、ポンプケース(6)と、ピストン(7)とを備える。
 ピストン(7)は、ポンプケース(6)の内部で進退可能に配置される。ピストン(7)は、ポンプケース(6)の内部を、第1室(S1)と第2室(S2)とに仕切る。ポンプケース(6)には、第1ポート(6a)と、第2ポート(6b)とが形成される。第1ポート(6a)は、第1室(S1)に連通する。第1ポート(6a)は、低温側流路(2a)に接続される。第2ポート(6b)は、第2室(S2)に連通する。第2ポート(6b)は、高温側流路(2b)に接続される。ピストン(7)は、駆動機構(図示省略)によって駆動される。
 第1動作では、ピストン(7)が第1ポート(6a)側に移動する。第1動作では、第1室(S1)の容積が小さくなり且つ第2室(S2)の容積が大きくなる。この結果、第1室(S1)の熱媒体が第1ポート(6a)を通じて低温側流路(2a)に吐出される。同時に高温側流路(2b)の熱媒体が第2ポート(6b)を通じて第2室(S2)に吸い込まれる。
 第2動作では、ピストン(7)が第2ポート(6b)側に移動する。第2動作では、第2室(S2)の容積が小さくなり且つ第1室(S1)の容積が大きくなる。この結果、第2室(S2)の熱媒体が第2ポート(6b)を通じて高温側流路(2b)に吐出される。同時に低温側流路(2a)の熱媒体が第1ポート(6a)を通じて第1室(S1)に吸い込まれる。
 〈制御部〉
 冷凍装置(1)は、制御部(8)を備える。制御部(8)は、所定の運転指令に応じて、ポンプ(5)及び磁気冷凍装置(10)の動作を制御する。制御部(8)は、マイクロコンピュータと、マイクロコンピュータを動作させるためのソフトウエアを格納するメモリデバイス(具体的には半導体メモリ)とを用いて構成される。
 〈磁気冷凍装置〉
 図2及び図3にも示すように、磁気冷凍装置(10)は、磁気作業物質(11)と、磁場印加部(20)と、回転機構(15)とを備える。
 磁気作業物質(11)は、磁場が印加されることで発熱する。磁気作業物質(11)は、磁場が取り除かれることで吸熱する。なお、磁気作業物質(11)は、印加された磁場が強くなることでも発熱する。磁気作業物質(11)は、印加された磁場が弱くなることでも吸熱する。
 磁気作業物質(11)の材料としては、例えば、Gd5(Ge0.5Si0.54、La(Fe1-xSix13、La(Fe1-xCoxSiy13、La(Fe1-xSix13y、Mn(As0.9Sb0.1)等を用いることができる。
 磁気作業物質(11)は、周方向に間隔をあけて複数配置される。図2に示す例では、略扇形状に形成された磁気作業物質(11)が、周方向に等間隔に8つ配置される。磁気作業物質(11)よりも径方向内側には、筒状部(12)が配置される。
 筒状部(12)は、軸方向に延びる筒状の部材で構成される。筒状部(12)の外周面には、複数の磁気作業物質(11)が取り付けられる。
 回転機構(15)は、回転軸(16)と、モータ(17)とを有する。回転軸(16)は、モータ(17)に連結される。モータ(17)は、回転軸(16)を回転させる。回転軸(16)には、磁場印加部(20)が連結される。回転軸(16)は、筒状部(12)の筒内に差し込まれる。モータ(17)の回転に伴って、回転軸(16)とともに磁場印加部(20)が軸心周りに回転する一方、磁気作業物質(11)が停止した状態となる。これにより、磁気作業物質(11)に対して、磁場印加部(20)が相対回転移動する。
 磁場印加部(20)は、磁気作業物質(11)に対して、軸方向に離れて配置される。磁場印加部(20)は、磁気作業物質(11)に対して磁場を印加する。磁場印加部(20)は、コア(21)(第1部材)と、第1磁石(25)と、第2磁石(26)とを有する。
 コア(21)は、中心部(22)と、複数の突部(23)とを有する。中心部(22)は、軸方向に延びる筒状の部材で構成される。中心部(22)には、回転軸(16)が嵌め込まれる。回転軸(16)は、コア(21)の中心部(22)に連結される。なお、中心部(22)は、磁性材料で構成されていなくてもよい。
 複数の突部(23)は、磁性材料で構成される。複数の突部(23)は、中心部(22)から径方向外方に向かって放射状に突出する。複数の突部(23)は、周方向に間隔をあけて配置される。図3に示す例では、略扇形状に形成された突部(23)が、周方向に等間隔に4つ配置される。突部(23)は、磁気作業物質(11)に対して軸方向に離れて配置される。
 図4にも示すように、コア(21)の突部(23)における径方向外側の周方向の幅は、磁気作業物質(11)における径方向外側の周方向の幅よりも大きい。また、隣り合う突部(23)同士の間隔は、隣り合う磁気作業物質(11)同士の間隔の2倍以上に設定される。
 図5にも示すように、磁気作業物質(11)とコア(21)の突部(23)との間には、第1磁石(25)と、第2磁石(26)とが配置される。第1磁石(25)及び第2磁石(26)は、磁気作業物質(11)の面内方向に磁束が流れるように、磁気作業物質(11)に対して磁場を印加する。
 具体的に、第1磁石(25)及び第2磁石(26)は、軸方向から見て、突部(23)の周方向の両辺に沿って径方向に延びる(図4参照)。第1磁石(25)及び第2磁石(26)は、径方向外側の磁石幅が、径方向内側の磁石幅よりも大きい。
 第1磁石(25)は、磁気作業物質(11)側(図5で上側)がN極、コア(21)の突部(23)側(図5で下側)がS極となるように配置される。第2磁石(26)は、磁気作業物質(11)側(図5で上側)がS極、コア(21)の突部(23)側(図5で下側)がN極となるように配置される。なお、第1磁石(25)及び第2磁石(26)におけるN極及びS極の位置関係は、逆向きでもよい。
 第1磁石(25)及び第2磁石(26)は、コア(21)とともに、磁気作業物質(11)に対して周方向に相対回転移動する。磁気作業物質(11)に対して第1磁石(25)及び第2磁石(26)を対向させると、磁気作業物質(11)の面内方向に磁束が流れる。なお、磁束の流れを破線の矢印線で示す。
 第1磁石(25)及び第2磁石(26)は、磁束が流れている磁気作業物質(11)を軸方向から見た場合に、磁気作業物質(11)の周方向の両辺に沿ってそれぞれ配置される。磁場印加部(20)は、磁気作業物質(11)に対して磁場を印加する。
 具体的に、第1磁石(25)から磁気作業物質(11)に向かって磁束が流れる。磁気作業物質(11)では、第1磁石(25)から第2磁石(26)に向かって、磁気作業物質(11)の内部を周方向に沿って磁束が流れる。コア(21)の突部(23)では、第2磁石(26)から第1磁石(25)に向かって、突部(23)の内部を周方向に沿って磁束が流れる。これにより、磁場が印加された磁気作業物質(11)が発熱する。
 その後、磁場印加部(20)を回転移動させ、隣接する磁気作業物質(11)に対して第1磁石(25)及び第2磁石(26)を対向させる。これにより、最初に磁場を印加した磁気作業物質(11)は、磁場が取り除かれることで吸熱する。一方、隣接する磁気作業物質(11)は、磁場が印加されることで発熱する。
 -冷凍装置の運転動作-
 冷凍装置(1)の基本的な運転動作について、図1を用いて説明する。冷凍装置(1)は、加熱動作と、冷却動作とを交互に繰り返し行う。加熱動作と冷却動作とを切り換える周期は、例えば、0.1秒から1秒程度に設定される。
 〈加熱動作〉
 加熱動作では、ポンプ(5)が第1動作を行うとともに、磁場印加部(20)が第1磁場印加動作を行う。つまり、加熱動作では、ポンプ(5)の第1ポート(6a)から熱媒体が吐出される。同時に、磁気作業物質(11)に磁場が印加される。
 ポンプ(5)の第1室(S1)から低温側流路(2a)に熱媒体が吐出されると、低温側流路(2a)の熱媒体は、磁気冷凍装置(10)の温調流路(10a)に流入する。第1磁場印加動作中の冷凍装置(1)では、磁気作業物質(11)からその周囲へ熱が放出される。このため、温調流路(10a)を流れる熱媒体は、磁気作業物質(11)によって加熱される。温調流路(10a)で加熱された熱媒体は、高温側流路(2b)に流出し、高温側熱交換器(4)を流れる。高温側熱交換器(4)では、高温の熱媒体によって所定の加熱対象(例えば、二次冷媒や空気など)が加熱される。高温側流路(2b)の熱媒体は、ポンプ(5)の第2ポート(6b)から第2室(S2)に吸い込まれる。
 〈冷却動作〉
 冷却動作では、ポンプ(5)が第2動作を行うとともに、磁場印加部(20)が第2磁場印加動作を行う。つまり、加熱動作では、ポンプ(5)の第2ポート(6b)から熱媒体が吐出されると同時に、磁気作業物質(11)の磁場が取り除かれる。
 ポンプ(5)の第2室(S2)から高温側流路(2b)に熱媒体が吐出されると、高温側流路(2b)の熱媒体は、磁気冷凍装置(10)の温調流路(10a)に流入する。第2磁場印加動作中の冷凍装置(1)では、磁気作業物質(11)がその周囲の熱を奪う。このため、温調流路(10a)を流れる熱媒体は、磁気作業物質(11)によって冷却される。温調流路(10a)で冷却された熱媒体は、低温側流路(2a)に流出し、低温側熱交換器(3)を流れる。低温側熱交換器(3)では、低温の熱媒体によって所定の冷却対象(例えば、二次冷媒や空気など)が冷却される。低温側流路(2a)の熱媒体は、ポンプ(5)の第1ポート(6a)から第1室(S1)に吸い込まれる。
 -実施形態1の効果-
 本実施形態の特徴によれば、磁場印加部(20)は、第1部材(21)(コア)と、第1磁石(25)及び第2磁石(26)とを有する。第1部材(21)は、磁気作業物質(11)に対して軸方向に離れて配置される。第1磁石(25)及び第2磁石(26)は、第1部材(21)と磁気作業物質(11)との間に配置される。第1磁石(25)及び第2磁石(26)は、磁気作業物質(11)の面内方向に磁束が流れるように磁場を印加する。第1磁石(25)及び第2磁石(26)は、磁気作業物質(11)に対して周方向に相対移動するように構成される。
 このようにすれば、磁路長が短くなるため、装置全体としてコンパクト化を図るとともに、磁束密度を向上させることができる。また、第1磁石(25)及び第2磁石(26)のように、複数に分割した磁石を用いることで、磁力の強い1つの磁石を取り扱うよりも、組み立てが容易となる。
 本実施形態の特徴によれば、第1磁石(25)及び第2磁石(26)は、磁束が流れている磁気作業物質(11)を軸方向から見た場合に、磁気作業物質(11)の周方向の両辺に沿ってそれぞれ配置される。
 これにより、磁気作業物質(11)の周方向に沿って磁束を流すことができる。また、同一形状の磁石を用いて組み立てることができる。
 本実施形態の特徴によれば、第1磁石(25)及び第2磁石(26)は、径方向外側の磁石幅が、径方向内側の磁石幅よりも大きい。
 これにより、磁路長に合わせて磁石幅を調整することで、磁気作業物質(11)における磁場強度を一定にできる。
 本実施形態の特徴によれば、磁気冷凍装置(10)と、磁気冷凍装置(10)と熱交換する熱媒体回路(2)と、を備える。これにより、磁気冷凍装置(10)を備えた冷凍装置(1)を提供できる。
  -実施形態1の変形例-
 実施形態1において、磁気作業物質(11)にヨーク(13)を設けるようにしてもよい。
 図6に示すように、磁気作業物質(11)には、磁気作業物質(11)よりも透磁率の高いヨーク(13)が設けられる。ヨーク(13)は、軸方向から見て、第1磁石(25)及び第2磁石(26)と重なり合う両辺に沿って配置される。
 図6に示す例では、第1磁石(25)及び第2磁石(26)は、コア(21)の突部(23)における周方向の両辺に沿って配置される。そのため、ヨーク(13)は、磁気作業物質(11)における周方向の両辺に沿って配置される。
 ここで、第1磁石(25)から図6で左側のヨーク(13)に向かって磁束が流れる。左側のヨーク(13)から右側のヨーク(13)に向かって、磁気作業物質(11)の内部を周方向に沿って磁束が流れる。右側のヨーク(13)から第2磁石(26)に向かって磁束が流れる。第2磁石(26)から第1磁石(25)に向かって、コア(21)の突部(23)の内部を周方向に沿って磁束が流れる。
 このように、磁気作業物質(11)の両辺のヨーク(13)に磁束を流すことで、磁気作業物質(11)に対して均一に磁場を印加することができる。
 《実施形態2》
 実施形態2について説明する。
 図7及び図8に示すように、磁気冷凍装置(10)は、磁気作業物質(11)と、磁場印加部(20)と、回転機構(15)とを備える。
 磁場印加部(20)は、磁気作業物質(11)に対して、軸方向に離れて配置される。磁場印加部(20)は、磁気作業物質(11)に対して磁場を印加する。磁場印加部(20)は、コア(21)と、第1磁石(25)と、第2磁石(26)とを有する。
 コア(21)は、中心部(22)と、複数の突部(23)とを有する。磁気作業物質(11)とコア(21)の突部(23)との間には、第1磁石(25)と、第2磁石(26)とが配置される。第1磁石(25)及び第2磁石(26)は、磁気作業物質(11)の面内方向に磁束が流れるように、磁気作業物質(11)に対して磁場を印加する。
 具体的に、第1磁石(25)及び第2磁石(26)は、軸方向から見て、突部(23)の周方向の両辺に沿って径方向に延びる(図9参照)。第1磁石(25)及び第2磁石(26)は、軸方向から見て略矩形状に形成される。つまり、第1磁石(25)及び第2磁石(26)は、軸方向から見た磁石幅が、径方向の全長にわたって同じ幅に形成される。これにより、第1磁石(25)及び第2磁石(26)として、同一形状の磁石を用いることができる。
 第1磁石(25)は、磁気作業物質(11)側(図10で上側)がN極、コア(21)の突部(23)側(図10で下側)がS極となるように配置される。第2磁石(26)は、磁気作業物質(11)側(図10で上側)がS極、コア(21)の突部(23)側(図10で下側)がN極となるように配置される。なお、第1磁石(25)及び第2磁石(26)におけるN極及びS極の位置関係は、逆向きでもよい。
 第1磁石(25)及び第2磁石(26)は、コア(21)とともに、磁気作業物質(11)に対して周方向に相対回転移動する。磁気作業物質(11)に対して第1磁石(25)及び第2磁石(26)を対向させると、磁気作業物質(11)の面内方向に磁束が流れる。なお、磁束の流れを破線の矢印線で示す。
 第1磁石(25)及び第2磁石(26)は、磁束が流れている磁気作業物質(11)を軸方向から見た場合に、磁気作業物質(11)の周方向の両辺に沿ってそれぞれ配置される。磁場印加部(20)は、磁気作業物質(11)に対して磁場を印加する。
  -実施形態2の変形例-
  〈変形例1〉
 実施形態2において、磁気作業物質(11)にヨーク(13)を設けるようにしてもよい。
 図11に示すように、磁気作業物質(11)には、磁気作業物質(11)よりも透磁率の高いヨーク(13)が設けられる。ヨーク(13)は、軸方向から見て、第1磁石(25)及び第2磁石(26)と重なり合う両辺に沿って配置される。
 図11に示す例では、第1磁石(25)及び第2磁石(26)は、コア(21)の突部(23)における周方向の両辺に沿って配置される。そのため、ヨーク(13)は、磁気作業物質(11)における周方向の両辺に沿って配置される。
  〈変形例2〉
 実施形態2において、磁場印加部(20)が第3磁石(27)を有する構成としてもよい。
 図12及び図13に示すように、磁気作業物質(11)とコア(21)の突部(23)との間には、第1磁石(25)と、第2磁石(26)と、第3磁石(27)とが配置される。第1磁石(25)、第2磁石(26)、及び第3磁石(27)は、磁気作業物質(11)の面内方向に磁束が流れるように、磁気作業物質(11)に対して磁場を印加する。
 具体的に、第1磁石(25)及び第2磁石(26)は、軸方向から見て、突部(23)の周方向の両辺に沿って径方向に延びる(図12参照)。第3磁石(27)は、軸方向から見て、第1磁石(25)と第2磁石(26)との間に配置される。
 第1磁石(25)、第2磁石(26)、及び第3磁石(27)は、軸方向から見て略矩形状に形成される。つまり、第1磁石(25)、第2磁石(26)、及び第3磁石(27)は、軸方向から見た磁石幅が、径方向の全長にわたって同じ幅に形成される。
 第1磁石(25)及び第2磁石(26)は、磁気作業物質(11)側(図13で上側)がS極、コア(21)の突部(23)側(図13で下側)がN極となるように配置される。第3磁石(27)は、磁気作業物質(11)側(図13で上側)がN極、コア(21)の突部(23)側(図13で下側)がS極となるように配置される。なお、第1磁石(25)、第2磁石(26)、及び第3磁石(27)におけるN極及びS極の位置関係は、適宜変更可能である。
 第1磁石(25)、第2磁石(26)、及び第3磁石(27)は、コア(21)とともに、磁気作業物質(11)に対して周方向に相対回転移動する。磁気作業物質(11)に対して第1磁石(25)、第2磁石(26)、及び第3磁石(27)を対向させると、磁気作業物質(11)の面内方向に磁束が流れる。なお、磁束の流れを破線の矢印線で示す。
 具体的に、第3磁石(27)から磁気作業物質(11)に向かって磁束が流れる。磁気作業物質(11)では、第3磁石(27)から第1磁石(25)及び第2磁石(26)に向かって、磁気作業物質(11)の内部を周方向に沿って磁束が流れる。コア(21)の突部(23)では、第1磁石(25)及び第2磁石(26)から第3磁石(27)に向かって、突部(23)の内部を周方向に沿って磁束が流れる。
 -実施形態2の変形例2の効果-
 本変形例の特徴によれば、磁場印加部(20)は、第3磁石(27)を有する。第3磁石(27)は、軸方向から見て、第1磁石(25)と第2磁石(26)との間に配置される。
 このように、第3磁石(27)を配置することで、磁気作業物質(11)における磁場強度を強く且つ一定にできる。
 《実施形態3》
 実施形態3について説明する。
 図14及び図15に示すように、磁場印加部(20)は、コア(21)と、第1磁石(25)と、第2磁石(26)とを有する。磁気作業物質(11)とコア(21)の突部(23)との間には、第1磁石(25)と、第2磁石(26)とが配置される。第1磁石(25)及び第2磁石(26)は、磁気作業物質(11)の面内方向に磁束が流れるように、磁気作業物質(11)に対して磁場を印加する。
 具体的に、第1磁石(25)及び第2磁石(26)は、軸方向から見て、突部(23)の径方向の両辺に沿って配置される(図14参照)。第1磁石(25)は、突部(23)の径方向外側の辺に沿って延びる。第2磁石(26)は、突部(23)の径方向内側の辺に沿って延びる。
 第1磁石(25)は、磁気作業物質(11)側(図15で上側)がN極、コア(21)の突部(23)側(図15で下側)がS極となるように配置される。第2磁石(26)は、磁気作業物質(11)側(図15で上側)がS極、コア(21)の突部(23)側(図15で下側)がN極となるように配置される。なお、第1磁石(25)及び第2磁石(26)におけるN極及びS極の位置関係は、逆向きでもよい。
 第1磁石(25)及び第2磁石(26)は、コア(21)とともに、磁気作業物質(11)に対して周方向に相対回転移動する。磁気作業物質(11)に対して第1磁石(25)及び第2磁石(26)を対向させると、磁気作業物質(11)の面内方向に磁束が流れる。なお、磁束の流れを破線の矢印線で示す。
 第1磁石(25)及び第2磁石(26)は、磁束が流れている磁気作業物質(11)を軸方向から見た場合に、磁気作業物質(11)の径方向の両辺に沿ってそれぞれ配置される。磁場印加部(20)は、磁気作業物質(11)に対して磁場を印加する。
 具体的に、第1磁石(25)から磁気作業物質(11)に向かって磁束が流れる。磁気作業物質(11)では、第1磁石(25)から第2磁石(26)に向かって、磁気作業物質(11)の内部を径方向に沿って磁束が流れる。コア(21)の突部(23)では、第2磁石(26)から第1磁石(25)に向かって、突部(23)の内部を径方向に沿って磁束が流れる。
 -実施形態3の効果-
 本実施形態の特徴によれば、第1磁石(25)及び前記第2磁石(26)は、磁束が流れている磁気作業物質(11)を軸方向から見た場合に、磁気作業物質(11)の径方向の両辺に沿ってそれぞれ配置される。
 これにより、磁気作業物質(11)の径方向に沿って磁束を流すことができる。
  -実施形態3の変形例-
  〈変形例〉
 実施形態3において、磁気作業物質(11)にヨーク(13)を設けるようにしてもよい。
 図16に示すように、磁気作業物質(11)には、磁気作業物質(11)よりも透磁率の高いヨーク(13)が設けられる。ヨーク(13)は、軸方向から見て、第1磁石(25)及び第2磁石(26)と重なり合う両辺に沿って配置される。
 図16に示す例では、第1磁石(25)及び第2磁石(26)は、コア(21)の突部(23)における径方向の両辺に沿って配置される。そのため、ヨーク(13)は、磁気作業物質(11)における径方向の両辺に沿って配置される。
 《実施形態4》
 実施形態4について説明する。
 図17に示すように、磁気作業物質(11)は、周方向に間隔をあけて複数配置される。図17に示す例では、略矩形状に形成された磁気作業物質(11)が、周方向に等間隔に8つ配置される。
 図18に示すように、磁気作業物質(11)とコア(21)の突部(23)との間には、第1磁石(25)と、第2磁石(26)とが配置される。第1磁石(25)及び第2磁石(26)は、磁気作業物質(11)の面内方向に磁束が流れるように、磁気作業物質(11)に対して磁場を印加する。
 具体的に、第1磁石(25)及び第2磁石(26)は、軸方向から見て、突部(23)の周方向の両辺に沿って径方向に延びる(図18参照)。第1磁石(25)及び第2磁石(26)は、径方向外側の磁石幅が、径方向内側の磁石幅よりも大きい。
 第1磁石(25)及び第2磁石(26)は、磁束が流れている磁気作業物質(11)を軸方向から見た場合に、磁気作業物質(11)の周方向の両辺に対して少なくとも一部が重なり合うように、それぞれ配置される。磁場印加部(20)は、磁気作業物質(11)に対して磁場を印加する。
 これにより、矩形状に形成された磁気作業物質(11)に対して、磁気作業物質(11)に対して磁場を印加することができる。
 《その他の実施形態》
 前記実施形態については、以下のような構成としてもよい。
 前記実施形態では、第1磁石(25)及び第2磁石(26)を、コア(21)とともに回転移動させるようにしたが、この形態に限定するものではない。
 例えば、コア(21)の代わりに、別の磁気作業物質(11)を配置し、第1磁石(25)及び第2磁石(26)の両極側に磁気作業物質(11)を配置した構成としてもよい。このようにすれば、第1磁石(25)及び第2磁石(26)を磁気作業物質(11)に対して相対回転移動させることで、同時に磁場が印加される磁気作業物質(11)の数を増やすことができる。
 以上、実施形態及び変形例を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態及び変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。また、明細書及び特許請求の範囲の「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。
 以上説明したように、本開示は、磁気冷凍装置及び冷凍装置について有用である。
  1  冷凍装置
  2  熱媒体回路
 10  磁気冷凍装置
 11  磁気作業物質
 13  ヨーク
 20  磁場印加部
 21  第1部材(コア)
 25  第1磁石
 26  第2磁石
 27  第3磁石

Claims (7)

  1.  周方向に間隔をあけて配置された複数の磁気作業物質(11)と、
     前記磁気作業物質(11)に対して周方向に相対移動するとともに、前記磁気作業物質(11)に対して磁場を印加する磁場印加部(20)と、を備え、
     前記磁場印加部(20)は、
      前記磁気作業物質(11)に対して軸方向に離れて配置された第1部材(21)と、
      前記第1部材(21)と前記磁気作業物質(11)との間に配置され且つ前記磁気作業物質(11)の面内方向に磁束が流れるように磁場を印加する第1磁石(25)及び第2磁石(26)と、を有し、
     前記第1磁石(25)及び前記第2磁石(26)は、前記磁気作業物質(11)に対して周方向に相対移動するように構成される
    磁気冷凍装置。
  2.  請求項1の磁気冷凍装置において、
     前記第1磁石(25)及び前記第2磁石(26)は、磁束が流れている前記磁気作業物質(11)を軸方向から見た場合に、前記磁気作業物質(11)の周方向の両辺に沿ってそれぞれ配置される
    磁気冷凍装置。
  3.  請求項2の磁気冷凍装置において、
     前記第1磁石(25)及び前記第2磁石(26)は、径方向外側の磁石幅が、径方向内側の磁石幅よりも大きい
    磁気冷凍装置。
  4.  請求項1の磁気冷凍装置において、
     前記第1磁石(25)及び前記第2磁石(26)は、磁束が流れている前記磁気作業物質(11)を軸方向から見た場合に、前記磁気作業物質(11)の径方向の両辺に沿ってそれぞれ配置される
    磁気冷凍装置。
  5.  請求項1~4のいずれか1つの磁気冷凍装置において、
     前記磁場印加部(20)は、第3磁石(27)を有し、
     前記第3磁石(27)は、軸方向から見て、前記第1磁石(25)と前記第2磁石(26)との間に配置される
    磁気冷凍装置。
  6.  請求項1~5のいずれか1つの磁気冷凍装置において、
     前記磁気作業物質(11)には、前記磁気作業物質(11)よりも透磁率の高いヨーク(13)が設けられ、
     前記ヨーク(13)は、軸方向から見て、前記第1磁石(25)及び前記第2磁石(26)と重なり合う両辺に沿って配置される
    磁気冷凍装置。
  7.  請求項1~6のいずれか1つの磁気冷凍装置(10)と、
     前記磁気冷凍装置(10)と熱交換する熱媒体回路(2)と、を備える
    冷凍装置。 
PCT/JP2022/012220 2021-03-29 2022-03-17 磁気冷凍装置及び冷凍装置 WO2022209948A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280023069.9A CN117043525A (zh) 2021-03-29 2022-03-17 磁制冷装置及制冷装置
EP22780168.5A EP4306875A1 (en) 2021-03-29 2022-03-17 Magnetic refrigeration device and regrigeration device
US18/372,519 US20240011675A1 (en) 2021-03-29 2023-09-25 Magnetic refrigerator and refrigeration apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021054795A JP7456965B2 (ja) 2021-03-29 2021-03-29 磁気冷凍装置及び冷凍装置
JP2021-054795 2021-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/372,519 Continuation US20240011675A1 (en) 2021-03-29 2023-09-25 Magnetic refrigerator and refrigeration apparatus

Publications (1)

Publication Number Publication Date
WO2022209948A1 true WO2022209948A1 (ja) 2022-10-06

Family

ID=83459170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012220 WO2022209948A1 (ja) 2021-03-29 2022-03-17 磁気冷凍装置及び冷凍装置

Country Status (5)

Country Link
US (1) US20240011675A1 (ja)
EP (1) EP4306875A1 (ja)
JP (1) JP7456965B2 (ja)
CN (1) CN117043525A (ja)
WO (1) WO2022209948A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110064A (en) * 1980-11-15 1982-07-08 Bosch Gmbh Robert Magnet generator for ignition device for internal combustion engine
JP2010112606A (ja) * 2008-11-05 2010-05-20 Toshiba Corp 磁気式温度調整装置
JP2011069508A (ja) * 2009-09-24 2011-04-07 Toshiba Corp 磁気温度調整装置
WO2019150817A1 (ja) 2018-01-31 2019-08-08 サンデンホールディングス株式会社 磁気ヒートポンプ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4557874B2 (ja) 2005-11-30 2010-10-06 株式会社東芝 磁気冷凍機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110064A (en) * 1980-11-15 1982-07-08 Bosch Gmbh Robert Magnet generator for ignition device for internal combustion engine
JP2010112606A (ja) * 2008-11-05 2010-05-20 Toshiba Corp 磁気式温度調整装置
JP2011069508A (ja) * 2009-09-24 2011-04-07 Toshiba Corp 磁気温度調整装置
WO2019150817A1 (ja) 2018-01-31 2019-08-08 サンデンホールディングス株式会社 磁気ヒートポンプ装置

Also Published As

Publication number Publication date
EP4306875A1 (en) 2024-01-17
JP7456965B2 (ja) 2024-03-27
CN117043525A (zh) 2023-11-10
JP2022152137A (ja) 2022-10-12
US20240011675A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
KR102086373B1 (ko) 자기 냉각 장치 및 그 제어방법
CA2941237C (en) Magnetic regenerator unit and magnetic cooling system with the same
JP4284183B2 (ja) 回転磁石式磁気冷凍機
US8875522B2 (en) Magnetic heat pump apparatus
KR20130084026A (ko) 자기 냉각 장치 및 그 제어 방법
CN110392810A (zh) 磁工作件以及使用该磁工作件的磁热泵装置
WO2022209948A1 (ja) 磁気冷凍装置及び冷凍装置
WO2022209610A1 (ja) 磁気冷凍装置及び冷凍装置
WO2022209949A1 (ja) 磁気冷凍装置及び冷凍装置
JP7111968B2 (ja) 磁気冷凍装置
JP5821889B2 (ja) 熱磁気サイクル装置
JP6583143B2 (ja) 熱磁気サイクル装置
WO2024070690A1 (ja) 冷凍装置及び冷凍機
JP6361413B2 (ja) 磁気ヒートポンプ装置
JP2024048522A (ja) 磁気冷凍装置及び冷凍機
JP6601300B2 (ja) 熱磁気サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780168

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280023069.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022780168

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022780168

Country of ref document: EP

Effective date: 20231011

NENP Non-entry into the national phase

Ref country code: DE