WO2022209716A1 - 圧電素子及び圧電素子の製造方法 - Google Patents

圧電素子及び圧電素子の製造方法 Download PDF

Info

Publication number
WO2022209716A1
WO2022209716A1 PCT/JP2022/010719 JP2022010719W WO2022209716A1 WO 2022209716 A1 WO2022209716 A1 WO 2022209716A1 JP 2022010719 W JP2022010719 W JP 2022010719W WO 2022209716 A1 WO2022209716 A1 WO 2022209716A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
piezoelectric element
piezoelectric
film
electrode layer
Prior art date
Application number
PCT/JP2022/010719
Other languages
English (en)
French (fr)
Inventor
宏之 小林
誠吾 中村
文彦 望月
秀明 田中
健一郎 井上
安志 豊島
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP22779937.6A priority Critical patent/EP4318620A1/en
Priority to CN202280024500.1A priority patent/CN117084003A/zh
Priority to JP2023510802A priority patent/JPWO2022209716A1/ja
Publication of WO2022209716A1 publication Critical patent/WO2022209716A1/ja
Priority to US18/472,168 priority patent/US20240023454A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based

Definitions

  • the present disclosure relates to a piezoelectric element and a method of manufacturing the piezoelectric element.
  • PZT Lead zirconate titanate
  • FeRAM Feroelectric Random Access Memory
  • MEMS piezoelectric elements provided with PZT films are being put to practical use through fusion with MEMS (Micro Electro-Mechanical Systems) technology.
  • a PZT film is applied as a piezoelectric film in a piezoelectric device comprising a lower electrode, a piezoelectric film and an upper electrode on a substrate.
  • This piezoelectric element has been developed into various devices such as inkjet heads (actuators), micromirror devices, angular velocity sensors, gyro sensors, and vibration power generation devices.
  • the piezoelectric characteristic of a piezoelectric element are represented by the product of the piezoelectric characteristics inherent to the piezoelectric material and the applied voltage. That is, when the piezoelectric characteristics of the piezoelectric films are the same, it can be said that the element to which a higher voltage can be applied has a higher performance as an actuator. Therefore, it is desired to realize a piezoelectric element having a higher dielectric breakdown voltage (hereinafter referred to as "breakdown voltage”) than conventional ones.
  • breakdown voltage dielectric breakdown voltage
  • JP-A-2020-204083 and JP-A-2010-235402 an additive is added to the piezoelectric film to improve the withstand voltage. There is a problem of lowering
  • Japanese Patent Application Laid-Open No. 2019-052348 aims to improve the breakdown voltage by improving the crystallinity of the PZT film by providing a seed layer.
  • a seed layer since a new layer called a seed layer is introduced, there is a problem that the process load is large.
  • the technique of the present disclosure has been made in view of the above circumstances, and aims to provide a piezoelectric element and a method for manufacturing the piezoelectric element that achieve high withstand voltage and driving stability without degrading the piezoelectric characteristics. .
  • a piezoelectric element of the present disclosure is a piezoelectric element that includes a lower electrode layer, a piezoelectric film containing a perovskite oxide as a main component, and an upper electrode layer in this order on a substrate, At least a region of the upper electrode layer closest to the piezoelectric film is composed of an oxide conductive layer, An interface layer containing constituent elements of the oxide conductive layer and OH groups is provided between the piezoelectric film and the oxide conductive layer of the upper electrode layer,
  • the interfacial layer has an amorphous structure and a thickness of 1 nm or more and 5 nm or less, and is derived from the 1s orbital of oxygen bonded to the metal in the intensity profile of the binding energy in the interfacial layer obtained by X-ray photoelectron spectroscopy.
  • the peak intensity ratio ⁇ / ⁇ where ⁇ is the peak intensity of the binding energy and ⁇ is the peak intensity of the binding energy derived from the 1s orbital of oxygen constituting the
  • the oxide conductive layer is a layer containing ITO (indium tin oxide), IrO 2 (iridium oxide) or SrRuO 3 (strontium ruthenium oxide) as a main component.
  • a “main component” means a component that accounts for 50 mol % or more of the components constituting the film or layer.
  • the peak intensity ratio ⁇ / ⁇ in the intensity profile of the binding energy preferably satisfies the following formula (2). 0.55 ⁇ / ⁇ (2)
  • the interface layer preferably has a thickness of 3 nm or more and 5 nm or less.
  • the height difference of the surface unevenness of the piezoelectric layer is 100 nm or less.
  • the perovskite oxide preferably contains Pb (lead), Zr (zirconium), Ti (titanium) and O (oxygen).
  • the perovskite oxide is a compound represented by the following general formula (3), Pb ⁇ (Zr x Ti 1-x ) y-1 B1 y ⁇ O 3 (3) 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.3, B1 is preferably one or more elements selected from V (vanadium), Nb (niobium), Ta (tantalum), Sb (antimony), Mo (molybdenum) and W (tungsten).
  • the piezoelectric film is preferably an oriented film with (100) plane orientation.
  • the piezoelectric film when the piezoelectric film is a (100) plane oriented film, the (100) plane preferably has an inclination of 1° or more with respect to the film surface.
  • a method for manufacturing a piezoelectric element of the present disclosure includes a sputtering step of forming an oxide conductive layer on a piezoelectric film of a laminate including a lower electrode layer and a piezoelectric film on a substrate, In the initial stage of film formation in the sputtering process, sputtering is performed while introducing H 2 O gas into the film forming chamber of the film forming apparatus to form an interface layer, and subsequently, while stopping the introduction of H 2 O gas. Sputtering is performed to form an oxide conductive layer.
  • a method for manufacturing a piezoelectric element of the present disclosure includes a sputtering step of forming an oxide conductive layer on a piezoelectric film of a laminate including a lower electrode layer and a piezoelectric film on a substrate, Before performing the sputtering step, the inside of the film forming chamber of the film forming apparatus is evacuated to a back pressure of 5 ⁇ 10 -3 Pa or more and 5 ⁇ 10 -2 Pa or less. A film gas is introduced to perform the sputtering process.
  • a piezoelectric element that achieves high withstand voltage can be obtained without deteriorating the piezoelectric properties of the piezoelectric film.
  • FIG. 1 is a cross-sectional view showing a layer structure of a piezoelectric element of one embodiment
  • FIG. 3 is an enlarged schematic diagram of a piezoelectric film
  • FIG. It is a figure which shows schematic structure of the sample for evaluation.
  • FIG. 2 is a schematic diagram of an HAADF-STEM image of a piezoelectric element
  • FIG. 4 is an explanatory diagram of a method for producing a sample for photoelectron spectroscopy;
  • FIG. 4 shows the binding energy profile for the interfacial layer of Example 1;
  • FIG. 4 shows the binding energy profile for the interfacial layer of Example 2;
  • FIG. 11 shows the binding energy profile for the interfacial layer of Example 3;
  • FIG. 11 shows the binding energy profile for the interfacial layer of Example 4;
  • FIG. 11 shows the binding energy profile for the interfacial layer of Example 5;
  • FIG. 1 is a schematic cross-sectional view showing the layer structure of a piezoelectric element 1 of one embodiment.
  • the piezoelectric element 1 includes a lower electrode layer 12, a piezoelectric film 15 and an upper electrode layer 18 on a substrate 11 in this order.
  • the piezoelectric element 1 also has an interface layer 16 between the piezoelectric film 15 and the upper electrode layer 18 .
  • At least the region closest to the piezoelectric film of the upper electrode layer 18 is composed of an oxide conductive layer 18a.
  • the conductive oxide layer 18a forming the region of the upper electrode layer 18 closest to the piezoelectric film is preferably a layer containing ITO , IrO2 or SrRuO3 as a main component.
  • the stoichiometric composition of iridium oxide is IrO 2
  • the iridium oxide applied to the oxide conductive layer 18a may be IrO x (x ⁇ 2), which is oxygen deficient than the stoichiometric composition.
  • the upper electrode layer 18 has a single-layer structure, and shows an example of an oxide conductive layer 18a.
  • the oxide conductive layer 18a is preferably a layer containing 80 mol % or more of ITO, IrO 2 or SrRuO 3 .
  • the upper electrode layer 18 may have a laminated structure instead of a single layer structure, and in the case of having a laminated structure, the oxide conductive layer may be disposed closest to the piezoelectric film.
  • the upper electrode layer 18 may include a metal layer.
  • the interface layer 16 is formed between the piezoelectric film 15 and the upper electrode layer 18, as described above. Since the region of the upper electrode layer 18 closest to the piezoelectric film 15 is composed of the conductive oxide layer, the interface layer 16 is formed between the piezoelectric film 15 and the conductive oxide layer 18a.
  • the interface layer 16 contains at least the constituent elements of the oxide conductive layer 18a that constitutes the upper electrode layer 18 and the OH groups.
  • the interface layer 16 has an amorphous structure and a thickness of 1 nm or more and 5 nm or less. More preferably, the thickness of the interface layer 16 is 3 nm or more and 4 nm or less.
  • the interface layer 16 has a binding energy intensity ⁇ derived from the 1s orbital of oxygen bound to the metal and an oxygen
  • the peak intensity ratio ⁇ / ⁇ of the binding energy intensity ⁇ derived from the 1s orbital of satisfies the following formula (1). 0.35 ⁇ / ⁇ (1)
  • ⁇ and ⁇ are determined as follows.
  • a photoelectron spectroscopy measurement is performed on the interface layer 16 to obtain an intensity profile with intensity on the vertical axis and binding energy on the horizontal axis.
  • a spectrum derived from the 1s (O1s) orbit of oxygen appearing near 530 eV is acquired.
  • the spectrum derived from the O1s orbit observed near 530 eV includes a peak derived from oxygen bonded to the metal M and a peak derived from oxygen constituting the OH group (that is, oxygen bonded to hydrogen).
  • the 1s orbital peak of oxygen bonded to hydrogen occurs on the higher energy side than the 1s orbital peak of oxygen bonded to metal M. Therefore, the spectrum of the O1s orbital is separated into two peaks, the peak on the higher energy side is defined as the peak of the binding energy derived from the oxygen 1s orbital of the OH group, and the peak intensity is ⁇ . Then, the peak on the low energy side is defined as the peak of the binding energy derived from the 1s orbital of oxygen bonded to the metal M, and the peak intensity is defined as ⁇ .
  • the peak intensity ratio ⁇ / ⁇ is calculated from ⁇ and ⁇ thus obtained.
  • the metal M includes all metals contained in the interface layer 16.
  • the metal M includes at least In and Sn, and may further include metals that are constituent elements of the piezoelectric film. Since the binding energy derived from the 1s orbital of oxygen bound to a metal hardly depends on the type of the bound metal, even if it is bound to any metal, it is treated as one peak. Similarly, the binding energy derived from the 1s orbital of oxygen in the OH group is treated as one peak because it hardly depends on the metal species that binds to the OH group. Note that the OH group is considered to exist as a metal hydroxide in the interface layer 16 .
  • the inventors of the present invention have found that the pressure resistance and driving stability of the piezoelectric element 1 can be improved by having the configuration of the piezoelectric element described above (see Examples below). As described above, by providing the oxide conductive layer 18a in the region closest to the piezoelectric film 15 of the upper electrode layer 18, oxygen from the piezoelectric film 15 is reduced compared to the case where the region closest to the piezoelectric film 15 is made of metal. It becomes difficult for the element to escape, and an effect of suppressing a decrease in piezoelectricity can be obtained.
  • each layer of the piezoelectric element is formed by sputtering. In general, it is considered unfavorable to include an OH group in an electronic device including a piezoelectric element because it is likely to deteriorate. In particular, when forming an oxide film, it is easy to take in water.
  • the back pressure in the film formation chamber of the film formation apparatus is sufficiently low so that the OH groups are not mixed into the layers. It is considered preferable to form the film after sufficiently removing the contained moisture.
  • the present inventors found that by providing the interface layer 16 containing more than a certain amount of OH groups at the interface between the piezoelectric film 15 and the oxide conductive layer 18a, the pressure resistance and driving stability of the piezoelectric element 1 were improved. can be improved.
  • the intensity ratio ⁇ / ⁇ satisfies the following formula (2). 0.55 ⁇ / ⁇ (2)
  • ⁇ / ⁇ 0.9, and more preferably ⁇ / ⁇ 0.8 are preferable. If ⁇ / ⁇ 0.8, fabrication is easy and the effect of improving the breakdown voltage is high. Further, it is preferable that ⁇ / ⁇ 0.8 from the viewpoint of suppressing the resistance of the interface layer 16 from increasing.
  • the interface layer 16 preferably has a thickness of 3 nm or more and 5 nm or less. By setting the thickness of the interface layer 16 within this range, higher withstand voltage and driving stability can be obtained (see Examples).
  • the oxide conductive layer 18a is a layer containing ITO as a main component, 0.4 ⁇ / ⁇ 0.8 is preferable, and 0.55 ⁇ / ⁇ 0.8 is more preferable.
  • the oxide conductive layer 18a is a layer containing IrO 2 as a main component, 0.4 ⁇ / ⁇ 0.65 is preferable.
  • the oxide conductive layer 18a is a layer containing SrRuO 3 as a main component, 0.35 ⁇ / ⁇ 0.70 is preferable.
  • the piezoelectric film 15 is mainly composed of a perovskite-type oxide represented by the general formula ABO3 .
  • A is an A site element, Pb, Ba (barium), La (lanthanum), Sr, Bi (bismuth), Li (lithium), Na (sodium), Ca (calcium), Cd (cadmium) ), Mg (magnesium) and K (potassium).
  • B is a B site element, Ti, Zr, V (vanadium), Nb (niobium), Ta (tantalum), Cr (chromium), Mo (molybdenum), W (tungsten), Mn (manganese) , Fe (iron), Ru, Co (cobalt), Ir, Ni (nickel), Cu (copper), Zn (zinc), Ga (gallium), In, tin, antimony (Sb) and one of the lanthanide elements one or a combination of two or more.
  • O in the general formula is oxygen.
  • A:B:O is based on 1:1:3, but may deviate as long as the perovskite structure can be obtained.
  • the perovskite oxide preferably accounts for 80 mol % or more of the piezoelectric film 15 .
  • the piezoelectric film 15 is preferably made of a perovskite oxide (however, it contains unavoidable impurities).
  • the perovskite-type oxide is preferably lead zirconate titanate (PZT) containing Pb (lead), Zr (zirconium), Ti (titanium) and O (oxygen).
  • PZT lead zirconate titanate
  • the perovskite oxide is preferably a compound represented by the following general formula (3) containing an additive B at the B site of PZT.
  • B1 is preferably one or more elements selected from V (vanadium), Nb (niobium), Ta (tantalum), Sb (antimony), Mo (molybdenum) and W (tungsten).
  • 0 ⁇ x ⁇ 1 and 0 ⁇ y ⁇ 0.3 In the general formula (3), Pb: ⁇ (ZrxTi1 +x ) 1- yBy ⁇ :O is based on 1:1:3, but it deviates within the range where the perovskite structure can be obtained.
  • B1 may be a single element such as only V or only Nb, or a combination of two or more elements such as a mixture of V and Nb, or a mixture of V, Nb and Ta. good too. When B1 is one of these elements, a very high piezoelectric constant can be achieved in combination with the A-site element Pb.
  • the piezoelectric film 15 is preferably a columnar structure film having a columnar structure containing a large number of columnar crystals 17, as shown in the schematic cross-sectional view of FIG.
  • a large number of columnar crystals 17 preferably extend non-parallel to the surface of the substrate 11 (see FIG. 1) and are uniaxially oriented films with aligned crystal orientations.
  • a greater piezoelectricity can be obtained by using an oriented structure.
  • the longitudinal direction of the columnar crystal has an inclination ⁇ of 1° or more with respect to the normal to the substrate.
  • the orientation plane of the piezoelectric film 15 has an inclination of 1° or more with respect to the surface of the substrate.
  • the orientation plane is the (100) plane or the (001) plane.
  • the (100) plane or the (001) plane of the columnar crystals is preferably inclined by 1° or more with respect to the surface of the substrate.
  • the a-axis and c-axis lattice constants in the perovskite structure are almost the same, and the (100) plane and the (001) plane cannot be distinguished by XRD (X-ray diffraction) analysis. However, it can be confirmed by XRD analysis that the oriented film is oriented on either plane.
  • the thickness of the piezoelectric film 15 is usually 200 nm or more, for example 0.2 ⁇ m to 5 ⁇ m, preferably 1 ⁇ m or more.
  • the height difference of the surface unevenness of the piezoelectric film 15 is preferably 100 nm or less.
  • a method for measuring surface unevenness will be described in Examples below, but the height difference of surface unevenness is defined as the peak to valley (PV value), which is the maximum unevenness difference.
  • the period of the surface unevenness is not a minute period of several tens of nm to several hundred nm, but a period of ⁇ m order.
  • the piezoelectric film 15 can be covered with an extremely thin interface layer 16, and a high effect due to the provision of the interface layer 16 can be obtained. That is, by setting the PV value of the surface unevenness of the piezoelectric film 15 to 100 nm or less, it is possible to enhance the effect of improving the pressure resistance and driving stability of the piezoelectric element. More preferably, the PV value of the surface unevenness of the piezoelectric film 15 is 80 nm or less.
  • the height difference of surface unevenness can be measured in Dynamic Force Mode (DFM) using a Scanning Probe Microscope (SPM).
  • DFM Dynamic Force Mode
  • SPM Scanning Probe Microscope
  • the height difference of surface irregularities can be measured on the exposed surface of the piezoelectric film 15 without the upper electrode layer 18 formed thereon.
  • the measurement can be performed on the surface of the piezoelectric film 15 before the upper electrode layer 18 is formed.
  • Substrate 11 is not particularly limited, and substrates such as silicon, glass, stainless steel, yttrium-stabilized zirconia, alumina, sapphire, and silicon carbide can be used.
  • substrates such as silicon, glass, stainless steel, yttrium-stabilized zirconia, alumina, sapphire, and silicon carbide can be used.
  • a laminated substrate such as a silicon substrate with a thermal oxide film having an SiO 2 oxide film formed on the surface of the silicon substrate may be used.
  • the lower electrode layer 12 forms a pair with the upper electrode layer 18 and is an electrode for applying voltage to the piezoelectric film 15 .
  • the main components of the lower electrode layer 12 are not particularly limited, and are Au (gold), Pt (platinum), Ir (iridium), Ru (ruthenium), Ti, Mo, Ta, Al (aluminum), Cu (copper), and Ag. metals such as (silver) or metal oxides, and combinations thereof. Also, ITO (Indium Tin Oxide), LaNiO 3 , SRO (SrRuO 3 ), and the like may be used.
  • Various adhesion layers and seed layers may be included between the piezoelectric film 15 and the lower electrode layer 12 and between the lower electrode layer 12 and the substrate 11 .
  • lower and upper do not mean up and down in the vertical direction.
  • the electrode is simply referred to as the upper electrode.
  • the layer thicknesses of the lower electrode layer 12 and the upper electrode layer 18 are not particularly limited, and are preferably about 50 nm to 300 nm, more preferably 100 nm to 300 nm.
  • a lower electrode layer 12 and a piezoelectric film 15 are formed in order on the substrate 11 by a sputtering method.
  • an upper electrode layer 18 is formed on the piezoelectric film 15 .
  • the film forming process of the upper electrode layer 18 first includes a sputtering process of forming an oxide conductive layer 18 a on the piezoelectric film 15 of the laminate including the lower electrode layer 12 and the piezoelectric film 15 on the substrate 11 .
  • the interface layer 16 is formed between the piezoelectric film 15 and the oxide conductive layer 18a.
  • sputtering is performed while introducing H 2 O gas (i.e., water vapor) into the film formation chamber of the film formation apparatus.
  • H 2 O gas i.e., water vapor
  • a layer 16 is formed.
  • sputtering is performed while the introduction of the H 2 O gas into the deposition chamber is stopped to form the oxide conductive layer 18a.
  • the initial stage of film formation in the sputtering process for forming the conductive oxide layer 18a on the piezoelectric film 15 means that a target for forming the conductive oxide layer 18a is set in a target holder in the film formation chamber, and sputtering is started. It is the period from the time when the interface layer 16 is formed to the time when the interface layer 16 is formed.
  • the introduction amount of H 2 O gas and the initial time of film formation may be set according to the thickness of the interface layer 16 and the desired amount of OH to be added.
  • the piezoelectric element 1 having an interface layer 16 having an amorphous structure and containing an OH group with a thickness of 1 to 5 nm and satisfying the following conditions.
  • the binding energy intensity ⁇ derived from the 1s orbital of oxygen O bound to the metal and the 1s orbital of oxygen constituting the OH group
  • the peak intensity ratio ⁇ / ⁇ of the derived bond energy intensity ⁇ satisfies the following formula (1). 0.35 ⁇ / ⁇ (1)
  • a method of introducing water vapor into the film formation chamber of the film formation apparatus a method of introducing a H 2 +O 2 mixed gas into the film formation chamber to generate H 2 O in the plasma, and a method of introducing water vapor from the outside.
  • a method for forming the interface layer 16 containing OH groups in addition to introducing water vapor from the outside into the film formation chamber at the initial stage of film formation in the sputtering process for forming the oxide conductive layer, as described above, There is also a method of using residual gas in the deposition chamber.
  • the inside of the film forming chamber has a pressure of 5 ⁇ 10 ⁇ 3 Pa or more and 5 ⁇ 10 ⁇ 2 .
  • the chamber is evacuated to a back pressure of Pa or less, and after evacuating to the back pressure, a film-forming gas is introduced to perform a sputtering process.
  • a film-forming gas is introduced to perform a sputtering process.
  • a deposition chamber of a deposition apparatus for performing sputtering is filled with a deposition gas in order to suppress the components contained in the residual gas in the deposition chamber from being taken into the film as impurities.
  • the pressure inside the chamber where this evacuation is performed is called back pressure. Residual gas can be reduced by reducing the internal pressure by evacuating the film forming chamber, that is, by reducing the back pressure.
  • the main constituent of the residue in the deposition chamber is water. In order to prevent water from adhering to the surface of the oxide such as the piezoelectric film 15, conventionally, when the upper electrode layer 18 is formed on the piezoelectric film 15, the back pressure is set to be sufficiently low. A vacuum was being drawn.
  • the back pressure was set to 5 ⁇ 10 ⁇ 3 Pa or more and 5 ⁇ 10 ⁇ 2 Pa or less, which is higher than the conventional one. This makes it possible to form an interface layer 16 containing more OH groups than ever before by creating an environment in which water tends to adhere to the surface of the piezoelectric film 15 by increasing the amount of residual gas.
  • the backside of the film formation chamber is The pressure is set to 5 ⁇ 10 ⁇ 3 Pa or more and 5 ⁇ 10 ⁇ 2 Pa or less, and H 2 O gas is introduced into the film formation chamber at the initial stage of film formation in the sputtering process for forming the oxide conductive layer 18a. good too.
  • a lower electrode layer 12 was formed on the substrate 11 by RF (radio-frequency) sputtering. Specifically, as the lower electrode layer 12, a Ti layer with a thickness of 20 nm and an Ir layer with a thickness of 150 nm were stacked in this order on the substrate 11. As shown in FIG. The sputtering conditions for each layer were as follows.
  • Target-substrate distance 100 mm
  • Target input power 600W
  • Ar gas pressure 0.2 Pa
  • Substrate setting temperature 350°C
  • Target-substrate distance 100mm
  • Target input power 600W Ar gas pressure 0.2:Pa
  • Substrate setting temperature 350°C
  • the substrate with the lower electrode layer was placed in an RF sputtering apparatus, and an Nb-doped PZT film was formed to a thickness of 2 ⁇ m by setting the Nb doping amount at the B site to 10 at %.
  • the sputtering conditions at this time were as follows.
  • Target-substrate distance 60 mm
  • Target input power 500W
  • Degree of vacuum 0.3 Pa
  • Ar/O 2 mixed atmosphere O 2 volume fraction 2.0%)
  • Substrate setting temperature 700°C
  • the steps up to the formation of the piezoelectric film are common to all examples and comparative examples.
  • the method or conditions for forming the upper electrode layer described below are different between the examples and the comparative examples.
  • an upper electrode layer 18 having a thickness of 200 nm was formed on the surface of the piezoelectric film 15 by sputtering.
  • the upper electrode layer 18 made of the upper electrode layer material shown in Table 1 was formed.
  • an ITO target was used, and when forming an SrRuO 3 layer, an SrRuO 3 target was used.
  • an IrO 2 layer was formed as the upper electrode layer 18, reactive sputtering was performed using an Ir target.
  • the interface layer 16 was formed at the initial stage of film formation of the upper electrode layer 18 .
  • Examples 1-4, 8, 10, Comparative Example 1 The substrate after the piezoelectric film formation was placed in the film formation chamber of the RF sputtering apparatus, and after evacuating to the back pressure shown in Table 1 for each example and comparative example, the degree of vacuum was reduced to 0.3 Pa.
  • Ar/O 2 mixed gas (O 2 volume fraction 10%) was introduced into the apparatus so that The substrate setting temperature was RT (room temperature), and the target input power was 200W.
  • Examples 5, 6, 9, 11 The film was formed while introducing H 2 O gas for 10 seconds at the initial stage of film formation.
  • a target using the material of the upper electrode layer was set, and after 10 seconds from the start of sputtering film formation, sputtering was performed while introducing H 2 O gas into the film formation chamber.
  • a bottle containing pure water was bubbled through Ar as a carrier gas, and H 2 O gas was directly supplied into the film formation chamber using the vapor pressure of water. At this time, the H 2 O gas flow rate ratio H 2 O/(H 2 O+O 2 ) was adjusted to 10%.
  • Example 7 The film was formed while introducing H 2 O gas for 20 seconds in the initial stage of film formation. After 20 seconds, the film was formed while the introduction of the H 2 O gas was stopped. Conditions other than the introduction time of the H 2 O gas were the same as in Example 5.
  • a laminated body for cutting out the piezoelectric element of each example or comparative example was produced as described above. The following evaluations and measurements were performed on the piezoelectric elements of Examples and Comparative Examples, which were cut out from the laminated body thus produced.
  • the piezoelectric elements of Examples 5 and 6 are the same laminate, and are elements cut out from the central portion and outer peripheral portion of an 8-inch substrate.
  • a scanning transmission electron microscope (STEM) image and a transmission electron microscope (TEM) image were taken to evaluate the layer structure of the piezoelectric element and the crystallinity of each layer.
  • FIG. 4 is a diagram schematically showing a high-angle annular dark field (HAADF: High-Angle Annular Dark Field Scanning)-STEM image of a region centering on the interface layer 16 of the cross section of the piezoelectric element of the example and the comparative example. be.
  • HAADF High-Angle Annular Dark Field Scanning
  • FIG. 4 in the HAADF-STEM image, the contrast due to the composition is clearly observed.
  • the presence of an interface layer 16 having a different composition between the upper electrode layer 18 and the piezoelectric film 15 was confirmed (see FIG. 4).
  • a further enlarged TEM image was obtained in the vicinity of the interface layer 16, such as the rectangular area enclosed by the dashed line in FIG. 4, to confirm the crystal state (not shown).
  • ⁇ Measurement of thickness of interface layer> The thickness of the interfacial layer in each example and comparative example was obtained by drawing a line at the boundary between the piezoelectric film 15 and the interfacial layer 16 and the boundary between the interfacial layer 16 and the upper electrode layer 18 in the TEM image, and measuring the thickness between the two lines. distance was measured. The thickness of each example is shown in Table 1 below. In addition, the measured value of the thickness includes an error of about 10%.
  • FIG. 5 is an explanatory diagram of a method for preparing a sample for photoelectron spectroscopy.
  • FIG. 5A is a schematic cross-sectional view of part of the piezoelectric element
  • FIG. 5B is a schematic view of a cut surface of a measurement sample obtained from the piezoelectric element shown in FIG. 5A.
  • a sample for composition analysis was prepared using an oblique cutting method for the piezoelectric element of each example and comparative example.
  • a diamond knife was inserted into the surface of the piezoelectric element at an angle ⁇ to obliquely cut the piezoelectric element.
  • a cut surface as shown in FIG. 5B was obtained.
  • the interface layer 16 having a thickness t shown in FIG. 5A is exposed with a width of 1/sin ⁇ times.
  • the thickness t of the interface layer 16 was estimated to be about 10 nm, and the angle ⁇ was set so that the width of the interface layer 16 exposed on the cut surface after oblique excavation was 5 ⁇ m or more.
  • a measurement area (an area surrounded by a circle in FIG. 5B) was set so that the piezoelectric film 15 was slightly included in the cut surface obtained as described above, and photoelectron spectroscopy was performed.
  • FIGS. 6 to 10 are intensity profiles of binding energies obtained by photoelectron spectroscopic measurement for the piezoelectric elements of Examples 1 to 5.
  • FIG. In FIGS. 6 to 10, intensity profiles indicated by solid lines are measured data with noise removed.
  • Examples 1 to 5 are all examples in which the oxide conductive layer forming the upper electrode layer is ITO.
  • a spectrum derived from the 1s orbital of oxygen appears in the vicinity of the binding energy of 530 eV shown in FIGS. As shown in FIGS. 6-10, the spectrum derived from the 1s orbital of oxygen has two maxima. It was separated into two peaks having peak values at binding energies showing these two maxima. 6 to 10, the peak indicated by the broken line in FIGS.
  • 6 to 10 is the binding energy due to the 1s orbital of oxygen O bound to the metal M (hereinafter referred to as “oxygen O in the MO bond”). is the peak of 6 to 10, of the two separated peaks, the peak on the high-energy side indicated by the dotted line is the O of the OH group bonded to the metal M (hereinafter referred to as “oxygen O in the M-OH bond” ) is the peak of the binding energy attributed to the 1s orbital.
  • oxygen O in the M-OH bond is the peak of the binding energy attributed to the 1s orbital.
  • the respective peak intensities ⁇ and ⁇ were determined, and the peak intensity ratio ⁇ / ⁇ was calculated.
  • the binding energy of the MO bond and the binding energy of the M-OH bond were obtained from the NIST (National Institute of Standards and Technology) database ([online], [searched March 23, 2021], We referred to the Internet ⁇ URL: https://srdata.nist.gov/xps/main_search_menu.aspx>
  • Peak separation was performed by setting each binding energy from the maximum value of the spectrum obtained.
  • the pressure resistance of the piezoelectric element was measured using the evaluation sample 2 shown in FIG. 3 for the example and the comparative example.
  • Evaluation sample 2 was produced by using a metal mask having an opening with a diameter of 400 ⁇ m when forming the upper electrode layer in the above-described production method.
  • a circular upper electrode layer 18 with a diameter of 400 ⁇ m was formed by sputtering through a metal mask. Furthermore, centering on one upper electrode layer 18, a 25 mm ⁇ 25 mm piece was cut out to prepare an evaluation sample 2 shown in FIG.
  • the lower electrode layer 12 was grounded, the upper electrode layer 18 was set to a negative potential, the voltage was gradually increased at a change rate of 1 V/sec, and the voltage at which a current of 1 mA or more flowed was regarded as the dielectric breakdown voltage.
  • a total of 10 measurements were performed, and the average value (absolute value) was defined as the withstand voltage.
  • Table 1 shows the measurement results. Note that the upper limit of the voltage is 300 V, and when dielectric breakdown does not occur up to 300 V, it is described as ">300" in Table 1.
  • Bipolar polarization-electric field characteristics (PE hysteresis characteristics) of the piezoelectric element were measured. Using an evaluation sample 2 similar to the sample used for the withstand voltage measurement, the measurement was performed under the condition of a frequency of 10 Hz and a maximum applied voltage of 80 V (that is, a maximum applied electric field of 400 kV/cm). Spontaneous polarization P was obtained from the obtained PE hysteresis curve. Table 1 shows the spontaneous polarization of each example and comparative example. It should be noted that the larger the spontaneous polarization P, the larger the piezoelectric constant and the higher the piezoelectric characteristics.
  • TDDB time-dependent dielectric breakdown
  • the withstand voltage was as high as 120 V or more, and the driving stability was extended by at least 1.5 times from the conventional 40 hours (Comparative Example 1).
  • Examples 1 to 11 had the same spontaneous polarization P as Comparative Example 1. That is, in the piezoelectric elements of Examples 1 to 11, it was possible to maintain the piezoelectric characteristics while improving the breakdown voltage and driving stability.
  • Examples 1 to 5 it can be seen that the higher the OH group content in the interface layer, that is, the larger the ⁇ / ⁇ in the range of 0.35 ⁇ / ⁇ 0.8, the higher the breakdown voltage can be realized. . In addition, when 0.55 ⁇ / ⁇ 0.8, driving stability exceeded 100 hours, and extremely high reliability was obtained.
  • the upper electrode layer is an ITO layer. A similar trend is seen in the case of From the comparison of Examples 5 and 6, it was found that the smaller the surface unevenness, the better the pressure resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

圧電素子(1)及び圧電素子の製造方法において、圧電特性を低下させることなく、高い耐圧及び駆動安定性を実現する。 基板(11)上に、下部電極層(12)、ペロブスカイト型酸化物を主成分とする圧電膜(15)、及び上部電極層(18)をこの順に備えた圧電素子において、上部電極層は酸化物導電層を含み、圧電膜と酸化物導電層(18a)との間に、酸化物導電層の構成元素とOH基とを含む界面層(16)を備え、界面層はアモルファス構造を有し、かつ、1nm以上5nm以下の厚みであり、X線光電子分光測定により取得される界面層における結合エネルギーの強度プロファイルにおいて、金属と結合している酸素の1s軌道に由来する結合エネルギーのピーク強度をαとし、OH基を構成する酸素の1s軌道に由来する結合エネルギーのピーク強度をγとした場合のピーク強度比γ/αが0.35以上である。

Description

圧電素子及び圧電素子の製造方法
 本開示は、圧電素子及び圧電素子の製造方法に関する。
 優れた圧電性及び強誘電性を有する材料として、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O、以下においてPZTという。)が知られている。PZTはその強誘電性を生かし、不揮発性メモリであるFeRAM(Ferroelectric Random Access Memory)メモリに使用されている。さらには近年、MEMS(Micro Electro-Mechanical Systems)技術との融合により、PZT膜を備えたMEMS圧電素子が実用化されつつある。PZT膜は、基板上に下部電極、圧電膜及び上部電極を備えた圧電素子における圧電膜として適用される。この圧電素子は、インクジェットヘッド(アクチュエータ)、マイクロミラーデバイス、角速度センサ、ジャイロセンサ、及び振動発電デバイスなど様々なデバイスへと展開されている。
 圧電素子をデバイスに適用する場合、圧電特性が高いほどデバイス性能も高まるため、圧電特性は高いことが望ましい。これまで、圧電膜の圧電特性の向上について様々な研究がされ、圧電材料固有の圧電特性の改善が図られており、圧電材料固有の圧電特性についてはこれ以上の劇的な改善は困難であると考えられている。一方、圧電素子としての圧電特性は、圧電材料固有の圧電特性と印加電圧との積で表される。すなわち、圧電膜の圧電特性が同一である場合、より高い電圧をかけることができる素子ほどアクチュエータとしての性能は高いと言える。従って、従来よりも高い絶縁破壊電圧(以下において、耐圧という。)を有する圧電素子の実現が求められている。
 圧電素子における耐圧を向上させる方法として、例えば、特開2020-204083号公報及び特開2010-235402号公報においては、PZT膜を形成するための主成分である圧電材料に焼結を促す添加剤や電荷の釣り合いを調整する添加剤を入れる事で、圧電膜の結晶性を改善して圧電膜の耐圧を向上させる方法が提案されている。同様に、特開2019-052348号公報おいては、圧電膜を成膜する面にバッファ層(シード層ともいう。)を備えることで、圧電膜の結晶性を改善して圧電膜自体の耐圧を向上させる方法が提案されている。
 特開2020-204083号公報、及び特開2010-235402号公報では、圧電膜に添加剤を加えることで耐圧改善を図っているが、添加剤導入により、耐圧以外の圧電特性、特に圧電定数が低下してしまうという問題がある。
 特開2019-052348号公報は、シード層を備えることによりPZT膜の結晶性を向上させて耐圧改善を図っている。しかし、シード層という新規な層を導入するため、プロセス負荷が大きいという問題がある。
 本開示の技術は、上記事情に鑑みてなされたものであり、圧電特性を低下させることなく、高い耐圧及び駆動安定性を実現した圧電素子及び圧電素子の製造方法を提供することを目的とする。
  上記の課題を解決するための具体的手段には、以下の態様が含まれる。
 本開示の圧電素子は、基板上に、下部電極層、ペロブスカイト型酸化物を主成分とする圧電膜、及び上部電極層をこの順に備えた圧電素子であって、
 上部電極層の少なくとも最も圧電膜側の領域は酸化物導電層から構成されており、
 圧電膜と上部電極層の酸化物導電層との間に、酸化物導電層の構成元素とOH基とを含む界面層を備え、
 界面層はアモルファス構造を有し、かつ、厚みが1nm以上5nm以下であり、 X線光電子分光測定により取得される界面層における結合エネルギーの強度プロファイルにおいて、金属と結合した酸素の1s軌道に由来する結合エネルギーのピーク強度をαとし、OH基を構成する酸素の1s軌道に由来する結合エネルギーのピーク強度をγとした場合のピーク強度比γ/αが下記式(1)を満たす。
  0.35≦γ/α   (1)
 本開示の圧電素子において、酸化物導電層はITO(酸化インジウムスズ)、IrO(酸化イリジウム)又はSrRuO(酸化ストロンチウムルテニウム)を主成分とする層である。「主成分」とは膜あるいは層を構成する成分中の50mol%以上を占める成分であることを意味する。
 本開示の圧電素子は、結合エネルギーの強度プロファイルにおいて、ピーク強度比γ/αが下記式(2)を満たすことが好ましい。
  0.55≦γ/α   (2)
 本開示の圧電素子において、界面層は、厚みが3nm以上、5nm以下であることが好ましい。
 本開示の圧電素子においては、圧電体層の表面凹凸の高低差が100nm以下であることが好ましい。
 本解開示の圧電素子においては、ペロブスカイト型酸化物が、Pb(鉛),Zr(ジルコニウム),Ti(チタン)及びO(酸素)を含むことが好ましい。
 本開示の圧電素子においては、ペロブスカイト型酸化物が、下記一般式(3)で表される化合物であり、
 Pb{(ZrTi1-xy-1B1}O   (3)
 0<x<1、0<y<0.3、
 B1はV(バナジウム),Nb(ニオブ),Ta(タンタル),Sb(アンチモン),Mo(モリブデン)及びW(タングステン)の中から選択される1以上の元素であることが好ましい。
 本開示の圧電素子においては、圧電膜が(100)面配向の配向膜であることが好ましい。
 本開示の圧電素子においては、圧電膜が(100)面配向の配向膜である場合、(100)面が膜面に対して1°以上傾きを有していることが好ましい。
 本開示の圧電素子の製造方法は、基板上に下部電極層及び圧電膜を備えた積層体の圧電膜上に酸化物導電層を成膜するスパッタリング工程を含み、
 スパッタリング工程における成膜初期に、成膜装置の成膜チャンバ内にHOガスを導入しつつスパッタリングを行うことにより、界面層を形成し、引き続き、HOガスの導入を停止した状態でスパッタリングを行い、酸化物導電層を成膜する。
 本開示の圧電素子の製造方法は、基板上に下部電極層及び圧電膜を備えた積層体の圧電膜上に酸化物導電層を成膜するスパッタリング工程を含み、
 スパッタリング工程を実施する前に成膜装置の成膜チャンバ内が5×10-3Pa以上5×10-2Pa以下の背圧となるまで真空引きを行い、その背圧となった後に、成膜ガスを導入してスパッタリング工程を実施する。
 本開示の圧電素子及び圧電素子の製造方法によれば、圧電膜の圧電特性を低下させることなく、高い耐圧を実現した圧電素子が得られる。
一実施形態の圧電素子の層構成を示す断面図である。 圧電膜の拡大模式図である。 評価用サンプルの概略構成を示す図である。 圧電素子のHAADF-STEM像の模式図である。 光電子分光用サンプルの作製方法の説明図である。 実施例1の界面層についての結合エネルギープロファイルを示す図である。 実施例2の界面層についての結合エネルギープロファイルを示す図である。 実施例3の界面層についての結合エネルギープロファイルを示す図である。 実施例4の界面層についての結合エネルギープロファイルを示す図である。 実施例5の界面層についての結合エネルギープロファイルを示す図である。
 以下、図面を参照して本発明の実施の形態について説明する。なお、以下の図面においては、視認容易のため、各層の層厚及びそれらの比率は、適宜変更して描いており、必ずしも実際の層厚及び比率を反映したものではない。
(圧電素子)
 図1は、一実施形態の圧電素子1の層構成を示す断面模式図である。図1に示すように、圧電素子1は、基板11上に、下部電極層12、圧電膜15及び上部電極層18をこの順に備える。また、圧電素子1は圧電膜15と上部電極層18との間に界面層16を備えている。
 上部電極層18は、少なくとも最も圧電膜側の領域は酸化物導電層18aから構成されている。上部電極層18の最も圧電膜側の領域を構成する酸化物導電層18aはITO、IrO又はSrRuOを主成分とする層であることが好ましい。なお、酸化イリジウムの化学量論組成はIrOであるが、酸化物導電層18aに適用される酸化イリジウムは化学量論組成よりも酸素が欠乏したIrO(x<2)であってもよい。本実施形態においては、上部電極層18が一層構造であり、酸化物導電層18aからなる例を示している。なお、酸化物導電層18aは、ITO、IrO又はSrRuOが80mol%以上を占める層であることが好ましい。なお、上部電極層18は一層構造ではなく、積層構造を有してもよく、積層構造を有する場合、最も圧電膜側に酸化物導電層が配置されていればよい。また、上部電極層18が積層構造である場合には、金属層を含んでもよい。
 界面層16は、既述の通り、圧電膜15と上部電極層18との間に形成されている。上部電極層18の最も圧電膜15側の領域は酸化物導電層により構成されているので、界面層16は、圧電膜15と酸化物導電層18aとの間に形成される。そして、界面層16は、少なくとも、上部電極層18を構成する酸化物導電層18aの構成元素とOH基とを含む。また、界面層16は、アモルファス構造を有し、かつ、厚みが1nm以上5nm以下である。界面層16の厚みは3nm以上4nm以下がより好ましい。
 この界面層16は、X線光電子分光測定により取得される界面層16における結合エネルギーの強度プロファイルにおいて、金属と結合している酸素の1s軌道に由来する結合エネルギー強度αとOH基を構成する酸素の1s軌道に由来する結合エネルギー強度γのピーク強度比γ/αが下記式(1)を満たす。
  0.35≦γ/α   (1)
 なお、上記結合エネルギーの強度プロファイルの測定方法についての詳細は後記実施例で説明するが、α及びγは以下のようにして定めるものとする。界面層16について光電子分光測定を行い、縦軸を強度、横軸を結合エネルギーとした強度プロファイルを取得する。この際、強度プロファイルとして、530eV近傍に表れる酸素の1s(O1s)軌道に由来するスペクトルを取得する。530eV近傍に観察されるO1s軌道に由来するスペクトルは、金属Mと結合した酸素に由来するピークと、OH基を構成する酸素(すなわち水素と結合した酸素)に由来するピークとを含む。水素と結合した酸素の1s軌道のピークは、金属Mと結合した酸素の1s軌道のピークよりも高エネルギー側に生じる。そこで、O1s軌道のスペクトルを、2つのピークに分離し、高エネルギー側のピークをOH基の酸素の1s軌道に由来する結合エネルギーのピークとし、そのピーク強度をγとする。そして、低エネルギー側のピークを金属Mと結合した酸素の1s軌道に由来する結合エネルギーのピークとし、そのピーク強度をαとする。ここでは、このようにして求めたαとγからピーク強度比γ/αを算出する。
 ここで、金属Mには、界面層16に含まれるすべての金属が含まれる。例えば、酸化物導電層18aがITO層である場合、金属Mとは、少なくともInとSnを含み、さらに、圧電膜の構成元素の金属を含む場合もある。金属と結合している酸素の1s軌道に由来する結合エネルギーは、結合している金属種にはほとんど依存しないため、いずれの金属と結合している場合であっても、1つのピークとして取り扱う。同様に、OH基中の酸素の1s軌道に由来する結合エネルギーもOH基と結合する金属種にほとんど依存しないため、1つのピークとして取り扱う。なお、OH基は、界面層16において、金属水酸化物として存在していると考えられる。
 本発明者らは、上記圧電素子の構成を有することにより、圧電素子1の耐圧と駆動安定性を向上できることを見出している(後記実施例参照)。上述のように、上部電極層18の最も圧電膜15側の領域に酸化物導電層18aを備えることにより、最も圧電膜15側の領域が金属である場合と比較して、圧電膜15から酸素元素が抜けにくくなり、圧電性の低下を抑制する効果が得られる。一方で、酸化物導電層18aを圧電膜15上に上部電極層18をスパッタリング法により成膜すると、圧電膜15と上部電極層18との界面にOH基を含む界面層16が形成されやすい。圧電素子の製造方法についての詳細は後述するが、本圧電素子の各層はスパッタリング法により成膜形成される。一般に、圧電素子を含む電子デバイス内にOH基が含まれると劣化し易くなるために好ましくないと考えられている。特に酸化物を成膜する場合には、水を取り込みやすい。そのため、圧電素子1の各層をスパッタリング法で成膜する場合には、各層にOH基が混入しないように、成膜装置の成膜チャンバ内の背圧を十分低くして、成膜チャンバ内部に含まれる水分を十分に排除した上で、成膜することが好ましいと考えられる。しかし、本発明者らは、一般常識に反して、圧電膜15と酸化物導電層18aとの界面にOH基をある程度以上含む界面層16を備えることで、圧電素子1の耐圧と駆動安定性を向上できることを見出した。
 なお、上記の結合エネルギーの強度プロファイルにおいて、強度比γ/αが下記式(2)を満たすことがより好ましい。
  0.55≦γ/α (2)
 さらに上記式(2)を満たす界面層16を有する場合、より高い耐圧性及び駆動安定性を得ることができる。
 また、γ/α≦0.9であることが好ましく、γ/α≦0.8であることがより好ましい。γ/α≦0.8であれば、作製が容易であり、耐圧向上の効果が高い。また、γ/α≦0.8であることが、界面層16の高抵抗化を抑制する観点からも好ましい。
 また、界面層16は、厚みが3nm以上、5nm以下であることが好ましい。この範囲の界面層16の厚みとすることで、より高い耐圧及び駆動安定性が得られる(実施例参照)。
 酸化物導電層18aがITOを主成分とする層である場合、0.4≦γ/α≦0.8が好ましく、0.55≦γ/α≦0.8がさらに好ましい。
 酸化物導電層18aがIrOを主成分とする層である場合、0.4≦γ/α≦0.65が好ましい。
 酸化物導電層18aがSrRuOを主成分とする層である場合、0.35≦γ/α≦0.70が好ましい。
 圧電膜15は、一般式ABOで表されるペロブスカイト型酸化物を主成分とする。
 一般式中、Aは、Aサイト元素であり、Pb、Ba(バリウム)、La(ランタン)、Sr、Bi(ビスマス)、Li(リチウム)、Na(ナトリウム)、Ca(カルシウム)、Cd(カドミウム)、Mg(マグネシウム)及びK(カリウム)のうちの1つもしくは2以上の組み合わせである。
 一般式中Bは、Bサイト元素であり、Ti、Zr、V(バナジウム),Nb(ニオブ),Ta(タンタル),Cr(クロム)、Mo(モリブデン)、W(タングステン)、Mn(マンガン)、Fe(鉄)、Ru、Co(コバルト)、Ir、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)、Ga(ガリウム)、In、スズ、アンチモン(Sb)及びランタニド元素のうちの1つもしくは2以上の組み合わせである。
 一般式中Oは酸素である。
 A:B:Oは、1:1:3が基準であるが、ペロブスカイト構造を取り得る範囲でずれていてもよい
 なお、圧電膜15の80mol%以上をペロブスカイト型酸化物が占めることが好ましい。さらには、圧電膜15は、ペロブスカイト型酸化物からなる(但し、不可避不純物を含む。)ことが好ましい。
 ペロブスカイト型酸化物としては、Pb(鉛),Zr(ジルコニウム),Ti(チタン)及びO(酸素)を含む、チタン酸ジルコン酸鉛(PZT:lead zirconate titanate)系であることが好ましい。
 特に、ペロブスカイト型酸化物が、PZTのBサイトに添加物Bを含む、下記一般式(3)で表される化合物であることが好ましい。
 Pb{(ZrTi1-x1-yB1}O   (3)
 ここで、B1はV(バナジウム),Nb(ニオブ),Ta(タンタル),Sb(アンチモン),Mo(モリブデン)及びW(タングステン)の中から選択される1以上の元素であることが好ましい。ここで、0<x<1、0<y<0.3である。なお、一般式(3)において、Pb:{(ZrTi1+x1-y}:Oは、1:1:3が基準であるが、ペロブスカイト構造を取り得る範囲でずれていてもよい
 B1は、Vのみ、あるいはNbのみ等の単一の元素であってもよいし、VとNbとの混合、あるいはVとNbとTaの混合等、2あるいは3以上の元素の組み合わせであってもよい。B1がこれらの元素である場合、Aサイト元素のPbと組み合わせて非常に高い圧電定数を実現することができる。
 なお、圧電膜15は、図2に断面模式図を示すように、多数の柱状結晶体17を含む柱状構造を有する柱状構造膜であることが好ましい。多数の柱状結晶体17は基板11(図1参照)の表面に対して非平行に延び、結晶方位の揃った1軸配向膜であることが好ましい。配向構造とすることで、より大きな圧電性を得ることができる。
 また、図2に示す例では、柱状結晶の長手方向が基板の法線に対して1°以上の傾きβを有している。これは、圧電膜15が、その配向面が基板の表面に対して1°以上の傾きを有していることを意味する。なお、ここで、配向面は(100)面又は(001)面である。このように、圧電膜15においては、柱状結晶の(100)面又は(001)面が、基板の表面に対して1°以上傾いていることが好ましい。本例においては、ペロブスカイト構造におけるa軸とc軸の格子定数がほぼ同等であり、XRD(X-ray diffraction)による分析で(100)面と(001)面とは区別できない。しかし、いずれかの面に配向した配向膜であることはXRD分析により確認することができる。
 圧電膜15の厚みは、通常200nm以上であり、例えば0.2μm~5μmであるが、1μm以上が好ましい。
 圧電膜15の表面凹凸の高低差は100nm以下であることが好ましい。表面凹凸の測定方法については後記の実施例で説明するが、表面凹凸の高低差は、最大凹凸差であるpeak to valley (PV値)とする。ここで表面凹凸の周期は、数10nm~数100nmのような微細な周期ではなく、μmオーダーの周期である。
 圧電膜15の表面凹凸のPV値が100nm以下であれば、きわめて薄い界面層16によって、圧電膜15を被覆することができ、界面層16を備えたことによる高い効果を得ることができる。すなわち、圧電膜15の表面凹凸のPV値が100nm以下であることにより、圧電素子の耐圧性の向上及び駆動安定性の向上効果を高めることができる。圧電膜15の表面凹凸のPV値は80nm以下であることがより好ましい。
 なお、表面凹凸の高低差は、走査型プローブ顕微鏡(SPM:Scanning Probe Microscope)を用いたダイナミック・フォース・モード(DFM:Dynamic Force Mode)にて測定できる。圧電膜15上にパターン形成された上部電極層18が形成されている場合、上部電極層18が形成されず露出している圧電膜15の表面で表面凹凸の高低差測定できる。もしくは、上部電極層18の形成前の圧電膜15の表面で測定することができる。
 基板11としては特に制限なく、シリコン、ガラス、ステンレス鋼、イットリウム安定化ジルコニア、アルミナ、サファイヤ、シリコンカーバイド等の基板が挙げられる。基板11としては、シリコン基板の表面にSiO酸化膜が形成された熱酸化膜付きシリコン基板等の積層基板を用いてもよい。
 下部電極層12は、上部電極層18と対をなし、圧電膜15に電圧を加えるための電極である。下部電極層12の主成分としては特に制限なく、Au(金)、Pt(白金)、Ir(イリジウム)、Ru(ルテニウム)、Ti、Mo、Ta、Al(アルミニウム)、Cu(銅)、Ag(銀)等の金属または金属酸化物、及びこれらの組み合わせが挙げられる。また、ITO(Indium Tin Oxide)、LaNiO、及びSRO(SrRuO)等などを用いてもよい。圧電膜15と下部電極層12との間、および下部電極層12と基板11との間には各種密着層やシード層を含んでいてもよい。
 ここで、「下部」及び「上部」は鉛直方向における上下を意味するものではなく、圧電膜を挟んで基板側に配置される電極を下部電極、圧電膜に関して基材と反対の側に配置される電極を上部電極と称しているに過ぎない。
 下部電極層12と上部電極層18の層厚は特に制限なく、50nm~300nm程度であることが好ましく、100nm~300nmがより好ましい。
(圧電素子の製造方法)
 圧電素子1の製造方法の一実施形態を説明する。
 基板11上に下部電極層12及び圧電膜15を、スパッタリング法により順に成膜する。次に、圧電膜15上に上部電極層18を成膜する。この上部電極層18の成膜工程において、まず、基板11上に下部電極層12及び圧電膜15を備えた積層体の圧電膜15上に酸化物導電層18aを成膜するスパッタリング工程を含む。
 この酸化物導電層18aを成膜するスパッタリング工程における成膜初期において、圧電膜15と酸化物導電層18aとの間に界面層16を形成する。具体的には、酸化物導電層18aを形成するスパッタリング工程における成膜初期に、成膜装置の成膜チャンバ内にHOガス(すなわち、水蒸気)を導入しつつスパッタリングを行うことにより、界面層16を形成する。その後、成膜チャンバへのHOガスの導入を停止した状態でスパッタリングを行い、酸化物導電層18aを成膜する。圧電膜15上に酸化物導電層18aを成膜するスパッタリング工程における成膜初期とは、酸化物導電層18aを成膜するためのターゲットを成膜チャンバ内のターゲットホルダにセットし、スパッタを開始した時点から界面層16の形成までの期間をいう。HOガスの導入量及び成膜初期の時間は界面層16の厚みと、所望のOH添加量に応じて設定すればよい。
 上記製造方法により、アモルファス構造を有し、1~5nmの厚みのOH基を含む界面層16であって、以下の条件を満たす界面層を備えた圧電素子1を得ることができる。X線光電子分光測定により取得される界面層16における結合エネルギーの強度プロファイルにおいて、金属と結合している酸素Oの1s軌道に由来する結合エネルギー強度αと、OH基を構成する酸素の1s軌道に由来する結合エネルギー強度γのピーク強度比γ/αが下記式(1)を満たす。
  0.35≦γ/α   (1)
 なお、成膜装置の成膜チャンバ内に水蒸気を導入する方法としては、H+O混合ガスを成膜チャンバ内に導入し、プラズマ中でHOを生成する方法、及び外部から水蒸気を供給する方法などがある。一方、OH基を含む界面層16を形成する方法としては、上述のように、酸化物導電層を形成するスパッタリング工程における成膜初期に、外部から成膜チャンバ内に水蒸気を導入する以外に、成膜チャンバ内の残留ガスを利用する方法もある。
 圧電素子1の製造方法の変形例として、成膜チャンバ内の残留ガスを利用する方法を説明する。
 圧電素子1の製造方法の変形例においては、圧電膜15上に酸化物導電層18aを成膜するスパッタリング工程を実施する前に成膜チャンバ内が5×10-3Pa以上5×10-2Pa以下の背圧となるまで真空引きを行い、上記背圧まで真空引きを行った後に、成膜ガスを導入してスパッタリング工程を実施する。本手法により、圧電膜15と酸化物導電層18aとの間に、アモルファス構造を有し、1~5nmの厚みのOH基を含む界面層16であって、上記条件を満たす界面層を備えた圧電素子1を形成することができる。
 スパッタリングを実施するための成膜装置の成膜チャンバは、成膜チャンバ内の残留ガスに含まれる成分が不純物として膜中に取り込まれるのを抑制するため、成膜チャンバ内を成膜ガスで満たす前に、成膜チャンバ内を真空引きがなされる。この真空引きを行ったチャンバ内の圧力を背圧という。成膜チャンバ内の真空引きにより内部の圧力を低くするほど、すなわち背圧を低くするほど、残留ガスを少なくすることができる。成膜チャンバ内の残留の主成分は水である。圧電膜15などの酸化物の表面には水が付着するのを抑制するために、従来、圧電膜15上に上部電極層18を成膜する際には、十分に低い背圧となるように真空引きが行われていた。具体的には、2×10-4Pa程度の背圧となるように真空引きが行われていた。これに対し、上記本開示の圧電素子の製造方法の変形例においては、背圧を従来よりも高い5×10-3Pa以上5×10-2Pa以下に設定する。これにより、従来よりも残留ガスを多くして、圧電膜15の表面に水が付着しやすい環境とすることで、従来よりもOH基を多く含む界面層16を形成することができる。
 なお、圧電膜15と酸化物導電層18aとの間に界面層16を形成するためには、圧電膜15上に酸化物導電層18aを成膜するスパッタリング工程前に、成膜チャンバ内の背圧を5×10-3Pa以上5×10-2Pa以下とし、さらに、酸化物導電層18aを成膜するスパッタリング工程における成膜初期において、HOガスを成膜チャンバ内に導入してもよい。
 以下、本開示の実施例及び比較例について説明する。
 まず、実施例及び比較例の圧電素子の製造方法を説明する。製造方法の説明においては、図1に示した圧電素子1の各層の符号を参照して説明する。
(下部電極層成膜)
 基板11として、8インチサイズの熱酸化膜付きシリコン基板を用いた。基板11上に下部電極層12をRF(radio-frequency)スパッタリングにて成膜形成した。具体的には、下部電極層12として、20nm厚のTi層及び150nm厚のIr層をこの順に基板11上に積層した。各層のスパッタ条件は以下の通りとした。
-Ti層スパッタ条件-
 ターゲット-基板間距離:100mm
 ターゲット投入電力:600W
 Arガス圧:0.2Pa
 基板設定温度:350℃
-Ir層スパッタ条件-
 ターゲット-基板間距離100mm
 ターゲット投入電力:600W
 Arガス圧0.2:Pa
 基板設定温度:350℃
(圧電膜成膜)
 RFスパッタリング装置内に上記下部電極層付きの基板を載置し、BサイトへのNbドープ量を10at%としたNbドープPZT膜を2μm成膜した。この際のスパッタ条件は、以下の通りとした。
-圧電膜スパッタ条件-
 ターゲット-基板間距離:60mm
 ターゲット投入電力:500W
 真空度:0.3Pa、Ar/O混合雰囲気(O体積分率2.0%)
 基板設定温度:700℃
 上記圧電膜成膜までの工程は、全ての実施例及び比較例に共通である。以下の上部電極層成膜の方法あるいは成膜条件が各実施例及び比較例で異なる。
(上部電極層成膜)
 次に、圧電膜15の表面にスパッタリングにより200nm厚みの上部電極層18を形成した。各実施例、比較例について、それぞれ表1に示す上部電極層材料からなる上部電極層18を形成した。なお、上部電極層18としてITO層を成膜する場合には、ITOターゲットを用い、SrRuO層を成膜する場合には、SrRuOターゲットを用いた。一方、上部電極層18として、IrO層を成膜する場合には、Irターゲットを用い、反応性スパッタを行った。なお、界面層16はこの上部電極層18の成膜初期において形成された。
[実施例1-4、8、10、比較例1]
 RFスパッタリング装置の成膜チャンバ内に圧電膜成膜後の基板を載置し、各実施例及び比較例毎に、表1に示す背圧まで真空引きを行った後、真空度0.3PaになるようにAr/O混合ガス(O体積分率10%)を装置内に導入した。基板設定温度をRT(室温)とし、ターゲット投入電力を200Wとした。
[比較例2、3]
 基板温度設定を200℃とした。基板温度設定以外の条件は、実施例1と同様とした。
[実施例5、6、9、11]
 成膜初期の10秒間、HOガスを導入しながら成膜した。上部電極層の材料を用いたターゲットをセットし、スパッタ成膜を開始した時点から10秒間の後は、HOガスを成膜チャンバ内に導入しつつスパッタリングを行った。純水の入ったボトルにArをキャリアガスとして通してバブリングし、水の蒸気圧を利用してHOガスを成膜チャンバ内に直接供給した。この際、HOガスの流量比HO/(HO+O)が10%となるように調整した。
[実施例7]
 成膜初期の20秒間、HOガスを導入しながら成膜した。20秒間の後は、HOガスの導入を停止した状態で成膜した。HOガスの導入時間以外の条件は、実施例5と同様とした。
[比較例4]
 成膜初期の30秒間、HOガスを導入しながら成膜した。30秒間の後は、HOガスの導入を停止した状態で成膜した。HOガスの導入時間以外の条件は、実施例5と同様とした。
 上記のようにして各実施例あるいは比較例の圧電素子を切り出すための積層体を作製した。このようにして作製した積層体からそれぞれ切り出された実施例及び比較例の圧電素子について、下記の評価及び測定を行った。なお、実施例5と実施例6の圧電素子は同一の積層体であって、8インチの基板の中央部と外周部のそれぞれから切り出された、素子である。
<層構成及び結晶性評価>
 走査透過型電子顕微鏡(STEM:Scanning Transmission Electron Microscope)像及び透過型電子顕微鏡(TEM:Transmission Electron Microscope)像を撮影して圧電素子の層構成及び各層の結晶性を評価した。
 図4は実施例及び比較例の圧電素子断面の界面層16を中心とした領域についての高角散乱環状暗視野(HAADF:High-Angle Annular Dark Field Scanning)-STEM像を模式的に示した図である。図4に示すように、HAADF-STEM像においては、組成に起因するコントラストが明確に観察される。本実施例及び比較例について、上部電極層18と、圧電膜15との間に、両者のいずれとも組成が異なる界面層16の存在を確認した(図4参照)。また、図4中の破線で囲った矩形領域のような界面層16近傍について、さらに拡大したTEM像を取得して、結晶の状態を確認した(図示せず)。上部電極層18を構成するITO層には、界面層16に対して交わる方向の斜め方向に線が延び、斜め方向に延びた線が縞状に配列された模様が観察された。また、圧電膜15を構成するPZT膜には、界面層16と略平行な横方向に線が延び、横方向に延びた線が縞状に配列された(界面層16と略平行な方向に配列した)横縞模様が観察された。縞状に観察されるのは結晶面であると考えられる。一方、界面層16には規則的な縞は観察されず、界面層16はアモルファス構造であった。なお、各実施例及び比較例において、同様の構造が観察され、界面層16の厚みが異なる以外に大きな差はなかった。
<界面層の厚み測定>
 各実施例及び比較例の界面層の厚みは、TEM像において圧電膜15と界面層16との境界及び界面層16と上部電極層18との境界にラインを引いた上で、2つのライン間の距離を測定した。各例の厚みは後記の表1に示す。なお、厚みの測定値には1割程度の誤差を含む。
<界面層中のOH含有量評価>
 界面層中のOH含有量評価は、界面層の光電子分光測定により行った。
 図5は、光電子分光測定用サンプルの作製方法の説明図である。図5Aは圧電素子の一部の断面模式図であり、図5Bは図5Aに示す圧電素子から得られる測定用サンプルの切削面模式図である。
 各実施例及び比較例の圧電素子について斜め切削法を用いて組成分析用サンプルを作製した。図5Aに示すように、圧電素子の表面に対して角度θでダイアモンドナイフを挿入し、圧電素子を斜めに切削した。これにより、図5Bに示すような、切削面を得た。図5Bに示すように、切削面においては、図5Aに示す厚みtの界面層16が1/sinθ倍の幅で露呈される。なお、界面層16の厚みtを10nm程度と見積もり、斜め掘削後に切削面に露呈する界面層16の幅が5μm以上となるように角度θを設定した。
 上記のようにして得た切削面に対し圧電膜15がわずかに含まれるように測定エリア(図5B中、円で囲むエリア)を設定し、光電子分光測定を実施した。
 図6~図10は、実施例1~5の圧電素子についての光電子分光測定によって取得した結合エネルギーの強度プロファイルである。図6~図10中において、実線で示す強度プロファイルはノイズを除去した状態の測定データである。実施例1~5はいずれも上部電極層を構成する酸化物導電層がITOである場合の例である。図6~図10に示す、結合エネルギー530eV近傍には酸素の1s軌道に由来するスペクトルが現れる。図6~図10に示す通り、酸素の1s軌道に由来するスペクトルは、2つの極大値を有する。この2つの極大値を示す結合エネルギーにピーク値を有する2つのピークに分離した。既述の通り、図6~図10において破線で示すピークは、金属Mと結合している酸素O(以下において、「M-O結合における酸素O」という。)の1s軌道に起因する結合エネルギーのピークである。図6~図10において、分離した2つのピークのうち、点線で示す高エネルギー側のピークは、金属Mと結合しているOH基のO(以下において、「M-OH結合における酸素O」という。)の1s軌道に起因する結合エネルギーのピークである。それぞれのピーク強度α、γを求め、ピーク強度比γ/αを算出した。
 なお、図6~図10に、実施例1~5についての強度プロファイルを例示したが、全ての実施例及び比較例について、同様の手順で結合エネルギーの強度プロファイルを取得し、強度プロファイルから、ピーク強度比γ/αを算出した。このピーク強度比は、M-O結合の存在量に対するM-OH結合の存在量に対応し、界面層中のOH含有量評価の目安となる。各例におけるピーク強度比は後記の表1に示す。
 なお、ピーク分離に際しては、M-O結合の結合エネルギー及びM-OH結合の結合エネルギーは、NIST(National Institute of Standards and Technology)のデータベース([online]、[2021年3月23日検索]、インターネット、<URL:https://srdata.nist.gov/xps/main_search_menu.aspx>を参照した。但し、測定装置によってスペクトルがシフトすることがあるため、上記データベースの数値を参照した上で、取得したスペクトルの極大値からそれぞれの結合エネルギーを設定してピーク分離を行った。
<耐圧の測定>
 圧電素子の耐圧は、実施例及び比較例について図3に示す評価用サンプル2を用いて実施した。評価用サンプル2は、上記製造方法において、上部電極層の形成時に、直径400μmの開口を有するメタルマスクを用いることにより作製した。メタルマスクを介してスパッタ成膜することにより、直径400μmの円形状の上部電極層18を形成した。さらに、1つの上部電極層18を中心とし、25mm×25mmで切り出して図3に示す評価用サンプル2を作製した。下部電極層12を接地し、上部電極層18にマイナス電位として、1V/秒の変化速度で電圧を徐々に上昇させ、1mA以上の電流が流れた電圧を絶縁破壊電圧とみなした。合計10回の測定を行い、その平均値(絶対値)を耐圧と定義した。測定結果は表1に示す。なお、電圧の上限は300Vとし、300Vまで絶縁破壊しなかった場合、表1中において「>300」と記載した。
<電気特性測定>
 圧電素子のバイポーラ分極-電界特性(P-Eヒステリシス特性)を測定した。耐圧測定に用いたサンプルと同様の評価用サンプル2を用い、周波数10Hzの条件で最大印加電圧を80V(すなわち、最大印加電界400kV/cm)に設定して、測定を実施した。取得したP-Eヒステリシス曲線から自発分極Pを求めた。各実施例及び比較例の自発分極を表1に示す。なお、自発分極Pが大きいほど圧電定数は大きく圧電特性が高いことを意味する。
<駆動安定性の評価>
 駆動安定性の評価として経時的絶縁破壊(TDDB:Time Dependent Dielectric Breakdown)試験を行った。耐圧測定に用いたサンプルと同様の評価用サンプル2を用い、150℃の環境下にて、下部電極層12を接地し、上部電極層18に-30Vの電圧を印加して、電圧印加開始から絶縁破壊が生じるまでの時間(hr)を測定した。測定結果は表1に示す。なお、TDDB試験は100時間行い、100時間に亘って絶縁破壊が生じなかったものは、絶縁破壊が生じるまでの時間が100時間を超えることから、表1中において、「>100」と記載した。
<圧電膜の表面凹凸測定>
 日立ハイテクサイエンス社製S-image型走査型プローブ顕微鏡(SPM:Scanning Probe Microscope)を用いたダイナミック・フォース・モード(DFM:Dynamic Force Mode)にて表面凹凸を測定した。表面凹凸の測定は、円形の上部電極層18が形成されず露出している圧電膜15の表面の5μmの範囲で行った。表面の最大凹凸差であるpeak to valley (PV値)を表1に示す。
Figure JPOXMLDOC01-appb-T000001

 
 表1に示すように、圧電膜と上部電極層である酸化物導電層との間に1~5nmの厚みを有する界面層であって、0.35≦γ/αを満たす実施例1~11は耐圧及び駆動安定性が、γ/α=0.3~0.33である比較例1~3と比較して飛躍的に改善されていることが明らかである。実施例1~11は耐圧が120V以上と高く、かつ、駆動安定性も従来の40時間(比較例1)から少なくとも1.5倍以上に延びた。また、実施例1~11は、自発分極Pが比較例1と同等であった。すなわち、実施例1~11の圧電素子では、耐圧及び駆動安定性を向上させつつ、圧電特性を維持することができた。実施例1~5によれば、界面層におけるOH基の含有率が高いほど、すなわち0.35≦γ/α≦0.8の範囲でγ/αが大きいほど、高い耐圧を実現できることがわかる。また、0.55≦γ/α≦0.8では、駆動安定性が100時間を超え、非常に高い信頼性が得られた。実施例1~5はいずれも上部電極層がITO層であるが、実施例8、9の上部電極層がIrO層である場合、及び実施例10、11の上部電極層がSrRuO層の場合についても同様の傾向がみられる。実施例5及び6の比較から、表面凹凸が小さいほど、耐圧性が良好であるという結果が得られた。
 一方で、比較例4のように、界面層の厚みが10nmと厚くなった場合、耐圧及び駆動安定性の改善が図れる一方で、圧電特性が低下してしまうことがわかった。
 実施例1~4及び比較例1等の結果から、上部電極層を成膜する際のスパッタリング工程の前の成膜チャンバの背圧を調整することにより、界面層に含まれるOH基を調整することができることが明らかである。また、スパッタリング工程の成膜初期において、HOガスを導入することにより、より効果的に界面層に含まれるOH基を増加させることができた。
 2021年3月30日に出願された日本国特許出願2021-058185号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (11)

  1.  基板上に、下部電極層、ペロブスカイト型酸化物を主成分とする圧電膜、及び上部電極層をこの順に備えた圧電素子であって、
     前記上部電極層の少なくとも最も前記圧電膜側の領域は酸化物導電層から構成されており、
     前記圧電膜と前記上部電極層の前記酸化物導電層との間に、前記酸化物導電層の構成元素とOH基とを含む界面層を備え、
     前記界面層はアモルファス構造を有し、かつ、厚みが1nm以上5nm以下であり、
     X線光電子分光測定により取得される前記界面層における結合エネルギーの強度プロファイルにおいて、金属と結合している酸素の1s軌道に由来する結合エネルギーのピーク強度をαとし、前記OH基を構成する酸素の1s軌道に由来する結合エネルギーのピーク強度をγとした場合のピーク強度比γ/αが下記式(1)を満たす、圧電素子。
      0.35≦γ/α   (1)
  2.  前記酸化物導電層はITO、IrO又はSrRuOを主成分とする層である、請求項1に記載の圧電素子。
  3.  前記結合エネルギーの強度プロファイルにおいて、前記ピーク強度比γ/αが下記式(2)を満たす、請求項1又は2に記載の圧電素子。
      0.55≦γ/α   (2)
  4.  前記界面層は、前記厚みが3nm以上、5nm以下である、請求項1から3のいずれか1項に記載の圧電素子。
  5.  前記圧電膜の表面凹凸の高低差が100nm以下である、請求項1から4のいずれか1項に記載の圧電素子。
  6.  前記ペロブスカイト型酸化物が、Pb,Zr,Ti及びOを含む、請求項1から5のいずれか1項に記載の圧電素子。
  7.  前記ペロブスカイト型酸化物が、下記一般式(3)で表される化合物であり、
     Pb{(ZrTi1-xy-1B1}O   (3)
     0<x<1、0<y<0.3、
     B1はV,Nb,Ta,Sb,Mo及びWの中から選択される1以上の元素である、請求項6に記載の圧電素子。
  8.  前記圧電膜が、多数の柱状結晶からなる柱状構造を有する、請求項1から7のいずれか1項に記載の圧電素子。
  9.  前記柱状結晶の(100)又は(001)面が、前記基板の表面に対して1°以上の傾きを有する、請求項8に記載の圧電素子。
  10.  請求項1から9のいずれか1項に記載の圧電素子の製造方法であって、
     前記基板上に前記下部電極層及び前記圧電膜を備えた積層体の前記圧電膜上に前記酸化物導電層を成膜するスパッタリング工程を含み、
     前記スパッタリング工程における成膜初期に、成膜装置の成膜チャンバ内にHOガスを導入しつつスパッタリングを行うことにより、前記界面層を形成し、引き続き、HOガスの導入を停止した状態でスパッタリングを行い、前記酸化物導電層を成膜する、圧電素子の製造方法。
  11.  請求項1から9のいずれか1項に記載の圧電素子の製造方法であって、
     前記基板上に前記下部電極層及び前記圧電膜を備えた積層体の前記圧電膜上に前記酸化物導電層を成膜するスパッタリング工程を含み、
     前記スパッタリング工程を実施する前に成膜装置の成膜チャンバ内が5×10-3Pa以上5×10-2Pa以下の背圧となるまで真空引きを行い、前記背圧となった後に、成膜ガスを導入して前記スパッタリング工程を実施する、圧電素子の製造方法。
PCT/JP2022/010719 2021-03-30 2022-03-10 圧電素子及び圧電素子の製造方法 WO2022209716A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22779937.6A EP4318620A1 (en) 2021-03-30 2022-03-10 Piezoelectric element and method for manufacturing piezoelectric element
CN202280024500.1A CN117084003A (zh) 2021-03-30 2022-03-10 压电元件及压电元件的制造方法
JP2023510802A JPWO2022209716A1 (ja) 2021-03-30 2022-03-10
US18/472,168 US20240023454A1 (en) 2021-03-30 2023-09-21 Piezoelectric element and manufacturing method for piezoelectric element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-058185 2021-03-30
JP2021058185 2021-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/472,168 Continuation US20240023454A1 (en) 2021-03-30 2023-09-21 Piezoelectric element and manufacturing method for piezoelectric element

Publications (1)

Publication Number Publication Date
WO2022209716A1 true WO2022209716A1 (ja) 2022-10-06

Family

ID=83456095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010719 WO2022209716A1 (ja) 2021-03-30 2022-03-10 圧電素子及び圧電素子の製造方法

Country Status (5)

Country Link
US (1) US20240023454A1 (ja)
EP (1) EP4318620A1 (ja)
JP (1) JPWO2022209716A1 (ja)
CN (1) CN117084003A (ja)
WO (1) WO2022209716A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235402A (ja) 2009-03-31 2010-10-21 Mitsubishi Materials Corp 強誘電体薄膜形成用組成物、強誘電体薄膜の形成方法並びに該方法により形成された強誘電体薄膜
JP2013197553A (ja) * 2012-03-22 2013-09-30 Hitachi Cable Ltd 圧電体膜付き基板、圧電体膜素子及びその製造方法
JP2013197496A (ja) * 2012-03-22 2013-09-30 Fujifilm Corp 圧電体デバイス及びその製造方法並びに電子機器の製造方法
JP2019052348A (ja) 2017-09-14 2019-04-04 株式会社アルバック Pzt薄膜積層体の製造方法
JP2020092228A (ja) * 2018-12-07 2020-06-11 住友化学株式会社 圧電積層体、圧電素子および圧電積層体の製造方法
JP2020204083A (ja) 2019-06-19 2020-12-24 株式会社アルバック Pzt膜の成膜方法
JP2021058185A (ja) 2019-10-08 2021-04-15 マルハニチロ株式会社 冷凍エビ及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235402A (ja) 2009-03-31 2010-10-21 Mitsubishi Materials Corp 強誘電体薄膜形成用組成物、強誘電体薄膜の形成方法並びに該方法により形成された強誘電体薄膜
JP2013197553A (ja) * 2012-03-22 2013-09-30 Hitachi Cable Ltd 圧電体膜付き基板、圧電体膜素子及びその製造方法
JP2013197496A (ja) * 2012-03-22 2013-09-30 Fujifilm Corp 圧電体デバイス及びその製造方法並びに電子機器の製造方法
JP2019052348A (ja) 2017-09-14 2019-04-04 株式会社アルバック Pzt薄膜積層体の製造方法
JP2020092228A (ja) * 2018-12-07 2020-06-11 住友化学株式会社 圧電積層体、圧電素子および圧電積層体の製造方法
JP2020204083A (ja) 2019-06-19 2020-12-24 株式会社アルバック Pzt膜の成膜方法
JP2021058185A (ja) 2019-10-08 2021-04-15 マルハニチロ株式会社 冷凍エビ及びその製造方法

Also Published As

Publication number Publication date
US20240023454A1 (en) 2024-01-18
EP4318620A1 (en) 2024-02-07
JPWO2022209716A1 (ja) 2022-10-06
CN117084003A (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
JP6623569B2 (ja) 薄膜誘電体及び薄膜コンデンサ素子
EP3985747B1 (en) Piezoelectric element
US20230255116A1 (en) Piezoelectric laminate and piezoelectric element
WO2022209716A1 (ja) 圧電素子及び圧電素子の製造方法
JP7490796B2 (ja) 圧電素子
WO2022209717A1 (ja) 圧電素子及び圧電素子の製造方法
US20230095101A1 (en) Piezoelectric laminate and piezoelectric element
JP6282735B2 (ja) Pzt薄膜積層体の製造方法
US20230098590A1 (en) Piezoelectric laminate and piezoelectric element
US20210005805A1 (en) Piezoelectric laminate, piezoelectric element and method of manufacturing the piezoelectric laminate
EP4247140A1 (en) Piezoelectric laminate and piezoelectric element
US20230144847A1 (en) Piezoelectric laminate, piezoelectric element, and manufacturing method for piezoelectric laminate
WO2021177091A1 (ja) 圧電膜、圧電積層体、圧電素子および圧電積層体の製造方法
JP2023122266A (ja) 圧電積層体、圧電素子及び圧電積層体の製造方法
EP3276687B1 (en) Ferroelectric thin-film laminate substrate, ferroelectric thin-film element, and manufacturing method of ferroelectric thin-film laminate substrate
CN117412661A (zh) 压电层叠体及压电元件
CN116134186A (zh) 带压电膜的基板及压电元件
CN115734698A (zh) 压电层叠体及压电元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023510802

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280024500.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022779937

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022779937

Country of ref document: EP

Effective date: 20231030