WO2022209622A1 - 塞栓物 - Google Patents

塞栓物 Download PDF

Info

Publication number
WO2022209622A1
WO2022209622A1 PCT/JP2022/009919 JP2022009919W WO2022209622A1 WO 2022209622 A1 WO2022209622 A1 WO 2022209622A1 JP 2022009919 W JP2022009919 W JP 2022009919W WO 2022209622 A1 WO2022209622 A1 WO 2022209622A1
Authority
WO
WIPO (PCT)
Prior art keywords
embolus
aneurysm
region
expandable material
delivery
Prior art date
Application number
PCT/JP2022/009919
Other languages
English (en)
French (fr)
Inventor
亮 水田
秀彬 柴田
恵理 生野
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2022209622A1 publication Critical patent/WO2022209622A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure

Definitions

  • the present invention relates to an embolus delivered into an aneurysm by a catheter.
  • aneurysms aortic aneurysms
  • surgery for aortic aneurysms was mainly performed by artificial blood vessel replacement surgery in which an artificial blood vessel was transplanted through laparotomy or thoracotomy. application is expanding rapidly.
  • stent graft insertion for abdominal aortic aneurysm AAA
  • a catheter containing a stent graft at its tip is inserted from a patient's peripheral blood vessel, and the stent graft is deployed and indwelled in the affected area of the aneurysm. Blood flow to the aneurysm may be blocked to prevent rupture of the aneurysm.
  • a stent graft used in stent graft insertion includes a "main body” having a substantially Y-shaped bifurcation, and a “main body” attached to the bifurcation and extending to the right iliac artery and the left iliac artery. It has a structure that can assemble two types of members that are attached to each leg.
  • Patent Document 1 discloses a catheter capable of holding a relatively elongated compressed sponge (embolus) in its lumen in order to block residual blood flow in an aortic aneurysm caused by an endoleak, and a catheter and a plunger that pushes the embolus held therein into the blood-filled aneurysm.
  • the sponge used in this device expands as soon as it is exposed to blood, so when it is pushed out into the aneurysm and absorbs the blood in the aneurysm, it expands (swells) and remains in the aneurysm in that state. It blocks blood flow to prevent rupture.
  • the embolization material of Patent Document 1 can block blood flow to the aneurysm by expanding as described above.
  • branch vessels branching from an aneurysm may be larger (thicker) than the embolus immediately after insertion and before swelling. Therefore, there is a risk that the embolus placed in the aneurysm will enter the branch blood vessel and block an unintended site, which is called distal embolism.
  • the present invention has been made in view of the above problems, and aims to provide an embolus that can reduce the risk of distal embolism.
  • the embolus according to the present invention is an embolus to be inserted and left in an aneurysm in a living body, and has an elongated main body portion extending in the axial direction, and the main body portion is a soft region. and a hard region that is harder than the soft region, and the hard region is 50% or less of the total length of the main body.
  • the embolus configured as described above has a region that is hard to deform in the bending direction due to its hard configuration. Therefore, the embolus can be easily caught on the curved portion on the proximal side of the branched blood vessel using the hard region as a fulcrum, and can be prevented from straying into the distal side of the branched blood vessel. Therefore, the embolus can reduce the risk of distal embolism.
  • FIG. 11 shows an embolus swollen within an aneurysm.
  • FIG. 10 is a diagram showing an embolus according to Modification 1;
  • FIG. 10 is a diagram showing an embolus according to Modification 2;
  • FIG. 3 is a diagram showing the configurations of a medical instrument set and a delivery set;
  • 1 is a diagram showing the configuration of an embolus delivery medical system;
  • FIG. It is an example of operation of the embolism delivery medical system. It is an example of operation of the embolism delivery medical system. It is an example of operation of the embolism delivery medical system. It is an example of operation of the embolism delivery medical system. It is an example of operation of the embolism delivery medical system.
  • It is a figure which shows the structure of the medical instrument set which concerns on a modification. It is an operation example of the embolus delivery medical system according to the modification. It is an operation example of the embolus delivery medical system according to the modification.
  • the operation direction of each part constituting the embolus delivery medical system 300 capable of delivering the embolus 10 into the aneurysm is, for example, the delivery direction for delivering the embolus-loading catheter 20 into the aneurysm.
  • the direction along the axial direction of the catheter 30 and the side on which the embolus 10 is conveyed into the aneurysm is defined as the "distal end side (or distal end portion)".
  • the side (the side where the delivery catheter 30 is withdrawn) is referred to as the "proximal side (or proximal end)".
  • the “distal end” means a certain axial range including the distal end
  • the “basal end” means a certain axial range including the most proximal end.
  • the embolization device 10 is applied to endoleak embolization for stent graft insertion of an abdominal aortic aneurysm (AAA), which is a treatment method for preventing rupture of an aneurysm (for example, an aneurysm) that has occurred in a blood vessel.
  • AAA abdominal aortic aneurysm
  • the therapeutic method to which the embolization material 10 can be applied is not limited to the above-described endoleak embolization, but can also be applied to other interventional therapeutic methods for preventing rupture of an aneurysm formed in a blood vessel.
  • M to N includes M and N and means “M or more and N or less”.
  • M and/or N means including at least one of M and N, and includes “M alone,” “N alone,” and “M and N in combination.”
  • the term “(meth)acryl” includes both acryl and methacryl.
  • the term “(meth)acrylic acid” includes both acrylic acid and methacrylic acid.
  • the term “(meth)acryloyl” includes both acryloyl and methacryloyl.
  • the term “(meth)acryloyl group” includes both acryloyl and methacryloyl groups.
  • FIGS. 1 and 2 are diagrams for explaining the embolus 10, and FIGS. 3 and 4 are diagrams for explaining modifications of the embolus 10.
  • FIG. 5 is a diagram showing each device that constitutes the medical instrument set 100 and the delivery system 200
  • FIG. 6 is a diagram that shows each device that constitutes the embolism delivery medical system 300. As shown in FIG. In FIGS. 5 and 6, the embolic material 10 is loaded into the loading lumen of the embolic material loading catheter 20 .
  • the embolus 10 shown in FIGS. 1 and 2 is shaded to distinguish between the soft region 12 and the hard region 13 .
  • the arrow X indicates the "axial direction (longitudinal direction)" of the embolus
  • the arrow Y indicates the “width direction (depth direction)” of the embolus
  • the arrow Z indicates the The “height direction” of the embolus is indicated
  • the arrow r indicates the "radial direction” of the embolus.
  • the embolus 10 is indwelled in an aneurysm such as an aneurysm formed in a blood vessel, and expands by absorbing fluid including blood flowing into the aneurysm.
  • the embolus 10 is loaded into the embolus-loading catheter 20, and with the embolus-loading catheter 20 attached to the delivery catheter 30, the embolus 10 is pushed out by the delivery pusher 40 and left in the aneurysm.
  • the embolus 10 is an elongated fibrous linear body (linear body) made of an expandable material E (such as a polymer material (water-absorbing gel material)) that expands under physiological conditions upon contact with an aqueous liquid including blood. .
  • the embolus 10 is an elongated filamentous body having a substantially circular cross-sectional shape in a direction orthogonal to the axial direction, and is relatively fragile before being indwelled in the aneurysm and expanded.
  • the cross-sectional shape of the embolization object 10 is not particularly limited, and may be an ellipse, rectangle, or other polygonal shape.
  • the shape of the embolus 10 is not limited to a linear body as long as it can be accommodated in the loading lumen of the embolus loading catheter 20, and may be a shape that can be accommodated in the loading lumen by being deformed (for example, a flat shape). There may be. If the embolic object 10 has a flattened shape, the embolic object 10 is stored in the loading lumen in a rolled state, and when the embolic object 10 is removed from the loading lumen (in a non-expanded state), the embolic object 10 is displaced. It is configured to return to a flat state or approach a flat state by a restoring force derived from the physical properties of the constituent materials.
  • the embolus 10 can be made of an expandable material (such as a polymeric material (water-absorbing gel material)) that expands under physiological conditions when it comes into contact with an aqueous liquid including blood. It can be constituted by a hydrogel containing a reaction product with a bifunctional macromer, if desired. The details of the reaction product of the ethylenically unsaturated monomer and the cross-linking agent will be described later.
  • an expandable material such as a polymeric material (water-absorbing gel material)
  • a hydrogel containing a reaction product with a bifunctional macromer if desired. The details of the reaction product of the ethylenically unsaturated monomer and the cross-linking agent will be described later.
  • physiological condition means a condition that has at least one environmental characteristic in or on the body of a mammal (eg, human). Such properties include an isotonic environment, a pH buffered environment, an aqueous environment, a pH near neutrality (about 7), or combinations thereof.
  • aqueous liquid includes, for example, isotonic liquid, water; body fluids of mammals (eg, humans) such as blood, cerebrospinal fluid, plasma, serum, vitreous humor, and urine.
  • the outer diameter of the embolus 10 is sufficient as long as it can be accommodated in the embolus-loading catheter 20 .
  • the total length of the embolization device 10 is not particularly limited, but may be appropriately determined depending on the size of the aneurysm to be indwelled in consideration of ease of loading and shortening of procedure time.
  • the constituent material of the embolization object 10 should be at least a material that expands by absorbing a liquid such as blood and has no (or extremely low) toxicity to the human body even when indwelled in the aneurysm.
  • the embolus 10 may be added with a visualization agent that enables confirmation of its location in the living body by a confirmation method such as X-rays, fluorescent X-rays, ultrasonic waves, fluorescent methods, infrared rays, and ultraviolet rays.
  • a body portion 11 (see FIG. 1) of the embolization object 10 is made of a porous expandable material, and has a plurality of regions along the axial direction, including a first region, a second region, and a third region. , the second region is harder than the adjacent first and third regions.
  • the first and third regions of the embolism 10 are referred to as soft regions 12 and the second region of the embolism 10 is referred to as the hard region 13 .
  • the soft region 12 is made of the first expansive material E1.
  • the hard region 13 is made of a second expandable material E2 that is harder than the first expandable material E1.
  • the hard region 13 is configured such that the density of pores in the main body 11 is lower than that of the soft region 12 . Therefore, when the embolization object 10 comes into contact with an aqueous liquid including blood under physiological conditions, the hard region 13 is less likely to expand than the soft region 12, and the bending direction (the direction intersecting the axial direction of the main body 11) is increased. It has the effect of being difficult to deform.
  • the embolus 10 also has soft regions 12 at both ends and a hard region 13 in the center. As shown in FIG. 2, when the embolus 10 enters the branched blood vessel t after being placed in the aneurysm s, each of the soft regions 12 is adjusted to the shape of the branched blood vessel t with the hard region 13 as a fulcrum. can be deformed in the direction of bending by pressing, and the hard region 13 can be brought into contact with the vessel wall of the branch vessel t.
  • the embolus 10 can be easily caught on the curved portion on the proximal side of the branched blood vessel t with the hard region 13 as a fulcrum, and can be prevented from straying into the distal side of the branched blood vessel t. Therefore, according to the embolization object 10 configured in this way, the risk of distal embolism can be reduced.
  • the configuration of the embolization object 10 can be variously changed.
  • the embolization object 10 has been described as having the first region, the second region, and the third region, the number of regions provided in the embolization object 10 is not particularly limited.
  • the configuration of the embolization object 10 is not particularly limited as long as both ends are soft regions 12, and the positions and number of the hard regions 13 are not particularly limited.
  • the length d1 of the hard region 13 of the embolization material 10 is preferably 1.5 mm or more and 50% or less of the total length of the body portion 11 .
  • the length d1 of the hard region 13 is 1.5 mm or more, the hard region 13 becomes a fulcrum and becomes more likely to be caught by the curved portion on the proximal side of the branch blood vessel t.
  • the length d1 of the hard region 13 is 50% or less of the total length of the main body 11, the flexibility of the embolization object 10 can be ensured. It is possible to prevent the vascular wall of the aneurysm from breaking through.
  • the constituent material of the main body part 11 may be a non-porous expandable material (a polymeric material that is simply polymerized and crosslinked, that is, crosslinked polymerized). Even a non-porous gel material that is only cross-linked and polymerized can swell due to water absorption, although the swelling property is lower than that of a porous gel material, so that the effect of the present invention is exhibited.
  • a non-porous expandable material a polymeric material that is simply polymerized and crosslinked, that is, crosslinked polymerized.
  • the embolus 10 forms the hard region 13 by reducing the density of the pores in the main body 11, the configuration for partially hardening the embolus 10 is similar to this.
  • the hard region 13 may be formed of an expandable material excluding additives added to form the soft region 12 (for example, a bifunctional macromer to be described later), and the soft region 12 It may be formed of an expandable material having a higher cross-linking density. Since the hard region 13 formed in this manner is less likely to deform in the bending direction, the embolus 10 is likely to be caught by the curved portion on the proximal side of the branch blood vessel t with the hard region 13 as a fulcrum. It can prevent straying into the distal side of t. In the latter case, the constituent material of the main body 11 does not have to be porous as long as it is an expansible material made of a cross-linked polymeric material.
  • reaction product of ethylenically unsaturated monomer and cross-linking agent (Reaction product of bifunctional macromer, ethylenically unsaturated monomer and cross-linking agent)
  • reaction product of bifunctional macromer, ethylenically unsaturated monomer and cross-linking agent (Reaction product of bifunctional macromer, ethylenically unsaturated monomer and cross-linking agent)
  • a reaction product that constitutes the fibrous plugging material 10 is a reaction product of an ethylenically unsaturated monomer, a cross-linking agent, and optionally a bifunctional macromer. That is, the reaction product that constitutes the hydrogel filaments is the reaction product of an ethylenically unsaturated monomer and a crosslinker (first aspect) or the reaction product of a bifunctional macromer, an ethylenically unsaturated monomer, and a crosslinker.
  • reaction product (second aspect).
  • reaction product the reaction product of an ethylenically unsaturated monomer and a cross-linking agent
  • reaction product of a bifunctional macromer, an ethylenically unsaturated monomer and a cross-linking agent are collectively referred to simply as “reaction product ” is also called.
  • (meth)acrylic acid 2-(meth)acryloylethanesulfonic acid, 2-(meth)acryloylpropanesulfonic acid, 2-(meth)acrylamido-2-methylpropanesulfonic acid, vinylsulfonic acid, styrene Sulfonic acids and their salts (e.g.
  • alkali metal salts, ammonium salts, amine salts ); (meth)acrylamides, N-substituted (meth)acrylamides, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, N,N-diethylaminopropyl (meth)acrylate and derivatives thereof; N,N-dimethylaminopropyl (meth)acrylamide and quaternized products thereof; N-vinylpyrrolidinone and derivatives thereof.
  • Ethylenically unsaturated monomers may be used alone or in combination of two or more.
  • Ethylenically unsaturated monomers include N-vinylpyrrolidinone, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate and derivatives thereof from the viewpoint of higher swelling property when in contact with body fluids, biocompatibility, non-biodegradability, etc. , and acrylic acid, methacrylic acid and salts thereof.
  • the ethylenically unsaturated monomer is the group consisting of N-vinylpyrrolidinone, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate and derivatives thereof, and acrylic acid, methacrylic acid and salts thereof. at least one selected from
  • the ethylenically unsaturated monomer is (meth)acrylic acid or an alkali metal salt thereof (sodium salt, lithium salt , potassium salt), and particularly preferably acrylic acid and/or sodium acrylate.
  • cross-linking agent is not particularly limited as long as it can cross-link the ethylenically unsaturated monomer or the bifunctional macromer and the ethylenically unsaturated monomer, and known cross-linking agents can be used.
  • N,N'-methylenebis(meth)acrylamide N,N'-methylenebis(meth)acrylamide, (poly)ethylene glycol di(meth)acrylate, 2-hydroxy-3-acryloyloxypropyl (meth)acrylate, 1,10-decanediol di( meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, (poly)tetramethylene glycol di(meth)acrylate , derivatives thereof, and the like.
  • the above crosslinking agents may be used alone or in combination of two or more.
  • Cross-linking agents include N,N'-methylenebis(meth)acrylamide, ethylene glycol dimethacrylate, and derivatives thereof, from the viewpoints of ease of control of swelling when in contact with body fluids, biocompatibility, non-biodegradability, etc.
  • the cross-linking agent is at least one selected from the group consisting of N,N'-methylenebisacrylamide, ethylene glycol dimethacrylate and derivatives thereof.
  • the cross-linking agent is more preferably N,N'-methylenebis(meth)acrylamide. Particularly preferred is N,N'-methylenebisacrylamide.
  • the embolic article of the present invention is preferably composed of hydrogel filaments comprising the reaction product of a bifunctional macromer, an ethylenically unsaturated monomer, a cross-linking agent, and a visualization agent.
  • the bifunctional macromer is not particularly limited as long as it contains two functional sites, but it preferably contains one or more ethylenically unsaturated groups and two functional sites (bifunctional ethylenically unsaturated moldable macromer). .
  • one or more ethylenically unsaturated groups may form one or both functional sites.
  • Bifunctional macromers include, but are not limited to, polyethylene glycol, polypropylene glycol, poly(tetramethylene oxide), poly(ethylene glycol) diacrylamide, poly(ethylene glycol) dimethacrylamide, poly(ethylene glycol) diacrylate.
  • bifunctional macromers are polyethylene glycol, polypropylene glycol, poly(tetramethylene oxide), poly(ethylene glycol) diacrylamide, Poly(ethylene glycol) dimethacrylamide, poly(ethylene glycol) diacrylate and poly(ethylene glycol) dimethacrylate and derivatives thereof are preferred.
  • the above bifunctional macromers may be used alone or in combination of two or more.
  • the bifunctional macromer is polyethylene glycol, polypropylene glycol, poly(tetramethylene oxide), poly(ethylene glycol) diacrylamide, poly(ethylene glycol) dimethacrylamide, poly(ethylene glycol) It is at least one selected from the group consisting of diacrylates, poly(ethylene glycol) dimethacrylates, and derivatives thereof.
  • the bifunctional macromer is more preferably poly(ethylene glycol) di(meth)acrylamide.
  • the bifunctional macromer is more preferably poly(ethylene glycol) di(meth)acrylate.
  • the molecular weight of the bifunctional macromer is not particularly limited. Formable macromers) are preferred. Specifically, the molecular weight of the bifunctional macromer is preferably from about 100 to about 50,000 g/mole, more preferably from about 1,000 to about 20,000 g/mole, and most preferably from about 2,000 to about 15,000 g/mole. ,000 g/mol.
  • the reaction product may contain structural units derived from other monomers (other structural units) in addition to the ethylenically unsaturated monomers and crosslinkers described above and, if necessary, the difunctional macromer.
  • other monomers are not particularly limited as long as they do not impair the effects of the present invention (swellability, visibility before and after swelling, etc.).
  • the amount (content) of the other structural units does not impair the effects of the present invention (swellability, visibility before and after swelling, etc.).
  • the amount (content) of other structural units is less than 10 mol%, preferably less than 5 mol%, and still more preferably It is less than 1 mol % (lower limit: more than 0 mol %).
  • the composition of the structural units derived from the other monomers is the total of all structural units (100 mol %) to the total ratio of structural units derived from other monomers (molar ratio (mol%)).
  • the mol % is substantially equivalent to the ratio of the charged amount (mol) of other monomers to the total charged amount (mol) of all monomers when producing the reaction product.
  • the reaction product does not contain other structural units (the amount (content) of other structural units is 0 mol %).
  • FIG. 3 is a diagram for explaining an embolus 10A according to Modification 1
  • FIG. 4 is a diagram for explaining an embolus 10B according to Modification 2. As shown in FIG. 3
  • a body portion 11A of the embolization object 10A has soft regions 12A at both ends and a hard region 13A in the central portion. As shown in FIG. 3, the soft region 12A is formed of the expandable material E, and the hard region 13A is formed of the expandable material E and the wire member W1 covering the outer surface of the expandable material E. ing. In addition, the expandable material E forming the main body portion 11A may or may not be porous.
  • the expansive material E forming the hard region 13A secures hardness by being covered with the wire member W1, and has the effect of being less deformable in the bending direction than the expansive material E forming the soft region 12A. .
  • the embolus 10A can reduce the risk of distal embolism.
  • the hard region 13A is composed of the expandable material E and the wire member W1
  • the structure of the member covering the outer surface of the expandable material E is not particularly limited.
  • a body portion 11B of the embolization object 10B has soft regions 12B at both ends and a hard region 13B at the central portion. As shown in FIG. 4, the soft region 12B is formed of the expandable material E, and the hard region 13B is formed of the expandable material E and a wire member W2 (core) arranged so as to be covered with the expandable material E. material). In addition, the expandable material E forming the main body portion 11B may or may not be porous.
  • the hard region 13B has the effect of being less deformable in the bending direction than the expandable material E forming the soft region 12B.
  • the embolus 10B can reduce the risk of distal embolism.
  • the hard region 13B is made of the wire member W2
  • the configuration of the hard region 13B is not limited to this.
  • rigid region 13B may be formed of an expandable material integrally formed with the wire member.
  • the hard region 13B may be formed of an expandable material having a hard composition in the core portion (the central portion in the cross section of the expandable material as viewed from the axial direction).
  • the medical instrument set 100 includes an embolus loading catheter 20 and a delivery catheter 30 .
  • the embolus loading catheter 20 includes a main body 21 having a loading lumen and a proximal hub 22 provided on the proximal side of the main body 21 .
  • the embolus loading catheter 20 is used with the embolus 10 housed in the loading lumen and attached to the delivery catheter 30 .
  • the embolus 10 loaded into the loading lumen is pushed into the aneurysm by inserting the delivery pusher 40 from the proximal hub 22 .
  • the embolus-loading catheter 20 is mainly supplied with the embolus 10 loaded in advance. You can load it inside.
  • the operator can grasp the embolus 10 and insert it from the distal end side opening of the embolus loading catheter 20 or from the base end hub 22 side.
  • the delivery catheter 30 has a sheath 31 provided with a sheath lumen (not shown), and is configured so that a main body 51 of an insertion assisting member 50, which will be described later, can be inserted.
  • the delivery catheter 30 can be left in a biological lumen and serve as a lead-in for delivery of the embolus loading catheter 20 into the aneurysm.
  • the delivery system 200 includes a delivery pusher 40 for pushing out the embolus 10 into the aneurysm in addition to the medical device set 100 .
  • the delivery pusher 40 has a pusher body 41 made of an elongated rod-shaped member, and is inserted from the proximal hub 22 by the operator while the embolus loading catheter 20 is inserted into the delivery catheter 30 .
  • the delivery pusher 40 can push the embolic 10 contained in the loading lumen into the aneurysm.
  • the embolism delivery medical system 300 includes, in addition to the delivery system 200, an insertion assisting member 50 for delivering the delivery catheter 30 into the body lumen.
  • the insertion assisting member 50 has a main body 51 provided with a guidewire lumen 52, and can assist the operation of delivering the delivery catheter 30 into the aneurysm along the guidewire previously inserted into the biological lumen. .
  • 7A to 7D are diagrams for explaining the main surgical steps in endoleak embolization for stent graft insertion of abdominal aortic aneurysm.
  • the operator percutaneously inserts the sheath 31 of the delivery catheter 30 into which the guide wire GW has been inserted from the limb of the patient serving as the puncture site into the biological lumen via the introducer. , to deliver the distal opening of the delivery catheter 30 to the abdominal aortic aneurysm.
  • the tip opening of the delivery catheter 30 is delivered into the aneurysm (inside the aneurysm) s, the operator removes the guidewire GW.
  • the delivery catheter 30 may be configured such that the guide wire GW is inserted into the insertion assisting member 50, and the guide wire GW and the insertion assisting member 50 are inserted into the delivery catheter 30 and delivered to the aneurysm-affected site.
  • the operator inserts the catheter (stent graft device) in which the stent graft SG is compressed and inserted through the introducer into the biological lumen, and uses the guide wire previously inserted into the aneurysm s. to the site of the aneurysm.
  • the stent graft SG is deployed from the catheter at the affected area and left in place.
  • the delivery catheter 30 is inserted between the leg of the stent graft SG and the vascular wall, and the distal end of the delivery catheter 30 is positioned between the stent graft SG and the aneurysm vascular wall, that is, in the aneurysm s. It is inserted and indwelled in the living body lumen with the tip opening located in the aneurysm s.
  • the operator attaches the distal end side of the embolus-loading catheter 20 loaded with the embolus 10 to the proximal end side of the delivery catheter 30 .
  • the operator then inserts the distal end of the delivery pusher 40 from the proximal side of the proximal hub 22 .
  • the distal end of the delivery pusher 40 inserted from the proximal hub 22 abuts the proximal end of the embolus 10 loaded in the embolus loading catheter 20 , and pushes the embolus 10 out through the delivery catheter 30 . Push it out to the men and move it.
  • the operator pushes out the delivery pusher 40 inserted from the proximal hub 22 to push out the embolus 10 from the sheath lumen of the delivery catheter 30 into the aneurysm s.
  • the operator withdraws the emptied embolus-loading catheter 20 together with the delivery pusher 40 from the delivery catheter 30 .
  • the delivery pusher 40 can be removed from the delivery catheter 30 while being inserted into the embolus-loading catheter 20 . This completes the first insertion operation of the embolization object 10 into the aneurysm s.
  • the delivery pusher 40 may be withdrawn from the embolus-loading catheter 20 before the withdrawal operation of the embolus-loading catheter 20 .
  • Such a series of operations for placing the embolus is repeated until the required amount of the embolus 10 is loaded into the aneurysm s.
  • the required amount is calculated by calculating the volume of the aneurysm based on the patient's CT data and subtracting the volume of the stent graft SG when deployed in the aneurysm from that value.
  • the operator pulls out the delivery catheter 30 from the aneurysm s and the biological lumen.
  • the delivery catheter 30 is pulled out from the aneurysm s and the biological lumen.
  • the delivery pusher 40 may be withdrawn from the delivery catheter 30 while the embolus-loading catheter 20 is detached from the delivery catheter 30 .
  • the delivery pusher 40 is withdrawn from the delivery catheter 30 and the embolus-loading catheter 20, and the embolus-loading catheter 20 is withdrawn from the delivery catheter 30. You can let go. In any case, the introducer is left in the body lumen for additional expansion of the stent graft SG by the balloon after placement of the embolus 10, imaging operation, and the like.
  • the embolus 10 indwelled in the aneurysm s gradually swells in contact with liquid such as blood in the aneurysm s, and the completely expanded embolus 10 is formed on the inner surface of the aneurysm and the outer surface of the stent graft. The space between and is filled, and the aneurysm s is occluded. This prevents the aneurysm from rupturing.
  • the embolus 10 is an embolus to be inserted and left in an aneurysm s in a living body, and has an elongated body portion 11 extending in the axial direction.
  • the body portion 11 includes a soft region 12 and a hard region 13 harder than the soft region 12, and the hard region 13 is 50% or less of the total length of the body portion 11. do.
  • the embolization object 10 configured as described above has a region that is hard to deform in the bending direction due to its hard configuration. Therefore, the embolus 10 can be easily caught on the curved portion on the proximal side of the branched blood vessel t with the hard region 13 as a fulcrum, and can be prevented from straying into the distal side of the branched blood vessel t. Accordingly, embolization article 10 can reduce the risk of distal embolism.
  • the plug 10 is formed of a porous expandable material, and the hard region 13 is characterized by having a lower density of pores in the main body 11 than the soft region 12 .
  • the hard region 13 is less likely to expand than the soft region 12, and the bending direction (the direction intersecting the axial direction of the main body 11) ) is difficult to deform. Therefore, the embolus 10 tends to clog the proximal side of the branched blood vessel, and can be prevented from straying into the distal side of the branched blood vessel.
  • the embolus 10A is composed of a porous expandable material E made of a cross-linked polymeric material and a wire member W1. 13A is characterized by comprising an expandable material E and a wire member W1 covering the outer surface of the expandable material E. As shown in FIG. At this time, the expansive material E forming the hard region 13A secures hardness by being covered with the wire member W1, and is less likely to deform in the bending direction than the expansive material E forming the soft region 12A. Effective. Therefore, the embolus 10A is likely to clog the proximal side of the branched blood vessel, and can be prevented from straying into the distal side of the branched blood vessel.
  • the embolization object 10B is composed of an expandable material E made of a cross-linked polymer material and a wire member W2. and a wire member W2 arranged so as to be covered with the expandable material E. At this time, only the expandable material E forming the soft region 12B of the embolization object 10B swells, ensuring flexibility. In addition, the hard region 13B has the effect of being less likely to deform in the bending direction than the expansive material E forming the soft region 12B. Therefore, the embolus 10B is likely to clog the proximal side of the branched blood vessel, and can be prevented from straying into the distal side of the branched blood vessel.
  • the soft region 12 of the embolus 10 is made of a first expandable material made of a cross-linked polymer material
  • the hard region 13 is made of a cross-linked polymer material and made of the first expandable material. It is characterized by being made of a second expandable material that is relatively hard. Since the hard region 13 formed in this manner is less likely to deform in the bending direction, the embolus 10 is likely to be caught by the curved portion on the proximal side of the branch blood vessel t with the hard region 13 as a fulcrum. It can prevent straying into the distal side of t.
  • the embolus 10 (embolus 10A, 10B) is characterized by having soft regions 12 (soft regions 12A, 12B) at both ends.
  • soft regions 12 soft regions 12A, 12B
  • each of the soft regions 12 is deformed in the bending direction with the hard region 13 as a fulcrum, and the hard region 13 is branched. It can be placed against the vessel wall of a blood vessel (see Figure 2). Therefore, the obturator 10 can easily hook the hard region 13 to the proximal curved portion of the branched blood vessel.
  • each member constituting the medical instrument set 100, the delivery system 200, and the embolism delivery medical system 300 according to this embodiment is not limited to the configurations shown in FIGS.
  • the medical instrument set like the medical instrument set 400 shown in FIG.
  • a delivery catheter 430 for delivering the embolus 10 (the emboli 10A, 10B) into the aneurysm s via a lumen (not shown) communicating toward the proximal side, and a correction member 60 may be provided. .
  • a curved portion 432 of the delivery catheter 430 is curved with a predetermined curvature with respect to the central axis of the main body 431 .
  • the curved portion 432 extends from the distal end of the main body 431, and curves in a direction (radial direction with respect to the central axis of the main body 431) that gradually moves away from the central axis of the main body 431 as it goes from the base end to the distal end. do.
  • the curved portion 432 has a hole (lumen) that communicates from the distal end side to the proximal end side. This lumen (not shown) communicates with the lumen (sheath lumen) of the main body 431 and functions as the lumen (not shown) of the delivery catheter 430 .
  • the curved portion 432 is a range delimited by a two-dot chain line in FIG. 8 .
  • the curved portion 432 is maintained in a curved state at least when delivered into the aneurysm, and can be displaced to a substantially straight state by the correction member 60 when the delivery catheter 430 is inserted and removed.
  • the curved portion 432 is delivered into the aneurysm through the biological lumen, the bending is moderated by the insertion of the correcting member 60, so that the curved portion 432 does not interfere with the delivery. , the correction member 60 is removed and the original curved state is restored.
  • the correction member 60 is used when the delivery catheter 430 is withdrawn from the body lumen.
  • the bending amount (curving degree) of the bending portion 432 is displaced so as to approach a substantially straight state compared to before insertion. That is, comparing before and after insertion of the correction member 60 into the delivery catheter 430, the bending degree of the bending portion 432 after the correction member 60 is inserted is gentler than the bending degree before the correction member 60 is inserted.
  • the correcting member 60 preferably corrects the bending state of the bending portion 432 so that it becomes substantially straight after insertion.
  • the insertion assisting member 50 described above can also function as the correction member 60 .
  • the operator delivers the tip of the delivery catheter 430 to the aneurysm s along the guidewire GW (see FIG. 9A). Then, the operator withdraws the guide wire GW and places the tent graft SG (see FIG. 9B). Place intraluminally.
  • the embolus loaded in the embolus-loading catheter 20 is pushed out from the distal side along the lumen of the curved portion 432 when the delivery catheter 430 is left in the biological lumen.
  • the opening on the distal end side of the curved portion 432 serving as an outlet for the embolus is directed in a predetermined radial direction with respect to the rotation center (central axis) of the delivery catheter 430 by rotating the delivery catheter 430 in the rotational direction. be able to.
  • the orientation of the opening of the curved portion 432 is changed, so that the pushing direction of the embolus is directed in the appropriate direction of the aneurysm s, so that the embolus can be placed in an appropriate position.
  • the operator can control the pushing direction of the embolus while manipulating the delivery catheter 430 so that the embolus can be placed at an appropriate position in the aneurysm s, and the embolus can be delivered.
  • the catheter 430 is inserted or removed, the bending state of the bending portion 132 can be displaced so as to approach a substantially straight state, thereby smoothing the insertion and removal operations.
  • the embolus loaded in the delivery catheter 430 is curved from the main body 431 on the distal end side, there is an increased risk of entering an unintended branch vessel t, which may increase the risk of distal embolism. .
  • an embolization article that can prevent the aneurysm s from straying into the distal side of the branched blood vessel and reduce the risk of distal embolism even when placed in the aneurysm s.
  • the embolus 10 (embolus 10A, 10B) of the present invention has hard regions (hard regions 13, 13A, 13B) that are hard to deform in the bending direction. Therefore, the embolus 10 (the emboli 10A and 10B) is likely to be caught in the curved portion on the proximal side of the branched blood vessel t with the hard region 13 (hard regions 13A and 13B) as the fulcrum. Distal straying can be prevented. Therefore, the embolus 10 (emboli 10A, 10B) and the risk of distal embolism can be reduced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Reproductive Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Surgical Instruments (AREA)

Abstract

塞栓物が動脈瘤から枝分かれした分枝血管を塞ぐこと(遠位塞栓)を防止するべく、塞栓物(10)は、生体内の瘤内に挿入され、留置される塞栓物であって、軸方向に延在する長尺状の本体部(11)を有し、前記本体部は、軟質な領域(12)と、軟質な領域よりも硬い硬質な領域(13)と、を備え、前記硬質な領域は、前記本体部の全長の50パーセント以下であるように構成した。

Description

塞栓物
 本発明は、カテーテルによって瘤内に送達される塞栓物に関する。
 患者の大動脈に生じた瘤(大動脈瘤)は、瘤径の増大、破裂を防ぐ薬物的治療はなく、破裂の危険を伴う瘤径のものに対しては、一般的に外科的療法(手術)が行われる。また、大動脈瘤の手術は、従来、開腹または開胸して人工血管を移植する人工血管置換術が主流であったが、近年では、より低侵襲なステントグラフト内挿術(Endovascular Aneurysm Repair;EVAR)の適用が急速に拡大しつつある。
 一例として、腹部大動脈瘤(AAA:Abdominal aortic aneurysm)に対するステントグラフト内挿術においては、先端にステントグラフトを収納したカテーテルを患者の末梢血管から挿入し、ステントグラフトを動脈瘤患部に展開・留置することにより、動脈瘤への血流が遮断されて動脈瘤の破裂が防止され得る。
 一般的に、ステントグラフト内挿術で使用されるステントグラフトは、略Y字状に分岐した分岐部を備える「主本体部」と、分岐部に装着されると共に右腸骨動脈および左腸骨動脈にそれぞれ装着される「脚部」の2種類の部材を組み立てられる構造を有している。
 そのため、ステントグラフト内挿術において、内挿したステントグラフトの密着不足によるステントグラフト周囲からの血液漏れ、動脈瘤から枝分れした細い血管(分枝血管)からの血液の逆流などにより、動脈瘤内に血流が残存する、所謂「エンドリーク」が生じることがある。この場合、動脈瘤内に浸入した血流によって動脈瘤壁に圧がかかってしまうため、動脈瘤破裂の危険性が潜在する。
 下記特許文献1には、エンドリークを起因とする大動脈瘤内への血流残存を遮断するため、圧縮した比較的細長なスポンジ(塞栓物)をその管腔内に保持可能なカテーテルと、カテーテル内に保持された塞栓物を血液で満たされた動脈瘤内に押し出すプランジャーとを備えたデバイスについて開示されている。このデバイスに使用されるスポンジは、血液に曝されると直ちに拡張するため、動脈瘤内に押し出されて瘤内の血液を吸収すると膨張(膨潤)し、その状態で動脈瘤内に留置されて血流を遮断して破裂を防止するものである。
米国特許第9561096号明細書
 特許文献1の塞栓物は上述のように膨張することによって動脈瘤への血流を遮断することができる。しかしながら、動脈瘤から分岐する分枝血管は、膨潤する前であって挿入直後の塞栓物より大きい(太い)場合がある。そのため、動脈瘤に留置された塞栓物が分枝血管に入り込んで意図しない部位を塞いでしまう、いわゆる遠位塞栓を生じさせてしまう虞がある。
 本発明は上記課題に鑑みてなされたものであり、遠位塞栓のリスクを低減させることができる塞栓物を提供することを目的とする。
 本発明に係る塞栓物は、生体内の瘤内に挿入され、留置される塞栓物であって、軸方向に延在する長尺状の本体部を有し、前記本体部は、軟質な領域と、前記軟質な領域よりも硬い硬質な領域と、を備え、前記硬質な領域は、前記本体部の全長の50パーセント以下であることを特徴とする。
 上記のように構成した塞栓物は、硬く構成されることによって曲げ方向に変形しにくい領域を有している。そのため、塞栓物は、硬質な領域を支点として分枝血管の近位側の湾曲部分に引っ掛かりやすくなり、分枝血管の遠位側に迷入することを防ぐことができる。
したがって、塞栓物は、遠位塞栓のリスクを低減させることができる。
本実施形態に係る塞栓物を示す図である。 瘤内で膨潤した塞栓物を示す図である。 変形例1に係る塞栓物を示す図である。 変形例2に係る塞栓物を示す図である。 医療器具セットおよびデリバリーセットの構成を示す図である。 塞栓物デリバリー医療システムの構成を示す図である。 塞栓物デリバリー医療システムの動作例である。 塞栓物デリバリー医療システムの動作例である。 塞栓物デリバリー医療システムの動作例である。 塞栓物デリバリー医療システムの動作例である。 変形例に係る医療器具セットの構成を示す図である。 変形例に係る塞栓物デリバリー医療システムの動作例である。 変形例に係る塞栓物デリバリー医療システムの動作例である。
 以下、本発明を実施するための形態について、図面を参照しながら詳細に説明する。ここで示す実施形態は、本発明の技術的思想を具体化するために例示するものであって、本発明を限定するものではない。また、本発明の要旨を逸脱しない範囲で当業者などにより考え得る実施可能な他の形態、実施例および運用技術などは全て本発明の範囲、要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 さらに、本明細書に添付する図面は、図示と理解のしやすさの便宜上、適宜縮尺、縦横の寸法比、形状などについて、実物から変更し模式的に表現される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。
 なお、本明細書において、塞栓物10を瘤内に送達可能な塞栓物デリバリー医療システム300を構成する各部の操作方向は、例えば、塞栓物装填用カテーテル20を瘤内に送達させるための送達用カテーテル30の軸方向に沿った方向であって、塞栓物10が瘤内に搬送される側を「先端側(または先端部)」とし、先端側と軸方向で反対側に位置して術者が手元で操作する側(送達用カテーテル30が抜去される側)を「基端側(または基端部)」とする。なお、「先端」とは、最先端を含む軸方向の一定の範囲を意味し、「基端」とは、最基端を含む軸方向の一定の範囲を意味するものとする。
 また、塞栓物10は、一例として、血管内に生じた瘤(例えば動脈瘤)の破裂を防止するための治療法である腹部大動脈瘤(AAA)のステントグラフト内挿術に対するエンドリーク塞栓術に適用され得る。また、塞栓物10を適用可能な治療法としては、上記エンドリーク塞栓術に限らず、血管内に生じた瘤の破裂を防止させるための他のインターベンション治療法にも適用可能である。
 また、本明細書において、範囲を示す「M~N」は、MおよびNを含み、「M以上N以下」を意味する。本明細書において、「Mおよび/またはN」とは、MおよびNの少なくとも一方を含むことを意味し、「M単独」、「N単独」および「MおよびNの組み合わせ」を包含する。
 本明細書において、「(メタ)アクリル」との語は、アクリルおよびメタクリルの双方を包含する。よって、例えば、「(メタ)アクリル酸」との語は、アクリル酸およびメタクリル酸の双方を包含する。同様に、「(メタ)アクリロイル」との語は、アクリロイルおよびメタクリロイルの双方を包含する。よって、例えば、「(メタ)アクリロイル基」との語は、アクリロイル基およびメタクリロイル基の双方を包含する。
 [構成]
 本実施形態に係る塞栓物10、塞栓物10を瘤内に送達するための医療器具セット100、デリバリーシステム200、および塞栓物デリバリー医療システム300の構成について説明する。
 図1および図2は、塞栓物10の説明に供する図であり、図3および図4は、塞栓物10の変形例の説明に供する図である。また、図5は、医療器具セット100、デリバリーシステム200を構成する各デバイスを示す図であり、図6は、塞栓物デリバリー医療システム300を構成する各デバイスを示す図である。図5および図6において、塞栓物10は、塞栓物装填用カテーテル20の装填用ルーメンに装填されている。
 なお、図1および図2に示す塞栓物10には、説明の便宜上、軟質な領域12と硬質な領域13を区別するための濃淡を付している。
 また、図1~図4に付した矢印Xは、塞栓物の「軸方向(長手方向)」を示し、矢印Yは、塞栓物の「幅方向(奥行方向)」を示し、矢印Zは、塞栓物の「高さ方向」を示し、矢印rは、塞栓物の「径方向(放射方向)」を示す。
 <塞栓物>
 塞栓物10は、血管内に生じた動脈瘤のような瘤内に留置され、瘤内に流入される血液を含む液体を吸収して膨張する。塞栓物10は、塞栓物装填用カテーテル20に装填され、塞栓物装填用カテーテル20が送達用カテーテル30に装着された状態で送達用プッシャー40により押し出されて瘤内に留置される。
 塞栓物10は、生理条件下で血液を含む水性液体との接触により膨脹する膨張性材料E(高分子材料(吸水ゲル材料)など)からなる細長い繊維状の線体(線状体)である。塞栓物10は、軸方向と直交する方向の断面形状が略円形の細長な線状体であり、瘤内へ留置される膨張前の状態においては比較的脆い。なお、塞栓物10の断面形状は特に限定されず、楕円、矩形などの多角形であってもよい。また、塞栓物10の形状は、塞栓物装填用カテーテル20の装填用ルーメンに収納できれば、線状体に限定されず、変形させることによって装填用ルーメンに収納可能な形状(例えば、扁平形状)であってもよい。塞栓物10が扁平形状である場合、塞栓物10は、丸められた状態で装填用ルーメンに収納され、塞栓物10が装填用ルーメンから取り出された際に(膨張しない状態において)塞栓物10の構成材料の物性等に由来する復元力により扁平な状態に戻るまたは扁平な状態に近づくように構成される。
 塞栓物10は、生理条件下で血液を含む水性液体との接触により膨脹する膨張性材料(高分子材料(吸水ゲル材料)など)によって構成することができ、エチレン系不飽和モノマーと架橋剤と必要に応じて2官能性マクロマーとの反応生成物を含むハイドロゲルによって構成することができる。エチレン系不飽和モノマーと架橋剤との反応生成物の詳細については後述する。
 ここで、「生理条件」とは、哺乳動物(例えば、ヒト)の体内または体表面における少なくとも1つの環境特性を有する条件を意味する。そのような特性は、等張環境、pH緩衝環境、水性環境、中性付近(約7)のpH、またはそれらの組み合わせを包含する。また、「水性液体」は、例えば、等張液、水;血液、髄液、血漿、血清、ガラス体液、尿などの哺乳動物(例えば、ヒト)の体液を包含する。塞栓物10の外径は、塞栓物装填用カテーテル20に収容可能であればよい。また、塞栓物10の全長は、特に制限はないが、装填容易性と手技時間の短縮化などを考慮しつつ留置先となる瘤の大きさなどによって適宜決定されてよい。
 なお、塞栓物10の構成材料は、少なくとも血液のような液体を吸収して膨張し、かつ瘤内に留置された状態でも人体への有害性がない(または極めて低い)材料であれば、特に限定されない。また、塞栓物10は、X線、蛍光X線、超音波、蛍光法、赤外線、紫外線などの確認方法によって生体内の存在位置が確認可能な可視化剤が添加されていてよい。
 塞栓物10の本体部11(図1を参照)は、多孔質の膨張性材料により形成され、軸方向に沿って、第1領域、第2領域、第3領域からなる複数の領域を有し、第2領域は、隣り合う第1領域と第3領域よりも硬いことを特徴としている。以下の説明では、塞栓物10の第1領域と第3領域を軟質な領域12と称し、塞栓物10の第2領域を硬質な領域13と称する。
 軟質な領域12は、第1膨張性材料E1により形成されている。
 硬質な領域13は、第1膨張性材料E1と比べて硬質な第2膨張性材料E2により形成されている。硬質な領域13は、本体部11の空孔の密度が軟質な領域12と比べて低くなるように構成されている。そのため、塞栓物10が生理条件下で血液を含む水性液体と接触すると、硬質な領域13は、軟質な領域12と比べて膨張しにくく、曲げ方向(本体部11の軸方向に交差する方向)に変形しにくいという効果を奏する。
 また、塞栓物10は、両端部に軟質な領域12を有し、中央部に硬質な領域13を有している。塞栓物10は、図2に示すように、瘤内sに留置された後に分枝血管tに入り込むと、硬質な領域13を支点として軟質な領域12の各々を分枝血管tの形状に合わせて曲げ方向に変形させ、硬質な領域13を分枝血管tの血管壁に当接させることができる。
そのため、塞栓物10が硬質な領域13を支点として分枝血管tの近位側の湾曲部分に引っ掛かりやすくなり、分枝血管tの遠位側に迷入することを防ぐことができる。したがって、このように構成された塞栓物10によれば、遠位塞栓のリスクを低減させることができる。
 なお、塞栓物10の構成は種々変更することができる。
 例えば、塞栓物10は、第1領域、第2領域、第3領域からなると説明したが、塞栓物10が備える領域の数は特に限定されない。
 また、塞栓物10は、両端部が軟質な領域12である限り、その構成は特に限定されず、硬質な領域13の位置や数は、特に限定されない。ただし、塞栓材10の硬質な領域13の長さd1は、1.5mm以上であり、本体部11の全長の50パーセント以下であることが好ましい。硬質な領域13の長さd1が1.5mm以上であることにより、硬質な領域13を支点として分枝血管tの近位側の湾曲部分により引っ掛かりやすくなる。また、硬質な領域13の長さd1が本体部11の全長の50パーセント以下であることにより、塞栓物10の柔軟性を確保でき、瘤内sに留置した際に、塞栓物10が誤って瘤の血管壁を突き破ることを防止できる。
 また、本体部11の構成材料は、非多孔質の膨張性材料(単に重合および架橋した、すなわち架橋重合した高分子材料)であってもよい。架橋重合させただけの非多孔質のゲル材料でも、多孔質のゲル材料と比べて膨張特性は低くなるものの、吸水により膨潤することができるため、本発明の効果を奏する。
 また、塞栓物10は、本体部11の空孔の密度を低くすることによって硬質な領域13を形成していると説明したが、塞栓物10を部分的に硬くするための構成は、これに限定されない。例えば、硬質な領域13は、軟質な領域12を形成するために添加している添加剤(例えば、後述する2官能性マクロマー)を除いた膨張性材料によって形成してもよく、軟質な領域12よりも架橋密度を高めた膨張性材料によって形成してもよい。このように形成された硬質な領域13は、曲げ方向に変形しにくいため、塞栓物10が硬質な領域13を支点として分枝血管tの近位側の湾曲部分に引っ掛かりやすくなり、分枝血管tの遠位側に迷入することを防ぐことができる。なお、後者の場合、本体部11の構成材料は、架橋重合した高分子材料からなる膨張性材料であれば、多孔質でなくてもよい。
 (エチレン系不飽和モノマーと架橋剤との反応生成物)
 (2官能性マクロマーとエチレン系不飽和モノマーと架橋剤との反応生成物)
 繊維状の塞栓物10(ハイドロゲルフィラメント)を構成する反応生成物は、エチレン系不飽和モノマーと架橋剤と必要に応じて2官能性マクロマーとの反応生成物である。すなわち、ハイドロゲルフィラメントを構成する反応生成物は、エチレン系不飽和モノマーと架橋剤との反応生成物である(第一の側面)または2官能性マクロマーとエチレン系不飽和モノマーと架橋剤との反応生成物である(第二の側面)。なお、以下では、「エチレン系不飽和モノマーと架橋剤との反応生成物」および「2官能性マクロマーとエチレン系不飽和モノマーと架橋剤との反応生成物」を一括して単に「反応生成物」とも称する。
 ここで、エチレン系不飽和モノマーは、アクリロイル基(CH=CH-C(=O)-)、メタクリロイル基(CH=C(CH)-C(=O)-)、ビニル基(CH=CH-)、アクリルアミド基(CH=CH-C(=O)-NH-)またはメタクリルアミド基(CH=C(CH)-C(=O)-NH-)等の末端に二重結合を有するモノマーである。具体的には、(メタ)アクリル酸、2-(メタ)アクリロイルエタンスルホン酸、2-(メタ)アクリロイルプロパンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、ビニルスルホン酸、スチレンスルホン酸およびこれらの塩(例えば、アルカリ金属塩、アンモニウム塩、アミン塩);(メタ)アクリルアミド、N-置換(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレートおよびこれらの誘導体;N,N-ジメチルアミノプロピル(メタ)アクリルアミドおよびこれらの4級化物;N-ビニルピロリジノンおよびこれらの誘導体などが挙げられる。上記エチレン系不飽和モノマーは、単独で使用してもまたは2種以上を組み合わせて使用してもよい。体液と接触時のより高い膨潤性、生体適合性、非生分解性等の観点から、エチレン性不飽和モノマーは、N-ビニルピロリジノン、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレートおよびこれらの誘導体、ならびにアクリル酸、メタクリル酸およびこれらの塩であることが好ましい。すなわち、本発明の好ましい形態では、エチレン系不飽和モノマーは、N-ビニルピロリジノン、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレートおよびこれらの誘導体、ならびにアクリル酸、メタクリル酸およびこれらの塩からなる群より選択される少なくとも1種である。また、体液と接触時のさらなるより高い膨潤性、生体適合性、非生分解性等の観点から、エチレン性不飽和モノマーは、(メタ)アクリル酸またはこれらのアルカリ金属塩(ナトリウム塩、リチウム塩、カリウム塩)であることがさらに好ましく、アクリル酸および/またはアクリル酸ナトリウムであることが特に好ましい。
 また、架橋剤は、エチレン系不飽和モノマーまたは2官能性マクロマーおよびエチレン系不飽和モノマーを架橋できるものであれば特に制限されず、公知の架橋剤が使用できる。具体的には、N,N’-メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピル(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、それらの誘導体などが挙げられる。上記架橋剤は、単独で使用してもまたは2種以上を組み合わせて使用してもよい。体液と接触時の膨潤性の制御しやすさ、生体適合性、非生分解性等の観点から、架橋剤は、N,N’-メチレンビス(メタ)アクリルアミド、エチレングリコールジメタクリレートおよびこれらの誘導体であることが好ましい。すなわち、本発明の好ましい形態では、架橋剤は、N、N’-メチレンビスアクリルアミド、エチレングリコールジメタクリレートおよびこれらの誘導体からなる群より選択される少なくとも1種である。また、体液と接触時の膨潤性のより制御しやすさ、生体適合性、非生分解性等の観点から、架橋剤は、N,N’-メチレンビス(メタ)アクリルアミドであることがより好ましく、N,N’-メチレンビスアクリルアミドであることが特に好ましい。
 2官能性マクロマーは、重合時に高分子鎖を架橋し、反応生成物(ゆえに塞栓物)に柔軟性(可撓性)を付与する。このため、2官能性マクロマーを含む反応生成物(ゆえに塞栓物)は屈曲部に対する追従性に優れる。ゆえに、カテーテルを介して塞栓物を瘤内に留置する場合であっても、塞栓物は屈曲部を容易に通過して瘤内に留置できる。ゆえに、本発明の塞栓物は、2官能性マクロマーとエチレン系不飽和モノマーと架橋剤との反応生成物、および可視化剤を含むハイドロゲルフィラメントから構成されることが好ましい。
 2官能性マクロマーは、2つの官能部位を含むものであれば特に制限されないが、1以上のエチレン系不飽和基および2つの官能部位を含む(2官能エチレン系不飽和成形性マクロマー)ことが好ましい。ここで、1以上のエチレン系不飽和基は、官能部位の一方を形成してもまたは両方の官能部位を形成してもよい。2官能性マクロマーとしては、以下に制限されないが、ポリエチレングリコール、ポリプロピレングリコール、ポリ(テトラメチレンオキシド)、ポリ(エチレングリコール)ジアクリルアミド、ポリ(エチレングリコール)ジメタクリルアミド、ポリ(エチレングリコール)ジアクリレート、ポリ(エチレングリコール)ジメタクリレート、ポリ(プロピレングリコール)ジアクリレート、ポリ(プロピレングリコール)ジメタクリレートならびにこれらの誘導体などが挙げられる。これらのうち、塞栓物への柔軟性(可撓性)の付与効果などの観点から、2官能性マクロマーは、ポリエチレングリコール、ポリプロピレングリコール、ポリ(テトラメチレンオキシド)、ポリ(エチレングリコール)ジアクリルアミド、ポリ(エチレングリコール)ジメタクリルアミド、ポリ(エチレングリコール)ジアクリレートおよびポリ(エチレングリコール)ジメタクリレートならびにこれらの誘導体であることが好ましい。ここで上記2官能性マクロマーは、単独で使用してもまたは2種以上を組み合わせて使用してもよい。すなわち、本発明の好ましい形態では、2官能性マクロマーは、ポリエチレングリコール、ポリプロピレングリコール、ポリ(テトラメチレンオキシド)、ポリ(エチレングリコール)ジアクリルアミド、ポリ(エチレングリコール)ジメタクリルアミド、ポリ(エチレングリコール)ジアクリレートおよびポリ(エチレングリコール)ジメタクリレートならびにこれらの誘導体からなる群より選択される少なくとも1種である。生体適合性および溶媒への溶解性の観点からは、2官能性マクロマーは、ポリ(エチレングリコール)ジ(メタ)アクリルアミドであることがより好ましい。分解性の観点からは、2官能性マクロマーは、ポリ(エチレングリコール)ジ(メタ)アクリレートであることがより好ましい。
 2官能性マクロマーの分子量は、特に制限されないが、塞栓物への柔軟性(可撓性)の付与効果、膨潤倍率の向上などの観点から、低分子量である(2官能低分子量エチレン系不飽和成形性マクロマー)ことが好ましい。具体的には、2官能性マクロマーの分子量は、好ましくは約100~約50,000g/モル、より好ましくは約1,000~約20,000g/モル、特に好ましくは約2,000~約15,000g/モルである。
 反応生成物は、上記エチレン系不飽和モノマー及び架橋剤ならびに必要であれば2官能性マクロマーに加えて、他のモノマー由来の構成単位(他の構成単位)を含んでもよい。
ここで、他のモノマーは、本発明による効果(膨潤性、膨潤前後の視認性など)を阻害しないものであれば特に制限されない。具体的には、2,4,6-トリヨードフェニルペンタ-4-エノエート、5-(メタ)アクリルアミド-2,4,6-トリヨード-n,n’-ビス-(2,3ジヒドロキシプロピル)イソフタルアミドN-ビニルピロリジノンなどが挙げられる。本発明に係る反応生成物が他の構成単位を有する場合の他の構成単位の量(含有量)は、本発明による効果(膨潤性、膨潤前後の視認性など)を阻害しないものであれば特に制限されない。具体的には、他の構成単位の量(含有量)は、反応生成物を構成する全構成単位に対して、10モル%未満であり、好ましくは5モル%未満であり、さらにより好ましくは1モル%未満である(下限値:0モル%超)。なお、その他の単量体に由来する構成単位が2種以上の構成単位から構成される場合には、上記その他の単量体に由来する構成単位の組成は、全構成単位の合計(100モル%)に対する、その他の単量体に由来する構成単位の合計の割合(モル比(モル%))である。なお、当該モル%は、反応生成物を製造する際の全単量体の合計仕込み量(モル)に対する他のモノマーの仕込み量(モル)の割合と実質的に同等である。特に好ましくは、反応生成物は他の構成単位を含まない(他の構成単位の量(含有量)は0モル%である)。
 <塞栓物の変形例>
 次に、塞栓物10の変形例について説明する。図3は、変形例1に係る塞栓物10Aの説明に供する図であり、図4は、変形例2に係る塞栓物10Bの説明に供する図である。
 (変形例1)
 塞栓物10Aの本体部11Aは、両端部に軟質な領域12Aを有し、中央部に硬質な領域13Aを有している。図3に示すように、軟質な領域12Aは、膨張性材料Eにより形成され、硬質な領域13Aは、膨張性材料Eと、膨張性材料Eの外表面を覆うワイヤー部材W1と、によって構成されている。なお、本体部11Aを形成する膨張性材料Eは多孔質であってもよく、多孔質でなくてもよい。
 硬質な領域13Aを構成する膨張性材料Eは、ワイヤー部材W1に覆われることによって硬度を確保し、軟質な領域12Aを構成する膨張性材料Eと比べて曲げ方向に変形しにくいという効果を奏する。
 このように構成された塞栓物10Aによれば、硬質な領域13Aを支点として分枝血管tの近位側の湾曲部分に引っ掛かりやすくなり、分枝血管tの遠位側に迷入することを防ぐことができる。したがって、塞栓物10Aは、遠位塞栓のリスクを低減させることができる。
 なお、硬質な領域13Aは、膨張性材料Eとワイヤー部材W1からなると説明したが、膨張性材料Eの外表面を覆う部材の構成は、特に限定されない。
 (変形例2)
 塞栓物10Bの本体部11Bは、両端部に軟質な領域12Bを有し、中央部に硬質な領域13Bを有している。図4に示すように、軟質な領域12Bは、膨張性材料Eにより形成され、硬質な領域13Bは、膨張性材料Eと、膨張性材料Eに覆われるように配置されたワイヤー部材W2(芯材)により形成されている。なお、本体部11Bを形成する膨張性材料Eは多孔質であってもよく、多孔質でなくてもよい。
 塞栓物10Bは、軟質な領域12Bを構成する膨張性材料Eのみが膨潤し、柔軟性を確保する。また、硬質な領域13Bは、軟質な領域12Bを構成する膨張性材料Eに比べて曲げ方向に変形しにくいという効果を奏する。
 このように構成された塞栓物10Bによれば、硬質な領域13Bを支点として分枝血管tの近位側の湾曲部分に引っ掛かりやすくなり、分枝血管tの遠位側に迷入することを防ぐことができる。したがって、塞栓物10Bは、遠位塞栓のリスクを低減させることができる。
 なお、硬質な領域13Bは、ワイヤー部材W2からなると説明したが、硬質な領域13Bの構成は、これに限定されない。例えば、硬質な領域13Bは、ワイヤー部材と一体に構成される膨張性材料によって形成されていてもよい。また、硬質な領域13Bは、芯部分(軸方向から視た膨張性材料の断面における中央部分)が硬い組成である膨張性材料によって形成されていてもよい。
 <医療器具セット>
 次に、医療器具セット100の構成について説明する。図5に示すように、医療器具セット100は、塞栓物装填用カテーテル20と、送達用カテーテル30を備えている。
 塞栓物装填用カテーテル20は、装填用ルーメンが設けられる本体21と、本体21の基端側に設けられる基端ハブ22を備えている。塞栓物装填用カテーテル20は、装填用ルーメンに塞栓物10を収容し、送達用カテーテル30に装着された状態で使用される。
このとき、装填用ルーメンに装填された塞栓物10は、送達用プッシャー40が基端ハブ22から挿入されることによって瘤内に向けて押し出される。なお、塞栓物装填用カテーテル20は、主として予め塞栓物10が装填された状態で供されるが、本体21に装填される塞栓物10は、術者などが塞栓物10を把持して本体21内に装填してもよい。また、塞栓物10の装填方法としては、術者が塞栓物10を把持して塞栓物装填用カテーテル20の先端側開口部または基端ハブ22側から挿入することができる。
 送達用カテーテル30は、シースルーメン(図示省略)が設けられるシース31を備え、後述する挿通補助部材50の本体51を挿通可能に構成されている。送達用カテーテル30は、生体管腔内に留置されて、塞栓物装填用カテーテル20を瘤内に送達させるための導入路として機能することができる。
 <デリバリーシステム>
 次に、デリバリーシステム200の構成について説明する。図5に示すように、第1実施形態に係るデリバリーシステム200は、医療器具セット100に加え、塞栓物10を瘤内に押し出すための送達用プッシャー40を備えている。
 送達用プッシャー40は、長尺な棒状部材からなるプッシャー本体41を備え、塞栓物装填用カテーテル20が送達用カテーテル30に挿着された状態で、術者によって基端ハブ22から挿入される。送達用プッシャー40は、塞栓物装填用カテーテル20に挿入されると、装填用ルーメンに収容された塞栓物10を瘤内へと押し出すことができる。
 <塞栓物デリバリー医療システム>
 次に、塞栓物デリバリー医療システム300の構成について説明する。図6に示すように、本実施形態に係る塞栓物デリバリー医療システム300は、デリバリーシステム200に加えて、生体管腔内に送達用カテーテル30を送達させる挿通補助部材50を備えている。
 挿通補助部材50は、ガイドワイヤルーメン52が設けられる本体51を備え、事前に生体管腔内に挿通されたガイドワイヤに沿って送達用カテーテル30を瘤内まで送達させる動作を補助することができる。
 [動作]
 次に、第1実施形態に係る塞栓物デリバリー医療システム300の動作について説明する。図7A~図7Dは、腹部大動脈瘤のステントグラフト内挿術に対するエンドリーク塞栓術における主な手技工程を説明するための図である。
 術者は、図7Aに示すように、ガイドワイヤGWを挿入した送達用カテーテル30のシース31を、穿刺部位となる患者の肢体からイントロデューサーを介して経皮的に生体管腔へと挿入し、送達用カテーテル30の先端開口部を腹部大動脈瘤まで送達させる。術者は、送達用カテーテル30の先端開口部が瘤内(動脈瘤内)sまで送達されると、ガイドワイヤGWを抜去する。なお、送達用カテーテル30は、ガイドワイヤGWを挿通補助部材50に挿入し、ガイドワイヤGWと挿通補助部材50を送達用カテーテル30に挿入した状態で動脈瘤患部まで送達させてもよい。
 次に、術者は、図7Bに示すように、イントロデューサーを介してステントグラフトSGを圧縮挿入したカテーテル(ステントグラフトデバイス)を生体管腔内に挿入し、予め瘤内sに挿入したガイドワイヤを用いて動脈瘤患部まで移動させる。その後、患部にてカテーテルからステントグラフトSGを展開し留置する。これにより、送達用カテーテル30は、ステントグラフトSGの脚部と血管壁との間を介して、送達用カテーテル30の先端部がステントグラフトSGと動脈瘤の血管壁との間、すなわち、瘤内sに挿入され、先端開口部が瘤内sに位置した状態で生体管腔内に留置される。
 送達用カテーテル30が留置されると、術者は、送達用カテーテル30の基端側に塞栓物10を装填した塞栓物装填用カテーテル20の先端側を装着する。そして、術者は、送達用プッシャー40の先端を基端ハブ22の基端側から挿入する。基端ハブ22から挿入された送達用プッシャー40の先端は、塞栓物装填用カテーテル20内に装填された塞栓物10の基端と当接し、押し出し操作によって塞栓物10を送達用カテーテル30のシースルーメンへと押し出して移動させる。
 次に、術者は、図7Cに示すように、基端ハブ22から挿入された送達用プッシャー40を押し出し操作して送達用カテーテル30のシースルーメンから塞栓物10を瘤内sへと押し出す。その後、術者は、空になった塞栓物装填用カテーテル20を送達用プッシャー40と共に、送達用カテーテル30から離脱させる。送達用プッシャー40は、塞栓物装填用カテーテル20に挿入した状態で送達用カテーテル30から離脱させることができる。これにより、瘤内sに対する塞栓物10の1回目の挿入動作が完了する。なお、挿入動作において、送達用プッシャー40は、塞栓物装填用カテーテル20の離脱操作前に、塞栓物装填用カテーテル20から引き抜いてもよい。このような一連の塞栓物留置動作を、瘤内sに塞栓物10が必要量だけ装填されるまで繰り返す。なお、必要量は、患者のCTデータを基に動脈瘤の体積を計算し、その値から当該動脈瘤に展開した場合のステントグラフトSGの体積分を引いた値として算出する。
 瘤内sに必要量の塞栓物10の留置が完了すると、術者は、送達用カテーテル30を瘤内s及び生体管腔から引き抜く。この際、塞栓物装填用カテーテル20が送達用カテーテル30に装着され、かつ、送達用プッシャー40が送達用カテーテル30に挿入された状態で、送達用カテーテル30を瘤内s及び生体管腔から引き抜いてもよい。また、送達用カテーテル30を瘤内s及び生体管腔から引き抜く前に、送達用カテーテル30から塞栓物装填用カテーテル20を離脱させつつ、送達用プッシャー40を送達用カテーテル30から引き抜いてもよい。また、送達用カテーテル30を瘤内s及び生体管腔から引き抜く前に、送達用プッシャー40を送達用カテーテル30および塞栓物装填用カテーテル20から引き抜き、送達用カテーテル30から塞栓物装填用カテーテル20を離脱させてもよい。なお、いずれの場合でも、塞栓物10の留置後のバルーンによるステントグラフトSGの追加拡張や造影操作などのために、イントロデューサーは生体管腔内に留置したままにする。
 瘤内sに留置された塞栓物10は、図7Dに示すように、瘤内sの血液などの液体と接触して徐々に膨潤し、完全に膨脹した塞栓物10が動脈瘤内面とステントグラフト外面との間の空間が埋まって瘤内sが閉塞される。これにより、動脈瘤は、破裂が防止されることとなる。
 [作用効果]
 以上説明したように、本実施形態に係る塞栓物10は、生体内の瘤内sに挿入され、留置される塞栓物であって、軸方向に延在する長尺状の本体部11を有し、本体部11は、軟質な領域12と、軟質な領域12よりも硬い硬質な領域13と、を備え、硬質な領域13は、本体部11の全長の50パーセント以下であることを特徴とする。
 上記のように構成した塞栓物10は、硬く構成されることによって曲げ方向に変形しにくい領域を有している。そのため、塞栓物10が硬質な領域13を支点として分枝血管tの近位側の湾曲部分に引っ掛かりやすくなり、分枝血管tの遠位側に迷入することを防ぐことができる。したがって、塞栓物10は、遠位塞栓のリスクを低減させることができる。
 また、塞栓物10は、多孔質の膨張性材料により形成され、硬質な領域13は、軟質な領域12と比べて本体部11の空孔の密度が低いことを特徴とする。このとき、塞栓物10が生理条件下で血液を含む水性液体と接触すると、硬質な領域13は、軟質な領域12と比べて膨張しにくく、曲げ方向(本体部11の軸方向に交差する方向)に変形しにくいという効果を奏する。そのため、塞栓物10は、分枝血管の近位側に詰まりやすくなり、分枝血管の遠位側に迷入することを防ぐことができる。
 また、塞栓物10Aは、架橋重合した高分子材料からなる多孔質の膨張性材料Eと、ワイヤー部材W1と、から構成され、軟質な領域12Aは、膨張性材料Eにより形成され、硬質な領域13Aは、膨張性材料Eと膨張性材料Eの外表面を覆うワイヤー部材W1とによって構成されることを特徴とする。このとき、硬質な領域13Aを構成する膨張性材料Eは、ワイヤー部材W1に覆われることによって硬度を確保し、軟質な領域12Aを構成する膨張性材料Eと比べて曲げ方向に変形しにくいという効果を奏する。そのため、塞栓物10Aは、分枝血管の近位側に詰まりやすくなり、分枝血管の遠位側に迷入することを防ぐことができる。
 また、塞栓物10Bは、架橋重合した高分子材料からなる膨張性材料Eと、ワイヤー部材W2とによって構成され、軟質な領域12Bは、膨張性材料Eにより形成され、硬質な領域13Bは、膨張性材料Eと、膨張性材料Eに覆われるように配置されたワイヤー部材W2によって形成されることを特徴とする。このとき、塞栓物10Bは、軟質な領域12Bを構成する膨張性材料Eのみが膨潤し、柔軟性を確保する。また、硬質な領域13Bは、軟質な領域12Bを構成する膨張性材料Eと比べて曲げ方向に変形しにくいという効果を奏する。そのため、塞栓物10Bは、分枝血管の近位側に詰まりやすくなり、分枝血管の遠位側に迷入することを防ぐことができる。
 また、塞栓物10の軟質な領域12は、架橋重合した高分子材料からなる第1膨張性材料により形成され、硬質な領域13は、架橋重合した高分子材料からなり、第1膨張性材料と比べて硬質な第2膨張性材料によって構成されることを特徴とする。このように形成された硬質な領域13は、曲げ方向に変形しにくいため、塞栓物10が硬質な領域13を支点として分枝血管tの近位側の湾曲部分に引っ掛かりやすくなり、分枝血管tの遠位側に迷入することを防ぐことができる。
 また、塞栓物10(塞栓物10A、10B)は、両端部に軟質な領域12(軟質な領域12A、12B)を備えることを特徴とする。これにより、塞栓物10は、瘤内sに留置された後に分枝血管に入り込むと、硬質な領域13を支点として軟質な領域12の各々を曲げ方向に変形させ、硬質な領域13を分枝血管の血管壁に当接させることができる(図2を参照)。そのため、塞栓物10は、硬質な領域13を分枝血管の近位側の湾曲部分に容易に引っ掛けることができる。
 なお、本実施形態に係る医療器具セット100、デリバリーシステム200、および塞栓物デリバリー医療システム300を構成する各部材は、図5および図6に示す構成に限定されない。
 例えば、医療器具セットは、図8に示す医療器具セット400のように、塞栓物装填用カテーテル20と、本体431(シース)と湾曲部432とを含み、湾曲部432の先端側から本体431の基端側に向かって連通するルーメン(図示省略)を介して瘤内sに塞栓物10(塞栓物10A、10B)を送達させる送達用カテーテル430と、矯正部材60と、を備えていてもよい。
 送達用カテーテル430の湾曲部432は、本体431の中心軸に対して所定曲率で湾曲している。湾曲部432は、本体431の先端から延在して設けられ、基端側から先端側に向かうに連れて徐々に本体431の中心軸から遠ざかる方向(本体431の中心軸に対する放射方向)に湾曲する。湾曲部432は、先端側から基端側に向かって連通する孔(ルーメン)を備えている。このルーメン(図示省略)は、本体431のルーメン(シースルーメン)と連通され、送達用カテーテル430のルーメン(図示省略)として機能する。なお、湾曲部432は、図8において、二点鎖線で区切られた範囲である。
 湾曲部432は、少なくとも動脈瘤内に送達されたときに湾曲状態が維持され、送達用カテーテル430の挿抜時には矯正部材60により略真直状態へと変位し得る。湾曲部432は、生体管腔内を通って動脈瘤内を送達される際には、矯正部材60が挿入されて曲がりが緩やかとなるため送達の邪魔にならず、動脈瘤内に到達したときには、矯正部材60が抜去されて元の湾曲状態に復元される構成となっている。
 矯正部材60は、送達用カテーテル430を生体管腔内から抜去する際に使用される。
矯正部材60は、送達用カテーテル430に挿入されることで、挿入前と比べて湾曲部432の湾曲量(曲がり具合)を略真直状態に近付くように変位させる。つまり、矯正部材60の送達用カテーテル430に対する挿入前後を比較すると、矯正部材60を挿入した後の湾曲部432の曲がり具合は、矯正部材60を挿入する前の曲がり具合と比べて緩やかになる。なお、矯正部材60は、送達用カテーテル430の挿抜時の容易性を向上させるため、挿入後に湾曲部432の湾曲状態が略真直状態となるように矯正するのが好ましい。
 なお、上述した挿通補助部材50を矯正部材60として機能させることもできる。
 術者は、送達用カテーテル430の先端を、ガイドワイヤGWに沿って瘤内sまで送達させる(図9Aを参照)。そして、術者は、ガイドワイヤGWを抜去し、テントグラフトSGを留置すると(図9Bを参照)、送達用カテーテル430の先端開口部を瘤内sに位置した状態で送達用カテーテル430が生体管腔内に留置する。塞栓物装填用カテーテル20に装填されている塞栓物は、送達用カテーテル430が生体管腔内に留置されると、湾曲部432のルーメンに沿って先端側から押し出される。また、塞栓物の放出口となる湾曲部432の先端側の開口は、送達用カテーテル430を回転方向に回転させることで、送達用カテーテル430の回転中心(中心軸)に対する所定の放射方向に向けることができる。これにより、湾曲部432の開口の向きが変わるため、塞栓物の押し出し方向を瘤内sの適切な方向に向けることで、塞栓物は、適切な位置に留置されることとなる。
 このように構成された医療器具セット400によれば、術者は、送達用カテーテル430を操作しながら塞栓物の押出方向を制御し、瘤内sの適切な位置に留置可能とすると共に、送達用カテーテル430の挿入または抜去時に湾曲部132の湾曲状態が略真直状態に近付くように変位させて挿抜動作をスムーズにさせることができる。しかしながら、送達用カテーテル430に装填された塞栓物は、本体431から先端側が湾曲しているがゆえに、意図しない分枝血管tに入り込むリスクが増えてしまい、遠位塞栓のリスクが増える虞がある。そのため、瘤内sに留置されても分枝血管の遠位側に迷入することを防ぎ、遠位塞栓のリスクを低減させることができる塞栓物が求められる。
 本発明の塞栓物10(塞栓物10A、10B)は、硬く構成されることによって曲げ方向に変形しにくい領域(硬質な領域13、13A、13B)を有している。そのため、塞栓物10(塞栓物10A、10B)は、硬質な領域13(硬質な領域13A、13B)を支点として分枝血管tの近位側の湾曲部分に引っ掛かりやすくなり、分枝血管tの遠位側に迷入することを防ぐことができる。したがって、塞栓物10(塞栓物10A、10B)、遠位塞栓のリスクを低減させることができる。
 本出願は、2021年3月31日に出願された日本国特許出願第2021-059130号に基づいており、その開示内容は、参照により全体として引用されている。
  10、10A、10B 塞栓物、
  11、11A、11B 本体部、
  12、12A、12B 軟質な領域、
  13、13A、13B 硬質な領域、
  100 医療器具セット、
  200 デリバリーシステム、
  300 塞栓物デリバリー医療システム、
  X   軸方向、
  Y   幅方向、
  Z   高さ方向。

Claims (6)

  1.  生体内の瘤内に挿入され、留置される塞栓物であって、
     軸方向に延在する長尺状の本体部を有し、
     前記本体部は、軟質な領域と、前記軟質な領域よりも硬い硬質な領域と、を備え、
     前記硬質な領域は、前記本体部の全長の50パーセント以下であることを特徴とする、塞栓物。
  2.  前記本体部は、多孔質の膨張性材料により形成され、
     前記硬質な領域は、前記軟質な領域と比べて前記本体部の空孔の密度が低いことを特徴とする、請求項1に記載の塞栓物。
  3.  前記本体部は、架橋重合した高分子材料からなる膨張性材料と、ワイヤー部材と、から構成され、
     前記軟質な領域は、前記膨張性材料により形成され、
     前記硬質な領域は、前記膨張性材料と前記膨張性材料の外表面を覆う前記ワイヤー部材とによって構成されることを特徴とする、請求項1に記載の塞栓物。
  4.  前記本体部は、架橋重合した高分子材料からなる膨張性材料とワイヤー部材とによって構成され、
     軟質な領域は、前記膨張性材料により形成され、
     前記硬質な領域は、前記膨張性材料と前記膨張性材料に覆われるように配置された前記ワイヤー部材により形成されることを特徴とする、請求項1に記載の塞栓物。
  5.  前記軟質な領域は、架橋重合した高分子材料からなる第1膨張性材料により形成され、
     前記硬質な領域は、架橋重合した高分子材料からなり、前記第1膨張性材料と比べて硬質な第2膨張性材料によって構成されることを特徴とする、請求項1に記載の塞栓物。
  6.  前記本体部は、両端部に軟質な領域を備えることを特徴とする、請求項1~5のいずれか1項に記載の塞栓物。
PCT/JP2022/009919 2021-03-31 2022-03-08 塞栓物 WO2022209622A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-059130 2021-03-31
JP2021059130A JP2024075523A (ja) 2021-03-31 2021-03-31 塞栓物

Publications (1)

Publication Number Publication Date
WO2022209622A1 true WO2022209622A1 (ja) 2022-10-06

Family

ID=83458655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009919 WO2022209622A1 (ja) 2021-03-31 2022-03-08 塞栓物

Country Status (2)

Country Link
JP (1) JP2024075523A (ja)
WO (1) WO2022209622A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017060744A (ja) * 2015-09-23 2017-03-30 コヴィディエン リミテッド パートナーシップ 閉塞装置
JP2018502657A (ja) * 2015-01-20 2018-02-01 ニューロガミ メディカル インコーポレイテッド 頭蓋内動脈瘤の治療のためのマイクログラフトおよび使用方法
JP2018526128A (ja) * 2015-09-04 2018-09-13 ザ テキサス エーアンドエム ユニバーシティ システムThe Texas A&M University System 形状記憶ポリマ容器閉塞デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502657A (ja) * 2015-01-20 2018-02-01 ニューロガミ メディカル インコーポレイテッド 頭蓋内動脈瘤の治療のためのマイクログラフトおよび使用方法
JP2018526128A (ja) * 2015-09-04 2018-09-13 ザ テキサス エーアンドエム ユニバーシティ システムThe Texas A&M University System 形状記憶ポリマ容器閉塞デバイス
JP2017060744A (ja) * 2015-09-23 2017-03-30 コヴィディエン リミテッド パートナーシップ 閉塞装置

Also Published As

Publication number Publication date
JP2024075523A (ja) 2024-06-04

Similar Documents

Publication Publication Date Title
CA2553611C (en) Aneurysm treatment device and method of use
CA2455464C (en) Aneurysm treatment device
US8870909B2 (en) Aneurysm treatment device and method of use
US20050004660A1 (en) Methods, materials and apparatus for deterring or preventing endoleaks following endovascular graft implantation
AU2002316320A1 (en) Aneurysm treatment device
WO2022209622A1 (ja) 塞栓物
WO2021199883A1 (ja) 塞栓剤
WO2022209620A1 (ja) 塞栓物、および塞栓物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP