WO2022209472A1 - Linear motor transport system and method for operating same - Google Patents

Linear motor transport system and method for operating same Download PDF

Info

Publication number
WO2022209472A1
WO2022209472A1 PCT/JP2022/007675 JP2022007675W WO2022209472A1 WO 2022209472 A1 WO2022209472 A1 WO 2022209472A1 JP 2022007675 W JP2022007675 W JP 2022007675W WO 2022209472 A1 WO2022209472 A1 WO 2022209472A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
sensor
linear motor
scale
linear
Prior art date
Application number
PCT/JP2022/007675
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 岸
和彦 小島
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN202280023329.2A priority Critical patent/CN117044098A/en
Priority to JP2023510666A priority patent/JPWO2022209472A1/ja
Publication of WO2022209472A1 publication Critical patent/WO2022209472A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type

Definitions

  • the present invention relates to a linear motor transport system and its operating method.
  • a linear motor transport system in which a carrier is driven using a linear motor as a drive source, and the carrier transports the article.
  • a linear motor transport system includes a carrier that holds an article to be transported, a linear motor mover attached to the carrier, a linear motor stator including a plurality of electromagnets (coil units) arranged along a path, and a plurality of electromagnets.
  • a control device for controlling current supply to the carrier to move the carrier along the path, and the mover travels along the path to convey the article held by the carrier.
  • the linear motor transport system can individually control the movement of multiple carriers that hold the items. It also allows flexible control, such as stopping the carriers exactly where they are needed, changing their speed, or moving only one carrier in the opposite direction. In addition, since the linear motor transport system is driven by a linear motor, it is cleaner than the transport systems employing other drive systems because it does not generate dust and the like.
  • the linear motor transport system has a wide variety of applications, such as transport between processes and processing lines that perform precision machining on the transport route.
  • the present invention has been made in this situation, and one exemplary purpose of certain aspects thereof is to provide a linear motor transport system with increased commercial value.
  • a linear motor transport system includes a carrier to which a linear scale and reference marks are fixed, a linear motor that moves the carrier along a predetermined path, and An array of sensors and a controller.
  • the control unit detects the linear scale regardless of the reference mark output from the sensor that does not detect the linear scale among the plurality of sensors.
  • the position of the carrier is determined based on the output of the sensor with respect to the reference mark.
  • Another aspect of the present invention is a method of operating a linear motor transport system.
  • This method is a method of operating a linear motor transport system that includes a carrier to which a linear scale and reference marks are fixed, and a linear motor that moves the carrier along a predetermined path, and moves the carrier as an initial process. and specifying the position of the carrier based on the output regarding the reference mark by the sensor detecting the linear scale, not based on the output regarding the reference mark by the sensor not detecting the linear scale out of the plurality of sensors. and including.
  • FIG. 1 is a plan view of a linear motor transport system according to an embodiment
  • FIG. FIG. 2 is a side view showing the carrier in FIG. 1 and its surroundings
  • FIG. 2 is a timing chart showing sensor output when the carrier in FIG. 1 is moved as an initial process
  • FIG. 1 is a plan view showing a schematic configuration of a linear motor transport system 100 according to an embodiment.
  • FIG. 2 is a side view showing the carrier 10 of the linear motor transport system 100 and its surroundings.
  • a linear motor transport system 100 includes a carrier 10 for holding an article to be transported, a linear motor 12 for driving the carrier 10, a reference mark 14 and a linear scale 16 fixed to the carrier 10, and a movable carrier 10.
  • a plurality of sensors 18 arranged along the path P and a control device 20 that controls the linear motor transport system 100 are provided. Each of the plurality of sensors is connected to the control device 20 by wire.
  • the number of carriers 10 is assumed to be one for ease of understanding, this is not a limitation, and a plurality of carriers 10 are normally provided.
  • the linear motor 12 has a stator 22 and a mover 24 attached to the carrier 10 .
  • the stator 22 is formed in a rectangular shape elongated in the D direction in plan view in this embodiment.
  • the stator 22 includes a plurality of electromagnets (coil units) 26 arranged in the D direction. Only some of the electromagnets 26 are shown in FIG. 1 as an example. A current can be individually supplied from the power supply 34 to the plurality of electromagnets 26 .
  • the array of multiple electromagnets 26 defines a path P. FIG. Although not particularly limited, the path P is linear in the present embodiment.
  • the mover 24 is attached to the lower surface of the carrier 10 so as to vertically face the electromagnet 26 .
  • the mover 24 is configured including a magnet.
  • the mover 24 moves along the path P due to the interaction of the magnetic field generated by the electromagnet 26 and the magnetic field of the magnet of the mover 24 .
  • the stator 22 may be provided with a linear guide that guides the movement of the mover 24 or the carrier 10.
  • the mover 24 may be magnetically levitated above the stator 22 without providing a linear guide.
  • the reference mark 14 is provided on the lower surface of the carrier 10 in this example. Note that the reference mark 14 may be provided on the linear scale 16 .
  • the reference mark 14 is not particularly limited, but may be a magnet if the sensor 18 is magnetic, or a glass or steel tape with a mark if it is optical.
  • the position of the reference mark 14 in the D direction on the carrier 10 is preferably the reference position of the carrier 10 in the D direction (hereinafter simply referred to as the reference position of the carrier 10). match.
  • the reference position is a reference position of the carrier 10 in the D direction, typically the center position of the carrier 10 in the D direction. If the position of the reference mark 14 matches the reference position of the carrier 10 , the position of the reference mark 14 will be the position of the carrier 10 .
  • the reference mark 14 may be provided at any position on the carrier 10, but the relative position of the reference mark 14 with respect to the reference position must be known.
  • the position of the carrier 10 is specified by considering the distance between the reference position and the reference mark 14 in the D direction in the absolute position of the reference mark 14. .
  • the position of the reference mark 14 is assumed to match the reference position of the carrier.
  • the linear scale 16 is fixed to the lower surface of the carrier 10 in the same way as the reference mark 14 in this example.
  • the linear scale 16 is not particularly limited, but if the sensor 18 is magnetic, it is a magnet scale, and if it is optical, it is, for example, a graduated glass scale or steel tape.
  • the linear scale 16 is provided on the carrier 10 so that the center of the linear scale 16 in the D direction coincides with the reference position of the carrier 10, although this is not a limitation.
  • the linear scale 16 has an effective area 16a and two ineffective areas 16b adjacent to both ends of the effective area 16a in the D direction.
  • the effective area 16a is an area where the sensor 18 can read the scale
  • the ineffective area 16b is an area where the sensor 18 cannot read the scale.
  • the sensor 18 includes a mark detection section 28 configured to detect the reference mark 14 and a scale detection section 29 configured to detect the linear scale 16 .
  • the sensor 18 is arranged such that the mark detection section 28 is positioned on the movement path of the reference mark 14 and the scale detection section 29 is positioned on the movement path of the linear scale 16 in plan view. .
  • the mark detection unit 28 When the mark detection unit 28 detects the reference mark 14, that is, when the reference mark 14 passes right above the mark detection unit 28, it outputs a pulse signal having a predetermined intensity or more to the control device 20.
  • the pulse width of the pulse signal is preferably about the same as the resolution of the mark detection section 28, but may be longer.
  • the control device 20 determines whether or not the reference mark 14 is positioned right above the mark detection section 28 based on the signal output from the mark detection section 28 .
  • the scale detector 29 reads the scale provided on the linear scale 16 that moves above the scale detector 29, and every time the linear scale 16 and thus the carrier 10 moves R [ ⁇ m] (R is the resolution of the scale detector 29). , a pulse signal of one pulse is output to the control device 20 . That is, the scale detector 29 outputs the number of pulse signals corresponding to the moving distance of the linear scale 16 and thus the carrier 10 .
  • the controller 20 identifies (detects) the position of the carrier 10 in the D direction or the amount of change in the position by counting the pulse signals output by the scale detector 29 . In addition, below, the case where a position is pinpointed is demonstrated.
  • the plurality of sensors 18 are arranged at regular intervals in this example. Specifically, they are arranged at an interval S.
  • the plurality of sensors 18 are arranged such that the interval S between the sensors 18 and the length Le of the effective area 16a of the linear scale 16 (hereinafter referred to as "effective area length") satisfy the relationship "interval S ⁇ effective area length Le”. placed in In this case, regardless of where the carrier 10 is positioned on the path P, the effective area 16a of the linear scale 16 is positioned in the detection area of one of the sensors 18 (that is, directly above the sensor 18), so the position of the carrier 10 can be identified. It is assumed that the position of each of the multiple sensors 18 is known.
  • the control device 20 includes a position specifying section 30 and a linear motor control section 32 that controls the linear motor 12 to move the carrier 10 .
  • the linear motor control unit 32 controls current supply from the power supply 34 to each electromagnet 26 while feeding back the positional information of the carrier 10 specified by the position specifying unit 30 as will be described later, thereby moving the carrier 10 to a desired position. move to
  • the position specifying unit 30 specifies the position of the carrier 10 based on the output of the sensor 18.
  • the linear motor transport system is stopped and started periodically or irregularly. For example, some factories shut down at the end of working hours and start up at the beginning of working hours for safety reasons. Also, for example, when a linear motor transport system is used for each of a plurality of processing lines, the number of processing lines to be operated increases or decreases as the number of orders for products increases or decreases. I have something to do.
  • the linear motor control unit 32 moves the carrier 10 and causes one of the sensors 18 to detect the reference mark 14 to specify the position of the carrier 10. do.
  • the position specifying unit 30 detects the threshold intensity from the mark detection unit 28 of one of the sensors 18_1 to 18_N (N is an integer of 2 or more, and N is 3 or more in the examples of FIGS. 1 to 3).
  • N is an integer of 2 or more, and N is 3 or more in the examples of FIGS. 1 to 3.
  • the position specifying unit 30 determines the sensor 18 — i that has detected the reference mark 14 as a reference sensor (hereinafter referred to as “reference sensor”) for specifying the absolute position of the carrier 10 .
  • the position specifying unit 30 counts the pulse signals output from the scale detection unit 29 of the reference sensor as the carrier 10 moves, with the reference mark 14 positioned directly above the reference sensor as "0". .
  • the position specifying unit 30 specifies the distance of the carrier 10 from the reference sensor, that is, the relative position of the carrier 10 with respect to the reference sensor, based on the count value of the pulse signal output from the scale detection unit 29 of the reference sensor.
  • the position specifying unit 30 specifies the position of the carrier 10 by adding the specified relative position to the position of the reference sensor.
  • the effective area 16a of the linear scale 16 deviates from the detection range (that is, directly above) of the scale detection section 29 of the reference sensor. Then, the position of the carrier 10 cannot be specified based on the output of the reference sensor. Therefore, before the effective area 16a of the linear scale 16 deviates from the detection range of the reference sensor, the sensor 18 adjacent to the reference sensor and having the effective area 16a of the linear scale 16 in its detection range (that is, directly above) is detected. 18 should be taken as the new reference sensor. That is, it is necessary to switch the reference sensor.
  • the position specifying unit 30 specified the absolute position of the carrier 10 by specifying the relative position of the carrier 10 with respect to the sensor 18_i.
  • the absolute position of the carrier 10 is specified by specifying . That is, the position of the carrier 10 is specified by adding the position of the carrier 10 relative to the sensor 18_i+1 to the position of the sensor 18_i+1.
  • the position specifying unit 30 continues to repeatedly specify the position of the carrier 10 while switching the reference sensor as the carrier 10 moves.
  • the sensor 18 is used with the scale detection unit 29 constantly detecting the linear scale 16 .
  • the output of the mark detection unit 28 becomes indefinite. I recognized that it outputs a high level signal. Therefore, when the reference sensor is determined based on the detection result of the reference mark 14 in the initial processing, if the output from the mark detection unit 28 is used without selection, the reference sensor is determined erroneously, and the position of the carrier 10 is determined. may be incorrectly identified. This will be described in detail with reference to FIG.
  • FIG. 3 is a time chart showing outputs from the sensor 18 when the carrier 10 is moved as initial processing.
  • the linear scale 16 in the effective area 16a of the linear scale 16, the linear scale 16 is positioned directly above the scale detection portions 29 of both the sensors 18_1 and 18_2. At time t5, the linear scale 16 reaches the right side of the sensor 18_1. In other words, the linear scale 16 is out of position directly above the sensor 18_1. At time t6, the reference mark 14 reaches just above the mark detection portion 28 of the sensor 18_2.
  • the effective area 16 a of the linear scale 16 is not directly above the scale detection section 29 of the sensor 18_2, and therefore the scale detection section 28 does not detect the linear scale 16 . Therefore, the output of the mark detection section 28 of the sensor 18_2 is indefinite from time t 0 to time t 4 , and even though the reference mark 14 is not located directly above the mark detection section 28 of the sensor 18_2, this example outputs a high-level signal and a low-level signal. If the output of the mark detection section 28 of the sensor 18_2 from time t 0 to time t 4 is used to determine the reference sensor, the position of the carrier 10 may be erroneously identified.
  • the effective area 16a of the linear scale 16 is not directly above the scale detection section 29 of the sensor 18_3 at each time in FIG. Therefore, the output of the mark detection section 28 of the sensor 18_3 at each time in FIG. A level signal is output and a low level signal is output. If the output of the sensor 18_3 at each time in FIG. 3 is used to determine the reference sensor, the position of the carrier 10 may be specified incorrectly.
  • the output of the mark detection unit 28 of the sensor 18_1 is indefinite until time t2, and even though the reference mark 14 is not positioned right above the sensor 18_2 , the time t2 is reached in this example. It continues to output a high level signal until At time t2, the effective area 16a of the linear scale 16 is positioned right above the scale detector 29 of the sensor 18_1, so the scale detector 29 correctly outputs a low level signal.
  • the output of the mark detection section 28 of the sensor 18_1 changes even though the reference mark 14 is not positioned right above the mark detection section 28 of the sensor 18_1. If the output of sensor 18_1 at time t2 is used to determine the reference sensor, the position of carrier 10 may be erroneously determined.
  • the effective area 16a of the linear scale 16 is directly above the scale detection section 28 of the sensor 18_1, so the scale detection section 28 detects the linear scale 16.
  • FIG. Therefore, the output of the mark detection section 28 of the sensor 18_1 at time t3 is the output from the actual detection of the reference mark 14 .
  • the plurality (all) of the sensors 18 are equidistantly arranged at an interval S (interval S ⁇ effective area length Le), but other configurations are also conceivable. . That is, the plurality of sensors 18 may be arranged such that the distance between adjacent sensors 18 is equal to or greater than the effective area length Le.
  • the position specifying unit 30 of the present embodiment is not based on the output from the mark detection unit 28 of the sensor 18 for which the scale detection unit 29 does not detect the linear scale 16 among the plurality of sensors 18, and the scale detection unit 29 specifies the position of the carrier 10 based on the output from the mark detection section 28 of the sensor 18 detecting the linear scale 16 .
  • the position specifying unit 30 moves forward in the moving direction of the carrier 10 out of the two sensors 18 .
  • the position of the carrier 10 is specified based on the output from the mark detection section 28 of the sensor 18 located at . This avoids erroneous detection of the reference mark 14 and thus erroneous positioning of the carrier 10 .
  • the position specifying unit 30 detects two adjacent sensors 18_1 and 18_2 of the plurality of sensors 18 after the scale detection units 29 of the two sensors 18_1 and 18_2 detect the linear scales 16 at the same time.
  • the position of the carrier 10 is specified based on the output from the mark detection unit 28 of the sensor 18_2 positioned on the front side (right side) in the movement direction of the carrier 10 (that is, the output at time t6).
  • Two adjacent sensors 18 detecting the linear scale 16 at the same time match the timing at which the number of counts based on the pulse signals output by the scale detectors 29 changes according to the moving distance of the linear scale 16 a predetermined number of times. It is also possible to have two sensors connected to each other.
  • the predetermined number of times is preferably a plurality of times. In this case, it can be said that the two adjacent sensors 18 reliably detect the linear scale 16 at the same time.
  • the predetermined number of times may be six times, for example.
  • the number of counts based on the detection of the linear scale 16 by the sensor 18_1 is 12 ⁇ 13, 13 ⁇ 14, 14 ⁇ 15, 15 ⁇ 16, 16 ⁇ 17. , 17 ⁇ 18, and the number of counts based on the detection of the linear scale 16 by the sensor 18_2 switches 0 ⁇ 1, 1 ⁇ 2, 2 ⁇ 3, 3 ⁇ 4, 4 ⁇ 5, 5 ⁇ 6. Since the six timings match, it is determined that the sensors 18_1 and 18_2 are detecting the linear scale 16 at the same time.
  • the position of the carrier 10 can be detected by the sensor 18 provided on the stator 22 side. It becomes unnecessary to mount a battery on the carrier 10 or draw wiring from the carrier 10. - ⁇
  • the scale detector 29 of the plurality of sensors 18 does not detect the linear scale 16, and the scale detector 29 detects the linear scale not based on the output of the mark detector 28 of the sensor 18.
  • the position of the carrier 10 is specified based on the output of the mark detection section 28 of the sensor 18 that detects the scale 16 .
  • the carrier 10 of the two sensors 18 moves.
  • the position of the carrier 10 is specified based on the output from the mark detection section 28 of the sensor 18 located on the forward side.
  • the present invention relates to a linear motor transport system and its operating method.

Abstract

This linear motor transport system 100 comprises a carrier 10 to which a linear scale 14 and a reference mark 16 are fixed, a linear motor 12 that moves the carrier 10 along a route D, a plurality of sensors 18 arranged along the route D, and a control device 20. When the linear motor 12 is controlled such that the carrier 10 is moved as an initial process, the control device 20 identifies the position of the carrier 10 not on the basis of a reference-mark 14-related output produced by a sensor 18 that has not detected the linear scale 16 among the plurality of sensors 18, but rather on the basis of a reference-mark 14-related output produced by a sensor 18 that has detected the linear scale 16.

Description

リニアモータ搬送システムおよびその運用方法Linear motor transfer system and its operation method
 本発明は、リニアモータ搬送システムおよびその運用方法に関する。 The present invention relates to a linear motor transport system and its operating method.
 従来、物品を搬送する搬送システムとして、リニアモータを駆動源としてキャリアを走行させ、キャリアによって物品の搬送を行うリニアモータ搬送システムが知られている。リニアモータ搬送システムは、搬送する物品を保持するキャリアと、キャリアに取り付けられるリニアモータの可動子と、経路に沿って並ぶ複数の電磁石(コイルユニット)を含むリニアモータの固定子と、複数の電磁石への電流の供給を制御してキャリアを経路に沿って移動させる制御装置と、を備え、可動子が経路に沿って走行することにより、キャリアに保持された物品を搬送する。 Conventionally, as a transport system for transporting an article, a linear motor transport system is known in which a carrier is driven using a linear motor as a drive source, and the carrier transports the article. A linear motor transport system includes a carrier that holds an article to be transported, a linear motor mover attached to the carrier, a linear motor stator including a plurality of electromagnets (coil units) arranged along a path, and a plurality of electromagnets. a control device for controlling current supply to the carrier to move the carrier along the path, and the mover travels along the path to convey the article held by the carrier.
 従来のコンベアは、一定速度で同一方向に搬送物である物品を流すのに対し、リニアモータ搬送システムは、物品を保持する複数のキャリアの移動を個別に制御できる。また、キャリアを必要な場所に正確に止めたり、速度を変更したり、1つのキャリアだけを反対向きに移動させるといった柔軟な制御もできる。また、リニアモータ搬送システムは、リニアモータ駆動であるためその他の駆動方式を採用した搬送システムに比べて粉塵等が生じないためクリーンである。 In contrast to conventional conveyors, which convey items in the same direction at a constant speed, the linear motor transport system can individually control the movement of multiple carriers that hold the items. It also allows flexible control, such as stopping the carriers exactly where they are needed, changing their speed, or moving only one carrier in the opposite direction. In addition, since the linear motor transport system is driven by a linear motor, it is cleaner than the transport systems employing other drive systems because it does not generate dust and the like.
 そのため、リニアモータ搬送システムの用途は多岐にわたり、たとえば、工程間搬送や、搬送経路上で精密加工を行う加工ラインに用いられる。 Therefore, the linear motor transport system has a wide variety of applications, such as transport between processes and processing lines that perform precision machining on the transport route.
 リニアモータ搬送システムでは、可動子の位置を制御するために、固定子に対する可動子の位置を把握し続ける必要がある。従来では、固定子側に設けられるリニアスケールを、可動子側に設けられるセンサで読み取ることにより、可動子の位置を検出するリニアモータ搬送システムが提案されている(例えば特許文献1)。 In a linear motor transport system, it is necessary to keep track of the position of the mover relative to the stator in order to control the position of the mover. Conventionally, there has been proposed a linear motor transport system that detects the position of the mover by reading a linear scale provided on the stator side with a sensor provided on the mover side (for example, Patent Document 1).
特開2014-219296号公報JP 2014-219296 A
 特許文献1に記載されるような従来のリニアモータ搬送システムでは、可動子側にセンサが設けられるため、センサによる検出結果を出力する配線を可動子側から引き出す必要があり、可動子の可動範囲の制約となる。 In the conventional linear motor transfer system as described in Patent Document 1, since a sensor is provided on the mover side, wiring for outputting the detection result of the sensor must be drawn from the mover side, and the movable range of the mover is limited. constraints.
 本発明はこうした状況においてなされたものであり、そのある態様の例示的な目的のひとつは、商品価値を高めたリニアモータ搬送システムを提供することにある。 The present invention has been made in this situation, and one exemplary purpose of certain aspects thereof is to provide a linear motor transport system with increased commercial value.
 上記課題を解決するために、本発明のある態様のリニアモータ搬送システムは、リニアスケールおよびリファレンスマークが固定されたキャリアと、キャリアを所定の経路に沿って移動させるリニアモータと、経路に沿って並べられた複数のセンサと、制御装置と、を備える。制御部は、リニアモータを制御して初期処理としてキャリアを移動させた場合において、複数のセンサのうち、リニアスケールを検出していないセンサによるリファレンスマークに関する出力には基づかず、リニアスケールを検出しているセンサによるリファレンスマークに関する出力に基づいてキャリアの位置を特定する。 In order to solve the above problems, a linear motor transport system according to one aspect of the present invention includes a carrier to which a linear scale and reference marks are fixed, a linear motor that moves the carrier along a predetermined path, and An array of sensors and a controller. When the carrier is moved as an initial process by controlling the linear motor, the control unit detects the linear scale regardless of the reference mark output from the sensor that does not detect the linear scale among the plurality of sensors. The position of the carrier is determined based on the output of the sensor with respect to the reference mark.
 本発明の別の態様は、リニアモータ搬送システムの運用方法である。この方法は、リニアスケールおよびリファレンスマークが固定されたキャリアと、キャリアを所定の経路に沿って移動させるリニアモータと、を備えるリニアモータ搬送システムの運用方法であって、初期処理としてキャリアを移動させることと、複数のセンサのうちのリニアスケールを検出していないセンサによるリファレンスマークに関する出力には基づかず、リニアスケールを検出しているセンサによるリファレンスマークに関する出力に基づいてキャリアの位置を特定することと、を含む。 Another aspect of the present invention is a method of operating a linear motor transport system. This method is a method of operating a linear motor transport system that includes a carrier to which a linear scale and reference marks are fixed, and a linear motor that moves the carrier along a predetermined path, and moves the carrier as an initial process. and specifying the position of the carrier based on the output regarding the reference mark by the sensor detecting the linear scale, not based on the output regarding the reference mark by the sensor not detecting the linear scale out of the plurality of sensors. and including.
 なお、以上の構成要素の任意の組み合わせや、本発明の構成要素や表現を方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above constituent elements, and mutual replacement of the constituent elements and expressions of the present invention between methods, devices, systems, etc. are also effective as aspects of the present invention.
 本発明によれば、商品価値を高めたリニアモータ搬送システムを提供できる。 According to the present invention, it is possible to provide a linear motor transport system with increased commercial value.
実施の形態に係るリニアモータ搬送システムの平面図である。1 is a plan view of a linear motor transport system according to an embodiment; FIG. 図1のキャリアとその周辺を示す側面図である。FIG. 2 is a side view showing the carrier in FIG. 1 and its surroundings; 図1のキャリアを初期処理として移動させたときのセンサによる出力を示すタイミングチャートである。FIG. 2 is a timing chart showing sensor output when the carrier in FIG. 1 is moved as an initial process; FIG.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The embodiments are illustrative rather than limiting the invention, and not all features and combinations thereof described in the embodiments are necessarily essential to the invention. The same or equivalent constituent elements, members, and processes shown in each drawing are denoted by the same reference numerals, and duplication of description will be omitted as appropriate.
 図1は、実施の形態に係るリニアモータ搬送システム100の概略構成を示す平面図である。図2は、リニアモータ搬送システム100のキャリア10とその周辺を示す側面図である。 FIG. 1 is a plan view showing a schematic configuration of a linear motor transport system 100 according to an embodiment. FIG. 2 is a side view showing the carrier 10 of the linear motor transport system 100 and its surroundings.
 リニアモータ搬送システム100は、搬送する物品を保持するためのキャリア10と、キャリア10を駆動するリニアモータ12と、キャリア10に固定されるリファレンスマーク14およびリニアスケール16と、キャリア10が移動可能な経路Pに沿って配置される複数のセンサ18と、リニアモータ搬送システム100を統括的に制御する制御装置20と、を備える。複数のセンサはそれぞれ、制御装置20と有線で接続される。なお、理解を容易にするためにキャリア10の個数を1としているが、その限りではなく、通常は複数のキャリア10が設けられる。 A linear motor transport system 100 includes a carrier 10 for holding an article to be transported, a linear motor 12 for driving the carrier 10, a reference mark 14 and a linear scale 16 fixed to the carrier 10, and a movable carrier 10. A plurality of sensors 18 arranged along the path P and a control device 20 that controls the linear motor transport system 100 are provided. Each of the plurality of sensors is connected to the control device 20 by wire. Although the number of carriers 10 is assumed to be one for ease of understanding, this is not a limitation, and a plurality of carriers 10 are normally provided.
 リニアモータ12は、固定子22と、キャリア10に取り付けられる可動子24と、を備える。 The linear motor 12 has a stator 22 and a mover 24 attached to the carrier 10 .
 固定子22は、本実施の形態では、平面視でD方向に長い長方形状に形成されている。固定子22は、D方向に並ぶ複数の電磁石(コイルユニット)26を含む。図1には、一部の電磁石26のみが例として表示されている。電源34から複数の電磁石26には、個別に電流を供給できる。複数の電磁石26の並びは経路Pを規定する。特に限定しないが、本実施の形態では、経路Pは直線状である。 The stator 22 is formed in a rectangular shape elongated in the D direction in plan view in this embodiment. The stator 22 includes a plurality of electromagnets (coil units) 26 arranged in the D direction. Only some of the electromagnets 26 are shown in FIG. 1 as an example. A current can be individually supplied from the power supply 34 to the plurality of electromagnets 26 . The array of multiple electromagnets 26 defines a path P. FIG. Although not particularly limited, the path P is linear in the present embodiment.
 可動子24は、電磁石26と上下で対向するようにキャリア10の下面に取り付けられる。可動子24は磁石を含んで構成される。電磁石26により生じる磁界と可動子24の磁石の磁界との相互作用により、可動子24は経路Pに沿って移動する。 The mover 24 is attached to the lower surface of the carrier 10 so as to vertically face the electromagnet 26 . The mover 24 is configured including a magnet. The mover 24 moves along the path P due to the interaction of the magnetic field generated by the electromagnet 26 and the magnetic field of the magnet of the mover 24 .
 固定子22には、可動子24あるいはキャリア10の移動を案内するリニアガイドが設けられてもよい。あるいは、リニアガイドを設けずに、可動子24を固定子22上に磁気浮上させてもよい。 The stator 22 may be provided with a linear guide that guides the movement of the mover 24 or the carrier 10. Alternatively, the mover 24 may be magnetically levitated above the stator 22 without providing a linear guide.
 リファレンスマーク14は、この例ではキャリア10の下面に設けられる。なお、リファレンスマーク14は、リニアスケール16上に設けられてもよい。リファレンスマーク14は、特に限定しないが、センサ18が磁気式であれば磁石であり、光学式であれば例えばマーク付きのガラスやスチールテープである。 The reference mark 14 is provided on the lower surface of the carrier 10 in this example. Note that the reference mark 14 may be provided on the linear scale 16 . The reference mark 14 is not particularly limited, but may be a magnet if the sensor 18 is magnetic, or a glass or steel tape with a mark if it is optical.
 キャリア10上でのD方向におけるリファレンスマーク14の位置(以下、単に、リファレンスマーク14の位置という)は、好ましくは、D方向におけるキャリア10の基準位置(以下、単にキャリア10の基準位置という)と一致する。基準位置は、D方向におけるキャリア10の基準となる位置であり、典型的にはD方向におけるキャリア10の中央位置である。リファレンスマーク14の位置がキャリア10の基準位置と一致する場合、リファレンスマーク14の位置はキャリア10の位置となる。 The position of the reference mark 14 in the D direction on the carrier 10 (hereinafter simply referred to as the position of the reference mark 14) is preferably the reference position of the carrier 10 in the D direction (hereinafter simply referred to as the reference position of the carrier 10). match. The reference position is a reference position of the carrier 10 in the D direction, typically the center position of the carrier 10 in the D direction. If the position of the reference mark 14 matches the reference position of the carrier 10 , the position of the reference mark 14 will be the position of the carrier 10 .
 リファレンスマーク14はキャリア10上の任意の位置に設けられてもよいが、基準位置に対するリファレンスマーク14の相対位置が既知である必要がある。リファレンスマーク14の位置がキャリア10の基準位置と一致しない場合、リファレンスマーク14の絶対位置に、基準位置とリファレンスマーク14とのD方向における距離を考慮することで、キャリア10の位置が特定される。 The reference mark 14 may be provided at any position on the carrier 10, but the relative position of the reference mark 14 with respect to the reference position must be known. When the position of the reference mark 14 does not match the reference position of the carrier 10, the position of the carrier 10 is specified by considering the distance between the reference position and the reference mark 14 in the D direction in the absolute position of the reference mark 14. .
 以降では、説明の簡素化のため、リファレンスマーク14の位置はキャリアの基準位置と一致するものとする。 In the following, for simplicity of explanation, the position of the reference mark 14 is assumed to match the reference position of the carrier.
 リニアスケール16は、この例ではリファレンスマーク14と同様にキャリア10の下面に固定される。リニアスケール16は、特に限定しないが、センサ18が磁気式であれば磁石スケールであり、光学式であればたとえば目盛り付きのガラススケールやスチールテープである。リニアスケール16は、その限りではないが、当該リニアスケール16のD方向における中央が、キャリア10の基準位置と一致するようにキャリア10に設けられる。 The linear scale 16 is fixed to the lower surface of the carrier 10 in the same way as the reference mark 14 in this example. The linear scale 16 is not particularly limited, but if the sensor 18 is magnetic, it is a magnet scale, and if it is optical, it is, for example, a graduated glass scale or steel tape. The linear scale 16 is provided on the carrier 10 so that the center of the linear scale 16 in the D direction coincides with the reference position of the carrier 10, although this is not a limitation.
 リニアスケール16は、有効領域16aと、有効領域16aのD方向における両端に隣接する2つの無効領域16bと、を有する。有効領域16aは、センサ18がスケールを読み取れる領域であり、無効領域16bは、センサ18がスケールを読み取れない領域である。 The linear scale 16 has an effective area 16a and two ineffective areas 16b adjacent to both ends of the effective area 16a in the D direction. The effective area 16a is an area where the sensor 18 can read the scale, and the ineffective area 16b is an area where the sensor 18 cannot read the scale.
 センサ18は、リファレンスマーク14を検出可能に構成されたマーク検出部28と、リニアスケール16を検出可能に構成されたスケール検出部29と、を含む。本実施の形態では、センサ18は、平面視において、リファレンスマーク14の移動経路上にマーク検出部28が位置し、リニアスケール16の移動経路上にスケール検出部29が位置するように配置される。 The sensor 18 includes a mark detection section 28 configured to detect the reference mark 14 and a scale detection section 29 configured to detect the linear scale 16 . In the present embodiment, the sensor 18 is arranged such that the mark detection section 28 is positioned on the movement path of the reference mark 14 and the scale detection section 29 is positioned on the movement path of the linear scale 16 in plan view. .
 マーク検出部28は、リファレンスマーク14を検出すると、すなわちリファレンスマーク14がマーク検出部28の真上を通過すると、所定の強度以上のパルス信号を制御装置20に出力する。当該パルス信号のパルス幅は、マーク検出部28の分解能と同程度であることが好ましいが、それよりも長くてもよい。制御装置20は、詳しくは後述するが、マーク検出部28が出力する信号に基づいて、リファレンスマーク14がマーク検出部28の真上に位置しているか否かを特定する。 When the mark detection unit 28 detects the reference mark 14, that is, when the reference mark 14 passes right above the mark detection unit 28, it outputs a pulse signal having a predetermined intensity or more to the control device 20. The pulse width of the pulse signal is preferably about the same as the resolution of the mark detection section 28, but may be longer. Although the details will be described later, the control device 20 determines whether or not the reference mark 14 is positioned right above the mark detection section 28 based on the signal output from the mark detection section 28 .
 スケール検出部29は、スケール検出部29の上方を移動するリニアスケール16に設けられたスケールを読み取り、リニアスケール16ひいてはキャリア10がR[μm](Rはスケール検出部29の分解能)移動するごとに1パルスのパルス信号を制御装置20に出力する。つまり、スケール検出部29は、リニアスケール16ひいてはキャリア10の移動距離に応じた数のパルス信号を出力する。制御装置20は、スケール検出部29が出力するパルス信号をカウントすることにより、キャリア10のD方向の位置または位置の変化量を特定(検出)する。なお以下では、位置を特定する場合について説明する。 The scale detector 29 reads the scale provided on the linear scale 16 that moves above the scale detector 29, and every time the linear scale 16 and thus the carrier 10 moves R [μm] (R is the resolution of the scale detector 29). , a pulse signal of one pulse is output to the control device 20 . That is, the scale detector 29 outputs the number of pulse signals corresponding to the moving distance of the linear scale 16 and thus the carrier 10 . The controller 20 identifies (detects) the position of the carrier 10 in the D direction or the amount of change in the position by counting the pulse signals output by the scale detector 29 . In addition, below, the case where a position is pinpointed is demonstrated.
 複数のセンサ18は、特に限定されないがこの例では等間隔に配置される。具体的には間隔Sで配置される。複数のセンサ18は特に、センサ18の間隔Sとリニアスケール16の有効領域16aの長さ(以下、「有効領域長」という)Leが、「間隔S<有効領域長Le」の関係を満たすように配置される。この場合、キャリア10が経路P上のどこに位置していても、リニアスケール16の有効領域16aがいずれかのセンサ18の検出領域(すなわちセンサ18の真上)に位置するため、キャリア10の位置を特定できる。複数のセンサ18のそれぞれの位置は既知であるものとする。 Although not particularly limited, the plurality of sensors 18 are arranged at regular intervals in this example. Specifically, they are arranged at an interval S. In particular, the plurality of sensors 18 are arranged such that the interval S between the sensors 18 and the length Le of the effective area 16a of the linear scale 16 (hereinafter referred to as "effective area length") satisfy the relationship "interval S<effective area length Le". placed in In this case, regardless of where the carrier 10 is positioned on the path P, the effective area 16a of the linear scale 16 is positioned in the detection area of one of the sensors 18 (that is, directly above the sensor 18), so the position of the carrier 10 can be identified. It is assumed that the position of each of the multiple sensors 18 is known.
 制御装置20は、位置特定部30と、リニアモータ12を制御してキャリア10を移動させるリニアモータ制御部32と、を含む。 The control device 20 includes a position specifying section 30 and a linear motor control section 32 that controls the linear motor 12 to move the carrier 10 .
 リニアモータ制御部32は、後述のように位置特定部30によって特定されるキャリア10の位置情報をフィードバックしながら、電源34から各電磁石26への電流の供給を制御し、キャリア10を所望の位置に移動させる。 The linear motor control unit 32 controls current supply from the power supply 34 to each electromagnet 26 while feeding back the positional information of the carrier 10 specified by the position specifying unit 30 as will be described later, thereby moving the carrier 10 to a desired position. move to
 位置特定部30は、センサ18の出力に基づいてキャリア10の位置を特定する。 The position specifying unit 30 specifies the position of the carrier 10 based on the output of the sensor 18.
 リニアモータ搬送システムは、定期または不定期に停止、起動される。例えば、工場によっては、安全のために、就業時間の終了とともに停止し、就業時間の開始とともに起動する。また例えば、複数の加工ラインのそれぞれにリニアモータ搬送システムが用いられている場合において、製品の発注数の増減にともなって稼働させる加工ラインの数が増減し、したがってリニアモータ搬送システムを停止、起動することがある。 The linear motor transport system is stopped and started periodically or irregularly. For example, some factories shut down at the end of working hours and start up at the beginning of working hours for safety reasons. Also, for example, when a linear motor transport system is used for each of a plurality of processing lines, the number of processing lines to be operated increases or decreases as the number of orders for products increases or decreases. I have something to do.
 リニアモータ搬送システムが停止すると、具体的にはその制御装置の電源を切ると、制御装置が保持するキャリアの位置情報は消失する。制御装置が位置情報を保持しておくことも考えられるが、リニアモータ搬送システムの停止中にキャリアが移動されない保証はない。したがって、リニアモータ搬送システムを起動した際に、位置を特定する必要がある。 When the linear motor transport system stops, specifically when the control device is turned off, the carrier position information held by the control device disappears. Although it is conceivable that the controller retains the position information, there is no guarantee that the carrier will not move while the linear motor transport system is stopped. Therefore, it is necessary to specify the position when starting the linear motor transport system.
 そこで、リニアモータ搬送システム100では、起動させた直後の初期処理として、リニアモータ制御部32がキャリア10を移動させ、いずれかのセンサ18にリファレンスマーク14を検出させることによってキャリア10の位置を特定する。 Therefore, in the linear motor transport system 100, as an initial process immediately after starting, the linear motor control unit 32 moves the carrier 10 and causes one of the sensors 18 to detect the reference mark 14 to specify the position of the carrier 10. do.
 位置特定部30は、複数のセンサ18_1~18_N(Nは2以上の整数であり、図1~3の例ではNは3以上)のうちのいずれかのセンサ18のマーク検出部28から閾値強度以上(以下、ハイレベルともいう)の信号が出力されると、具体的には例えばセンサ18_iの第1検出部28からハイレベルの信号が出力されると、当該センサ18_iの真上にリファレンスマーク14ひいてはキャリア10が位置していると特定する。位置特定部30は、リファレンスマーク14を検出したセンサ18_iを、キャリア10の絶対位置を特定するための基準となるセンサ(以下、「基準センサ」という)として決定する。 The position specifying unit 30 detects the threshold intensity from the mark detection unit 28 of one of the sensors 18_1 to 18_N (N is an integer of 2 or more, and N is 3 or more in the examples of FIGS. 1 to 3). When the above (hereinafter also referred to as high-level) signals are output, specifically, when a high-level signal is output from the first detection unit 28 of the sensor 18_i, the reference mark is placed directly above the sensor 18_i. 14 and thus the carrier 10 is located. The position specifying unit 30 determines the sensor 18 — i that has detected the reference mark 14 as a reference sensor (hereinafter referred to as “reference sensor”) for specifying the absolute position of the carrier 10 .
 位置特定部30は、基準センサの真上にリファレンスマーク14が位置しているときを「0」として、キャリア10の移動に伴って基準センサのスケール検出部29から出力されるパルス信号をカウントする。 The position specifying unit 30 counts the pulse signals output from the scale detection unit 29 of the reference sensor as the carrier 10 moves, with the reference mark 14 positioned directly above the reference sensor as "0". .
 位置特定部30は、基準センサのスケール検出部29から出力されるパルス信号のカウント値に基づいて、キャリア10の基準センサからの距離、すなわち基準センサに対するキャリア10の相対位置を特定する。位置特定部30は、基準センサの位置に、特定した相対位置を加算することにより、キャリア10の位置を特定する。 The position specifying unit 30 specifies the distance of the carrier 10 from the reference sensor, that is, the relative position of the carrier 10 with respect to the reference sensor, based on the count value of the pulse signal output from the scale detection unit 29 of the reference sensor. The position specifying unit 30 specifies the position of the carrier 10 by adding the specified relative position to the position of the reference sensor.
 キャリア10が或る程度移動すると、基準センサのスケール検出部29の検出範囲(すなわち真上)からリニアスケール16の有効領域16aが外れる。そうなると、当該基準センサの出力に基づいてキャリア10の位置を特定できない。したがって、基準センサの検出範囲からリニアスケール16の有効領域16aが外れる前に、基準センサに隣接するセンサ18であって、その検出範囲(すなわち真上)にリニアスケール16の有効領域16aがあるセンサ18を、新たな基準センサとする必要がある。つまり、基準センサを切り替える必要がある。 When the carrier 10 moves to some extent, the effective area 16a of the linear scale 16 deviates from the detection range (that is, directly above) of the scale detection section 29 of the reference sensor. Then, the position of the carrier 10 cannot be specified based on the output of the reference sensor. Therefore, before the effective area 16a of the linear scale 16 deviates from the detection range of the reference sensor, the sensor 18 adjacent to the reference sensor and having the effective area 16a of the linear scale 16 in its detection range (that is, directly above) is detected. 18 should be taken as the new reference sensor. That is, it is necessary to switch the reference sensor.
 具体的には位置特定部30は、たとえば、センサ18_iが基準センサである場合においてD方向における紙面右側にキャリア10が移動してセンサ18_iに対するキャリア10の相対位置(パルス信号のカウント値)が所定の値となると、隣接するセンサ18_i+1を新たな基準センサとする。したがって、位置特定部30は、それまではセンサ18_iに対するキャリア10の相対位置を特定することによってキャリア10の絶対位置を特定していたが、基準センサの切り替え後はセンサ18_i+1に対するキャリア10の相対位置を特定することによってキャリア10の絶対位置を特定する。つまり、センサ18_i+1の位置に、センサ18_i+1に対するキャリア10の相対位置を加算することによりキャリア10の位置を特定する。 Specifically, for example, when the sensor 18 — i is the reference sensor, the carrier 10 moves to the right side of the paper surface in the D direction, and the relative position (pulse signal count value) of the carrier 10 with respect to the sensor 18 — i is set to a predetermined value. , the adjacent sensor 18_i+1 is set as a new reference sensor. Therefore, until then, the position specifying unit 30 specified the absolute position of the carrier 10 by specifying the relative position of the carrier 10 with respect to the sensor 18_i. The absolute position of the carrier 10 is specified by specifying . That is, the position of the carrier 10 is specified by adding the position of the carrier 10 relative to the sensor 18_i+1 to the position of the sensor 18_i+1.
 位置特定部30は、以上のように、キャリア10の移動に伴って基準センサを切り替えながら、キャリア10の位置を繰り返し特定し続ける。 As described above, the position specifying unit 30 continues to repeatedly specify the position of the carrier 10 while switching the reference sensor as the carrier 10 moves.
 ところで、一般にセンサ18は、スケール検出部29が常にリニアスケール16を検出している状態で使用されることを前提としている。本発明者らが鋭意検討した結果、スケール検出部29がリニアスケール16を検出していない場合、マーク検出部28の出力は不定となり、現実にはリファレンスマーク14を検出していないにもかかわらずハイレベルの信号を出力することを認識した。したがって、初期処理においてリファレンスマーク14の検出結果に基づいて基準センサを決定する際に、マーク検出部28からの出力を取捨選択せずに用いると、基準センサを誤って決定し、キャリア10の位置を誤って特定してしまうおそれがある。これについて図3を参照して詳細に説明する。 By the way, it is generally assumed that the sensor 18 is used with the scale detection unit 29 constantly detecting the linear scale 16 . As a result of diligent studies by the present inventors, when the scale detection unit 29 does not detect the linear scale 16, the output of the mark detection unit 28 becomes indefinite. I recognized that it outputs a high level signal. Therefore, when the reference sensor is determined based on the detection result of the reference mark 14 in the initial processing, if the output from the mark detection unit 28 is used without selection, the reference sensor is determined erroneously, and the position of the carrier 10 is determined. may be incorrectly identified. This will be described in detail with reference to FIG.
 図3は、キャリア10を初期処理として移動させたときのセンサ18による出力を示すタイムチャートである。 FIG. 3 is a time chart showing outputs from the sensor 18 when the carrier 10 is moved as initial processing.
 時刻tに、各センサ18への電力の供給が開始される。時刻tに、電磁石26への電流の供給が開始される。電磁石26への電流の供給により、この例ではキャリア10は右側に移動している。時刻tに、リニアスケール16の有効領域16a(の右端)がセンサ18_1のスケール検出部29の真上に到達している。時刻tに、リファレンスマーク14がセンサ18_1のマーク検出部28の真上に到達している。時刻tに、リニアスケール16の有効領域16a(の右端)がセンサ18_2のスケール検出部29の真上に到達している。つまり、リニアスケール16の有効領域16aは、センサ18_1とセンサ18_2の両方のスケール検出部29の真上にリニアスケール16が位置している。時刻tに、リニアスケール16がセンサ18_1よりも右側に到達している。すなわち、リニアスケール16がセンサ18_1の真上から外れている。時刻tに、リファレンスマーク14がセンサ18_2のマーク検出部28の真上に到達している。 At time t0 , power supply to each sensor 18 is started. At time t1, the supply of current to electromagnet 26 is started. Due to the current supply to the electromagnet 26, the carrier 10 is moving to the right in this example. At time t2, (the right end of) the effective area 16a of the linear scale 16 reaches just above the scale detection portion 29 of the sensor 18_1. At time t3 , the reference mark 14 reaches just above the mark detection portion 28 of the sensor 18_1. At time t4, ( the right end of) the effective area 16a of the linear scale 16 reaches just above the scale detection portion 29 of the sensor 18_2. In other words, in the effective area 16a of the linear scale 16, the linear scale 16 is positioned directly above the scale detection portions 29 of both the sensors 18_1 and 18_2. At time t5, the linear scale 16 reaches the right side of the sensor 18_1. In other words, the linear scale 16 is out of position directly above the sensor 18_1. At time t6, the reference mark 14 reaches just above the mark detection portion 28 of the sensor 18_2.
 時刻t~時刻tにリニアスケール16の有効領域16aはセンサ18_2のスケール検出部29の真上になく、したがって当該スケール検出部28はリニアスケール16を検出していない。したがって、時刻t~時刻tにおけるセンサ18_2のマーク検出部28の出力は不定であり、リファレンスマーク14がセンサ18_2のマーク検出部28の真上に位置していないにもかかわらず、この例ではハイレベルの信号を出力したりローレベルの信号を出力したりしている。基準センサの決定に時刻t~時刻tにおけるセンサ18_2のマーク検出部28の出力を用いると、キャリア10の位置を誤って特定するおそれがある。 From time t 0 to time t 4 , the effective area 16 a of the linear scale 16 is not directly above the scale detection section 29 of the sensor 18_2, and therefore the scale detection section 28 does not detect the linear scale 16 . Therefore, the output of the mark detection section 28 of the sensor 18_2 is indefinite from time t 0 to time t 4 , and even though the reference mark 14 is not located directly above the mark detection section 28 of the sensor 18_2, this example outputs a high-level signal and a low-level signal. If the output of the mark detection section 28 of the sensor 18_2 from time t 0 to time t 4 is used to determine the reference sensor, the position of the carrier 10 may be erroneously identified.
 また、図3の各時刻においてリニアスケール16の有効領域16aはセンサ18_3のスケール検出部29の真上にはなく、したがって当該スケール検出部28はリニアスケール16を検出していない。したがって、図3の各時刻におけるセンサ18_3のマーク検出部28の出力は不定であり、リファレンスマーク14がセンサ18_3のマーク検出部28の真上に位置していないにもかかわらず、この例ではハイレベルの信号を出力したりローレベルの信号を出力したりしている。基準センサの決定に図3の各時刻におけるセンサ18_3の出力を用いると、キャリア10の位置を誤って特定するおそれがある。 Also, the effective area 16a of the linear scale 16 is not directly above the scale detection section 29 of the sensor 18_3 at each time in FIG. Therefore, the output of the mark detection section 28 of the sensor 18_3 at each time in FIG. A level signal is output and a low level signal is output. If the output of the sensor 18_3 at each time in FIG. 3 is used to determine the reference sensor, the position of the carrier 10 may be specified incorrectly.
 また、時刻tになるまではリニアスケール16の有効領域16aはセンサ18_1のスケール検出部29の真上になく、したがって当該スケール検出部29はリニアスケール16を検出していない。したがって、時刻tになるまでのセンサ18_1のマーク検出部28の出力は不定であり、リファレンスマーク14がセンサ18_2の真上に位置していないにもかかわらず、この例では時刻tになるまでハイレベルの信号を出力し続けている。時刻tになるとリニアスケール16の有効領域16aはセンサ18_1のスケール検出部29の真上に位置するため、当該スケール検出部29は正しくローレベルの信号を出力している。つまり、時刻tには、リファレンスマーク14がセンサ18_1のマーク検出部28の真上に位置していないにもかかわらず、当該マーク検出部28の出力が変化している。基準センサの決定に時刻tにおけるセンサ18_1の出力を用いると、キャリア10の位置を誤って特定するおそれがある。 Also, until time t2, the effective area 16a of the linear scale 16 is not directly above the scale detection section 29 of the sensor 18_1, so the scale detection section 29 does not detect the linear scale 16. FIG. Therefore, the output of the mark detection unit 28 of the sensor 18_1 is indefinite until time t2, and even though the reference mark 14 is not positioned right above the sensor 18_2 , the time t2 is reached in this example. It continues to output a high level signal until At time t2, the effective area 16a of the linear scale 16 is positioned right above the scale detector 29 of the sensor 18_1, so the scale detector 29 correctly outputs a low level signal. That is, at time t2, the output of the mark detection section 28 of the sensor 18_1 changes even though the reference mark 14 is not positioned right above the mark detection section 28 of the sensor 18_1. If the output of sensor 18_1 at time t2 is used to determine the reference sensor, the position of carrier 10 may be erroneously determined.
 時刻tにおいて、リニアスケール16の有効領域16aはセンサ18_1のスケール検出部28の真上にあり、したがって当該スケール検出部28はリニアスケール16を検出している。したがって、時刻tにおけるセンサ18_1のマーク検出部28の出力は現実にリファレンスマーク14を検出したことによる出力である。ここで、上述したように本実施の形態では、複数(全て)のセンサ18は等間隔であって、間隔S(間隔S<有効領域長Le)で配置されるが、そうでない構成も考えられる。すなわち、複数のセンサ18は、そのうちの一部のセンサ18は隣り合うセンサ18との間隔が有効領域長Le以上となるように配置されることも考えられる。この場合、時刻tのようにリニアスケール16の有効領域16aが1つのセンサ18のみの真上にある場合の出力を採用すると、リニアスケール16の有効領域16aがスケール検出部29の真上から外れた(すなわち出力が不定になった)ことによるマーク検出部28の出力を採用してしまうおそれがある。 At time t3 , the effective area 16a of the linear scale 16 is directly above the scale detection section 28 of the sensor 18_1, so the scale detection section 28 detects the linear scale 16. FIG. Therefore, the output of the mark detection section 28 of the sensor 18_1 at time t3 is the output from the actual detection of the reference mark 14 . Here, as described above, in the present embodiment, the plurality (all) of the sensors 18 are equidistantly arranged at an interval S (interval S<effective area length Le), but other configurations are also conceivable. . That is, the plurality of sensors 18 may be arranged such that the distance between adjacent sensors 18 is equal to or greater than the effective area length Le. In this case, when adopting the output when the effective area 16a of the linear scale 16 is directly above only one sensor 18 as at time t3 , the effective area 16a of the linear scale 16 is from directly above the scale detector 29. There is a risk of adopting the output of the mark detection section 28 due to deviation (that is, the output becomes unstable).
 そこで、本実施の形態の位置特定部30は、複数のセンサ18のうち、スケール検出部29がリニアスケール16を検出していないセンサ18のマーク検出部28による出力には基づかず、スケール検出部29がリニアスケール16を検出しているセンサ18のマーク検出部28による出力に基づいてキャリア10の位置を特定する。位置特定部30は、特に、複数のセンサのうちの隣り合う2つのセンサ18のスケール検出部29がリニアスケール16を同時に検出した後の、当該2つのセンサ18のうちのキャリア10の移動方向前側に位置するセンサ18のマーク検出部28による出力に基づいてキャリア10の位置を特定する。これにより、リファレンスマーク14の誤検出、ひいてはキャリア10の位置を誤って特定することを避けられる。 Therefore, the position specifying unit 30 of the present embodiment is not based on the output from the mark detection unit 28 of the sensor 18 for which the scale detection unit 29 does not detect the linear scale 16 among the plurality of sensors 18, and the scale detection unit 29 specifies the position of the carrier 10 based on the output from the mark detection section 28 of the sensor 18 detecting the linear scale 16 . After the scale detection units 29 of two adjacent sensors 18 out of the plurality of sensors have detected the linear scale 16 at the same time, the position specifying unit 30 moves forward in the moving direction of the carrier 10 out of the two sensors 18 . The position of the carrier 10 is specified based on the output from the mark detection section 28 of the sensor 18 located at . This avoids erroneous detection of the reference mark 14 and thus erroneous positioning of the carrier 10 .
 例えば図示の例では、位置特定部30は、複数のセンサ18のうちの隣合う2つのセンサ18_1,18_2のスケール検出部29がリニアスケール16を同時に検出した後の、当該2つのセンサ18_1,18_2のうちのキャリア10の移動方向前側(右側)に位置するセンサ18_2のマーク検出部28による出力(すなわち時刻t6における出力)に基づいてキャリア10の位置を特定する。 For example, in the illustrated example, the position specifying unit 30 detects two adjacent sensors 18_1 and 18_2 of the plurality of sensors 18 after the scale detection units 29 of the two sensors 18_1 and 18_2 detect the linear scales 16 at the same time. The position of the carrier 10 is specified based on the output from the mark detection unit 28 of the sensor 18_2 positioned on the front side (right side) in the movement direction of the carrier 10 (that is, the output at time t6).
 リニアスケール16を同時に検出している隣り合う2つのセンサ18は、リニアスケール16の移動距離に応じてそれらのスケール検出部29が出力するパルス信号に基づくカウント数が変化するタイミングが、所定回数一致した2つのセンサであってもよい。 Two adjacent sensors 18 detecting the linear scale 16 at the same time match the timing at which the number of counts based on the pulse signals output by the scale detectors 29 changes according to the moving distance of the linear scale 16 a predetermined number of times. It is also possible to have two sensors connected to each other.
 所定回数は、好ましくは複数回数である。この場合、隣り合う2つのセンサ18は、リニアスケール16を確実に同時に検出しているといえる。所定回数は、例えば6回であってもよく、この場合、例えば、センサ18_1によるリニアスケール16の検出に基づくカウント数が12→13、13→14、14→15、15→16、16→17、17→18と切り替わる6回のタイミングと、センサ18_2によるリニアスケール16の検出に基づくカウント数が0→1、1→2、2→3、3→4、4→5、5→6と切り替わる6回のタイミングが一致するため、センサ18_1とセンサ18_2がリニアスケール16を同時に検出していると判断する。 The predetermined number of times is preferably a plurality of times. In this case, it can be said that the two adjacent sensors 18 reliably detect the linear scale 16 at the same time. The predetermined number of times may be six times, for example. In this case, for example, the number of counts based on the detection of the linear scale 16 by the sensor 18_1 is 12→13, 13→14, 14→15, 15→16, 16→17. , 17→18, and the number of counts based on the detection of the linear scale 16 by the sensor 18_2 switches 0→1, 1→2, 2→3, 3→4, 4→5, 5→6. Since the six timings match, it is determined that the sensors 18_1 and 18_2 are detecting the linear scale 16 at the same time.
 続いて、実施の形態が奏する効果を説明する。本実施の形態によれば、固定子22側に設けたセンサ18により、キャリア10の位置を検出できるため、キャリア10の位置検出のためにキャリア10側にセンサを設ける必要がなく、したがって、キャリア10にバッテリを搭載したりキャリア10から配線を引き出したりする必要がなくなる。 Next, the effects of the embodiment will be explained. According to this embodiment, the position of the carrier 10 can be detected by the sensor 18 provided on the stator 22 side. It becomes unnecessary to mount a battery on the carrier 10 or draw wiring from the carrier 10. - 特許庁
 また、本実施の形態によれば、複数のセンサ18のうち、スケール検出部29がリニアスケール16を検出していないセンサ18のマーク検出部28の出力には基づかず、スケール検出部29がリニアスケール16を検出しているセンサ18のマーク検出部28の出力に基づいてキャリア10の位置を特定する。これにより、リファレンスマーク14を誤検出することを避けられ、リファレンスマーク14ひいてはキャリア10の位置を特定できる。 Further, according to the present embodiment, the scale detector 29 of the plurality of sensors 18 does not detect the linear scale 16, and the scale detector 29 detects the linear scale not based on the output of the mark detector 28 of the sensor 18. The position of the carrier 10 is specified based on the output of the mark detection section 28 of the sensor 18 that detects the scale 16 . As a result, erroneous detection of the reference mark 14 can be avoided, and the position of the reference mark 14 and thus the carrier 10 can be specified.
 また、本実施の形態によれば、複数のセンサのうちの隣り合う2つのセンサ18のスケール検出部29がリニアスケール16を同時に検出した後の、当該2つのセンサ18のうちのキャリア10の移動方向前側に位置するセンサ18のマーク検出部28による出力に基づいてキャリア10の位置を特定する。これにより、リファレンスマーク14を誤検出することをさらに確実に避けられ、リファレンスマーク14ひいてはキャリア10の位置を特定できる。 Further, according to the present embodiment, after the scale detection units 29 of two adjacent sensors 18 among the plurality of sensors simultaneously detect the linear scale 16, the carrier 10 of the two sensors 18 moves. The position of the carrier 10 is specified based on the output from the mark detection section 28 of the sensor 18 located on the forward side. As a result, erroneous detection of the reference mark 14 can be more reliably avoided, and the position of the reference mark 14 and thus the carrier 10 can be specified.
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。以下、変形例を説明する。 The present invention has been described above based on the embodiment. It should be understood by those skilled in the art that this embodiment is merely an example, and that various modifications can be made to combinations of each component and each treatment process, and that such modifications are within the scope of the present invention. be. Modifications will be described below.
 上述した実施の形態と変形例の任意の組み合わせもまた本発明の実施の形態として有用である。組み合わせによって生じる新たな実施の形態は、組み合わされる実施の形態および変形例それぞれの効果をあわせもつ。 Any combination of the above-described embodiment and modifications is also useful as an embodiment of the present invention. A new embodiment resulting from the combination has the effects of the combined embodiment and modifications.
 本発明は、リニアモータ搬送システムおよびその運用方法に関する。 The present invention relates to a linear motor transport system and its operating method.
 10 キャリア、 12 リニアモータ、 14 リファレンスマーク、 16 リニアスケール、 18 センサ、 20 制御装置、 100 リニアモータ搬送システム。 10 carrier, 12 linear motor, 14 reference mark, 16 linear scale, 18 sensor, 20 controller, 100 linear motor transfer system.

Claims (5)

  1.  リニアスケールおよびリファレンスマークが固定されたキャリアと、
     前記キャリアを所定の経路に沿って移動させるリニアモータと、
     前記経路に沿って並べられた複数のセンサと、
     制御装置と、
     を備え、
     前記制御装置は、前記リニアモータを制御して初期処理として前記キャリアを移動させた場合において、前記複数のセンサのうち、前記リニアスケールを検出していないセンサによる前記リファレンスマークに関する出力には基づかず、前記リニアスケールを検出しているセンサによる前記リファレンスマークに関する出力に基づいて前記キャリアの位置を特定するリニアモータ搬送システム。
    a carrier with fixed linear scale and reference mark;
    a linear motor that moves the carrier along a predetermined path;
    a plurality of sensors arranged along the path;
    a controller;
    with
    When the carrier is moved by controlling the linear motor to move the carrier as an initial process, the control device is not based on an output regarding the reference mark from a sensor that does not detect the linear scale among the plurality of sensors. , a linear motor transport system for determining the position of said carrier based on the output of said reference mark by a sensor sensing said linear scale;
  2.  前記キャリアの位置の特定に用いられる前記リファレンスマークに関する出力は、前記複数のセンサのうちの隣り合う2つのセンサが前記リニアスケールを同時に検出した後の、当該2つのセンサのうちの前記キャリアの移動方向前側に位置するセンサによる前記リファレンスマークに関する出力である請求項1に記載のリニアモータ搬送システム。 The output related to the reference mark used to specify the position of the carrier is the movement of the carrier among the two sensors after two adjacent sensors among the plurality of sensors simultaneously detect the linear scale. 2. A linear motor transport system according to claim 1, wherein said reference mark is output by a sensor located on the front side of the direction.
  3.  前記リニアスケールを同時に検出している隣り合う2つのセンサは、前記リニアスケールの移動距離に応じて出力するパルス信号に基づくカウント数が変化するタイミングが、所定回数一致した2つのセンサである請求項2に記載のリニアモータ搬送システム。 The two adjacent sensors detecting the linear scale at the same time are two sensors whose timings of changing the count number based on the pulse signal output according to the moving distance of the linear scale coincide a predetermined number of times. 3. The linear motor transport system according to 2.
  4.  前記所定回数は、複数回数である請求項3に記載のリニアモータ搬送システム。 The linear motor transport system according to claim 3, wherein the predetermined number of times is a plurality of times.
  5.  リニアスケールおよびリファレンスマークが固定されたキャリアと、前記キャリアを所定の経路に沿って移動させるリニアモータと、前記経路に沿って並べられた複数のセンサと、を備えるリニアモータ搬送システムの運用方法であって、
     初期処理として前記キャリアを移動させることと、
     前記複数のセンサのうちの前記リニアスケールを検出していないセンサによる前記リファレンスマークに関する出力には基づかず、前記リニアスケールを検出しているセンサによる前記リファレンスマークに関する出力に基づいて前記キャリアの位置を特定することと、
     を含むリニアモータ搬送システムの運用方法。
    A method of operating a linear motor transport system comprising a carrier to which a linear scale and a reference mark are fixed, a linear motor for moving the carrier along a predetermined path, and a plurality of sensors arranged along the path There is
    moving the carrier as an initial process;
    The position of the carrier is determined not based on the output regarding the reference mark by a sensor not detecting the linear scale among the plurality of sensors, but based on the output regarding the reference mark by the sensor detecting the linear scale. to identify;
    Operation method of a linear motor transport system including.
PCT/JP2022/007675 2021-03-30 2022-02-24 Linear motor transport system and method for operating same WO2022209472A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280023329.2A CN117044098A (en) 2021-03-30 2022-02-24 Linear motor conveying system and application method thereof
JP2023510666A JPWO2022209472A1 (en) 2021-03-30 2022-02-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-057410 2021-03-30
JP2021057410 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022209472A1 true WO2022209472A1 (en) 2022-10-06

Family

ID=83458373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007675 WO2022209472A1 (en) 2021-03-30 2022-02-24 Linear motor transport system and method for operating same

Country Status (3)

Country Link
JP (1) JPWO2022209472A1 (en)
CN (1) CN117044098A (en)
WO (1) WO2022209472A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244929A (en) * 2002-02-18 2003-08-29 Yaskawa Electric Corp Linear motor
JP2005143171A (en) * 2003-11-05 2005-06-02 Yaskawa Electric Corp Linear motor system
JP2020008291A (en) * 2018-07-02 2020-01-16 株式会社マコメ研究所 Position detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244929A (en) * 2002-02-18 2003-08-29 Yaskawa Electric Corp Linear motor
JP2005143171A (en) * 2003-11-05 2005-06-02 Yaskawa Electric Corp Linear motor system
JP2020008291A (en) * 2018-07-02 2020-01-16 株式会社マコメ研究所 Position detector

Also Published As

Publication number Publication date
JPWO2022209472A1 (en) 2022-10-06
CN117044098A (en) 2023-11-10

Similar Documents

Publication Publication Date Title
TWI792242B (en) Linear motor conveying system and its application method
EP1619100B1 (en) Carriage system
KR101683870B1 (en) Linear transfer apparatus
CA2919033C (en) System and method for tracking a moving element in a conveyor system
US10745203B2 (en) Transport system, control method, processing system, and manufacturing method of article
KR20120019298A (en) Conveying device using linear motor and control method of the same
US6283039B1 (en) Conveying system using linear motor
WO2022209472A1 (en) Linear motor transport system and method for operating same
CN109422079B (en) Conveying system
US8567586B2 (en) Conveying system having endless drive medium, method for identifying carrier thereof, and carrier
TW202141898A (en) Linear motor conveying system and operation method thereof capable of increasing commodity value
JP2021160842A (en) Linear motor transport system and method for operating the same
KR20140101048A (en) Object Transfer System and Initialization Method for Positioning of Carrier Therefor
CN113460709A (en) Linear motor delivery system and method of using same
JP2023128398A (en) Positioning device, drive device, positioning method and positioning program
JP2021160841A (en) Linear motor transport system
KR102469777B1 (en) Hybrid Linear Moving System
KR910009250B1 (en) Inducing system of carrier
JPS6387104A (en) Carrier system in linear motor system
JP5336298B2 (en) Carriage cart positioning stop device
JPH01126116A (en) Stop controlling system for magnetically levitating carrier car
KR20100096544A (en) Shuttle system for conveying an object
JPS63198505A (en) Speed detector for vehicle
JPS63167603A (en) Controller for conveyor
JPH01122846A (en) Conveyance device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510666

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280023329.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779697

Country of ref document: EP

Kind code of ref document: A1