WO2022209645A1 - Camera module - Google Patents

Camera module Download PDF

Info

Publication number
WO2022209645A1
WO2022209645A1 PCT/JP2022/010138 JP2022010138W WO2022209645A1 WO 2022209645 A1 WO2022209645 A1 WO 2022209645A1 JP 2022010138 W JP2022010138 W JP 2022010138W WO 2022209645 A1 WO2022209645 A1 WO 2022209645A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
fixed
movable
shape memory
memory alloy
Prior art date
Application number
PCT/JP2022/010138
Other languages
French (fr)
Japanese (ja)
Inventor
勝彦 大友
清行 伊藤
昌仁 生井
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Priority to CN202280025433.5A priority Critical patent/CN117120923A/en
Priority to JP2023510763A priority patent/JPWO2022209645A1/ja
Publication of WO2022209645A1 publication Critical patent/WO2022209645A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the present disclosure relates to camera modules.
  • this imaging element drive unit will increase because it is driven by magnets and coils.
  • a camera module is an imaging element holding body integrally provided with a fixed side member, a lens holding body capable of holding a lens body, and an imaging element arranged facing the lens body. and a first driving section for moving the lens holder with respect to the stationary member, the camera module comprising: a second driving section for moving the imaging element holder with respect to the stationary member
  • the second driving section includes a plurality of first shape memory alloy wires provided between a first movable side member including the imaging element holder and the fixed side member.
  • the camera module described above can achieve a smaller size than a configuration that uses a voice coil motor as an imaging device drive unit.
  • FIG. 2 is a top perspective view of the camera module;
  • FIG. 3 is a bottom perspective view of the camera module;
  • 1 is an exploded perspective view of a camera module;
  • FIG. 3 is a perspective view of an imaging element holder, an elastic metal member, and a base member;
  • FIG. 4 is a perspective view of a metal member connected to an imaging element holder;
  • 4 is a perspective view of a metal member connected to the base member;
  • FIG. 1 is a diagram of a metal member to which a shape memory alloy wire is attached;
  • FIG. 1 is a diagram of a metal member to which a shape memory alloy wire is attached;
  • FIG. It is a perspective view of a base member.
  • FIG. 1 is a perspective view of an elastic metal member, a shape memory alloy wire, a metal member, and a conductive member
  • FIG. FIG. 4 is a top view of an elastic metal member, a metal member, and a conductive member
  • FIG. 4 is a diagram showing an example of a path of current flowing through a shape memory alloy wire
  • FIG. 10 is a diagram showing another example of a path of current flowing through a shape memory alloy wire
  • FIG. 10 is a table showing expansion and contraction states of shape memory alloy wires when each of six degrees of freedom of movement of an imaging element holder is realized;
  • FIG. 4A is a top view, a front view, a rear view, a left side view, and a right side view of an imaging element holder and a base member which are connected by a shape memory alloy wire;
  • FIG. 3 is a top view of an imaging element holder and a base member;
  • FIG. 3 is a top view of an imaging element holder and a base member;
  • FIG. 2 is a front view of an imaging device holder and a base member;
  • FIG. 2 is a front view of an imaging device holder and a base member;
  • 4 is a right side view of the imaging element holder and the base member;
  • FIG. FIG. 3 is a top view of an imaging element holder and a base member; It is an exploded perspective view of a lens drive.
  • FIG. 4 is a perspective view of a lens body, a lens holder, an upper elastic metal member, and an upper base member;
  • FIG. 4 is a perspective view of an upper metal member connected to the lens holder;
  • FIG. 4 is a perspective view of an upper metal member connected to an upper base member;
  • FIG. 10 is a view of an upper metal member with an upper shape memory alloy wire attached;
  • FIG. 10 is a view of an upper metal member with an upper shape memory alloy wire attached;
  • FIG. 4 is a perspective view of an upper base member;
  • FIG. 4 is a perspective view of an upper elastic metal member, an upper shape memory alloy wire, an upper metal member, and a conductive member;
  • FIG. 4 is a top view of an upper elastic metal member, an upper metal member, and a conductive member;
  • FIG. 4 is a perspective view of an upper metal member connected to the lens holder;
  • FIG. 4 is a perspective view of an upper metal member connected to an upper base member;
  • FIG. 10 is
  • FIG. 4 is a diagram showing an example of a path of current flowing through an upper shape memory alloy wire
  • FIG. 10 is a diagram showing another example of a path of current flowing through the upper shape memory alloy wire
  • FIG. 3 is a perspective view of the imaging element holder, the base member, the lens holder, and the upper base member when viewed obliquely from the upper right.
  • FIG. 3 is a perspective view of an imaging element holder, a base member, a lens holder, and an upper base member when viewed obliquely from the upper left
  • 1 is a perspective view of a metal member, a shape memory alloy wire, an upper metal member, an upper shape memory alloy wire, and a conductive member;
  • 4A is a top view of the metal member, the shape memory alloy wire, the upper metal member, the upper shape memory alloy wire, and the conductive member; It is a figure which shows a movement of a lens body and an image pick-up element. It is a figure which shows a movement of a lens body and an image pick-up element. It is a figure which shows a movement of a lens body and an image pick-up element. It is a figure which shows a movement of a lens body and an image pick-up element. It is a figure which shows a movement of a lens body and an image pick-up element. It is a figure which shows a movement of a lens body and an image pick-up element.
  • FIG. 1A and 1B are perspective views of the camera module MD. Specifically, FIG. 1A is a top perspective view of the camera module MD, and FIG. 1B is a bottom perspective view of the camera module MD.
  • FIG. 2 is an exploded perspective view of the camera module MD. 1A, 1B, and 2, illustration of the lens body LS (see FIG. 18) is omitted.
  • X1 represents one direction of the X-axis that constitutes the three-dimensional orthogonal coordinate system
  • X2 represents the other direction of the X-axis
  • Y1 represents one direction of the Y-axis forming the three-dimensional orthogonal coordinate system
  • Y2 represents the other direction of the Y-axis
  • Z1 represents one direction of the Z-axis forming the three-dimensional orthogonal coordinate system
  • Z2 represents the other direction of the Z-axis.
  • the X1 side of the camera module MD corresponds to the front side (front side) of the camera module MD
  • the X2 side of the camera module MD corresponds to the rear side (back side) of the camera module MD
  • the Y1 side of the camera module MD corresponds to the left side of the camera module MD
  • the Y2 side of the camera module MD corresponds to the right side of the camera module MD
  • the Z1 side of the camera module MD corresponds to the upper side (subject side) of the camera module MD
  • the Z2 side of the camera module MD corresponds to the lower side (image sensor side) of the camera module MD.
  • the camera module MD as shown in FIGS. 1A, 1B, and 2, includes a cover member 4 that is part of the fixed side member FB.
  • the cover member 4 is configured to function as part of the housing HS that covers each member.
  • the cover member 4 is made of non-magnetic metal.
  • the cover member 4 may be made of a magnetic metal.
  • the cover member 4 includes a rectangular tubular outer peripheral wall portion 4A and a rectangular annular flat plate shape provided so as to be continuous with the upper end (Z1 side end) of the outer peripheral wall portion 4A. and a top plate portion 4B.
  • a circular opening 4k is formed in the center of the top plate portion 4B.
  • the outer peripheral wall portion 4A includes a first side plate portion 4A1 to a fourth side plate portion 4A4.
  • the first side plate portion 4A1 and the third side plate portion 4A3 face each other, and the second side plate portion 4A2 and the fourth side plate portion 4A4 face each other.
  • the first side plate portion 4A1 and the third side plate portion 4A3 extend perpendicularly to the second side plate portion 4A2 and the fourth side plate portion 4A4.
  • the cover member 4 is joined to the base member 8 with an adhesive, as shown in FIGS. 1A and 1B.
  • the base member 8 constitutes a housing HS together with the cover member 4 .
  • the housing HS accommodates the lens driving device LD, the imaging device driving device ID, and the like.
  • the imaging device driving device ID is a device for moving the first movable side member MB1, and includes an imaging device driving section DM1, an imaging device holder 2, a metal member 5, and an elastic metal member 6.
  • a flexible substrate 3 is attached to the lower surface (surface on the Z2 side) of the base member 8 that constitutes the housing HS.
  • the imaging element IS is provided with a cross pattern
  • the flexible substrate 3 is provided with a coarse dot pattern
  • the circuit board 7 is provided with a fine dot pattern.
  • the imaging element drive unit DM1 includes a shape memory alloy wire SA, which is an example of a shape memory actuator.
  • the shape memory alloy wires SA include first wires SA1 to eighth wires SA8 having substantially the same length and substantially the same diameter.
  • the shape memory alloy wire SA increases in temperature when current flows, and contracts according to the increase in temperature.
  • the image pickup device driver DM1 can move the image pickup device holder 2 using contraction of the shape memory alloy wire SA.
  • the shape memory alloy wires SA when one or more of the first wires SA1 to SA8 contract, the imaging device holder 2 moves, and the movement causes another one or more to be elongated. (decompressed).
  • the imaging element driving section DM1 is configured to allow the first movable side member MB1 to move with six degrees of freedom.
  • the movements with six degrees of freedom are translation in a first direction (Z-axis direction) parallel to a first rotation axis RX1 perpendicular to the imaging surface of the image sensor IS, and movement in a second direction (X-axis direction) perpendicular to the first direction.
  • the second direction is a direction parallel to the second rotation axis RX2
  • the third direction is a direction parallel to the third rotation axis RX3.
  • the imaging surface of the imaging device IS is a plane parallel to the upper surface of the imaging device IS on the subject side.
  • the flexible substrate 3 is a flexible substrate on which a wiring pattern is formed for connecting the camera module MD and a device outside the camera module MD.
  • the flexible substrate 3 is a flexible printed circuit board configured to be repeatedly deformable.
  • the circuit board 7 is a board on which the imaging device IS is mounted.
  • the circuit board 7 is a rigid circuit board.
  • the first movable side member MB1 is a member that is driven by the imaging element driving section DM1.
  • the first movable side member MB1 is composed of the image sensor IS, the circuit board 7 on which the image sensor IS is mounted, and the image sensor holder 2 capable of holding the circuit board 7 .
  • the imaging element holder 2 is formed by injection molding synthetic resin such as liquid crystal polymer (LCP). Specifically, as shown in FIG. 2, the imaging element holder 2 includes a frame 2F that is substantially rectangular in top view, and movable side pedestals formed at two of the four corners of the frame 2F. It includes a portion 2D and projecting portions 2S formed at the remaining two of the four corners of the frame 2F. In this embodiment, the circuit board 7 is configured to be bonded to the lower surface of the frame 2F with an adhesive.
  • LCP liquid crystal polymer
  • the movable-side pedestal portion 2D includes a first movable-side pedestal portion 2D1 and a second movable-side pedestal portion 2D2.
  • the first movable-side pedestal portion 2D1 and the second movable-side pedestal portion 2D2 are arranged so as to face each other with the first rotation axis RX1 interposed therebetween.
  • the projecting portion 2S includes a first projecting portion 2S1 and a second projecting portion 2S2.
  • the first projecting portion 2S1 and the second projecting portion 2S2 are arranged to face each other with the first rotation axis RX1 interposed therebetween.
  • the movable-side pedestal portion 2D and the protruding portion 2S are arranged so as to correspond to the four corners of the imaging element holding body 2 (frame body 2F) having a substantially rectangular outer shape when viewed from above. Moreover, they are arranged so as to be alternately arranged. A part of the elastic metal member 6 is placed on each of the two movable-side pedestals 2D, as shown in FIG.
  • FIG. 3 is a perspective view of the elastic metal member 6 connected to the image pickup device holder 2 and the base member 8. The positional relationship between the image pickup device holder 2 and the base member 8 and the elastic metal member 6 is shown in FIG. is shown. In FIG. 3, for clarity, the imaging device holder 2 has a fine dot pattern and the base member 8 has a coarse dot pattern. 3, illustration of members other than the imaging element holder 2, the elastic metal member 6, and the base member 8 is omitted for clarity.
  • the elastic metal member 6 is configured to movably support the imaging element holder 2 with respect to the fixed side member FB (base member 8).
  • the elastic metal member 6 is made of a conductive metal plate mainly made of, for example, a copper alloy, a titanium-copper alloy (titanium-copper), or a copper-nickel alloy (nickel-tin-copper).
  • the base member 8 is formed by injection molding using synthetic resin such as liquid crystal polymer (LCP).
  • LCP liquid crystal polymer
  • the base member 8 has a substantially rectangular outline in top view and has an opening 8K in the center.
  • the base member 8 has four side portions 8E (first side portion 8E1 to fourth side portion 8E4) arranged to surround the opening 8K.
  • the base member 8 includes fixed side pedestals 8D formed at two of the four corners of the base member 8, as shown in FIG.
  • the fixed-side pedestal portion 8D protrudes upward (in the Z1 direction) from the plate-like base portion of the base member 8 .
  • the fixed side pedestal portion 8D includes a first fixed side pedestal portion 8D1 and a second fixed side pedestal portion 8D2.
  • the first fixed side seat portion 8D1 and the second fixed side seat portion 8D2 are arranged so as to face each other with the first rotation axis RX1 interposed therebetween. Further, as shown in FIG.
  • the first fixed side pedestal portion 8D1 is arranged so as to face the first projecting portion 2S1 of the image pickup element holder 2
  • the second fixed side pedestal portion 8D2 is arranged to face the image pickup element holding portion 8D2. It is arranged so as to face the second projecting portion 2S2 of the body 2.
  • a connecting portion CN which is a member for connecting the upper base member 80 (see FIG. 17) of the lens driving device LD and the base member 8, is formed.
  • the connecting portion CN includes a first connecting portion CN1 to a fourth connecting portion CN4.
  • the elastic metal member 6 is configured to connect the movable-side pedestal portion 2D formed on the imaging element holder 2 and the fixed-side pedestal portion 8D formed on the base member 8 .
  • the elastic metal member 6 includes a first fixed portion 6e1 attached to a first fixed-side pedestal portion 8D1 formed on the base member 8, and an elastic metal member 6 formed on the imaging element holder 2.
  • a second fixed portion 6e2 attached to the first movable side pedestal portion 2D1; a third fixed portion 6e3 attached to the second fixed side pedestal portion 8D2 formed on the base member 8; and a fourth fixing portion 6e4 attached to the second movable side pedestal portion 2D2.
  • the elastic metal member 6 includes an elastically deformable first arm portion 6g1 connecting the first fixing portion 6e1 and the second fixing portion 6e2, a second fixing portion 6e2 and a third fixing portion 6e3. an elastically deformable second arm portion 6g2 that connects the third fixing portion 6e3 and the fourth fixing portion 6e4, and an elastically deformable third arm portion 6g3 that connects the fourth fixing portion 6e4 and the first fixing portion 6e1 It has an elastically deformable fourth arm portion 6g4 that connects the .
  • the metal member 5 is configured so that the end of the shape memory alloy wire SA is fixed.
  • the metal member 5 includes a fixed side metal member 5F and a movable side metal member 5M, as shown in FIG.
  • the stationary metal member 5 ⁇ /b>F is configured to be fixed to the stationary pedestal portion 8 ⁇ /b>D of the base member 8 .
  • the movable-side metal member 5 ⁇ /b>M is configured to be fixed to the movable-side pedestal portion 2 ⁇ /b>D of the imaging element holder 2 .
  • the fixed-side metal member 5F is also called a fixed-side terminal plate, and includes a first fixed-side terminal plate 5F1 to an eighth fixed-side terminal plate 5F8.
  • the movable-side metal member 5M is also called a movable-side terminal plate, and includes a first movable-side terminal plate 5M1 and a second movable-side terminal plate 5M2.
  • FIG. 4A is a perspective view of the imaging element holder 2 to which the movable-side metal member 5M (movable-side terminal plate) is attached.
  • FIG. 4B is a perspective view of the base member 8 to which the fixed-side metal member 5F (fixed-side terminal plate) is attached.
  • the movable metal member 5M has a dot pattern
  • the fixed metal member 5F has a dot pattern.
  • the first movable terminal plate 5M1 is fixed to the X1 side wall (front mounting surface) and the Y1 side wall (left mounting surface) of the first movable pedestal portion 2D1. Specifically, in a state in which the groove 2G (see FIG. 2) formed on the upper surface of the first movable-side pedestal portion 2D1 and the bent piece BP formed on the first movable-side terminal plate 5M1 are engaged with each other, the first The movable terminal plate 5M1 is fixed to the first movable pedestal 2D1 with an adhesive.
  • the adhesive is, for example, a photocurable adhesive.
  • the photocurable adhesive is, for example, an ultraviolet curable adhesive or a visible light curable adhesive.
  • the second movable terminal plate 5M2 is fixed to the X2 side wall (rear mounting surface) and the Y2 side wall (right mounting surface) of the second movable pedestal portion 2D2. Specifically, in a state in which the groove 2G (see FIG. 2) formed on the upper surface of the second movable-side pedestal portion 2D2 and the bent piece BP formed on the second movable-side terminal plate 5M2 are engaged with each other, the second The movable terminal plate 5M2 is fixed to the second movable pedestal 2D2 with an adhesive.
  • the first stationary terminal plate 5F1 and the second stationary terminal plate 5F2 are located on the X1 side of the first stationary seat 8D1 arranged along the first side 8E1 of the base member 8. It is fixed to the side wall (front mounting surface). Specifically, the first stationary terminal plate 5F1 and the second stationary terminal plate 5F2 are fixed to the first stationary pedestal portion 8D1 with an adhesive.
  • the adhesive is, for example, a photocurable adhesive.
  • the photocurable adhesive is, for example, an ultraviolet curable adhesive or a visible light curable adhesive.
  • the third stationary terminal plate 5F3 and the fourth stationary terminal plate 5F4 (not visible in FIG.
  • the second stationary pedestal 8D2 are attached to the second stationary pedestal 8D2 arranged along the second side 8E2 of the base member 8 It is fixed to the side wall (left mounting surface) on the Y1 side.
  • the fifth fixed side terminal plate 5F5 and the sixth fixed side terminal plate 5F6 are arranged along the third side 8E3 of the base member 8 on the X2 side of the second fixed side pedestal portion 8D2. side wall (rear mounting surface).
  • the seventh stationary terminal plate 5F7 and the eighth stationary terminal plate 5F8 are arranged along the fourth side 8E4 of the base member 8 on the Y2 side wall (right mounting surface) of the first stationary pedestal 8D1. ).
  • the shape memory alloy wire SA extends along the inner surface of the outer peripheral wall portion 4A of the cover member 4, and is configured to movably support the first movable member MB1 with respect to the fixed member FB. .
  • the shape memory alloy wires SA include first wires SA1 to eighth wires SA8, as shown in FIG. It is configured to be able to movably support the image pickup device holder 2 as a.
  • each of the first wire SA1 to the eighth wire SA8 has one end fixed to the stationary metal member 5F by crimping or welding, and the other end is crimped or welded. is fixed to the movable-side metal member 5M.
  • FIG. 5A shows a seventh wire SA7 attached to each of the second movable terminal plate 5M2 and the seventh fixed terminal plate 5F7, and a wire SA7 attached to each of the second movable terminal plate 5M2 and the eighth fixed terminal plate 5F8. It is a figure when the 8th wire SA8 attached is seen from the Y2 side (right side).
  • FIG. 5B shows a seventh wire SA7 attached to each of the second movable side terminal plate 5M2 and the seventh fixed side terminal plate 5F7, and each of the second movable side terminal plate 5M2 and the eighth fixed side terminal plate 5F8.
  • FIGS. 5A and 5B It is a figure when the 8th wire SA8 attached is seen from the X1 side (front side).
  • the positional relationship of each member shown in FIGS. 5A and 5B corresponds to the positional relationship when the camera module MD is assembled. 5A) and 5B, illustration of other members is omitted for clarity.
  • the following description with reference to FIGS. 5A and 5B relates to the combination of the seventh wire SA7 and the eighth wire SA8, the combination of the first wire SA1 and the second wire SA2, the third wire SA3 and the fourth wire SA4. and the combination of the fifth wire SA5 and the sixth wire SA6.
  • one end of the seventh wire SA7 is fixed to the seventh fixed terminal plate 5F7 at the holding portion J2 of the seventh fixed terminal plate 5F7, and the other end of the seventh wire SA7 is fixed to the second movable terminal plate 5F7. It is fixed to the second movable side terminal plate 5M2 at the lower holding portion J1 of the terminal plate 5M2.
  • one end of the eighth wire SA8 is fixed to the eighth fixed terminal plate 5F8 at the holding portion J4 of the eighth fixed terminal plate 5F8, and the other end of the eighth wire SA8 is fixed to the second movable terminal plate. It is fixed to the second movable side terminal plate 5M2 at the upper holding portion J3 of 5M2.
  • the holding portion J1 is formed by bending a portion of the second movable terminal plate 5M2. Specifically, a portion of the second movable terminal plate 5M2 forms a holding portion J1 by being bent while sandwiching the end (the other end) of the seventh wire SA7. An end (the other end) of the seventh wire SA7 is fixed to the holding portion J1 by welding. The same applies to the holding portions J2 to J4.
  • the seventh wire SA7 and the eighth wire SA8 are arranged so as to be twisted relative to each other (three-dimensionally intersect when viewed from the Y2 side). That is, the seventh wire SA7 and the eighth wire SA8 are arranged so as not to contact each other (become non-contact).
  • FIG. 6 is a perspective view of the base member 8.
  • FIG. Specifically, the upper view of FIG. 6 is a perspective view of the base member 8 with the conductive member CM removed, and the central view of FIG. 6 is a perspective view of the base member 8 in which the conductive member CM is embedded.
  • the conductive member CM is given a dot pattern for clarity.
  • the base member 8 is configured to function as a fixed-side wire support section that supports one end of each of the first wire SA1 to the eighth wire SA8. Further, the imaging device holder 2 is configured to function as a movable side wire support section that supports the other ends of the first to eighth wires SA1 to SA8. With this configuration, the first movable member MB1 is supported by the first wire SA1 to the eighth wire SA8 so as to be movable with respect to the fixed member FB with six degrees of freedom.
  • the fixed side pedestal portion 8D is formed on the upper surface of the base member 8 on the subject side (Z1 side surface).
  • the fixed side pedestal portion 8D includes a first fixed side pedestal portion 8D1 and a second fixed side pedestal portion 8D2.
  • the first fixed side seat portion 8D1 and the second fixed side seat portion 8D2 are arranged to face each other with the first rotation axis RX1 interposed therebetween.
  • a conductive member CM formed of a metal plate containing a material such as copper, iron, or an alloy containing them as a main component is embedded by insert molding.
  • the conductive member CM includes a connecting portion ED exposed on the lower surface (Z2 side surface) of the base member 8 and extending outward, and an upper surface (Z1 side surface) of the fixed side pedestal portion 8D of the base member 8 (Z1 side surface). ).
  • the conductive member CM includes a first conductive member CM1 and a second conductive member CM2.
  • the first conductive member CM1 includes a first connection portion ED1 and a first joint surface portion CP1
  • the second conductive member CM2 includes a second connection portion ED2 and a second joint surface portion CP2.
  • FIGS. 7A and 7B are diagrams showing the positional relationship among the metal member 5, the elastic metal member 6, the conductive member CM, and the shape memory alloy wire SA.
  • FIG. 7A is a perspective view of each member (metal member 5, elastic metal member 6, conductive member CM, and shape memory alloy wire SA)
  • FIG. 7B is a top view of each member.
  • dot patterns are given to the movable-side metal member 5M and the conductive member CM for clarity.
  • illustration of the shape memory alloy wire SA is omitted for clarity.
  • the elastic metal member 6 includes a first fixed portion 6e1 fixed to the first fixed-side pedestal portion 8D1 (see FIG. 2) of the base member 8, and a first movable portion 6e1 of the imaging element holder 2.
  • a fourth fixing portion 6e4 fixed to the second movable side pedestal portion 2D2 see FIG.
  • the first fixing portion 6e1 has a first through hole 6H1 and a second through hole 6H2 through which the upwardly protruding columnar protrusion 8T (see FIG. 4B) formed on the first fixed side pedestal portion 8D1 is inserted. , and a third through hole 6H3 used for bonding with the first bonding surface portion CP1 (see the lower diagram of FIG. 6) of the first conductive member CM1.
  • the fixing between the elastic metal member 6 and the projecting portion 8T is achieved by subjecting the projecting portion 8T to hot crimping or cold crimping.
  • the fixing between the elastic metal member 6 and the projecting portion 8T may be realized by an adhesive.
  • the elastic metal member 6 and the first conductive member CM1 are joined together by welding such as laser welding.
  • the joint between the elastic metal member 6 and the first conductive member CM1 may be realized by solder, a conductive adhesive, or the like.
  • the second fixing portion 6e2 has a fourth through hole 6H4 and a fifth through hole 6H5 through which the upwardly projecting columnar protrusion 2T (see FIG. 4A) formed on the first movable side pedestal portion 2D1 is inserted. and a sixth through-hole 6H6 used for joining with the tip of the bent piece BP (see FIG. 4A) of the first movable-side terminal plate 5M1.
  • the fixing of the elastic metal member 6 and the projecting portion 2T is achieved by subjecting the projecting portion 2T to hot crimping or cold crimping.
  • the fixing between the elastic metal member 6 and the projecting portion 2T may be realized by an adhesive.
  • the elastic metal member 6 and the bent piece BP of the first movable terminal plate 5M1 are joined together by welding such as laser welding.
  • the joint between the elastic metal member 6 and the bent piece BP may be realized by solder, a conductive adhesive, or the like.
  • Each of the first arm portion 6g1 to the fourth arm portion 6g4 of the elastic metal member 6 is an elastically deformable arm portion having four curved portions. Therefore, the imaging element holder 2 can move with respect to the base member 8 (fixed member FB) not only in the direction parallel to the first rotation axis RX1, but also in the direction intersecting the first rotation axis RX1. ing.
  • the elastic metal member 6 is configured to have two-fold rotational symmetry with respect to the first rotation axis RX1. Therefore, the elastic metal member 6 hardly affects the weight balance of the image pickup device holder 2 . Moreover, the elastic metal member 6 hardly affects the weight balance of the first movable side member MB1 supported by the eight shape memory alloy wires SA (the first wire SA1 to the eighth wire SA8).
  • the fixed-side metal member 5F has a connection portion CT (see FIGS. 5A and 5B) and is configured to be joined to the conductive pattern PT of the flexible substrate 3 via the connection portion CT.
  • the connection portion CT of the stationary-side metal member 5F includes a first connection portion CT1 to an eighth connection portion CT8.
  • the flexible board 3 includes, as shown in FIG. 2, a substantially rectangular inner portion 3i attached to the lower surface of the circuit board 7 and a substantially rectangular annular outer portion 3e attached to the lower surface of the base member 8. .
  • a first conductive pattern PT1 to a twentieth conductive pattern PT20 are formed in the outer portion 3e, and a large number of conductive patterns (not shown) used for connection with the imaging element IS are formed in the inner portion 3i.
  • the first connecting portion CT1 of the first fixed-side terminal plate 5F1 is joined to the first conductive pattern PT1 (see FIG. 2) of the flexible substrate 3 by soldering.
  • the second connection portion CT2 of the second fixed terminal plate 5F2 is soldered to the second conductive pattern PT2 (see FIG. 2) of the flexible substrate 3, and the third fixed terminal plate 5F3 is The third connection portion CT3 is joined to the third conductive pattern PT3 (see FIG. 2) of the flexible substrate 3 by soldering, and the fourth connection portion CT4 of the fourth fixed terminal plate 5F4 is soldered. It is joined to the fourth conductive pattern PT4 (see FIG.
  • the first connection portion ED1 of the first conductive member CM1 is soldered to the ninth conductive pattern PT9 (see FIG. 2) of the flexible substrate 3, and the second connection portion ED2 of the second conductive member CM2 is It is joined to the tenth conductive pattern PT10 (see FIG. 2) of the flexible substrate 3 by soldering.
  • both the ninth conductive pattern PT9 and the tenth conductive pattern PT10 are connected to a ground terminal (not shown).
  • the connection portion ED and the conductive pattern PT of the flexible substrate 3 may be joined by a conductive adhesive.
  • the bent piece BP of the first movable terminal plate 5M1 is joined to the second fixed portion 6e2 of the elastic metal member 6 by welding such as laser welding, as shown in FIG. 7B.
  • the bent piece BP of the second movable side terminal plate 5M2 is joined to the fourth fixed portion 6e4 of the elastic metal member 6 by welding such as laser welding.
  • the first stationary terminal plate 5F1, the second stationary terminal plate 5F2, the seventh stationary terminal plate 5F7, and the eighth stationary terminal plate 5F8 are the first stationary portion of the elastic metal member 6, as shown in FIG. 7B. 6e1, and is not in contact with the first fixing portion 6e1 of the elastic metal member 6.
  • the first fixed portion 6e1 of the elastic metal member 6 is joined to the first joint surface portion CP1 of the first conductive member CM1 by welding such as laser welding.
  • the third stationary terminal plate 5F3 to the sixth stationary terminal plate 5F6 are arranged apart from the third stationary portion 6e3 of the elastic metal member 6, as shown in FIG. 7B. is not in contact with the third fixing portion 6e3.
  • the third fixing portion 6e3 of the elastic metal member 6 is joined to the second joint surface portion CP2 of the second conductive member CM2 by welding such as laser welding.
  • FIGS. 8A and 8B are perspective views of a portion of the arrangement shown in FIG. 7A.
  • the first conductive member CM1 and the second movable terminal plate 5M2 are given rough dot patterns
  • the seventh stationary terminal plate 5F7 and the eighth stationary terminal plate 5F8 has a fine dot pattern
  • the elastic metal member 6 has an even finer dot pattern.
  • FIG. 8A shows the state when the seventh connection portion CT7 of the seventh stationary terminal plate 5F7 is connected to a high potential and the first connection portion ED1 of the first conductive member CM1 is connected to a low potential.
  • FIG. 8B shows that the eighth connection portion CT8 of the eighth fixed terminal plate 5F8 is connected to a high potential, and the first connection portion ED1 of the first conductive member CM1 is connected to a low potential. shows the path of the current when The following description relates to the path of the current flowing through the seventh wire SA7 or the eighth wire SA8, but the path of the current flowing through the first wire SA1 or the second wire SA2, the current flowing through the third wire SA3 or the fourth wire SA4. The same applies to the path and the path of the current flowing through the fifth wire SA5 or the sixth wire SA6.
  • the current flows as indicated by the arrow AR1 in FIG. 8A. flows through the seventh connecting portion CT7 to the seventh stationary terminal plate 5F7. After that, the current flows through the seventh fixed terminal plate 5F7 as indicated by arrow AR2, through the seventh wire SA7 as indicated by arrow AR3, and further through the second movable terminal plate 5M2 as indicated by arrow AR4. pass.
  • the current flows through the fourth fixing portion 6e4, the fourth arm portion 6g4 and the first fixing portion 6e1 of the elastic metal member 6 as indicated by arrows AR5, AR6 and AR7, and then through the first fixing portion 6e1 as indicated by arrow AR8. flows through the first conductive member CM1 to the first connecting portion ED1.
  • the current flows through the fourth fixing portion 6e4 of the elastic metal member 6, the third arm portion 6g3, the third fixing portion 6e3, the second conductive member CM2, and also the second connecting portion ED2. is configured to This is because both the first connection portion ED1 of the first conductive member CM1 and the second connection portion ED2 of the second conductive member CM2 are grounded.
  • the current flows as indicated by the arrow AR11 in FIG. 8B. , flows through the eighth connecting portion CT8 to the eighth stationary terminal plate 5F8. After that, the current flows through the eighth fixed terminal plate 5F8 as indicated by arrow AR12, the eighth wire SA8 as indicated by arrow AR13, and the second movable terminal plate 5M2 as indicated by arrow AR14. pass.
  • the current flows through the fourth fixing portion 6e4, the fourth arm portion 6g4 and the first fixing portion 6e1 of the elastic metal member 6 as indicated by arrows AR15, AR16 and AR17, and then through the first fixing portion 6e1 as indicated by arrow AR18. flows through the first conductive member CM1 to the first connecting portion ED1.
  • the current flows through the fourth fixing portion 6e4 of the elastic metal member 6, the third arm portion 6g3, the third fixing portion 6e3, the second conductive member CM2, and also the second connecting portion ED2. is configured to This is because both the first connection portion ED1 of the first conductive member CM1 and the second connection portion ED2 of the second conductive member CM2 are grounded.
  • the path of the current after passing through the second movable-side terminal plate 5M2 is the same.
  • the control device outside the camera module MD as described above controls the voltages applied to the respective connection portions CT of the first fixed terminal plate 5F1 to the eighth fixed terminal plate 5F8 so that the first wire
  • the expansion and contraction of each of SA1 to eighth wire SA8 can be controlled.
  • the control device controls the first terminal plate 5F1 through the eighth fixed terminal plate 5F8 via the connecting portions CT of the first to eighth stationary terminal plates 5F8 and the connecting portions ED of the first conductive member CM1 and the second conductive member CM2.
  • the control device may be arranged in the camera module MD.
  • the control device may be a component of the camera module MD.
  • the control device utilizes the driving force along the first direction (Z-axis direction) parallel to the first rotation axis RX1 due to the contraction of the shape memory alloy wire SA as the imaging element driving unit DM1, and the lens body LS On the Z2 side, the imaging element holder 2 may be moved along the first direction.
  • the control device may realize an automatic focus adjustment function, which is one of the lens adjustment functions.
  • the control device moves the image sensor holder 2 in a direction away from the lens body LS to enable macro photography, and moves the image sensor holder 2 in a direction closer to the lens body LS to infinity photography. may be enabled.
  • the control device may also move the imaging element holder 2 in a direction intersecting with the first direction by controlling the currents flowing through the plurality of shape memory alloy wires SA.
  • the direction intersecting the first direction is, for example, the second direction (X-axis direction) perpendicular to the first direction, or the third direction (Y-axis direction) perpendicular to the first direction and the second direction. good.
  • the control device rotates the imaging element holder 2 around the first direction (Z-axis direction), around the second direction (X-axis direction), or around the third direction (Y-axis direction). good too.
  • the control device may implement a camera shake correction function.
  • FIG. 9 is a table showing expansion and contraction states of the shape memory alloy wire SA when realizing each of the six degrees of freedom of movement of the imaging element holder 2 .
  • 10A and 10B are a top view, a front view, a rear view, a left side view, and a right side view of the imaging element holder 2 and the base member 8 which are connected by the shape memory alloy wire SA.
  • FIG. 11 is a top view of the imaging element holder 2 and the base member 8 that translate in the X-axis direction with respect to the base member 8.
  • FIG. 12 is a top view of the imaging element holder 2 and the base member 8 that translate in the Y-axis direction with respect to the base member 8.
  • FIG. FIG. 13 is a front view of the imaging element holder 2 and the base member 8 that translate in the Z-axis direction with respect to the base member 8.
  • FIG. 14 is a front view of the imaging element holder 2 and the base member 8 rotating around the X-axis (second rotation axis RX2).
  • FIG. 15 is a right side view of the imaging element holder 2 and the base member 8 rotating around the Y-axis (third rotation axis RX3).
  • FIG. 16 is a top view of the imaging element holder 2 and the base member 8 rotating around the Z-axis (first rotation axis RX1).
  • the imaging element holder 2 has a fine dot pattern and the base member 8 has a coarse dot pattern.
  • the illustration of the four connecting portions CN (see FIG. 3) formed at the four corners of the base member 8 is omitted for clarity, and the outer shape of the base member 8 is Simplified.
  • FIG. 10 shows the state of the imaging element holder 2, the base member 8, and the shape memory alloy wire SA when the camera module MD is in the neutral state (neutral position).
  • the neutral state of the camera module MD is the imaging element holding body 2 and the lens holding body 20 (FIG. 17) that can translate along the respective directions of the X-axis, the Y-axis, and the Z-axis with respect to the fixed-side member FB. ) are positioned in the middle of the movable range in the X-axis direction, in the middle of the movable range in the Y-axis direction, and in the middle of the movable range in the Z-axis direction. means.
  • each of the imaging element holder 2 and the lens holder 20 is positioned at the center of each movable range in the X-axis direction, the Y-axis direction, and the Z-axis direction. is in a state of
  • the neutral state of the camera module MD rotates around the X axis (second rotation axis RX2), around the Y axis (third rotation axis RX3), and around the Z axis (first rotation axis RX1). It means a state in which the rotatable (rockable) imaging device holder 2 is positioned in the middle of the rotatable range (rotatable angle) around each rotation axis.
  • the neutral state of the camera module MD rotates around the X axis (fifth rotation axis RX5), around the Y axis (sixth rotation axis RX6), and around the Z axis (fourth rotation axis RX4). It means a state in which the rotatable (rockable) lens holder 20 is positioned in the middle of the rotatable range (rotatable angle) around each rotation axis.
  • the imaging surface of the image sensor IS is perpendicular to the optical axis of the lens body LS arranged to face the image sensor IS.
  • the first rotation axis RX1 which is the central axis of the imaging device IS (imaging surface), coincides with the optical axis of the lens body LS.
  • the initial state of the camera module MD when no current is supplied to the shape memory alloy wire SA and the upper shape memory alloy wire SB (see FIG. 17) may be the neutral state.
  • one end (fixed end) of the second wire SA2 is outside the other end (movable end) by a predetermined distance D1 in a top view from the Z1 side. (Front side (X1 side)).
  • One end (fixed end) of the second wire SA2 is the end fixed to the second fixed terminal plate 5F2
  • the other end (movable end) of the second wire SA2 is the first movable terminal plate 5M1. is the end that is fixed to the
  • the fourth wire SA4 is arranged such that one end (fixed end) thereof is positioned outside (to the left (Y1 side)) the other end (movable end) of the fourth wire SA4 by a predetermined distance D2 when viewed from the top.
  • One end (fixed end) of SA6 is positioned outside (rear side (X2 side)) a predetermined distance D3 from the other end (movable end). ) is positioned outside (to the right (Y2 side)) of the other end (movable end) by a predetermined distance D4.
  • the first wire SA1, the second wire SA2, the fifth wire SA5, and the sixth wire SA6 are arranged so as to be non-parallel to the Y-axis, and the third wire SA3 and the fourth wire SA3 are arranged to be non-parallel to the Y axis.
  • SA4, seventh wire SA7, and eighth wire SA8 are arranged so as to be non-parallel to the X-axis.
  • control device can move the image sensor holder 2 along the X-axis or the Y-axis, for example, by contracting a part of the first wire SA1 to the eighth wire SA8 and extending the rest. can be translated by
  • the first wire SA1 is arranged so that one end (fixed end) thereof is higher than the other end (movable end) in a front view viewed from the X1 side.
  • the second wire SA2 is arranged so that one end (fixed end) is lower than the other end (movable end), and the first wire SA1 and the second wire SA2 are arranged so as to cross each other. ing.
  • the third wire SA3 is arranged so that one end (fixed end) thereof is higher than the other end (movable end), and the fourth wire SA4 The (fixed end) is positioned lower than the other end (movable end), and the third wire SA3 and the fourth wire SA4 are arranged to cross each other.
  • the fifth wire SA5 is arranged so that one end (fixed end) is higher than the other end (movable end), and the sixth wire SA6 is arranged such that one end ( The fixed end) is positioned lower than the other end (movable end), and the fifth wire SA5 and the sixth wire SA6 are arranged to cross each other.
  • the seventh wire SA7 is arranged so that one end (fixed end) is higher than the other end (movable end), and the eighth wire SA8 One end (fixed end) is positioned lower than the other end (movable end), and the seventh wire SA7 and the eighth wire SA8 are arranged to cross each other.
  • the first wire SA1 to the eighth wire SA8 are all arranged so as to extend obliquely (non-parallel) to the X-axis and the Y-axis.
  • the control device causes, for example, the first wire SA1 to the eighth wire SA8 to contract partly and extend the rest, thereby translating the imaging element holder 2 along the Z axis.
  • the first wire SA1 and the second wire SA2 need only be arranged so as to extend obliquely when viewed from the front, and need not cross each other when viewed from the front.
  • FIG. 11 is a top view of the imaging element holder 2 and the base member 8 that translate in the X1 direction (forward) with respect to the base member 8, and the middle diagram of FIG. 11 is a neutral state.
  • 11 is a top view of the image pickup element holder 2 and the base member 8 in FIG. 11, and the lower diagram of FIG. .
  • the control device contracts the first wire SA1 and the second wire SA2 relatively small as shown in the table of FIG. , the third wire SA3 and the fourth wire SA4 are stretched relatively greatly, the fifth wire SA5 and the sixth wire SA6 are stretched relatively little, and the seventh wire SA7 and the eighth wire SA8 are relatively greatly contracted. .
  • Shrinking the first wire SA1 and the second wire SA2 to a relatively small amount and shrinking the seventh wire SA7 and the eighth wire SA8 to a relatively large amount means that the amount of shrinkage of each of the first wire SA1 and the second wire SA2 is is smaller than the contraction amount of each of the seventh wire SA7 and the eighth wire SA8.
  • the control device causes the first wire SA1 and the second wire SA2 to shrink by substantially the same amount and relatively small, and the third wire SA3 and the fourth wire SA4 to stretch by approximately the same amount and relatively large.
  • the fifth wire SA5 and the sixth wire SA6 are stretched to a relatively small extent by approximately the same amount of stretching, and the seventh wire SA7 and the eighth wire SA8 are shrunk by approximately the same amount to a relatively large extent.
  • the control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8.
  • the imaging device driver DM1 can translate the imaging device holder 2 in the X1 direction (forward) with respect to the base member 8, as indicated by an arrow AR21 in the upper diagram of FIG. .
  • the control device when the control device translates the image pickup element holder 2 in the X2 direction (rearward) with respect to the base member 8, the first wire SA1 and the second wire SA2 are relatively set as shown in the table of FIG.
  • the third wire SA3 and the fourth wire SA4 are contracted relatively large, the fifth wire SA5 and the sixth wire SA6 are contracted relatively small, and the seventh wire SA7 and the eighth wire SA8 are contracted relatively. stretch greatly.
  • the control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8.
  • the imaging device driver DM1 can translate the imaging device holder 2 in the X2 direction (backward) with respect to the base member 8, as indicated by an arrow AR22 in the lower diagram of FIG.
  • the upper diagram in FIG. 12 is a top view of the imaging element holder 2 and the base member 8 that translate in the Y1 direction (leftward) with respect to the base member 8, and the middle diagram in FIG. 12 is a top view of the body 2 and the base member 8, and the bottom view of FIG.
  • the control device When the control device translates the imaging element holder 2 in the Y1 direction (leftward) with respect to the base member 8, the first wire SA1 and the second wire SA2 are stretched relatively large as shown in the table of FIG. , the third wire SA3 and the fourth wire SA4 are shrunk relatively small, the fifth wire SA5 and the sixth wire SA6 are shrunk relatively large, and the seventh wire SA7 and the eighth wire SA8 are stretched relatively small.
  • the control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8.
  • the imaging device driver DM1 can translate the imaging device holder 2 in the Y1 direction (to the left) with respect to the base member 8, as indicated by an arrow AR23 in the upper diagram of FIG. can.
  • the control device when the control device translates the imaging element holder 2 in the Y2 direction (rightward) with respect to the base member 8, the first wire SA1 and the second wire SA2 are compared as shown in the table of FIG.
  • the third wire SA3 and the fourth wire SA4 are stretched relatively little, the fifth wire SA5 and the sixth wire SA6 are stretched relatively greatly, and the seventh wire SA7 and the eighth wire SA8 are compared. contract small.
  • the control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8.
  • the imaging device driver DM1 can translate the imaging device holder 2 in the Y2 direction (to the right) with respect to the base member 8, as indicated by an arrow AR24 in the lower diagram of FIG. .
  • the upper diagram in FIG. 13 is a front view of the imaging element holder 2 and the base member 8 that translate in the Z1 direction (upward) with respect to the base member 8, and the middle diagram in FIG. 13 is the imaging element holder in a neutral state. 13 is a front view of the image sensor holder 2 and the base member 8, and the lower view of FIG.
  • the control device When the control device translates the imaging element holder 2 in the Z1 direction (upward) with respect to the base member 8, as shown in the table of FIG. and the seventh wire SA7 are contracted, and the second wire SA2, the fourth wire SA4, the sixth wire SA6 and the eighth wire SA8 are stretched.
  • the control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8.
  • the imaging device driver DM1 can translate the imaging device holder 2 in the Z1 direction (upward) with respect to the base member 8, as indicated by an arrow AR25 in the upper diagram of FIG. .
  • the control device when the control device translates the imaging element holder 2 in the Z2 direction (downward) with respect to the base member 8, the first wire SA1, the third wire SA3, the fifth The wire SA5 and the seventh wire SA7 are stretched by approximately the same amount of stretching, and the second wire SA2, the fourth wire SA4, the sixth wire SA6 and the eighth wire SA8 are contracted by approximately the same amount of contraction.
  • the control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8.
  • the image pickup device driver DM1 can translate the image pickup device holder 2 in the Z2 direction (downward) with respect to the base member 8, as indicated by an arrow AR26 in the lower diagram of FIG.
  • FIG. 14 is a front view of the imaging element holder 2 and the base member 8 rotating clockwise about the X-axis (second rotation axis RX2) with respect to the base member 8, and the center view of FIG. 14 is a front view of the imaging element holder 2 and the base member 8 in a neutral state, and the lower view of FIG. 2 is a front view of an imaging device holder 2 and a base member 8;
  • FIG. 14 is a front view of the imaging element holder 2 and the base member 8 rotating clockwise about the X-axis (second rotation axis RX2) with respect to the base member 8, and the center view of FIG. 14 is a front view of the imaging element holder 2 and the base member 8 in a neutral state, and the lower view of FIG. 2 is a front view of an imaging device holder 2 and a base member 8;
  • the control device rotates the imaging element holder 2 clockwise around the X axis (second rotation axis RX2) with respect to the base member 8 in a front view, the first wire
  • the wires SA1 to the third wire SA3 and the eighth wire SA8 are contracted by approximately the same amount of contraction, and the fourth wire SA4 to the seventh wire SA7 are stretched by approximately the same extension amount.
  • the control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8.
  • the image pickup device driver DM1 rotates the image pickup device clockwise around the X axis (second rotation axis RX2) with respect to the base member 8, as indicated by an arrow AR27 in the upper diagram of FIG.
  • the holder 2 can be rotated.
  • the control device rotates the imaging element holder 2 counterclockwise around the X axis (second rotation axis RX2) with respect to the base member 8 in a front view, as shown in the table of FIG. , the first wire SA1 to the third wire SA3 and the eighth wire SA8 are stretched by approximately the same stretching amount, and the fourth wire SA4 to the seventh wire SA7 are contracted by approximately the same shrinking amount.
  • the control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8.
  • the image pickup device driver DM1 rotates the image pickup device counterclockwise around the X axis (second rotation axis RX2) with respect to the base member 8, as indicated by an arrow AR28 in the lower diagram of FIG.
  • the holder 2 can be rotated.
  • FIG. 15 The upper diagram in FIG. 15 is a right side view of the imaging element holder 2 rotating clockwise around the Y-axis (third rotation axis RX3) with respect to the base member 8 and the base member 8.
  • the figure is a right side view of the imaging element holder 2 and the base member 8 in a neutral state
  • the lower figure in FIG. 3 is a right side view of the rotating imaging element holder 2 and the base member 8.
  • the control device rotates the imaging element holder 2 clockwise around the Y-axis (third rotation axis RX3) with respect to the base member 8 in the right side view
  • the first The wire SA1, the third wire SA3, the fourth wire SA4, and the sixth wire SA6 are contracted by substantially the same amount
  • the second wire SA2, the fifth wire SA5, the seventh wire SA7, and the eighth wire SA8 are contracted. It is extended by approximately the same amount of extension.
  • the control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8.
  • the image pickup device driver DM1 rotates the image pickup device clockwise around the Y axis (third rotation axis RX3) with respect to the base member 8, as indicated by an arrow AR29 in the upper diagram of FIG.
  • the holder 2 can be rotated.
  • the control device rotates the imaging element holder 2 counterclockwise around the Y-axis (third rotation axis RX3) with respect to the base member 8 in the right side view, as shown in the table of FIG. , the first wire SA1, the third wire SA3, the fourth wire SA4, and the sixth wire SA6 are stretched by substantially the same amount of stretching, and the second wire SA2, the fifth wire SA5, the seventh wire SA7, and the The 8-wire SA8 is shrunk by approximately the same amount of shrinkage.
  • the control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8.
  • the image pickup device driver DM1 rotates the image pickup device counterclockwise around the Y axis (third rotation axis RX3) with respect to the base member 8, as indicated by an arrow AR30 in the lower diagram of FIG.
  • the holder 2 can be rotated.
  • FIG. 16 is a top view of the base member 8 and the imaging element holder 2 rotating clockwise about the Z-axis (first rotation axis RX1) with respect to the base member 8, and the center view of FIG. 16 is a top view of the imaging element holder 2 and the base member 8 in a neutral state, and the lower view of FIG. 2 is a top view of an imaging device holder 2 and a base member 8;
  • FIG. 16 is a top view of the base member 8 and the imaging element holder 2 rotating clockwise about the Z-axis (first rotation axis RX1) with respect to the base member 8, and the center view of FIG. 16 is a top view of the imaging element holder 2 and the base member 8 in a neutral state, and the lower view of FIG. 2 is a top view of an imaging device holder 2 and a base member 8;
  • the control device rotates the imaging element holder 2 clockwise around the Z-axis (first rotation axis RX1) with respect to the base member 8 in top view, the first wire The SA1, the second wire SA2, the fifth wire SA5, and the sixth wire SA6 are stretched by substantially the same amount of stretching, and the third wire SA3, the fourth wire SA4, the seventh wire SA7, and the eighth wire SA8 are stretched substantially. Shrink with the same amount of shrinkage.
  • the control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8.
  • the image pickup device driver DM1 rotates the image pickup device clockwise around the Z axis (first rotation axis RX1) with respect to the base member 8, as indicated by an arrow AR31 in the upper diagram of FIG.
  • the holder 2 can be rotated.
  • the control device rotates the imaging element holder 2 counterclockwise around the Z-axis (first rotation axis RX1) with respect to the base member 8 in top view, as shown in the table of FIG. , the first wire SA1, the second wire SA2, the fifth wire SA5, and the sixth wire SA6 are contracted by substantially the same contraction amount, and the third wire SA3, the fourth wire SA4, the seventh wire SA7, and the eighth wire SA7 are contracted by approximately the same contraction amount.
  • the wire SA8 is stretched by approximately the same stretch amount.
  • the control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8.
  • the image pickup device driver DM1 rotates the image pickup device counterclockwise around the Z axis (first rotation axis RX1) with respect to the base member 8, as indicated by an arrow AR32 in the lower diagram of FIG.
  • the holder 2 can be rotated.
  • the imaging device holder 2 can move with 6 degrees of freedom. Each of these six degrees of freedom of movement is realized by individually adjusting the current supplied to each of the first wire SA1 to the eighth wire SA8.
  • the movement of the imaging device holder 2 may be realized by combining a plurality of movements of the six degrees of freedom.
  • the imaging element holder 2 moves when the corresponding shape memory alloy wire SA contracts by applying current to one or more of the first wire SA1 to the eighth wire SA8. By the movement, another one or more of the first wire SA1 to the eighth wire SA8 are stretched, thereby realizing the stretching of the shape memory alloy wire SA.
  • the six-degree-of-freedom motion of the first movable member MB1 as described above is detected by a motion detector (not shown).
  • the motion detection unit includes, for example, at least three magnets attached to the first movable side member MB1 such as the image pickup element holder 2, and at least three magnets attached to the fixed side member FB such as the base member 8 or the flexible substrate 3. and a magnetic sensor.
  • the magnetic sensor is configured to detect the position of the first movable member MB1 by detecting the position of the magnet.
  • the magnetic sensor is configured to detect the position of the first movable member MB1 using a Hall element.
  • the magnetic sensor is a Giant Magneto Resistive effect (GMR) element that can detect the magnetic field generated by a magnet, a Semiconductor Magneto Resistive (SMR) element, an Anisotropic Magneto Resistive
  • GMR Giant Magneto Resistive effect
  • SMR Semiconductor Magneto Resistive
  • Anisotropic Magneto Resistive The position of the first movable side member MB1 may be detected using a magnetoresistive element such as a Tunnel Magneto Resistive (TMR) element or a Tunnel Magneto Resistive (TMR) element.
  • TMR Tunnel Magneto Resistive
  • TMR Tunnel Magneto Resistive
  • FIG. 17 is an exploded perspective view of the lens driving device LD.
  • the lens driving device LD includes a lens driving section DM2, a lens holder 20, an upper metal member 50, an upper elastic metal member 60, and an upper base member 80, as shown in FIG.
  • the lens driver DM2 includes an upper shape memory alloy wire SB, which is an example of a shape memory actuator.
  • the upper shape memory alloy wires SB include first to eighth wires SB1 to SB8 having substantially the same length and substantially the same diameter.
  • Each of the first wire SB1 to eighth wire SB8 may have substantially the same length and substantially the same diameter as each of the first wire SA1 to eighth wire SA8.
  • the upper shape memory alloy wire SB increases in temperature when current flows, and contracts according to the increase in temperature.
  • the lens driver DM2 can move the lens holder 20 by utilizing contraction of the upper shape memory alloy wire SB. When one or more of the first wire SB1 to the eighth wire SB8 contract, the upper shape memory alloy wire SB moves the lens holder 20, and the other one or more of the upper shape memory alloy wires SB are stretched. (decompressed).
  • the lens driving section DM2 is configured so as to be able to move the second movable side member MB2 with six degrees of freedom.
  • the six-degree-of-freedom movement consists of translation in a first direction (Z-axis direction) parallel to the optical axis of the lens body LS (see FIG. 18) and translation in a second direction (X-axis direction) perpendicular to the first direction.
  • translation in a third direction (Y-axis direction) perpendicular to the first and second directions rotation about the first direction (Z-axis direction), rotation about a second direction (X-axis direction), and Includes rotation about a third direction (the Y-axis direction).
  • the direction parallel to the optical axis is the direction parallel to the fourth rotation axis RX4, the second direction (X-axis direction) is the direction parallel to the fifth rotation axis RX5, and the third direction (Y-axis direction) is a direction parallel to the sixth rotation axis RX6.
  • the lens body LS is, for example, a cylindrical lens barrel having at least one lens. It should be noted that the fourth rotation axis RX4 coincides with the optical axis of the lens body LS.
  • the motion of the second movable-side member MB2 with six degrees of freedom is realized by the image pickup element driving section DM1 (shape memory alloy wire SA) described with reference to FIGS.
  • the lens driver DM2 upper shape memory alloy wire SB.
  • each movement of the second movable side member MB2 with six degrees of freedom is realized by individually adjusting the current supplied to each of the first wire SB1 to the eighth wire SB8.
  • the movement of the second movable-side member MB2 may be realized by combining a plurality of movements of the six degrees of freedom.
  • the second movable member MB2 moves when the corresponding upper shape memory alloy wire SB contracts by applying current to one or more of the first wire SB1 to the eighth wire SB8. . By this movement, another one or more of the first wire SB1 to the eighth wire SB8 are stretched, thereby realizing the stretching of the upper shape memory alloy wire SB.
  • the motion detector is composed of, for example, at least three magnets attached to the second movable side member MB2 such as the lens holder 20, and at least three magnetic sensors attached to the fixed side member FB such as the upper base member 80. be.
  • the magnetic sensor is configured to detect the position of the second movable member MB2 by detecting the position of the magnet.
  • the magnetic sensor is configured to detect the position of the second movable member MB2 using a Hall element.
  • the magnetic sensor may be configured to detect the position of the second movable member MB2 using a magnetoresistive element.
  • the second movable side member MB2 is a member driven by the lens driving section DM2 and includes a lens holder 20 capable of holding the lens body LS.
  • the lens holder 20 is formed by injection molding synthetic resin such as liquid crystal polymer (LCP). Specifically, as shown in FIG. 17, the lens holder 20 is formed at two of the four corners of the frame body 20F, which has a substantially rectangular frame shape when viewed from above, and the four corners of the frame body 20F. and a movable-side pedestal portion 20D, and projecting portions 20S formed at the remaining two of the four corners of the frame 20F.
  • the frame 20F has a cylindrical through hole, and the lens body LS is configured to be bonded to the cylindrical inner surface of the frame 20F with an adhesive.
  • the movable-side pedestal portion 20D includes a first movable-side pedestal portion 20D1 and a second movable-side pedestal portion 20D2.
  • the first movable-side pedestal portion 20D1 and the second movable-side pedestal portion 20D2 are arranged so as to face each other across the fourth rotation axis RX4, which is also the optical axis of the lens body LS.
  • the projecting portion 20S includes a first projecting portion 20S1 and a second projecting portion 20S2.
  • the first projecting portion 20S1 and the second projecting portion 20S2 are arranged to face each other with the fourth rotation axis RX4 interposed therebetween.
  • the movable-side pedestal portion 20D and the projecting portion 20S are arranged so as to correspond to the four corners of the lens holding body 20 (frame body 20F) having a substantially rectangular outer shape when viewed from above, and , are arranged alternately.
  • a part of the upper elastic metal member 60 is placed on each of the two movable-side pedestals 20D, as shown in FIG.
  • FIG. 18 is a perspective view of the upper elastic metal member 60 connected to the lens holder 20 and the upper base member 80.
  • FIG. It shows the positional relationship.
  • the lens holder 20 has a fine dot pattern
  • the upper base member 80 has a coarse dot pattern.
  • members other than the lens body LS, the lens holder 20, the upper elastic metal member 60, and the upper base member 80 are omitted for clarity.
  • the upper elastic metal member 60 is configured so that the lens holder 20 can be movably connected to the fixed side member FB (upper base member 80).
  • the upper elastic metal member 60 is made of a conductive metal plate mainly made of a copper alloy, a titanium-copper alloy (titanium-copper), or a copper-nickel alloy (nickel-tin-copper), for example. ing.
  • the upper elastic metal member 60 may be a leaf spring.
  • the upper base member 80 is formed by injection molding using synthetic resin such as liquid crystal polymer (LCP).
  • LCP liquid crystal polymer
  • the upper base member 80 has a substantially rectangular frame-like contour when viewed from above, and has an opening 80K in the center.
  • the upper base member 80 has four side portions 80E (first side portion 80E1 to fourth side portion 80E4) arranged to surround the opening 80K.
  • the upper base member 80 includes fixed side pedestals 80D formed at two of the four corners of the upper base member 80, as shown in FIG.
  • the fixed-side pedestal portion 80D protrudes upward (in the Z1 direction) from the plate-like base portion of the upper base member 80 .
  • the fixed side seat portion 80D includes a first fixed side seat portion 80D1 and a second fixed side seat portion 80D2.
  • the first fixed side seat portion 80D1 and the second fixed side seat portion 80D2 are arranged so as to face each other with the fourth rotation axis RX4 interposed therebetween. Further, as shown in FIG.
  • the first fixed side pedestal portion 80D1 is arranged to face the first projecting portion 20S1 of the lens holder 20
  • the second fixed side pedestal portion 80D2 is arranged to face the lens holder 20. is arranged so as to face the second projecting portion 20S2.
  • the upper elastic metal member 60 is configured to connect the movable side pedestal portion 20D formed on the lens holder 20 and the fixed side pedestal portion 80D formed on the upper base member 80 . Specifically, as shown in FIG. 18, the upper elastic metal member 60 is formed on the first fixed portion 60e1 attached to the first movable side pedestal portion 20D1 formed on the lens holder 20, and on the upper base member 80. a second fixed portion 60e2 attached to the first fixed side pedestal portion 80D1, a third fixed portion 60e3 attached to the second movable side pedestal portion 20D2 formed in the lens holder 20; and a fourth fixing portion 60e4 attached to the second fixed side pedestal portion 80D2.
  • the upper elastic metal member 60 includes an elastically deformable first arm portion 60g1 connecting the first fixing portion 60e1 and the second fixing portion 60e2, a second fixing portion 60e2 and a third fixing portion 60e2. 60e3, an elastically deformable second arm portion 60g2 that connects the third fixing portion 60e3 and the fourth fixing portion 60e4, and an elastically deformable third arm portion 60g3 that connects the fourth fixing portion 60e4 and the first fixing portion. 60e1 and an elastically deformable fourth arm 60g4.
  • the upper metal member 50 is configured such that the ends of the upper shape memory alloy wires SB are fixed.
  • the upper metal member 50 includes a fixed metal member 50F and a movable metal member 50M.
  • the fixed-side metal member 50F is configured to be fixed to the fixed-side pedestal portion 80D of the upper base member 80.
  • the movable-side metal member 50M is configured to be fixed to the movable-side pedestal portion 20D of the lens holder 20. As shown in FIG.
  • the fixed-side metal member 50F is also called a fixed-side terminal plate, and includes a first fixed-side terminal plate 50F1 to an eighth fixed-side terminal plate 50F8.
  • the movable-side metal member 50M is also called a movable-side terminal plate, and includes a first movable-side terminal plate 50M1 and a second movable-side terminal plate 50M2.
  • FIG. 19A is a perspective view of the lens holder 20 to which the movable-side metal member 50M (movable-side terminal plate) is attached.
  • FIG. 19B is a perspective view of the upper base member 80 to which the fixed-side metal member 50F (fixed-side terminal plate) is attached.
  • a dot pattern is given to the movable metal member 50M
  • a dot pattern is given to the fixed side metal member 50F.
  • the first movable terminal plate 50M1 is fixed to the X1 side wall (front mounting surface) and the Y2 side wall (right mounting surface) of the first movable pedestal portion 20D1. Specifically, in a state in which the groove 20G (see FIG. 17) formed on the upper surface of the first movable-side pedestal 20D1 and the bent piece BP formed on the first movable-side terminal plate 50M1 are engaged with each other, the first The movable terminal plate 50M1 is fixed to the first movable pedestal 20D1 with an adhesive.
  • the adhesive is, for example, a photocurable adhesive.
  • the photocurable adhesive is, for example, an ultraviolet curable adhesive or a visible light curable adhesive.
  • the second movable terminal plate 50M2 is fixed to the X2 side wall (rear mounting surface) and the Y1 side wall (left mounting surface) of the second movable pedestal portion 20D2. Specifically, in a state in which the groove 20G (see FIG. 17) formed on the upper surface of the second movable side pedestal portion 20D2 and the bent piece BP formed on the second movable side terminal plate 50M2 are engaged with each other, the second The movable terminal plate 50M2 is fixed to the second movable pedestal 20D2 with an adhesive.
  • the first stationary terminal plate 50F1 and the second stationary terminal plate 50F2 are arranged along the first side 80E1 of the upper base member 80 on the X1 side of the first stationary pedestal 80D1. is fixed to the side wall (front mounting surface) of the Specifically, the first fixed-side terminal plate 50F1 and the second fixed-side terminal plate 50F2 are fixed to the side wall (front mounting surface) of the first fixed-side pedestal portion 80D1 with an adhesive.
  • the adhesive is, for example, a photocurable adhesive.
  • the photocurable adhesive is, for example, an ultraviolet curable adhesive or a visible light curable adhesive.
  • the third fixed-side terminal plate 50F3 and the fourth fixed-side terminal plate 50F4 (not visible in FIG.
  • the seventh stationary terminal plate 50F7 and the eighth stationary terminal plate 50F8 are arranged along the fourth side 80E4 of the upper base member 80 on the Y2 side wall of the second stationary pedestal 80D2 (right side mounting). surface).
  • the upper shape memory alloy wire SB extends along the inner surface of the outer peripheral wall portion 4A of the cover member 4, and is configured to movably support the second movable side member MB2 with respect to the fixed side member FB.
  • the upper shape memory alloy wires SB include the first wire SB1 to the eighth wire SB8, and the upper base member 80 as the fixed side member FB and the lens holding body as the second movable side member MB2. 20 can be movably supported.
  • each of the first wire SB1 to the eighth wire SB8 has one end fixed to the stationary side metal member 50F by crimping or welding, and the other end being crimped or welded to the movable side metal member. It is attached to 50M.
  • FIG. 20A shows the seventh wire SB7 attached to each of the first movable terminal plate 50M1 and seventh fixed terminal plate 50F7, and the first movable terminal plate 50M1 and eighth fixed terminal plate 50F8. It is a figure when seeing attached 8th wire SB8 from the Y2 side.
  • FIG. 20B shows a seventh wire SB7 attached to each of the first movable-side terminal plate 50M1 and the seventh fixed-side terminal plate 50F7, and each of the first movable-side terminal plate 50M1 and the eighth fixed-side terminal plate 50F8.
  • FIGS. 20A and 20B It is a figure when the 8th wire SB8 attached is seen from the X1 side. Note that the positional relationship of each member shown in FIGS. 20A and 20B corresponds to the positional relationship when the camera module MD is assembled. 20A and 20B, illustration of other members is omitted for clarity. Also, the following description with reference to FIGS. 20A and 20B relates to the combination of the seventh wire SB7 and the eighth wire SB8, the combination of the first wire SB1 and the second wire SB2, the third wire SB3 and the fourth wire SB4. and the combination of the fifth wire SB5 and the sixth wire SB6.
  • one end of the seventh wire SB7 is fixed to the seventh fixed terminal plate 50F7 at the holding portion J2 of the seventh fixed terminal plate 50F7, and the other end of the seventh wire SB7 is connected to the first movable terminal plate 50F7. It is fixed to the first movable side terminal plate 50M1 at the lower holding portion J1 of the terminal plate 50M1.
  • one end of the eighth wire SB8 is fixed to the eighth fixed terminal plate 50F8 at the holding portion J4 of the eighth fixed terminal plate 50F8, and the other end of the eighth wire SB8 is fixed to the first movable terminal plate. It is fixed to the first movable side terminal plate 50M1 at a holding portion J3 on the upper side of 50M1.
  • the holding portion J1 is formed by bending a portion of the first movable terminal plate 50M1. Specifically, a portion of the first movable terminal plate 50M1 forms a holding portion J1 by being bent while sandwiching the end (the other end) of the seventh wire SB7. An end (the other end) of the seventh wire SB7 is fixed to the holding portion J1 by welding. The same applies to the holding portions J2 to J4.
  • the seventh wire SB7 and the eighth wire SB8 are arranged so as to be mutually twisted (three-dimensionally intersect when viewed from the Y2 side). That is, the seventh wire SB7 and the eighth wire SB8 are arranged so as not to contact each other (become non-contact).
  • FIG. 21 is a perspective view of the upper base member 80.
  • FIG. 21 is a perspective view of the upper base member 80 with the conductive member CM removed, and the central view of FIG. 21 is a conductive member embedded in the upper base member 80.
  • 21 is a perspective view of the CM, and the lower view of FIG. 21 is a perspective view of the upper base member 80 in which the conductive member CM is embedded.
  • the conductive member CM is given a dot pattern for clarity.
  • the upper base member 80 is configured to function as a fixed-side wire support section that supports one end of each of the first wire SB1 to the eighth wire SB8. Further, the lens holder 20 is configured to function as a movable wire support section that supports the other ends of the first to eighth wires SB1 to SB8. With this configuration, the second movable member MB2 is supported by the first wire SB1 to the eighth wire SB8 so as to be movable with six degrees of freedom.
  • a fixed-side pedestal portion 80D is formed on the upper surface of the upper base member 80, which is the object-side surface (Z1-side surface).
  • the fixed side pedestal portion 80D includes a first fixed side pedestal portion 80D1 and a second fixed side pedestal portion 80D2.
  • the first fixed side seat portion 80D1 and the second fixed side seat portion 80D2 are arranged to face each other with the fourth rotation axis RX4 interposed therebetween.
  • the conductive member CM formed of a metal plate containing a material such as copper, iron, or an alloy containing them as a main component is embedded by insert molding.
  • the conductive member CM includes a connecting portion ED exposed on the lower surface (Z2 side surface) of the upper base member 80 and extending downward, and an upper surface (Z1 side surface) of the fixed side pedestal portion 80D of the upper base member 80 (Z1 side surface). and a bonding surface portion CP exposed to the surface).
  • the conductive member CM includes an eleventh conductive member CM11 and a twelfth conductive member CM12.
  • the eleventh conductive member CM11 includes an eleventh connection portion ED11 and an eleventh joint surface portion CP11.
  • the twelfth conductive member CM12 includes a twelfth connection portion ED12 and a twelfth joint surface portion CP12.
  • FIGS. 22A and 22B are diagrams showing the positional relationship between the upper metal member 50, the upper elastic metal member 60, the conductive member CM, and the upper shape memory alloy wire SB.
  • FIG. 22A is a perspective view of each member (upper metal member 50, upper elastic metal member 60, conductive member CM, and upper shape memory alloy wire SB)
  • FIG. 22B is a top view of each member. is.
  • dot patterns are given to the movable-side metal member 50M and the conductive member CM for clarity.
  • illustration of the upper shape memory alloy wire SB is omitted for clarity.
  • the upper elastic metal member 60 is, as shown in FIG. A second fixing portion 60e2 that is fixed, a third fixing portion 60e3 that is fixed to the second movable side seat portion 20D2 of the lens holder 20, and a third fixing portion 60e3 that is fixed to the second fixed side seat portion 80D2 of the upper base member 80.
  • fixing portion 60e4 a first arm portion 60g1 connecting the first fixing portion 60e1 and the second fixing portion 60e2, a second arm portion 60g2 connecting the second fixing portion 60e2 and the third fixing portion 60e3, and a third fixing portion It has a third arm portion 60g3 connecting the fourth fixing portion 60e4 to the fourth fixing portion 60e3, and a fourth arm portion 60g4 connecting the fourth fixing portion 60e4 and the first fixing portion 60e1.
  • first fixing portion 60e1 a first through hole 60H1 and a second through hole 60H2 through which the upwardly protruding columnar protrusion 20T (see FIG. 19A) formed on the first movable side pedestal portion 20D1 is inserted. and a third through hole 60H3 used for joining with the tip of the bent piece BP (see FIG. 19A) of the first movable terminal plate 50M1.
  • the fixation of the upper elastic metal member 60 and the projecting portion 20T is realized by subjecting the projecting portion 20T to hot crimping or cold crimping.
  • the fixing between the upper elastic metal member 60 and the protruding portion 20T may be realized by an adhesive.
  • the upper elastic metal member 60 and the bent piece BP of the first movable terminal plate 50M1 are joined together by welding such as laser welding.
  • the bonding between the upper elastic metal member 60 and the bent piece BP may be realized by solder, a conductive adhesive, or the like.
  • the second fixing portion 60e2 has a fourth through hole 60H4 and a fifth through hole 60H5 through which the upwardly protruding cylindrical projection 80T (see FIG. 19B) formed on the first fixed side pedestal portion 80D1 is inserted. and a sixth through hole 60H6 used for bonding with the eleventh joint surface portion CP11 (see the lower diagram of FIG. 21) of the eleventh conductive member CM11.
  • the fixation of the upper elastic metal member 60 and the projecting portion 80T is realized by subjecting the projecting portion 80T to hot crimping or cold crimping.
  • the fixing between the upper elastic metal member 60 and the protruding portion 80T may be realized by an adhesive.
  • the upper elastic metal member 60 and the eleventh conductive member CM11 are joined together by welding such as laser welding.
  • the bonding between the upper elastic metal member 60 and the eleventh conductive member CM11 may be realized by solder, a conductive adhesive, or the like.
  • a hole 60H11 and a twelfth through hole 60H12 used for bonding with the twelfth bonding surface portion CP12 (see the lower diagram of FIG. 21) of the twelfth conductive member CM12 are formed.
  • Each of the first arm portion 60g1 to the fourth arm portion 60g4 of the upper elastic metal member 60 is an elastically deformable arm portion having four curved portions. Therefore, the lens holding body 20 is attached to the upper base member 80 (fixed member FB) not only in the direction parallel to the fourth rotation axis RX4, which is the optical axis direction of the lens body LS, but also in the direction parallel to the fourth rotation axis RX4. It is also possible to move in the crossing direction.
  • the upper elastic metal member 60 is configured to have two-fold rotational symmetry with respect to the fourth rotation axis RX4. Therefore, the upper elastic metal member 60 hardly affects the weight balance of the lens holder 20 . In addition, the upper elastic metal member 60 hardly adversely affects the weight balance of the second movable side member MB2 supported by the eight upper shape memory alloy wires SB (the first wire SB1 to the eighth wire SB8). .
  • the fixed-side metal member 50F has a connection portion CT (see FIGS. 20A and 20B) and is configured to be joined to the conductive pattern PT of the flexible substrate 3 via the connection portion CT.
  • the connecting portion CT of the stationary-side metal member 50F includes an eleventh connecting portion CT11 to an eighteenth connecting portion CT18.
  • the flexible board 3 includes, as shown in FIG. 2, a substantially rectangular inner portion 3i attached to the lower surface of the circuit board 7 and a substantially rectangular annular outer portion 3e attached to the lower surface of the base member 8. .
  • a first conductive pattern PT1 to a twentieth conductive pattern PT20 are formed in the outer portion 3e, and a large number of conductive patterns (not shown) used for connection with the imaging element IS are formed in the inner portion 3i.
  • a substantially U-shaped slit (opening) is formed between the inner portion 3i and the outer portion 3e so that the movement of the inner portion 3i is not hindered.
  • the eleventh connecting portion CT11 of the first fixed-side terminal plate 50F1 is joined to the eleventh conductive pattern PT11 (see FIG. 2) of the flexible substrate 3 by soldering.
  • the twelfth connecting portion CT12 of the second fixed terminal plate 50F2 is soldered to the twelfth conductive pattern PT12 (see FIG. 2) of the flexible substrate 3, and the third fixed terminal plate 50F3
  • the thirteenth connection CT13 is soldered to the thirteenth conductive pattern PT13 (see FIG. 2) of the flexible substrate 3
  • the fourteenth connection CT14 of the fourth stationary terminal plate 50F4 is soldered. It is joined to the 14th conductive pattern PT14 (see FIG.
  • the eleventh connection portion ED11 of the eleventh conductive member CM11 is soldered to the nineteenth conductive pattern PT19 (see FIG. 2) of the flexible substrate 3, and the twelfth connection portion ED12 of the twelfth conductive member CM12 is It is joined to the twentieth conductive pattern PT20 (see FIG. 2) of the flexible substrate 3 by soldering.
  • both the nineteenth conductive pattern PT19 and the twentieth conductive pattern PT20 are connected to a ground terminal (not shown).
  • the bent piece BP of the first movable side terminal plate 50M1 is joined to the first fixed portion 60e1 of the upper elastic metal member 60 by welding such as laser welding, as shown in FIG. 22B.
  • the bent piece BP of the second movable side terminal plate 50M2 is joined to the third fixing portion 60e3 of the upper elastic metal member 60 by welding such as laser welding.
  • the first fixed side terminal plate 50F1 to the fourth fixed side terminal plate 50F4 are arranged apart from the second fixed portion 60e2 of the upper elastic metal member 60, and the upper elastic metal The second fixing portion 60e2 of the member 60 is not contacted.
  • the second fixing portion 60e2 of the upper elastic metal member 60 is joined to the eleventh joint surface portion CP11 of the eleventh conductive member CM11 by welding such as laser welding.
  • the fifth fixed side terminal plate 50F5 to the eighth fixed side terminal plate 50F8 are arranged apart from the fourth fixed portion 6e4 of the upper elastic metal member 60, The fourth fixing portion 6e4 of the member 60 is not contacted.
  • the fourth fixing portion 6e4 of the upper elastic metal member 60 is joined to the twelfth joint surface portion CP12 of the twelfth conductive member CM12 by welding such as laser welding.
  • 23A and 23B are perspective views of a portion of the arrangement shown in FIG. 22A.
  • the twelfth conductive member CM12 and the first movable terminal plate 50M1 are given rough dot patterns, and the seventh stationary terminal plate 50F7 and the eighth stationary terminal plate 50F8 has a fine dot pattern, and the upper elastic metal member 60 has an even finer dot pattern.
  • FIG. 23A when the seventeenth connecting portion CT17 of the seventh stationary terminal plate 50F7 is connected to a high potential and the twelfth connecting portion ED12 of the twelfth conductive member CM12 is connected to a low potential.
  • the eighteenth connection CT18 of the eighth stationary terminal plate 50F8 is connected to a high potential
  • the twelfth connection ED12 of the twelfth conductive member CM12 is connected to a low potential.
  • the current flows from arrow AR21 in FIG. 23A. , flows through the seventeenth connecting portion CT17 to the seventh stationary terminal plate 50F7. After that, the current flows through the seventh fixed terminal plate 50F7 as indicated by an arrow AR22, through the seventh wire SB7 as indicated by an arrow AR23, and further through the first movable terminal plate 50M1 as indicated by an arrow AR24. pass.
  • the current flows through the first fixing portion 60e1, the fourth arm portion 60g4, and the fourth fixing portion 60e4 of the upper elastic metal member 60 as indicated by arrows AR25, AR26, and AR27, and then flows through arrow AR28. As shown, it flows through the twelfth conductive member CM12 to the twelfth connection part ED12.
  • the current flows from arrow AR31 in FIG. 23B. , flows through the eighteenth connecting portion CT18 to the eighth stationary terminal plate 50F8. After that, the current flows through the eighth fixed terminal plate 50F8 as indicated by arrow AR32, through the eighth wire SB8 as indicated by arrow AR33, and further through the first movable terminal plate 50M1 as indicated by arrow AR34. pass.
  • the current flows through the first fixing portion 60e1, the fourth arm portion 60g4, and the fourth fixing portion 60e4 of the upper elastic metal member 60 as indicated by arrows AR35, AR36, and AR37, and then flows through arrow AR38. As shown, it flows through the twelfth conductive member CM12 to the twelfth connection part ED12.
  • the current also flows through the first fixing portion 60e1, the first arm portion 60g1, the second fixing portion 60e2, the eleventh conductive member CM11 of the upper elastic metal member 60, and the eleventh connection portion ED11.
  • the path of the current after passing through the first movable-side terminal plate 50M1 is the same.
  • the control device outside the camera module MD as described above controls the voltage applied to the connection portions CT of the first fixed terminal plate 50F1 to the eighth fixed terminal plate 50F8, thereby controlling the voltage applied to the first wire.
  • the expansion and contraction of each of SB1 to eighth wire SB8 can be controlled.
  • the control device connects the first terminal plate 50F1 to the eighth fixed terminal plate 50F8 through the connecting portions CT and the connecting portions ED of the eleventh conductive member CM11 and the twelfth conductive member CM12.
  • the control device may be arranged in the camera module MD as described above.
  • the controller may also be a component of the camera module MD, as described above.
  • the control device utilizes the driving force along the first direction (Z-axis direction) parallel to the fourth rotation axis RX4 due to the contraction of the upper shape memory alloy wire SB as the lens driving unit DM2,
  • the lens holder 20 may be moved along the first direction, which is the optical axis direction of the lens body LS.
  • the control device may realize an automatic focus adjustment function, which is one of the lens adjustment functions.
  • the control device moves the lens holder 20 away from the image pickup device IS to enable macro photography, and moves the lens holder 20 toward the image pickup device IS to enable infinity photography. can be
  • control device may move the lens holder 20 in a direction intersecting with the first direction by controlling currents flowing through the plurality of upper shape memory alloy wires SB.
  • the direction intersecting the first direction is, for example, the second direction (X-axis direction) perpendicular to the first direction, or the third direction (Y-axis direction) perpendicular to the first direction and the second direction. good.
  • control device rotates the imaging element holder 2 around the first direction (Z-axis direction), around the second direction (X-axis direction), or around the third direction (Y-axis direction). good too.
  • the control device may realize a camera shake correction function.
  • first direction is a direction parallel to the fourth rotation axis RX4
  • second direction is a direction parallel to the fifth rotation axis RX5
  • third direction is a direction parallel to the sixth rotation axis RX6.
  • the movable side member includes a first movable side member MB1 (imaging element holder 2) and a second movable side member MB2 (lens holder 20).
  • the fixed side member FB includes a base member 8 and an upper base member 80 .
  • the driving section includes an imaging element driving section DM1 (shape memory alloy wire SA) and a lens driving section DM2 (upper shape memory alloy wire SB).
  • FIGS. 24A and 24B are top perspective views of the imaging element holder 2, the elastic metal member 6, the base member 8, the lens holder 20, the upper elastic metal member 60, and the upper base member 80.
  • FIG. 24A is a perspective view when viewed obliquely from above right
  • FIG. 24B is a perspective view when viewed obliquely from above left.
  • the imaging device holder 2 and the lens holder 20 are provided with fine dot patterns
  • the base member 8 and the upper base member 80 are provided with coarse dot patterns.
  • FIG. 25A and 25B are diagrams of the shape memory alloy wire SA, the metal member 5, the upper shape memory alloy wire SB, the upper metal member 50, and the conductive member CM. Specifically, FIG. 25A is a top perspective view and FIG. 25B is a top view.
  • the camera module MD uses the shape memory alloy wire SA as the image pickup device drive section DM1 to move the image pickup device holder 2 to the base member 8. It is configured to be movable, and is configured to be able to move the lens holder 20 with respect to the upper base member 80 using the upper shape memory alloy wire SB as the lens driving section DM2.
  • the upper base member 80 is arranged above the base member 8 and joined to the base member 8 with an adhesive. Specifically, the upper base member 80 is connected to the base member 8 via four connecting portions CN (first connecting portion CN1 to fourth connecting portion CN4; see also FIG. 3) formed at the four corners of the base member 8. is immovably connected to the
  • the upper base member 80 has a fixed wire support portion (first fixed pedestal portion 80D1 and second fixed pedestal portion 80D2) that is aligned with the fixed wire support portion (first fixed pedestal portion 80D2) of the base member 8 in the Z-axis direction. It is configured so as not to overlap with the side pedestal portion 8D1 and the second fixed side pedestal portion 8D2).
  • the upper base member 80 has the first fixed side pedestal portion 80D1 arranged above the second connecting portion CN2 of the base member 8, and the second fixed side pedestal portion 80D2 arranged on the fourth side of the base member 8. It is configured to be arranged above the connecting portion CN4.
  • the base member 8 has the first fixed side pedestal portion 8D1 disposed below the first movable side pedestal portion 20D1 of the lens holder 20, and the second fixed side pedestal portion 8D2 of the lens holder 20. 2 is configured to be disposed below the movable side pedestal portion 20D2.
  • the upper base member 80 has the first fixed side seat portion 80D1 arranged above the first movable side seat portion 2D1 of the image pickup device holding body 2, and the second fixed side seat portion 80D2 located above the image pickup device holding body 2. is arranged above the second movable side pedestal portion 2D2. This arrangement has the effect of increasing the space efficiency within the housing HS.
  • FIGS. 26A to 26E are schematic diagrams showing movements of the lens body LS and the imaging element IS.
  • Figures drawn by solid lines in FIGS. 26A to 26E represent the respective positions (orientations) of the lens body LS and the image sensor IS after being moved by the drive unit.
  • Figures drawn with dotted lines in FIGS. 26A to 26E show the respective positions (attitudes) of the lens body LS and the image sensor IS before they are moved by the drive unit, that is, when the camera module MD is in the neutral state. represent.
  • the imaging element IS when the camera module MD is in the neutral state, the imaging element IS is positioned at the center of each movable range in the X-axis direction, the Y-axis direction, and the Z-axis direction, and , the rotatable ranges (rotatable angles) around the X-axis (second rotation axis RX2), the Y-axis (third rotation axis RX3), and the Z-axis (first rotation axis RX1) Centrally located.
  • the lens body LS is positioned at the center of each movable range in the X-axis direction, the Y-axis direction, and the Z-axis direction, and the X-axis (fifth rotation axis RX5 ), around the Y-axis (sixth rotation axis RX6), and around the Z-axis (fourth rotation axis RX4).
  • the imaging surface of the image sensor IS is perpendicular to the optical axis of the lens body LS arranged to face the image sensor IS.
  • the first rotation axis RX1 which is the central axis of the imaging device IS (imaging surface) coincides with the optical axis (fourth rotation axis RX4) of the lens body LS. That is, when the camera module MD is in the neutral state, the first rotation axis RX1 and the fourth rotation axis RX4 are positioned on the same straight line, the second rotation axis RX2 and the fifth rotation axis RX5 are parallel to each other, The third rotation axis RX3 and the sixth rotation axis RX6 are parallel to each other.
  • FIG. 26A shows translation of the image sensor IS in a direction (Z-axis direction) parallel to the first rotation axis RX1 and translation of the lens body LS in a direction (Z-axis direction) parallel to the fourth rotation axis RX4. , and are performed simultaneously.
  • the control device can realize, for example, an automatic focus adjustment function or a zoom function.
  • the control device can move the lens body relative to the image sensor IS more than when only one of the lens body LS and the image sensor IS is moved. It is possible to increase the relative movement speed of the LS in the Z-axis direction.
  • the control device can move the Z axis of the lens body LS with respect to the image sensor IS more than when only one of the lens body LS and the image sensor IS is moved.
  • the maximum relative movement distance in a direction can be increased.
  • the control device translates the lens body LS in the Z1 direction and translates the imaging device IS in the Z2 direction.
  • the control device may translate the lens body LS in the Z2 direction and translate the image sensor IS in the Z1 direction.
  • FIG. 26B translation of the imaging element IS in the direction (X-axis direction) parallel to the second rotation axis RX2 and translation of the lens body LS in the direction (X-axis direction) parallel to the fifth rotation axis RX5 are performed simultaneously.
  • 2 shows the state of the lens body LS and the image sensor IS when the lens body LS is closed.
  • the control device can move the lens body relative to the image sensor IS more than when only one of the lens body LS and the image sensor IS is moved.
  • the relative movement speed of LS in the X-axis direction can be increased.
  • the control device can move the lens body LS to the image sensor IS in an X-axis direction as compared to the case where only one of the lens body LS and the image sensor IS is moved.
  • the maximum relative movement distance in a direction can be increased. In the example shown in FIG.
  • the control device translates the lens body LS in the X2 direction and translates the imaging device IS in the X1 direction.
  • the control device may translate the lens body LS in the X1 direction and translate the image sensor IS in the X2 direction.
  • the control device may translate the lens body LS in the Y1 direction and the image sensor IS in the Y2 direction, or may translate the lens body LS in the Y2 direction and move the image sensor IS in the Y1 direction. You may translate in a direction.
  • FIG. 26C shows the state of the lens body LS and the image sensor IS when the rotation of the image sensor IS about the third rotation axis RX3 and the rotation of the lens body LS about the sixth rotation axis RX6 are simultaneously performed.
  • the control device can realize a function of correcting disturbance of the captured image due to, for example, camera shake that causes rotation of the camera module MD about the Y axis.
  • the control device moves the first rotation axis RX1 and the fourth rotation axis RX1 and the fourth rotation axis RX4 by moving the lens body LS and the imaging device IS so that the parallel state between the first rotation axis RX1 and the fourth rotation axis RX4 is maintained.
  • the control device rotates the lens body LS clockwise around the sixth rotation axis RX6 in the right side view, and also rotates the lens body LS clockwise around the third rotation axis RX3.
  • the element IS is rotated.
  • the control device rotates the lens body LS counterclockwise around the sixth rotation axis RX6, and rotates the image sensor IS counterclockwise around the third rotation axis RX3.
  • control device may rotate the lens body LS clockwise around the fifth rotation axis RX5 and rotate the image sensor IS clockwise around the second rotation axis RX2 when viewed from the front.
  • the lens body LS may be rotated counterclockwise around the fifth rotation axis RX5, and the imaging element IS may be rotated counterclockwise around the second rotation axis RX2.
  • FIG. 26D shows the translation of the image sensor IS in the direction (X-axis direction) parallel to the second rotation axis RX2, the rotation of the image sensor IS around the third rotation axis RX3, and the direction (X-axis direction) parallel to the fifth rotation axis RX5.
  • 6 shows the state of the lens body LS and the imaging element IS when translation of the lens body LS in the axial direction) and rotation of the lens body LS around the sixth rotation axis RX6 are performed simultaneously.
  • Such translation and rotation of the lens body LS and translation and rotation of the imaging element IS allow the control device to improve the function of correcting disturbance of the captured image due to, for example, camera shake that causes rotation of the camera module MD about the Y-axis. can be effectively implemented.
  • the control device moves the first rotation axis RX1 and the fourth rotation axis RX1 by moving the lens body LS and the image sensor IS so that the state where the first rotation axis RX1 and the fourth rotation axis RX4 are aligned is maintained. It is possible to suppress adverse effects on the captured image caused by the separation or inclination of RX4.
  • the control device translates the lens body LS in the X2 direction, translates the image sensor IS in the X1 direction, and rotates the lens body clockwise around the sixth rotation axis RX6 in the right side view. LS is rotated, and the imaging element IS is rotated clockwise around the third rotation axis RX3 in the right side view.
  • control device translates the lens body LS in the X1 direction, translates the image sensor IS in the X2 direction, rotates the lens body LS counterclockwise around the sixth rotation axis RX6 in the right side view, and , the imaging element IS may be rotated counterclockwise around the third rotation axis RX3 in a right side view.
  • control device translates the lens body LS in the Y2 direction, translates the image sensor IS in the Y1 direction, rotates the lens body LS clockwise around the fifth rotation axis RX5 when viewed from the front, and The imaging element IS may be rotated clockwise around the second rotation axis RX2 in view.
  • control device translates the lens body LS in the Y1 direction, translates the image sensor IS in the Y2 direction, rotates the lens body LS counterclockwise around the fifth rotation axis RX5 in front view, and The imaging element IS may be rotated counterclockwise around the second rotation axis RX2 in a front view.
  • FIG. 26E shows the state of the lens body LS and the image sensor IS when only the image sensor IS is rotated around the first rotation axis RX1 without translation and rotation of the lens body LS.
  • This relative rotation of the imaging element IS with respect to the lens body LS allows the control device to implement the function of correcting disturbances in the captured image due to, for example, camera shake that causes rotation of the camera module MD about the Z axis.
  • the control device rotates the image sensor IS clockwise around the first rotation axis RX1 when viewed from above.
  • the control device may rotate the image sensor IS counterclockwise around the first rotation axis RX1 when viewed from above.
  • the lens body LS when the imaging device IS rotates around the first rotation axis RX1, the lens body LS does not need to rotate around the fourth rotation axis RX4. Therefore, rotation about the fourth rotation axis RX4 (Z-axis) coinciding with the optical axis of the lens body LS is not executed in the movement of the second movable side member MB2 (lens holder 20) in the six degrees of freedom. good too. In other words, the second movable member MB2 should be able to move with five degrees of freedom.
  • the camera module MD includes, as shown in FIG. and an image pickup device drive section DM1 for moving the image pickup device holder 2 with respect to.
  • the imaging device driver DM1 includes a plurality of shape memory alloy wires SA provided between a first movable member MB1 including the imaging device holder 2 and a fixed member FB.
  • the plurality of shape memory alloy wires SA extend in a first direction (X A first wire SA1 and a fifth wire SA5 arranged apart in the axial direction) and separated in a second direction (Y-axis direction) perpendicular to the first direction (X-axis direction) with the imaging element IS interposed therebetween. and a third wire SA3 and a seventh wire SA7 arranged in parallel.
  • the plurality of shape memory alloy wires SA include second wires SA2 arranged to intersect the first wires SA1 in a side view (front view) along the first direction (X-axis direction); A fourth wire SA4 arranged to cross the third wire SA3 in a side view (left side view) along the second direction (Y-axis direction); A sixth wire SA6 arranged to intersect with the fifth wire SA5 in a side view (rear view) along the and an eighth wire SA8 arranged to intersect with the seventh wire SA7 at.
  • Each of the first wire SA1 to the eighth wire SA8 has one end fixed to the fixed side member FB (base member 8) and the other end fixed to the first movable side member MB1 (image pickup element holder 2).
  • this configuration can suppress an increase in the size of the camera module MD, and can achieve a size smaller than that of a device using a voice coil motor for moving the imaging element holder 2, for example. Also, this configuration can realize weight reduction of the camera module MD. In addition, since this configuration does not use a voice coil motor for moving the image pickup element holder 2, even if a device using a voice coil motor is arranged next to the device, the camera module MD and the device may not be connected. It is possible to suppress magnetic interference between
  • the imaging element driving section DM1 may be configured to rotate the imaging element holder 2 around the axis of the first rotation axis RX1, which is the axis perpendicular to the imaging surface. This configuration can suppress the influence of camera shake caused by rotation about the first rotation axis RX1 on an image when shooting with a device such as a smartphone on which the camera module MD is mounted.
  • the imaging element driving section DM1 may be configured to move the imaging element holder 2 in a direction intersecting the imaging plane. This configuration has the advantage that the camera module MD can implement an autofocus function.
  • the fixed side member FB may have eight first metal members (first fixed side terminal plate 5F1 to eighth fixed side terminal plate 5F8).
  • first metal members first fixed side terminal plate 5F1 to eighth fixed side terminal plate 5F8.
  • one end of each of the eight shape memory alloy wires SA (first wire SA1 to eighth wire SA8) may be individually connected to the corresponding first metal member.
  • one end of the first wire SA1 is connected to the first fixed terminal plate 5F1
  • one end of the second wire SA2 is connected to the second fixed terminal plate 5F2
  • the second wire SA1 is connected to the second fixed terminal plate 5F2.
  • One end of the 3-wire SA3 is connected to the third fixed terminal plate 5F3, one end of the fourth wire SA4 is connected to the fourth fixed-side terminal plate 5F4, and one end of the fifth wire SA5 is connected to the fifth fixed-side terminal plate 5F5.
  • One end of the sixth wire SA6 is connected to the sixth fixed side terminal plate 5F6, one end of the seventh wire SA7 is connected to the seventh fixed side terminal plate 5F7, and one end of the eighth wire SA8 is connected to the eighth fixed side terminal plate 5F7. It is connected to the terminal plate 5F8.
  • This configuration has the effect of facilitating the securing of conductive paths for supplying currents individually to the eight shape memory alloy wires SA.
  • the other ends of at least four shape memory alloy wires SA out of the eight shape memory alloy wires SA may be electrically connected to each other via conductors provided on the first movable member MB1.
  • the other ends of at least four shape memory alloy wires SA out of eight shape memory alloy wires SA are connected to a common potential. Therefore, this configuration brings about the effect of further facilitating the securing of conductive paths for allowing current to be individually supplied to each of the eight shape memory alloy wires SA.
  • the conductor connects the second metal member (movable-side metal member 5M) to which the other ends of the at least four shape memory alloy wires SA are connected, the first movable-side member MB1, and the fixed-side member FB.
  • An elastic metal member 6 that can be elastically deformed may be included.
  • the fixed-side member FB may have a columnar portion (fixed-side pedestal portion 8D) in which the third metal member (conductive member CM) is embedded. Then, as shown in FIG.
  • the fixing portions (the second fixing portion 6e2 and the fourth fixing portion 6e4) of the elastic metal member 6 are connected to the second metal member (the movable side metal member 5M), and the third metal member ( Another fixing portion (the first fixing portion 6e1 and the third fixing portion 6e3) of the elastic metal member 6 may be connected to the conductive member CM).
  • the elastic metal member 6 may be a leaf spring. This configuration brings about an effect that it becomes easier to secure a conductive path for supplying an electric current to each of the eight shape memory alloy wires SA.
  • the other ends of the eight shape memory alloy wires SA are configured to conduct with each other via the movable metal member 5M, the elastic metal member 6, and the conductive member CM.
  • the other ends of the first to fourth wires SA1 to SA4 are connected to the first movable terminal plate 5M1, the elastic metal member 6, the first conductive member CM1 or the second conductive member CM1. It is connected to the ground terminal via the member CM2.
  • the other end of each of the fifth wire SA5 to the eighth wire SA8 is connected to the ground terminal through the second movable terminal plate 5M2, the elastic metal member 6, and the first conductive member CM1 or the second conductive member CM2.
  • the first fixing portion 6e1 of the elastic metal member 6 is welded to the first joint surface portion CP1 (see the central view of FIG. 6) of the first conductive member CM1, and the third fixing portion 6e3 of the elastic metal member 6 are welded to the second joint surface portion CP2 (see the central view of FIG. 6) of the second conductive member CM2.
  • the first connection part ED1 (see the central view of FIG. 6) of the first conductive member CM1 is soldered to the ninth conductive pattern PT9 (see FIG. 2) of the flexible substrate 3, and the second conductive member
  • the second connection part ED2 of CM2 is soldered to the tenth conductive pattern PT10 of the flexible substrate 3 (see FIG. 2). Both the ninth conductive pattern PT9 and the tenth conductive pattern PT10 are connected to a ground terminal (not shown).
  • the fixed-side member FB may have a housing HS (cover member 4) having a shape (for example, a substantially rectangular shape) having at least four corners 4C when viewed from above.
  • the housing HS (cover member 4) has a first corner 4C1 and a third corner 4C3 located on one diagonal line, and a second corner located on the other diagonal line. It may have a portion 4C2 and a fourth corner portion 4C4.
  • One end of each of the eight shape memory alloy wires SA is a base member that functions as a fixed side wire support portion for the fixed side member FB arranged to face the first corner portion 4C1 or the third corner portion 4C3.
  • each of the eight shape memory alloy wires SA is arranged to face the second corner portion 4C2 or the fourth corner portion 4C4. It may be supported by the movable-side pedestal portion 2D of the imaging element holder 2 that functions as the movable-side wire support portion of MB1.
  • This configuration brings about the effect of further suppressing the enlargement of the camera module MD.
  • this configuration brings about the effect of realizing further weight reduction of the camera module MD.
  • the housing HS may be configured to have another shape such as a substantially hexagonal shape or a substantially octagonal shape when viewed from above.
  • the imaging element IS may be mounted on the circuit board 7 as the first printed wiring board.
  • the circuit board 7 may be fixed to the imaging element holder 2 and connected to the flexible board 3 as a flexible second printed wiring board.
  • the circuit board 7 may be configured to be thicker than the flexible board 3 . This configuration brings about an effect that the imaging element IS can be easily integrated with the imaging element holder 2 .
  • the image pickup device IS may be provided with an IR cut filter. Also, an IR cut filter may be arranged between the image sensor IS and the lens body LS.
  • the camera module MD includes a fixed side member FB, a lens holder 20 capable of holding the lens body LS, and a An imaging element holding body 2 integrally provided with an arranged imaging element IS, a lens driving section DM2 as a first driving section for moving the lens holding body 20 with respect to the fixed side member FB, and the imaging element holding body 2 with respect to the fixed side member FB.
  • the image pickup device driving section DM1 includes a plurality of first shape memory alloy wires (first wires SA1 to first 8 wires SA8) may be included.
  • this configuration can suppress an increase in the size of the camera module MD, and can achieve a size smaller than that of a device using a voice coil motor for moving the imaging element holder 2, for example. Also, this configuration can realize weight reduction of the camera module MD. In addition, since this configuration does not use a voice coil motor for moving the image pickup element holder 2, even if a device using a voice coil motor is arranged next to the device, the camera module MD and the device may not be connected. It is possible to suppress magnetic interference between
  • the plurality of first shape memory alloy wires are arranged in a plan view (top view) along the optical axis direction (Z-axis direction).
  • a first wire (first wire SA1) and a third wire (fifth wire SA5) that are spaced apart from each other with the imaging element IS interposed therebetween in a first direction (X-axis direction) that intersects with the axial direction;
  • a second wire (third wire SA3) and a fourth wire SA3 are spaced apart from each other with the image pickup element IS interposed in a second direction (Y-axis direction) that intersects the optical axis direction and is perpendicular to the first direction.
  • a wire (seventh wire SA7) is arranged in a plan view (top view) along the optical axis direction (Z-axis direction).
  • each of the first to fourth wires has one end fixed to the fixed side member FB (base member 8) and the other end fixed to the first movable side member MB1 (imaging element holder 2).
  • the optical axis direction includes the direction of the optical axis with respect to the lens body LS and the direction parallel to the optical axis.
  • the image pickup element holder 2 can be controlled in various ways by controlling the current flowing through each of the shape memory alloy wires SA. can be executed.
  • the plurality of first shape memory alloy wires are, in a side view (front view) along the first direction (X-axis direction), A fifth wire (second wire SA2) arranged to intersect the first wire (first wire SA1) and a side view (left side view) along the second direction (Y-axis direction) ), a sixth wire (fourth wire SA4) arranged to cross the second wire (third wire SA3) and a side view ( In rear view), the seventh wire (sixth wire SA6) arranged to cross the third wire (fifth wire SA5) and the side view along the second direction (Y-axis direction) and an eighth wire (eighth wire SA8) arranged to cross the fourth wire (seventh wire SA7) in a view (right side view).
  • each of the fifth to eighth wires has one end fixed to the fixed side member FB (base member 8) and the other end fixed to the first movable side member MB1 (image pickup element holder 2).
  • each of the plurality of shape memory alloy wires SA is arranged so as to be inclined with respect to a virtual plane parallel to the XY plane including the X axis and the Y axis. Therefore, in this configuration, the length of each of the plurality of shape memory alloy wires SA can be increased compared to the case where each of the plurality of shape memory alloy wires SA is arranged parallel to the virtual plane. . Therefore, in this configuration, compared to the case where each of the plurality of shape memory alloy wires SA is arranged so as to be parallel to the virtual plane, the adjustment width (extension amount) of each of the plurality of shape memory alloy wires SA is reduced. ) can be increased.
  • the fixed side member FB (base member 8) may have eight first metal members (fixed side metal member 5F) as shown in FIG. 4B.
  • first metal members fixed side metal member 5F
  • one end of each of the eight first shape memory alloy wires is individually connected to the corresponding stationary metal member 5F as shown in FIG. 7A. good too.
  • This configuration has the effect of making it possible to easily secure conductive paths for supplying currents individually to the eight shape memory alloy wires SA.
  • a plurality of lens drive units DM2 as first drive units are provided between the second movable member MB2 including the lens holder 20 and the fixed member FB (upper base member 80).
  • second shape memory alloy wires first wire SB1 to eighth wire SB8.
  • this configuration can suppress an increase in the size of the camera module MD, and can realize a smaller size than a device using a voice coil motor for moving the lens holder 20, for example. Also, this configuration can realize weight reduction of the camera module MD. In addition, since this configuration does not use a voice coil motor for moving the lens holder 20, even if a device using a voice coil motor is arranged next to the device, the distance between the device and the camera module MD is low. magnetic interference can be suppressed.
  • the plurality of second shape memory alloy wires intersect the optical axis direction in plan view (top view) along the optical axis direction.
  • a ninth wire (first wire SB1) and an eleventh wire (fifth wire SB5) which are spaced apart across the lens body LS (see FIG. 18) in the third direction (X-axis direction)
  • a tenth wire (third wire SB3) and a twelfth wire (third wire SB3) which are spaced apart with the lens body LS interposed therebetween in a fourth direction (Y-axis direction) that intersects the optical axis direction and is perpendicular to the third direction.
  • the thirteenth wire (second wire SB2) intersects the tenth wire (third wire SB3) in a side view (left side view) along the fourth direction (Y-axis direction).
  • the arranged fourteenth wire (fourth wire SB4) intersects the eleventh wire (fifth wire SB5) in a side view (rear view) along the third direction (X-axis direction). and a 12th wire (seventh wire SB7) in a side view (right side view) viewed along the fourth direction (Y-axis direction). and a sixteenth wire (eighth wire SB8) arranged to cross the .
  • each of the ninth wire (first wire SB1) to the sixteenth wire (eighth wire SB8) is fixed to the fixed side member FB (upper base member 80), and the other end is fixed to the second movable wire. It may be fixed to the side member MB2 (lens holder 20).
  • each of the plurality of upper shape memory alloy wires SB is arranged so as to be inclined with respect to a virtual plane parallel to the XY plane including the X axis and the Y axis. Therefore, in this configuration, the length of each of the plurality of upper shape memory alloy wires SB is increased compared to the case where each of the plurality of upper shape memory alloy wires SB is arranged parallel to the virtual plane. can be done. Therefore, in this configuration, the length adjustment width ( amount of expansion and contraction) can be increased. Also, in this configuration, two upper shape memory alloy wires SB are arranged to intersect in each of the spaces on the front, back, left and right of the lens holder 20 .
  • first wire (first wire SA1) and the fifth wire (second wire SA2) are arranged in the optical axis direction with respect to the ninth wire (first wire SB1) and the thirteenth wire (SB1).
  • wire (second wire SB2) that is, the first wire (first wire SA1), the fifth wire (second wire SA2), the ninth wire (first wire SB1), and the thirteenth wire (second wire SB2) are the cover members. 4 may be arranged along the inner surface of the first side plate portion 4A1 (see FIGS. 1A and 1B).
  • first wire SA1 first wire SA1
  • second wire SA2 fifth wire
  • ninth wire first wire SB1
  • second wire SB2 thirteenth wire
  • the second wire (third wire SA3) and the sixth wire (fourth wire SA4) are aligned in the optical axis direction with the tenth wire (third wire SB3) and the fourth wire SA4. It may be arranged so as to face 14 wires (fourth wire SB4). That is, the second wire (third wire SA3), the sixth wire (fourth wire SA4), the tenth wire (third wire SB3), and the fourteenth wire (fourth wire SB4) are the cover members. 4 may be arranged along the inner surface of the second side plate portion 4A2 (see FIGS. 1A and 1B).
  • a second wire third wire SA3
  • a sixth wire fourth wire SA4
  • a tenth wire third wire SB3
  • a fourteenth wire fourteenth wire
  • the third wire (fifth wire SA5) and the seventh wire (sixth wire SA6) are arranged in the optical axis direction with respect to the eleventh wire (fifth wire SB5) and the It may be arranged so as to face fifteen wires (sixth wire SB6). That is, the third wire (fifth wire SA5), the seventh wire (sixth wire SA6), the eleventh wire (fifth wire SB5), and the fifteenth wire (sixth wire SB6) are the cover members. 4 may be arranged along the inner surface of the third side plate portion 4A3 (see FIGS. 1A and 1B).
  • a third wire (fifth wire SA5), a seventh wire (sixth wire SA6), an eleventh wire (fifth wire SB5), and a fifteenth wire (sixth wire SB6) may be arranged so as to overlap at least partially in top view, as shown in FIG. 25B.
  • the fourth wire (seventh wire SA7) and the eighth wire (eighth wire SA8) are arranged in the optical axis direction with respect to the twelfth wire (seventh wire SB7) and the fourth wire (SB7). It may be arranged so as to face 16 wires (eighth wire SB8). That is, the fourth wire (seventh wire SA7), the eighth wire (eighth wire SA8), the twelfth wire (seventh wire SB7), and the sixteenth wire (eighth wire SB8) are the cover members. 4 may be arranged along the inner surface of the fourth side plate portion 4A4 (see FIGS. 1A and 1B).
  • a fourth wire (seventh wire SA7), an eighth wire (eighth wire SA8), a twelfth wire (seventh wire SB7), and a sixteenth wire (eighth wire SB8) may be arranged so as to overlap at least partially in top view, as shown in FIG. 25B.
  • the shape memory alloy wire SA and the upper shape memory alloy wire SB are arranged so as to substantially overlap when viewed from above. Therefore, in this configuration, the shape memory alloy wire SA is arranged outside the upper shape memory alloy wire SB (the side farther from the optical axis of the lens body LS) when viewed from above, or the upper shape memory alloy wire SA is arranged outside the upper shape memory alloy wire SB when viewed from above. Compared to the configuration in which the SB is arranged outside the shape memory alloy wire SA, an effect of suppressing an increase in the size of the camera module MD is achieved.
  • the fixed-side member FB (the base member 8 and the upper base member 80) are arranged in a plan view (top view) along the optical axis direction. Even if a plurality of fixed-side wire support portions (first fixed-side pedestal portion 8D1, second fixed-side pedestal portion 8D2, first fixed-side pedestal portion 80D1, and second fixed-side pedestal portion 80D2) are provided at different positions, good.
  • one end of each of the plurality of first shape memory alloy wires is connected to two of the plurality of fixed wire support portions, the first fixed wire support portions ( It may be supported by either the first fixed side pedestal portion 8D1) or the third fixed side wire support portion (second fixed side pedestal portion 8D2). Further, one end of each of the plurality of second shape memory alloy wires (first wire SB1 to eighth wire SB8) is the second fixed wire support portion which is another two of the plurality of fixed wire support portions. It may be supported by either the (first fixed side pedestal portion 80D1) or the fourth fixed side wire support portion (second fixed side pedestal portion 80D2).
  • This configuration has the effect of facilitating the layout of the 16 shape memory alloy wires. Also, in this configuration, 16 shape memory alloy wires are arranged in the housing HS with high space efficiency. Therefore, this configuration brings about the effect of further suppressing the enlargement of the camera module MD.
  • each of the plurality of first shape memory alloy wires (first wire SA1 to eighth wire SA8) is connected to the first movable side member MB1. It may be supported by any one of a plurality of movable-side wire support portions (first movable-side pedestal portion 2D1 and second movable-side pedestal portion 2D2). Further, the other ends of the plurality of second shape memory alloy wires (first wire SB1 to eighth wire SB8) are attached to the plurality of movable side wire support portions (first movable side pedestal portion 20D1) in the second movable side member MB2. and the second movable side pedestal portion 20D2).
  • each of the plurality of movable-side wire support portions (the first movable-side pedestal portion 2D1 and the second movable-side pedestal portion 2D2) of the first movable-side member MB1 is arranged on the fixed side. Even if it faces either the second fixed-side wire support portion (first fixed-side pedestal portion 80D1) or the fourth fixed-side wire support portion (second fixed-side pedestal portion 80D2) in the member FB (upper base member 80) good.
  • each of the plurality of movable-side wire support portions (the first movable-side pedestal portion 20D1 and the second movable-side pedestal portion 20D2) in the second movable-side member MB2 is the first wire support portion in the fixed-side member FB (base member 8). It may face either the fixed-side wire support portion (first fixed-side pedestal portion 8D1) or the third fixed-side wire support portion (second fixed-side pedestal portion 8D2).
  • the first movable side pedestal 2D1 faces the first fixed side pedestal 80D1 in the optical axis direction (Z-axis direction)
  • the second movable side pedestal 2D2 faces the second movable side pedestal 80D1.
  • the first movable side seat portion 20D1 faces the first fixed side seat portion 8D1
  • the second movable side seat portion 20D2 faces the second fixed side seat portion 8D2. is doing.
  • the first movable member MB1, the second movable member MB2, and the fixed member FB are arranged in the housing HS with high space efficiency. Therefore, this configuration brings about the effect of further suppressing the enlargement of the camera module MD.
  • the fixed-side member FB may have eight second metal members (first fixed-side terminal plate 50F1 to eighth fixed-side terminal plate 50F8). In this case, one end of each of the eight second shape memory alloy wires (first wire SB1 to eighth wire SB8) may be individually connected to the corresponding second metal member (fixed side metal member 50F). good.
  • one end of the first wire SB1 is connected to the first fixed terminal plate 50F1
  • one end of the second wire SB2 is connected to the second fixed terminal plate 50F2
  • the second wire SB1 is connected to the second fixed terminal plate 50F2.
  • One end of the 3-wire SB3 is connected to the third fixed terminal plate 50F3
  • one end of the fourth wire SB4 is connected to the fourth fixed-side terminal plate 50F4
  • one end of the fifth wire SB5 is connected to the fifth fixed-side terminal plate 50F5.
  • One end of the sixth wire SB6 is connected to the sixth fixed terminal plate 50F6, one end of the seventh wire SB7 is connected to the seventh fixed terminal plate 50F7, and one end of the eighth wire SB8 is connected to the eighth fixed terminal plate 50F7. It is connected to terminal plate 50F8.
  • the other ends of at least four of the eight upper shape memory alloy wires SB are provided on the second movable member MB2. may be electrically connected to each other via the conductors (the movable metal member 50M and the upper elastic metal member 60).
  • the imaging element driving section DM1 as a second driving section moves the imaging element holding body 2 with respect to the fixed side member FB in the optical axis direction, in the direction perpendicular to the optical axis direction, and rotates the optical axis.
  • the imaging surface of the imaging device IS may be configured to move such that the imaging plane is tilted.
  • the lens driving unit DM2 as a first driving unit moves the lens holding body 20 relative to the fixed side member FB in the optical axis direction, in the direction perpendicular to the optical axis direction, and moves the light of the lens body LS. It may be configured to achieve a tilting movement of the axis.
  • this configuration can move both the image sensor holder 2 and the lens holder 20 at the same time, automatic focus adjustment and camera shake are less likely to occur than when either one of the image sensor holder 2 or the lens holder 20 is moved. This brings about an effect that the time required for correction can be shortened.
  • the elastic metal member 6 is composed of one part, but it may be composed of two parts.
  • the elastic metal member 6 may be divided into a first elastic metal member and a second elastic metal member at each of the central portion of the first fixing portion 6e1 and the central portion of the third fixing portion 6e3. good.
  • the first elastic metal member may be configured to be connected to the first conductive member CM1 and not connected to the second conductive member CM2.
  • the second elastic metal member may be configured to be connected to the second conductive member CM2 and not to be connected to the first conductive member CM1.
  • the upper elastic metal member 60 is composed of one part, but may be composed of two parts.
  • the upper elastic metal member 60 is divided into a first upper elastic metal member and a second upper elastic metal member at the central portion of the second fixing portion 60e2 and the central portion of the fourth fixing portion 60e4.
  • the first upper elastic metal member may be configured to be connected to the eleventh conductive member CM11 and not to be connected to the twelfth conductive member CM12.
  • the second upper elastic metal member may be configured to be connected to the twelfth conductive member CM12 and not to be connected to the eleventh conductive member CM11.
  • the position of the first movable member MB1 is detected based on the output of the magnetic sensor, but it is not detected based on the output of the sensor that detects the resistance value of the shape memory alloy wire SA. good too. The same applies to the position of the second movable side member MB2.
  • the fixed-side metal member 5F is fixed to the base member 8 with an adhesive, but it may be embedded in the base member 8, and the conductive pattern formed on the surface of the base member 8 may be fixed.
  • the movable-side metal member 5M is fixed to the image pickup element holder 2 with an adhesive, but it may be embedded in the image pickup element holder 2, and the conductive member 5M formed on the surface of the image pickup element holder 2 may be used. It can be a pattern.
  • fixed-side metal member 50F is fixed to upper base member 80 with an adhesive
  • fixed-side metal member 50F may be embedded in upper base member 80, and may be a conductive pattern formed on the surface of upper base member 80. good too.
  • the movable-side metal member 50M is fixed to the lens holder 20 with an adhesive, but it may be embedded in the lens holder 20 and may be a conductive pattern formed on the surface of the lens holder 20.
  • Imaging element holder 2D ... Movable side pedestal 2D1... First movable side pedestal 2D2... Second movable side pedestal 2F... Frame 2G... Groove 2S... ⁇ Protruding portion 2S1... First protruding portion 2S2... Second protruding portion 2T... Protruding portion 3... Flexible substrate 3e... Outer portion 3i... Inner portion 4- ... Cover member 4A... Peripheral wall part 4A1... First side plate part 4A2... Second side plate part 4A3... Third side plate part 4A4... Fourth side plate part 4B... Top plate part 4C...
  • corner 4C1 ...first corner 4C2...second corner 4C3...third corner 4C4...fourth corner 4k...opening 5...metal member 5F ⁇ Fixed-side metal member 5F1 ⁇ First fixed-side terminal plate 5F2 ⁇ Second fixed-side terminal plate 5F3 ⁇ Third fixed-side terminal plate 5F4 ⁇ Fourth fixed-side terminal plate 5F5 ⁇ 5th fixed side terminal plate 5F6... 6th fixed side terminal plate 5F7... 7th fixed side terminal plate 5F8... 8th fixed side terminal plate 5M... Movable side metal member 5M1... No. 1 movable side terminal plate 5M2... second movable side terminal plate 6... elastic metal member 6e1... first fixed part 6e2... second fixed part 6e3...
  • connection part CT6 5th connection part CT6... 6th connection part CT7... 7th connection part CT8... 8th connection part CT11... ⁇ 11th connection CT12... 12th connection CT13... 13th connection CT14... 14th contact Continuation part CT15... 15th connection part CT16... 16th connection part CT17... 17th connection part CT18... 18th connection part DM1... Imaging element drive part DM2... Lens drive part ED ... connection part ED1... first connection part ED2... second connection part ED11... eleventh connection part ED12... twelfth connection part FB... fixed side member HS... housing IS... image sensor J1 to J4... holding part LS... lens body MB1... first movable side member MB2... second movable side member MD...
  • camera module PT1 first Conductive pattern PT2... Second conductive pattern PT3... Third conductive pattern PT4... Fourth conductive pattern PT5... Fifth conductive pattern PT6... Sixth conductive pattern PT7... Seventh conductive pattern PT8... 8th conductive pattern PT9... 9th conductive pattern PT10... 10th conductive pattern RX1... 1st rotation axis RX2... 2nd rotation axis RX3... 3rd rotation axis RX4/ ... 4th rotation axis RX5... 5th rotation axis RX6... 6th rotation axis SA... Shape memory alloy wire SA1... 1st wire SA2... 2nd wire SA3... 3rd Wire SA4... Fourth wire SA5... Fifth wire SA6...

Abstract

A camera module (MD) comprises: a fixed side member (FB); a lens holding body (20) capable of holding a lens body; an imaging element holding body (2) with which an imaging element (IS) disposed to face the lens body is provided integrally; an imaging element driving part (DM1) which moves the imaging element holding body (2) with respect to the fixed side member (FB); and a lens driving part (DM2) which moves the lens holding body (20) with respect to the fixed side member (FB). The imaging element driving part (DM1) is configured to include eight shape-memory alloy wires (SA) provided between a first movable side member (MB1) including the imaging element holding body (2) and the fixed side member (FB).

Description

カメラモジュールThe camera module
 本開示は、カメラモジュールに関する。 The present disclosure relates to camera modules.
 従来、磁石及びコイルによって画像センサ(撮像素子)を移動させるように構成された撮像素子駆動部としてのボイスコイルモータを含むカメラモジュールが知られている(特許文献1参照。)。 Conventionally, there has been known a camera module including a voice coil motor as an image pickup device driving section configured to move an image sensor (image pickup device) by a magnet and a coil (see Patent Document 1).
特開2020-170170号公報Japanese Patent Application Laid-Open No. 2020-170170
 しかしながら、この撮像素子駆動部は、磁石及びコイルによる駆動のため、サイズが大きくなってしまうおそれがある。 However, there is a risk that the size of this imaging element drive unit will increase because it is driven by magnets and coils.
 そこで、より小さいサイズの撮像素子駆動部を含むカメラモジュールを提供することが望まれる。 Therefore, it is desirable to provide a camera module that includes a smaller-sized imaging device drive unit.
 本発明の一実施形態に係るカメラモジュールは、固定側部材と、レンズ体を保持可能なレンズ保持体と、前記レンズ体に対向して配置される撮像素子が一体的に設けられる撮像素子保持体と、前記固定側部材に対して前記レンズ保持体を移動させる第1駆動部と、を備えたカメラモジュールにおいて、前記撮像素子保持体を前記固定側部材に対して移動させる第2駆動部を備え、前記第2駆動部は、前記撮像素子保持体を含む第1可動側部材と前記固定側部材との間に設けられた複数の第1形状記憶合金ワイヤを含んで構成されている。 A camera module according to an embodiment of the present invention is an imaging element holding body integrally provided with a fixed side member, a lens holding body capable of holding a lens body, and an imaging element arranged facing the lens body. and a first driving section for moving the lens holder with respect to the stationary member, the camera module comprising: a second driving section for moving the imaging element holder with respect to the stationary member The second driving section includes a plurality of first shape memory alloy wires provided between a first movable side member including the imaging element holder and the fixed side member.
 上述のカメラモジュールは、撮像素子駆動部としてボイスコイルモータを用いた構成よりも小さいサイズを実現できる。 The camera module described above can achieve a smaller size than a configuration that uses a voice coil motor as an imaging device drive unit.
カメラモジュールの上方斜視図である。Fig. 2 is a top perspective view of the camera module; カメラモジュールの下方斜視図である。FIG. 3 is a bottom perspective view of the camera module; カメラモジュールの分解斜視図である。1 is an exploded perspective view of a camera module; FIG. 撮像素子保持体、弾性金属部材、及びベース部材の斜視図である。FIG. 3 is a perspective view of an imaging element holder, an elastic metal member, and a base member; 撮像素子保持体に接続される金属部材の斜視図である。FIG. 4 is a perspective view of a metal member connected to an imaging element holder; ベース部材に接続される金属部材の斜視図である。4 is a perspective view of a metal member connected to the base member; FIG. 形状記憶合金ワイヤが取り付けられた金属部材の図である。1 is a diagram of a metal member to which a shape memory alloy wire is attached; FIG. 形状記憶合金ワイヤが取り付けられた金属部材の図である。1 is a diagram of a metal member to which a shape memory alloy wire is attached; FIG. ベース部材の斜視図である。It is a perspective view of a base member. 弾性金属部材、形状記憶合金ワイヤ、金属部材、及び導電部材の斜視図である。1 is a perspective view of an elastic metal member, a shape memory alloy wire, a metal member, and a conductive member; FIG. 弾性金属部材、金属部材、及び導電部材の上面図である。FIG. 4 is a top view of an elastic metal member, a metal member, and a conductive member; 形状記憶合金ワイヤを流れる電流の経路の一例を示す図である。FIG. 4 is a diagram showing an example of a path of current flowing through a shape memory alloy wire; 形状記憶合金ワイヤを流れる電流の経路の別の一例を示す図である。FIG. 10 is a diagram showing another example of a path of current flowing through a shape memory alloy wire; 撮像素子保持体の6自由度の動きのそれぞれを実現する際の形状記憶合金ワイヤの伸縮状態を示す表である。FIG. 10 is a table showing expansion and contraction states of shape memory alloy wires when each of six degrees of freedom of movement of an imaging element holder is realized; FIG. 形状記憶合金ワイヤによって連結された撮像素子保持体とベース部材の上面図、正面図、背面図、左側面図、及び右側面図である。FIG. 4A is a top view, a front view, a rear view, a left side view, and a right side view of an imaging element holder and a base member which are connected by a shape memory alloy wire; 撮像素子保持体及びベース部材の上面図である。FIG. 3 is a top view of an imaging element holder and a base member; 撮像素子保持体及びベース部材の上面図である。FIG. 3 is a top view of an imaging element holder and a base member; 撮像素子保持体及びベース部材の正面図である。FIG. 2 is a front view of an imaging device holder and a base member; 撮像素子保持体及びベース部材の正面図である。FIG. 2 is a front view of an imaging device holder and a base member; 撮像素子保持体及びベース部材の右側面図である。4 is a right side view of the imaging element holder and the base member; FIG. 撮像素子保持体及びベース部材の上面図である。FIG. 3 is a top view of an imaging element holder and a base member; レンズ駆動装置の分解斜視図である。It is an exploded perspective view of a lens drive. レンズ体、レンズ保持体、上側弾性金属部材、及び上側ベース部材の斜視図である。4 is a perspective view of a lens body, a lens holder, an upper elastic metal member, and an upper base member; FIG. レンズ保持体に接続される上側金属部材の斜視図である。4 is a perspective view of an upper metal member connected to the lens holder; FIG. 上側ベース部材に接続される上側金属部材の斜視図である。4 is a perspective view of an upper metal member connected to an upper base member; FIG. 上側形状記憶合金ワイヤが取り付けられた上側金属部材の図である。FIG. 10 is a view of an upper metal member with an upper shape memory alloy wire attached; 上側形状記憶合金ワイヤが取り付けられた上側金属部材の図である。FIG. 10 is a view of an upper metal member with an upper shape memory alloy wire attached; 上側ベース部材の斜視図である。FIG. 4 is a perspective view of an upper base member; 上側弾性金属部材、上側形状記憶合金ワイヤ、上側金属部材、及び導電部材の斜視図である。FIG. 4 is a perspective view of an upper elastic metal member, an upper shape memory alloy wire, an upper metal member, and a conductive member; 上側弾性金属部材、上側金属部材、及び導電部材の上面図である。FIG. 4 is a top view of an upper elastic metal member, an upper metal member, and a conductive member; 上側形状記憶合金ワイヤを流れる電流の経路の一例を示す図である。FIG. 4 is a diagram showing an example of a path of current flowing through an upper shape memory alloy wire; 上側形状記憶合金ワイヤを流れる電流の経路の別の一例を示す図である。FIG. 10 is a diagram showing another example of a path of current flowing through the upper shape memory alloy wire; 右斜め上から見たときの撮像素子保持体、ベース部材、レンズ保持体、及び上側ベース部材の斜視図である。FIG. 3 is a perspective view of the imaging element holder, the base member, the lens holder, and the upper base member when viewed obliquely from the upper right. 左斜め上から見たときの撮像素子保持体、ベース部材、レンズ保持体、及び上側ベース部材の斜視図である。FIG. 3 is a perspective view of an imaging element holder, a base member, a lens holder, and an upper base member when viewed obliquely from the upper left; 金属部材、形状記憶合金ワイヤ、上側金属部材、上側形状記憶合金ワイヤ、及び導電部材の斜視図である。1 is a perspective view of a metal member, a shape memory alloy wire, an upper metal member, an upper shape memory alloy wire, and a conductive member; FIG. 金属部材、形状記憶合金ワイヤ、上側金属部材、上側形状記憶合金ワイヤ、及び導電部材の上面図である。FIG. 4A is a top view of the metal member, the shape memory alloy wire, the upper metal member, the upper shape memory alloy wire, and the conductive member; レンズ体及び撮像素子の動きを示す図である。It is a figure which shows a movement of a lens body and an image pick-up element. レンズ体及び撮像素子の動きを示す図である。It is a figure which shows a movement of a lens body and an image pick-up element. レンズ体及び撮像素子の動きを示す図である。It is a figure which shows a movement of a lens body and an image pick-up element. レンズ体及び撮像素子の動きを示す図である。It is a figure which shows a movement of a lens body and an image pick-up element. レンズ体及び撮像素子の動きを示す図である。It is a figure which shows a movement of a lens body and an image pick-up element.
 以下、本発明の実施形態に係るカメラモジュールMDについて図面を参照して説明する。図1A及び図1Bは、カメラモジュールMDの斜視図である。具体的には、図1Aは、カメラモジュールMDの上方斜視図であり、図1Bは、カメラモジュールMDの下方斜視図である。図2は、カメラモジュールMDの分解斜視図である。なお、図1A、図1B、及び図2では、レンズ体LS(図18参照。)の図示が省略されている。 A camera module MD according to an embodiment of the present invention will be described below with reference to the drawings. 1A and 1B are perspective views of the camera module MD. Specifically, FIG. 1A is a top perspective view of the camera module MD, and FIG. 1B is a bottom perspective view of the camera module MD. FIG. 2 is an exploded perspective view of the camera module MD. 1A, 1B, and 2, illustration of the lens body LS (see FIG. 18) is omitted.
 図1A、図1B、及び図2において、X1は、三次元直交座標系を構成するX軸の一方向を表し、X2は、X軸の他方向を表す。また、Y1は、三次元直交座標系を構成するY軸の一方向を表し、Y2は、Y軸の他方向を表す。同様に、Z1は、三次元直交座標系を構成するZ軸の一方向を表し、Z2は、Z軸の他方向を表す。図1A、図1B、及び図2では、カメラモジュールMDのX1側は、カメラモジュールMDの前側(正面側)に相当し、カメラモジュールMDのX2側は、カメラモジュールMDの後側(背面側)に相当する。また、カメラモジュールMDのY1側は、カメラモジュールMDの左側に相当し、カメラモジュールMDのY2側は、カメラモジュールMDの右側に相当する。また、カメラモジュールMDのZ1側は、カメラモジュールMDの上側(被写体側)に相当し、カメラモジュールMDのZ2側は、カメラモジュールMDの下側(撮像素子側)に相当する。他の図においても同様である。  In Figures 1A, 1B, and 2, X1 represents one direction of the X-axis that constitutes the three-dimensional orthogonal coordinate system, and X2 represents the other direction of the X-axis. Y1 represents one direction of the Y-axis forming the three-dimensional orthogonal coordinate system, and Y2 represents the other direction of the Y-axis. Similarly, Z1 represents one direction of the Z-axis forming the three-dimensional orthogonal coordinate system, and Z2 represents the other direction of the Z-axis. 1A, 1B, and 2, the X1 side of the camera module MD corresponds to the front side (front side) of the camera module MD, and the X2 side of the camera module MD corresponds to the rear side (back side) of the camera module MD. corresponds to The Y1 side of the camera module MD corresponds to the left side of the camera module MD, and the Y2 side of the camera module MD corresponds to the right side of the camera module MD. The Z1 side of the camera module MD corresponds to the upper side (subject side) of the camera module MD, and the Z2 side of the camera module MD corresponds to the lower side (image sensor side) of the camera module MD. The same applies to other drawings.
 カメラモジュールMDは、図1A、図1B、及び図2に示すように、固定側部材FBの一部であるカバー部材4を含む。 The camera module MD, as shown in FIGS. 1A, 1B, and 2, includes a cover member 4 that is part of the fixed side member FB.
 カバー部材4は、各部材を覆う筐体HSの一部として機能するように構成されている。本実施形態では、カバー部材4は、非磁性金属で形成されている。但し、カバー部材4は、磁性金属で形成されていてもよい。 The cover member 4 is configured to function as part of the housing HS that covers each member. In this embodiment, the cover member 4 is made of non-magnetic metal. However, the cover member 4 may be made of a magnetic metal.
 図1A及び図1Bに示す例では、カバー部材4は、矩形筒状の外周壁部4Aと、外周壁部4Aの上端(Z1側の端)と連続するように設けられた矩形環状且つ平板状の天板部4Bと、を有する。天板部4Bの中央には、円形の開口4kが形成されている。外周壁部4Aは、第1側板部4A1~第4側板部4A4を含む。第1側板部4A1と第3側板部4A3とは互いに対向し、第2側板部4A2と第4側板部4A4とは互いに対向している。そして、第1側板部4A1及び第3側板部4A3は、第2側板部4A2及び第4側板部4A4に対して垂直に延びている。 In the example shown in FIGS. 1A and 1B, the cover member 4 includes a rectangular tubular outer peripheral wall portion 4A and a rectangular annular flat plate shape provided so as to be continuous with the upper end (Z1 side end) of the outer peripheral wall portion 4A. and a top plate portion 4B. A circular opening 4k is formed in the center of the top plate portion 4B. The outer peripheral wall portion 4A includes a first side plate portion 4A1 to a fourth side plate portion 4A4. The first side plate portion 4A1 and the third side plate portion 4A3 face each other, and the second side plate portion 4A2 and the fourth side plate portion 4A4 face each other. The first side plate portion 4A1 and the third side plate portion 4A3 extend perpendicularly to the second side plate portion 4A2 and the fourth side plate portion 4A4.
 カバー部材4は、図1A及び図1Bに示すように、接着剤によってベース部材8に接合されている。ベース部材8は、カバー部材4とともに筐体HSを構成している。 The cover member 4 is joined to the base member 8 with an adhesive, as shown in FIGS. 1A and 1B. The base member 8 constitutes a housing HS together with the cover member 4 .
 筐体HS内には、図2に示すように、レンズ駆動装置LD及び撮像素子駆動装置ID等が収容されている。撮像素子駆動装置IDは、第1可動側部材MB1を動かすための装置であり、撮像素子駆動部DM1、撮像素子保持体2、金属部材5、及び弾性金属部材6を含む。また、筐体HSを構成しているベース部材8の下面(Z2側の面)には可撓性基板3が取り付けられている。なお、図1Aでは、明瞭化のため、撮像素子ISにはクロスパターンが付され、可撓性基板3には粗いドットパターンが付され、回路基板7には細かいドットパターンが付されている。 As shown in FIG. 2, the housing HS accommodates the lens driving device LD, the imaging device driving device ID, and the like. The imaging device driving device ID is a device for moving the first movable side member MB1, and includes an imaging device driving section DM1, an imaging device holder 2, a metal member 5, and an elastic metal member 6. A flexible substrate 3 is attached to the lower surface (surface on the Z2 side) of the base member 8 that constitutes the housing HS. In FIG. 1A, for the sake of clarity, the imaging element IS is provided with a cross pattern, the flexible substrate 3 is provided with a coarse dot pattern, and the circuit board 7 is provided with a fine dot pattern.
 撮像素子駆動部DM1は、形状記憶アクチュエータの一例である形状記憶合金ワイヤSAを含む。本実施形態では、形状記憶合金ワイヤSAは、略同じ長さと略同じ直径を有する第1ワイヤSA1~第8ワイヤSA8を含む。形状記憶合金ワイヤSAは、電流が流れると温度が上昇し、その温度の上昇に応じて収縮する。撮像素子駆動部DM1は、形状記憶合金ワイヤSAの収縮を利用して撮像素子保持体2を移動させることができる。なお、形状記憶合金ワイヤSAは、第1ワイヤSA1~第8ワイヤSA8のうちの一つ又は複数が収縮すると撮像素子保持体2が移動し、その移動によって別の一つ又は複数が引き延ばされる(伸張される)ように構成されている。 The imaging element drive unit DM1 includes a shape memory alloy wire SA, which is an example of a shape memory actuator. In this embodiment, the shape memory alloy wires SA include first wires SA1 to eighth wires SA8 having substantially the same length and substantially the same diameter. The shape memory alloy wire SA increases in temperature when current flows, and contracts according to the increase in temperature. The image pickup device driver DM1 can move the image pickup device holder 2 using contraction of the shape memory alloy wire SA. As for the shape memory alloy wires SA, when one or more of the first wires SA1 to SA8 contract, the imaging device holder 2 moves, and the movement causes another one or more to be elongated. (decompressed).
 本実施形態では、撮像素子駆動部DM1は、第1可動側部材MB1の6自由度の動きを実現できるように構成されている。6自由度の動きは、撮像素子ISの撮像面に垂直な第1回転軸RX1に平行な第1方向(Z軸方向)における並進、第1方向に垂直な第2方向(X軸方向)における並進、第1方向及び第2方向に垂直な第3方向(Y軸方向)における並進、第1方向(Z軸方向)の周りの回転、第2方向(X軸方向)の周りの回転、並びに、第3方向(Y軸方向)の周りの回転を含む。なお、第2方向(X軸方向)は、第2回転軸RX2に平行な方向であり、第3方向(Y軸方向)は、第3回転軸RX3に平行な方向である。撮像素子ISの撮像面は、撮像素子ISの被写体側の面である上面と平行な面である。 In the present embodiment, the imaging element driving section DM1 is configured to allow the first movable side member MB1 to move with six degrees of freedom. The movements with six degrees of freedom are translation in a first direction (Z-axis direction) parallel to a first rotation axis RX1 perpendicular to the imaging surface of the image sensor IS, and movement in a second direction (X-axis direction) perpendicular to the first direction. translation, translation in a third direction (Y-axis direction) perpendicular to the first and second directions, rotation about the first direction (Z-axis direction), rotation about a second direction (X-axis direction), and , including rotation about a third direction (the Y-axis direction). The second direction (X-axis direction) is a direction parallel to the second rotation axis RX2, and the third direction (Y-axis direction) is a direction parallel to the third rotation axis RX3. The imaging surface of the imaging device IS is a plane parallel to the upper surface of the imaging device IS on the subject side.
 可撓性基板3は、カメラモジュールMDとカメラモジュールMDの外部にある装置とを接続するための配線パターンが形成された可撓性の基板である。本実施形態では、可撓性基板3は、繰り返し変形させることができるように構成されたフレキシブルプリント回路基板である。 The flexible substrate 3 is a flexible substrate on which a wiring pattern is formed for connecting the camera module MD and a device outside the camera module MD. In this embodiment, the flexible substrate 3 is a flexible printed circuit board configured to be repeatedly deformable.
 回路基板7は、撮像素子ISが搭載される基板である。本実施形態では、回路基板7は、リジット回路基板である。 The circuit board 7 is a board on which the imaging device IS is mounted. In this embodiment, the circuit board 7 is a rigid circuit board.
 第1可動側部材MB1は、撮像素子駆動部DM1によって駆動される部材である。本実施形態では、第1可動側部材MB1は、撮像素子ISと、撮像素子ISが搭載される回路基板7と、回路基板7を保持可能な撮像素子保持体2とで構成されている。 The first movable side member MB1 is a member that is driven by the imaging element driving section DM1. In this embodiment, the first movable side member MB1 is composed of the image sensor IS, the circuit board 7 on which the image sensor IS is mounted, and the image sensor holder 2 capable of holding the circuit board 7 .
 撮像素子保持体2は、液晶ポリマー(LCP)等の合成樹脂を射出成形することで形成されている。具体的には、撮像素子保持体2は、図2に示すように、上面視で略矩形の枠体2Fと、枠体2Fの四つの角部のうちの二つに形成された可動側台座部2Dと、枠体2Fの四つの角部のうちの残りの二つに形成された突設部2Sと、を含む。本実施形態では、回路基板7は、枠体2Fの下面に接着剤で接合されるように構成されている。 The imaging element holder 2 is formed by injection molding synthetic resin such as liquid crystal polymer (LCP). Specifically, as shown in FIG. 2, the imaging element holder 2 includes a frame 2F that is substantially rectangular in top view, and movable side pedestals formed at two of the four corners of the frame 2F. It includes a portion 2D and projecting portions 2S formed at the remaining two of the four corners of the frame 2F. In this embodiment, the circuit board 7 is configured to be bonded to the lower surface of the frame 2F with an adhesive.
 可動側台座部2Dは、第1可動側台座部2D1及び第2可動側台座部2D2を含む。第1可動側台座部2D1及び第2可動側台座部2D2は、第1回転軸RX1を挟んで互いに対向するように配置されている。同様に、突設部2Sは、第1突設部2S1及び第2突設部2S2を含む。第1突設部2S1及び第2突設部2S2は、第1回転軸RX1を挟んで互いに対向するように配置されている。具体的には、可動側台座部2D及び突設部2Sは、上面視で略矩形状の外形を有する撮像素子保持体2(枠体2F)の四つの角部に対応するように配置され、且つ、交互に並ぶように配置されている。そして、二つの可動側台座部2Dのそれぞれには、図3に示すように、弾性金属部材6の一部が載置される。 The movable-side pedestal portion 2D includes a first movable-side pedestal portion 2D1 and a second movable-side pedestal portion 2D2. The first movable-side pedestal portion 2D1 and the second movable-side pedestal portion 2D2 are arranged so as to face each other with the first rotation axis RX1 interposed therebetween. Similarly, the projecting portion 2S includes a first projecting portion 2S1 and a second projecting portion 2S2. The first projecting portion 2S1 and the second projecting portion 2S2 are arranged to face each other with the first rotation axis RX1 interposed therebetween. Specifically, the movable-side pedestal portion 2D and the protruding portion 2S are arranged so as to correspond to the four corners of the imaging element holding body 2 (frame body 2F) having a substantially rectangular outer shape when viewed from above. Moreover, they are arranged so as to be alternately arranged. A part of the elastic metal member 6 is placed on each of the two movable-side pedestals 2D, as shown in FIG.
 図3は、撮像素子保持体2とベース部材8とに接続された弾性金属部材6の斜視図であり、撮像素子保持体2及びベース部材8のそれぞれと弾性金属部材6との間の位置関係を示している。なお、図3では、明瞭化のため、撮像素子保持体2に細かいドットパターンが付され、ベース部材8に粗いドットパターンが付されている。また、図3では、明瞭化のため、撮像素子保持体2、弾性金属部材6、及びベース部材8以外の部材の図示が省略されている。 FIG. 3 is a perspective view of the elastic metal member 6 connected to the image pickup device holder 2 and the base member 8. The positional relationship between the image pickup device holder 2 and the base member 8 and the elastic metal member 6 is shown in FIG. is shown. In FIG. 3, for clarity, the imaging device holder 2 has a fine dot pattern and the base member 8 has a coarse dot pattern. 3, illustration of members other than the imaging element holder 2, the elastic metal member 6, and the base member 8 is omitted for clarity.
 弾性金属部材6は、固定側部材FB(ベース部材8)に対して撮像素子保持体2を移動可能に支持できるように構成されている。本実施形態では、弾性金属部材6は、例えば、銅合金、チタン銅系合金(チタン銅)、又は銅ニッケル合金(ニッケルすず銅)等を主な材料とした導電性の金属板から作製されている。 The elastic metal member 6 is configured to movably support the imaging element holder 2 with respect to the fixed side member FB (base member 8). In this embodiment, the elastic metal member 6 is made of a conductive metal plate mainly made of, for example, a copper alloy, a titanium-copper alloy (titanium-copper), or a copper-nickel alloy (nickel-tin-copper). there is
 ベース部材8は、液晶ポリマー(LCP)等の合成樹脂を用いた射出成形によって形成される。本実施形態では、ベース部材8は、図2に示すように、上面視で略矩形状の輪郭を有し、中央に開口8Kを有する。具体的には、ベース部材8は、開口8Kを囲むように配置される四つの辺部8E(第1辺部8E1~第4辺部8E4)を有する。 The base member 8 is formed by injection molding using synthetic resin such as liquid crystal polymer (LCP). In this embodiment, as shown in FIG. 2, the base member 8 has a substantially rectangular outline in top view and has an opening 8K in the center. Specifically, the base member 8 has four side portions 8E (first side portion 8E1 to fourth side portion 8E4) arranged to surround the opening 8K.
 具体的には、ベース部材8は、図2に示すように、ベース部材8の四つの角部のうちの二つに形成された固定側台座部8Dを含む。固定側台座部8Dは、ベース部材8の板状の基部から上方(Z1方向)に突出している。そして、固定側台座部8Dは、第1固定側台座部8D1及び第2固定側台座部8D2を含む。第1固定側台座部8D1及び第2固定側台座部8D2は、第1回転軸RX1を挟んで互いに対向するように配置されている。また、図3に示すように、第1固定側台座部8D1は、撮像素子保持体2の第1突設部2S1と対向するように配置され、第2固定側台座部8D2は、撮像素子保持体2の第2突設部2S2と対向するように配置されている。また、ベース部材8の四つの角部のそれぞれには、レンズ駆動装置LDの上側ベース部材80(図17参照。)とベース部材8とを連結するための部材である連結部CNが形成されている。連結部CNは、第1連結部CN1~第4連結部CN4を含む。 Specifically, the base member 8 includes fixed side pedestals 8D formed at two of the four corners of the base member 8, as shown in FIG. The fixed-side pedestal portion 8D protrudes upward (in the Z1 direction) from the plate-like base portion of the base member 8 . The fixed side pedestal portion 8D includes a first fixed side pedestal portion 8D1 and a second fixed side pedestal portion 8D2. The first fixed side seat portion 8D1 and the second fixed side seat portion 8D2 are arranged so as to face each other with the first rotation axis RX1 interposed therebetween. Further, as shown in FIG. 3, the first fixed side pedestal portion 8D1 is arranged so as to face the first projecting portion 2S1 of the image pickup element holder 2, and the second fixed side pedestal portion 8D2 is arranged to face the image pickup element holding portion 8D2. It is arranged so as to face the second projecting portion 2S2 of the body 2. As shown in FIG. Further, at each of the four corners of the base member 8, a connecting portion CN, which is a member for connecting the upper base member 80 (see FIG. 17) of the lens driving device LD and the base member 8, is formed. there is The connecting portion CN includes a first connecting portion CN1 to a fourth connecting portion CN4.
 弾性金属部材6は、撮像素子保持体2に形成された可動側台座部2Dと、ベース部材8に形成された固定側台座部8Dとを繋ぐように構成されている。具体的には、弾性金属部材6は、図3に示すように、ベース部材8に形成された第1固定側台座部8D1に取り付けられる第1固定部6e1と、撮像素子保持体2に形成された第1可動側台座部2D1に取り付けられる第2固定部6e2と、ベース部材8に形成された第2固定側台座部8D2に取り付けられる第3固定部6e3と、撮像素子保持体2に形成された第2可動側台座部2D2に取り付けられる第4固定部6e4と、を有する。また、弾性金属部材6は、図3に示すように、第1固定部6e1と第2固定部6e2とを繋ぐ弾性変形可能な第1腕部6g1、第2固定部6e2と第3固定部6e3とを繋ぐ弾性変形可能な第2腕部6g2、第3固定部6e3と第4固定部6e4とを繋ぐ弾性変形可能な第3腕部6g3、及び、第4固定部6e4と第1固定部6e1とを繋ぐ弾性変形可能な第4腕部6g4を有する。 The elastic metal member 6 is configured to connect the movable-side pedestal portion 2D formed on the imaging element holder 2 and the fixed-side pedestal portion 8D formed on the base member 8 . Specifically, as shown in FIG. 3, the elastic metal member 6 includes a first fixed portion 6e1 attached to a first fixed-side pedestal portion 8D1 formed on the base member 8, and an elastic metal member 6 formed on the imaging element holder 2. a second fixed portion 6e2 attached to the first movable side pedestal portion 2D1; a third fixed portion 6e3 attached to the second fixed side pedestal portion 8D2 formed on the base member 8; and a fourth fixing portion 6e4 attached to the second movable side pedestal portion 2D2. As shown in FIG. 3, the elastic metal member 6 includes an elastically deformable first arm portion 6g1 connecting the first fixing portion 6e1 and the second fixing portion 6e2, a second fixing portion 6e2 and a third fixing portion 6e3. an elastically deformable second arm portion 6g2 that connects the third fixing portion 6e3 and the fourth fixing portion 6e4, and an elastically deformable third arm portion 6g3 that connects the fourth fixing portion 6e4 and the first fixing portion 6e1 It has an elastically deformable fourth arm portion 6g4 that connects the .
 金属部材5は、形状記憶合金ワイヤSAの端部が固定されるように構成されている。本実施形態では、金属部材5は、図2に示すように、固定側金属部材5F及び可動側金属部材5Mを含む。固定側金属部材5Fは、ベース部材8の固定側台座部8Dに固定されるように構成されている。可動側金属部材5Mは、撮像素子保持体2の可動側台座部2Dに固定されるように構成されている。 The metal member 5 is configured so that the end of the shape memory alloy wire SA is fixed. In this embodiment, the metal member 5 includes a fixed side metal member 5F and a movable side metal member 5M, as shown in FIG. The stationary metal member 5</b>F is configured to be fixed to the stationary pedestal portion 8</b>D of the base member 8 . The movable-side metal member 5</b>M is configured to be fixed to the movable-side pedestal portion 2</b>D of the imaging element holder 2 .
 より具体的には、固定側金属部材5Fは、固定側ターミナルプレートとも称され、第1固定側ターミナルプレート5F1~第8固定側ターミナルプレート5F8を含む。可動側金属部材5Mは、可動側ターミナルプレートとも称され、第1可動側ターミナルプレート5M1及び第2可動側ターミナルプレート5M2を含む。 More specifically, the fixed-side metal member 5F is also called a fixed-side terminal plate, and includes a first fixed-side terminal plate 5F1 to an eighth fixed-side terminal plate 5F8. The movable-side metal member 5M is also called a movable-side terminal plate, and includes a first movable-side terminal plate 5M1 and a second movable-side terminal plate 5M2.
 次に、図4A及び図4Bを参照し、撮像素子保持体2及びベース部材8のそれぞれと金属部材5との間の位置関係について説明する。図4Aは、可動側金属部材5M(可動側ターミナルプレート)が取り付けられた撮像素子保持体2の斜視図である。図4Bは、固定側金属部材5F(固定側ターミナルプレート)が取り付けられたベース部材8の斜視図である。なお、明瞭化のため、図4Aでは、可動側金属部材5Mにドットパターンが付され、図4Bでは、固定側金属部材5Fにドットパターンが付されている。 Next, referring to FIGS. 4A and 4B, the positional relationship between each of the imaging element holder 2 and the base member 8 and the metal member 5 will be described. FIG. 4A is a perspective view of the imaging element holder 2 to which the movable-side metal member 5M (movable-side terminal plate) is attached. FIG. 4B is a perspective view of the base member 8 to which the fixed-side metal member 5F (fixed-side terminal plate) is attached. For clarity, in FIG. 4A, the movable metal member 5M has a dot pattern, and in FIG. 4B, the fixed metal member 5F has a dot pattern.
 図4Aに示す例では、第1可動側ターミナルプレート5M1は、第1可動側台座部2D1のX1側の側壁(前側取付面)及びY1側の側壁(左側取付面)に固定されている。具体的には、第1可動側台座部2D1の上面に形成された溝部2G(図2参照。)と第1可動側ターミナルプレート5M1に形成された折り曲げ片BPとがかみ合った状態で、第1可動側ターミナルプレート5M1は、接着剤により第1可動側台座部2D1に固定されている。接着剤は、例えば、光硬化型接着剤である。光硬化型接着剤は、例えば、紫外線硬化型接着剤又は可視光硬化型接着剤等である。同様に、第2可動側ターミナルプレート5M2は、第2可動側台座部2D2のX2側の側壁(後側取付面)及びY2側の側壁(右側取付面)に固定されている。具体的には、第2可動側台座部2D2の上面に形成された溝部2G(図2参照。)と第2可動側ターミナルプレート5M2に形成された折り曲げ片BPとがかみ合った状態で、第2可動側ターミナルプレート5M2は、接着剤により第2可動側台座部2D2に固定されている。 In the example shown in FIG. 4A, the first movable terminal plate 5M1 is fixed to the X1 side wall (front mounting surface) and the Y1 side wall (left mounting surface) of the first movable pedestal portion 2D1. Specifically, in a state in which the groove 2G (see FIG. 2) formed on the upper surface of the first movable-side pedestal portion 2D1 and the bent piece BP formed on the first movable-side terminal plate 5M1 are engaged with each other, the first The movable terminal plate 5M1 is fixed to the first movable pedestal 2D1 with an adhesive. The adhesive is, for example, a photocurable adhesive. The photocurable adhesive is, for example, an ultraviolet curable adhesive or a visible light curable adhesive. Similarly, the second movable terminal plate 5M2 is fixed to the X2 side wall (rear mounting surface) and the Y2 side wall (right mounting surface) of the second movable pedestal portion 2D2. Specifically, in a state in which the groove 2G (see FIG. 2) formed on the upper surface of the second movable-side pedestal portion 2D2 and the bent piece BP formed on the second movable-side terminal plate 5M2 are engaged with each other, the second The movable terminal plate 5M2 is fixed to the second movable pedestal 2D2 with an adhesive.
 図4Bに示す例では、第1固定側ターミナルプレート5F1及び第2固定側ターミナルプレート5F2は、ベース部材8の第1辺部8E1に沿って配置された第1固定側台座部8D1のX1側の側壁(前側取付面)に固定されている。具体的には、第1固定側ターミナルプレート5F1及び第2固定側ターミナルプレート5F2は、接着剤により第1固定側台座部8D1に固定されている。接着剤は、例えば、光硬化型接着剤である。光硬化型接着剤は、例えば、紫外線硬化型接着剤又は可視光硬化型接着剤等である。同様に、第3固定側ターミナルプレート5F3及び第4固定側ターミナルプレート5F4(図4Bでは不可視。)は、ベース部材8の第2辺部8E2に沿って配置された第2固定側台座部8D2のY1側の側壁(左側取付面)に固定されている。また、第5固定側ターミナルプレート5F5及び第6固定側ターミナルプレート5F6(図4Bでは不可視。)は、ベース部材8の第3辺部8E3に沿って配置された第2固定側台座部8D2のX2側の側壁(後側取付面)に固定されている。そして、第7固定側ターミナルプレート5F7及び第8固定側ターミナルプレート5F8は、ベース部材8の第4辺部8E4に沿って配置された第1固定側台座部8D1のY2側の側壁(右側取付面)に固定されている。 In the example shown in FIG. 4B, the first stationary terminal plate 5F1 and the second stationary terminal plate 5F2 are located on the X1 side of the first stationary seat 8D1 arranged along the first side 8E1 of the base member 8. It is fixed to the side wall (front mounting surface). Specifically, the first stationary terminal plate 5F1 and the second stationary terminal plate 5F2 are fixed to the first stationary pedestal portion 8D1 with an adhesive. The adhesive is, for example, a photocurable adhesive. The photocurable adhesive is, for example, an ultraviolet curable adhesive or a visible light curable adhesive. Similarly, the third stationary terminal plate 5F3 and the fourth stationary terminal plate 5F4 (not visible in FIG. 4B) are attached to the second stationary pedestal 8D2 arranged along the second side 8E2 of the base member 8 It is fixed to the side wall (left mounting surface) on the Y1 side. Also, the fifth fixed side terminal plate 5F5 and the sixth fixed side terminal plate 5F6 (not visible in FIG. 4B) are arranged along the third side 8E3 of the base member 8 on the X2 side of the second fixed side pedestal portion 8D2. side wall (rear mounting surface). The seventh stationary terminal plate 5F7 and the eighth stationary terminal plate 5F8 are arranged along the fourth side 8E4 of the base member 8 on the Y2 side wall (right mounting surface) of the first stationary pedestal 8D1. ).
 形状記憶合金ワイヤSAは、カバー部材4の外周壁部4Aの内面に沿うように延びており、固定側部材FBに対して第1可動側部材MB1を移動可能に支持できるように構成されている。本実施形態では、形状記憶合金ワイヤSAは、図2に示すように、第1ワイヤSA1~第8ワイヤSA8を含み、固定側部材FBとしてのベース部材8に対して、第1可動側部材MB1としての撮像素子保持体2を移動可能に支持できるように構成されている。具体的には、第1ワイヤSA1~第8ワイヤSA8のそれぞれは、図2に示すように、一端が圧着又は溶接等により固定側金属部材5Fに固着され、且つ、他端が圧着又は溶接等により可動側金属部材5Mに固着されている。 The shape memory alloy wire SA extends along the inner surface of the outer peripheral wall portion 4A of the cover member 4, and is configured to movably support the first movable member MB1 with respect to the fixed member FB. . In this embodiment, the shape memory alloy wires SA include first wires SA1 to eighth wires SA8, as shown in FIG. It is configured to be able to movably support the image pickup device holder 2 as a. Specifically, as shown in FIG. 2, each of the first wire SA1 to the eighth wire SA8 has one end fixed to the stationary metal member 5F by crimping or welding, and the other end is crimped or welded. is fixed to the movable-side metal member 5M.
 次に、図5A及び図5Bを参照し、形状記憶合金ワイヤSAが取り付けられる金属部材5について説明する。図5Aは、第2可動側ターミナルプレート5M2及び第7固定側ターミナルプレート5F7のそれぞれに取り付けられた第7ワイヤSA7、並びに、第2可動側ターミナルプレート5M2及び第8固定側ターミナルプレート5F8のそれぞれに取り付けられた第8ワイヤSA8をY2側(右側)から見たときの図である。図5Bは、第2可動側ターミナルプレート5M2及び第7固定側ターミナルプレート5F7のそれぞれに取り付けられた第7ワイヤSA7、並びに、第2可動側ターミナルプレート5M2及び第8固定側ターミナルプレート5F8のそれぞれに取り付けられた第8ワイヤSA8をX1側(前側)から見たときの図である。なお、図5A及び図5Bに示す各部材の位置関係は、カメラモジュールMDが組み立てられたときの位置関係に対応している。そして、図5A)及び図5Bでは、明瞭化のため、他の部材の図示が省略されている。また、図5A及び図5Bを参照する以下の説明は、第7ワイヤSA7及び第8ワイヤSA8の組み合わせに関するが、第1ワイヤSA1及び第2ワイヤSA2の組み合わせ、第3ワイヤSA3及び第4ワイヤSA4の組み合わせ、並びに、第5ワイヤSA5及び第6ワイヤSA6の組み合わせについても同様に適用される。 Next, the metal member 5 to which the shape memory alloy wire SA is attached will be described with reference to FIGS. 5A and 5B. FIG. 5A shows a seventh wire SA7 attached to each of the second movable terminal plate 5M2 and the seventh fixed terminal plate 5F7, and a wire SA7 attached to each of the second movable terminal plate 5M2 and the eighth fixed terminal plate 5F8. It is a figure when the 8th wire SA8 attached is seen from the Y2 side (right side). FIG. 5B shows a seventh wire SA7 attached to each of the second movable side terminal plate 5M2 and the seventh fixed side terminal plate 5F7, and each of the second movable side terminal plate 5M2 and the eighth fixed side terminal plate 5F8. It is a figure when the 8th wire SA8 attached is seen from the X1 side (front side). The positional relationship of each member shown in FIGS. 5A and 5B corresponds to the positional relationship when the camera module MD is assembled. 5A) and 5B, illustration of other members is omitted for clarity. Also, the following description with reference to FIGS. 5A and 5B relates to the combination of the seventh wire SA7 and the eighth wire SA8, the combination of the first wire SA1 and the second wire SA2, the third wire SA3 and the fourth wire SA4. and the combination of the fifth wire SA5 and the sixth wire SA6.
 具体的には、第7ワイヤSA7の一端は、第7固定側ターミナルプレート5F7の保持部J2のところで第7固定側ターミナルプレート5F7に固定され、第7ワイヤSA7の他端は、第2可動側ターミナルプレート5M2の下側の保持部J1のところで第2可動側ターミナルプレート5M2に固定されている。同様に、第8ワイヤSA8の一端は、第8固定側ターミナルプレート5F8の保持部J4のところで第8固定側ターミナルプレート5F8に固定され、第8ワイヤSA8の他端は、第2可動側ターミナルプレート5M2の上側の保持部J3のところで第2可動側ターミナルプレート5M2に固定されている。 Specifically, one end of the seventh wire SA7 is fixed to the seventh fixed terminal plate 5F7 at the holding portion J2 of the seventh fixed terminal plate 5F7, and the other end of the seventh wire SA7 is fixed to the second movable terminal plate 5F7. It is fixed to the second movable side terminal plate 5M2 at the lower holding portion J1 of the terminal plate 5M2. Similarly, one end of the eighth wire SA8 is fixed to the eighth fixed terminal plate 5F8 at the holding portion J4 of the eighth fixed terminal plate 5F8, and the other end of the eighth wire SA8 is fixed to the second movable terminal plate. It is fixed to the second movable side terminal plate 5M2 at the upper holding portion J3 of 5M2.
 保持部J1は、第2可動側ターミナルプレート5M2の一部を折り曲げることによって形成されている。具体的には、第2可動側ターミナルプレート5M2の一部は、第7ワイヤSA7の端部(他端)を挟み込んだ状態で折り曲げられることにより保持部J1を形成している。そして、第7ワイヤSA7の端部(他端)は、溶接によって保持部J1に固定されている。保持部J2~保持部J4についても同様である。 The holding portion J1 is formed by bending a portion of the second movable terminal plate 5M2. Specifically, a portion of the second movable terminal plate 5M2 forms a holding portion J1 by being bent while sandwiching the end (the other end) of the seventh wire SA7. An end (the other end) of the seventh wire SA7 is fixed to the holding portion J1 by welding. The same applies to the holding portions J2 to J4.
 第7ワイヤSA7及び第8ワイヤSA8は、図5Aに示すように、互いにねじれの位置となるように(Y2側から見たときに立体的に交差するように)配置されている。すなわち、第7ワイヤSA7及び第8ワイヤSA8は、互いに接触しない(非接触となる)ように配置されている。 As shown in FIG. 5A, the seventh wire SA7 and the eighth wire SA8 are arranged so as to be twisted relative to each other (three-dimensionally intersect when viewed from the Y2 side). That is, the seventh wire SA7 and the eighth wire SA8 are arranged so as not to contact each other (become non-contact).
 次に、図6を参照し、固定側部材FBの一部であるベース部材8の詳細について説明する。図6は、ベース部材8の斜視図である。具体的には、図6の上図は、導電部材CMが取り除かれた状態のベース部材8の斜視図であり、図6の中央図は、ベース部材8内に埋設されている導電部材CMの斜視図であり、図6の下図は、導電部材CMが埋設された状態のベース部材8の斜視図である。なお、図6の中央図及び図6の下図では、明瞭化のため、導電部材CMにドットパターンが付されている。 Next, with reference to FIG. 6, the details of the base member 8, which is a part of the fixed side member FB, will be described. 6 is a perspective view of the base member 8. FIG. Specifically, the upper view of FIG. 6 is a perspective view of the base member 8 with the conductive member CM removed, and the central view of FIG. 6 is a perspective view of the base member 8 in which the conductive member CM is embedded. In addition, in the central view of FIG. 6 and the lower view of FIG. 6, the conductive member CM is given a dot pattern for clarity.
 ベース部材8は、第1ワイヤSA1~第8ワイヤSA8のそれぞれの一端を支持する固定側ワイヤ支持部として機能するように構成されている。また、撮像素子保持体2は、第1ワイヤSA1~第8ワイヤSA8のそれぞれの他端を支持する可動側ワイヤ支持部として機能するように構成されている。この構成により、第1可動側部材MB1は、第1ワイヤSA1~第8ワイヤSA8によって固定側部材FBに対して6自由度で移動可能な状態で支持されている。 The base member 8 is configured to function as a fixed-side wire support section that supports one end of each of the first wire SA1 to the eighth wire SA8. Further, the imaging device holder 2 is configured to function as a movable side wire support section that supports the other ends of the first to eighth wires SA1 to SA8. With this configuration, the first movable member MB1 is supported by the first wire SA1 to the eighth wire SA8 so as to be movable with respect to the fixed member FB with six degrees of freedom.
 ベース部材8の被写体側の面(Z1側の面)である上面には、上述のように、固定側台座部8Dが形成されている。固定側台座部8Dは、第1固定側台座部8D1及び第2固定側台座部8D2を含む。第1固定側台座部8D1及び第2固定側台座部8D2は、第1回転軸RX1を挟んで対向するように配置されている。 As described above, the fixed side pedestal portion 8D is formed on the upper surface of the base member 8 on the subject side (Z1 side surface). The fixed side pedestal portion 8D includes a first fixed side pedestal portion 8D1 and a second fixed side pedestal portion 8D2. The first fixed side seat portion 8D1 and the second fixed side seat portion 8D2 are arranged to face each other with the first rotation axis RX1 interposed therebetween.
 ベース部材8には、図6の中央図に示すような、銅、鉄、又はそれらを主成分とする合金等の材料を含む金属板から形成された導電部材CMがインサート成形によって埋め込まれている。本実施形態では、導電部材CMは、ベース部材8の下面(Z2側の面)に露出して外方に延びる接続部EDと、ベース部材8の固定側台座部8Dの上面(Z1側の面)に露出する接合面部CPと、を有するように構成されている。 In the base member 8, as shown in the central view of FIG. 6, a conductive member CM formed of a metal plate containing a material such as copper, iron, or an alloy containing them as a main component is embedded by insert molding. . In this embodiment, the conductive member CM includes a connecting portion ED exposed on the lower surface (Z2 side surface) of the base member 8 and extending outward, and an upper surface (Z1 side surface) of the fixed side pedestal portion 8D of the base member 8 (Z1 side surface). ).
 具体的には、導電部材CMは、第1導電部材CM1及び第2導電部材CM2を含む。そして、第1導電部材CM1は、第1接続部ED1及び第1接合面部CP1を含み、第2導電部材CM2は、第2接続部ED2及び第2接合面部CP2を含む。 Specifically, the conductive member CM includes a first conductive member CM1 and a second conductive member CM2. The first conductive member CM1 includes a first connection portion ED1 and a first joint surface portion CP1, and the second conductive member CM2 includes a second connection portion ED2 and a second joint surface portion CP2.
 次に、図7A及び図7Bを参照し、金属部材5、弾性金属部材6、導電部材CM、及び形状記憶合金ワイヤSAの位置関係について説明する。図7A及び図7Bは、金属部材5、弾性金属部材6、導電部材CM、及び形状記憶合金ワイヤSAの位置関係を示す図である。具体的には、図7Aは、各部材(金属部材5、弾性金属部材6、導電部材CM、及び形状記憶合金ワイヤSA)の斜視図であり、図7Bは、各部材の上面図である。なお、図7A及び図7Bでは、明瞭化のため、可動側金属部材5M及び導電部材CMにドットパターンが付されている。また、図7Bでは、明瞭化のため、形状記憶合金ワイヤSAの図示が省略されている。 Next, the positional relationship among the metal member 5, the elastic metal member 6, the conductive member CM, and the shape memory alloy wire SA will be described with reference to FIGS. 7A and 7B. 7A and 7B are diagrams showing the positional relationship among the metal member 5, the elastic metal member 6, the conductive member CM, and the shape memory alloy wire SA. Specifically, FIG. 7A is a perspective view of each member (metal member 5, elastic metal member 6, conductive member CM, and shape memory alloy wire SA), and FIG. 7B is a top view of each member. In addition, in FIGS. 7A and 7B, dot patterns are given to the movable-side metal member 5M and the conductive member CM for clarity. Also, in FIG. 7B, illustration of the shape memory alloy wire SA is omitted for clarity.
 弾性金属部材6は、図3に示すように、ベース部材8の第1固定側台座部8D1(図2参照。)に固定される第1固定部6e1と、撮像素子保持体2の第1可動側台座部2D1(図2参照。)に固定される第2固定部6e2と、ベース部材8の第2固定側台座部8D2(図2参照。)に固定される第3固定部6e3と、撮像素子保持体2の第2可動側台座部2D2(図2参照。)に固定される第4固定部6e4と、第1固定部6e1と第2固定部6e2を繋ぐ第1腕部6g1と、第2固定部6e2と第3固定部6e3を繋ぐ第2腕部6g2と、第3固定部6e3と第4固定部6e4を繋ぐ第3腕部6g3と、第4固定部6e4と第1固定部6e1を繋ぐ第4腕部6g4と、を有する。 As shown in FIG. 3, the elastic metal member 6 includes a first fixed portion 6e1 fixed to the first fixed-side pedestal portion 8D1 (see FIG. 2) of the base member 8, and a first movable portion 6e1 of the imaging element holder 2. A second fixing portion 6e2 fixed to the side pedestal portion 2D1 (see FIG. 2), a third fixing portion 6e3 fixed to the second fixed side pedestal portion 8D2 (see FIG. 2) of the base member 8, and an imaging A fourth fixing portion 6e4 fixed to the second movable side pedestal portion 2D2 (see FIG. 2) of the element holder 2, a first arm portion 6g1 connecting the first fixing portion 6e1 and the second fixing portion 6e2, A second arm portion 6g2 connecting the second fixing portion 6e2 and the third fixing portion 6e3, a third arm portion 6g3 connecting the third fixing portion 6e3 and the fourth fixing portion 6e4, a fourth fixing portion 6e4 and the first fixing portion 6e1. and a fourth arm portion 6g4 that connects the
 第1固定部6e1には、第1固定側台座部8D1に形成された上側に突出する円柱状の突出部8T(図4B参照。)が挿通される第1貫通孔6H1及び第2貫通孔6H2と、第1導電部材CM1の第1接合面部CP1(図6の下図参照。)との接合に用いられる第3貫通孔6H3とが形成されている。本実施形態では、弾性金属部材6と突出部8Tとの固定は、突出部8Tに熱かしめ又は冷間かしめを施すことによって実現される。但し、弾性金属部材6と突出部8Tとの固定は、接着剤によって実現されてもよい。また、本実施形態では、弾性金属部材6と第1導電部材CM1との接合は、レーザ溶接等の溶接によって実現される。但し、弾性金属部材6と第1導電部材CM1との接合は、半田又は導電性接着剤等によって実現されてもよい。 The first fixing portion 6e1 has a first through hole 6H1 and a second through hole 6H2 through which the upwardly protruding columnar protrusion 8T (see FIG. 4B) formed on the first fixed side pedestal portion 8D1 is inserted. , and a third through hole 6H3 used for bonding with the first bonding surface portion CP1 (see the lower diagram of FIG. 6) of the first conductive member CM1. In this embodiment, the fixing between the elastic metal member 6 and the projecting portion 8T is achieved by subjecting the projecting portion 8T to hot crimping or cold crimping. However, the fixing between the elastic metal member 6 and the projecting portion 8T may be realized by an adhesive. In addition, in the present embodiment, the elastic metal member 6 and the first conductive member CM1 are joined together by welding such as laser welding. However, the joint between the elastic metal member 6 and the first conductive member CM1 may be realized by solder, a conductive adhesive, or the like.
 第2固定部6e2には、第1可動側台座部2D1に形成された上側に突出する円柱状の突出部2T(図4A参照。)が挿通される第4貫通孔6H4及び第5貫通孔6H5と、第1可動側ターミナルプレート5M1の折り曲げ片BP(図4A参照。)の先端との接合に用いられる第6貫通孔6H6とが形成されている。本実施形態では、弾性金属部材6と突出部2Tの固定は、突出部2Tに熱かしめ又は冷間かしめを施すことによって実現される。但し、弾性金属部材6と突出部2Tとの固定は、接着剤によって実現されてもよい。また、本実施形態では、弾性金属部材6と第1可動側ターミナルプレート5M1の折り曲げ片BPとの接合は、レーザ溶接等の溶接によって実現される。但し、弾性金属部材6と折り曲げ片BPとの接合は、半田又は導電性接着剤等によって実現されてもよい。 The second fixing portion 6e2 has a fourth through hole 6H4 and a fifth through hole 6H5 through which the upwardly projecting columnar protrusion 2T (see FIG. 4A) formed on the first movable side pedestal portion 2D1 is inserted. and a sixth through-hole 6H6 used for joining with the tip of the bent piece BP (see FIG. 4A) of the first movable-side terminal plate 5M1. In this embodiment, the fixing of the elastic metal member 6 and the projecting portion 2T is achieved by subjecting the projecting portion 2T to hot crimping or cold crimping. However, the fixing between the elastic metal member 6 and the projecting portion 2T may be realized by an adhesive. In addition, in this embodiment, the elastic metal member 6 and the bent piece BP of the first movable terminal plate 5M1 are joined together by welding such as laser welding. However, the joint between the elastic metal member 6 and the bent piece BP may be realized by solder, a conductive adhesive, or the like.
 同様に、第3固定部6e3には、第2固定側台座部8D2に形成された上側に突出する円柱状の突出部8T(図4B参照。)が挿通される第7貫通孔6H7及び第8貫通孔6H8と、第2導電部材CM2の第2接合面部CP2(図6の下図参照。)との接合に用いられる第9貫通孔6H9とが形成されている。 Similarly, in the third fixing portion 6e3, a seventh through-hole 6H7 and an eighth through-hole 6H7 through which an upwardly protruding columnar projection 8T (see FIG. 4B) formed on the second fixed-side pedestal portion 8D2 is inserted. A through hole 6H8 and a ninth through hole 6H9 used for joining with the second joint surface portion CP2 (see the lower diagram of FIG. 6) of the second conductive member CM2 are formed.
 また、第4固定部6e4には、第2可動側台座部2D2に形成された上側に突出する円柱状の突出部2T(図4A参照。)が挿通される第10貫通孔6H10及び第11貫通孔6H11と、第2可動側ターミナルプレート5M2の折り曲げ片BP(図4A参照。)の先端との接合に用いられる第12貫通孔6H12とが形成されている。 Further, in the fourth fixing portion 6e4, a tenth through-hole 6H10 and an eleventh through-hole 6H10 through which a cylindrical protrusion 2T (see FIG. 4A) protruding upward formed on the second movable side pedestal portion 2D2 is inserted. A hole 6H11 and a twelfth through hole 6H12 used for joining with the tip of the bent piece BP (see FIG. 4A) of the second movable terminal plate 5M2 are formed.
 なお、弾性金属部材6の第1腕部6g1~第4腕部6g4のそれぞれは、四つの湾曲部を有する弾性変形可能な腕部である。そのため、撮像素子保持体2は、ベース部材8(固定側部材FB)に対して、第1回転軸RX1に平行な方向のみならず、第1回転軸RX1と交差する方向にも移動可能となっている。 Each of the first arm portion 6g1 to the fourth arm portion 6g4 of the elastic metal member 6 is an elastically deformable arm portion having four curved portions. Therefore, the imaging element holder 2 can move with respect to the base member 8 (fixed member FB) not only in the direction parallel to the first rotation axis RX1, but also in the direction intersecting the first rotation axis RX1. ing.
 図7Bに示すように、弾性金属部材6は、第1回転軸RX1に対して2回回転対称となるように構成されている。そのため、弾性金属部材6は、撮像素子保持体2の重量バランスに悪影響を及ぼすことはほとんどない。また、弾性金属部材6は、八本の形状記憶合金ワイヤSA(第1ワイヤSA1~第8ワイヤSA8)によって支持される第1可動側部材MB1の重量バランスに悪影響を及ぼすこともほとんどない。 As shown in FIG. 7B, the elastic metal member 6 is configured to have two-fold rotational symmetry with respect to the first rotation axis RX1. Therefore, the elastic metal member 6 hardly affects the weight balance of the image pickup device holder 2 . Moreover, the elastic metal member 6 hardly affects the weight balance of the first movable side member MB1 supported by the eight shape memory alloy wires SA (the first wire SA1 to the eighth wire SA8).
 固定側金属部材5Fは、接続部CT(図5A及び図5B参照。)を有し、接続部CTを介し、可撓性基板3の導電パターンPTに接合されるように構成されている。本実施形態では、固定側金属部材5Fの接続部CTは、第1接続部CT1~第8接続部CT8を含む。 The fixed-side metal member 5F has a connection portion CT (see FIGS. 5A and 5B) and is configured to be joined to the conductive pattern PT of the flexible substrate 3 via the connection portion CT. In the present embodiment, the connection portion CT of the stationary-side metal member 5F includes a first connection portion CT1 to an eighth connection portion CT8.
 可撓性基板3は、図2に示すように、回路基板7の下面に取り付けられる略矩形状の内側部分3iと、ベース部材8の下面に取り付けられる略矩形環状の外側部分3eと、を含む。外側部分3eには、第1導電パターンPT1~第20導電パターンPT20が形成され、内側部分3iには、撮像素子ISとの接続に用いられる多数の導電パターン(図示せず。)が形成されている。 The flexible board 3 includes, as shown in FIG. 2, a substantially rectangular inner portion 3i attached to the lower surface of the circuit board 7 and a substantially rectangular annular outer portion 3e attached to the lower surface of the base member 8. . A first conductive pattern PT1 to a twentieth conductive pattern PT20 are formed in the outer portion 3e, and a large number of conductive patterns (not shown) used for connection with the imaging element IS are formed in the inner portion 3i. there is
 具体的には、第1固定側ターミナルプレート5F1の第1接続部CT1は、半田付けによって可撓性基板3の第1導電パターンPT1(図2参照。)に接合される。同様に、第2固定側ターミナルプレート5F2の第2接続部CT2は、半田付けによって可撓性基板3の第2導電パターンPT2(図2参照。)に接合され、第3固定側ターミナルプレート5F3の第3接続部CT3は、半田付けによって可撓性基板3の第3導電パターンPT3(図2参照。)に接合され、第4固定側ターミナルプレート5F4の第4接続部CT4は、半田付けによって可撓性基板3の第4導電パターンPT4(図2参照。)に接合され、第5固定側ターミナルプレート5F5の第5接続部CT5は、半田付けによって可撓性基板3の第5導電パターンPT5(図2参照。)に接合され、第6固定側ターミナルプレート5F6の第6接続部CT6は、半田付けによって可撓性基板3の第6導電パターンPT6(図2参照。)に接合され、第7固定側ターミナルプレート5F7の第7接続部CT7は、半田付けによって可撓性基板3の第7導電パターンPT7(図2参照。)に接合され、第8固定側ターミナルプレート5F8の第8接続部CT8は、半田付けによって可撓性基板3の第8導電パターンPT8(図2参照。)に接合される。なお、接続部CTと可撓性基板3の導電パターンPTとの接合は、導電性接着剤によって実現されてもよい。 Specifically, the first connecting portion CT1 of the first fixed-side terminal plate 5F1 is joined to the first conductive pattern PT1 (see FIG. 2) of the flexible substrate 3 by soldering. Similarly, the second connection portion CT2 of the second fixed terminal plate 5F2 is soldered to the second conductive pattern PT2 (see FIG. 2) of the flexible substrate 3, and the third fixed terminal plate 5F3 is The third connection portion CT3 is joined to the third conductive pattern PT3 (see FIG. 2) of the flexible substrate 3 by soldering, and the fourth connection portion CT4 of the fourth fixed terminal plate 5F4 is soldered. It is joined to the fourth conductive pattern PT4 (see FIG. 2) of the flexible substrate 3, and the fifth connecting portion CT5 of the fifth fixed-side terminal plate 5F5 is soldered to the fifth conductive pattern PT5 (see FIG. 2) of the flexible substrate 3. 2), and the sixth connecting portion CT6 of the sixth fixed terminal plate 5F6 is joined to the sixth conductive pattern PT6 (see FIG. 2) of the flexible substrate 3 by soldering, and the seventh The seventh connecting portion CT7 of the fixed terminal plate 5F7 is soldered to the seventh conductive pattern PT7 (see FIG. 2) of the flexible substrate 3, and the eighth connecting portion CT8 of the eighth fixed terminal plate 5F8 is connected. is joined to the eighth conductive pattern PT8 (see FIG. 2) of the flexible substrate 3 by soldering. Note that the connecting portion CT and the conductive pattern PT of the flexible substrate 3 may be joined by a conductive adhesive.
 第1導電部材CM1の第1接続部ED1は、半田付けによって可撓性基板3の第9導電パターンPT9(図2参照。)に接合され、第2導電部材CM2の第2接続部ED2は、半田付けによって可撓性基板3の第10導電パターンPT10(図2参照。)に接合される。本実施形態では、第9導電パターンPT9及び第10導電パターンPT10は何れも接地端子(図示せず。)に接続されている。なお、接続部EDと可撓性基板3の導電パターンPTとの接合は、導電性接着剤によって実現されてもよい。 The first connection portion ED1 of the first conductive member CM1 is soldered to the ninth conductive pattern PT9 (see FIG. 2) of the flexible substrate 3, and the second connection portion ED2 of the second conductive member CM2 is It is joined to the tenth conductive pattern PT10 (see FIG. 2) of the flexible substrate 3 by soldering. In this embodiment, both the ninth conductive pattern PT9 and the tenth conductive pattern PT10 are connected to a ground terminal (not shown). Note that the connection portion ED and the conductive pattern PT of the flexible substrate 3 may be joined by a conductive adhesive.
 第1可動側ターミナルプレート5M1の折り曲げ片BPは、図7Bに示すように、レーザ溶接等の溶接によって弾性金属部材6の第2固定部6e2に接合される。同様に、第2可動側ターミナルプレート5M2の折り曲げ片BPは、レーザ溶接等の溶接によって弾性金属部材6の第4固定部6e4に接合される。 The bent piece BP of the first movable terminal plate 5M1 is joined to the second fixed portion 6e2 of the elastic metal member 6 by welding such as laser welding, as shown in FIG. 7B. Similarly, the bent piece BP of the second movable side terminal plate 5M2 is joined to the fourth fixed portion 6e4 of the elastic metal member 6 by welding such as laser welding.
 第1固定側ターミナルプレート5F1、第2固定側ターミナルプレート5F2、第7固定側ターミナルプレート5F7、及び第8固定側ターミナルプレート5F8は、図7Bに示すように、弾性金属部材6の第1固定部6e1から離間して配置されており、弾性金属部材6の第1固定部6e1には接触していない。一方で、弾性金属部材6の第1固定部6e1は、図7Bに示すように、レーザ溶接等の溶接によって第1導電部材CM1の第1接合面部CP1に接合されている。同様に、第3固定側ターミナルプレート5F3~第6固定側ターミナルプレート5F6は、図7Bに示すように、弾性金属部材6の第3固定部6e3から離間して配置されており、弾性金属部材6の第3固定部6e3には接触していない。一方で、弾性金属部材6の第3固定部6e3は、図7Bに示すように、レーザ溶接等の溶接によって第2導電部材CM2の第2接合面部CP2に接合されている。 The first stationary terminal plate 5F1, the second stationary terminal plate 5F2, the seventh stationary terminal plate 5F7, and the eighth stationary terminal plate 5F8 are the first stationary portion of the elastic metal member 6, as shown in FIG. 7B. 6e1, and is not in contact with the first fixing portion 6e1 of the elastic metal member 6. As shown in FIG. On the other hand, as shown in FIG. 7B, the first fixed portion 6e1 of the elastic metal member 6 is joined to the first joint surface portion CP1 of the first conductive member CM1 by welding such as laser welding. Similarly, the third stationary terminal plate 5F3 to the sixth stationary terminal plate 5F6 are arranged apart from the third stationary portion 6e3 of the elastic metal member 6, as shown in FIG. 7B. is not in contact with the third fixing portion 6e3. On the other hand, as shown in FIG. 7B, the third fixing portion 6e3 of the elastic metal member 6 is joined to the second joint surface portion CP2 of the second conductive member CM2 by welding such as laser welding.
 次に、図8A及び図8Bを参照し、形状記憶合金ワイヤSAを流れる電流の経路について説明する。図8A及び図8Bは、図7Aに示す構成の一部の斜視図である。なお、図8A及び図8Bでは、明瞭化のため、第1導電部材CM1及び第2可動側ターミナルプレート5M2には粗いドットパターンが付され、第7固定側ターミナルプレート5F7及び第8固定側ターミナルプレート5F8には細かいドットパターンが付され、弾性金属部材6には更に細かいドットパターンが付されている。 Next, with reference to FIGS. 8A and 8B, the path of current flowing through the shape memory alloy wire SA will be described. 8A and 8B are perspective views of a portion of the arrangement shown in FIG. 7A. In FIGS. 8A and 8B, for clarity, the first conductive member CM1 and the second movable terminal plate 5M2 are given rough dot patterns, and the seventh stationary terminal plate 5F7 and the eighth stationary terminal plate 5F8 has a fine dot pattern, and the elastic metal member 6 has an even finer dot pattern.
 具体的には、図8Aは、第7固定側ターミナルプレート5F7の第7接続部CT7が高電位に接続され、且つ、第1導電部材CM1の第1接続部ED1が低電位に接続されたときの電流の経路を示し、図8Bは、第8固定側ターミナルプレート5F8の第8接続部CT8が高電位に接続され、且つ、第1導電部材CM1の第1接続部ED1が低電位に接続されたときの電流の経路を示す。以下の説明は、第7ワイヤSA7又は第8ワイヤSA8を流れる電流の経路に関するが、第1ワイヤSA1又は第2ワイヤSA2を流れる電流の経路、第3ワイヤSA3又は第4ワイヤSA4を流れる電流の経路、及び、第5ワイヤSA5又は第6ワイヤSA6を流れる電流の経路についても同様に適用される。 Specifically, FIG. 8A shows the state when the seventh connection portion CT7 of the seventh stationary terminal plate 5F7 is connected to a high potential and the first connection portion ED1 of the first conductive member CM1 is connected to a low potential. FIG. 8B shows that the eighth connection portion CT8 of the eighth fixed terminal plate 5F8 is connected to a high potential, and the first connection portion ED1 of the first conductive member CM1 is connected to a low potential. shows the path of the current when The following description relates to the path of the current flowing through the seventh wire SA7 or the eighth wire SA8, but the path of the current flowing through the first wire SA1 or the second wire SA2, the current flowing through the third wire SA3 or the fourth wire SA4. The same applies to the path and the path of the current flowing through the fifth wire SA5 or the sixth wire SA6.
 第7固定側ターミナルプレート5F7の第7接続部CT7が高電位に接続され、且つ、第1導電部材CM1の第1接続部ED1が低電位に接続されると、電流は、図8Aの矢印AR1で示すように第7接続部CT7を通って第7固定側ターミナルプレート5F7に流れる。その後、電流は、矢印AR2で示すように第7固定側ターミナルプレート5F7を通り、矢印AR3で示すように第7ワイヤSA7を通り、更に、矢印AR4で示すように第2可動側ターミナルプレート5M2を通る。その後、電流は、矢印AR5、矢印AR6、及び矢印AR7で示すように弾性金属部材6の第4固定部6e4、第4腕部6g4、及び第1固定部6e1を通り、そして、矢印AR8で示すように第1導電部材CM1を通って第1接続部ED1に流れる。 When the seventh connecting portion CT7 of the seventh stationary terminal plate 5F7 is connected to a high potential and the first connecting portion ED1 of the first conductive member CM1 is connected to a low potential, the current flows as indicated by the arrow AR1 in FIG. 8A. flows through the seventh connecting portion CT7 to the seventh stationary terminal plate 5F7. After that, the current flows through the seventh fixed terminal plate 5F7 as indicated by arrow AR2, through the seventh wire SA7 as indicated by arrow AR3, and further through the second movable terminal plate 5M2 as indicated by arrow AR4. pass. Thereafter, the current flows through the fourth fixing portion 6e4, the fourth arm portion 6g4 and the first fixing portion 6e1 of the elastic metal member 6 as indicated by arrows AR5, AR6 and AR7, and then through the first fixing portion 6e1 as indicated by arrow AR8. flows through the first conductive member CM1 to the first connecting portion ED1.
 なお、本実施形態では、電流は、弾性金属部材6の第4固定部6e4、第3腕部6g3、第3固定部6e3、第2導電部材CM2を通って第2接続部ED2にも流れるように構成されている。第1導電部材CM1の第1接続部ED1と第2導電部材CM2の第2接続部ED2とは何れも接地されているためである。 In this embodiment, the current flows through the fourth fixing portion 6e4 of the elastic metal member 6, the third arm portion 6g3, the third fixing portion 6e3, the second conductive member CM2, and also the second connecting portion ED2. is configured to This is because both the first connection portion ED1 of the first conductive member CM1 and the second connection portion ED2 of the second conductive member CM2 are grounded.
 第8固定側ターミナルプレート5F8の第8接続部CT8が高電位に接続され、且つ、第1導電部材CM1の第1接続部ED1が低電位に接続されると、電流は、図8Bの矢印AR11で示すように第8接続部CT8を通って第8固定側ターミナルプレート5F8に流れる。その後、電流は、矢印AR12で示すように第8固定側ターミナルプレート5F8を通り、矢印AR13で示すように第8ワイヤSA8を通り、更に、矢印AR14で示すように第2可動側ターミナルプレート5M2を通る。その後、電流は、矢印AR15、矢印AR16、及び矢印AR17で示すように弾性金属部材6の第4固定部6e4、第4腕部6g4、及び第1固定部6e1を通り、そして、矢印AR18で示すように第1導電部材CM1を通って第1接続部ED1に流れる。 When the eighth connecting portion CT8 of the eighth fixed-side terminal plate 5F8 is connected to a high potential and the first connecting portion ED1 of the first conductive member CM1 is connected to a low potential, the current flows as indicated by the arrow AR11 in FIG. 8B. , flows through the eighth connecting portion CT8 to the eighth stationary terminal plate 5F8. After that, the current flows through the eighth fixed terminal plate 5F8 as indicated by arrow AR12, the eighth wire SA8 as indicated by arrow AR13, and the second movable terminal plate 5M2 as indicated by arrow AR14. pass. After that, the current flows through the fourth fixing portion 6e4, the fourth arm portion 6g4 and the first fixing portion 6e1 of the elastic metal member 6 as indicated by arrows AR15, AR16 and AR17, and then through the first fixing portion 6e1 as indicated by arrow AR18. flows through the first conductive member CM1 to the first connecting portion ED1.
 なお、本実施形態では、電流は、弾性金属部材6の第4固定部6e4、第3腕部6g3、第3固定部6e3、第2導電部材CM2を通って第2接続部ED2にも流れるように構成されている。第1導電部材CM1の第1接続部ED1と第2導電部材CM2の第2接続部ED2とは何れも接地されているためである。 In this embodiment, the current flows through the fourth fixing portion 6e4 of the elastic metal member 6, the third arm portion 6g3, the third fixing portion 6e3, the second conductive member CM2, and also the second connecting portion ED2. is configured to This is because both the first connection portion ED1 of the first conductive member CM1 and the second connection portion ED2 of the second conductive member CM2 are grounded.
 また、第7固定側ターミナルプレート5F7の第7接続部CT7が高電位に接続された場合、及び、第8固定側ターミナルプレート5F8の第8接続部CT8が高電位に接続された場合の何れにおいても、第2可動側ターミナルプレート5M2を通過した後の電流の経路は同じである。 Also, when the seventh connecting portion CT7 of the seventh fixed terminal plate 5F7 is connected to a high potential, or when the eighth connecting portion CT8 of the eighth fixed side terminal plate 5F8 is connected to a high potential, , the path of the current after passing through the second movable-side terminal plate 5M2 is the same.
 上述のようなカメラモジュールMDの外部にある制御装置は、第1固定側ターミナルプレート5F1~第8固定側ターミナルプレート5F8のそれぞれの接続部CTに印加される電圧を制御することにより、第1ワイヤSA1~第8ワイヤSA8のそれぞれの伸縮を制御できる。或いは、制御装置は、第1固定側ターミナルプレート5F1~第8固定側ターミナルプレート5F8のそれぞれの接続部CTと第1導電部材CM1及び第2導電部材CM2のそれぞれの接続部EDとを介して第1ワイヤSA1~第8ワイヤSA8のそれぞれに供給される電流を制御することにより、第1ワイヤSA1~第8ワイヤSA8のそれぞれの伸縮を制御できる。なお、制御装置は、カメラモジュールMD内に配置されていてもよい。また、制御装置は、カメラモジュールMDの構成要素であってもよい。 The control device outside the camera module MD as described above controls the voltages applied to the respective connection portions CT of the first fixed terminal plate 5F1 to the eighth fixed terminal plate 5F8 so that the first wire The expansion and contraction of each of SA1 to eighth wire SA8 can be controlled. Alternatively, the control device controls the first terminal plate 5F1 through the eighth fixed terminal plate 5F8 via the connecting portions CT of the first to eighth stationary terminal plates 5F8 and the connecting portions ED of the first conductive member CM1 and the second conductive member CM2. By controlling the current supplied to each of the first wire SA1 to the eighth wire SA8, the expansion and contraction of each of the first wire SA1 to the eighth wire SA8 can be controlled. Note that the control device may be arranged in the camera module MD. Also, the control device may be a component of the camera module MD.
 制御装置は、例えば、撮像素子駆動部DM1としての形状記憶合金ワイヤSAの収縮による第1回転軸RX1に平行な第1方向(Z軸方向)に沿った駆動力を利用し、レンズ体LSのZ2側において、第1方向に沿って撮像素子保持体2を移動させてもよい。そして、このように撮像素子保持体2を移動させることにより、制御装置は、レンズ調整機能の一つである自動焦点調整機能を実現してもよい。具体的には、制御装置は、レンズ体LSから離れる方向に撮像素子保持体2を移動させてマクロ撮影を可能にし、レンズ体LSに近づく方向に撮像素子保持体2を移動させて無限遠撮影を可能にしてもよい。 For example, the control device utilizes the driving force along the first direction (Z-axis direction) parallel to the first rotation axis RX1 due to the contraction of the shape memory alloy wire SA as the imaging element driving unit DM1, and the lens body LS On the Z2 side, the imaging element holder 2 may be moved along the first direction. By moving the image sensor holder 2 in this manner, the control device may realize an automatic focus adjustment function, which is one of the lens adjustment functions. Specifically, the control device moves the image sensor holder 2 in a direction away from the lens body LS to enable macro photography, and moves the image sensor holder 2 in a direction closer to the lens body LS to infinity photography. may be enabled.
 また、制御装置は、複数の形状記憶合金ワイヤSAに流れる電流を制御することによって、第1方向と交差する方向に撮像素子保持体2を移動させてもよい。第1方向と交差する方向は、例えば、第1方向に垂直な第2方向(X軸方向)、又は、第1方向及び第2方向に垂直な第3方向(Y軸方向)であってもよい。また、制御装置は、第1方向(Z軸方向)の周り、第2方向(X軸方向)の周り、又は、第3方向(Y軸方向)の周りで撮像素子保持体2を回転させてもよい。このような撮像素子保持体2の動きにより、制御装置は、手振れ補正機能を実現してもよい。 The control device may also move the imaging element holder 2 in a direction intersecting with the first direction by controlling the currents flowing through the plurality of shape memory alloy wires SA. The direction intersecting the first direction is, for example, the second direction (X-axis direction) perpendicular to the first direction, or the third direction (Y-axis direction) perpendicular to the first direction and the second direction. good. In addition, the control device rotates the imaging element holder 2 around the first direction (Z-axis direction), around the second direction (X-axis direction), or around the third direction (Y-axis direction). good too. By such movement of the image pickup device holder 2, the control device may implement a camera shake correction function.
 次に、図9~図16を参照し、撮像素子駆動部DM1の詳細について説明する。図9は、撮像素子保持体2の6自由度の動きのそれぞれを実現する際の形状記憶合金ワイヤSAの伸縮状態を示す表である。図10は、形状記憶合金ワイヤSAによって連結された撮像素子保持体2とベース部材8の上面図、正面図、背面図、左側面図、及び右側面図である。図11は、ベース部材8に対してX軸方向に並進する撮像素子保持体2とベース部材8の上面図である。図12は、ベース部材8に対してY軸方向に並進する撮像素子保持体2とベース部材8の上面図である。図13は、ベース部材8に対してZ軸方向に並進する撮像素子保持体2とベース部材8の正面図である。図14は、X軸(第2回転軸RX2)の周りで回転する撮像素子保持体2とベース部材8の正面図である。図15は、Y軸(第3回転軸RX3)の周りで回転する撮像素子保持体2とベース部材8の右側面図である。図16は、Z軸(第1回転軸RX1)の周りで回転する撮像素子保持体2とベース部材8の上面図である。なお、図10~図16では、明瞭化のため、撮像素子保持体2に細かいドットパターンが付され、ベース部材8に粗いドットパターンが付されている。また、図10~図16では、明瞭化のため、ベース部材8の四つの角部に形成された四つの連結部CN(図3参照。)の図示が省略され、ベース部材8の外形形状が簡略化されている。 Next, with reference to FIGS. 9 to 16, the details of the imaging element driving section DM1 will be described. FIG. 9 is a table showing expansion and contraction states of the shape memory alloy wire SA when realizing each of the six degrees of freedom of movement of the imaging element holder 2 . 10A and 10B are a top view, a front view, a rear view, a left side view, and a right side view of the imaging element holder 2 and the base member 8 which are connected by the shape memory alloy wire SA. FIG. 11 is a top view of the imaging element holder 2 and the base member 8 that translate in the X-axis direction with respect to the base member 8. FIG. FIG. 12 is a top view of the imaging element holder 2 and the base member 8 that translate in the Y-axis direction with respect to the base member 8. FIG. FIG. 13 is a front view of the imaging element holder 2 and the base member 8 that translate in the Z-axis direction with respect to the base member 8. FIG. FIG. 14 is a front view of the imaging element holder 2 and the base member 8 rotating around the X-axis (second rotation axis RX2). FIG. 15 is a right side view of the imaging element holder 2 and the base member 8 rotating around the Y-axis (third rotation axis RX3). FIG. 16 is a top view of the imaging element holder 2 and the base member 8 rotating around the Z-axis (first rotation axis RX1). 10 to 16, for clarity, the imaging element holder 2 has a fine dot pattern and the base member 8 has a coarse dot pattern. 10 to 16, the illustration of the four connecting portions CN (see FIG. 3) formed at the four corners of the base member 8 is omitted for clarity, and the outer shape of the base member 8 is Simplified.
 図10は、カメラモジュールMDが中立状態(中立位置)にあるときの撮像素子保持体2、ベース部材8、及び形状記憶合金ワイヤSAの状態を示す。なお、カメラモジュールMDの中立状態は、固定側部材FBに対して、X軸、Y軸、及びZ軸のそれぞれの方向に沿って並進可能な撮像素子保持体2及びレンズ保持体20(図17参照。)のそれぞれがX軸方向における移動可能範囲の中間に位置し、Y軸方向における移動可能範囲の中間に位置し、且つ、Z軸方向における移動可能範囲の中間に位置している状態を意味する。典型的には、カメラモジュールMDの中立状態では、撮像素子保持体2及びレンズ保持体20のそれぞれは、X軸方向、Y軸方向、及びZ軸方向におけるそれぞれの移動可能範囲の中央に位置している状態にある。また、カメラモジュールMDの中立状態は、X軸(第2回転軸RX2)の周り、Y軸(第3回転軸RX3)の周り、及び、Z軸(第1回転軸RX1)の周りにそれぞれ回転可能(揺動可能)な撮像素子保持体2がそれぞれの回転軸周りの回転可能範囲(回転可能角度)の中間に位置している状態を意味する。また、カメラモジュールMDの中立状態は、X軸(第5回転軸RX5)の周り、Y軸(第6回転軸RX6)の周り、及び、Z軸(第4回転軸RX4)の周りにそれぞれ回転可能(揺動可能)なレンズ保持体20がそれぞれの回転軸周りの回転可能範囲(回転可能角度)の中間に位置している状態を意味する。典型的には、カメラモジュールMDの中立状態では、撮像素子ISの撮像面は、撮像素子ISに対向配置されるレンズ体LSの光軸と垂直な状態である。この場合、撮像素子IS(撮像面)の中心軸である第1回転軸RX1は、レンズ体LSの光軸に一致している。なお、形状記憶合金ワイヤSA及び上側形状記憶合金ワイヤSB(図17参照。)に電流が供給されていないときのカメラモジュールMDの初期状態を中立状態としてもよい。 FIG. 10 shows the state of the imaging element holder 2, the base member 8, and the shape memory alloy wire SA when the camera module MD is in the neutral state (neutral position). Note that the neutral state of the camera module MD is the imaging element holding body 2 and the lens holding body 20 (FIG. 17) that can translate along the respective directions of the X-axis, the Y-axis, and the Z-axis with respect to the fixed-side member FB. ) are positioned in the middle of the movable range in the X-axis direction, in the middle of the movable range in the Y-axis direction, and in the middle of the movable range in the Z-axis direction. means. Typically, in the neutral state of the camera module MD, each of the imaging element holder 2 and the lens holder 20 is positioned at the center of each movable range in the X-axis direction, the Y-axis direction, and the Z-axis direction. is in a state of In addition, the neutral state of the camera module MD rotates around the X axis (second rotation axis RX2), around the Y axis (third rotation axis RX3), and around the Z axis (first rotation axis RX1). It means a state in which the rotatable (rockable) imaging device holder 2 is positioned in the middle of the rotatable range (rotatable angle) around each rotation axis. In addition, the neutral state of the camera module MD rotates around the X axis (fifth rotation axis RX5), around the Y axis (sixth rotation axis RX6), and around the Z axis (fourth rotation axis RX4). It means a state in which the rotatable (rockable) lens holder 20 is positioned in the middle of the rotatable range (rotatable angle) around each rotation axis. Typically, in the neutral state of the camera module MD, the imaging surface of the image sensor IS is perpendicular to the optical axis of the lens body LS arranged to face the image sensor IS. In this case, the first rotation axis RX1, which is the central axis of the imaging device IS (imaging surface), coincides with the optical axis of the lens body LS. The initial state of the camera module MD when no current is supplied to the shape memory alloy wire SA and the upper shape memory alloy wire SB (see FIG. 17) may be the neutral state.
 具体的には、カメラモジュールMDが中立状態にあるとき、第2ワイヤSA2は、Z1側から見た上面視において、その一端(固定端)がその他端(可動端)よりも所定距離D1だけ外側(前側(X1側))に位置するように配置されている。なお、第2ワイヤSA2の一端(固定端)は、第2固定側ターミナルプレート5F2に固定される端部であり、第2ワイヤSA2の他端(可動端)は、第1可動側ターミナルプレート5M1に固定される端部である。 Specifically, when the camera module MD is in the neutral state, one end (fixed end) of the second wire SA2 is outside the other end (movable end) by a predetermined distance D1 in a top view from the Z1 side. (Front side (X1 side)). One end (fixed end) of the second wire SA2 is the end fixed to the second fixed terminal plate 5F2, and the other end (movable end) of the second wire SA2 is the first movable terminal plate 5M1. is the end that is fixed to the
 また、上面視において、第4ワイヤSA4は、その一端(固定端)がその他端(可動端)よりも所定距離D2だけ外側(左側(Y1側))に位置するように配置され、第6ワイヤSA6は、その一端(固定端)がその他端(可動端)よりも所定距離D3だけ外側(後側(X2側))に位置するように配置され、第8ワイヤSA8は、その一端(固定端)がその他端(可動端)よりも所定距離D4だけ外側(右側(Y2側))に位置するように配置されている。第1ワイヤSA1、第3ワイヤSA3、第5ワイヤSA5、及び第7ワイヤSA7についても同様である。 In addition, the fourth wire SA4 is arranged such that one end (fixed end) thereof is positioned outside (to the left (Y1 side)) the other end (movable end) of the fourth wire SA4 by a predetermined distance D2 when viewed from the top. One end (fixed end) of SA6 is positioned outside (rear side (X2 side)) a predetermined distance D3 from the other end (movable end). ) is positioned outside (to the right (Y2 side)) of the other end (movable end) by a predetermined distance D4. The same applies to the first wire SA1, the third wire SA3, the fifth wire SA5, and the seventh wire SA7.
 すなわち、上面視において、第1ワイヤSA1、第2ワイヤSA2、第5ワイヤSA5、及び第6ワイヤSA6は、Y軸に対して非平行となるように配置され、第3ワイヤSA3、第4ワイヤSA4、第7ワイヤSA7、及び第8ワイヤSA8は、X軸に対して非平行となるように配置されている。 That is, when viewed from above, the first wire SA1, the second wire SA2, the fifth wire SA5, and the sixth wire SA6 are arranged so as to be non-parallel to the Y-axis, and the third wire SA3 and the fourth wire SA3 are arranged to be non-parallel to the Y axis. SA4, seventh wire SA7, and eighth wire SA8 are arranged so as to be non-parallel to the X-axis.
 このような配置により、制御装置は、例えば、第1ワイヤSA1~第8ワイヤSA8の一部を収縮させ、且つ、残りを伸張させることにより、撮像素子保持体2をX軸又はY軸に沿って並進させることができる。 With such an arrangement, the control device can move the image sensor holder 2 along the X-axis or the Y-axis, for example, by contracting a part of the first wire SA1 to the eighth wire SA8 and extending the rest. can be translated by
 また、カメラモジュールMDが中立状態にあるとき、X1側から見た正面視において、第1ワイヤSA1は、その一端(固定端)がその他端(可動端)よりも高い位置となるように配置され、第2ワイヤSA2は、その一端(固定端)がその他端(可動端)よりも低い位置となるように配置され、更に、第1ワイヤSA1と第2ワイヤSA2とは交差するように配置されている。 Further, when the camera module MD is in a neutral state, the first wire SA1 is arranged so that one end (fixed end) thereof is higher than the other end (movable end) in a front view viewed from the X1 side. , the second wire SA2 is arranged so that one end (fixed end) is lower than the other end (movable end), and the first wire SA1 and the second wire SA2 are arranged so as to cross each other. ing.
 また、Y1側から見た左側面視において、第3ワイヤSA3は、その一端(固定端)がその他端(可動端)よりも高い位置となるように配置され、第4ワイヤSA4は、その一端(固定端)がその他端(可動端)よりも低い位置となるように配置され、更に、第3ワイヤSA3と第4ワイヤSA4とは交差するように配置されている。 Further, in a left side view from the Y1 side, the third wire SA3 is arranged so that one end (fixed end) thereof is higher than the other end (movable end), and the fourth wire SA4 The (fixed end) is positioned lower than the other end (movable end), and the third wire SA3 and the fourth wire SA4 are arranged to cross each other.
 また、X2側から見た背面視において、第5ワイヤSA5は、その一端(固定端)がその他端(可動端)よりも高い位置となるように配置され、第6ワイヤSA6は、その一端(固定端)がその他端(可動端)よりも低い位置となるように配置され、更に、第5ワイヤSA5と第6ワイヤSA6とは交差するように配置されている。 In addition, in rear view from the X2 side, the fifth wire SA5 is arranged so that one end (fixed end) is higher than the other end (movable end), and the sixth wire SA6 is arranged such that one end ( The fixed end) is positioned lower than the other end (movable end), and the fifth wire SA5 and the sixth wire SA6 are arranged to cross each other.
 同様に、Y2側から見た右側面視において、第7ワイヤSA7は、その一端(固定端)がその他端(可動端)よりも高い位置となるように配置され、第8ワイヤSA8は、その一端(固定端)がその他端(可動端)よりも低い位置となるように配置され、更に、第7ワイヤSA7と第8ワイヤSA8とは交差するように配置されている。 Similarly, in a right side view from the Y2 side, the seventh wire SA7 is arranged so that one end (fixed end) is higher than the other end (movable end), and the eighth wire SA8 One end (fixed end) is positioned lower than the other end (movable end), and the seventh wire SA7 and the eighth wire SA8 are arranged to cross each other.
 すなわち、側面視において、第1ワイヤSA1~第8ワイヤSA8は何れも、X軸及びY軸に対して斜めに(非平行に)延びるように配置されている。 That is, in a side view, the first wire SA1 to the eighth wire SA8 are all arranged so as to extend obliquely (non-parallel) to the X-axis and the Y-axis.
 このような配置により、制御装置は、例えば、第1ワイヤSA1~第8ワイヤSA8の一部を収縮させ、且つ、残りを伸張させることにより、撮像素子保持体2をZ軸に沿って並進させることができる。但し、第1ワイヤSA1と第2ワイヤSA2は、正面視において斜めに延びるように配置されていればよく、正面視において互いに交差している必要はない。第3ワイヤSA3と第4ワイヤSA4との関係、第5ワイヤSA5と第6ワイヤSA6との関係、及び、第7ワイヤSA7と第8ワイヤSA8との関係においても同様である。 With such an arrangement, the control device causes, for example, the first wire SA1 to the eighth wire SA8 to contract partly and extend the rest, thereby translating the imaging element holder 2 along the Z axis. be able to. However, the first wire SA1 and the second wire SA2 need only be arranged so as to extend obliquely when viewed from the front, and need not cross each other when viewed from the front. The same applies to the relationship between the third wire SA3 and the fourth wire SA4, the relationship between the fifth wire SA5 and the sixth wire SA6, and the relationship between the seventh wire SA7 and the eighth wire SA8.
 具体的には、図11の上図は、ベース部材8に対してX1方向(前方)に並進する撮像素子保持体2とベース部材8の上面図であり、図11の中央図は、中立状態における撮像素子保持体2とベース部材8の上面図であり、図11の下図は、ベース部材8に対してX2方向(後方)に並進する撮像素子保持体2とベース部材8の上面図である。 Specifically, the upper diagram of FIG. 11 is a top view of the imaging element holder 2 and the base member 8 that translate in the X1 direction (forward) with respect to the base member 8, and the middle diagram of FIG. 11 is a neutral state. 11 is a top view of the image pickup element holder 2 and the base member 8 in FIG. 11, and the lower diagram of FIG. .
 制御装置は、ベース部材8に対してX1方向(前方)に撮像素子保持体2を並進させる場合、図9の表に示すように、第1ワイヤSA1及び第2ワイヤSA2を比較的小さく収縮させ、第3ワイヤSA3及び第4ワイヤSA4を比較的大きく伸張させ、第5ワイヤSA5及び第6ワイヤSA6を比較的小さく伸張させ、且つ、第7ワイヤSA7及び第8ワイヤSA8を比較的大きく収縮させる。第1ワイヤSA1及び第2ワイヤSA2を比較的小さく収縮させ、且つ、第7ワイヤSA7及び第8ワイヤSA8を比較的大きく収縮させることは、第1ワイヤSA1及び第2ワイヤSA2のそれぞれの収縮量が第7ワイヤSA7及び第8ワイヤSA8のそれぞれの収縮量よりも小さいことを意味する。また、第3ワイヤSA3及び第4ワイヤSA4を比較的大きく伸張させ、且つ、第5ワイヤSA5及び第6ワイヤSA6を比較的小さく伸張させることは、第3ワイヤSA3及び第4ワイヤSA4のそれぞれの伸張量が第5ワイヤSA5及び第6ワイヤSA6のそれぞれの伸張量よりも大きいことを意味する。また、本実施形態では、制御装置は、第1ワイヤSA1及び第2ワイヤSA2を略同じ収縮量で比較的小さく収縮させ、第3ワイヤSA3及び第4ワイヤSA4を略同じ伸張量で比較的大きく伸張させ、第5ワイヤSA5及び第6ワイヤSA6を略同じ伸張量で比較的小さく伸張させ、且つ、第7ワイヤSA7及び第8ワイヤSA8を略同じ収縮量で比較的大きく収縮させている。以下の説明においても同様である。制御装置は、第1ワイヤSA1~第8ワイヤSA8のそれぞれに供給される電流の大きさを個別に調整することによって第1ワイヤSA1~第8ワイヤSA8のそれぞれを上述のように伸縮させる。この制御装置による制御により、撮像素子駆動部DM1は、図11の上図の矢印AR21で示すように、ベース部材8に対してX1方向(前方)に撮像素子保持体2を並進させることができる。 When the image sensor holder 2 is translated in the X1 direction (forward) with respect to the base member 8, the control device contracts the first wire SA1 and the second wire SA2 relatively small as shown in the table of FIG. , the third wire SA3 and the fourth wire SA4 are stretched relatively greatly, the fifth wire SA5 and the sixth wire SA6 are stretched relatively little, and the seventh wire SA7 and the eighth wire SA8 are relatively greatly contracted. . Shrinking the first wire SA1 and the second wire SA2 to a relatively small amount and shrinking the seventh wire SA7 and the eighth wire SA8 to a relatively large amount means that the amount of shrinkage of each of the first wire SA1 and the second wire SA2 is is smaller than the contraction amount of each of the seventh wire SA7 and the eighth wire SA8. In addition, stretching the third wire SA3 and the fourth wire SA4 relatively large and stretching the fifth wire SA5 and the sixth wire SA6 relatively small will cause the third wire SA3 and the fourth wire SA4 to stretch. It means that the amount of extension is greater than the amount of extension of each of the fifth wire SA5 and the sixth wire SA6. In addition, in the present embodiment, the control device causes the first wire SA1 and the second wire SA2 to shrink by substantially the same amount and relatively small, and the third wire SA3 and the fourth wire SA4 to stretch by approximately the same amount and relatively large. The fifth wire SA5 and the sixth wire SA6 are stretched to a relatively small extent by approximately the same amount of stretching, and the seventh wire SA7 and the eighth wire SA8 are shrunk by approximately the same amount to a relatively large extent. The same applies to the following description. The control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8. Under the control of this control device, the imaging device driver DM1 can translate the imaging device holder 2 in the X1 direction (forward) with respect to the base member 8, as indicated by an arrow AR21 in the upper diagram of FIG. .
 同様に、制御装置は、ベース部材8に対してX2方向(後方)に撮像素子保持体2を並進させる場合、図9の表に示すように、第1ワイヤSA1及び第2ワイヤSA2を比較的小さく伸張させ、第3ワイヤSA3及び第4ワイヤSA4を比較的大きく収縮させ、第5ワイヤSA5及び第6ワイヤSA6を比較的小さく収縮させ、且つ、第7ワイヤSA7及び第8ワイヤSA8を比較的大きく伸張させる。制御装置は、第1ワイヤSA1~第8ワイヤSA8のそれぞれに供給される電流の大きさを個別に調整することによって第1ワイヤSA1~第8ワイヤSA8のそれぞれを上述のように伸縮させる。この制御装置による制御により、撮像素子駆動部DM1は、図11の下図の矢印AR22で示すように、ベース部材8に対してX2方向(後方)に撮像素子保持体2を並進させることができる。 Similarly, when the control device translates the image pickup element holder 2 in the X2 direction (rearward) with respect to the base member 8, the first wire SA1 and the second wire SA2 are relatively set as shown in the table of FIG. The third wire SA3 and the fourth wire SA4 are contracted relatively large, the fifth wire SA5 and the sixth wire SA6 are contracted relatively small, and the seventh wire SA7 and the eighth wire SA8 are contracted relatively. stretch greatly. The control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8. Under the control of this control device, the imaging device driver DM1 can translate the imaging device holder 2 in the X2 direction (backward) with respect to the base member 8, as indicated by an arrow AR22 in the lower diagram of FIG.
 図12の上図は、ベース部材8に対してY1方向(左方)に並進する撮像素子保持体2とベース部材8の上面図であり、図12の中央図は、中立状態における撮像素子保持体2とベース部材8の上面図であり、図12の下図は、ベース部材8に対してY2方向(右方)に並進する撮像素子保持体2とベース部材8の上面図である。 The upper diagram in FIG. 12 is a top view of the imaging element holder 2 and the base member 8 that translate in the Y1 direction (leftward) with respect to the base member 8, and the middle diagram in FIG. 12 is a top view of the body 2 and the base member 8, and the bottom view of FIG.
 制御装置は、ベース部材8に対してY1方向(左方)に撮像素子保持体2を並進させる場合、図9の表に示すように、第1ワイヤSA1及び第2ワイヤSA2を比較的大きく伸張させ、第3ワイヤSA3及び第4ワイヤSA4を比較的小さく収縮させ、第5ワイヤSA5及び第6ワイヤSA6を比較的大きく収縮させ、且つ、第7ワイヤSA7及び第8ワイヤSA8を比較的小さく伸張させる。制御装置は、第1ワイヤSA1~第8ワイヤSA8のそれぞれに供給される電流の大きさを個別に調整することによって第1ワイヤSA1~第8ワイヤSA8のそれぞれを上述のように伸縮させる。この制御装置による制御により、撮像素子駆動部DM1は、図12の上図の矢印AR23で示すように、ベース部材8に対してY1方向(左方)に撮像素子保持体2を並進させることができる。 When the control device translates the imaging element holder 2 in the Y1 direction (leftward) with respect to the base member 8, the first wire SA1 and the second wire SA2 are stretched relatively large as shown in the table of FIG. , the third wire SA3 and the fourth wire SA4 are shrunk relatively small, the fifth wire SA5 and the sixth wire SA6 are shrunk relatively large, and the seventh wire SA7 and the eighth wire SA8 are stretched relatively small. Let The control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8. Under the control of this control device, the imaging device driver DM1 can translate the imaging device holder 2 in the Y1 direction (to the left) with respect to the base member 8, as indicated by an arrow AR23 in the upper diagram of FIG. can.
 同様に、制御装置は、ベース部材8に対してY2方向(右方)に撮像素子保持体2を並進させる場合、図9の表に示すように、第1ワイヤSA1及び第2ワイヤSA2を比較的大きく収縮させ、第3ワイヤSA3及び第4ワイヤSA4を比較的小さく伸張させ、第5ワイヤSA5及び第6ワイヤSA6を比較的大きく伸張させ、且つ、第7ワイヤSA7及び第8ワイヤSA8を比較的小さく収縮させる。制御装置は、第1ワイヤSA1~第8ワイヤSA8のそれぞれに供給される電流の大きさを個別に調整することによって第1ワイヤSA1~第8ワイヤSA8のそれぞれを上述のように伸縮させる。この制御装置による制御により、撮像素子駆動部DM1は、図12の下図の矢印AR24で示すように、ベース部材8に対してY2方向(右方)に撮像素子保持体2を並進させることができる。 Similarly, when the control device translates the imaging element holder 2 in the Y2 direction (rightward) with respect to the base member 8, the first wire SA1 and the second wire SA2 are compared as shown in the table of FIG. The third wire SA3 and the fourth wire SA4 are stretched relatively little, the fifth wire SA5 and the sixth wire SA6 are stretched relatively greatly, and the seventh wire SA7 and the eighth wire SA8 are compared. contract small. The control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8. Under the control of this control device, the imaging device driver DM1 can translate the imaging device holder 2 in the Y2 direction (to the right) with respect to the base member 8, as indicated by an arrow AR24 in the lower diagram of FIG. .
 図13の上図は、ベース部材8に対してZ1方向(上方)に並進する撮像素子保持体2とベース部材8の正面図であり、図13の中央図は、中立状態における撮像素子保持体2とベース部材8の正面図であり、図13の下図は、ベース部材8に対してZ2方向(下方)に並進する撮像素子保持体2とベース部材8の正面図である。 The upper diagram in FIG. 13 is a front view of the imaging element holder 2 and the base member 8 that translate in the Z1 direction (upward) with respect to the base member 8, and the middle diagram in FIG. 13 is the imaging element holder in a neutral state. 13 is a front view of the image sensor holder 2 and the base member 8, and the lower view of FIG.
 制御装置は、ベース部材8に対してZ1方向(上方)に撮像素子保持体2を並進させる場合、図9の表に示すように、第1ワイヤSA1、第3ワイヤSA3、第5ワイヤSA5、及び第7ワイヤSA7を収縮させ、且つ、第2ワイヤSA2、第4ワイヤSA4、第6ワイヤSA6、及び第8ワイヤSA8を伸張させる。制御装置は、第1ワイヤSA1~第8ワイヤSA8のそれぞれに供給される電流の大きさを個別に調整することによって第1ワイヤSA1~第8ワイヤSA8のそれぞれを上述のように伸縮させる。この制御装置による制御により、撮像素子駆動部DM1は、図13の上図の矢印AR25で示すように、ベース部材8に対してZ1方向(上方)に撮像素子保持体2を並進させることができる。 When the control device translates the imaging element holder 2 in the Z1 direction (upward) with respect to the base member 8, as shown in the table of FIG. and the seventh wire SA7 are contracted, and the second wire SA2, the fourth wire SA4, the sixth wire SA6 and the eighth wire SA8 are stretched. The control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8. Under the control of this control device, the imaging device driver DM1 can translate the imaging device holder 2 in the Z1 direction (upward) with respect to the base member 8, as indicated by an arrow AR25 in the upper diagram of FIG. .
 同様に、制御装置は、ベース部材8に対してZ2方向(下方)に撮像素子保持体2を並進させる場合、図9の表に示すように、第1ワイヤSA1、第3ワイヤSA3、第5ワイヤSA5、及び第7ワイヤSA7を略同じ伸張量で伸張させ、且つ、第2ワイヤSA2、第4ワイヤSA4、第6ワイヤSA6、及び第8ワイヤSA8を略同じ収縮量で収縮させる。制御装置は、第1ワイヤSA1~第8ワイヤSA8のそれぞれに供給される電流の大きさを個別に調整することによって第1ワイヤSA1~第8ワイヤSA8のそれぞれを上述のように伸縮させる。この制御装置による制御により、撮像素子駆動部DM1は、図13の下図の矢印AR26で示すように、ベース部材8に対してZ2方向(下方)に撮像素子保持体2を並進させることができる。 Similarly, when the control device translates the imaging element holder 2 in the Z2 direction (downward) with respect to the base member 8, the first wire SA1, the third wire SA3, the fifth The wire SA5 and the seventh wire SA7 are stretched by approximately the same amount of stretching, and the second wire SA2, the fourth wire SA4, the sixth wire SA6 and the eighth wire SA8 are contracted by approximately the same amount of contraction. The control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8. Under the control of this control device, the image pickup device driver DM1 can translate the image pickup device holder 2 in the Z2 direction (downward) with respect to the base member 8, as indicated by an arrow AR26 in the lower diagram of FIG.
 図14の上図は、ベース部材8に対してX軸(第2回転軸RX2)の周りに時計回りに回転する撮像素子保持体2とベース部材8の正面図であり、図14の中央図は、中立状態における撮像素子保持体2とベース部材8の正面図であり、図14の下図は、ベース部材8に対してX軸(第2回転軸RX2)の周りに反時計回りに回転する撮像素子保持体2とベース部材8の正面図である。 14 is a front view of the imaging element holder 2 and the base member 8 rotating clockwise about the X-axis (second rotation axis RX2) with respect to the base member 8, and the center view of FIG. 14 is a front view of the imaging element holder 2 and the base member 8 in a neutral state, and the lower view of FIG. 2 is a front view of an imaging device holder 2 and a base member 8; FIG.
 制御装置は、正面視においてベース部材8に対してX軸(第2回転軸RX2)の周りに時計回りに撮像素子保持体2を回転させる場合、図9の表に示すように、第1ワイヤSA1~第3ワイヤSA3及び第8ワイヤSA8を略同じ収縮量で収縮させ、且つ、第4ワイヤSA4~第7ワイヤSA7を略同じ伸張量で伸張させる。制御装置は、第1ワイヤSA1~第8ワイヤSA8のそれぞれに供給される電流の大きさを個別に調整することによって第1ワイヤSA1~第8ワイヤSA8のそれぞれを上述のように伸縮させる。この制御装置による制御により、撮像素子駆動部DM1は、図14の上図の矢印AR27で示すように、ベース部材8に対してX軸(第2回転軸RX2)の周りに時計回りに撮像素子保持体2を回転させることができる。 When the control device rotates the imaging element holder 2 clockwise around the X axis (second rotation axis RX2) with respect to the base member 8 in a front view, the first wire The wires SA1 to the third wire SA3 and the eighth wire SA8 are contracted by approximately the same amount of contraction, and the fourth wire SA4 to the seventh wire SA7 are stretched by approximately the same extension amount. The control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8. Under the control of this control device, the image pickup device driver DM1 rotates the image pickup device clockwise around the X axis (second rotation axis RX2) with respect to the base member 8, as indicated by an arrow AR27 in the upper diagram of FIG. The holder 2 can be rotated.
 同様に、制御装置は、正面視においてベース部材8に対してX軸(第2回転軸RX2)の周りに反時計回りに撮像素子保持体2を回転させる場合、図9の表に示すように、第1ワイヤSA1~第3ワイヤSA3及び第8ワイヤSA8を略同じ伸張量で伸張させ、且つ、第4ワイヤSA4~第7ワイヤSA7を略同じ収縮量で収縮させる。制御装置は、第1ワイヤSA1~第8ワイヤSA8のそれぞれに供給される電流の大きさを個別に調整することによって第1ワイヤSA1~第8ワイヤSA8のそれぞれを上述のように伸縮させる。この制御装置による制御により、撮像素子駆動部DM1は、図14の下図の矢印AR28で示すように、ベース部材8に対してX軸(第2回転軸RX2)の周りに反時計回りに撮像素子保持体2を回転させることができる。 Similarly, when the control device rotates the imaging element holder 2 counterclockwise around the X axis (second rotation axis RX2) with respect to the base member 8 in a front view, as shown in the table of FIG. , the first wire SA1 to the third wire SA3 and the eighth wire SA8 are stretched by approximately the same stretching amount, and the fourth wire SA4 to the seventh wire SA7 are contracted by approximately the same shrinking amount. The control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8. Under the control of this control device, the image pickup device driver DM1 rotates the image pickup device counterclockwise around the X axis (second rotation axis RX2) with respect to the base member 8, as indicated by an arrow AR28 in the lower diagram of FIG. The holder 2 can be rotated.
 図15の上図は、ベース部材8に対してY軸(第3回転軸RX3)の周りに時計回りに回転する撮像素子保持体2とベース部材8の右側面図であり、図15の中央図は、中立状態における撮像素子保持体2とベース部材8の右側面図であり、図15の下図は、ベース部材8に対してY軸(第3回転軸RX3)の周りに反時計回りに回転する撮像素子保持体2とベース部材8の右側面図である。 The upper diagram in FIG. 15 is a right side view of the imaging element holder 2 rotating clockwise around the Y-axis (third rotation axis RX3) with respect to the base member 8 and the base member 8. The figure is a right side view of the imaging element holder 2 and the base member 8 in a neutral state, and the lower figure in FIG. 3 is a right side view of the rotating imaging element holder 2 and the base member 8. FIG.
 制御装置は、右側面視においてベース部材8に対してY軸(第3回転軸RX3)の周りに時計回りに撮像素子保持体2を回転させる場合、図9の表に示すように、第1ワイヤSA1、第3ワイヤSA3、第4ワイヤSA4、及び第6ワイヤSA6を略同じ収縮量で収縮させ、且つ、第2ワイヤSA2、第5ワイヤSA5、第7ワイヤSA7、及び第8ワイヤSA8を略同じ伸張量で伸張させる。制御装置は、第1ワイヤSA1~第8ワイヤSA8のそれぞれに供給される電流の大きさを個別に調整することによって第1ワイヤSA1~第8ワイヤSA8のそれぞれを上述のように伸縮させる。この制御装置による制御により、撮像素子駆動部DM1は、図15の上図の矢印AR29で示すように、ベース部材8に対してY軸(第3回転軸RX3)の周りに時計回りに撮像素子保持体2を回転させることができる。 When the control device rotates the imaging element holder 2 clockwise around the Y-axis (third rotation axis RX3) with respect to the base member 8 in the right side view, the first The wire SA1, the third wire SA3, the fourth wire SA4, and the sixth wire SA6 are contracted by substantially the same amount, and the second wire SA2, the fifth wire SA5, the seventh wire SA7, and the eighth wire SA8 are contracted. It is extended by approximately the same amount of extension. The control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8. Under the control of this control device, the image pickup device driver DM1 rotates the image pickup device clockwise around the Y axis (third rotation axis RX3) with respect to the base member 8, as indicated by an arrow AR29 in the upper diagram of FIG. The holder 2 can be rotated.
 同様に、制御装置は、右側面視においてベース部材8に対してY軸(第3回転軸RX3)の周りに反時計回りに撮像素子保持体2を回転させる場合、図9の表に示すように、第1ワイヤSA1、第3ワイヤSA3、第4ワイヤSA4、及び第6ワイヤSA6を略同じ伸張量で伸張させ、且つ、第2ワイヤSA2、第5ワイヤSA5、第7ワイヤSA7、及び第8ワイヤSA8を略同じ収縮量で収縮させる。制御装置は、第1ワイヤSA1~第8ワイヤSA8のそれぞれに供給される電流の大きさを個別に調整することによって第1ワイヤSA1~第8ワイヤSA8のそれぞれを上述のように伸縮させる。この制御装置による制御により、撮像素子駆動部DM1は、図15の下図の矢印AR30で示すように、ベース部材8に対してY軸(第3回転軸RX3)の周りに反時計回りに撮像素子保持体2を回転させることができる。 Similarly, when the control device rotates the imaging element holder 2 counterclockwise around the Y-axis (third rotation axis RX3) with respect to the base member 8 in the right side view, as shown in the table of FIG. , the first wire SA1, the third wire SA3, the fourth wire SA4, and the sixth wire SA6 are stretched by substantially the same amount of stretching, and the second wire SA2, the fifth wire SA5, the seventh wire SA7, and the The 8-wire SA8 is shrunk by approximately the same amount of shrinkage. The control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8. Under the control of this control device, the image pickup device driver DM1 rotates the image pickup device counterclockwise around the Y axis (third rotation axis RX3) with respect to the base member 8, as indicated by an arrow AR30 in the lower diagram of FIG. The holder 2 can be rotated.
 図16の上図は、ベース部材8に対してZ軸(第1回転軸RX1)の周りに時計回りに回転する撮像素子保持体2とベース部材8の上面図であり、図16の中央図は、中立状態における撮像素子保持体2とベース部材8の上面図であり、図16の下図は、ベース部材8に対してZ軸(第1回転軸RX1)の周りに反時計回りに回転する撮像素子保持体2とベース部材8の上面図である。 16 is a top view of the base member 8 and the imaging element holder 2 rotating clockwise about the Z-axis (first rotation axis RX1) with respect to the base member 8, and the center view of FIG. 16 is a top view of the imaging element holder 2 and the base member 8 in a neutral state, and the lower view of FIG. 2 is a top view of an imaging device holder 2 and a base member 8; FIG.
 制御装置は、上面視においてベース部材8に対してZ軸(第1回転軸RX1)の周りに時計回りに撮像素子保持体2を回転させる場合、図9の表に示すように、第1ワイヤSA1、第2ワイヤSA2、第5ワイヤSA5、及び第6ワイヤSA6を略同じ伸張量で伸張させ、且つ、第3ワイヤSA3、第4ワイヤSA4、第7ワイヤSA7、及び第8ワイヤSA8を略同じ収縮量で収縮させる。制御装置は、第1ワイヤSA1~第8ワイヤSA8のそれぞれに供給される電流の大きさを個別に調整することによって第1ワイヤSA1~第8ワイヤSA8のそれぞれを上述のように伸縮させる。この制御装置による制御により、撮像素子駆動部DM1は、図16の上図の矢印AR31で示すように、ベース部材8に対してZ軸(第1回転軸RX1)の周りに時計回りに撮像素子保持体2を回転させることができる。 When the control device rotates the imaging element holder 2 clockwise around the Z-axis (first rotation axis RX1) with respect to the base member 8 in top view, the first wire The SA1, the second wire SA2, the fifth wire SA5, and the sixth wire SA6 are stretched by substantially the same amount of stretching, and the third wire SA3, the fourth wire SA4, the seventh wire SA7, and the eighth wire SA8 are stretched substantially. Shrink with the same amount of shrinkage. The control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8. Under the control of this control device, the image pickup device driver DM1 rotates the image pickup device clockwise around the Z axis (first rotation axis RX1) with respect to the base member 8, as indicated by an arrow AR31 in the upper diagram of FIG. The holder 2 can be rotated.
 同様に、制御装置は、上面視においてベース部材8に対してZ軸(第1回転軸RX1)の周りに反時計回りに撮像素子保持体2を回転させる場合、図9の表に示すように、第1ワイヤSA1、第2ワイヤSA2、第5ワイヤSA5、及び第6ワイヤSA6を略同じ収縮量で収縮させ、且つ、第3ワイヤSA3、第4ワイヤSA4、第7ワイヤSA7、及び第8ワイヤSA8を略同じ伸張量で伸張させる。制御装置は、第1ワイヤSA1~第8ワイヤSA8のそれぞれに供給される電流の大きさを個別に調整することによって第1ワイヤSA1~第8ワイヤSA8のそれぞれを上述のように伸縮させる。この制御装置による制御により、撮像素子駆動部DM1は、図16の下図の矢印AR32で示すように、ベース部材8に対してZ軸(第1回転軸RX1)の周りに反時計回りに撮像素子保持体2を回転させることができる。 Similarly, when the control device rotates the imaging element holder 2 counterclockwise around the Z-axis (first rotation axis RX1) with respect to the base member 8 in top view, as shown in the table of FIG. , the first wire SA1, the second wire SA2, the fifth wire SA5, and the sixth wire SA6 are contracted by substantially the same contraction amount, and the third wire SA3, the fourth wire SA4, the seventh wire SA7, and the eighth wire SA7 are contracted by approximately the same contraction amount. The wire SA8 is stretched by approximately the same stretch amount. The control device expands and contracts each of the first wire SA1 through eighth wire SA8 as described above by individually adjusting the magnitude of the current supplied to each of first wire SA1 through eighth wire SA8. Under the control of this control device, the image pickup device driver DM1 rotates the image pickup device counterclockwise around the Z axis (first rotation axis RX1) with respect to the base member 8, as indicated by an arrow AR32 in the lower diagram of FIG. The holder 2 can be rotated.
 以上のように、撮像素子保持体2は、6自由度の動きをすることができる。この6自由度の動きのそれぞれは、第1ワイヤSA1~第8ワイヤSA8のそれぞれに供給される電流を個別に調整することによって実現される。撮像素子保持体2の動きは、6自由度の動きのうちの複数を組み合わせて実現されてもよい。なお、本実施形態では、第1ワイヤSA1~第8ワイヤSA8のうちの一つ又は複数に電流を流すことによって、対応する形状記憶合金ワイヤSAが収縮すると撮像素子保持体2が移動する。そして、その移動によって、第1ワイヤSA1~第8ワイヤSA8のうちの別の一つ又は複数が引き延ばされることで、形状記憶合金ワイヤSAの伸張を実現している。 As described above, the imaging device holder 2 can move with 6 degrees of freedom. Each of these six degrees of freedom of movement is realized by individually adjusting the current supplied to each of the first wire SA1 to the eighth wire SA8. The movement of the imaging device holder 2 may be realized by combining a plurality of movements of the six degrees of freedom. In the present embodiment, the imaging element holder 2 moves when the corresponding shape memory alloy wire SA contracts by applying current to one or more of the first wire SA1 to the eighth wire SA8. By the movement, another one or more of the first wire SA1 to the eighth wire SA8 are stretched, thereby realizing the stretching of the shape memory alloy wire SA.
 上述のような第1可動側部材MB1の6自由度の動きは、図示しない動作検出部によって検出される。動作検出部は、例えば、撮像素子保持体2等の第1可動側部材MB1に取り付けられる少なくとも三つの磁石と、ベース部材8等の固定側部材FB又は可撓性基板3に取り付けられる少なくとも三つの磁気センサとによって構成される。 The six-degree-of-freedom motion of the first movable member MB1 as described above is detected by a motion detector (not shown). The motion detection unit includes, for example, at least three magnets attached to the first movable side member MB1 such as the image pickup element holder 2, and at least three magnets attached to the fixed side member FB such as the base member 8 or the flexible substrate 3. and a magnetic sensor.
 磁気センサは、磁石の位置を検出することによって第1可動側部材MB1の位置を検出できるように構成されている。本実施形態では、磁気センサは、ホール素子を利用して第1可動側部材MB1の位置を検出できるように構成されている。但し、磁気センサは、磁石が発生させる磁界を検出可能な巨大磁気抵抗効果(Giant Magneto Resistive effect: GMR)素子、半導体磁気抵抗(Semiconductor Magneto Resistive: SMR)素子、異方性磁気抵抗(Anisotropic Magneto Resistive: AMR)素子、又はトンネル磁気抵抗(Tunnel Magneto Resistive: TMR)素子等の磁気抵抗素子を利用して第1可動側部材MB1の位置を検出できるように構成されていてもよい。 The magnetic sensor is configured to detect the position of the first movable member MB1 by detecting the position of the magnet. In this embodiment, the magnetic sensor is configured to detect the position of the first movable member MB1 using a Hall element. However, the magnetic sensor is a Giant Magneto Resistive effect (GMR) element that can detect the magnetic field generated by a magnet, a Semiconductor Magneto Resistive (SMR) element, an Anisotropic Magneto Resistive The position of the first movable side member MB1 may be detected using a magnetoresistive element such as a Tunnel Magneto Resistive (TMR) element or a Tunnel Magneto Resistive (TMR) element.
 次に、図17を参照し、レンズ駆動装置LDについて説明する。図17は、レンズ駆動装置LDの分解斜視図である。 Next, the lens driving device LD will be described with reference to FIG. FIG. 17 is an exploded perspective view of the lens driving device LD.
 レンズ駆動装置LDは、図17に示すように、レンズ駆動部DM2、レンズ保持体20、上側金属部材50、上側弾性金属部材60、及び上側ベース部材80を含む。 The lens driving device LD includes a lens driving section DM2, a lens holder 20, an upper metal member 50, an upper elastic metal member 60, and an upper base member 80, as shown in FIG.
 レンズ駆動部DM2は、形状記憶アクチュエータの一例である上側形状記憶合金ワイヤSBを含む。本実施形態では、上側形状記憶合金ワイヤSBは、略同じ長さと略同じ直径を有する第1ワイヤSB1~第8ワイヤSB8を含む。第1ワイヤSB1~第8ワイヤSB8のそれぞれは、第1ワイヤSA1~第8ワイヤSA8のそれぞれと略同じ長さ及び略同じ直径を有していてもよい。上側形状記憶合金ワイヤSBは、形状記憶合金ワイヤSAと同様に、電流が流れると温度が上昇し、その温度の上昇に応じて収縮する。レンズ駆動部DM2は、上側形状記憶合金ワイヤSBの収縮を利用してレンズ保持体20を移動させることができる。なお、上側形状記憶合金ワイヤSBは、第1ワイヤSB1~第8ワイヤSB8のうちの一つ又は複数が収縮するとレンズ保持体20が移動し、その移動によって別の一つ又は複数が引き延ばされる(伸張される)ように構成されている。 The lens driver DM2 includes an upper shape memory alloy wire SB, which is an example of a shape memory actuator. In this embodiment, the upper shape memory alloy wires SB include first to eighth wires SB1 to SB8 having substantially the same length and substantially the same diameter. Each of the first wire SB1 to eighth wire SB8 may have substantially the same length and substantially the same diameter as each of the first wire SA1 to eighth wire SA8. As with the shape memory alloy wire SA, the upper shape memory alloy wire SB increases in temperature when current flows, and contracts according to the increase in temperature. The lens driver DM2 can move the lens holder 20 by utilizing contraction of the upper shape memory alloy wire SB. When one or more of the first wire SB1 to the eighth wire SB8 contract, the upper shape memory alloy wire SB moves the lens holder 20, and the other one or more of the upper shape memory alloy wires SB are stretched. (decompressed).
 本実施形態では、レンズ駆動部DM2は、第2可動側部材MB2の6自由度の動きを実現できるように構成されている。6自由度の動きは、レンズ体LS(図18参照。)の光軸に平行な第1方向(Z軸方向)における並進と、第1方向に垂直な第2方向(X軸方向)における並進、第1方向及び第2方向に垂直な第3方向(Y軸方向)における並進、第1方向(Z軸方向)の周りの回転、第2方向(X軸方向)の周りの回転、並びに、第3方向(Y軸方向)の周りの回転を含む。なお、光軸に平行な方向は、第4回転軸RX4に平行な方向であり、第2方向(X軸方向)は、第5回転軸RX5に平行な方向であり、第3方向(Y軸方向)は、第6回転軸RX6に平行な方向である。また、レンズ体LSは、例えば、少なくとも1枚のレンズを備えた筒状のレンズバレルである。なお、第4回転軸RX4は、レンズ体LSの光軸と一致している。 In this embodiment, the lens driving section DM2 is configured so as to be able to move the second movable side member MB2 with six degrees of freedom. The six-degree-of-freedom movement consists of translation in a first direction (Z-axis direction) parallel to the optical axis of the lens body LS (see FIG. 18) and translation in a second direction (X-axis direction) perpendicular to the first direction. , translation in a third direction (Y-axis direction) perpendicular to the first and second directions, rotation about the first direction (Z-axis direction), rotation about a second direction (X-axis direction), and Includes rotation about a third direction (the Y-axis direction). The direction parallel to the optical axis is the direction parallel to the fourth rotation axis RX4, the second direction (X-axis direction) is the direction parallel to the fifth rotation axis RX5, and the third direction (Y-axis direction) is a direction parallel to the sixth rotation axis RX6. Also, the lens body LS is, for example, a cylindrical lens barrel having at least one lens. It should be noted that the fourth rotation axis RX4 coincides with the optical axis of the lens body LS.
 具体的には、第2可動側部材MB2の6自由度の動きは、図9~図16を参照して説明された撮像素子駆動部DM1(形状記憶合金ワイヤSA)によって実現される撮像素子保持体2の6自由度の動きと同様の方法で、レンズ駆動部DM2(上側形状記憶合金ワイヤSB)によって実現される。 Specifically, the motion of the second movable-side member MB2 with six degrees of freedom is realized by the image pickup element driving section DM1 (shape memory alloy wire SA) described with reference to FIGS. In a manner similar to the six degrees of freedom movement of the body 2, it is realized by the lens driver DM2 (upper shape memory alloy wire SB).
 より具体的には、第2可動側部材MB2の6自由度の動きのそれぞれは、第1ワイヤSB1~第8ワイヤSB8のそれぞれに供給される電流を個別に調整することによって実現される。第2可動側部材MB2の動きは、6自由度の動きのうちの複数を組み合わせて実現されてもよい。なお、本実施形態では、第1ワイヤSB1~第8ワイヤSB8のうちの一つ又は複数に電流を流すことによって、対応する上側形状記憶合金ワイヤSBが収縮すると第2可動側部材MB2が移動する。そして、その移動によって、第1ワイヤSB1~第8ワイヤSB8のうちの別の一つ又は複数が引き延ばされることで、上側形状記憶合金ワイヤSBの伸張を実現している。 More specifically, each movement of the second movable side member MB2 with six degrees of freedom is realized by individually adjusting the current supplied to each of the first wire SB1 to the eighth wire SB8. The movement of the second movable-side member MB2 may be realized by combining a plurality of movements of the six degrees of freedom. In the present embodiment, the second movable member MB2 moves when the corresponding upper shape memory alloy wire SB contracts by applying current to one or more of the first wire SB1 to the eighth wire SB8. . By this movement, another one or more of the first wire SB1 to the eighth wire SB8 are stretched, thereby realizing the stretching of the upper shape memory alloy wire SB.
 また、上述のような第2可動側部材MB2の6自由度の動きは、第1可動側部材MB1の場合と同様に、図示しない動作検出部によって検出される。動作検出部は、例えば、レンズ保持体20等の第2可動側部材MB2に取り付けられる少なくとも三つの磁石と、上側ベース部材80等の固定側部材FBに取り付けられる少なくとも三つの磁気センサとによって構成される。 Further, the movement of the second movable side member MB2 with six degrees of freedom as described above is detected by a motion detection section (not shown) as in the case of the first movable side member MB1. The motion detector is composed of, for example, at least three magnets attached to the second movable side member MB2 such as the lens holder 20, and at least three magnetic sensors attached to the fixed side member FB such as the upper base member 80. be.
 磁気センサは、磁石の位置を検出することによって第2可動側部材MB2の位置を検出できるように構成されている。本実施形態では、磁気センサは、ホール素子を利用して第2可動側部材MB2の位置を検出できるように構成されている。但し、磁気センサは、磁気抵抗素子を利用して第2可動側部材MB2の位置を検出できるように構成されていてもよい。 The magnetic sensor is configured to detect the position of the second movable member MB2 by detecting the position of the magnet. In this embodiment, the magnetic sensor is configured to detect the position of the second movable member MB2 using a Hall element. However, the magnetic sensor may be configured to detect the position of the second movable member MB2 using a magnetoresistive element.
 第2可動側部材MB2は、レンズ駆動部DM2によって駆動される部材であり、レンズ体LSを保持可能なレンズ保持体20を含む。 The second movable side member MB2 is a member driven by the lens driving section DM2 and includes a lens holder 20 capable of holding the lens body LS.
 レンズ保持体20は、液晶ポリマー(LCP)等の合成樹脂を射出成形することで形成されている。具体的には、レンズ保持体20は、図17に示すように、上面視で略矩形枠状の外形を有する枠体20Fと、枠体20Fの四つの角部のうちの二つに形成された可動側台座部20Dと、枠体20Fの四つの角部のうちの残りの二つに形成された突設部20Sと、を含む。本実施形態では、枠体20Fは、円柱状の貫通孔を有し、レンズ体LSは、枠体20Fの円筒内面に接着剤で接合されるように構成されている。 The lens holder 20 is formed by injection molding synthetic resin such as liquid crystal polymer (LCP). Specifically, as shown in FIG. 17, the lens holder 20 is formed at two of the four corners of the frame body 20F, which has a substantially rectangular frame shape when viewed from above, and the four corners of the frame body 20F. and a movable-side pedestal portion 20D, and projecting portions 20S formed at the remaining two of the four corners of the frame 20F. In this embodiment, the frame 20F has a cylindrical through hole, and the lens body LS is configured to be bonded to the cylindrical inner surface of the frame 20F with an adhesive.
 可動側台座部20Dは、第1可動側台座部20D1及び第2可動側台座部20D2を含む。第1可動側台座部20D1及び第2可動側台座部20D2は、レンズ体LSの光軸でもある第4回転軸RX4を挟んで互いに対向するように配置されている。同様に、突設部20Sは、第1突設部20S1及び第2突設部20S2を含む。第1突設部20S1及び第2突設部20S2は、第4回転軸RX4を挟んで互いに対向するように配置されている。具体的には、可動側台座部20D及び突設部20Sは、上面視で略矩形状の外形を有するレンズ保持体20(枠体20F)の四つの角部に対応するように配置され、且つ、交互に並ぶように配置されている。そして、二つの可動側台座部20Dのそれぞれには、図18に示すように、上側弾性金属部材60の一部が載置される。 The movable-side pedestal portion 20D includes a first movable-side pedestal portion 20D1 and a second movable-side pedestal portion 20D2. The first movable-side pedestal portion 20D1 and the second movable-side pedestal portion 20D2 are arranged so as to face each other across the fourth rotation axis RX4, which is also the optical axis of the lens body LS. Similarly, the projecting portion 20S includes a first projecting portion 20S1 and a second projecting portion 20S2. The first projecting portion 20S1 and the second projecting portion 20S2 are arranged to face each other with the fourth rotation axis RX4 interposed therebetween. Specifically, the movable-side pedestal portion 20D and the projecting portion 20S are arranged so as to correspond to the four corners of the lens holding body 20 (frame body 20F) having a substantially rectangular outer shape when viewed from above, and , are arranged alternately. A part of the upper elastic metal member 60 is placed on each of the two movable-side pedestals 20D, as shown in FIG.
 図18は、レンズ保持体20と上側ベース部材80とに接続された上側弾性金属部材60の斜視図であり、レンズ保持体20及び上側ベース部材80のそれぞれと上側弾性金属部材60との間の位置関係を示している。なお、図18では、明瞭化のため、レンズ保持体20に細かいドットパターンが付され、上側ベース部材80に粗いドットパターンが付されている。また、図18では、明瞭化のため、レンズ体LS、レンズ保持体20、上側弾性金属部材60、及び上側ベース部材80以外の部材の図示が省略されている。 FIG. 18 is a perspective view of the upper elastic metal member 60 connected to the lens holder 20 and the upper base member 80. FIG. It shows the positional relationship. In FIG. 18, for clarity, the lens holder 20 has a fine dot pattern, and the upper base member 80 has a coarse dot pattern. 18, members other than the lens body LS, the lens holder 20, the upper elastic metal member 60, and the upper base member 80 are omitted for clarity.
 上側弾性金属部材60は、固定側部材FB(上側ベース部材80)に対してレンズ保持体20を移動可能に接続できるように構成されている。本実施形態では、上側弾性金属部材60は、例えば、銅合金、チタン銅系合金(チタン銅)、又は銅ニッケル合金(ニッケルすず銅)等を主な材料とした導電性の金属板から作製されている。上側弾性金属部材60は、板ばねであってもよい。 The upper elastic metal member 60 is configured so that the lens holder 20 can be movably connected to the fixed side member FB (upper base member 80). In this embodiment, the upper elastic metal member 60 is made of a conductive metal plate mainly made of a copper alloy, a titanium-copper alloy (titanium-copper), or a copper-nickel alloy (nickel-tin-copper), for example. ing. The upper elastic metal member 60 may be a leaf spring.
 上側ベース部材80は、液晶ポリマー(LCP)等の合成樹脂を用いた射出成形によって形成される。本実施形態では、上側ベース部材80は、上面視で略矩形枠状の輪郭を有し、中央に開口80Kを有する。具体的には、上側ベース部材80は、開口80Kを囲むように配置される四つの辺部80E(第1辺部80E1~第4辺部80E4)を有する。 The upper base member 80 is formed by injection molding using synthetic resin such as liquid crystal polymer (LCP). In the present embodiment, the upper base member 80 has a substantially rectangular frame-like contour when viewed from above, and has an opening 80K in the center. Specifically, the upper base member 80 has four side portions 80E (first side portion 80E1 to fourth side portion 80E4) arranged to surround the opening 80K.
 より具体的には、上側ベース部材80は、図17に示すように、上側ベース部材80の四つの角部のうちの二つに形成された固定側台座部80Dを含む。固定側台座部80Dは、上側ベース部材80の板状の基部から上方(Z1方向)に突出している。そして、固定側台座部80Dは、第1固定側台座部80D1及び第2固定側台座部80D2を含む。第1固定側台座部80D1及び第2固定側台座部80D2は、第4回転軸RX4を挟んで互いに対向するように配置されている。また、図18に示すように、第1固定側台座部80D1は、レンズ保持体20の第1突設部20S1と対向するように配置され、第2固定側台座部80D2は、レンズ保持体20の第2突設部20S2と対向するように配置されている。 More specifically, the upper base member 80 includes fixed side pedestals 80D formed at two of the four corners of the upper base member 80, as shown in FIG. The fixed-side pedestal portion 80D protrudes upward (in the Z1 direction) from the plate-like base portion of the upper base member 80 . The fixed side seat portion 80D includes a first fixed side seat portion 80D1 and a second fixed side seat portion 80D2. The first fixed side seat portion 80D1 and the second fixed side seat portion 80D2 are arranged so as to face each other with the fourth rotation axis RX4 interposed therebetween. Further, as shown in FIG. 18, the first fixed side pedestal portion 80D1 is arranged to face the first projecting portion 20S1 of the lens holder 20, and the second fixed side pedestal portion 80D2 is arranged to face the lens holder 20. is arranged so as to face the second projecting portion 20S2.
 上側弾性金属部材60は、レンズ保持体20に形成された可動側台座部20Dと、上側ベース部材80に形成された固定側台座部80Dとを繋ぐように構成されている。具体的には、上側弾性金属部材60は、図18に示すように、レンズ保持体20に形成された第1可動側台座部20D1に取り付けられる第1固定部60e1と、上側ベース部材80に形成された第1固定側台座部80D1に取り付けられる第2固定部60e2と、レンズ保持体20に形成された第2可動側台座部20D2に取り付けられる第3固定部60e3と、上側ベース部材80に形成された第2固定側台座部80D2に取り付けられる第4固定部60e4と、を有する。また、上側弾性金属部材60は、図18に示すように、第1固定部60e1と第2固定部60e2とを繋ぐ弾性変形可能な第1腕部60g1、第2固定部60e2と第3固定部60e3とを繋ぐ弾性変形可能な第2腕部60g2、第3固定部60e3と第4固定部60e4とを繋ぐ弾性変形可能な第3腕部60g3、及び、第4固定部60e4と第1固定部60e1とを繋ぐ弾性変形可能な第4腕部60g4を有する。 The upper elastic metal member 60 is configured to connect the movable side pedestal portion 20D formed on the lens holder 20 and the fixed side pedestal portion 80D formed on the upper base member 80 . Specifically, as shown in FIG. 18, the upper elastic metal member 60 is formed on the first fixed portion 60e1 attached to the first movable side pedestal portion 20D1 formed on the lens holder 20, and on the upper base member 80. a second fixed portion 60e2 attached to the first fixed side pedestal portion 80D1, a third fixed portion 60e3 attached to the second movable side pedestal portion 20D2 formed in the lens holder 20; and a fourth fixing portion 60e4 attached to the second fixed side pedestal portion 80D2. 18, the upper elastic metal member 60 includes an elastically deformable first arm portion 60g1 connecting the first fixing portion 60e1 and the second fixing portion 60e2, a second fixing portion 60e2 and a third fixing portion 60e2. 60e3, an elastically deformable second arm portion 60g2 that connects the third fixing portion 60e3 and the fourth fixing portion 60e4, and an elastically deformable third arm portion 60g3 that connects the fourth fixing portion 60e4 and the first fixing portion. 60e1 and an elastically deformable fourth arm 60g4.
 上側金属部材50は、図17に示すように、上側形状記憶合金ワイヤSBの端部が固定されるように構成されている。本実施形態では、上側金属部材50は、固定側金属部材50F及び可動側金属部材50Mを含む。固定側金属部材50Fは、上側ベース部材80の固定側台座部80Dに固定されるように構成されている。可動側金属部材50Mは、レンズ保持体20の可動側台座部20Dに固定されるように構成されている。 As shown in FIG. 17, the upper metal member 50 is configured such that the ends of the upper shape memory alloy wires SB are fixed. In this embodiment, the upper metal member 50 includes a fixed metal member 50F and a movable metal member 50M. The fixed-side metal member 50F is configured to be fixed to the fixed-side pedestal portion 80D of the upper base member 80. As shown in FIG. The movable-side metal member 50M is configured to be fixed to the movable-side pedestal portion 20D of the lens holder 20. As shown in FIG.
 固定側金属部材50Fは、固定側ターミナルプレートとも称され、第1固定側ターミナルプレート50F1~第8固定側ターミナルプレート50F8を含む。可動側金属部材50Mは、可動側ターミナルプレートとも称され、第1可動側ターミナルプレート50M1及び第2可動側ターミナルプレート50M2を含む。 The fixed-side metal member 50F is also called a fixed-side terminal plate, and includes a first fixed-side terminal plate 50F1 to an eighth fixed-side terminal plate 50F8. The movable-side metal member 50M is also called a movable-side terminal plate, and includes a first movable-side terminal plate 50M1 and a second movable-side terminal plate 50M2.
 次に、図19A及び図19Bを参照し、レンズ保持体20及び上側ベース部材80のそれぞれと上側金属部材50との間の位置関係について説明する。図19Aは、可動側金属部材50M(可動側ターミナルプレート)が取り付けられたレンズ保持体20の斜視図である。図19Bは、固定側金属部材50F(固定側ターミナルプレート)が取り付けられた上側ベース部材80の斜視図である。なお、明瞭化のため、図19Aでは、可動側金属部材50Mにドットパターンが付され、図19Bでは、固定側金属部材50Fにドットパターンが付されている。 Next, the positional relationship between the lens holder 20 and the upper base member 80 and the upper metal member 50 will be described with reference to FIGS. 19A and 19B. FIG. 19A is a perspective view of the lens holder 20 to which the movable-side metal member 50M (movable-side terminal plate) is attached. FIG. 19B is a perspective view of the upper base member 80 to which the fixed-side metal member 50F (fixed-side terminal plate) is attached. For clarity, in FIG. 19A, a dot pattern is given to the movable metal member 50M, and in FIG. 19B, a dot pattern is given to the fixed side metal member 50F.
 図19Aに示す例では、第1可動側ターミナルプレート50M1は、第1可動側台座部20D1のX1側の側壁(前側取付面)及びY2側の側壁(右側取付面)に固定されている。具体的には、第1可動側台座部20D1の上面に形成された溝部20G(図17参照。)と第1可動側ターミナルプレート50M1に形成された折り曲げ片BPとがかみ合った状態で、第1可動側ターミナルプレート50M1は、接着剤により第1可動側台座部20D1に固定されている。接着剤は、例えば、光硬化型接着剤である。光硬化型接着剤は、例えば、紫外線硬化型接着剤又は可視光硬化型接着剤等である。同様に、第2可動側ターミナルプレート50M2は、第2可動側台座部20D2のX2側の側壁(後側取付面)及びY1側の側壁(左側取付面)に固定されている。具体的には、第2可動側台座部20D2の上面に形成された溝部20G(図17参照。)と第2可動側ターミナルプレート50M2に形成された折り曲げ片BPとがかみ合った状態で、第2可動側ターミナルプレート50M2は、接着剤により第2可動側台座部20D2に固定されている。 In the example shown in FIG. 19A, the first movable terminal plate 50M1 is fixed to the X1 side wall (front mounting surface) and the Y2 side wall (right mounting surface) of the first movable pedestal portion 20D1. Specifically, in a state in which the groove 20G (see FIG. 17) formed on the upper surface of the first movable-side pedestal 20D1 and the bent piece BP formed on the first movable-side terminal plate 50M1 are engaged with each other, the first The movable terminal plate 50M1 is fixed to the first movable pedestal 20D1 with an adhesive. The adhesive is, for example, a photocurable adhesive. The photocurable adhesive is, for example, an ultraviolet curable adhesive or a visible light curable adhesive. Similarly, the second movable terminal plate 50M2 is fixed to the X2 side wall (rear mounting surface) and the Y1 side wall (left mounting surface) of the second movable pedestal portion 20D2. Specifically, in a state in which the groove 20G (see FIG. 17) formed on the upper surface of the second movable side pedestal portion 20D2 and the bent piece BP formed on the second movable side terminal plate 50M2 are engaged with each other, the second The movable terminal plate 50M2 is fixed to the second movable pedestal 20D2 with an adhesive.
 図19Bに示す例では、第1固定側ターミナルプレート50F1及び第2固定側ターミナルプレート50F2は、上側ベース部材80の第1辺部80E1に沿って配置された第1固定側台座部80D1のX1側の側壁(前側取付面)に固定されている。具体的には、第1固定側ターミナルプレート50F1及び第2固定側ターミナルプレート50F2は、接着剤により第1固定側台座部80D1の側壁(前側取付面)に固定されている。接着剤は、例えば、光硬化型接着剤である。光硬化型接着剤は、例えば、紫外線硬化型接着剤又は可視光硬化型接着剤等である。同様に、第3固定側ターミナルプレート50F3及び第4固定側ターミナルプレート50F4(図19Bでは不可視。)は、上側ベース部材80の第2辺部80E2に沿って配置された第1固定側台座部80D1のY1側の側壁(左側取付面)に固定されている。また、第5固定側ターミナルプレート50F5及び第6固定側ターミナルプレート50F6(図19Bでは不可視。)は、上側ベース部材80の第3辺部80E3に沿って配置された第2固定側台座部80D2のX2側の側壁(後側取付面)に固定されている。そして、第7固定側ターミナルプレート50F7及び第8固定側ターミナルプレート50F8は、上側ベース部材80の第4辺部80E4に沿って配置された第2固定側台座部80D2のY2側の側壁(右側取付面)に固定されている。 In the example shown in FIG. 19B, the first stationary terminal plate 50F1 and the second stationary terminal plate 50F2 are arranged along the first side 80E1 of the upper base member 80 on the X1 side of the first stationary pedestal 80D1. is fixed to the side wall (front mounting surface) of the Specifically, the first fixed-side terminal plate 50F1 and the second fixed-side terminal plate 50F2 are fixed to the side wall (front mounting surface) of the first fixed-side pedestal portion 80D1 with an adhesive. The adhesive is, for example, a photocurable adhesive. The photocurable adhesive is, for example, an ultraviolet curable adhesive or a visible light curable adhesive. Similarly, the third fixed-side terminal plate 50F3 and the fourth fixed-side terminal plate 50F4 (not visible in FIG. 19B) are arranged along the second side 80E2 of the upper base member 80 on the first fixed-side pedestal portion 80D1. is fixed to the side wall (left mounting surface) on the Y1 side of the . Also, the fifth fixed side terminal plate 50F5 and the sixth fixed side terminal plate 50F6 (not visible in FIG. 19B) are attached to the second fixed side pedestal portion 80D2 arranged along the third side portion 80E3 of the upper base member 80. It is fixed to the side wall (rear mounting surface) on the X2 side. The seventh stationary terminal plate 50F7 and the eighth stationary terminal plate 50F8 are arranged along the fourth side 80E4 of the upper base member 80 on the Y2 side wall of the second stationary pedestal 80D2 (right side mounting). surface).
 上側形状記憶合金ワイヤSBは、カバー部材4の外周壁部4Aの内面に沿うように延びており、固定側部材FBに対して第2可動側部材MB2を移動可能に支持できるように構成されている。本実施形態では、上側形状記憶合金ワイヤSBは、第1ワイヤSB1~第8ワイヤSB8を含み、固定側部材FBとしての上側ベース部材80に対して、第2可動側部材MB2としてのレンズ保持体20を移動可能に支持できるように構成されている。第1ワイヤSB1~第8ワイヤSB8のそれぞれは、図17に示すように、一端が圧着又は溶接等により固定側金属部材50Fに固着され、且つ、他端が圧着又は溶接等により可動側金属部材50Mに固着されている。 The upper shape memory alloy wire SB extends along the inner surface of the outer peripheral wall portion 4A of the cover member 4, and is configured to movably support the second movable side member MB2 with respect to the fixed side member FB. there is In this embodiment, the upper shape memory alloy wires SB include the first wire SB1 to the eighth wire SB8, and the upper base member 80 as the fixed side member FB and the lens holding body as the second movable side member MB2. 20 can be movably supported. As shown in FIG. 17, each of the first wire SB1 to the eighth wire SB8 has one end fixed to the stationary side metal member 50F by crimping or welding, and the other end being crimped or welded to the movable side metal member. It is attached to 50M.
 次に、図20A及び図20Bを参照し、上側形状記憶合金ワイヤSBが取り付けられる上側金属部材50について説明する。図20Aは、第1可動側ターミナルプレート50M1及び第7固定側ターミナルプレート50F7のそれぞれに取り付けられた第7ワイヤSB7、並びに、第1可動側ターミナルプレート50M1及び第8固定側ターミナルプレート50F8のそれぞれに取り付けられた第8ワイヤSB8をY2側から見たときの図である。図20Bは、第1可動側ターミナルプレート50M1及び第7固定側ターミナルプレート50F7のそれぞれに取り付けられた第7ワイヤSB7、並びに、第1可動側ターミナルプレート50M1及び第8固定側ターミナルプレート50F8のそれぞれに取り付けられた第8ワイヤSB8をX1側から見たときの図である。なお、図20A及び図20Bに示す各部材の位置関係は、カメラモジュールMDが組み立てられたときの位置関係に対応している。そして、図20A及び図20Bでは、明瞭化のため、他の部材の図示が省略されている。また、図20A及び図20Bを参照する以下の説明は、第7ワイヤSB7及び第8ワイヤSB8の組み合わせに関するが、第1ワイヤSB1及び第2ワイヤSB2の組み合わせ、第3ワイヤSB3及び第4ワイヤSB4の組み合わせ、並びに、第5ワイヤSB5及び第6ワイヤSB6の組み合わせについても同様に適用される。 Next, the upper metal member 50 to which the upper shape memory alloy wire SB is attached will be described with reference to FIGS. 20A and 20B. FIG. 20A shows the seventh wire SB7 attached to each of the first movable terminal plate 50M1 and seventh fixed terminal plate 50F7, and the first movable terminal plate 50M1 and eighth fixed terminal plate 50F8. It is a figure when seeing attached 8th wire SB8 from the Y2 side. FIG. 20B shows a seventh wire SB7 attached to each of the first movable-side terminal plate 50M1 and the seventh fixed-side terminal plate 50F7, and each of the first movable-side terminal plate 50M1 and the eighth fixed-side terminal plate 50F8. It is a figure when the 8th wire SB8 attached is seen from the X1 side. Note that the positional relationship of each member shown in FIGS. 20A and 20B corresponds to the positional relationship when the camera module MD is assembled. 20A and 20B, illustration of other members is omitted for clarity. Also, the following description with reference to FIGS. 20A and 20B relates to the combination of the seventh wire SB7 and the eighth wire SB8, the combination of the first wire SB1 and the second wire SB2, the third wire SB3 and the fourth wire SB4. and the combination of the fifth wire SB5 and the sixth wire SB6.
 具体的には、第7ワイヤSB7の一端は、第7固定側ターミナルプレート50F7の保持部J2のところで第7固定側ターミナルプレート50F7に固定され、第7ワイヤSB7の他端は、第1可動側ターミナルプレート50M1の下側の保持部J1のところで第1可動側ターミナルプレート50M1に固定されている。同様に、第8ワイヤSB8の一端は、第8固定側ターミナルプレート50F8の保持部J4のところで第8固定側ターミナルプレート50F8に固定され、第8ワイヤSB8の他端は、第1可動側ターミナルプレート50M1の上側の保持部J3のところで第1可動側ターミナルプレート50M1に固定されている。 Specifically, one end of the seventh wire SB7 is fixed to the seventh fixed terminal plate 50F7 at the holding portion J2 of the seventh fixed terminal plate 50F7, and the other end of the seventh wire SB7 is connected to the first movable terminal plate 50F7. It is fixed to the first movable side terminal plate 50M1 at the lower holding portion J1 of the terminal plate 50M1. Similarly, one end of the eighth wire SB8 is fixed to the eighth fixed terminal plate 50F8 at the holding portion J4 of the eighth fixed terminal plate 50F8, and the other end of the eighth wire SB8 is fixed to the first movable terminal plate. It is fixed to the first movable side terminal plate 50M1 at a holding portion J3 on the upper side of 50M1.
 保持部J1は、第1可動側ターミナルプレート50M1の一部を折り曲げることによって形成されている。具体的には、第1可動側ターミナルプレート50M1の一部は、第7ワイヤSB7の端部(他端)を挟み込んだ状態で折り曲げられることにより保持部J1を形成している。そして、第7ワイヤSB7の端部(他端)は、溶接によって保持部J1に固定されている。保持部J2~保持部J4についても同様である。 The holding portion J1 is formed by bending a portion of the first movable terminal plate 50M1. Specifically, a portion of the first movable terminal plate 50M1 forms a holding portion J1 by being bent while sandwiching the end (the other end) of the seventh wire SB7. An end (the other end) of the seventh wire SB7 is fixed to the holding portion J1 by welding. The same applies to the holding portions J2 to J4.
 第7ワイヤSB7及び第8ワイヤSB8は、図20Aに示すように、互いにねじれの位置となるように(Y2側から見たときに立体的に交差するように)配置されている。すなわち、第7ワイヤSB7及び第8ワイヤSB8は、互いに接触しない(非接触となる)ように配置されている。 As shown in FIG. 20A, the seventh wire SB7 and the eighth wire SB8 are arranged so as to be mutually twisted (three-dimensionally intersect when viewed from the Y2 side). That is, the seventh wire SB7 and the eighth wire SB8 are arranged so as not to contact each other (become non-contact).
 次に、図21を参照し、固定側部材FBの一部である上側ベース部材80の詳細について説明する。図21は、上側ベース部材80の斜視図である。具体的には、図21の上図は、導電部材CMが取り除かれた状態の上側ベース部材80の斜視図であり、図21の中央図は、上側ベース部材80内に埋設されている導電部材CMの斜視図であり、図21の下図は、導電部材CMが埋設された状態の上側ベース部材80の斜視図である。なお、図21の中央図及び図21の下図では、明瞭化のため、導電部材CMにドットパターンが付されている。 Next, with reference to FIG. 21, details of the upper base member 80 that is part of the fixed side member FB will be described. 21 is a perspective view of the upper base member 80. FIG. 21 is a perspective view of the upper base member 80 with the conductive member CM removed, and the central view of FIG. 21 is a conductive member embedded in the upper base member 80. 21 is a perspective view of the CM, and the lower view of FIG. 21 is a perspective view of the upper base member 80 in which the conductive member CM is embedded. In addition, in the central view of FIG. 21 and the lower view of FIG. 21, the conductive member CM is given a dot pattern for clarity.
 上側ベース部材80は、第1ワイヤSB1~第8ワイヤSB8のそれぞれの一端を支持する固定側ワイヤ支持部として機能するように構成されている。また、レンズ保持体20は、第1ワイヤSB1~第8ワイヤSB8のそれぞれの他端を支持する可動側ワイヤ支持部として機能するように構成されている。この構成により、第2可動側部材MB2は、第1ワイヤSB1~第8ワイヤSB8によって6自由度で移動可能な状態で支持されている。 The upper base member 80 is configured to function as a fixed-side wire support section that supports one end of each of the first wire SB1 to the eighth wire SB8. Further, the lens holder 20 is configured to function as a movable wire support section that supports the other ends of the first to eighth wires SB1 to SB8. With this configuration, the second movable member MB2 is supported by the first wire SB1 to the eighth wire SB8 so as to be movable with six degrees of freedom.
 上側ベース部材80の被写体側の面(Z1側の面)である上面には、固定側台座部80Dが形成されている。固定側台座部80Dは、第1固定側台座部80D1及び第2固定側台座部80D2を含む。第1固定側台座部80D1及び第2固定側台座部80D2は、第4回転軸RX4を挟んで対向するように配置されている。 A fixed-side pedestal portion 80D is formed on the upper surface of the upper base member 80, which is the object-side surface (Z1-side surface). The fixed side pedestal portion 80D includes a first fixed side pedestal portion 80D1 and a second fixed side pedestal portion 80D2. The first fixed side seat portion 80D1 and the second fixed side seat portion 80D2 are arranged to face each other with the fourth rotation axis RX4 interposed therebetween.
 上側ベース部材80には、図21の中央図に示すような、銅、鉄、又はそれらを主成分とする合金等の材料を含む金属板から形成された導電部材CMがインサート成形によって埋め込まれている。本実施形態では、導電部材CMは、上側ベース部材80の下面(Z2側の面)に露出して下方に延びる接続部EDと、上側ベース部材80の固定側台座部80Dの上面(Z1側の面)に露出する接合面部CPと、を有するように構成されている。 In the upper base member 80, as shown in the central view of FIG. 21, a conductive member CM formed of a metal plate containing a material such as copper, iron, or an alloy containing them as a main component is embedded by insert molding. there is In the present embodiment, the conductive member CM includes a connecting portion ED exposed on the lower surface (Z2 side surface) of the upper base member 80 and extending downward, and an upper surface (Z1 side surface) of the fixed side pedestal portion 80D of the upper base member 80 (Z1 side surface). and a bonding surface portion CP exposed to the surface).
 具体的には、導電部材CMは、第11導電部材CM11及び第12導電部材CM12を含む。そして、第11導電部材CM11は、第11接続部ED11及び第11接合面部CP11を含む。第12導電部材CM12は、第12接続部ED12及び第12接合面部CP12を含む。 Specifically, the conductive member CM includes an eleventh conductive member CM11 and a twelfth conductive member CM12. The eleventh conductive member CM11 includes an eleventh connection portion ED11 and an eleventh joint surface portion CP11. The twelfth conductive member CM12 includes a twelfth connection portion ED12 and a twelfth joint surface portion CP12.
 次に、図22A及び図22Bを参照し、上側金属部材50、上側弾性金属部材60、導電部材CM、及び上側形状記憶合金ワイヤSBの位置関係について説明する。図22A及び図22Bは、上側金属部材50、上側弾性金属部材60、導電部材CM、及び上側形状記憶合金ワイヤSBの位置関係を示す図である。具体的には、図22Aは、各部材(上側金属部材50、上側弾性金属部材60、導電部材CM、及び上側形状記憶合金ワイヤSB)の斜視図であり、図22Bは、各部材の上面図である。なお、図22A及び図22Bでは、明瞭化のため、可動側金属部材50M及び導電部材CMにドットパターンが付されている。また、図22Bでは、明瞭化のため、上側形状記憶合金ワイヤSBの図示が省略されている。 Next, the positional relationship among the upper metal member 50, the upper elastic metal member 60, the conductive member CM, and the upper shape memory alloy wire SB will be described with reference to FIGS. 22A and 22B. 22A and 22B are diagrams showing the positional relationship between the upper metal member 50, the upper elastic metal member 60, the conductive member CM, and the upper shape memory alloy wire SB. Specifically, FIG. 22A is a perspective view of each member (upper metal member 50, upper elastic metal member 60, conductive member CM, and upper shape memory alloy wire SB), and FIG. 22B is a top view of each member. is. In addition, in FIGS. 22A and 22B, dot patterns are given to the movable-side metal member 50M and the conductive member CM for clarity. Also, in FIG. 22B, illustration of the upper shape memory alloy wire SB is omitted for clarity.
 上側弾性金属部材60は、図18に示すように、レンズ保持体20の第1可動側台座部20D1に固定される第1固定部60e1と、上側ベース部材80の第1固定側台座部80D1に固定される第2固定部60e2と、レンズ保持体20の第2可動側台座部20D2に固定される第3固定部60e3と、上側ベース部材80の第2固定側台座部80D2に固定される第4固定部60e4と、第1固定部60e1と第2固定部60e2を繋ぐ第1腕部60g1と、第2固定部60e2と第3固定部60e3を繋ぐ第2腕部60g2と、第3固定部60e3と第4固定部60e4を繋ぐ第3腕部60g3と、第4固定部60e4と第1固定部60e1を繋ぐ第4腕部60g4と、を有する。 The upper elastic metal member 60 is, as shown in FIG. A second fixing portion 60e2 that is fixed, a third fixing portion 60e3 that is fixed to the second movable side seat portion 20D2 of the lens holder 20, and a third fixing portion 60e3 that is fixed to the second fixed side seat portion 80D2 of the upper base member 80. 4 fixing portion 60e4, a first arm portion 60g1 connecting the first fixing portion 60e1 and the second fixing portion 60e2, a second arm portion 60g2 connecting the second fixing portion 60e2 and the third fixing portion 60e3, and a third fixing portion It has a third arm portion 60g3 connecting the fourth fixing portion 60e4 to the fourth fixing portion 60e3, and a fourth arm portion 60g4 connecting the fourth fixing portion 60e4 and the first fixing portion 60e1.
 第1固定部60e1には、第1可動側台座部20D1に形成された上側に突出する円柱状の突出部20T(図19A参照。)が挿通される第1貫通孔60H1及び第2貫通孔60H2と、第1可動側ターミナルプレート50M1の折り曲げ片BP(図19A参照。)の先端との接合に用いられる第3貫通孔60H3とが形成されている。本実施形態では、上側弾性金属部材60と突出部20Tの固定は、突出部20Tに熱かしめ又は冷間かしめを施すことによって実現される。但し、上側弾性金属部材60と突出部20Tとの固定は、接着剤によって実現されてもよい。また、本実施形態では、上側弾性金属部材60と第1可動側ターミナルプレート50M1の折り曲げ片BPとの接合は、レーザ溶接等の溶接によって実現される。但し、上側弾性金属部材60と折り曲げ片BPとの接合は、半田又は導電性接着剤等によって実現されてもよい。 In the first fixing portion 60e1, a first through hole 60H1 and a second through hole 60H2 through which the upwardly protruding columnar protrusion 20T (see FIG. 19A) formed on the first movable side pedestal portion 20D1 is inserted. and a third through hole 60H3 used for joining with the tip of the bent piece BP (see FIG. 19A) of the first movable terminal plate 50M1. In this embodiment, the fixation of the upper elastic metal member 60 and the projecting portion 20T is realized by subjecting the projecting portion 20T to hot crimping or cold crimping. However, the fixing between the upper elastic metal member 60 and the protruding portion 20T may be realized by an adhesive. In this embodiment, the upper elastic metal member 60 and the bent piece BP of the first movable terminal plate 50M1 are joined together by welding such as laser welding. However, the bonding between the upper elastic metal member 60 and the bent piece BP may be realized by solder, a conductive adhesive, or the like.
 第2固定部60e2には、第1固定側台座部80D1に形成された上側に突出する円柱状の突出部80T(図19B参照。)が挿通される第4貫通孔60H4及び第5貫通孔60H5と、第11導電部材CM11の第11接合面部CP11(図21の下図参照。)との接合に用いられる第6貫通孔60H6とが形成されている。本実施形態では、上側弾性金属部材60と突出部80Tとの固定は、突出部80Tに熱かしめ又は冷間かしめを施すことによって実現される。但し、上側弾性金属部材60と突出部80Tとの固定は、接着剤によって実現されてもよい。また、本実施形態では、上側弾性金属部材60と第11導電部材CM11との接合は、レーザ溶接等の溶接によって実現される。但し、上側弾性金属部材60と第11導電部材CM11との接合は、半田又は導電性接着剤等によって実現されてもよい。 The second fixing portion 60e2 has a fourth through hole 60H4 and a fifth through hole 60H5 through which the upwardly protruding cylindrical projection 80T (see FIG. 19B) formed on the first fixed side pedestal portion 80D1 is inserted. and a sixth through hole 60H6 used for bonding with the eleventh joint surface portion CP11 (see the lower diagram of FIG. 21) of the eleventh conductive member CM11. In this embodiment, the fixation of the upper elastic metal member 60 and the projecting portion 80T is realized by subjecting the projecting portion 80T to hot crimping or cold crimping. However, the fixing between the upper elastic metal member 60 and the protruding portion 80T may be realized by an adhesive. In addition, in the present embodiment, the upper elastic metal member 60 and the eleventh conductive member CM11 are joined together by welding such as laser welding. However, the bonding between the upper elastic metal member 60 and the eleventh conductive member CM11 may be realized by solder, a conductive adhesive, or the like.
 同様に、第3固定部60e3には、第2可動側台座部20D2に形成された上側に突出する円柱状の突出部20T(図19A参照。)が挿通される第7貫通孔60H7及び第8貫通孔60H8と、第2可動側ターミナルプレート50M2の折り曲げ片BP(図19A参照。)の先端との接合に用いられる第9貫通孔60H9とが形成されている。 Similarly, in the third fixing portion 60e3, the seventh through hole 60H7 and the eighth through hole 60H7 through which the upwardly protruding columnar protrusion 20T (see FIG. 19A) formed on the second movable side pedestal portion 20D2 is inserted. A through-hole 60H8 and a ninth through-hole 60H9 used for joining with the tip of the bent piece BP (see FIG. 19A) of the second movable-side terminal plate 50M2 are formed.
 また、第4固定部60e4には、第2固定側台座部80D2に形成された上側に突出する円柱状の突出部80T(図19B参照。)が挿通される第10貫通孔60H10及び第11貫通孔60H11と、第12導電部材CM12の第12接合面部CP12(図21の下図参照。)との接合に用いられる第12貫通孔60H12とが形成されている。 Further, in the fourth fixing portion 60e4, a tenth through-hole 60H10 and an eleventh through-hole 60H10 through which an upwardly protruding columnar protrusion 80T (see FIG. 19B) formed on the second fixed-side pedestal portion 80D2 is inserted. A hole 60H11 and a twelfth through hole 60H12 used for bonding with the twelfth bonding surface portion CP12 (see the lower diagram of FIG. 21) of the twelfth conductive member CM12 are formed.
 なお、上側弾性金属部材60の第1腕部60g1~第4腕部60g4のそれぞれは、四つの湾曲部を有する弾性変形可能な腕部である。そのため、レンズ保持体20は、上側ベース部材80(固定側部材FB)に対して、レンズ体LSの光軸方向である第4回転軸RX4に平行な方向のみならず、第4回転軸RX4と交差する方向にも移動可能となっている。 Each of the first arm portion 60g1 to the fourth arm portion 60g4 of the upper elastic metal member 60 is an elastically deformable arm portion having four curved portions. Therefore, the lens holding body 20 is attached to the upper base member 80 (fixed member FB) not only in the direction parallel to the fourth rotation axis RX4, which is the optical axis direction of the lens body LS, but also in the direction parallel to the fourth rotation axis RX4. It is also possible to move in the crossing direction.
 図22Bに示すように、上側弾性金属部材60は、第4回転軸RX4に対して2回回転対称となるように構成されている。そのため、上側弾性金属部材60は、レンズ保持体20の重量バランスに悪影響を及ぼすことはほとんどない。また、上側弾性金属部材60は、八本の上側形状記憶合金ワイヤSB(第1ワイヤSB1~第8ワイヤSB8)によって支持される第2可動側部材MB2の重量バランスに悪影響を及ぼすこともほとんどない。 As shown in FIG. 22B, the upper elastic metal member 60 is configured to have two-fold rotational symmetry with respect to the fourth rotation axis RX4. Therefore, the upper elastic metal member 60 hardly affects the weight balance of the lens holder 20 . In addition, the upper elastic metal member 60 hardly adversely affects the weight balance of the second movable side member MB2 supported by the eight upper shape memory alloy wires SB (the first wire SB1 to the eighth wire SB8). .
 固定側金属部材50Fは、接続部CT(図20A及び図20B参照。)を有し、接続部CTを介し、可撓性基板3の導電パターンPTに接合されるように構成されている。本実施形態では、固定側金属部材50Fの接続部CTは、第11接続部CT11~第18接続部CT18を含む。 The fixed-side metal member 50F has a connection portion CT (see FIGS. 20A and 20B) and is configured to be joined to the conductive pattern PT of the flexible substrate 3 via the connection portion CT. In the present embodiment, the connecting portion CT of the stationary-side metal member 50F includes an eleventh connecting portion CT11 to an eighteenth connecting portion CT18.
 可撓性基板3は、図2に示すように、回路基板7の下面に取り付けられる略矩形状の内側部分3iと、ベース部材8の下面に取り付けられる略矩形環状の外側部分3eと、を含む。外側部分3eには、第1導電パターンPT1~第20導電パターンPT20が形成され、内側部分3iには、撮像素子ISとの接続に用いられる多数の導電パターン(図示せず。)が形成されている。なお、内側部分3iと外側部分3eとの間には、略U字状のスリット(開口)が形成されており、内側部分3iの動きが妨げられないように構成されている。 The flexible board 3 includes, as shown in FIG. 2, a substantially rectangular inner portion 3i attached to the lower surface of the circuit board 7 and a substantially rectangular annular outer portion 3e attached to the lower surface of the base member 8. . A first conductive pattern PT1 to a twentieth conductive pattern PT20 are formed in the outer portion 3e, and a large number of conductive patterns (not shown) used for connection with the imaging element IS are formed in the inner portion 3i. there is A substantially U-shaped slit (opening) is formed between the inner portion 3i and the outer portion 3e so that the movement of the inner portion 3i is not hindered.
 具体的には、第1固定側ターミナルプレート50F1の第11接続部CT11は、半田付けによって可撓性基板3の第11導電パターンPT11(図2参照。)に接合される。同様に、第2固定側ターミナルプレート50F2の第12接続部CT12は、半田付けによって可撓性基板3の第12導電パターンPT12(図2参照。)に接合され、第3固定側ターミナルプレート50F3の第13接続部CT13は、半田付けによって可撓性基板3の第13導電パターンPT13(図2参照。)に接合され、第4固定側ターミナルプレート50F4の第14接続部CT14は、半田付けによって可撓性基板3の第14導電パターンPT14(図2参照。)に接合され、第5固定側ターミナルプレート50F5の第15接続部CT15は、半田付けによって可撓性基板3の第15導電パターンPT15(図2参照。)に接合され、第6固定側ターミナルプレート50F6の第16接続部CT16は、半田付けによって可撓性基板3の第16導電パターンPT16(図2参照。)に接合され、第7固定側ターミナルプレート50F7の第17接続部CT17は、半田付けによって可撓性基板3の第17導電パターンPT17(図2参照。)に接合され、第8固定側ターミナルプレート50F8の第18接続部CT18は、半田付けによって可撓性基板3の第18導電パターンPT18(図2参照。)に接合される。 Specifically, the eleventh connecting portion CT11 of the first fixed-side terminal plate 50F1 is joined to the eleventh conductive pattern PT11 (see FIG. 2) of the flexible substrate 3 by soldering. Similarly, the twelfth connecting portion CT12 of the second fixed terminal plate 50F2 is soldered to the twelfth conductive pattern PT12 (see FIG. 2) of the flexible substrate 3, and the third fixed terminal plate 50F3 The thirteenth connection CT13 is soldered to the thirteenth conductive pattern PT13 (see FIG. 2) of the flexible substrate 3, and the fourteenth connection CT14 of the fourth stationary terminal plate 50F4 is soldered. It is joined to the 14th conductive pattern PT14 (see FIG. 2) of the flexible substrate 3, and the 15th connecting portion CT15 of the fifth fixed terminal plate 50F5 is connected to the 15th conductive pattern PT15 (see FIG. 2) of the flexible substrate 3 by soldering. 2), and the sixteenth connecting portion CT16 of the sixth fixed terminal plate 50F6 is joined to the sixteenth conductive pattern PT16 (see FIG. 2) of the flexible substrate 3 by soldering, and the seventh The seventeenth connecting portion CT17 of the fixed terminal plate 50F7 is soldered to the seventeenth conductive pattern PT17 (see FIG. 2) of the flexible substrate 3, and the eighteenth connecting portion CT18 of the eighth fixed terminal plate 50F8 is connected. are joined to the eighteenth conductive pattern PT18 (see FIG. 2) of the flexible substrate 3 by soldering.
 第11導電部材CM11の第11接続部ED11は、半田付けによって可撓性基板3の第19導電パターンPT19(図2参照。)に接合され、第12導電部材CM12の第12接続部ED12は、半田付けによって可撓性基板3の第20導電パターンPT20(図2参照。)に接合される。本実施形態では、第19導電パターンPT19及び第20導電パターンPT20は何れも接地端子(図示せず。)に接続されている。 The eleventh connection portion ED11 of the eleventh conductive member CM11 is soldered to the nineteenth conductive pattern PT19 (see FIG. 2) of the flexible substrate 3, and the twelfth connection portion ED12 of the twelfth conductive member CM12 is It is joined to the twentieth conductive pattern PT20 (see FIG. 2) of the flexible substrate 3 by soldering. In this embodiment, both the nineteenth conductive pattern PT19 and the twentieth conductive pattern PT20 are connected to a ground terminal (not shown).
 第1可動側ターミナルプレート50M1の折り曲げ片BPは、図22Bに示すように、レーザ溶接等の溶接によって上側弾性金属部材60の第1固定部60e1に接合される。同様に、第2可動側ターミナルプレート50M2の折り曲げ片BPは、レーザ溶接等の溶接によって上側弾性金属部材60の第3固定部60e3に接合される。 The bent piece BP of the first movable side terminal plate 50M1 is joined to the first fixed portion 60e1 of the upper elastic metal member 60 by welding such as laser welding, as shown in FIG. 22B. Similarly, the bent piece BP of the second movable side terminal plate 50M2 is joined to the third fixing portion 60e3 of the upper elastic metal member 60 by welding such as laser welding.
 一方で、第1固定側ターミナルプレート50F1~第4固定側ターミナルプレート50F4は、図22Bに示すように、上側弾性金属部材60の第2固定部60e2から離間して配置されており、上側弾性金属部材60の第2固定部60e2には接触していない。上側弾性金属部材60の第2固定部60e2は、図22Bに示すように、レーザ溶接等の溶接によって第11導電部材CM11の第11接合面部CP11に接合されている。同様に、第5固定側ターミナルプレート50F5~第8固定側ターミナルプレート50F8は、図22Bに示すように、上側弾性金属部材60の第4固定部6e4から離間して配置されており、上側弾性金属部材60の第4固定部6e4には接触していない。上側弾性金属部材60の第4固定部6e4は、図22Bに示すように、レーザ溶接等の溶接によって第12導電部材CM12の第12接合面部CP12に接合されている。 On the other hand, as shown in FIG. 22B, the first fixed side terminal plate 50F1 to the fourth fixed side terminal plate 50F4 are arranged apart from the second fixed portion 60e2 of the upper elastic metal member 60, and the upper elastic metal The second fixing portion 60e2 of the member 60 is not contacted. As shown in FIG. 22B, the second fixing portion 60e2 of the upper elastic metal member 60 is joined to the eleventh joint surface portion CP11 of the eleventh conductive member CM11 by welding such as laser welding. Similarly, as shown in FIG. 22B, the fifth fixed side terminal plate 50F5 to the eighth fixed side terminal plate 50F8 are arranged apart from the fourth fixed portion 6e4 of the upper elastic metal member 60, The fourth fixing portion 6e4 of the member 60 is not contacted. As shown in FIG. 22B, the fourth fixing portion 6e4 of the upper elastic metal member 60 is joined to the twelfth joint surface portion CP12 of the twelfth conductive member CM12 by welding such as laser welding.
 次に、図23A及び図23Bを参照し、上側形状記憶合金ワイヤSBを流れる電流の経路について説明する。図23A及び図23Bは、図22Aに示す構成の一部の斜視図である。なお、図23A及び図23Bでは、明瞭化のため、第12導電部材CM12及び第1可動側ターミナルプレート50M1には粗いドットパターンが付され、第7固定側ターミナルプレート50F7及び第8固定側ターミナルプレート50F8には細かいドットパターンが付され、上側弾性金属部材60には更に細かいドットパターンが付されている。 Next, with reference to FIGS. 23A and 23B, the path of current flowing through the upper shape memory alloy wire SB will be described. 23A and 23B are perspective views of a portion of the arrangement shown in FIG. 22A. In FIGS. 23A and 23B, for clarity, the twelfth conductive member CM12 and the first movable terminal plate 50M1 are given rough dot patterns, and the seventh stationary terminal plate 50F7 and the eighth stationary terminal plate 50F8 has a fine dot pattern, and the upper elastic metal member 60 has an even finer dot pattern.
 具体的には、図23Aは、第7固定側ターミナルプレート50F7の第17接続部CT17が高電位に接続され、且つ、第12導電部材CM12の第12接続部ED12が低電位に接続されたときの電流の経路を示し、図23Bは、第8固定側ターミナルプレート50F8の第18接続部CT18が高電位に接続され、且つ、第12導電部材CM12の第12接続部ED12が低電位に接続されたときの電流の経路を示す。以下の説明は、第7ワイヤSB7又は第8ワイヤSB8を流れる電流の経路に関するが、第1ワイヤSB1又は第2ワイヤSB2を流れる電流の経路、第3ワイヤSB3又は第4ワイヤSB4を流れる電流の経路、及び、第5ワイヤSB5又は第6ワイヤSB6を流れる電流の経路についても同様に適用される。 Specifically, in FIG. 23A, when the seventeenth connecting portion CT17 of the seventh stationary terminal plate 50F7 is connected to a high potential and the twelfth connecting portion ED12 of the twelfth conductive member CM12 is connected to a low potential. 23B, the eighteenth connection CT18 of the eighth stationary terminal plate 50F8 is connected to a high potential, and the twelfth connection ED12 of the twelfth conductive member CM12 is connected to a low potential. shows the path of the current when The following description relates to the path of current flowing through the seventh wire SB7 or the eighth wire SB8. The same applies to the path and the path of the current flowing through the fifth wire SB5 or the sixth wire SB6.
 第7固定側ターミナルプレート50F7の第17接続部CT17が高電位に接続され、且つ、第12導電部材CM12の第12接続部ED12が低電位に接続されると、電流は、図23Aの矢印AR21で示すように第17接続部CT17を通って第7固定側ターミナルプレート50F7に流れる。その後、電流は、矢印AR22で示すように第7固定側ターミナルプレート50F7を通り、矢印AR23で示すように第7ワイヤSB7を通り、更に、矢印AR24で示すように第1可動側ターミナルプレート50M1を通る。その後、電流は、矢印AR25、矢印AR26、及び矢印AR27で示すように上側弾性金属部材60の第1固定部60e1、第4腕部60g4、及び第4固定部60e4を通り、そして、矢印AR28で示すように第12導電部材CM12を通って第12接続部ED12に流れる。 When the seventeenth connecting portion CT17 of the seventh fixed terminal plate 50F7 is connected to a high potential and the twelfth connecting portion ED12 of the twelfth conductive member CM12 is connected to a low potential, the current flows from arrow AR21 in FIG. 23A. , flows through the seventeenth connecting portion CT17 to the seventh stationary terminal plate 50F7. After that, the current flows through the seventh fixed terminal plate 50F7 as indicated by an arrow AR22, through the seventh wire SB7 as indicated by an arrow AR23, and further through the first movable terminal plate 50M1 as indicated by an arrow AR24. pass. After that, the current flows through the first fixing portion 60e1, the fourth arm portion 60g4, and the fourth fixing portion 60e4 of the upper elastic metal member 60 as indicated by arrows AR25, AR26, and AR27, and then flows through arrow AR28. As shown, it flows through the twelfth conductive member CM12 to the twelfth connection part ED12.
 第8固定側ターミナルプレート50F8の第18接続部CT18が高電位に接続され、且つ、第12導電部材CM12の第12接続部ED12が低電位に接続されると、電流は、図23Bの矢印AR31で示すように第18接続部CT18を通って第8固定側ターミナルプレート50F8に流れる。その後、電流は、矢印AR32で示すように第8固定側ターミナルプレート50F8を通り、矢印AR33で示すように第8ワイヤSB8を通り、更に、矢印AR34で示すように第1可動側ターミナルプレート50M1を通る。その後、電流は、矢印AR35、矢印AR36、及び矢印AR37で示すように上側弾性金属部材60の第1固定部60e1、第4腕部60g4、及び第4固定部60e4を通り、そして、矢印AR38で示すように第12導電部材CM12を通って第12接続部ED12に流れる。 When the eighteenth connection CT18 of the eighth fixed-side terminal plate 50F8 is connected to a high potential and the twelfth connection ED12 of the twelfth conductive member CM12 is connected to a low potential, the current flows from arrow AR31 in FIG. 23B. , flows through the eighteenth connecting portion CT18 to the eighth stationary terminal plate 50F8. After that, the current flows through the eighth fixed terminal plate 50F8 as indicated by arrow AR32, through the eighth wire SB8 as indicated by arrow AR33, and further through the first movable terminal plate 50M1 as indicated by arrow AR34. pass. After that, the current flows through the first fixing portion 60e1, the fourth arm portion 60g4, and the fourth fixing portion 60e4 of the upper elastic metal member 60 as indicated by arrows AR35, AR36, and AR37, and then flows through arrow AR38. As shown, it flows through the twelfth conductive member CM12 to the twelfth connection part ED12.
 なお、本実施形態では、電流は、上側弾性金属部材60の第1固定部60e1、第1腕部60g1、第2固定部60e2、第11導電部材CM11を通って第11接続部ED11にも流れるように構成されている。第11導電部材CM11の第11接続部ED11と第12導電部材CM12の第12接続部ED12とは何れも接地されているためである。 In this embodiment, the current also flows through the first fixing portion 60e1, the first arm portion 60g1, the second fixing portion 60e2, the eleventh conductive member CM11 of the upper elastic metal member 60, and the eleventh connection portion ED11. is configured as This is because the eleventh connection portion ED11 of the eleventh conductive member CM11 and the twelfth connection portion ED12 of the twelfth conductive member CM12 are both grounded.
 また、第7固定側ターミナルプレート50F7の第17接続部CT17が高電位に接続された場合、及び、第8固定側ターミナルプレート50F8の第18接続部CT18が高電位に接続された場合の何れにおいても、第1可動側ターミナルプレート50M1を通過した後の電流の経路は同じである。 Further, when the seventeenth connection CT17 of the seventh fixed terminal plate 50F7 is connected to a high potential, or when the eighteenth connection CT18 of the eighth fixed terminal plate 50F8 is connected to a high potential, , the path of the current after passing through the first movable-side terminal plate 50M1 is the same.
 上述のようなカメラモジュールMDの外部にある制御装置は、第1固定側ターミナルプレート50F1~第8固定側ターミナルプレート50F8のそれぞれの接続部CTに印加される電圧を制御することにより、第1ワイヤSB1~第8ワイヤSB8のそれぞれの伸縮を制御できる。或いは、制御装置は、第1固定側ターミナルプレート50F1~第8固定側ターミナルプレート50F8のそれぞれの接続部CTと第11導電部材CM11及び第12導電部材CM12のそれぞれの接続部EDとを介して第1ワイヤSB1~第8ワイヤSB8のそれぞれに供給される電流を制御することにより、第1ワイヤSB1~第8ワイヤSB8のそれぞれの伸縮を制御できる。なお、制御装置は、上述のように、カメラモジュールMD内に配置されていてもよい。また、制御装置は、上述のように、カメラモジュールMDの構成要素であってもよい。 The control device outside the camera module MD as described above controls the voltage applied to the connection portions CT of the first fixed terminal plate 50F1 to the eighth fixed terminal plate 50F8, thereby controlling the voltage applied to the first wire. The expansion and contraction of each of SB1 to eighth wire SB8 can be controlled. Alternatively, the control device connects the first terminal plate 50F1 to the eighth fixed terminal plate 50F8 through the connecting portions CT and the connecting portions ED of the eleventh conductive member CM11 and the twelfth conductive member CM12. By controlling the current supplied to each of the 1st wire SB1 to the 8th wire SB8, the expansion and contraction of each of the 1st wire SB1 to the 8th wire SB8 can be controlled. Note that the control device may be arranged in the camera module MD as described above. The controller may also be a component of the camera module MD, as described above.
 制御装置は、例えば、レンズ駆動部DM2としての上側形状記憶合金ワイヤSBの収縮による第4回転軸RX4に平行な第1方向(Z軸方向)に沿った駆動力を利用し、撮像素子ISのZ1側において、レンズ体LSの光軸方向である第1方向に沿ってレンズ保持体20を移動させてもよい。そして、このようにレンズ保持体20を移動させることにより、制御装置は、レンズ調整機能の一つである自動焦点調整機能を実現してもよい。具体的には、制御装置は、撮像素子ISから離れる方向にレンズ保持体20を移動させてマクロ撮影を可能にし、撮像素子ISに近づく方向にレンズ保持体20を移動させて無限遠撮影を可能にしてもよい。 For example, the control device utilizes the driving force along the first direction (Z-axis direction) parallel to the fourth rotation axis RX4 due to the contraction of the upper shape memory alloy wire SB as the lens driving unit DM2, On the Z1 side, the lens holder 20 may be moved along the first direction, which is the optical axis direction of the lens body LS. By moving the lens holder 20 in this manner, the control device may realize an automatic focus adjustment function, which is one of the lens adjustment functions. Specifically, the control device moves the lens holder 20 away from the image pickup device IS to enable macro photography, and moves the lens holder 20 toward the image pickup device IS to enable infinity photography. can be
 また、制御装置は、複数の上側形状記憶合金ワイヤSBに流れる電流を制御することによって、第1方向と交差する方向にレンズ保持体20を移動させてもよい。第1方向と交差する方向は、例えば、第1方向に垂直な第2方向(X軸方向)、又は、第1方向及び第2方向に垂直な第3方向(Y軸方向)であってもよい。また、制御装置は、第1方向(Z軸方向)の周り、第2方向(X軸方向)の周り、又は、第3方向(Y軸方向)の周りで撮像素子保持体2を回転させてもよい。このようなレンズ保持体20の動きにより、制御装置は、手振れ補正機能を実現してもよい。なお、第1方向(Z軸方向)は、第4回転軸RX4に平行な方向であり、第2方向(X軸方向)は、第5回転軸RX5に平行な方向であり、第3方向(Y軸方向)は、第6回転軸RX6に平行な方向である。 Further, the control device may move the lens holder 20 in a direction intersecting with the first direction by controlling currents flowing through the plurality of upper shape memory alloy wires SB. The direction intersecting the first direction is, for example, the second direction (X-axis direction) perpendicular to the first direction, or the third direction (Y-axis direction) perpendicular to the first direction and the second direction. good. In addition, the control device rotates the imaging element holder 2 around the first direction (Z-axis direction), around the second direction (X-axis direction), or around the third direction (Y-axis direction). good too. By such movement of the lens holder 20, the control device may realize a camera shake correction function. Note that the first direction (Z-axis direction) is a direction parallel to the fourth rotation axis RX4, the second direction (X-axis direction) is a direction parallel to the fifth rotation axis RX5, and the third direction ( Y-axis direction) is a direction parallel to the sixth rotation axis RX6.
 次に、図24A、図24B、図25A、及び図25Bを参照し、可動側部材と固定側部材FBと駆動部との位置関係について説明する。なお、可動側部材は、第1可動側部材MB1(撮像素子保持体2)及び第2可動側部材MB2(レンズ保持体20)を含む。固定側部材FBは、ベース部材8及び上側ベース部材80を含む。駆動部は、撮像素子駆動部DM1(形状記憶合金ワイヤSA)及びレンズ駆動部DM2(上側形状記憶合金ワイヤSB)を含む。 Next, with reference to FIGS. 24A, 24B, 25A, and 25B, the positional relationship between the movable side member, the fixed side member FB, and the driving section will be described. The movable side member includes a first movable side member MB1 (imaging element holder 2) and a second movable side member MB2 (lens holder 20). The fixed side member FB includes a base member 8 and an upper base member 80 . The driving section includes an imaging element driving section DM1 (shape memory alloy wire SA) and a lens driving section DM2 (upper shape memory alloy wire SB).
 図24A及び図24Bは、撮像素子保持体2、弾性金属部材6、ベース部材8、レンズ保持体20、上側弾性金属部材60、及び上側ベース部材80の上方斜視図である。具体的には、図24Aは、右斜め上から見たときの斜視図であり、図24Bは、左斜め上から見たときの斜視図である。なお、図24A及び図24Bでは、明瞭化のため、撮像素子保持体2及びレンズ保持体20には細かいドットパターンが付され、ベース部材8及び上側ベース部材80には粗いドットパターンが付されている。 24A and 24B are top perspective views of the imaging element holder 2, the elastic metal member 6, the base member 8, the lens holder 20, the upper elastic metal member 60, and the upper base member 80. FIG. Specifically, FIG. 24A is a perspective view when viewed obliquely from above right, and FIG. 24B is a perspective view when viewed obliquely from above left. In FIGS. 24A and 24B, for clarity, the imaging device holder 2 and the lens holder 20 are provided with fine dot patterns, and the base member 8 and the upper base member 80 are provided with coarse dot patterns. there is
 図25A及び図25Bは、形状記憶合金ワイヤSA、金属部材5、上側形状記憶合金ワイヤSB、上側金属部材50、及び導電部材CMの図である。具体的には、図25Aは、上方斜視図であり、図25Bは、上面図である。 25A and 25B are diagrams of the shape memory alloy wire SA, the metal member 5, the upper shape memory alloy wire SB, the upper metal member 50, and the conductive member CM. Specifically, FIG. 25A is a top perspective view and FIG. 25B is a top view.
 図24A、図24B、図25A、及び図25Bに示すように、カメラモジュールMDは、撮像素子駆動部DM1としての形状記憶合金ワイヤSAを利用してベース部材8に対して撮像素子保持体2を動かすことができるように構成され、且つ、レンズ駆動部DM2としての上側形状記憶合金ワイヤSBを利用して上側ベース部材80に対してレンズ保持体20を動かすことができるように構成されている。 As shown in FIGS. 24A, 24B, 25A, and 25B, the camera module MD uses the shape memory alloy wire SA as the image pickup device drive section DM1 to move the image pickup device holder 2 to the base member 8. It is configured to be movable, and is configured to be able to move the lens holder 20 with respect to the upper base member 80 using the upper shape memory alloy wire SB as the lens driving section DM2.
 本実施形態では、上側ベース部材80は、図24A及び図24Bに示すように、ベース部材8の上側に配置され、接着剤によってベース部材8に接合されている。具体的には、上側ベース部材80は、ベース部材8の四隅に形成された四つの連結部CN(第1連結部CN1~第4連結部CN4。図3も参照。)を介してベース部材8に相対移動不能に連結されている。 In this embodiment, as shown in FIGS. 24A and 24B, the upper base member 80 is arranged above the base member 8 and joined to the base member 8 with an adhesive. Specifically, the upper base member 80 is connected to the base member 8 via four connecting portions CN (first connecting portion CN1 to fourth connecting portion CN4; see also FIG. 3) formed at the four corners of the base member 8. is immovably connected to the
 また、上側ベース部材80は、その固定側ワイヤ支持部(第1固定側台座部80D1及び第2固定側台座部80D2)が、Z軸方向においてベース部材8の固定側ワイヤ支持部(第1固定側台座部8D1及び第2固定側台座部8D2)と重ならないように構成されている。具体的には、上側ベース部材80は、第1固定側台座部80D1がベース部材8の第2連結部CN2の上側に配置され、且つ、第2固定側台座部80D2がベース部材8の第4連結部CN4の上側に配置されるように構成されている。すなわち、ベース部材8は、第1固定側台座部8D1がレンズ保持体20の第1可動側台座部20D1の下側に配置され、且つ、第2固定側台座部8D2がレンズ保持体20の第2可動側台座部20D2の下側に配置されるように構成されている。また、上側ベース部材80は、第1固定側台座部80D1が撮像素子保持体2の第1可動側台座部2D1の上側に配置され、且つ、第2固定側台座部80D2が撮像素子保持体2の第2可動側台座部2D2の上側に配置されるように構成されている。この配置は、筐体HS内のスペース効率を高めることができるという効果をもたらす。 In addition, the upper base member 80 has a fixed wire support portion (first fixed pedestal portion 80D1 and second fixed pedestal portion 80D2) that is aligned with the fixed wire support portion (first fixed pedestal portion 80D2) of the base member 8 in the Z-axis direction. It is configured so as not to overlap with the side pedestal portion 8D1 and the second fixed side pedestal portion 8D2). Specifically, the upper base member 80 has the first fixed side pedestal portion 80D1 arranged above the second connecting portion CN2 of the base member 8, and the second fixed side pedestal portion 80D2 arranged on the fourth side of the base member 8. It is configured to be arranged above the connecting portion CN4. That is, the base member 8 has the first fixed side pedestal portion 8D1 disposed below the first movable side pedestal portion 20D1 of the lens holder 20, and the second fixed side pedestal portion 8D2 of the lens holder 20. 2 is configured to be disposed below the movable side pedestal portion 20D2. In addition, the upper base member 80 has the first fixed side seat portion 80D1 arranged above the first movable side seat portion 2D1 of the image pickup device holding body 2, and the second fixed side seat portion 80D2 located above the image pickup device holding body 2. is arranged above the second movable side pedestal portion 2D2. This arrangement has the effect of increasing the space efficiency within the housing HS.
 次に、図26A~図26Eを参照し、駆動部によって実現されるレンズ体LS及び撮像素子ISの動きの例について説明する。図26A~図26Eは、レンズ体LS及び撮像素子ISの動きを示す概略図である。なお、図26A~図26Eの実線で描かれた図形は、駆動部によって動かされた後のレンズ体LS及び撮像素子ISのそれぞれの位置(姿勢)を表している。また、図26A~図26Eの点線で描かれた図形は、駆動部によって動かされる前、すなわち、カメラモジュールMDが中立状態にあるときのレンズ体LS及び撮像素子ISのそれぞれの位置(姿勢)を表している。図26A~図26Eに示す例では、カメラモジュールMDが中立状態にあるとき、撮像素子ISは、X軸方向、Y軸方向、及びZ軸方向におけるそれぞれの移動可能範囲の中央に位置し、且つ、X軸(第2回転軸RX2)の周り、Y軸(第3回転軸RX3)の周り、及び、Z軸(第1回転軸RX1)の周りにおけるそれぞれの回転可能範囲(回転可能角度)の中央に位置している。同様に、カメラモジュールMDが中立状態にあるとき、レンズ体LSは、X軸方向、Y軸方向、及びZ軸方向におけるそれぞれの移動可能範囲の中央に位置し、X軸(第5回転軸RX5)の周り、Y軸(第6回転軸RX6)の周り、及び、Z軸(第4回転軸RX4)の周りにおけるそれぞれの回転可能範囲(回転可能角度)の中央に位置している。また、カメラモジュールMDが中立状態にあるとき、撮像素子ISの撮像面は、撮像素子ISに対向配置されるレンズ体LSの光軸と垂直である。この場合、撮像素子IS(撮像面)の中心軸である第1回転軸RX1は、レンズ体LSの光軸(第4回転軸RX4)に一致している。すなわち、カメラモジュールMDが中立状態にあるときには、第1回転軸RX1と第4回転軸RX4とは同一直線上に位置し、第2回転軸RX2と第5回転軸RX5とは互いに平行であり、第3回転軸RX3と第6回転軸RX6とは互いに平行である。 Next, with reference to FIGS. 26A to 26E, examples of movements of the lens body LS and the image pickup element IS realized by the driving section will be described. 26A to 26E are schematic diagrams showing movements of the lens body LS and the imaging element IS. Figures drawn by solid lines in FIGS. 26A to 26E represent the respective positions (orientations) of the lens body LS and the image sensor IS after being moved by the drive unit. Figures drawn with dotted lines in FIGS. 26A to 26E show the respective positions (attitudes) of the lens body LS and the image sensor IS before they are moved by the drive unit, that is, when the camera module MD is in the neutral state. represent. In the example shown in FIGS. 26A to 26E, when the camera module MD is in the neutral state, the imaging element IS is positioned at the center of each movable range in the X-axis direction, the Y-axis direction, and the Z-axis direction, and , the rotatable ranges (rotatable angles) around the X-axis (second rotation axis RX2), the Y-axis (third rotation axis RX3), and the Z-axis (first rotation axis RX1) Centrally located. Similarly, when the camera module MD is in the neutral state, the lens body LS is positioned at the center of each movable range in the X-axis direction, the Y-axis direction, and the Z-axis direction, and the X-axis (fifth rotation axis RX5 ), around the Y-axis (sixth rotation axis RX6), and around the Z-axis (fourth rotation axis RX4). Further, when the camera module MD is in the neutral state, the imaging surface of the image sensor IS is perpendicular to the optical axis of the lens body LS arranged to face the image sensor IS. In this case, the first rotation axis RX1, which is the central axis of the imaging device IS (imaging surface), coincides with the optical axis (fourth rotation axis RX4) of the lens body LS. That is, when the camera module MD is in the neutral state, the first rotation axis RX1 and the fourth rotation axis RX4 are positioned on the same straight line, the second rotation axis RX2 and the fifth rotation axis RX5 are parallel to each other, The third rotation axis RX3 and the sixth rotation axis RX6 are parallel to each other.
 具体的には、図26Aは、第1回転軸RX1に平行な方向(Z軸方向)における撮像素子ISの並進と第4回転軸RX4に平行な方向(Z軸方向)におけるレンズ体LSの並進とが同時に行われたときのレンズ体LS及び撮像素子ISの状態を示す。このようなレンズ体LS及び撮像素子ISのそれぞれの並進により、制御装置は、例えば、自動焦点調整機能又はズーム機能等を実現できる。また、制御装置は、Z軸方向においてレンズ体LS及び撮像素子ISを互いに反対方向に動かすことにより、レンズ体LS及び撮像素子ISの何れか一方のみを動かす場合に比べ、撮像素子ISに対するレンズ体LSのZ軸方向における相対移動速度を増加させることができる。また、制御装置は、レンズ体LS及び撮像素子ISを互いに反対方向に動かすことにより、レンズ体LS及び撮像素子ISの何れか一方のみを動かす場合に比べ、撮像素子ISに対するレンズ体LSのZ軸方向における相対移動距離の最大値を増加させることができる。なお、図26Aに示す例では、制御装置は、レンズ体LSをZ1方向に並進させ、且つ、撮像素子ISをZ2方向に並進させている。但し、制御装置は、レンズ体LSをZ2方向に並進させ、且つ、撮像素子ISをZ1方向に並進させてもよい。 Specifically, FIG. 26A shows translation of the image sensor IS in a direction (Z-axis direction) parallel to the first rotation axis RX1 and translation of the lens body LS in a direction (Z-axis direction) parallel to the fourth rotation axis RX4. , and are performed simultaneously. By such translation of the lens body LS and the image sensor IS, the control device can realize, for example, an automatic focus adjustment function or a zoom function. In addition, by moving the lens body LS and the image sensor IS in opposite directions in the Z-axis direction, the control device can move the lens body relative to the image sensor IS more than when only one of the lens body LS and the image sensor IS is moved. It is possible to increase the relative movement speed of the LS in the Z-axis direction. Further, by moving the lens body LS and the image sensor IS in directions opposite to each other, the control device can move the Z axis of the lens body LS with respect to the image sensor IS more than when only one of the lens body LS and the image sensor IS is moved. The maximum relative movement distance in a direction can be increased. In the example shown in FIG. 26A, the control device translates the lens body LS in the Z1 direction and translates the imaging device IS in the Z2 direction. However, the control device may translate the lens body LS in the Z2 direction and translate the image sensor IS in the Z1 direction.
 図26Bは、第2回転軸RX2に平行な方向(X軸方向)における撮像素子ISの並進と第5回転軸RX5に平行な方向(X軸方向)におけるレンズ体LSの並進とが同時に行われたときのレンズ体LS及び撮像素子ISの状態を示す。このようなレンズ体LS及び撮像素子ISのそれぞれの並進により、制御装置は、例えば、X軸方向におけるカメラモジュールMDの並進をもたらす手振れによる撮像画像の乱れを補正する機能を実現できる。また、制御装置は、X軸方向においてレンズ体LS及び撮像素子ISを互いに反対方向に動かすことにより、レンズ体LS及び撮像素子ISの何れか一方のみを動かす場合に比べ、撮像素子ISに対するレンズ体LSのX軸方向における相対移動速度を増加させることができる。また、制御装置は、レンズ体LS及び撮像素子ISを互いに反対方向に動かすことにより、レンズ体LS及び撮像素子ISの何れか一方のみを動かす場合に比べ、撮像素子ISに対するレンズ体LSのX軸方向における相対移動距離の最大値を増加させることができる。なお、図26Bに示す例では、制御装置は、レンズ体LSをX2方向に並進させ、且つ、撮像素子ISをX1方向に並進させている。但し、制御装置は、レンズ体LSをX1方向に並進させ、且つ、撮像素子ISをX2方向に並進させてもよい。また、制御装置は、レンズ体LSをY1方向に並進させ、且つ、撮像素子ISをY2方向に並進させてもよく、或いは、レンズ体LSをY2方向に並進させ、且つ、撮像素子ISをY1方向に並進させてもよい。 In FIG. 26B, translation of the imaging element IS in the direction (X-axis direction) parallel to the second rotation axis RX2 and translation of the lens body LS in the direction (X-axis direction) parallel to the fifth rotation axis RX5 are performed simultaneously. 2 shows the state of the lens body LS and the image sensor IS when the lens body LS is closed. By such translation of the lens body LS and the image sensor IS, the control device can, for example, realize a function of correcting disturbance of a captured image due to camera shake that causes translation of the camera module MD in the X-axis direction. In addition, by moving the lens body LS and the image sensor IS in opposite directions in the X-axis direction, the control device can move the lens body relative to the image sensor IS more than when only one of the lens body LS and the image sensor IS is moved. The relative movement speed of LS in the X-axis direction can be increased. In addition, by moving the lens body LS and the image sensor IS in opposite directions, the control device can move the lens body LS to the image sensor IS in an X-axis direction as compared to the case where only one of the lens body LS and the image sensor IS is moved. The maximum relative movement distance in a direction can be increased. In the example shown in FIG. 26B, the control device translates the lens body LS in the X2 direction and translates the imaging device IS in the X1 direction. However, the control device may translate the lens body LS in the X1 direction and translate the image sensor IS in the X2 direction. The control device may translate the lens body LS in the Y1 direction and the image sensor IS in the Y2 direction, or may translate the lens body LS in the Y2 direction and move the image sensor IS in the Y1 direction. You may translate in a direction.
 図26Cは、第3回転軸RX3の周りの撮像素子ISの回転と第6回転軸RX6の周りのレンズ体LSの回転とが同時に行われたときのレンズ体LS及び撮像素子ISの状態を示す。このようなレンズ体LS及び撮像素子ISのそれぞれの回転により、制御装置は、例えば、Y軸周りのカメラモジュールMDの回転をもたらす手振れによる撮像画像の乱れを補正する機能を実現できる。また、制御装置は、第1回転軸RX1と第4回転軸RX4とが平行な状態が維持されるようにレンズ体LS及び撮像素子ISを動かすことにより、第1回転軸RX1と第4回転軸RX4とが互いに傾斜することによって引き起こされる撮像画像に対する悪影響を抑制できる。なお、図26Cに示す例では、制御装置は、右側面視において、第6回転軸RX6の周りに時計回りにレンズ体LSを回転させ、且つ、第3回転軸RX3の周りに時計回りに撮像素子ISを回転させている。但し、制御装置は、右側面視において、第6回転軸RX6の周りに反時計回りにレンズ体LSを回転させ、且つ、第3回転軸RX3の周りに反時計回りに撮像素子ISを回転させてもよい。また、制御装置は、正面視において、第5回転軸RX5の周りに時計回りにレンズ体LSを回転させ、且つ、第2回転軸RX2の周りに時計回りに撮像素子ISを回転させてもよく、或いは、正面視において、第5回転軸RX5の周りに反時計回りにレンズ体LSを回転させ、且つ、第2回転軸RX2の周りに反時計回りに撮像素子ISを回転させてもよい。 FIG. 26C shows the state of the lens body LS and the image sensor IS when the rotation of the image sensor IS about the third rotation axis RX3 and the rotation of the lens body LS about the sixth rotation axis RX6 are simultaneously performed. . By such rotation of the lens body LS and the image sensor IS, the control device can realize a function of correcting disturbance of the captured image due to, for example, camera shake that causes rotation of the camera module MD about the Y axis. Further, the control device moves the first rotation axis RX1 and the fourth rotation axis RX1 and the fourth rotation axis RX4 by moving the lens body LS and the imaging device IS so that the parallel state between the first rotation axis RX1 and the fourth rotation axis RX4 is maintained. It is possible to suppress adverse effects on the captured image caused by tilting RX4 with respect to each other. Note that in the example shown in FIG. 26C, the control device rotates the lens body LS clockwise around the sixth rotation axis RX6 in the right side view, and also rotates the lens body LS clockwise around the third rotation axis RX3. The element IS is rotated. However, in the right side view, the control device rotates the lens body LS counterclockwise around the sixth rotation axis RX6, and rotates the image sensor IS counterclockwise around the third rotation axis RX3. may In addition, the control device may rotate the lens body LS clockwise around the fifth rotation axis RX5 and rotate the image sensor IS clockwise around the second rotation axis RX2 when viewed from the front. Alternatively, in a front view, the lens body LS may be rotated counterclockwise around the fifth rotation axis RX5, and the imaging element IS may be rotated counterclockwise around the second rotation axis RX2.
 図26Dは、第2回転軸RX2に平行な方向(X軸方向)における撮像素子ISの並進と第3回転軸RX3の周りの撮像素子ISの回転と第5回転軸RX5に平行な方向(X軸方向)におけるレンズ体LSの並進と第6回転軸RX6の周りのレンズ体LSの回転とが同時に行われたときのレンズ体LS及び撮像素子ISの状態を示す。このようなレンズ体LSの並進及び回転と撮像素子ISの並進及び回転とにより、制御装置は、例えば、Y軸周りのカメラモジュールMDの回転をもたらす手振れによる撮像画像の乱れを補正する機能をより効果的に実現できる。また、制御装置は、第1回転軸RX1と第4回転軸RX4とが一致した状態が維持されるようにレンズ体LS及び撮像素子ISを動かすことにより、第1回転軸RX1と第4回転軸RX4とが互いに離間し或いは傾斜することによって引き起こされる撮像画像に対する悪影響を抑制できる。なお、図26Dに示す例では、制御装置は、レンズ体LSをX2方向に並進させ、撮像素子ISをX1方向に並進させ、右側面視において第6回転軸RX6の周りに時計回りにレンズ体LSを回転させ、且つ、右側面視において第3回転軸RX3の周りに時計回りに撮像素子ISを回転させている。但し、制御装置は、レンズ体LSをX1方向に並進させ、撮像素子ISをX2方向に並進させ、右側面視において第6回転軸RX6の周りに反時計回りにレンズ体LSを回転させ、且つ、右側面視において第3回転軸RX3の周りに反時計回りに撮像素子ISを回転させてもよい。また、制御装置は、レンズ体LSをY2方向に並進させ、撮像素子ISをY1方向に並進させ、正面視において第5回転軸RX5の周りに時計回りにレンズ体LSを回転させ、且つ、正面視において第2回転軸RX2の周りに時計回りに撮像素子ISを回転させてもよい。或いは、制御装置は、レンズ体LSをY1方向に並進させ、撮像素子ISをY2方向に並進させ、正面視において第5回転軸RX5の周りに反時計回りにレンズ体LSを回転させ、且つ、正面視において第2回転軸RX2の周りに反時計回りに撮像素子ISを回転させてもよい。 FIG. 26D shows the translation of the image sensor IS in the direction (X-axis direction) parallel to the second rotation axis RX2, the rotation of the image sensor IS around the third rotation axis RX3, and the direction (X-axis direction) parallel to the fifth rotation axis RX5. 6 shows the state of the lens body LS and the imaging element IS when translation of the lens body LS in the axial direction) and rotation of the lens body LS around the sixth rotation axis RX6 are performed simultaneously. Such translation and rotation of the lens body LS and translation and rotation of the imaging element IS allow the control device to improve the function of correcting disturbance of the captured image due to, for example, camera shake that causes rotation of the camera module MD about the Y-axis. can be effectively implemented. Further, the control device moves the first rotation axis RX1 and the fourth rotation axis RX1 by moving the lens body LS and the image sensor IS so that the state where the first rotation axis RX1 and the fourth rotation axis RX4 are aligned is maintained. It is possible to suppress adverse effects on the captured image caused by the separation or inclination of RX4. In the example shown in FIG. 26D, the control device translates the lens body LS in the X2 direction, translates the image sensor IS in the X1 direction, and rotates the lens body clockwise around the sixth rotation axis RX6 in the right side view. LS is rotated, and the imaging element IS is rotated clockwise around the third rotation axis RX3 in the right side view. However, the control device translates the lens body LS in the X1 direction, translates the image sensor IS in the X2 direction, rotates the lens body LS counterclockwise around the sixth rotation axis RX6 in the right side view, and , the imaging element IS may be rotated counterclockwise around the third rotation axis RX3 in a right side view. In addition, the control device translates the lens body LS in the Y2 direction, translates the image sensor IS in the Y1 direction, rotates the lens body LS clockwise around the fifth rotation axis RX5 when viewed from the front, and The imaging element IS may be rotated clockwise around the second rotation axis RX2 in view. Alternatively, the control device translates the lens body LS in the Y1 direction, translates the image sensor IS in the Y2 direction, rotates the lens body LS counterclockwise around the fifth rotation axis RX5 in front view, and The imaging element IS may be rotated counterclockwise around the second rotation axis RX2 in a front view.
 図26Eは、レンズ体LSの並進及び回転が行われることなく、第1回転軸RX1の周りの撮像素子ISの回転のみが行われたときのレンズ体LS及び撮像素子ISの状態を示す。レンズ体LSに対する撮像素子ISのこの相対回転により、制御装置は、例えば、Z軸周りのカメラモジュールMDの回転をもたらす手振れによる撮像画像の乱れを補正する機能を実現できる。なお、図26Eに示す例では、制御装置は、上面視において、第1回転軸RX1の周りに時計回りに撮像素子ISを回転させている。但し、制御装置は、上面視において、第1回転軸RX1の周りに反時計回りに撮像素子ISを回転させてもよい。 FIG. 26E shows the state of the lens body LS and the image sensor IS when only the image sensor IS is rotated around the first rotation axis RX1 without translation and rotation of the lens body LS. This relative rotation of the imaging element IS with respect to the lens body LS allows the control device to implement the function of correcting disturbances in the captured image due to, for example, camera shake that causes rotation of the camera module MD about the Z axis. Note that in the example shown in FIG. 26E, the control device rotates the image sensor IS clockwise around the first rotation axis RX1 when viewed from above. However, the control device may rotate the image sensor IS counterclockwise around the first rotation axis RX1 when viewed from above.
 このように、撮像素子ISが第1回転軸RX1の周りに回転するとき、レンズ体LSは、第4回転軸RX4の周りに回転する必要がない。そのため、第2可動側部材MB2(レンズ保持体20)の6自由度の動きのうち、レンズ体LSの光軸と一致する第4回転軸RX4(Z軸)の周りの回転は実行されなくてもよい。すなわち、第2可動側部材MB2は、5自由度の動きが実現されればよい。 Thus, when the imaging device IS rotates around the first rotation axis RX1, the lens body LS does not need to rotate around the fourth rotation axis RX4. Therefore, rotation about the fourth rotation axis RX4 (Z-axis) coinciding with the optical axis of the lens body LS is not executed in the movement of the second movable side member MB2 (lens holder 20) in the six degrees of freedom. good too. In other words, the second movable member MB2 should be able to move with five degrees of freedom.
 上述のように、本発明の実施形態に係るカメラモジュールMDは、図2に示すように、固定側部材FBと、撮像素子ISが一体的に設けられる撮像素子保持体2と、固定側部材FBに対して撮像素子保持体2を移動させる撮像素子駆動部DM1と、を備えている。撮像素子駆動部DM1は、撮像素子保持体2を含む第1可動側部材MB1と固定側部材FBとの間に設けられた複数の形状記憶合金ワイヤSAを含んで構成されている。複数の形状記憶合金ワイヤSAは、撮像素子ISの撮像面と垂直な方向(第1回転軸RX1の軸線方向)に沿って見た上面視において、撮像素子ISを挟んで第1の方向(X軸方向)に離間して配置される第1ワイヤSA1及び第5ワイヤSA5と、撮像素子ISを挟んで第1の方向(X軸方向)に垂直な第2の方向(Y軸方向)に離間して配置される第3ワイヤSA3及び第7ワイヤSA7と、を含む。また、複数の形状記憶合金ワイヤSAは、第1の方向(X軸方向)に沿って見た側面視(前面視)において第1ワイヤSA1と交差するように配置される第2ワイヤSA2と、第2の方向(Y軸方向)に沿って見た側面視(左側面視)において第3ワイヤSA3と交差するように配置される第4ワイヤSA4と、第1の方向(X軸方向)に沿って見た側面視(後面視)において第5ワイヤSA5と交差するように配置される第6ワイヤSA6と、第2の方向(Y軸方向)に沿って見た側面視(右側面視)において第7ワイヤSA7と交差するように配置される第8ワイヤSA8と、を含む。そして、第1ワイヤSA1乃至第8ワイヤSA8のそれぞれは、一端が固定側部材FB(ベース部材8)に固定され、他端が第1可動側部材MB1(撮像素子保持体2)に固定されている。 As described above, the camera module MD according to the embodiment of the present invention includes, as shown in FIG. and an image pickup device drive section DM1 for moving the image pickup device holder 2 with respect to. The imaging device driver DM1 includes a plurality of shape memory alloy wires SA provided between a first movable member MB1 including the imaging device holder 2 and a fixed member FB. The plurality of shape memory alloy wires SA extend in a first direction (X A first wire SA1 and a fifth wire SA5 arranged apart in the axial direction) and separated in a second direction (Y-axis direction) perpendicular to the first direction (X-axis direction) with the imaging element IS interposed therebetween. and a third wire SA3 and a seventh wire SA7 arranged in parallel. Further, the plurality of shape memory alloy wires SA include second wires SA2 arranged to intersect the first wires SA1 in a side view (front view) along the first direction (X-axis direction); A fourth wire SA4 arranged to cross the third wire SA3 in a side view (left side view) along the second direction (Y-axis direction); A sixth wire SA6 arranged to intersect with the fifth wire SA5 in a side view (rear view) along the and an eighth wire SA8 arranged to intersect with the seventh wire SA7 at. Each of the first wire SA1 to the eighth wire SA8 has one end fixed to the fixed side member FB (base member 8) and the other end fixed to the first movable side member MB1 (image pickup element holder 2). there is
 この構成では、撮像素子保持体2の移動が形状記憶合金ワイヤSAによって行われる。そのため、この構成は、カメラモジュールMDの大型化を抑制でき、例えば、撮像素子保持体2の移動のためにボイスコイルモータを用いる装置よりも小さいサイズを実現できる。また、この構成は、カメラモジュールMDの軽量化を実現できる。また、この構成は、撮像素子保持体2の移動のためにボイスコイルモータを用いないため、ボイスコイルモータを用いる装置が隣に配置された場合であっても、その装置とカメラモジュールMDとの間の磁気的な干渉を抑制することができる。 In this configuration, the movement of the imaging element holder 2 is performed by the shape memory alloy wire SA. Therefore, this configuration can suppress an increase in the size of the camera module MD, and can achieve a size smaller than that of a device using a voice coil motor for moving the imaging element holder 2, for example. Also, this configuration can realize weight reduction of the camera module MD. In addition, since this configuration does not use a voice coil motor for moving the image pickup element holder 2, even if a device using a voice coil motor is arranged next to the device, the camera module MD and the device may not be connected. It is possible to suppress magnetic interference between
 また、この構成では、上面視で撮像素子ISを囲む四つの領域のそれぞれで、二本の形状記憶合金ワイヤSAが交差するように配置されている。すなわち、この構成では、全ての形状記憶合金ワイヤSAが撮像面に平行となるように配置されることはない。そのため、この構成は、撮像面に交差する方向に撮像素子保持体2を移動させることができる。 In addition, in this configuration, two shape memory alloy wires SA are arranged so as to intersect in each of the four areas surrounding the imaging element IS in top view. That is, in this configuration, not all shape memory alloy wires SA are arranged parallel to the imaging plane. Therefore, this configuration can move the image pickup device holder 2 in a direction intersecting the image pickup surface.
 撮像素子駆動部DM1は、撮像面に垂直な軸線である第1回転軸RX1の軸線の周りに撮像素子保持体2を回転させるように構成されていてもよい。この構成は、カメラモジュールMDが搭載されるスマートフォン等の機器の撮影時における、第1回転軸RX1の軸線の周りの回転をもたらす手振れによる画像への影響を抑制することができる。 The imaging element driving section DM1 may be configured to rotate the imaging element holder 2 around the axis of the first rotation axis RX1, which is the axis perpendicular to the imaging surface. This configuration can suppress the influence of camera shake caused by rotation about the first rotation axis RX1 on an image when shooting with a device such as a smartphone on which the camera module MD is mounted.
 撮像素子駆動部DM1は、撮像素子保持体2を撮像面に交差する方向へ移動させるように構成されていてもよい。この構成は、カメラモジュールMDが自動焦点調整機能を実現できるという効果をもたらす。 The imaging element driving section DM1 may be configured to move the imaging element holder 2 in a direction intersecting the imaging plane. This configuration has the advantage that the camera module MD can implement an autofocus function.
 固定側部材FBは、八つの第1金属部材(第1固定側ターミナルプレート5F1~第8固定側ターミナルプレート5F8)を有していてもよい。この場合、八本の形状記憶合金ワイヤSA(第1ワイヤSA1~第8ワイヤSA8)のそれぞれの一端は、対応する第1金属部材に個別に接続されていてもよい。上述の実施形態では、図2に示すように、第1ワイヤSA1の一端は第1固定側ターミナルプレート5F1に接続され、第2ワイヤSA2の一端は第2固定側ターミナルプレート5F2に接続され、第3ワイヤSA3の一端は第3固定側ターミナルプレート5F3に接続され、第4ワイヤSA4の一端は第4固定側ターミナルプレート5F4に接続され、第5ワイヤSA5の一端は第5固定側ターミナルプレート5F5に接続され、第6ワイヤSA6の一端は第6固定側ターミナルプレート5F6に接続され、第7ワイヤSA7の一端は第7固定側ターミナルプレート5F7に接続され、第8ワイヤSA8の一端は第8固定側ターミナルプレート5F8に接続されている。この構成は、八本の形状記憶合金ワイヤSAのそれぞれに個別に電流を供給できるようにするための導電路の確保が容易になるという効果をもたらす。 The fixed side member FB may have eight first metal members (first fixed side terminal plate 5F1 to eighth fixed side terminal plate 5F8). In this case, one end of each of the eight shape memory alloy wires SA (first wire SA1 to eighth wire SA8) may be individually connected to the corresponding first metal member. In the above embodiment, as shown in FIG. 2, one end of the first wire SA1 is connected to the first fixed terminal plate 5F1, one end of the second wire SA2 is connected to the second fixed terminal plate 5F2, and the second wire SA1 is connected to the second fixed terminal plate 5F2. One end of the 3-wire SA3 is connected to the third fixed terminal plate 5F3, one end of the fourth wire SA4 is connected to the fourth fixed-side terminal plate 5F4, and one end of the fifth wire SA5 is connected to the fifth fixed-side terminal plate 5F5. One end of the sixth wire SA6 is connected to the sixth fixed side terminal plate 5F6, one end of the seventh wire SA7 is connected to the seventh fixed side terminal plate 5F7, and one end of the eighth wire SA8 is connected to the eighth fixed side terminal plate 5F7. It is connected to the terminal plate 5F8. This configuration has the effect of facilitating the securing of conductive paths for supplying currents individually to the eight shape memory alloy wires SA.
 八本の形状記憶合金ワイヤSAのうちの少なくとも四本の形状記憶合金ワイヤSAのそれぞれの他端は、第1可動側部材MB1に設けられた導電体を介して互いに導通していてもよい。この構成では、八本の形状記憶合金ワイヤSAのうちの少なくとも四本の形状記憶合金ワイヤSAのそれぞれの他端が共通の電位に接続される。そのため、この構成は、八本の形状記憶合金ワイヤSAのそれぞれに個別に電流を供給できるようにするための導電路の確保が更に容易になるという効果をもたらす。 The other ends of at least four shape memory alloy wires SA out of the eight shape memory alloy wires SA may be electrically connected to each other via conductors provided on the first movable member MB1. In this configuration, the other ends of at least four shape memory alloy wires SA out of eight shape memory alloy wires SA are connected to a common potential. Therefore, this configuration brings about the effect of further facilitating the securing of conductive paths for allowing current to be individually supplied to each of the eight shape memory alloy wires SA.
 導電体は、少なくとも四本の形状記憶合金ワイヤSAのそれぞれの他端が接続される第2金属部材(可動側金属部材5M)と、第1可動側部材MB1と固定側部材FBとを連結する弾性変形可能な弾性金属部材6とを含んでいてもよい。この場合、固定側部材FBは、第3金属部材(導電部材CM)が埋設された柱状部(固定側台座部8D)を有していてもよい。そして、図7Aに示すように、第2金属部材(可動側金属部材5M)に弾性金属部材6の固定部(第2固定部6e2及び第4固定部6e4)が接続され、第3金属部材(導電部材CM)に弾性金属部材6の別の固定部(第1固定部6e1及び第3固定部6e3)が接続されていてもよい。なお、弾性金属部材6は、板ばねであってもよい。この構成は、八本の形状記憶合金ワイヤSAのそれぞれに個別に電流を供給できるようにするための導電路の確保が更に容易になるという効果をもたらす。 The conductor connects the second metal member (movable-side metal member 5M) to which the other ends of the at least four shape memory alloy wires SA are connected, the first movable-side member MB1, and the fixed-side member FB. An elastic metal member 6 that can be elastically deformed may be included. In this case, the fixed-side member FB may have a columnar portion (fixed-side pedestal portion 8D) in which the third metal member (conductive member CM) is embedded. Then, as shown in FIG. 7A, the fixing portions (the second fixing portion 6e2 and the fourth fixing portion 6e4) of the elastic metal member 6 are connected to the second metal member (the movable side metal member 5M), and the third metal member ( Another fixing portion (the first fixing portion 6e1 and the third fixing portion 6e3) of the elastic metal member 6 may be connected to the conductive member CM). Note that the elastic metal member 6 may be a leaf spring. This configuration brings about an effect that it becomes easier to secure a conductive path for supplying an electric current to each of the eight shape memory alloy wires SA.
 上述の実施形態では、八本の形状記憶合金ワイヤSAのそれぞれの他端は、可動側金属部材5M、弾性金属部材6、及び導電部材CMを介して互いに導通するように構成されている。具体的には、図7Aに示すように、第1ワイヤSA1~第4ワイヤSA4のそれぞれの他端は、第1可動側ターミナルプレート5M1及び弾性金属部材6と第1導電部材CM1又は第2導電部材CM2とを介して接地端子に接続されている。また、第5ワイヤSA5~第8ワイヤSA8のそれぞれの他端は、第2可動側ターミナルプレート5M2及び弾性金属部材6と第1導電部材CM1又は第2導電部材CM2とを介して接地端子に接続されている。なお、弾性金属部材6の第1固定部6e1は、第1導電部材CM1の第1接合面部CP1(図6の中央図参照。)に溶接されており、弾性金属部材6の第3固定部6e3は、第2導電部材CM2の第2接合面部CP2(図6の中央図参照。)に溶接されている。また、第1導電部材CM1の第1接続部ED1(図6の中央図参照。)は、可撓性基板3の第9導電パターンPT9(図2参照。)に半田付けされ、第2導電部材CM2の第2接続部ED2(図6の中央図参照。)は、可撓性基板3の第10導電パターンPT10(図2参照。)に半田付けされている。そして、第9導電パターンPT9及び第10導電パターンPT10は何れも接地端子(図示せず。)に接続されている。 In the above-described embodiment, the other ends of the eight shape memory alloy wires SA are configured to conduct with each other via the movable metal member 5M, the elastic metal member 6, and the conductive member CM. Specifically, as shown in FIG. 7A, the other ends of the first to fourth wires SA1 to SA4 are connected to the first movable terminal plate 5M1, the elastic metal member 6, the first conductive member CM1 or the second conductive member CM1. It is connected to the ground terminal via the member CM2. The other end of each of the fifth wire SA5 to the eighth wire SA8 is connected to the ground terminal through the second movable terminal plate 5M2, the elastic metal member 6, and the first conductive member CM1 or the second conductive member CM2. It is The first fixing portion 6e1 of the elastic metal member 6 is welded to the first joint surface portion CP1 (see the central view of FIG. 6) of the first conductive member CM1, and the third fixing portion 6e3 of the elastic metal member 6 are welded to the second joint surface portion CP2 (see the central view of FIG. 6) of the second conductive member CM2. Also, the first connection part ED1 (see the central view of FIG. 6) of the first conductive member CM1 is soldered to the ninth conductive pattern PT9 (see FIG. 2) of the flexible substrate 3, and the second conductive member The second connection part ED2 of CM2 (see the central view of FIG. 6) is soldered to the tenth conductive pattern PT10 of the flexible substrate 3 (see FIG. 2). Both the ninth conductive pattern PT9 and the tenth conductive pattern PT10 are connected to a ground terminal (not shown).
 固定側部材FBは、上面視で少なくとも四つの隅部4Cを有する形状(例えば略矩形状)となる筐体HS(カバー部材4)を有していてもよい。この場合、筐体HS(カバー部材4)は、図2に示すように、一方の対角線上に位置する第1隅部4C1及び第3隅部4C3と、他方の対角線上に位置する第2隅部4C2及び第4隅部4C4と、を有していてもよい。そして、八本の形状記憶合金ワイヤSAのそれぞれの一端は、第1隅部4C1又は第3隅部4C3に対向するように配置された固定側部材FBの固定側ワイヤ支持部として機能するベース部材8の固定側台座部8Dに支持され、八本の形状記憶合金ワイヤSAのそれぞれの他端は、第2隅部4C2又は第4隅部4C4に対向するように配置された第1可動側部材MB1の可動側ワイヤ支持部として機能する撮像素子保持体2の可動側台座部2Dに支持されていてもよい。この構成は、カメラモジュールMDの大型化を更に抑制できるという効果をもたらす。また、この構成は、カメラモジュールMDの更なる軽量化を実現できるという効果をもたらす。なお、筐体HSは、上面視で略六角形状又は略八角形状等の他の形状となるように構成されていてもよい。 The fixed-side member FB may have a housing HS (cover member 4) having a shape (for example, a substantially rectangular shape) having at least four corners 4C when viewed from above. In this case, as shown in FIG. 2, the housing HS (cover member 4) has a first corner 4C1 and a third corner 4C3 located on one diagonal line, and a second corner located on the other diagonal line. It may have a portion 4C2 and a fourth corner portion 4C4. One end of each of the eight shape memory alloy wires SA is a base member that functions as a fixed side wire support portion for the fixed side member FB arranged to face the first corner portion 4C1 or the third corner portion 4C3. 8 fixed side pedestal portion 8D, and the other end of each of the eight shape memory alloy wires SA is arranged to face the second corner portion 4C2 or the fourth corner portion 4C4. It may be supported by the movable-side pedestal portion 2D of the imaging element holder 2 that functions as the movable-side wire support portion of MB1. This configuration brings about the effect of further suppressing the enlargement of the camera module MD. In addition, this configuration brings about the effect of realizing further weight reduction of the camera module MD. Note that the housing HS may be configured to have another shape such as a substantially hexagonal shape or a substantially octagonal shape when viewed from above.
 撮像素子ISは、第1プリント配線基板としての回路基板7に搭載されていてもよい。この場合、回路基板7は、撮像素子保持体2に固定され、且つ、可撓性を有する第2プリント配線基板としての可撓性基板3に接続されていてもよい。また、回路基板7は、可撓性基板3よりも厚くなるように構成されていてもよい。この構成は、撮像素子ISを容易に撮像素子保持体2に一体化できるという効果をもたらす。なお、撮像素子ISは、IRカットフィルタを備えたものであってもよい。また、撮像素子ISとレンズ体LSとの間にIRカットフィルタが配置されていてもよい。 The imaging element IS may be mounted on the circuit board 7 as the first printed wiring board. In this case, the circuit board 7 may be fixed to the imaging element holder 2 and connected to the flexible board 3 as a flexible second printed wiring board. Also, the circuit board 7 may be configured to be thicker than the flexible board 3 . This configuration brings about an effect that the imaging element IS can be easily integrated with the imaging element holder 2 . Note that the image pickup device IS may be provided with an IR cut filter. Also, an IR cut filter may be arranged between the image sensor IS and the lens body LS.
 また、本発明の実施形態に係るカメラモジュールMDは、図2及び図17に示すように、固定側部材FBと、レンズ体LSを保持可能なレンズ保持体20と、レンズ体LSに対向して配置される撮像素子ISが一体的に設けられる撮像素子保持体2と、固定側部材FBに対してレンズ保持体20を移動させる第1駆動部としてのレンズ駆動部DM2と、撮像素子保持体2を固定側部材FBに対して移動させる第2駆動部としての撮像素子駆動部DM1を備えていてもよい。この場合、撮像素子駆動部DM1は、撮像素子保持体2を含む第1可動側部材MB1と固定側部材FBとの間に設けられた複数の第1形状記憶合金ワイヤ(第1ワイヤSA1~第8ワイヤSA8)を含んで構成されていてもよい。 2 and 17, the camera module MD according to the embodiment of the present invention includes a fixed side member FB, a lens holder 20 capable of holding the lens body LS, and a An imaging element holding body 2 integrally provided with an arranged imaging element IS, a lens driving section DM2 as a first driving section for moving the lens holding body 20 with respect to the fixed side member FB, and the imaging element holding body 2 with respect to the fixed side member FB. In this case, the image pickup device driving section DM1 includes a plurality of first shape memory alloy wires (first wires SA1 to first 8 wires SA8) may be included.
 この構成では、撮像素子保持体2の移動が複数の形状記憶合金ワイヤSAによって行われる。そのため、この構成は、カメラモジュールMDの大型化を抑制でき、例えば、撮像素子保持体2の移動のためにボイスコイルモータを用いる装置よりも小さいサイズを実現できる。また、この構成は、カメラモジュールMDの軽量化を実現できる。また、この構成は、撮像素子保持体2の移動のためにボイスコイルモータを用いないため、ボイスコイルモータを用いる装置が隣に配置された場合であっても、その装置とカメラモジュールMDとの間の磁気的な干渉を抑制することができる。 In this configuration, the movement of the imaging element holder 2 is performed by a plurality of shape memory alloy wires SA. Therefore, this configuration can suppress an increase in the size of the camera module MD, and can achieve a size smaller than that of a device using a voice coil motor for moving the imaging element holder 2, for example. Also, this configuration can realize weight reduction of the camera module MD. In addition, since this configuration does not use a voice coil motor for moving the image pickup element holder 2, even if a device using a voice coil motor is arranged next to the device, the camera module MD and the device may not be connected. It is possible to suppress magnetic interference between
 複数の第1形状記憶合金ワイヤ(第1ワイヤSA1~第8ワイヤSA8)は、図2に示すように、光軸方向(Z軸方向)に沿って見た平面視(上面視)において、光軸方向と交差する第1の方向(X軸方向)で撮像素子ISを挟んで離間して配置される第1のワイヤ(第1ワイヤSA1)及び第3のワイヤ(第5ワイヤSA5)と、光軸方向と交差し且つ第1の方向に垂直な第2の方向(Y軸方向)で撮像素子ISを挟んで離間して配置される第2のワイヤ(第3ワイヤSA3)及び第4のワイヤ(第7ワイヤSA7)と、を含んでいてもよい。この場合、第1のワイヤ乃至第4のワイヤのそれぞれは、一端が固定側部材FB(ベース部材8)に固定され、他端が第1可動側部材MB1(撮像素子保持体2)に固定されていてもよい。なお、光軸方向は、レンズ体LSに関する光軸の方向、及び、光軸に平行な方向を含む。 As shown in FIG. 2, the plurality of first shape memory alloy wires (the first wire SA1 to the eighth wire SA8) are arranged in a plan view (top view) along the optical axis direction (Z-axis direction). a first wire (first wire SA1) and a third wire (fifth wire SA5) that are spaced apart from each other with the imaging element IS interposed therebetween in a first direction (X-axis direction) that intersects with the axial direction; A second wire (third wire SA3) and a fourth wire SA3 are spaced apart from each other with the image pickup element IS interposed in a second direction (Y-axis direction) that intersects the optical axis direction and is perpendicular to the first direction. and a wire (seventh wire SA7). In this case, each of the first to fourth wires has one end fixed to the fixed side member FB (base member 8) and the other end fixed to the first movable side member MB1 (imaging element holder 2). may be The optical axis direction includes the direction of the optical axis with respect to the lens body LS and the direction parallel to the optical axis.
 この構成は、複数の形状記憶合金ワイヤSAが撮像素子保持体2の周囲にバランス良く配置されているため、形状記憶合金ワイヤSAのそれぞれに流れる電流を制御することで撮像素子保持体2に種々の動作を実行させることができる。 In this configuration, since a plurality of shape memory alloy wires SA are arranged in a well-balanced manner around the image pickup element holder 2, the image pickup element holder 2 can be controlled in various ways by controlling the current flowing through each of the shape memory alloy wires SA. can be executed.
 複数の第1形状記憶合金ワイヤ(第1ワイヤSA1~第8ワイヤSA8)は、図2に示すように、第1の方向(X軸方向)に沿って見た側面視(正面視)において、第1のワイヤ(第1ワイヤSA1)と交差するように配置される第5のワイヤ(第2ワイヤSA2)と、第2の方向(Y軸方向)に沿って見た側面視(左側面視)において、第2のワイヤ(第3ワイヤSA3)と交差するように配置される第6のワイヤ(第4ワイヤSA4)と、第1の方向(X軸方向)に沿って見た側面視(背面視)において、第3のワイヤ(第5ワイヤSA5)と交差するように配置される第7のワイヤ(第6ワイヤSA6)と、第2の方向(Y軸方向)に沿って見た側面視(右側面視)において、第4のワイヤ(第7ワイヤSA7)と交差するように配置される第8のワイヤ(第8ワイヤSA8)と、を含んでいてもよい。この場合、第5のワイヤ乃至第8のワイヤのそれぞれは、一端が固定側部材FB(ベース部材8)に固定され、他端が第1可動側部材MB1(撮像素子保持体2)に固定されていてもよい。 As shown in FIG. 2, the plurality of first shape memory alloy wires (first wire SA1 to eighth wire SA8) are, in a side view (front view) along the first direction (X-axis direction), A fifth wire (second wire SA2) arranged to intersect the first wire (first wire SA1) and a side view (left side view) along the second direction (Y-axis direction) ), a sixth wire (fourth wire SA4) arranged to cross the second wire (third wire SA3) and a side view ( In rear view), the seventh wire (sixth wire SA6) arranged to cross the third wire (fifth wire SA5) and the side view along the second direction (Y-axis direction) and an eighth wire (eighth wire SA8) arranged to cross the fourth wire (seventh wire SA7) in a view (right side view). In this case, each of the fifth to eighth wires has one end fixed to the fixed side member FB (base member 8) and the other end fixed to the first movable side member MB1 (image pickup element holder 2). may be
 この構成では、X軸及びY軸を含むXY平面に平行な仮想平面に対して複数の形状記憶合金ワイヤSAのそれぞれが傾斜するように配置される。そのため、この構成は、複数の形状記憶合金ワイヤSAのそれぞれが上記仮想平面に平行になるように配置される場合に比べ、複数の形状記憶合金ワイヤSAのそれぞれの長さを長くすることができる。そのため、この構成は、複数の形状記憶合金ワイヤSAのそれぞれが上記仮想平面に平行になるように配置される場合に比べ、複数の形状記憶合金ワイヤSAのそれぞれの長さの調整幅(伸縮量)を大きくすることができる。また、この構成では、撮像素子保持体2の前後左右にある空間のそれぞれにおいて、二本の形状記憶合金ワイヤSAが交差するように配置されている。そのため、この構成は、複数の形状記憶合金ワイヤSAのそれぞれが上記仮想平面に平行になるように配置される場合に比べ、撮像素子保持体2を光軸方向に移動させる機能を容易に実現できるという効果をもたらす。 In this configuration, each of the plurality of shape memory alloy wires SA is arranged so as to be inclined with respect to a virtual plane parallel to the XY plane including the X axis and the Y axis. Therefore, in this configuration, the length of each of the plurality of shape memory alloy wires SA can be increased compared to the case where each of the plurality of shape memory alloy wires SA is arranged parallel to the virtual plane. . Therefore, in this configuration, compared to the case where each of the plurality of shape memory alloy wires SA is arranged so as to be parallel to the virtual plane, the adjustment width (extension amount) of each of the plurality of shape memory alloy wires SA is reduced. ) can be increased. Further, in this configuration, two shape memory alloy wires SA are arranged so as to cross each other in each of the spaces on the front, back, left, and right of the image pickup device holder 2 . Therefore, this configuration can easily realize the function of moving the image pickup element holder 2 in the optical axis direction, compared to the case where each of the plurality of shape memory alloy wires SA is arranged so as to be parallel to the virtual plane. brings about the effect of
 固定側部材FB(ベース部材8)は、図4Bに示すように、八つの第1金属部材(固定側金属部材5F)を有していてもよい。この場合、八本の第1形状記憶合金ワイヤ(第1ワイヤSA1~第8ワイヤSA8)のそれぞれの一端は、図7Aに示すように、対応する固定側金属部材5Fに個別に接続されていてもよい。 The fixed side member FB (base member 8) may have eight first metal members (fixed side metal member 5F) as shown in FIG. 4B. In this case, one end of each of the eight first shape memory alloy wires (first wire SA1 to eighth wire SA8) is individually connected to the corresponding stationary metal member 5F as shown in FIG. 7A. good too.
 この構成は、八本の形状記憶合金ワイヤSAに個別に電流を供給するための導電路が容易に確保できるようになるという効果をもたらす。 This configuration has the effect of making it possible to easily secure conductive paths for supplying currents individually to the eight shape memory alloy wires SA.
 第1駆動部としてのレンズ駆動部DM2は、図17に示すように、レンズ保持体20を含む第2可動側部材MB2と固定側部材FB(上側ベース部材80)との間に設けられた複数の第2形状記憶合金ワイヤ(第1ワイヤSB1~第8ワイヤSB8)を含んで構成されていてもよい。 As shown in FIG. 17, a plurality of lens drive units DM2 as first drive units are provided between the second movable member MB2 including the lens holder 20 and the fixed member FB (upper base member 80). second shape memory alloy wires (first wire SB1 to eighth wire SB8).
 この構成では、レンズ保持体20の移動が複数の上側形状記憶合金ワイヤSBによって行われる。そのため、この構成は、カメラモジュールMDの大型化を抑制でき、例えば、レンズ保持体20の移動のためにボイスコイルモータを用いる装置よりも小さいサイズを実現できる。また、この構成は、カメラモジュールMDの軽量化を実現できる。また、この構成は、レンズ保持体20の移動のためにボイスコイルモータを用いないため、ボイスコイルモータを用いる装置が隣に配置された場合であっても、その装置とカメラモジュールMDとの間の磁気的な干渉を抑制することができる。 In this configuration, movement of the lens holder 20 is performed by a plurality of upper shape memory alloy wires SB. Therefore, this configuration can suppress an increase in the size of the camera module MD, and can realize a smaller size than a device using a voice coil motor for moving the lens holder 20, for example. Also, this configuration can realize weight reduction of the camera module MD. In addition, since this configuration does not use a voice coil motor for moving the lens holder 20, even if a device using a voice coil motor is arranged next to the device, the distance between the device and the camera module MD is low. magnetic interference can be suppressed.
 複数の第2形状記憶合金ワイヤ(第1ワイヤSB1~第8ワイヤSB8)は、図17に示すように、光軸方向に沿って見た平面視(上面視)において、光軸方向と交差する第3の方向(X軸方向)でレンズ体LS(図18参照。)を挟んで離間して配置される第9のワイヤ(第1ワイヤSB1)及び第11のワイヤ(第5ワイヤSB5)と、光軸方向と交差し且つ第3の方向に垂直な第4の方向(Y軸方向)でレンズ体LSを挟んで離間して配置される第10のワイヤ(第3ワイヤSB3)及び第12のワイヤ(第7ワイヤSB7)と、第3の方向(X軸方向)に沿って見た側面視(正面視)において、第9のワイヤ(第1ワイヤSB1)と交差するように配置される第13のワイヤ(第2ワイヤSB2)と、第4の方向(Y軸方向)に沿って見た側面視(左側面視)において、第10のワイヤ(第3ワイヤSB3)と交差するように配置される第14のワイヤ(第4ワイヤSB4)と、第3の方向(X軸方向)に沿って見た側面視(背面視)において、第11のワイヤ(第5ワイヤSB5)と交差するように配置される第15のワイヤ(第6ワイヤSB6)と、第4の方向(Y軸方向)に沿って見た側面視(右側面視)において、第12のワイヤ(第7ワイヤSB7)と交差するように配置される第16のワイヤ(第8ワイヤSB8)と、を含んでいてもよい。この場合、第9のワイヤ(第1ワイヤSB1)乃至第16のワイヤ(第8ワイヤSB8)のそれぞれは、一端が固定側部材FB(上側ベース部材80)に固定され、他端が第2可動側部材MB2(レンズ保持体20)に固定されていてもよい。 As shown in FIG. 17, the plurality of second shape memory alloy wires (first wire SB1 to eighth wire SB8) intersect the optical axis direction in plan view (top view) along the optical axis direction. A ninth wire (first wire SB1) and an eleventh wire (fifth wire SB5) which are spaced apart across the lens body LS (see FIG. 18) in the third direction (X-axis direction) , a tenth wire (third wire SB3) and a twelfth wire (third wire SB3) which are spaced apart with the lens body LS interposed therebetween in a fourth direction (Y-axis direction) that intersects the optical axis direction and is perpendicular to the third direction. (seventh wire SB7) and the ninth wire (first wire SB1) in a side view (front view) along the third direction (X-axis direction). The thirteenth wire (second wire SB2) intersects the tenth wire (third wire SB3) in a side view (left side view) along the fourth direction (Y-axis direction). The arranged fourteenth wire (fourth wire SB4) intersects the eleventh wire (fifth wire SB5) in a side view (rear view) along the third direction (X-axis direction). and a 12th wire (seventh wire SB7) in a side view (right side view) viewed along the fourth direction (Y-axis direction). and a sixteenth wire (eighth wire SB8) arranged to cross the . In this case, one end of each of the ninth wire (first wire SB1) to the sixteenth wire (eighth wire SB8) is fixed to the fixed side member FB (upper base member 80), and the other end is fixed to the second movable wire. It may be fixed to the side member MB2 (lens holder 20).
 この構成では、X軸及びY軸を含むXY平面に平行な仮想平面に対して複数の上側形状記憶合金ワイヤSBのそれぞれが傾斜するように配置される。そのため、この構成は、複数の上側形状記憶合金ワイヤSBのそれぞれが上記仮想平面に平行になるように配置される場合に比べ、複数の上側形状記憶合金ワイヤSBのそれぞれの長さを長くすることができる。そのため、この構成は、複数の上側形状記憶合金ワイヤSBのそれぞれが上記仮想平面に平行になるように配置される場合に比べ、複数の上側形状記憶合金ワイヤSBのそれぞれの長さの調整幅(伸縮量)を大きくすることができる。また、この構成では、レンズ保持体20の前後左右にある空間のそれぞれにおいて、二本の上側形状記憶合金ワイヤSBが交差するように配置されている。そのため、この構成は、複数の上側形状記憶合金ワイヤSBのそれぞれが上記仮想平面に平行になるように配置される場合に比べ、レンズ保持体20に様々な動きを実行させる機能を容易に実現できるという効果をもたらす。なお、様々な動きは、Z軸方向における並進を含んでいてもよい。 In this configuration, each of the plurality of upper shape memory alloy wires SB is arranged so as to be inclined with respect to a virtual plane parallel to the XY plane including the X axis and the Y axis. Therefore, in this configuration, the length of each of the plurality of upper shape memory alloy wires SB is increased compared to the case where each of the plurality of upper shape memory alloy wires SB is arranged parallel to the virtual plane. can be done. Therefore, in this configuration, the length adjustment width ( amount of expansion and contraction) can be increased. Also, in this configuration, two upper shape memory alloy wires SB are arranged to intersect in each of the spaces on the front, back, left and right of the lens holder 20 . Therefore, in this configuration, compared to the case where each of the plurality of upper shape memory alloy wires SB is arranged so as to be parallel to the virtual plane, it is possible to easily realize the function of causing the lens holder 20 to perform various movements. brings about the effect of Note that various movements may include translation in the Z-axis direction.
 また、図25Aに示すように、第1のワイヤ(第1ワイヤSA1)及び第5のワイヤ(第2ワイヤSA2)は、光軸方向において、第9のワイヤ(第1ワイヤSB1)及び第13のワイヤ(第2ワイヤSB2)と対向するように配置されていてもよい。すなわち、第1のワイヤ(第1ワイヤSA1)、第5のワイヤ(第2ワイヤSA2)、第9のワイヤ(第1ワイヤSB1)、及び第13のワイヤ(第2ワイヤSB2)は、カバー部材4の第1側板部4A1(図1A及び図1B参照。)の内面に沿うように配置されていてもよい。より具体的には、第1のワイヤ(第1ワイヤSA1)、第5のワイヤ(第2ワイヤSA2)、第9のワイヤ(第1ワイヤSB1)、及び第13のワイヤ(第2ワイヤSB2)は、図25Bに示すように、上面視で少なくとも一部が重なるように配置されていてもよい。 In addition, as shown in FIG. 25A, the first wire (first wire SA1) and the fifth wire (second wire SA2) are arranged in the optical axis direction with respect to the ninth wire (first wire SB1) and the thirteenth wire (SB1). wire (second wire SB2). That is, the first wire (first wire SA1), the fifth wire (second wire SA2), the ninth wire (first wire SB1), and the thirteenth wire (second wire SB2) are the cover members. 4 may be arranged along the inner surface of the first side plate portion 4A1 (see FIGS. 1A and 1B). More specifically, a first wire (first wire SA1), a fifth wire (second wire SA2), a ninth wire (first wire SB1), and a thirteenth wire (second wire SB2) may be arranged so as to overlap at least partially in top view, as shown in FIG. 25B.
 同様に、図25Aに示すように、第2のワイヤ(第3ワイヤSA3)及び第6のワイヤ(第4ワイヤSA4)は、光軸方向において、第10のワイヤ(第3ワイヤSB3)及び第14のワイヤ(第4ワイヤSB4)と対向するように配置されていてもよい。すなわち、第2のワイヤ(第3ワイヤSA3)、第6のワイヤ(第4ワイヤSA4)、第10のワイヤ(第3ワイヤSB3)、及び第14のワイヤ(第4ワイヤSB4)は、カバー部材4の第2側板部4A2(図1A及び図1B参照。)の内面に沿うように配置されていてもよい。より具体的には、第2のワイヤ(第3ワイヤSA3)、第6のワイヤ(第4ワイヤSA4)、第10のワイヤ(第3ワイヤSB3)、及び第14のワイヤ(第4ワイヤSB4)は、図25Bに示すように、上面視で少なくとも一部が重なるように配置されていてもよい。 Similarly, as shown in FIG. 25A, the second wire (third wire SA3) and the sixth wire (fourth wire SA4) are aligned in the optical axis direction with the tenth wire (third wire SB3) and the fourth wire SA4. It may be arranged so as to face 14 wires (fourth wire SB4). That is, the second wire (third wire SA3), the sixth wire (fourth wire SA4), the tenth wire (third wire SB3), and the fourteenth wire (fourth wire SB4) are the cover members. 4 may be arranged along the inner surface of the second side plate portion 4A2 (see FIGS. 1A and 1B). More specifically, a second wire (third wire SA3), a sixth wire (fourth wire SA4), a tenth wire (third wire SB3), and a fourteenth wire (fourth wire SB4) may be arranged so as to overlap at least partially in top view, as shown in FIG. 25B.
 同様に、図25Aに示すように、第3のワイヤ(第5ワイヤSA5)及び第7のワイヤ(第6ワイヤSA6)は、光軸方向において、第11のワイヤ(第5ワイヤSB5)及び第15のワイヤ(第6ワイヤSB6)と対向するように配置されていてもよい。すなわち、第3のワイヤ(第5ワイヤSA5)、第7のワイヤ(第6ワイヤSA6)、第11のワイヤ(第5ワイヤSB5)、及び第15のワイヤ(第6ワイヤSB6)は、カバー部材4の第3側板部4A3(図1A及び図1B参照。)の内面に沿うように配置されていてもよい。より具体的には、第3のワイヤ(第5ワイヤSA5)、第7のワイヤ(第6ワイヤSA6)、第11のワイヤ(第5ワイヤSB5)、及び第15のワイヤ(第6ワイヤSB6)は、図25Bに示すように、上面視で少なくとも一部が重なるように配置されていてもよい。 Similarly, as shown in FIG. 25A, the third wire (fifth wire SA5) and the seventh wire (sixth wire SA6) are arranged in the optical axis direction with respect to the eleventh wire (fifth wire SB5) and the It may be arranged so as to face fifteen wires (sixth wire SB6). That is, the third wire (fifth wire SA5), the seventh wire (sixth wire SA6), the eleventh wire (fifth wire SB5), and the fifteenth wire (sixth wire SB6) are the cover members. 4 may be arranged along the inner surface of the third side plate portion 4A3 (see FIGS. 1A and 1B). More specifically, a third wire (fifth wire SA5), a seventh wire (sixth wire SA6), an eleventh wire (fifth wire SB5), and a fifteenth wire (sixth wire SB6) may be arranged so as to overlap at least partially in top view, as shown in FIG. 25B.
 同様に、図25Aに示すように、第4のワイヤ(第7ワイヤSA7)及び第8のワイヤ(第8ワイヤSA8)は、光軸方向において、第12のワイヤ(第7ワイヤSB7)及び第16のワイヤ(第8ワイヤSB8)と対向するように配置されていてもよい。すなわち、第4のワイヤ(第7ワイヤSA7)、第8のワイヤ(第8ワイヤSA8)、第12のワイヤ(第7ワイヤSB7)、及び第16のワイヤ(第8ワイヤSB8)は、カバー部材4の第4側板部4A4(図1A及び図1B参照。)の内面に沿うように配置されていてもよい。より具体的には、第4のワイヤ(第7ワイヤSA7)、第8のワイヤ(第8ワイヤSA8)、第12のワイヤ(第7ワイヤSB7)、及び第16のワイヤ(第8ワイヤSB8)は、図25Bに示すように、上面視で少なくとも一部が重なるように配置されていてもよい。 Similarly, as shown in FIG. 25A , the fourth wire (seventh wire SA7) and the eighth wire (eighth wire SA8) are arranged in the optical axis direction with respect to the twelfth wire (seventh wire SB7) and the fourth wire (SB7). It may be arranged so as to face 16 wires (eighth wire SB8). That is, the fourth wire (seventh wire SA7), the eighth wire (eighth wire SA8), the twelfth wire (seventh wire SB7), and the sixteenth wire (eighth wire SB8) are the cover members. 4 may be arranged along the inner surface of the fourth side plate portion 4A4 (see FIGS. 1A and 1B). More specifically, a fourth wire (seventh wire SA7), an eighth wire (eighth wire SA8), a twelfth wire (seventh wire SB7), and a sixteenth wire (eighth wire SB8) may be arranged so as to overlap at least partially in top view, as shown in FIG. 25B.
 この構成では、形状記憶合金ワイヤSAと上側形状記憶合金ワイヤSBとが上面視で概略重なるように配置される。そのため、この構成は、上面視で形状記憶合金ワイヤSAが上側形状記憶合金ワイヤSBの外側(レンズ体LSの光軸から遠い側)に配置される構成、或いは、上面視で上側形状記憶合金ワイヤSBが形状記憶合金ワイヤSAの外側に配置される構成に比べ、カメラモジュールMDの大型化を抑制できるという効果をもたらす。 In this configuration, the shape memory alloy wire SA and the upper shape memory alloy wire SB are arranged so as to substantially overlap when viewed from above. Therefore, in this configuration, the shape memory alloy wire SA is arranged outside the upper shape memory alloy wire SB (the side farther from the optical axis of the lens body LS) when viewed from above, or the upper shape memory alloy wire SA is arranged outside the upper shape memory alloy wire SB when viewed from above. Compared to the configuration in which the SB is arranged outside the shape memory alloy wire SA, an effect of suppressing an increase in the size of the camera module MD is achieved.
 図24A、図24B、図25A、及び図25Bに示すように、固定側部材FB(ベース部材8及び上側ベース部材80)は、光軸方向に沿って見た平面視(上面視)において、互いに異なる位置に複数の固定側ワイヤ支持部(第1固定側台座部8D1、第2固定側台座部8D2、第1固定側台座部80D1、及び第2固定側台座部80D2)を有していてもよい。この場合、複数の第1形状記憶合金ワイヤ(第1ワイヤSA1~第8ワイヤSA8)のそれぞれの一端は、複数の固定側ワイヤ支持部のうちの二つである第1固定側ワイヤ支持部(第1固定側台座部8D1)及び第3固定側ワイヤ支持部(第2固定側台座部8D2)の何れかに支持されていてもよい。また、複数の第2形状記憶合金ワイヤ(第1ワイヤSB1~第8ワイヤSB8)のそれぞれの一端は、複数の固定側ワイヤ支持部のうちの別の二つである第2固定側ワイヤ支持部(第1固定側台座部80D1)及び第4固定側ワイヤ支持部(第2固定側台座部80D2)の何れかに支持されていてもよい。 As shown in FIGS. 24A, 24B, 25A, and 25B, the fixed-side member FB (the base member 8 and the upper base member 80) are arranged in a plan view (top view) along the optical axis direction. Even if a plurality of fixed-side wire support portions (first fixed-side pedestal portion 8D1, second fixed-side pedestal portion 8D2, first fixed-side pedestal portion 80D1, and second fixed-side pedestal portion 80D2) are provided at different positions, good. In this case, one end of each of the plurality of first shape memory alloy wires (first wire SA1 to eighth wire SA8) is connected to two of the plurality of fixed wire support portions, the first fixed wire support portions ( It may be supported by either the first fixed side pedestal portion 8D1) or the third fixed side wire support portion (second fixed side pedestal portion 8D2). Further, one end of each of the plurality of second shape memory alloy wires (first wire SB1 to eighth wire SB8) is the second fixed wire support portion which is another two of the plurality of fixed wire support portions. It may be supported by either the (first fixed side pedestal portion 80D1) or the fourth fixed side wire support portion (second fixed side pedestal portion 80D2).
 この構成は、16本の形状記憶合金ワイヤのレイアウトが容易になるという効果をもたらす。また、この構成では、16本の形状記憶合金ワイヤが高いスペース効率で筐体HS内に配置される。そのため、この構成は、カメラモジュールMDの大型化を更に抑制できるという効果をもたらす。 This configuration has the effect of facilitating the layout of the 16 shape memory alloy wires. Also, in this configuration, 16 shape memory alloy wires are arranged in the housing HS with high space efficiency. Therefore, this configuration brings about the effect of further suppressing the enlargement of the camera module MD.
 図24A、図24B、図25A、及び図25Bに示すように、複数の第1形状記憶合金ワイヤ(第1ワイヤSA1~第8ワイヤSA8)のそれぞれの他端は、第1可動側部材MB1における複数の可動側ワイヤ支持部(第1可動側台座部2D1及び第2可動側台座部2D2)の何れかに支持されていてもよい。また、複数の第2形状記憶合金ワイヤ(第1ワイヤSB1~第8ワイヤSB8)のそれぞれの他端は、第2可動側部材MB2における複数の可動側ワイヤ支持部(第1可動側台座部20D1及び第2可動側台座部20D2)の何れかに支持されていてもよい。この場合、光軸方向(Z軸方向)において、第1可動側部材MB1における複数の可動側ワイヤ支持部(第1可動側台座部2D1及び第2可動側台座部2D2)のそれぞれは、固定側部材FB(上側ベース部材80)における第2固定側ワイヤ支持部(第1固定側台座部80D1)及び第4固定側ワイヤ支持部(第2固定側台座部80D2)の何れかと対向していてもよい。同様に、第2可動側部材MB2における複数の可動側ワイヤ支持部(第1可動側台座部20D1及び第2可動側台座部20D2)のそれぞれは、固定側部材FB(ベース部材8)における第1固定側ワイヤ支持部(第1固定側台座部8D1)及び第3固定側ワイヤ支持部(第2固定側台座部8D2)の何れかと対向していてもよい。図24A及び図24Bに示す例では、光軸方向(Z軸方向)において、第1可動側台座部2D1は、第1固定側台座部80D1と対向し、第2可動側台座部2D2は、第2固定側台座部80D2と対向している。また、光軸方向(Z軸方向)において、第1可動側台座部20D1は、第1固定側台座部8D1と対向し、第2可動側台座部20D2は、第2固定側台座部8D2と対向している。 As shown in FIGS. 24A, 24B, 25A, and 25B, the other end of each of the plurality of first shape memory alloy wires (first wire SA1 to eighth wire SA8) is connected to the first movable side member MB1. It may be supported by any one of a plurality of movable-side wire support portions (first movable-side pedestal portion 2D1 and second movable-side pedestal portion 2D2). Further, the other ends of the plurality of second shape memory alloy wires (first wire SB1 to eighth wire SB8) are attached to the plurality of movable side wire support portions (first movable side pedestal portion 20D1) in the second movable side member MB2. and the second movable side pedestal portion 20D2). In this case, in the optical axis direction (Z-axis direction), each of the plurality of movable-side wire support portions (the first movable-side pedestal portion 2D1 and the second movable-side pedestal portion 2D2) of the first movable-side member MB1 is arranged on the fixed side. Even if it faces either the second fixed-side wire support portion (first fixed-side pedestal portion 80D1) or the fourth fixed-side wire support portion (second fixed-side pedestal portion 80D2) in the member FB (upper base member 80) good. Similarly, each of the plurality of movable-side wire support portions (the first movable-side pedestal portion 20D1 and the second movable-side pedestal portion 20D2) in the second movable-side member MB2 is the first wire support portion in the fixed-side member FB (base member 8). It may face either the fixed-side wire support portion (first fixed-side pedestal portion 8D1) or the third fixed-side wire support portion (second fixed-side pedestal portion 8D2). In the example shown in FIGS. 24A and 24B, the first movable side pedestal 2D1 faces the first fixed side pedestal 80D1 in the optical axis direction (Z-axis direction), and the second movable side pedestal 2D2 faces the second movable side pedestal 80D1. 2 facing the fixed side pedestal portion 80D2. In addition, in the optical axis direction (Z-axis direction), the first movable side seat portion 20D1 faces the first fixed side seat portion 8D1, and the second movable side seat portion 20D2 faces the second fixed side seat portion 8D2. is doing.
 この構成では、第1可動側部材MB1、第2可動側部材MB2、及び固定側部材FBが高いスペース効率で筐体HS内に配置される。そのため、この構成は、カメラモジュールMDの大型化を更に抑制できるという効果をもたらす。 In this configuration, the first movable member MB1, the second movable member MB2, and the fixed member FB are arranged in the housing HS with high space efficiency. Therefore, this configuration brings about the effect of further suppressing the enlargement of the camera module MD.
 固定側部材FBは、八つの第2金属部材(第1固定側ターミナルプレート50F1~第8固定側ターミナルプレート50F8)を有していてもよい。この場合、八本の第2形状記憶合金ワイヤ(第1ワイヤSB1~第8ワイヤSB8)のそれぞれの一端は、対応する第2金属部材(固定側金属部材50F)に個別に接続されていてもよい。 The fixed-side member FB may have eight second metal members (first fixed-side terminal plate 50F1 to eighth fixed-side terminal plate 50F8). In this case, one end of each of the eight second shape memory alloy wires (first wire SB1 to eighth wire SB8) may be individually connected to the corresponding second metal member (fixed side metal member 50F). good.
 上述の実施形態では、図17に示すように、第1ワイヤSB1の一端は第1固定側ターミナルプレート50F1に接続され、第2ワイヤSB2の一端は第2固定側ターミナルプレート50F2に接続され、第3ワイヤSB3の一端は第3固定側ターミナルプレート50F3に接続され、第4ワイヤSB4の一端は第4固定側ターミナルプレート50F4に接続され、第5ワイヤSB5の一端は第5固定側ターミナルプレート50F5に接続され、第6ワイヤSB6の一端は第6固定側ターミナルプレート50F6に接続され、第7ワイヤSB7の一端は第7固定側ターミナルプレート50F7に接続され、第8ワイヤSB8の一端は第8固定側ターミナルプレート50F8に接続されている。 In the above embodiment, as shown in FIG. 17, one end of the first wire SB1 is connected to the first fixed terminal plate 50F1, one end of the second wire SB2 is connected to the second fixed terminal plate 50F2, and the second wire SB1 is connected to the second fixed terminal plate 50F2. One end of the 3-wire SB3 is connected to the third fixed terminal plate 50F3, one end of the fourth wire SB4 is connected to the fourth fixed-side terminal plate 50F4, and one end of the fifth wire SB5 is connected to the fifth fixed-side terminal plate 50F5. One end of the sixth wire SB6 is connected to the sixth fixed terminal plate 50F6, one end of the seventh wire SB7 is connected to the seventh fixed terminal plate 50F7, and one end of the eighth wire SB8 is connected to the eighth fixed terminal plate 50F7. It is connected to terminal plate 50F8.
 そして、八本の上側形状記憶合金ワイヤSB(第1ワイヤSB1~第8ワイヤSB8)のうちの少なくとも四本の上側形状記憶合金ワイヤSBのそれぞれの他端は、第2可動側部材MB2に設けられた導電体(可動側金属部材50M及び上側弾性金属部材60)を介して互いに導通していてもよい。 The other ends of at least four of the eight upper shape memory alloy wires SB (first wire SB1 to eighth wire SB8) are provided on the second movable member MB2. may be electrically connected to each other via the conductors (the movable metal member 50M and the upper elastic metal member 60).
 この構成では、八本の上側形状記憶合金ワイヤSBのうちの少なくとも四本の上側形状記憶合金ワイヤSBのそれぞれの他端が共通の電位に接続される。そのため、この構成は、八本の上側形状記憶合金ワイヤSBのそれぞれに個別に電流を供給できるようにするための導電路の確保が容易になるという効果をもたらす。 In this configuration, the other ends of at least four upper shape memory alloy wires SB out of the eight upper shape memory alloy wires SB are connected to a common potential. Therefore, this configuration brings about the effect of facilitating the securing of conductive paths for allowing current to be individually supplied to each of the eight upper shape memory alloy wires SB.
 第2駆動部としての撮像素子駆動部DM1は、固定側部材FBに対する撮像素子保持体2の、光軸方向への移動、光軸方向に垂直な方向への移動、光軸回りの回転、及び、撮像素子ISの撮像面が傾くような移動を実現するように構成されていてもよい。また、第1駆動部としてのレンズ駆動部DM2は、固定側部材FBに対するレンズ保持体20の、光軸方向への移動、光軸方向に垂直な方向への移動、及び、レンズ体LSの光軸が傾くような移動を実現するように構成されていてもよい。 The imaging element driving section DM1 as a second driving section moves the imaging element holding body 2 with respect to the fixed side member FB in the optical axis direction, in the direction perpendicular to the optical axis direction, and rotates the optical axis. , the imaging surface of the imaging device IS may be configured to move such that the imaging plane is tilted. Further, the lens driving unit DM2 as a first driving unit moves the lens holding body 20 relative to the fixed side member FB in the optical axis direction, in the direction perpendicular to the optical axis direction, and moves the light of the lens body LS. It may be configured to achieve a tilting movement of the axis.
 この構成では、撮像素子駆動部DM1による固定側部材FBに対する撮像素子保持体2の様々な動きと、レンズ駆動部DM2による固定側部材FBに対するレンズ保持体20の様々な動きとが同時に実現される。そのため、この構成は、様々な方向における手振れに対応できるという効果をもたらす。また、この構成は、撮像素子保持体2とレンズ保持体20とを同時に動かすことができるため、撮像素子保持体2及びレンズ保持体20の何れか一方を動かす場合に比べ、手振れ補正で利用できる補正幅を大きくすることができるという効果をもたらす。また、この構成は、撮像素子保持体2とレンズ保持体20とを同時に動かすことができるため、撮像素子保持体2及びレンズ保持体20の何れか一方を動かす場合に比べ、自動焦点調整及び手振れ補正にかかる時間を短くできるという効果をもたらす。 In this configuration, various movements of the image pickup element holder 2 relative to the fixed member FB by the image pickup element driver DM1 and various movements of the lens holder 20 relative to the fixed member FB by the lens driver DM2 are realized at the same time. . Therefore, this configuration brings about the effect of being able to cope with camera shake in various directions. In addition, since this configuration can move both the image sensor holder 2 and the lens holder 20 at the same time, it can be used for camera shake correction as compared to the case where either one of the image sensor holder 2 or the lens holder 20 is moved. This brings about an effect that the correction width can be increased. In addition, since this configuration can move both the image sensor holder 2 and the lens holder 20 at the same time, automatic focus adjustment and camera shake are less likely to occur than when either one of the image sensor holder 2 or the lens holder 20 is moved. This brings about an effect that the time required for correction can be shortened.
 以上、本発明の好ましい実施形態について詳説した。しかしながら、本発明は、上述した実施形態に制限されることはない。上述した実施形態は、本発明の範囲を逸脱することなしに、種々の変形及び置換等が適用され得る。また、上述の実施形態を参照して説明された特徴のそれぞれは、技術的に矛盾しない限り、適宜に組み合わされてもよい。 The preferred embodiment of the present invention has been described in detail above. However, the invention is not limited to the embodiments described above. Various modifications and replacements may be applied to the above-described embodiments without departing from the scope of the present invention. Moreover, each of the features described with reference to the above-described embodiments may be combined as appropriate as long as they are not technically inconsistent.
 例えば、上述の実施形態では、弾性金属部材6は、一部品で構成されているが、二部品で構成されていてもよい。例えば、弾性金属部材6は、第1固定部6e1の中央部、及び、第3固定部6e3の中央部のそれぞれにおいて、第1弾性金属部材と第2弾性金属部材とに二分割されていてもよい。この場合、第1弾性金属部材は、第1導電部材CM1に接続され、第2導電部材CM2には接続されないように構成されていてもよい。また、第2弾性金属部材は、第2導電部材CM2に接続され、第1導電部材CM1には接続されないように構成されていてもよい。同様に、上側弾性金属部材60は、一部品で構成されているが、二部品で構成されていてもよい。例えば、上側弾性金属部材60は、第2固定部60e2の中央部、及び、第4固定部60e4の中央部のそれぞれにおいて、第1上側弾性金属部材と第2上側弾性金属部材とに二分割されていてもよい。この場合、第1上側弾性金属部材は、第11導電部材CM11に接続され、第12導電部材CM12には接続されないように構成されていてもよい。また、第2上側弾性金属部材は、第12導電部材CM12に接続され、第11導電部材CM11には接続されないように構成されていてもよい。 For example, in the above-described embodiment, the elastic metal member 6 is composed of one part, but it may be composed of two parts. For example, the elastic metal member 6 may be divided into a first elastic metal member and a second elastic metal member at each of the central portion of the first fixing portion 6e1 and the central portion of the third fixing portion 6e3. good. In this case, the first elastic metal member may be configured to be connected to the first conductive member CM1 and not connected to the second conductive member CM2. Also, the second elastic metal member may be configured to be connected to the second conductive member CM2 and not to be connected to the first conductive member CM1. Similarly, the upper elastic metal member 60 is composed of one part, but may be composed of two parts. For example, the upper elastic metal member 60 is divided into a first upper elastic metal member and a second upper elastic metal member at the central portion of the second fixing portion 60e2 and the central portion of the fourth fixing portion 60e4. may be In this case, the first upper elastic metal member may be configured to be connected to the eleventh conductive member CM11 and not to be connected to the twelfth conductive member CM12. Also, the second upper elastic metal member may be configured to be connected to the twelfth conductive member CM12 and not to be connected to the eleventh conductive member CM11.
 また、上述の実施形態では、第1可動側部材MB1の位置は、磁気センサの出力に基づいて検出されるが、形状記憶合金ワイヤSAの抵抗値を検出するセンサの出力に基づいて検出されてもよい。第2可動側部材MB2の位置についても同様である。 Further, in the above-described embodiment, the position of the first movable member MB1 is detected based on the output of the magnetic sensor, but it is not detected based on the output of the sensor that detects the resistance value of the shape memory alloy wire SA. good too. The same applies to the position of the second movable side member MB2.
 また、上述の実施形態では、固定側金属部材5Fは、接着剤によりベース部材8に固定されているが、ベース部材8に埋設されていてもよく、ベース部材8の表面に形成された導電パターンであってもよい。同様に、可動側金属部材5Mは、接着剤により撮像素子保持体2に固定されているが、撮像素子保持体2に埋設されていてもよく、撮像素子保持体2の表面に形成された導電パターンであってもよい。また、固定側金属部材50Fは、接着剤により上側ベース部材80に固定されているが、上側ベース部材80に埋設されていてもよく、上側ベース部材80の表面に形成された導電パターンであってもよい。同様に、可動側金属部材50Mは、接着剤によりレンズ保持体20に固定されているが、レンズ保持体20に埋設されていてもよく、レンズ保持体20の表面に形成された導電パターンであってもよい。 Moreover, in the above-described embodiment, the fixed-side metal member 5F is fixed to the base member 8 with an adhesive, but it may be embedded in the base member 8, and the conductive pattern formed on the surface of the base member 8 may be fixed. may be Similarly, the movable-side metal member 5M is fixed to the image pickup element holder 2 with an adhesive, but it may be embedded in the image pickup element holder 2, and the conductive member 5M formed on the surface of the image pickup element holder 2 may be used. It can be a pattern. In addition, although fixed-side metal member 50F is fixed to upper base member 80 with an adhesive, fixed-side metal member 50F may be embedded in upper base member 80, and may be a conductive pattern formed on the surface of upper base member 80. good too. Similarly, the movable-side metal member 50M is fixed to the lens holder 20 with an adhesive, but it may be embedded in the lens holder 20 and may be a conductive pattern formed on the surface of the lens holder 20. may
 本願は、2021年3月31日に出願した日本国特許出願2021-060169号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese Patent Application No. 2021-060169 filed on March 31, 2021, and the entire contents of this Japanese Patent Application are incorporated herein by reference.
 2・・・撮像素子保持体 2D・・・可動側台座部 2D1・・・第1可動側台座部 2D2・・・第2可動側台座部 2F・・・枠体 2G・・・溝部 2S・・・突設部 2S1・・・第1突設部 2S2・・・第2突設部 2T・・・突出部 3・・・可撓性基板 3e・・・外側部分 3i・・・内側部分 4・・・カバー部材 4A・・・外周壁部 4A1・・・第1側板部 4A2・・・第2側板部 4A3・・・第3側板部 4A4・・・第4側板部 4B・・・天板部 4C・・・隅部 4C1・・・第1隅部 4C2・・・第2隅部 4C3・・・第3隅部 4C4・・・第4隅部 4k・・・開口 5・・・金属部材 5F・・・固定側金属部材 5F1・・・第1固定側ターミナルプレート 5F2・・・第2固定側ターミナルプレート 5F3・・・第3固定側ターミナルプレート 5F4・・・第4固定側ターミナルプレート 5F5・・・第5固定側ターミナルプレート 5F6・・・第6固定側ターミナルプレート 5F7・・・第7固定側ターミナルプレート 5F8・・・第8固定側ターミナルプレート 5M・・・可動側金属部材 5M1・・・第1可動側ターミナルプレート 5M2・・・第2可動側ターミナルプレート 6・・・弾性金属部材 6e1・・・第1固定部 6e2・・・第2固定部 6e3・・・第3固定部 6e4・・・第4固定部 6g1・・・第1腕部 6g2・・・第2腕部 6g3・・・第3腕部 6g4・・・第4腕部 6H1・・・第1貫通孔 6H2・・・第2貫通孔 6H3・・・第3貫通孔 6H4・・・第4貫通孔 6H5・・・第5貫通孔 6H6・・・第6貫通孔 6H7・・・第7貫通孔 6H8・・・第8貫通孔 6H9・・・第9貫通孔 6H10・・・第10貫通孔 6H11・・・第11貫通孔 6H12・・・第12貫通孔 7・・・回路基板 8・・・ベース部材 8D・・・固定側台座部 8D1・・・第1固定側台座部 8D2・・・第2固定側台座部 8E・・・辺部 8E1・・・第1辺部 8E2・・・第2辺部 8E3・・・第3辺部 8E4・・・第4辺部 8K・・・開口 8T・・・突出部 20・・・レンズ保持体 20D・・・可動側台座部 20D1・・・第1可動側台座部 20D2・・・第2可動側台座部 20F・・・枠体 20G・・・溝部 20S・・・突設部 20S1・・・第1突設部 20S2・・・第2突設部 20T・・・突出部 50・・・上側金属部材 50F・・・固定側金属部材 50F1・・・第1固定側ターミナルプレート 50F2・・・第2固定側ターミナルプレート 50F3・・・第3固定側ターミナルプレート 50F4・・・第4固定側ターミナルプレート 50F5・・・第5固定側ターミナルプレート 50F6・・・第6固定側ターミナルプレート 50F7・・・第7固定側ターミナルプレート 50F8・・・第8固定側ターミナルプレート 50M・・・可動側金属部材 50M1・・・第1可動側ターミナルプレート 50M2・・・第2可動側ターミナルプレート 60・・・上側弾性金属部材 60e1・・・第1固定部 60e2・・・第2固定部 60e3・・・第3固定部 60e4・・・第4固定部 60g1・・・第1腕部 60g2・・・第2腕部 60g3・・・第3腕部 60g4・・・第4腕部 60H1・・・第1貫通孔 60H2・・・第2貫通孔 60H3・・・第3貫通孔 60H4・・・第4貫通孔 60H5・・・第5貫通孔 60H6・・・第6貫通孔 60H7・・・第7貫通孔 60H8・・・第8貫通孔 60H9・・・第9貫通孔 60H10・・・第10貫通孔 60H11・・・第11貫通孔 60H12・・・第12貫通孔 80・・・上側ベース部材 80D・・・固定側台座部 80D1・・・第1固定側台座部 80D2・・・第2固定側台座部 80E・・・辺部 80E1・・・第1辺部 80E2・・・第2辺部 80E3・・・第3辺部 80E4・・・第4辺部 80K・・・開口 80T・・・突出部 BP・・・折り曲げ片 CM・・・導電部材 CM1・・・第1導電部材 CM2・・・第2導電部材 CM11・・・第11導電部材 CM12・・・第12導電部材 CP・・・接合面部 CP1・・・第1接合面部 CP2・・・第2接合面部 CP11・・・第11接合面部 CP12・・・第12接合面部 CT・・・接続部 CT1・・・第1接続部 CT2・・・第2接続部 CT3・・・第3接続部 CT4・・・第4接続部 CT5・・・第5接続部 CT6・・・第6接続部 CT7・・・第7接続部 CT8・・・第8接続部 CT11・・・第11接続部 CT12・・・第12接続部 CT13・・・第13接続部 CT14・・・第14接続部 CT15・・・第15接続部 CT16・・・第16接続部 CT17・・・第17接続部 CT18・・・第18接続部 DM1・・・撮像素子駆動部 DM2・・・レンズ駆動部 ED・・・接続部 ED1・・・第1接続部 ED2・・・第2接続部 ED11・・・第11接続部 ED12・・・第12接続部 FB・・・固定側部材 HS・・・筐体 IS・・・撮像素子 J1~J4・・・保持部 LS・・・レンズ体 MB1・・・第1可動側部材 MB2・・・第2可動側部材 MD・・・カメラモジュール PT1・・・第1導電パターン PT2・・・第2導電パターン PT3・・・第3導電パターン PT4・・・第4導電パターン PT5・・・第5導電パターン PT6・・・第6導電パターン PT7・・・第7導電パターン PT8・・・第8導電パターン PT9・・・第9導電パターン PT10・・・第10導電パターン RX1・・・第1回転軸 RX2・・・第2回転軸 RX3・・・第3回転軸 RX4・・・第4回転軸 RX5・・・第5回転軸 RX6・・・第6回転軸 SA・・・形状記憶合金ワイヤ SA1・・・第1ワイヤ SA2・・・第2ワイヤ SA3・・・第3ワイヤ SA4・・・第4ワイヤ SA5・・・第5ワイヤ SA6・・・第6ワイヤ SA7・・・第7ワイヤ SA8・・・第8ワイヤ SB・・・上側形状記憶合金ワイヤ SB1・・・第1ワイヤ SB2・・・第2ワイヤ SB3・・・第3ワイヤ SB4・・・第4ワイヤ SB5・・・第5ワイヤ SB6・・・第6ワイヤ SB7・・・第7ワイヤ SB8・・・第8ワイヤ 2... Imaging element holder 2D... Movable side pedestal 2D1... First movable side pedestal 2D2... Second movable side pedestal 2F... Frame 2G... Groove 2S... · Protruding portion 2S1... First protruding portion 2S2... Second protruding portion 2T... Protruding portion 3... Flexible substrate 3e... Outer portion 3i... Inner portion 4- ... Cover member 4A... Peripheral wall part 4A1... First side plate part 4A2... Second side plate part 4A3... Third side plate part 4A4... Fourth side plate part 4B... Top plate part 4C... corner 4C1...first corner 4C2...second corner 4C3...third corner 4C4...fourth corner 4k...opening 5...metal member 5F・・・Fixed-side metal member 5F1・・・First fixed-side terminal plate 5F2・・・Second fixed-side terminal plate 5F3・・・Third fixed-side terminal plate 5F4・・・Fourth fixed-side terminal plate 5F5・・・· 5th fixed side terminal plate 5F6... 6th fixed side terminal plate 5F7... 7th fixed side terminal plate 5F8... 8th fixed side terminal plate 5M... Movable side metal member 5M1... No. 1 movable side terminal plate 5M2... second movable side terminal plate 6... elastic metal member 6e1... first fixed part 6e2... second fixed part 6e3... third fixed part 6e4... Fourth fixing part 6g1... First arm part 6g2... Second arm part 6g3... Third arm part 6g4... Fourth arm part 6H1... First through hole 6H2... Second Through hole 6H3... Third through hole 6H4... Fourth through hole 6H5... Fifth through hole 6H6... Sixth through hole 6H7... Seventh through hole 6H8... Eighth through hole 6H9... 9th through hole 6H10... 10th through hole 6H11... 11th through hole 6H12... 12th through hole 7... circuit board 8... base member 8D... fixed side Pedestal 8D1... First fixed side pedestal 8D2... Second fixed side pedestal 8E... Side 8E1... First side 8E2... Second side 8E3... Third Side 8E4 Fourth side 8K Opening 8T Projection 20 Lens holder 20D Movable side pedestal 20D1 First movable pedestal 20D2 Second movable side pedestal portion 20F...Frame body 20G...Groove portion 20S...Protruding portion 20S1... First projecting portion 20S2 Second projecting portion 20T Projecting portion 50 Upper metal member 50F Fixed side metal member 50F1 First fixed terminal plate 50F2 Second 2 fixed side terminal plate 50F3... 3rd fixed side terminal plate 50F4... 4th fixed side terminal plate 50F5... 5th fixed side terminal plate 50F6... 6th fixed side terminal plate 50F7... No. 7 fixed side terminal plate 50F8... 8th fixed side terminal plate 50M... movable side metal member 50M1... first movable side terminal plate 50M2... second movable side terminal plate 60... upper elastic metal Member 60e1... First fixing part 60e2... Second fixing part 60e3... Third fixing part 60e4... Fourth fixing part 60g1... First arm part 60g2... Second arm part 60g3 ... 3rd arm 60g4... 4th arm 60H1... 1st through hole 60H2... 2nd through hole 60H3... 3rd through hole 60H4... 4th through hole 60H5... · Fifth through hole 60H6... Sixth through hole 60H7... Seventh through hole 60H8... Eighth through hole 60H9... Ninth through hole 60H10... Tenth through hole 60H11... Third 11 through-hole 60H12... 12th through-hole 80... upper base member 80D... fixed side pedestal portion 80D1... first fixed side pedestal portion 80D2... second fixed side pedestal portion 80E... Side 80E1... First side 80E2... Second side 80E3... Third side 80E4... Fourth side 80K... Opening 80T... Protruding part BP... Bending Piece CM... conductive member CM1... first conductive member CM2... second conductive member CM11... eleventh conductive member CM12... twelfth conductive member CP... bonding surface portion CP1... second 1 joint surface portion CP2... 2nd joint surface portion CP11... 11th joint surface portion CP12... 12th joint surface portion CT... connecting portion CT1... first connecting portion CT2... second connecting portion CT3 ... 3rd connection part CT4... 4th connection part CT5... 5th connection part CT6... 6th connection part CT7... 7th connection part CT8... 8th connection part CT11... · 11th connection CT12... 12th connection CT13... 13th connection CT14... 14th contact Continuation part CT15... 15th connection part CT16... 16th connection part CT17... 17th connection part CT18... 18th connection part DM1... Imaging element drive part DM2... Lens drive part ED ... connection part ED1... first connection part ED2... second connection part ED11... eleventh connection part ED12... twelfth connection part FB... fixed side member HS... housing IS... image sensor J1 to J4... holding part LS... lens body MB1... first movable side member MB2... second movable side member MD... camera module PT1... first Conductive pattern PT2... Second conductive pattern PT3... Third conductive pattern PT4... Fourth conductive pattern PT5... Fifth conductive pattern PT6... Sixth conductive pattern PT7... Seventh conductive pattern PT8... 8th conductive pattern PT9... 9th conductive pattern PT10... 10th conductive pattern RX1... 1st rotation axis RX2... 2nd rotation axis RX3... 3rd rotation axis RX4/ ... 4th rotation axis RX5... 5th rotation axis RX6... 6th rotation axis SA... Shape memory alloy wire SA1... 1st wire SA2... 2nd wire SA3... 3rd Wire SA4... Fourth wire SA5... Fifth wire SA6... Sixth wire SA7... Seventh wire SA8... Eighth wire SB... Upper shape memory alloy wire SB1... Third 1st wire SB2... 2nd wire SB3... 3rd wire SB4... 4th wire SB5... 5th wire SB6... 6th wire SB7... 7th wire SB8... 8th wire wire

Claims (11)

  1.  固定側部材と、
     レンズ体を保持可能なレンズ保持体と、
     前記レンズ体に対向して配置される撮像素子が一体的に設けられる撮像素子保持体と、
     前記固定側部材に対して前記レンズ保持体を移動させる第1駆動部と、を備えたカメラモジュールにおいて、
     前記撮像素子保持体を前記固定側部材に対して移動させる第2駆動部を備え、
     前記第2駆動部は、前記撮像素子保持体を含む第1可動側部材と前記固定側部材との間に設けられた複数の第1形状記憶合金ワイヤを含んで構成されている、
     ことを特徴とするカメラモジュール。
    a fixed side member;
    a lens holder capable of holding a lens body;
    an imaging element holder integrally provided with an imaging element arranged to face the lens body;
    A camera module comprising a first driving section that moves the lens holder with respect to the fixed side member,
    a second driving unit for moving the imaging element holder with respect to the stationary member;
    The second drive unit includes a plurality of first shape memory alloy wires provided between a first movable member including the image pickup device holder and the fixed member.
    A camera module characterized by:
  2.  複数の前記第1形状記憶合金ワイヤは、光軸方向に沿って見た平面視において、前記光軸方向と交差する第1の方向で前記撮像素子を挟んで離間して配置される第1のワイヤ及び第3のワイヤと、前記光軸方向と交差し且つ前記第1の方向に垂直な第2の方向で前記撮像素子を挟んで離間して配置される第2のワイヤ及び第4のワイヤと、を含み、
     前記第1のワイヤ乃至前記第4のワイヤのそれぞれは、一端が前記固定側部材に固定され、他端が前記第1可動側部材に固定されている、
     請求項1に記載のカメラモジュール。
    The plurality of first shape memory alloy wires are arranged in a first direction intersecting the optical axis direction in a plan view along the optical axis direction so as to be spaced apart from each other with the imaging element interposed therebetween. A wire and a third wire, and a second wire and a fourth wire which are spaced apart from each other with the imaging element interposed therebetween in a second direction that intersects the optical axis direction and is perpendicular to the first direction. and including
    Each of the first wire to the fourth wire has one end fixed to the fixed side member and the other end fixed to the first movable side member,
    A camera module according to claim 1 .
  3.  複数の前記第1形状記憶合金ワイヤは、前記第1の方向に沿って見た側面視において、前記第1のワイヤと交差するように配置される第5のワイヤと、前記第2の方向に沿って見た側面視において、前記第2のワイヤと交差するように配置される第6のワイヤと、前記第1の方向に沿って見た側面視において、前記第3のワイヤと交差するように配置される第7のワイヤと、前記第2の方向に沿って見た側面視において、前記第4のワイヤと交差するように配置される第8のワイヤと、を含み、
     前記第5のワイヤ乃至前記第8のワイヤのそれぞれは、一端が前記固定側部材に固定され、他端が前記第1可動側部材に固定されている、
     請求項2に記載のカメラモジュール。
    The plurality of first shape memory alloy wires includes, in a side view along the first direction, a fifth wire arranged to intersect the first wire and a A sixth wire arranged to intersect the second wire in a side view along the first direction, and a sixth wire arranged to intersect the third wire in a side view along the first direction a seventh wire arranged in the second direction, and an eighth wire arranged to intersect the fourth wire in a side view along the second direction,
    Each of the fifth wire to the eighth wire has one end fixed to the fixed side member and the other end fixed to the first movable side member,
    3. A camera module according to claim 2.
  4.  前記固定側部材は、八つの第1金属部材を有し、八本の前記第1形状記憶合金ワイヤのそれぞれの一端は、対応する前記第1金属部材に個別に接続されている、
     請求項3に記載のカメラモジュール。
    The fixed side member has eight first metal members, and one end of each of the eight first shape memory alloy wires is individually connected to the corresponding first metal member,
    4. A camera module according to claim 3.
  5.  前記第1駆動部は、前記レンズ保持体を含む第2可動側部材と前記固定側部材との間に設けられた複数の第2形状記憶合金ワイヤを含んで構成されている、
     請求項3又は請求項4に記載のカメラモジュール。
    The first drive unit includes a plurality of second shape memory alloy wires provided between a second movable member including the lens holder and the fixed member.
    5. The camera module according to claim 3 or 4.
  6.  複数の前記第2形状記憶合金ワイヤは、前記光軸方向に沿って見た平面視において、前記光軸方向と交差する第3の方向で前記レンズ体を挟んで離間して配置される第9のワイヤ及び第11のワイヤと、前記光軸方向と交差し且つ前記第3の方向に垂直な第4の方向で前記レンズ体を挟んで離間して配置される第10のワイヤ及び第12のワイヤと、前記第3の方向に沿って見た側面視において、前記第9のワイヤと交差するように配置される第13のワイヤと、前記第4の方向に沿って見た側面視において、前記第10のワイヤと交差するように配置される第14のワイヤと、前記第3の方向に沿って見た側面視において、前記第11のワイヤと交差するように配置される第15のワイヤと、前記第4の方向に沿って見た側面視において、前記第12のワイヤと交差するように配置される第16のワイヤと、を含み、
     前記第9のワイヤ乃至前記第16のワイヤのそれぞれは、一端が前記固定側部材に固定され、他端が前記第2可動側部材に固定されている、
     請求項5に記載のカメラモジュール。
    The plurality of second shape memory alloy wires are arranged in a plan view along the optical axis direction, and are spaced apart across the lens body in a third direction intersecting the optical axis direction. and an eleventh wire, and a tenth wire and a twelfth wire that are spaced apart across the lens body in a fourth direction that intersects the optical axis direction and is perpendicular to the third direction. A wire, a thirteenth wire arranged to intersect with the ninth wire in a side view along the third direction, and a side view along the fourth direction, A fourteenth wire arranged to cross the tenth wire, and a fifteenth wire arranged to cross the eleventh wire in a side view along the third direction. and a sixteenth wire arranged to cross the twelfth wire in a side view along the fourth direction,
    Each of the ninth wire to the sixteenth wire has one end fixed to the fixed side member and the other end fixed to the second movable side member,
    6. A camera module according to claim 5.
  7.  前記第1のワイヤ及び前記第5のワイヤは、前記光軸方向において、前記第9のワイヤ及び前記第13のワイヤと対向するように配置され、
     前記第2のワイヤ及び前記第6のワイヤは、前記光軸方向において、前記第10のワイヤ及び前記第14のワイヤと対向するように配置され、
     前記第3のワイヤ及び前記第7のワイヤは、前記光軸方向において、前記第11のワイヤ及び前記第15のワイヤと対向するように配置され、且つ、
     前記第4のワイヤ及び前記第8のワイヤは、前記光軸方向において、前記第12のワイヤ及び前記第16のワイヤと対向するように配置されている、
     請求項6に記載のカメラモジュール。
    the first wire and the fifth wire are arranged to face the ninth wire and the thirteenth wire in the optical axis direction;
    the second wire and the sixth wire are arranged to face the tenth wire and the fourteenth wire in the optical axis direction;
    The third wire and the seventh wire are arranged to face the eleventh wire and the fifteenth wire in the optical axis direction, and
    The fourth wire and the eighth wire are arranged to face the twelfth wire and the sixteenth wire in the optical axis direction,
    7. A camera module according to claim 6.
  8.  前記固定側部材は、前記光軸方向に沿って見た平面視において、互いに異なる位置に複数の固定側ワイヤ支持部を有し、
     複数の前記第1形状記憶合金ワイヤのそれぞれの一端は、複数の前記固定側ワイヤ支持部のうちの二つである第1固定側ワイヤ支持部及び第3固定側ワイヤ支持部の何れかに支持され、
     複数の前記第2形状記憶合金ワイヤのそれぞれの一端は、複数の前記固定側ワイヤ支持部のうちの別の二つである第2固定側ワイヤ支持部及び第4固定側ワイヤ支持部の何れかに支持されている、
     請求項6又は請求項7に記載のカメラモジュール。
    The stationary member has a plurality of stationary wire support portions at different positions in a plan view along the optical axis direction,
    One end of each of the plurality of first shape memory alloy wires is supported by either a first fixed wire support portion or a third fixed wire support portion, which are two of the plurality of fixed wire support portions. is,
    One end of each of the plurality of second shape memory alloy wires is either a second fixed wire support portion or a fourth fixed wire support portion, which are other two of the plurality of fixed wire support portions. supported by
    The camera module according to claim 6 or 7.
  9.  複数の前記第1形状記憶合金ワイヤのそれぞれの他端は、前記第1可動側部材における複数の可動側ワイヤ支持部の何れかに支持され、
     複数の前記第2形状記憶合金ワイヤのそれぞれの他端は、前記第2可動側部材における複数の可動側ワイヤ支持部の何れかに支持され、
     前記光軸方向において、
      前記第1可動側部材における複数の可動側ワイヤ支持部のそれぞれは、前記固定側部材における第2固定側ワイヤ支持部及び第4固定側ワイヤ支持部の何れかと対向し、
      前記第2可動側部材における複数の可動側ワイヤ支持部のそれぞれは、前記固定側部材における第1固定側ワイヤ支持部及び第3固定側ワイヤ支持部の何れかと対向している、
     請求項8に記載のカメラモジュール。
    The other end of each of the plurality of first shape memory alloy wires is supported by one of the plurality of movable wire support portions of the first movable member,
    The other end of each of the plurality of second shape memory alloy wires is supported by one of the plurality of movable wire support portions of the second movable member,
    in the direction of the optical axis,
    each of the plurality of movable-side wire support portions of the first movable-side member faces either the second fixed-side wire support portion or the fourth fixed-side wire support portion of the fixed-side member;
    Each of the plurality of movable-side wire support portions of the second movable-side member faces either the first fixed-side wire support portion or the third fixed-side wire support portion of the fixed-side member,
    9. A camera module according to claim 8.
  10.  前記固定側部材は、八つの第2金属部材を有し、八本の前記第2形状記憶合金ワイヤのそれぞれの一端は、対応する前記第2金属部材に個別に接続されている、
     請求項6乃至請求項9の何れかに記載のカメラモジュール。
    The fixed side member has eight second metal members, and one end of each of the eight second shape memory alloy wires is individually connected to the corresponding second metal member,
    A camera module according to any one of claims 6 to 9.
  11.  前記第2駆動部は、前記固定側部材に対する前記撮像素子保持体の、前記光軸方向への移動、前記光軸方向に垂直な方向への移動、光軸回りの回転、及び、前記撮像素子の撮像面が傾くような移動を実現し、
     前記第1駆動部は、前記固定側部材に対する前記レンズ保持体の、前記光軸方向への移動、前記光軸方向に垂直な方向への移動、及び、前記レンズ体の光軸が傾くような移動を実現する、
     請求項5乃至請求項10の何れかに記載のカメラモジュール。
    The second driving section moves the imaging element holder with respect to the stationary member in the optical axis direction, in the direction perpendicular to the optical axis direction, and rotates the imaging element around the optical axis. Realizes movement that tilts the imaging plane of
    The first driving section moves the lens holder with respect to the stationary member in the optical axis direction, in the direction perpendicular to the optical axis direction, and inclines the optical axis of the lens body. realize movement,
    A camera module according to any one of claims 5 to 10.
PCT/JP2022/010138 2021-03-31 2022-03-08 Camera module WO2022209645A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280025433.5A CN117120923A (en) 2021-03-31 2022-03-08 Camera module
JP2023510763A JPWO2022209645A1 (en) 2021-03-31 2022-03-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-060169 2021-03-31
JP2021060169 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209645A1 true WO2022209645A1 (en) 2022-10-06

Family

ID=83458881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010138 WO2022209645A1 (en) 2021-03-31 2022-03-08 Camera module

Country Status (3)

Country Link
JP (1) JPWO2022209645A1 (en)
CN (1) CN117120923A (en)
WO (1) WO2022209645A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017207734A (en) * 2016-04-01 2017-11-24 台湾東電化股▲ふん▼有限公司 Camera module, and method of controlling the same
US20180149142A1 (en) * 2015-05-26 2018-05-31 Cambridge Mechatronics Limited Assembly method for a shape memory alloy actuator arrangement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180149142A1 (en) * 2015-05-26 2018-05-31 Cambridge Mechatronics Limited Assembly method for a shape memory alloy actuator arrangement
JP2017207734A (en) * 2016-04-01 2017-11-24 台湾東電化股▲ふん▼有限公司 Camera module, and method of controlling the same

Also Published As

Publication number Publication date
JPWO2022209645A1 (en) 2022-10-06
CN117120923A (en) 2023-11-24

Similar Documents

Publication Publication Date Title
US20230288678A1 (en) Rotational ball-guided voice coil motor
JP6966211B2 (en) Camera module and how to control it
TWI569058B (en) Lens driving device with 3d elastic support structure
JP6391584B2 (en) Suspension system for camera lens elements
JP2013546023A (en) Shape memory alloy actuator
JP2013520701A (en) SMA actuator
KR20060010792A (en) Drive device
JP2019530901A (en) Actuator for adjusting movable element, method of use, and method of adjustment
CN112068382A (en) Anti-shake motor
WO2022209645A1 (en) Camera module
CN115398101A (en) Actuator assembly
WO2022209627A1 (en) Image sensor drive device and camera module
WO2022219984A1 (en) Module driving device and optical device
JP5651303B2 (en) Lens holding unit
JP7253599B2 (en) Lens driver and camera module
WO2022089649A1 (en) Lens driving apparatus and camera module
JP4982821B2 (en) Lens drive device
WO2023223945A1 (en) Module driving device and optical device
WO2023223944A1 (en) Module driving device and optical device
CN114647127B (en) Lens driving device and camera module
JP2024034361A (en) optical equipment
JP7295921B2 (en) Lens driver and camera module
JP7467762B2 (en) Optical element driving device
JP2022163541A (en) Camera module drive device and imaging apparatus
JP7378287B2 (en) Lens drive device and camera module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779868

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023510763

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779868

Country of ref document: EP

Kind code of ref document: A1