WO2022209349A1 - Lighting device for observation device, observation device, and observation system - Google Patents

Lighting device for observation device, observation device, and observation system Download PDF

Info

Publication number
WO2022209349A1
WO2022209349A1 PCT/JP2022/005575 JP2022005575W WO2022209349A1 WO 2022209349 A1 WO2022209349 A1 WO 2022209349A1 JP 2022005575 W JP2022005575 W JP 2022005575W WO 2022209349 A1 WO2022209349 A1 WO 2022209349A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
emitting elements
observation
illumination device
Prior art date
Application number
PCT/JP2022/005575
Other languages
French (fr)
Japanese (ja)
Inventor
智之 大木
哲晃 岩根
聡史 長江
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2022209349A1 publication Critical patent/WO2022209349A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present disclosure relates to an illumination device for an observation device, an observation device, and an observation system.
  • Lamp light sources (halogen lamps and xenon lamps) were widely used as illumination devices for microscopes used to observe pathological specimens due to their good color rendering properties and high brightness. However, since such a lamp light source has a short life and thus requires a running cost, a white LED (Light Emitting Diode) light source has come to be used in recent years.
  • a white LED Light Emitting Diode
  • an illumination device for an observation device that can ensure uniformity in the plane of the observation area and uniformity in the angular space while maintaining high color rendering properties and high luminance.
  • a light source including a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements; and an optical system for condensing light, wherein the FWHM angle of each light emitting element is ⁇ , the length of one side of the light emitting element is d, and the maximum distance between the adjacent light emitting elements is P.
  • np the refractive index of the medium in the housing
  • T the film thickness of the phosphor layer
  • T the refractive index of the phosphor layer
  • an illumination device that irradiates light and an objective lens that magnifies a sample
  • the illumination device includes a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and the a light source having a phosphor layer provided above a plurality of light emitting elements; and an optical system for condensing light from the light source, wherein the FWHM angle of each light emitting element is ⁇ , and the light emission
  • d be the length of one side of the element
  • P be the maximum distance between the adjacent light emitting elements
  • L the distance between the light emitting element and the phosphor layer
  • the plurality of light emitting elements are provided so as to satisfy the following formula (1):
  • a viewing device is provided.
  • an observation device that observes a biological sample, and a computer that controls the observation device and processes signals obtained from the observation device
  • the observation device includes an illumination device that emits light.
  • an imaging unit configured by an imaging device for imaging the biological sample
  • the lighting device includes a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and the plurality of light emitting elements.
  • a light source having a phosphor layer provided above Let d be the depth, P be the maximum distance between the light emitting elements adjacent to each other, L be the distance between the light emitting element and the phosphor layer, n be the refractive index of the medium in the housing, and An observation system is provided in which the plurality of light emitting elements are provided so as to satisfy the following formula (1), where T is the thickness of the phosphor layer and np is the refractive index of the phosphor layer. .
  • FIG. 1 is a block diagram showing a configuration example of an observation system 10 according to an embodiment of the present disclosure
  • FIG. FIG. 10 is a diagram showing a configuration example of an illumination unit 102a according to a comparative example
  • FIG. 5 is a diagram showing a configuration example of a light source 500a according to a comparative example
  • FIG. 5 is a diagram showing a simulation result of luminance distribution of a light source 500a according to a comparative example
  • FIG. 5 is a diagram showing a radiation intensity distribution of light emitted from a light emitting element 522 according to an embodiment of the present disclosure
  • 1 is a diagram (part 1) illustrating a configuration example of a light source 500 according to an embodiment of the present disclosure
  • FIG. 2 is a diagram (Part 2) showing a configuration example of a light source 500 according to an embodiment of the present disclosure
  • 3 is a diagram illustrating a configuration example of an illumination unit 102 according to an embodiment of the present disclosure
  • FIG. FIG. 11 is a diagram (Part 1) showing a simulation result of the luminance distribution of the light source 500 according to the embodiment of the present disclosure
  • FIG. 10 is a diagram (Part 2) showing a simulation result of the luminance distribution of the light source 500 according to the embodiment of the present disclosure
  • It is a figure which shows roughly the whole structure of a microscope system.
  • It is a figure which shows the example of an imaging system.
  • It is a figure which shows the example of an imaging system.
  • 1 is a block diagram showing an example of a schematic configuration of a diagnostic support system
  • a tissue section or cell that is part of a tissue obtained from a living body (eg, human body, plant, etc.) is referred to as a biological sample.
  • the biological sample described below may be subjected to various staining as necessary.
  • the biological sample does not have to be dyed in various ways.
  • staining includes not only general staining represented by HE (hematoxylin-eosin) staining, Giemsa staining or Papanicolaou staining, but also periodic acid-Schiff (PAS) staining used when focusing on a specific tissue. and fluorescent staining such as FISH (Fluorescence In-Situ Hybridization) and enzyme antibody method.
  • FIG. 1 is a block diagram showing a configuration example of an observation system 10 according to an embodiment of the present disclosure.
  • the observation system 10 according to this embodiment is a scanner system that digitally photographs a slide 300 on which a biological sample (for example, cell tissue or the like) is mounted.
  • a biological sample for example, cell tissue or the like
  • an observation system 10 can include a scanner (observation device) 100 and an image processing device 200 .
  • the scanner 100 and the image processing apparatus 200 may be communicatively connected to each other via various wired or wireless communication networks.
  • the number of scanners 100 and image processing devices 200 included in the observation system 10 according to the present embodiment is not limited to the number illustrated in FIG. 1, and may include more.
  • the observation system 10 according to this embodiment may include other servers, devices, and the like (not shown). Below, an outline of each device included in the observation system 10 according to the present embodiment will be described.
  • the scanner 100 irradiates the slide 300 of the biological sample placed on the stage 108 of the scanner 100 with predetermined illumination light, and emits light transmitted through the slide 300 or light emitted from the slide 300. can be photographed (imaged).
  • the scanner 100 can be a microscope including a magnifying glass (not shown) and a digital camera (not shown) that can magnify and photograph a biological sample.
  • the scanner 100 may be implemented by any device having a photographing function, such as a smartphone, tablet, game machine, or wearable device.
  • the scanner 100 is driven and controlled by an image processing device 200, which will be described later, and the image captured by the scanner 100 is stored in the image processing device 200, for example. A detailed configuration of the scanner 100 will be described later.
  • the image processing device 200 is a device having a function of controlling the scanner 100 and processing an image (signal) captured by the scanner 100 . Specifically, the image processing apparatus 200 controls the scanner 100 to capture a digital image of the biological sample, and performs predetermined image processing on the obtained digital image.
  • the image processing device 200 is realized by any device having a control function and an image processing function, such as a PC (Personal Computer), a tablet, a smartphone, or the like.
  • the image processing device 200 performs stitching processing on a plurality of images to generate a wide-area image, or performs machine learning using the acquired images as teacher data to generate a learning model. good.
  • the image processing apparatus 200 may use the learning model generated in this way to perform estimation, diagnosis, and the like.
  • the scanner 100 and the image processing device 200 may be integrated devices, that is, they may not be realized by a single device. Further, in this embodiment, the scanner 100 and the image processing apparatus 200 described above may be realized by a plurality of devices that are connected via various wired or wireless communication networks and cooperate with each other. Furthermore, the image processing apparatus 200 described above can be realized by, for example, a hardware configuration of a computer described later.
  • the scanner 100 can mainly have an illumination section 102, a sensor section (imaging section) 104, a control section 106, and a stage . Each functional block of the scanner 100 will be sequentially described below.
  • the illumination unit 102 is provided on the side of the stage 108 opposite to the slide placement surface on which the slide 300 can be placed, and irradiates the slide 300 of the biological sample with illumination light under the control of the control unit 106, which will be described later. It is a lighting device that can Also, the illumination unit 102 may have, for example, a lens (optical system) (not shown) that collects the illumination light emitted from the illumination unit 102 and guides it to the slide 300 on the stage 108 . A detailed configuration of the illumination unit 102 will be described later.
  • the sensor unit 104 is provided on the side of the slide arrangement surface of the stage 108, and is a color sensor that detects, for example, red (R), green (G), and blue (B) light, which are the three primary colors. More specifically, the sensor unit 104 can have, for example, an objective lens (not shown) and an imaging element (not shown). Then, the sensor unit 104 can digitally photograph (image) the biological sample and output the photographed digital image to the image processing apparatus 200 under the control of the control unit 106 to be described later.
  • the objective lens (not shown) is provided on the side of the slide arrangement surface of the stage 108, and makes it possible to magnify and photograph the biological sample. That is, the transmitted light transmitted through the slide 300 arranged on the stage 108 is condensed by the objective lens, and the imaging element (illustrated omitted).
  • the imaging device (not shown) has a photographing range having a predetermined horizontal width and vertical width on the slide arrangement surface of the stage 108 according to the pixel size of the imaging device and the magnification of the objective lens (not shown). An image is formed.
  • the imaging range described above is sufficiently narrower than the imaging range of the imaging element.
  • the imaging element can be realized by an imaging element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the sensor unit 104 may directly photograph the biological sample without using an objective lens or the like, or may photograph the biological sample via an objective lens or the like, and is not particularly limited. do not have.
  • the control unit 106 can comprehensively control the operation of the scanner 100, and includes processing circuits realized by, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. .
  • the control unit 106 can control the lighting unit 102 and the sensor unit 104 described above. Further, the controller 106 may control a stage drive mechanism (not shown) that moves the stage 108 in various directions.
  • control unit 106 may control the number of shots N and the shooting time of the sensor unit 104 according to commands output from the image processing device 200 . More specifically, the control unit 106 may control the sensor unit 104 to intermittently perform imaging N times at predetermined intervals. Also, the control unit 106 may control the wavelength, irradiation intensity, or irradiation time of the illumination light emitted from the illumination unit 102 . Furthermore, the control unit 106 controls a stage drive mechanism (not shown) that moves the stage 108 in various directions according to the region of interest so that a preset region of interest (ROI) is imaged. good too.
  • ROI region of interest
  • region of interest as used herein means a region (target region) of a biological sample that a user pays attention to for analysis or the like.
  • the stage 108 is a mounting table on which the slide 300 is mounted. Further, the stage 108 may be provided with a stage drive mechanism (not shown) for moving the stage 108 in various directions. For example, by controlling the stage drive mechanism, the stage 108 is freely moved in a direction parallel to the slide arrangement surface (X-axis-Y-axis direction) and in a direction orthogonal to the slide arrangement surface (Z-axis direction). be able to. Further, in this embodiment, the stage 108 may be provided with a sample transport device (not shown) that transports the slide 300 to the stage 108 . By providing such a transport device, the slide 300 to be photographed can be automatically placed on the stage 108, and the replacement of the slide 300 can be automated.
  • FIG. 2 is a diagram showing a configuration example of a lighting unit 102a according to a comparative example
  • FIG. 3 is a diagram showing a configuration example of a light source 500a according to a comparative example
  • FIG. It is a figure which shows the simulation result of luminance distribution.
  • the comparative example shall mean the lighting section and the light source which were studied repeatedly before the present inventors made the embodiment of the present disclosure.
  • a pathological diagnosis method for definitive diagnosis of a disease a method has been proposed in which a pathological specimen is imaged by the scanner 100, the image is digitized and displayed, and the image is referred to for pathological diagnosis. It is In such a situation, in order to ensure that the information necessary for diagnosis is not overlooked in order to make an appropriate pathological diagnosis, the entire observation area of the pathological specimen is given a light spectrum with high color rendering (for example, a Color Rendering Index ( There is a demand for an illumination unit (illumination device) capable of uniformly emitting bright light having a CRI of 90 or higher.
  • illumination unit illumination device
  • the uniformity in the plane of the observation area (the in-plane distribution of the light image reflected when the screen is placed in the observation area must be uniform) and the angle space. Uniformity (that the peak shape of the radiation angle distribution of the light irradiated to the observation area is close to the Lambertian distribution) is required to be ensured.
  • the Lambertian distribution is the light intensity distribution when the luminance of the light-emitting surface of the light-emitting body that emits light is constant regardless of the viewing angle. is proportional to the cosine of the angle formed by and the emitted light.
  • lamp light sources halogen lamps and xenon lamps
  • halogen lamps and xenon lamps have been widely used as light sources for microscopes used to observe pathological specimens due to their good color rendering properties and high brightness.
  • a lamp light source has a short life and thus requires high running costs. Therefore, in recent years, white LED light sources have come to be used.
  • white LED light sources have a longer life than lamp light sources, those with good color rendering have low luminance. Therefore, in the prior art, the number of LED elements (light emitting elements) used in the LED light source is increased to increase the brightness, and the types of phosphors are increased to improve the color rendering properties.
  • color rendering is a very important factor in pathological diagnosis, as it is directly linked to how it looks in pathological diagnosis, which has been cultivated with conventional lamp light sources.
  • Color rendering refers to the properties of a lighting device, etc., that affect how the color of an object appears when the lighting device, etc. irradiates light onto the object. It is said that it is preferable to be close to the direction. More specifically, the color rendering property is indicated by an index called CRI.
  • CRI is 100 in sunlight, and CRI approaches 100 as the appearance of an object is closer to that in sunlight.
  • the illumination unit 102a according to the comparative example includes an optical system 400a including a plurality of lenses 402 and the like, and a light source 500a. Details of each block of the illumination unit 102a according to the comparative example will be described below.
  • optical system 400a The optical system 400a, as shown in FIG. 2, is a Koehler illumination composed of lenses 402a, 402b, 402c, a field stop 412, and an aperture stop 414, and is further diffused to illuminate more uniform light. Includes plate 420 .
  • the focus of the condenser lens passes through the condenser lens (lens 402a in FIG. 2) and the relay lens (lens 402b in FIG. 2) to the light source (
  • the condenser lens, condenser lens, and relay lens are arranged so as to coincide with the point where the image of the light source 500) is formed, and furthermore, the aperture stop 414 is arranged at the coincident point.
  • the condenser lens and the relay lens are arranged so that the focal point of the relay lens coincides with the point where the image of the object is formed through the condenser lens, and the field stop 412 is arranged between the condenser lens and the relay lens. be done.
  • Such Koehler illumination not only irradiates uniform light but also does not directly irradiate the light from the light source, so the distance between the subject and the light source can be increased. The impact can be suppressed. Further, in Koehler illumination, the magnification can be adjusted by adjusting the lens or the like, so the light source can be made small.
  • a diffuser plate 420 is provided above the lens 402a and can make the light uniform by diffusing it.
  • a field stop 412 is provided above the diffusion plate 420 and can adjust the illumination range. Furthermore, since the field stop 412 cuts unnecessary light, it is possible to suppress the occurrence of flare, ghost, etc., and obtain a clear field of view.
  • the lens 402b is provided above the field stop 412 and can converge the substantially parallel light.
  • An aperture stop 414 is provided above the lens 402b and can adjust the brightness.
  • the lens 402c is provided above the aperture stop 414, and can make the condensed light into substantially parallel light again.
  • a diffusion plate 420 is provided in order to obtain uniform light.
  • the optical system 400a of the comparative example is not limited to the Kohler illumination as described above, and may be a critical illumination that does not include the condenser lens 402c.
  • the light source 500a is an illumination device that emits white light or single light. Specifically, as shown in FIG. 3, the light source 500a has a housing 510, a plurality of light emitting elements (eg, LED chips) 522, and a phosphor layer 524. As shown in FIG.
  • the housing 510 has an opening at the top (referred to as an opening surface 510b in the following description), and a plurality of light emitting elements 522 are arranged on the inner side of a bottom surface (substrate) 510a facing the opening surface 510b. is mounted.
  • the light emitting element 522 is a diode that emits light when a voltage is applied, and includes an electrode (not shown) provided on a semiconductor substrate (not shown), a light emitting layer (not shown), and the like.
  • the light source 500a preferably has a plurality of light emitting elements 522 to enhance brightness.
  • the phosphor layer 524 is provided above the plurality of light emitting elements 522, and can absorb light from the light emitting elements 522 and emit light in different wavelength ranges.
  • the phosphor layer 524 contains one or more kinds of phosphors, and preferably contains plural kinds of phosphors in order to improve the color rendering properties.
  • a plurality of types of phosphors emit light in different wavelength ranges.
  • the light emitted from the plurality of light emitting elements 522 and the light emitted from the phosphor layer 524 by absorbing the light from the light emitting elements 522 are provided to face the bottom surface 510a.
  • the light is emitted to the outside of the housing 510 through the opening surface 510b. That is, it can be said that the opening surface 510b is the light emitting surface of the light source 500a.
  • the phosphor layer 524 contains various phosphors in order to improve the color rendering properties of the light source 500a.
  • various phosphors are included, the luminance of the light source 500a is lowered. Therefore, in the comparative example, the number of light emitting elements 522 is increased or the chip size of the light emitting elements 522 is increased in order to suppress the decrease in luminance.
  • the film thickness of the phosphor layer 524 is reduced and the distance between the phosphor layer 524 and the light emitting element 522 is shortened in order to downsize the light source 500a. Due to such miniaturization as well, as can be seen from the simulation result of the luminance distribution on the light emitting surface (opening surface 510b) of the light source 500a shown in FIG. show.
  • the luminance peaks corresponding to the number of light emitting elements 522 occur, so the luminance distribution on the light emitting surface of the light source 500a becomes uneven.
  • the illumination unit 102a it becomes difficult for the illumination unit 102a to ensure uniformity in the plane of the observation area and uniformity in angular space.
  • the diffuser plate 420 is used in the optical system 400a in order to improve the nonuniformity of the luminance distribution of the light source 500a, but the improvement effect of the diffuser plate 420 is limited.
  • the present inventors diligently studied the light source 500 in such a situation, and paid attention to the relationship between the light emitting element 522 and the phosphor layer 524.
  • the details of the embodiments of the present disclosure created by the present inventors will be sequentially described.
  • FIG. 5 is a diagram showing the radiation intensity distribution (radiation angle) of light emitted from the light emitting element 522 according to this embodiment
  • FIGS. 6 and 7 show configuration examples of the light source 500 according to this embodiment. It is a diagram. Specifically, the upper part of FIG. 6 shows a plan view of the light source 500, and the lower part of FIG. 6 shows a cross section of the light source 500 taken along line AA' shown in the upper part. Furthermore, FIG. 7 shows a part of the cross section of the light source 500 and information such as the positional relationship and length of each element.
  • the light distribution characteristic of the light emitted from the light emitting element 522 used has a distribution as shown in FIG.
  • the light source 500 is a lighting device that emits white light or single light, and includes a housing 510 and a plurality of light emitting elements. It has an (LED chip) 522 and a phosphor layer 524 .
  • the housing 510 has an open top (referred to as an open surface 510b), and a plurality of light emitting elements 522 are mounted on the inside of a bottom surface (substrate) 510a facing the open surface 510b.
  • the light-emitting element 522 is a light-emitting diode or laser diode that emits light when a voltage is applied, and has an intensity distribution (radiation angle) of emitted light as shown in FIG. 5, as described above.
  • the light emitting element 522 consists of an electrode (not shown) and a light emitting layer (not shown) provided on a semiconductor substrate (not shown), and here the length of one side is d (see FIG. 7 ).
  • five light emitting elements 522 are arranged on the bottom surface 510a.
  • the number of light emitting elements 522 is not limited to five, and may be plural.
  • the plurality of light emitting elements 522 are preferably arranged so as to be point-symmetrical with respect to the center of the bottom surface 510a, and further arranged so as to satisfy the conditions described later. becomes.
  • the maximum distance between the light emitting elements 522 adjacent to each other is defined as P, and the medium 512 (for example, air) filled between the light emitting elements 522 and the phosphor layer 524 in the housing 510 is Let n be the refractive index of (see Fig. 7).
  • the phosphor layer 524 is provided above the plurality of light emitting elements 522, absorbs light from the light emitting elements 522, and emits light in different wavelength ranges, as shown in the lower part of FIG. be able to. Furthermore, the phosphor layer 524 preferably contains at least one kind of phosphor and further contains plural kinds of phosphors in order to improve the color rendering properties. The multiple types of phosphors emit light in different wavelength bands. In this embodiment, the distance between the light emitting element 522 and the phosphor layer 524 is L, the film thickness of the phosphor layer 524 is T, and the refractive index is np (see FIG. 7).
  • the light emitted from the plurality of light emitting elements 522 and the light emitted from the light emitting elements 522 are absorbed so that the light emitted from the phosphor layer 524 is absorbed by the housing 510 .
  • An opening surface 510b is provided to face the bottom surface 510a in order to emit the light to the outside. That is, it can be said that the opening surface 510b is the light emitting surface of the light source 500 as in the comparative example.
  • a light distribution range ( A plurality of light emitting elements 522 are mounted on the bottom surface 510a such that a portion of the FWHM (1/4) overlaps each other. That is, in this embodiment, by satisfying the following conditions, the light distribution ranges of the light emitting elements 522 can partially overlap each other on the light emitting surface (opening surface 510b).
  • the FWHM of the radiation intensity of each light emitting element 522 is ⁇
  • the length of one side of each light emitting element 522 is d
  • the adjacent light emitting elements 522 Let P be the maximum value of the interval, L be the distance between the light emitting element 522 and the phosphor layer 524, n be the refractive index of the medium 512 in the housing 510, and T be the film thickness of the phosphor layer 524.
  • the refractive index of the phosphor layer 524 is np .
  • the light distribution ranges of the light emitting elements 522 partly overlap each other on the light emitting surface (opening surface 510b). (light distribution), as a result, the luminance distribution on the light emitting surface of the light source 500 can be made uniform.
  • is preferably larger than (1/10) ⁇ from the limitation on the interval between the light emitting elements 522, and is smaller than (1/2) ⁇ due to the film thickness T of the phosphor layer 524. is preferred.
  • is larger than (1/5) ⁇ and smaller than (1/3) ⁇ . more preferred. In simulations and experiments, good results were obtained when ⁇ was (1/4) ⁇ .
  • the relationship between the length d of one side of each light emitting element 522 and the maximum value P of the interval between the light emitting elements 522 is set to P >d, more preferably P>2d, and even more preferably P>4d.
  • the relationship between the length d of one side of each light emitting element 522 and the maximum value P of the interval between the light emitting elements 522 is P ⁇ 5d. is preferred.
  • ⁇ represented by the above formula (1) is 1 or more, and is preferably 1.4 or more, for example, so that the light distribution ranges overlap sufficiently.
  • 120 degrees
  • (1/4) ⁇
  • d 0.35 mm
  • P is ⁇ 2 mm
  • L is 0.1 mm
  • n 1, and T is 0.7 mm.
  • can be set to 1.4.
  • FIG. 8 is a diagram showing a configuration example of the illumination unit 102 according to this embodiment.
  • the optical system 400 includes a Koehler lens composed of lenses 402a, 402b, and 402c, a field stop 412, and an aperture stop 414, as in the comparative example. It can be lighting.
  • the light from the light source 500 according to this embodiment is uniform, it is not necessary to provide the diffusion plate 420 unlike the comparative example. Since each element of the optical system 400 is the same as that of the comparative example, the description thereof is omitted here.
  • the optical system 400 is not limited to Koehler illumination as described above, and may be critical illumination that does not include the field stop 412 .
  • the optical system 400 includes an aperture stop 414 provided between the light source 500 and the slide 300 , between the light source 500 and the aperture stop 414 , and between the aperture stop 414 and the slide 300 .
  • Critical illumination with multiple lenses 402 is not limited to Koehler illumination as described above, and may be critical illumination that does not include the field stop 412 .
  • the optical system 400 includes an aperture stop 414 provided between the light source 500 and the slide 300 , between the light source 500 and the aperture stop 414 , and between the aperture stop 414 and the slide 300 .
  • Critical illumination with multiple lenses 402 is critical illumination with multiple lenses 402 .
  • the optical system 400 has a configuration in which the light from the light source 500 is projected into the aperture of the aperture stop 414 .
  • a homogenizer (light homogenizing member) (not shown) is provided between the light source 500 and the aperture stop 414.
  • the homogenizer can be a diffusion plate 420, a rod integrator (not shown), or the like.
  • the light source 500 according to this embodiment having the configuration as described above, it is possible to uniform the luminance distribution on the light emitting surface (opening surface 510b).
  • FIG. 9 which is a diagram showing the simulation result of the luminance distribution on the light emitting surface of the light source 500 according to the embodiment of the present disclosure
  • the image of the light emitting element 522 cannot be recognized, in other words, the light emitting element 522
  • the luminance distribution becomes uniform without the occurrence of luminance peaks corresponding to the number of . That is, according to this embodiment, the luminance distribution of the light emitting surface (aperture surface 510b) has one peak and no inflection point.
  • the luminance distribution on the light emitting surface of the light source 500 becomes equivalent to that of the conventionally used lamp light source.
  • T is 0.7 mm
  • np is 1.8
  • ⁇ in the above formula (1) is 1.4.
  • FIG. 10 is a diagram showing a simulation result of luminance distribution on the light emitting surface of the light source 500 according to the embodiment of the present disclosure when ⁇ is 0.5. That is, when ⁇ is 0.5, luminance peaks are generated as many as the number of light emitting elements 522, and the luminance distribution is not uniform. 10, ⁇ is 120 degrees, ⁇ is (1/4) ⁇ , d is 0.35 mm, P is ⁇ 2 mm, L is 0.1 mm, and n is 1. , T is 0.7 mm, np is 1.8, and ⁇ in the above formula (1) is 0.5.
  • the luminance distribution on the light emitting surface of the light source 500 can be made uniform. Therefore, by using the light source 500 according to the present embodiment, the illumination unit 102 can ensure uniformity in the plane of the observation area and uniformity in the angular space.
  • the observation area can be irradiated with a high amount of light, there is no need to increase the gain of the imaging device (not shown) of the sensor unit 104, so the image captured by the sensor unit 104 noise can be suppressed.
  • the light from the light source 500 is uniform, it is not necessary to provide the diffusion plate 420, and as a result, an increase in the manufacturing cost of the optical system 400 can be suppressed.
  • the quality of the obtained image is high. In this case, it is possible to generate a wide-area image that does not give a sense of discomfort to the boundary of the image. Also, when machine learning is performed using the acquired images as training data, a highly accurate learning model can be obtained because the quality of the images used as training data is high. Furthermore, using such a learning model, highly accurate estimation, diagnosis, and the like can be performed.
  • the illumination unit (illumination device) 102 is not limited to being applied to the scanner 100 as described above. may be used as an illumination device for an optical microscope (not shown). Further, the scanner 100 is not limited to being used in the observation system 10 as described above, and may be used alone.
  • observation targets are not limited to biological samples.
  • the above-described embodiments of the present disclosure are not limited to application to medical or research applications, and industrial microscopes and the like that require high-precision analysis using images. is not particularly limited as long as it is used for
  • a microscope system 5000 shown in FIG. 11 includes a microscope device 5100 , a control section 5110 and an information processing section 5120 .
  • the microscope device 5100 has a light irradiation section 5101 , an optical section 5102 and a signal acquisition section 5103 .
  • the microscope device 5100 may further have a sample placement section 5104 on which the biological sample S is placed.
  • the configuration of the microscope apparatus is not limited to that shown in FIG. It may be used as the light irradiation unit 5101 .
  • the light irradiation section 5101 may be arranged such that the sample mounting section 5104 is sandwiched between the light irradiation section 5101 and the optical section 5102, and may be arranged on the side where the optical section 5102 exists, for example.
  • the microscope apparatus 5100 may be configured to be able to perform one or more of bright field observation, phase contrast observation, differential interference contrast observation, polarization observation, fluorescence observation, and dark field observation.
  • the microscope system 5000 may be configured as a so-called WSI (Whole Slide Imaging) system or a digital pathology imaging system, and can be used for pathological diagnosis.
  • Microscope system 5000 may also be configured as a fluorescence imaging system, in particular a multiplex fluorescence imaging system.
  • the microscope system 5000 may be used to perform intraoperative pathological diagnosis or remote pathological diagnosis.
  • the microscope device 5100 acquires data of the biological sample S obtained from the subject of the surgery, and transmits the data to the information processing unit 5120. and can be sent.
  • the microscope device 5100 can transmit the acquired data of the biological sample S to the information processing unit 5120 located in a place (another room, building, etc.) away from the microscope device 5100. .
  • the information processing section 5120 receives and outputs the data. Further, the user of the information processing section 5120 can make a pathological diagnosis based on the output data.
  • the biological sample S may be a sample containing a biological component.
  • the biological components may be tissues, cells, liquid components of a living body (blood, urine, etc.), cultures, or living cells (cardiomyocytes, nerve cells, fertilized eggs, etc.).
  • the biological sample may be a solid substance, a specimen fixed with a fixing reagent such as paraffin, or a solid substance formed by freezing.
  • the biological sample can be a section of the solid.
  • a specific example of the biological sample is a section of a biopsy sample.
  • the above biological sample may be one that has undergone processing such as staining or labeling.
  • the treatment may be staining for indicating the morphology of biological components or for indicating substances (surface antigens, etc.) possessed by biological components, such as HE (Hematoxylin-Eosin) staining, immunohistochemistry staining, and the like. can be mentioned.
  • the biological sample may have been subjected to the above treatment with one or more reagents, and the reagents may be fluorescent dyes, coloring reagents, fluorescent proteins, or fluorescently labeled antibodies.
  • the specimen may be one prepared from a tissue sample for the purpose of pathological diagnosis or clinical examination.
  • the specimen is not limited to the human body, and may be derived from animals, plants, or other materials.
  • the type of specimen used e.g., organs or cells, etc.
  • the type of target disease e.g., the type of target disease
  • the subject's attributes e.g., age, sex, blood type, race, etc.
  • the subject's lifestyle For example, eating habits, exercise habits, smoking habits, etc.
  • the specimens may be managed with identification information (one-dimensional or two-dimensional code such as bar code or QR code (registered trademark)) that allows each specimen to be identified.
  • the light irradiation unit 5101 is a light source for illuminating the biological sample S and an optical system for guiding the light irradiated from the light source to the specimen.
  • the light source may irradiate the biological sample with visible light, ultraviolet light, or infrared light, or a combination thereof.
  • the light source may be one or more of a halogen light source, a laser light source, an LED light source, a mercury light source, and a xenon light source.
  • a plurality of light source types and/or wavelengths may be used in fluorescence observation, and may be appropriately selected by those skilled in the art.
  • the light irradiation unit 5101 can have a transmissive, reflective, or episcopic (coaxial or lateral) configuration.
  • the optical section 5102 is configured to guide the light from the biological sample S to the signal acquisition section 5103 .
  • the optical unit 5102 can be configured to allow the microscope device 5100 to observe or image the biological sample S.
  • Optics 5102 may include an objective lens. The type of objective lens may be appropriately selected by a person skilled in the art according to the observation method.
  • the optical unit 5102 may include a relay lens for relaying the image magnified by the objective lens to the signal acquisition unit.
  • the optical section 5102 may further include optical components other than the objective lens and relay lens, eyepiece lens, phase plate, condenser lens, and the like.
  • the optical section 5102 may further include a wavelength separation section configured to separate light having a predetermined wavelength from the light from the biological sample S.
  • the wavelength separation section may be configured to selectively allow light of a predetermined wavelength or range of wavelengths to reach the signal acquisition section.
  • the wavelength separator may include, for example, one or more of a filter that selectively transmits light, a polarizing plate, a prism (Wollaston prism), and a diffraction grating.
  • the optical components included in the wavelength separation section may be arranged, for example, on the optical path from the objective lens to the signal acquisition section.
  • the wavelength separation unit is provided in the microscope device when fluorescence observation is performed, particularly when an excitation light irradiation unit is included.
  • the wavelength separator may be configured to separate fluorescent light from each other or white light and fluorescent light.
  • the signal acquisition unit 5103 can be configured to receive light from the biological sample S and convert the light into an electrical signal, particularly a digital electrical signal.
  • the signal acquisition unit 5103 may be configured to acquire data regarding the biological sample S based on the electrical signal.
  • the signal acquisition unit 5103 may be configured to acquire data of an image (image, particularly a still image, a time-lapse image, or a moving image) of the biological sample S. can be configured to acquire data for an image obtained by
  • the signal acquisition unit 5103 includes one or more image sensors having a plurality of pixels arranged one-dimensionally or two-dimensionally, a CMOS (Complementary Metal Oxide Semiconductor), a CCD (Charge Coupled Device), or the like.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • the signal acquisition unit 5103 may include an image sensor for acquiring a low-resolution image and an image sensor for acquiring a high-resolution image, or an image sensor for sensing for AF (Auto Focus) and the like and an image sensor for observation.
  • An imaging device for image output may also be included.
  • the image sensor includes a signal processing unit (CPU (Central Processing Unit) that performs signal processing using pixel signals from each pixel, a DSP (Digital Signal Processor), and one or two memories. above), and an output control unit that controls output of image data generated from the pixel signals and processed data generated by the signal processing unit.
  • the imaging device including the plurality of pixels, the signal processing section, and the output control section can preferably be configured as a one-chip semiconductor device.
  • the microscope system 5000 may further include an event detection sensor.
  • the event detection sensor includes a pixel that photoelectrically converts incident light, and can be configured to detect, as an event, a change in luminance of the pixel exceeding a predetermined threshold.
  • the event detection sensor may be asynchronous.
  • the control unit 5110 controls imaging by the microscope device 5100 .
  • the control unit 5110 can drive the movement of the optical unit 5102 and/or the sample placement unit 5104 to adjust the positional relationship between the optical unit 5102 and the sample placement unit 5104.
  • the control unit 5110 can move the optical unit 5102 and/or the sample mounting unit 5104 in a direction toward or away from each other (for example, the optical axis direction of the objective lens).
  • the control section 5110 may move the optical section 5102 and/or the sample placement section 5104 in any direction on a plane perpendicular to the optical axis direction.
  • the control unit 5110 may control the light irradiation unit 5101 and/or the signal acquisition unit 5103 for imaging control.
  • the sample mounting section 5104 may be configured such that the position of the biological sample S on the sample mounting section 5104 can be fixed, and may be a so-called stage.
  • the sample placement section 5104 can be configured to move the position of the biological sample S in the optical axis direction of the objective lens and/or in a direction perpendicular to the optical axis direction.
  • the information processing section 5120 can acquire data (such as imaging data) acquired by the microscope device 5100 from the microscope device 5100 .
  • the information processing section 5120 can perform image processing on captured data.
  • the image processing may include an unmixing process, in particular a spectral unmixing process.
  • the unmixing process is a process of extracting data of light components of a predetermined wavelength or wavelength range from the imaging data to generate image data, or removing data of light components of a predetermined wavelength or wavelength range from the imaging data. It can include processing and the like.
  • the image processing may include an autofluorescence separation process for separating the autofluorescence component and the dye component of the tissue section, and a fluorescence separation process for separating the wavelengths between dyes having different fluorescence wavelengths.
  • autofluorescence separation processing a process of removing an autofluorescence component from the image information of the other specimen using an autofluorescence signal extracted from one of a plurality of specimens having the same or similar properties may be performed.
  • the information processing section 5120 may transmit data for imaging control by the control section 5110, and the control section 5110 receiving the data may control imaging by the microscope apparatus 5100 according to the data.
  • the information processing section 5120 may be configured as an information processing device such as a general-purpose computer, and may have a CPU, RAM (Random Access Memory), and ROM (Read Only Memory).
  • the information processing section 5120 may be included in the housing of the microscope device 5100 or may be outside the housing.
  • Various processing or functions by the information processing section 5120 may be realized by a server computer or cloud connected via a network.
  • a method of imaging the biological sample S by the microscope device 5100 may be appropriately selected by a person skilled in the art according to the type of the biological sample S, the purpose of imaging, and the like. An example of the imaging method will be described below with reference to FIGS. 12 and 13.
  • FIG. 12 and 13 are diagrams showing examples of imaging methods.
  • the microscope device 5100 can first identify an imaging target region.
  • the imaging target region may be specified so as to cover the entire region in which the biological sample S exists, or a target portion of the biological sample S (a target tissue section, a target cell, or a target lesion where the target lesion exists). may be specified to cover the Next, the microscope device 5100 divides the imaging target region into a plurality of divided regions of a predetermined size, and the microscope device 5100 sequentially images each divided region. As a result, an image of each divided area is obtained.
  • the microscope device 5100 identifies an imaging target region R that covers the entire biological sample S. Then, the microscope device 5100 divides the imaging target region R into 16 divided regions. Then, the microscope device 5100 can image the divided region R1, and then any region included in the imaging target region R, such as a region adjacent to the divided region R1. Furthermore, the microscope device 5100 captures images of the divided areas until there are no unimaged divided areas. Note that the microscope device 5100 may also capture an area other than the imaging target area R based on the captured image information of the divided area. At this time, the positional relationship between the microscope device 5100 and the sample mounting section 5104 is adjusted in order to image the next divided area after imaging a certain divided area. The adjustment can be performed by moving the microscope device 5100, moving the sample placement section 5104, or moving both of them.
  • the imaging device that captures each divided area may be a two-dimensional imaging device (area sensor) or a one-dimensional imaging device (line sensor).
  • the signal acquisition unit 5103 may image each divided area via the optical unit 5102 .
  • the imaging of each divided region may be performed continuously while moving the microscope device 5100 and/or the sample placement unit 5104, or when imaging each divided region, the microscope device 5100 and/or Alternatively, the movement of the sample placement section 5104 may be stopped.
  • the imaging target region may be divided so that the divided regions partially overlap each other, or the imaging target region may be divided so that the divided regions do not overlap.
  • Each divided area may be imaged multiple times by changing imaging conditions such as focal length and/or exposure time.
  • the information processing section 5120 can stitch a plurality of adjacent divided regions to generate image data of a wider region. By performing the stitching process over the entire imaging target area, it is possible to obtain an image of a wider area of the imaging target area. Further, image data with lower resolution can be generated from the image of the divided area or the image subjected to the stitching process.
  • the microscope device 5100 can first identify an imaging target region.
  • the imaging target region may be specified so as to cover the entire region where the biological sample S is present, or a target portion (a target tissue section or a portion where target cells are present) of the biological sample S. may be specified to cover.
  • the microscope device 5100 scans a partial region (also referred to as a “divided scan region”) of the imaging target region in one direction (also referred to as a “scanning direction”) within a plane perpendicular to the optical axis. Take an image.
  • the microscope device 5100 scans the divided scan area next to the scan area. Then, the microscope device 5100 repeats these scanning operations until the entire imaging target region is imaged.
  • the microscope device 5100 identifies the region (gray portion) where the tissue section exists in the biological sample S as the imaging target region Sa. Then, the microscope device 5100 scans the divided scan area Rs in the imaging target area Sa in the Y-axis direction. After completing scanning of the divided scan region Rs, the microscope device 5100 next scans an adjacent divided scan region in the X-axis direction. The microscope device 5100 repeats this operation until scanning is completed for the entire imaging target area Sa.
  • the positional relationship between the microscope device 5100 and the sample placement section 5104 is adjusted for scanning each divided scan area and for imaging the next divided scan area after imaging a certain divided scan area.
  • the adjustment may be performed by moving the microscope device 5100, moving the sample placement section 5104, or moving both of them.
  • the imaging device that captures each divided scan area may be a one-dimensional imaging device (line sensor) or a two-dimensional imaging device (area sensor).
  • the signal acquisition unit 5103 may capture an image of each divided area via an enlarging optical system.
  • the imaging of each divided scan region may be performed continuously while moving the microscope device 5100 and/or the sample placement unit 5104 .
  • the imaging target area may be divided such that the divided scan areas partially overlap each other, or the imaging target area may be divided so that the divided scan areas do not overlap.
  • Each divided scan area may be imaged multiple times while changing imaging conditions such as focal length and/or exposure time.
  • the information processing section 5120 can stitch a plurality of adjacent divided scan regions to generate image data of a wider region. By performing the stitching process over the entire imaging target area, it is possible to obtain an image of a wider area of the imaging target area. Further, image data with lower resolution can be generated from images of divided scan regions or images subjected to stitching processing.
  • a diagnosis support system in which a doctor or the like observes cells and tissues collected from a patient and diagnoses a lesion.
  • This diagnosis support system may be a WSI (Whole Slide Imaging) system that diagnoses or supports diagnosis of lesions based on images acquired using digital pathology technology.
  • FIG. 14 is a diagram showing an example of a schematic configuration of a diagnostic support system 5500 to which the technology according to the present disclosure is applied.
  • the diagnostic support system 5500 includes one or more pathology systems 5510.
  • a medical information system 5530 and a derivation device 5540 may also be included.
  • Each of the one or more pathology systems 5510 is a system mainly used by pathologists, and is installed in laboratories and hospitals, for example.
  • Each pathology system 5510 may be installed in a different hospital, and each uses various networks such as WAN (Wide Area Network) (including the Internet), LAN (Local Area Network), public line network, and mobile communication network. It is connected to the medical information system 5530 and the derivation device 5540 via.
  • WAN Wide Area Network
  • LAN Local Area Network
  • public line network public line network
  • mobile communication network mobile communication network
  • Each pathology system 5510 includes a microscope (specifically, a microscope used in combination with digital imaging technology) 5511, a server 5512, a display control device 5513, and a display device 5514.
  • a microscope specifically, a microscope used in combination with digital imaging technology
  • server 5512 a server 5512
  • display control device 5513 a display device 5514.
  • the microscope 5511 has the function of an optical microscope, photographs an observation object contained in a glass slide, and acquires a pathological image, which is a digital image.
  • Observation objects are, for example, tissues and cells collected from a patient, and may be pieces of flesh of organs, saliva, blood, and the like.
  • microscope 5511 functions as scanner 30 shown in FIG.
  • the server 5512 stores and saves pathological images acquired by the microscope 5511 in a storage unit (not shown). Further, when receiving a viewing request from the display control device 5513 , the server 5512 searches for pathological images from a storage unit (not shown) and sends the searched pathological images to the display control device 5513 .
  • the display control device 5513 sends to the server 5512 the pathological image viewing request received from the user. Then, the display control device 5513 displays the pathological image received from the server 5512 on the display device 5514 using liquid crystal, EL (Electro-Luminescence), CRT (Cathode Ray Tube), or the like. Note that the display device 5514 may be compatible with 4K or 8K, and is not limited to one device, and may be a plurality of devices.
  • the observation target is a solid object such as a piece of flesh of an organ
  • the observation target may be, for example, a stained slice.
  • a sliced piece may be produced, for example, by slicing a block piece excised from a specimen such as an organ. Also, when slicing, the block pieces may be fixed with paraffin or the like.
  • staining thin sections including general staining that indicates the morphology of tissues such as HE (Hematoxylin-Eosin) staining, immunostaining that indicates the immune status of tissues such as IHC (Immunohistochemistry) staining, and fluorescent immunostaining.
  • general staining that indicates the morphology of tissues
  • immunostaining that indicates the immune status of tissues
  • IHC Immunohistochemistry
  • fluorescent immunostaining may be applied.
  • one thin section may be stained with a plurality of different reagents, or two or more thin sections (also referred to as adjacent thin sections) continuously cut out from the same block piece may be stained with different reagents. may be dyed using
  • the microscope 5511 can include a low-resolution imaging unit for low-resolution imaging and a high-resolution imaging unit for high-resolution imaging.
  • the low-resolution imaging section and the high-resolution imaging section may be different optical systems, or may be the same optical system. In the case of the same optical system, the resolution of the microscope 5511 may be changed according to the imaging target.
  • the glass slide containing the observation target is placed on the stage located within the angle of view of the microscope 5511.
  • the microscope 5511 first acquires the entire image within the angle of view using the low-resolution imaging unit, and specifies the region of the observation object from the acquired entire image. Subsequently, the microscope 5511 divides the region where the observation target exists into a plurality of divided regions of a predetermined size, and sequentially captures each divided region by the high-resolution imaging unit, thereby obtaining a high-resolution image of each divided region. do.
  • the stage may be moved, the imaging optical system may be moved, or both of them may be moved.
  • each divided area may overlap adjacent divided areas in order to prevent occurrence of an imaging omission area due to unintended slippage of the glass slide.
  • the whole image may contain identification information for associating the whole image with the patient. This identification information may be, for example, a character string, a QR code (registered trademark), or the like.
  • a high-resolution image acquired by the microscope 5511 is input to the server 5512.
  • the server 5512 divides each high resolution image into smaller size partial images (hereinafter referred to as tile images). For example, the server 5512 divides one high-resolution image into a total of 100 tile images of 10 ⁇ 10. At that time, if adjacent divided areas overlap, the server 5512 may perform stitching processing on adjacent high-resolution images using a technique such as template matching. In that case, the server 5512 may generate tile images by dividing the entire high-resolution image stitched together by the stitching process. However, the generation of tile images from high-resolution images may be performed before the above stitching process.
  • the server 5512 can generate tile images of smaller sizes by further dividing the tile images. Such generation of tile images may be repeated until a tile image having the size set as the minimum unit is generated.
  • the server 5512 After generating tile images of the minimum unit in this way, the server 5512 performs tile composition processing for generating a single tile image by compositing a predetermined number of adjacent tile images for all tile images. This tile synthesis process can be repeated until finally one tile image is generated.
  • a pyramid-structured tile image group in which each layer is composed of one or more tile images is generated.
  • a tile image in one layer and a tile image in a different layer have the same number of pixels, but different resolutions. For example, when synthesizing a total of four 2 ⁇ 2 tile images to generate one upper layer tile image, the resolution of the upper layer tile image is half the resolution of the lower layer tile image used for synthesis. It has become.
  • the generated pyramid-structured tile image group is stored in a storage unit (not shown) together with, for example, identification information (referred to as tile identification information) that can uniquely identify each tile image.
  • identification information referred to as tile identification information
  • the server 5512 receives a tile image acquisition request including tile identification information from another device (for example, the display control device 5513 or the derivation device 5540), the server 5512 transmits the tile image corresponding to the tile identification information to the other device. do.
  • tile images which are pathological images
  • a specific pathological image and other pathological images corresponding to imaging conditions different from the specific imaging condition and having the same region as the specific pathological image are generated. They may be displayed side by side.
  • Specific shooting conditions may be specified by the viewer.
  • pathological images of the same region corresponding to each imaging condition may be displayed side by side.
  • the server 5512 may store the pyramid-structured tile image group in a storage device other than the server 5512, such as a cloud server. Furthermore, part or all of the tile image generation processing as described above may be executed by a cloud server or the like.
  • the display control device 5513 extracts a desired tile image from the pyramid-structured tile image group according to the user's input operation, and outputs it to the display device 5514 . Through such processing, the user can obtain the feeling of observing the observation object while changing the observation magnification. That is, the display control device 5513 functions as a virtual microscope. The virtual observation magnification here actually corresponds to the resolution.
  • a high-resolution image may be obtained by photographing the divided areas while the stage is repeatedly stopped and moved, or a high-resolution image on the strip may be obtained by photographing the divided areas while moving the stage at a predetermined speed. good too.
  • the process of generating tile images from high-resolution images is not an essential configuration, and by changing the resolution of the entire high-resolution image stitched together by the stitching process, images with gradual changes in resolution can be created. may be generated. Even in this case, it is possible to present the user with a step-by-step process from a low-resolution image of a wide area to a high-resolution image of a narrow area.
  • the medical information system 5530 is a so-called electronic medical record system, and stores information related to diagnosis, such as patient identification information, patient disease information, test information and image information used for diagnosis, diagnosis results, and prescription drugs.
  • information related to diagnosis such as patient identification information, patient disease information, test information and image information used for diagnosis, diagnosis results, and prescription drugs.
  • a pathological image obtained by photographing an observation target of a certain patient can be temporarily stored via the server 5512 and then displayed on the display device 5514 by the display control device 5513 .
  • a pathologist using the pathological system 5510 makes a pathological diagnosis based on the pathological image displayed on the display device 5514 .
  • Pathological diagnosis results made by the pathologist are stored in the medical information system 5530 .
  • a derivation device 5540 may perform analysis on pathological images.
  • a learning model created by machine learning can be used for this analysis.
  • the derivation device 5540 may derive a classification result of a specific region, a tissue identification result, or the like as the analysis result. Further, the deriving device 5540 may derive identification results such as cell information, number, position, brightness information, and scoring information for them. These pieces of information derived by the derivation device 5540 may be displayed on the display device 5514 of the pathology system 5510 as diagnosis support information.
  • the derivation device 5540 may be a server system configured with one or more servers (including cloud servers). Also, the derivation device 5540 may be configured to be incorporated in, for example, the display control device 5513 or the server 5512 in the pathological system 5510 . That is, various analyzes on pathological images may be performed within the pathological system 5510 .
  • the technology according to the present disclosure can be preferably applied to the microscope 5511 as described above among the configurations described above.
  • the technology according to the present disclosure to the microscope 5511, it is possible to obtain a clearer pathological image, and thus it is possible to more accurately diagnose a lesion.
  • the configuration described above can be applied not only to the diagnostic support system, but also to general biological microscopes such as confocal microscopes, fluorescence microscopes, and video microscopes that use digital imaging technology.
  • the object to be observed may be a biological sample such as cultured cells, fertilized eggs, or sperm, a biological material such as a cell sheet or a three-dimensional cell tissue, or a living body such as a zebrafish or mouse.
  • the object to be observed is not limited to the glass slide, and can be observed while being stored in a well plate, petri dish, or the like.
  • a moving image may be generated from still images of the observed object acquired using a microscope that utilizes digital imaging technology.
  • a moving image may be generated from still images captured continuously over a predetermined period of time, or an image sequence may be generated from still images captured at predetermined intervals.
  • it is possible to observe the movements of cancer cells, nerve cells, myocardial tissue, sperm, etc. such as pulsation, elongation, and migration, and the division process of cultured cells and fertilized eggs. It becomes possible to analyze the dynamic features of objects using machine learning.
  • each component of each illustrated device is functionally conceptual, and does not necessarily need to be physically configured as illustrated.
  • the specific form of distribution and integration of each device is not limited to the one shown in the figure, and all or part of them can be functionally or physically distributed and integrated in arbitrary units according to various loads and usage conditions. Can be integrated and configured.
  • the present technology can also take the following configuration.
  • a light source having a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements; an optical system that collects light from the light source; with The FWHM angle of each light emitting element is ⁇ , the length of one side of the light emitting element is d, the maximum distance between the light emitting elements adjacent to each other is P, and the distance between the light emitting element and the phosphor layer is When L is the distance between the , provided to satisfy the following formula (1), Illumination device for observation equipment.
  • the plurality of light emitting elements are provided so as to satisfy the following formula (2), The illumination device for an observation device according to (1) above.
  • the plurality of light emitting elements are provided so as to satisfy the following formula (3), The illumination device for an observation device according to (2) above.
  • the optical system is a field stop provided between the illumination device and the sample; an aperture stop provided between the field stop and the sample; a plurality of lenses provided between the illumination device and the field stop, between the field stop and the aperture stop, and between the aperture stop and the sample;
  • the optical system is an aperture stop provided between the illumination device and the sample; a plurality of lenses provided between the illumination device and the aperture stop and between the aperture stop and the sample;
  • the optical system is further comprising a light homogenizing member provided between the illumination device and the aperture stop;
  • the phosphor layer contains at least one or more phosphors.
  • the phosphor layer includes a plurality of types of phosphors that emit light in different wavelength bands.
  • the light source irradiates the biological sample with light.
  • a light source having a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements,
  • the FWHM angle of each light emitting element is ⁇
  • the length of one side of the light emitting element is d
  • the maximum distance between the light emitting elements adjacent to each other is P
  • the distance between the light emitting element and the phosphor layer is
  • L is the distance between the , provided to satisfy the following formula (1), Illumination device for observation equipment.
  • a light source having a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements; an optical system that collects light from the light source;
  • the housing has an opening face provided to face the bottom face and through which light from the plurality of light emitting elements is emitted to the outside, The plurality of light emitting elements are provided on the bottom surface so that the brightness distribution of the aperture surface has one peak and no inflection point exists. Illumination device for observation equipment.
  • a light source having a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements; an optical system that collects light from the light source;
  • the housing has an opening face provided to face the bottom face and through which light from the plurality of light emitting elements is emitted to the outside,
  • the plurality of light emitting elements are provided on the bottom surface such that a part of the light distribution range of each of the light emitting elements overlaps with each other on the opening surface. Illumination device for observation equipment.
  • an illumination device that irradiates light, an objective lens that magnifies the sample, and with The lighting device a light source having a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements; an optical system that collects light from the light source; has The FWHM angle of each light emitting element is ⁇ , the length of one side of the light emitting element is d, the maximum distance between the light emitting elements adjacent to each other is P, and the distance between the light emitting element and the phosphor layer is When L is the distance between the , provided to satisfy the following formula (1), Observation device. (17) The observation device according to (16) above, further comprising an eyepiece.
  • the observation device further comprising an imaging unit made up of an imaging element.
  • the observation device has an illumination device that emits light and an imaging unit that includes an imaging element that images the biological sample,
  • the lighting device a light source having a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements; an optical system that collects light from the light source; with The FWHM angle of each light emitting element is ⁇ , the length of one side of the light emitting element is d, the maximum distance between the light emitting elements adjacent to each other is P, and the distance between the light emitting element and the phosphor layer is When L is the distance between the , provided to satisfy the following formula (1), observation system.

Abstract

Provided is a lighting device (102) for an observation device, the lighting device comprising: a light source (500) having a housing (510), a plurality of light-emitting elements (522) mounted on a bottom surface of the housing, and a phosphor layer (524) provided above the plurality of light-emitting elements; and an optical system (400) for collecting light from the light source. When the FWHM angle of each of the light-emitting elements is denoted by θ, the length of one side of the light emitting element is denoted by d, the maximum value of spacing between the light-emitting elements adjacent to each other is denoted by P, the distance between the light-emitting element and the phosphor layer is denoted by L, the refractive index of a medium in the housing is denoted by n, the thickness of the phosphor layer is denoted by T, and the refractive index of the phosphor layer is denoted by np, the plurality of light-emitting elements are provided so as to satisfy expression (1).

Description

観察装置用照明装置、観察装置及び観察システムIllumination device for observation device, observation device and observation system
 本開示は、観察装置用照明装置、観察装置及び観察システムに関する。 The present disclosure relates to an illumination device for an observation device, an observation device, and an observation system.
 近年、疾患の確定診断を担う病理診断方法として、病理標本(生体試料)を顕微鏡(観察装置)により確認しながら病理診断を行う従来の手法に加えて、病理標本をスキャナにより撮像し、画像をデジタル化して表示し、当該画像を参照して病理診断を行う手法が提案されている。そして、適切に病理診断を行うために診断に必要な情報が見落とされることがないよう、病理標本の観察エリアの全体を演色性の高い光スペクトルを持つ明るい光を均一に照射することが可能な顕微鏡用照明装置が求められている。 In recent years, as a pathological diagnosis method responsible for the definitive diagnosis of diseases, in addition to the conventional method of making a pathological diagnosis while confirming a pathological specimen (biological sample) with a microscope (observation device), the pathological specimen is imaged with a scanner and an image is obtained. A method of digitizing and displaying the image and referring to the image to make a pathological diagnosis has been proposed. In addition, it is possible to uniformly illuminate the entire observation area of the pathological specimen with bright light having a high color rendering light spectrum so that the information necessary for diagnosis is not overlooked in order to make an appropriate pathological diagnosis. There is a need for a microscope illumination system.
 病理標本等を観察する顕微鏡の照明装置としては、演色性の良さと輝度の高さとからランプ光源(ハロゲンランプやキセノンランプ)が広く使用されていた。しかしながら、このようなランプ光源は、寿命が短いことからランニングコストがかかるため、近年、白色LED(Light Emitting Diode)光源が用いられるようになってきている。  Lamp light sources (halogen lamps and xenon lamps) were widely used as illumination devices for microscopes used to observe pathological specimens due to their good color rendering properties and high brightness. However, since such a lamp light source has a short life and thus requires a running cost, a white LED (Light Emitting Diode) light source has come to be used in recent years.
特開2011-41156号公報JP 2011-41156 A
 しかしながら、上記光源として例えば白色LED光源を用いた場合、寿命が長くなるものの、観察エリアの全体を演色性の高い光スペクトルを持つ明るい光を均一に照射することが難しい。 However, when a white LED light source, for example, is used as the light source, it is difficult to uniformly irradiate the entire observation area with bright light having a light spectrum with high color rendering properties, although the life of the light source is increased.
 そこで、本開示では、高い演色性及び高い輝度を維持ししつ、観察エリアの平面での均一性と、角度空間での均一性とを担保することが可能な、観察装置用照明装置、観察装置及び観察システムを提案する。 Therefore, in the present disclosure, an illumination device for an observation device that can ensure uniformity in the plane of the observation area and uniformity in the angular space while maintaining high color rendering properties and high luminance. We propose a device and an observation system.
 本開示によれば、筐体と、当該筐体の底面にマウントされた複数の発光素子と、当該複数の発光素子の上方に設けられた蛍光体層と、を有する光源と、前記光源からの光を集光する光学系と、を備え、前記各発光素子のFWHMの角度をθとし、前記発光素子の1辺の長さをdとし、互いに隣り合う前記発光素子の間隔の最大値をPとし、前記発光素子と前記蛍光体層との間の距離をLとし、前記筐体内の媒体の屈折率をnとし、前記蛍光体層の膜厚をTとし、前記蛍光体層の屈折率をnとしたとき、前記複数の発光素子は、下記の数式(1)を満たすように設けられる、観察装置用照明装置が提供される。
Figure JPOXMLDOC01-appb-M000007
According to the present disclosure, a light source including a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements; and an optical system for condensing light, wherein the FWHM angle of each light emitting element is θ, the length of one side of the light emitting element is d, and the maximum distance between the adjacent light emitting elements is P. where L is the distance between the light emitting element and the phosphor layer, n is the refractive index of the medium in the housing, T is the film thickness of the phosphor layer, and T is the refractive index of the phosphor layer There is provided an illumination device for an observation device, wherein the plurality of light emitting elements are provided so as to satisfy the following formula (1), where np .
Figure JPOXMLDOC01-appb-M000007
 また、本開示によれば、光を照射する照明装置と試料を拡大する対物レンズとを備え、前記照明装置は、筐体と、当該筐体の底面にマウントされた複数の発光素子と、当該複数の発光素子の上方に設けられた蛍光体層とを有する光源と、前記光源からの光を集光する光学系と、を有し、前記各発光素子のFWHMの角度をθとし、前記発光素子の1辺の長さをdとし、互いに隣り合う前記発光素子の間隔の最大値をPとし、前記発光素子と前記蛍光体層との間の距離をLとし、前記筐体内の媒体の屈折率をnとし、前記蛍光体層の膜厚をTとし、前記蛍光体層の屈折率をnとしたとき、前記複数の発光素子は、下記の数式(1)を満たすように設けられる、観察装置が提供される。
Figure JPOXMLDOC01-appb-M000008
Further, according to the present disclosure, an illumination device that irradiates light and an objective lens that magnifies a sample are provided, and the illumination device includes a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and the a light source having a phosphor layer provided above a plurality of light emitting elements; and an optical system for condensing light from the light source, wherein the FWHM angle of each light emitting element is θ, and the light emission Let d be the length of one side of the element, P be the maximum distance between the adjacent light emitting elements, L be the distance between the light emitting element and the phosphor layer, and refraction of the medium in the housing. When the index is n, the thickness of the phosphor layer is T, and the refractive index of the phosphor layer is np , the plurality of light emitting elements are provided so as to satisfy the following formula (1): A viewing device is provided.
Figure JPOXMLDOC01-appb-M000008
 さらに、本開示によれば、生体試料を観察する観察装置と、当該観察装置を制御し、当該観察装置から得られた信号を処理するコンピュータとを含み、前記観察装置は、光を照射する照明装置と、前記生体試料を撮像する撮像素子からなる撮像部とを有し、前記照明装置は、筐体と、当該筐体の底面にマウントされた複数の発光素子と、当該複数の発光素子の上方に設けられた蛍光体層と、を有する光源と、前記光源からの光を集光する光学系とを備え、前記各発光素子のFWHMの角度をθとし、前記発光素子の1辺の長さをdとし、互いに隣り合う前記発光素子の間隔の最大値をPとし、前記発光素子と前記蛍光体層との間の距離をLとし、前記筐体内の媒体の屈折率をnとし、前記蛍光体層の膜厚をTとし、前記蛍光体層の屈折率をnとしたとき、前記複数の発光素子は、下記の数式(1)を満たすように設けられる、観察システムが提供される。
Figure JPOXMLDOC01-appb-M000009
Further, according to the present disclosure, an observation device that observes a biological sample, and a computer that controls the observation device and processes signals obtained from the observation device, the observation device includes an illumination device that emits light. and an imaging unit configured by an imaging device for imaging the biological sample, and the lighting device includes a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and the plurality of light emitting elements. a light source having a phosphor layer provided above; Let d be the depth, P be the maximum distance between the light emitting elements adjacent to each other, L be the distance between the light emitting element and the phosphor layer, n be the refractive index of the medium in the housing, and An observation system is provided in which the plurality of light emitting elements are provided so as to satisfy the following formula (1), where T is the thickness of the phosphor layer and np is the refractive index of the phosphor layer. .
Figure JPOXMLDOC01-appb-M000009
本開示の実施形態に係る観察システム10の構成例を示すブロック図である。1 is a block diagram showing a configuration example of an observation system 10 according to an embodiment of the present disclosure; FIG. 比較例に係る照明部102aの構成例を示す図である。FIG. 10 is a diagram showing a configuration example of an illumination unit 102a according to a comparative example; 比較例に係る光源500aの構成例を示す図である。FIG. 5 is a diagram showing a configuration example of a light source 500a according to a comparative example; 比較例に係る光源500aの輝度分布のシミュレーション結果を示す図である。FIG. 5 is a diagram showing a simulation result of luminance distribution of a light source 500a according to a comparative example; 本開示の実施形態に係る発光素子522から放射される光の放射強度分布を示す図である。FIG. 5 is a diagram showing a radiation intensity distribution of light emitted from a light emitting element 522 according to an embodiment of the present disclosure; 本開示の実施形態に係る光源500の構成例を示す図(その1)である。1 is a diagram (part 1) illustrating a configuration example of a light source 500 according to an embodiment of the present disclosure; FIG. 本開示の実施形態に係る光源500の構成例を示す図(その2)である。FIG. 2 is a diagram (Part 2) showing a configuration example of a light source 500 according to an embodiment of the present disclosure; 本開示の実施形態に係る照明部102の構成例を示す図である。3 is a diagram illustrating a configuration example of an illumination unit 102 according to an embodiment of the present disclosure; FIG. 本開示の実施形態に係る光源500の輝度分布のシミュレーション結果を示す図(その1)である。FIG. 11 is a diagram (Part 1) showing a simulation result of the luminance distribution of the light source 500 according to the embodiment of the present disclosure; 本開示の実施形態に係る光源500の輝度分布のシミュレーション結果を示す図(その2)である。FIG. 10 is a diagram (Part 2) showing a simulation result of the luminance distribution of the light source 500 according to the embodiment of the present disclosure; 顕微鏡システムの全体構成を概略的に示す図である。It is a figure which shows roughly the whole structure of a microscope system. 撮像方式の例を示す図である。It is a figure which shows the example of an imaging system. 撮像方式の例を示す図である。It is a figure which shows the example of an imaging system. 診断支援システムの概略的な構成の一例を示すブロック図である。1 is a block diagram showing an example of a schematic configuration of a diagnostic support system; FIG.
 以下に、添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。また、本明細書及び図面において、実質的に同一又は類似の機能構成を有する複数の構成要素を、同一の符号の後に異なるアルファベットを付して区別する場合がある。ただし、実質的に同一又は類似の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。 Preferred embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description. In addition, in this specification and drawings, a plurality of components having substantially the same or similar functional configuration may be distinguished by attaching different alphabets after the same reference numerals. However, when there is no particular need to distinguish between a plurality of components having substantially the same or similar functional configurations, only the same reference numerals are used.
 なお、以下の説明においては、生体(例えば、人体、植物等)から取得された、組織(例えば、臓器や上皮組織)の一部である組織切片や細胞のことを生体試料と呼ぶ。なお、以下に説明する生体試料は、必要に応じて各種の染色が施されていてもよい。言い換えると、以下に説明する各実施形態においては、特に断りがない限りは、生体試料に各種の染色が施されていなくてもよい。さらに、例えば、染色には、HE(ヘマトキシリン・エオシン)染色、ギムザ染色又はパパニコロウ染色等に代表される一般染色のみならず、特定の組織に着目する場合に用いる過ヨウ素酸シッフ(PAS)染色等や、FISH(Fluorescence In-Situ Hybridization)や酵素抗体法等の蛍光染色が含まれる。 In the following description, a tissue section or cell that is part of a tissue (eg, organ or epithelial tissue) obtained from a living body (eg, human body, plant, etc.) is referred to as a biological sample. In addition, the biological sample described below may be subjected to various staining as necessary. In other words, in each of the embodiments described below, unless otherwise specified, the biological sample does not have to be dyed in various ways. Furthermore, for example, staining includes not only general staining represented by HE (hematoxylin-eosin) staining, Giemsa staining or Papanicolaou staining, but also periodic acid-Schiff (PAS) staining used when focusing on a specific tissue. and fluorescent staining such as FISH (Fluorescence In-Situ Hybridization) and enzyme antibody method.
 また、説明は以下の順序で行うものとする。
1. 本開示の実施形態を創作するに至る背景
   1.1 観察システム
   1.2 スキャナ
   1.3 背景
2. 実施形態
   2.1 光源
   2.2 光学系
3. まとめ
4. 応用例
   4.1 顕微鏡システム
   4.2 病理診断システム
5. 補足
Also, the description shall be given in the following order.
1. Background leading to creation of embodiments of the present disclosure 1.1 Observation system 1.2 Scanner 1.3 Background 2. Embodiment 2.1 Light source 2.2 Optical system 3. Summary 4. Application examples 4.1 Microscope system 4.2 Pathological diagnosis system 5. supplement
 <<1. 本開示の実施形態を創作するに至る背景>>
 <1.1 観察システム>
 まずは、本開示の実施形態を説明する前に、図1を参照して、本開示の第1の実施形態に係る観察システム10の構成例を説明する。図1は、本開示の実施形態に係る観察システム10の構成例を示すブロック図である。本実施形態に係る観察システム10は、生体試料(例えば、細胞組織等)を搭載するスライド300に対して、デジタル撮影を行うスキャナシステムである。
<<1. Background leading to the creation of the embodiments of the present disclosure>>
<1.1 Observation system>
First, before describing the embodiment of the present disclosure, a configuration example of an observation system 10 according to the first embodiment of the present disclosure will be described with reference to FIG. FIG. 1 is a block diagram showing a configuration example of an observation system 10 according to an embodiment of the present disclosure. The observation system 10 according to this embodiment is a scanner system that digitally photographs a slide 300 on which a biological sample (for example, cell tissue or the like) is mounted.
 図1に示すように、本実施形態に係る観察システム10は、スキャナ(観察装置)100と、画像処理装置200とを含むことができる。なお、スキャナ100と画像処理装置200との間は、互いに有線又は無線の各種の通信ネットワークを介して通信可能に接続してもよい。また、本実施形態に係る観察システム10に含まれるスキャナ100及び画像処理装置200は、図1に図示された数に限定されるものではなく、さらに多く含んでいてもよい。さらに、本実施形態に係る観察システム10は、図示しない他のサーバや装置等を含んでいてもよい。以下に、本実施形態に係る観察システム10に含まれる各装置の概要について説明する。 As shown in FIG. 1, an observation system 10 according to the present embodiment can include a scanner (observation device) 100 and an image processing device 200 . Note that the scanner 100 and the image processing apparatus 200 may be communicatively connected to each other via various wired or wireless communication networks. Further, the number of scanners 100 and image processing devices 200 included in the observation system 10 according to the present embodiment is not limited to the number illustrated in FIG. 1, and may include more. Furthermore, the observation system 10 according to this embodiment may include other servers, devices, and the like (not shown). Below, an outline of each device included in the observation system 10 according to the present embodiment will be described.
 (スキャナ100)
 スキャナ100は、スキャナ100のステージ108上に載置された、生体試料のスライド300に対して所定の照明光を照射して、当該スライド300を透過した光、又は、当該スライド300からの発光等を撮影(撮像)することができる。例えば、スキャナ100は、生体試料を拡大して撮影することができる、拡大鏡(図示省略)及びデジタルカメラ(図示省略)等からなる顕微鏡であることができる。なお、スキャナ100は、例えば、スマートフォン、タブレット、ゲーム機、又は、ウェアラブル装置等、撮影機能を有するあらゆる装置によって実現されてもよい。さらに、スキャナ100は、後述する画像処理装置200によって駆動制御されており、スキャナ100が撮影した画像は、例えば、上記画像処理装置200に保存される。なお、スキャナ100の詳細構成については、後述する。
(Scanner 100)
The scanner 100 irradiates the slide 300 of the biological sample placed on the stage 108 of the scanner 100 with predetermined illumination light, and emits light transmitted through the slide 300 or light emitted from the slide 300. can be photographed (imaged). For example, the scanner 100 can be a microscope including a magnifying glass (not shown) and a digital camera (not shown) that can magnify and photograph a biological sample. Note that the scanner 100 may be implemented by any device having a photographing function, such as a smartphone, tablet, game machine, or wearable device. Further, the scanner 100 is driven and controlled by an image processing device 200, which will be described later, and the image captured by the scanner 100 is stored in the image processing device 200, for example. A detailed configuration of the scanner 100 will be described later.
 (画像処理装置200)
 画像処理装置200は、スキャナ100を制御し、且つ、スキャナ100が撮影した画像(信号)を処理する機能を有する装置である。詳細には、画像処理装置200は、スキャナ100を制御して、生体試料のデジタル画像を撮影するとともに、得られたデジタル画像に対して、所定の画像処理を実施する。画像処理装置200は、PC(Personal Computer)、タブレット、スマートフォン等、制御機能及び画像処理機能を有するあらゆる装置により実現される。例えば、画像処理装置200は、複数の画像に対してステッチング処理を施し広域画像を生成したり、取得した画像を教師データとして使用して機械学習を行い、学習モデルを生成したりしてもよい。また、画像処理装置200はこのように生成された学習モデルを用いて、推定や診断等を行ってもよい。
(Image processing device 200)
The image processing device 200 is a device having a function of controlling the scanner 100 and processing an image (signal) captured by the scanner 100 . Specifically, the image processing apparatus 200 controls the scanner 100 to capture a digital image of the biological sample, and performs predetermined image processing on the obtained digital image. The image processing device 200 is realized by any device having a control function and an image processing function, such as a PC (Personal Computer), a tablet, a smartphone, or the like. For example, the image processing device 200 performs stitching processing on a plurality of images to generate a wide-area image, or performs machine learning using the acquired images as teacher data to generate a learning model. good. Also, the image processing apparatus 200 may use the learning model generated in this way to perform estimation, diagnosis, and the like.
 なお、本実施形態においては、スキャナ100及び画像処理装置200は、一体の装置であってもよく、すなわち、それぞれ単一の装置によって実現されていなくてもよい。また、本実施形態においては、上述のスキャナ100及び画像処理装置200のそれぞれは、有線又は無線の各種の通信ネットワークを介して接続され、互いに協働する複数の装置によって実現されてもよい。さらに、上述した画像処理装置200は、例えば後述するコンピュータのハードウェア構成によって実現することができる。 Note that in the present embodiment, the scanner 100 and the image processing device 200 may be integrated devices, that is, they may not be realized by a single device. Further, in this embodiment, the scanner 100 and the image processing apparatus 200 described above may be realized by a plurality of devices that are connected via various wired or wireless communication networks and cooperate with each other. Furthermore, the image processing apparatus 200 described above can be realized by, for example, a hardware configuration of a computer described later.
 <1.2 スキャナ>
 さらに、図1を参照して、本実施形態に係るスキャナ100の詳細構成を説明する。図1に示すように、スキャナ100は、照明部102と、センサ部(撮像部)104と、制御部106と、ステージ108とを主に有することができる。以下に、スキャナ100の各機能ブロックについて順次説明する。
<1.2 Scanner>
Further, the detailed configuration of the scanner 100 according to this embodiment will be described with reference to FIG. As shown in FIG. 1, the scanner 100 can mainly have an illumination section 102, a sensor section (imaging section) 104, a control section 106, and a stage . Each functional block of the scanner 100 will be sequentially described below.
 (照明部102)
 照明部102は、ステージ108の、スライド300が配置され得るスライド配置面とは逆の面側に設けられ、後述する制御部106の制御に従って、生体試料のスライド300に対して照明光を照射することができる照明装置である。また、照明部102は、照明部102から照射された照明光を集光して、ステージ108上のスライド300に導く、例えばレンズ(光学系)(図示省略)等を有していてもよい。なお、照明部102の詳細構成については、後述する。
(Illumination unit 102)
The illumination unit 102 is provided on the side of the stage 108 opposite to the slide placement surface on which the slide 300 can be placed, and irradiates the slide 300 of the biological sample with illumination light under the control of the control unit 106, which will be described later. It is a lighting device that can Also, the illumination unit 102 may have, for example, a lens (optical system) (not shown) that collects the illumination light emitted from the illumination unit 102 and guides it to the slide 300 on the stage 108 . A detailed configuration of the illumination unit 102 will be described later.
 (センサ部104)
 センサ部104は、ステージ108のスライド配置面側に設けられ、例えば、色の3原色である、赤色(R)、緑色(G)、青色(B)の光を検知するカラーセンサである。より具体的には、センサ部104は、例えば、対物レンズ(図示省略)と、撮像素子(図示省略)とを有することができる。そして、センサ部104は、後述する制御部106の制御に従って、生体試料をデジタル撮影(撮像)し、撮影によるデジタル画像を画像処理装置200へ出力することができる。
(Sensor unit 104)
The sensor unit 104 is provided on the side of the slide arrangement surface of the stage 108, and is a color sensor that detects, for example, red (R), green (G), and blue (B) light, which are the three primary colors. More specifically, the sensor unit 104 can have, for example, an objective lens (not shown) and an imaging element (not shown). Then, the sensor unit 104 can digitally photograph (image) the biological sample and output the photographed digital image to the image processing apparatus 200 under the control of the control unit 106 to be described later.
 詳細には、上記対物レンズ(図示省略)は、ステージ108のスライド配置面側に設けられ、生体試料を拡大して撮影することを可能にする。すなわち、ステージ108上に配設されたスライド300を透過した透過光は、当該対物レンズによって集光されて、対物レンズの後方(言い換えると、照明光の進行方向)に設けられた撮像素子(図示省略)に結像することとなる。 Specifically, the objective lens (not shown) is provided on the side of the slide arrangement surface of the stage 108, and makes it possible to magnify and photograph the biological sample. That is, the transmitted light transmitted through the slide 300 arranged on the stage 108 is condensed by the objective lens, and the imaging element (illustrated omitted).
 そして、上記撮像素子(図示省略)には、当該撮像素子の画素サイズ及び対物レンズ(図示省略)の倍率に応じて、ステージ108のスライド配置面上における所定の横幅及び縦幅からなる撮影範囲の像が結像される。なお、対物レンズにより生体試料の一部が拡大される場合には、上述の撮影範囲は、撮像素子の撮影範囲に比べて十分に狭い範囲となる。より具体的には、上記撮像素子は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子により実現することができる。 The imaging device (not shown) has a photographing range having a predetermined horizontal width and vertical width on the slide arrangement surface of the stage 108 according to the pixel size of the imaging device and the magnification of the objective lens (not shown). An image is formed. It should be noted that when part of the biological sample is magnified by the objective lens, the imaging range described above is sufficiently narrower than the imaging range of the imaging element. More specifically, the imaging element can be realized by an imaging element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
 なお、本実施形態においては、センサ部104は、生体試料を、対物レンズ等を介さずに直接撮影してもよいし、対物レンズ等を介して撮影してもよく、特に限定されるものではない。 In this embodiment, the sensor unit 104 may directly photograph the biological sample without using an objective lens or the like, or may photograph the biological sample via an objective lens or the like, and is not particularly limited. do not have.
 (制御部106)
 制御部106は、スキャナ100の動作を統括的に制御することができ、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等により実現される処理回路を含む。例えば、制御部106は、上述した照明部102及びセンサ部104を制御することができる。さらに、制御部106は、ステージ108を様々な方向に移動させるステージ駆動機構(図示省略)を制御してもよい。
(control unit 106)
The control unit 106 can comprehensively control the operation of the scanner 100, and includes processing circuits realized by, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. . For example, the control unit 106 can control the lighting unit 102 and the sensor unit 104 described above. Further, the controller 106 may control a stage drive mechanism (not shown) that moves the stage 108 in various directions.
 例えば、制御部106は、画像処理装置200から出力されたコマンドに従って、センサ部104の撮影回数Nや撮影時間を制御してもよい。より具体的には、制御部106は、所定の間隔を空けて断続的に撮影回数Nの撮影を行うようセンサ部104を制御してもよい。また、制御部106は、照明部102から照射される照明光の波長、照射強度又は照射時間を制御してもよい。さらに、制御部106は、予め設定された関心領域(ROI:Region of Interest)が撮像されるよう、関心領域に従って、ステージ108を様々な方向に移動させるステージ駆動機構(図示省略)を制御してもよい。なお、ここでいう関心領域とは、生体試料のうち、ユーザが解析等のために注目する領域(対象となる領域)のことを意味する。 For example, the control unit 106 may control the number of shots N and the shooting time of the sensor unit 104 according to commands output from the image processing device 200 . More specifically, the control unit 106 may control the sensor unit 104 to intermittently perform imaging N times at predetermined intervals. Also, the control unit 106 may control the wavelength, irradiation intensity, or irradiation time of the illumination light emitted from the illumination unit 102 . Furthermore, the control unit 106 controls a stage drive mechanism (not shown) that moves the stage 108 in various directions according to the region of interest so that a preset region of interest (ROI) is imaged. good too. The term "region of interest" as used herein means a region (target region) of a biological sample that a user pays attention to for analysis or the like.
 (ステージ108)
 ステージ108は、スライド300が載置される載置台である。さらに、ステージ108には、ステージ108を様々な方向に移動させるためのステージ駆動機構(図示省略)が設けられていてもよい。例えば、当該ステージ駆動機構を制御することにより、ステージ108を、スライド配置面に対して平行となる方向(X軸-Y軸方向)と、直交する方向(Z軸方向)とに自由に移動させることができる。また、本実施形態においては、ステージ108には、スライド300をステージ108に搬送するサンプル搬送装置(図示省略)が設けられていてもよい。かかる搬送装置を設けることで、ステージ108に、撮影予定のスライド300が自動的に載置されるようになり、スライド300の入れ替えを自動化することが可能となる。
(Stage 108)
The stage 108 is a mounting table on which the slide 300 is mounted. Further, the stage 108 may be provided with a stage drive mechanism (not shown) for moving the stage 108 in various directions. For example, by controlling the stage drive mechanism, the stage 108 is freely moved in a direction parallel to the slide arrangement surface (X-axis-Y-axis direction) and in a direction orthogonal to the slide arrangement surface (Z-axis direction). be able to. Further, in this embodiment, the stage 108 may be provided with a sample transport device (not shown) that transports the slide 300 to the stage 108 . By providing such a transport device, the slide 300 to be photographed can be automatically placed on the stage 108, and the replacement of the slide 300 can be automated.
 <1.3 背景>
 次に、図2から図4を参照して、本発明者らが本開示の実施形態を創作するに至る背景について説明する。図2は、比較例に係る照明部102aの構成例を示す図であり、図3は、比較例に係る光源500aの構成例を示す図であり、図4は、比較例に係る光源500aの輝度分布のシミュレーション結果を示す図である。なお、ここで、比較例とは、本発明者らが本開示の実施形態をなす前に、検討を重ねていた照明部や光源のことを意味するものとする。
<1.3 Background>
Next, the background leading to the creation of the embodiments of the present disclosure by the present inventors will be described with reference to FIGS. 2 to 4. FIG. FIG. 2 is a diagram showing a configuration example of a lighting unit 102a according to a comparative example, FIG. 3 is a diagram showing a configuration example of a light source 500a according to a comparative example, and FIG. It is a figure which shows the simulation result of luminance distribution. In addition, here, the comparative example shall mean the lighting section and the light source which were studied repeatedly before the present inventors made the embodiment of the present disclosure.
 先に説明したように、近年、疾患の確定診断を担う病理診断方法として、病理標本をスキャナ100により撮像し、画像をデジタル化して表示し、当該画像を参照して病理診断を行う手法が提案されている。そして、このような状況において、適切に病理診断を行うために診断に必要な情報が見落とされることがないよう、病理標本の観察エリアの全体を演色性の高い光スペクトル(例えば、Color Rendering Index(CRI)が90以上)を持つ明るい光を均一に照射することが可能な照明部(照明装置)が求められている。 As described above, in recent years, as a pathological diagnosis method for definitive diagnosis of a disease, a method has been proposed in which a pathological specimen is imaged by the scanner 100, the image is digitized and displayed, and the image is referred to for pathological diagnosis. It is In such a situation, in order to ensure that the information necessary for diagnosis is not overlooked in order to make an appropriate pathological diagnosis, the entire observation area of the pathological specimen is given a light spectrum with high color rendering (for example, a Color Rendering Index ( There is a demand for an illumination unit (illumination device) capable of uniformly emitting bright light having a CRI of 90 or higher.
 詳細には、上記照明部に対しては、観察エリアの平面での均一性(観察エリアにスクリーンを置いたときに映る光の像の面内分布が均一であること)と、角度空間での均一性(観察エリアに照射されている光の放射角分布のピーク形状がランバート分布に近いこと)とが担保されていることが求められる。なお、ここでランバート分布とは、光を放射する発光体の発光面の輝度が、見る角度によらず一定である場合の光の強度分布であり、放射光の強度が、発光面の法線と当該放射光とがなす角度の余弦に比例する。 Specifically, for the illumination unit, the uniformity in the plane of the observation area (the in-plane distribution of the light image reflected when the screen is placed in the observation area must be uniform) and the angle space. Uniformity (that the peak shape of the radiation angle distribution of the light irradiated to the observation area is close to the Lambertian distribution) is required to be ensured. Here, the Lambertian distribution is the light intensity distribution when the luminance of the light-emitting surface of the light-emitting body that emits light is constant regardless of the viewing angle. is proportional to the cosine of the angle formed by and the emitted light.
 また、これまで、病理標本等を観察する顕微鏡の光源としては、演色性の良さと輝度の高さとからランプ光源(ハロゲンランプやキセノンランプ)が広く使用されていた。しかし、先に説明したように、このようなランプ光源は、寿命が短いことからランニングコストがかかるため、近年、白色LED光源が用いられるようになってきている。しかしながら、白色LED光源は、ランプ光源と比較して、長い寿命を持つが、一方で、演色性がよいものは輝度が低い。そこで、従来技術においては、LED光源で使用されるLED素子(発光素子)の数を増やし輝度を高くしたり、蛍光体の種類を増加させたりして演色性を向上させるようにしている。 Also, until now, lamp light sources (halogen lamps and xenon lamps) have been widely used as light sources for microscopes used to observe pathological specimens due to their good color rendering properties and high brightness. However, as described above, such a lamp light source has a short life and thus requires high running costs. Therefore, in recent years, white LED light sources have come to be used. However, while white LED light sources have a longer life than lamp light sources, those with good color rendering have low luminance. Therefore, in the prior art, the number of LED elements (light emitting elements) used in the LED light source is increased to increase the brightness, and the types of phosphors are increased to improve the color rendering properties.
 特に、演色性(色合い)は、従来のランプ光源で培われてきた病理診断での見え方と直結しているため、病理診断においては非常に重要な要素である。演色性は、照明装置等が対象物に光を照射した際に、当該対象物の色の見え方に及ぼす照明装置等の性質を示し、一般的には、太陽光下での対象物の見え方に近いことが好ましいとされている。詳細には、演色性は、CRIと呼ばれる指標で示され、太陽光ではCRIが100となっており、太陽光下での対象物の見え方に近いほど、CRIが100に近づくこととなる。 In particular, color rendering (hue) is a very important factor in pathological diagnosis, as it is directly linked to how it looks in pathological diagnosis, which has been cultivated with conventional lamp light sources. Color rendering refers to the properties of a lighting device, etc., that affect how the color of an object appears when the lighting device, etc. irradiates light onto the object. It is said that it is preferable to be close to the direction. More specifically, the color rendering property is indicated by an index called CRI. CRI is 100 in sunlight, and CRI approaches 100 as the appearance of an object is closer to that in sunlight.
 例えば、比較例に係る照明部102aは、図2に示すように、病理標本等の生体試料が搭載されたスライド300に対して、均一、且つ、高い演色性を持つ光を照射するために、複数のレンズ402等を含む光学系400aと、光源500aとを含む。以下、比較例に係る照明部102aの各ブロックの詳細を説明する。 For example, the illumination unit 102a according to the comparative example, as shown in FIG. It includes an optical system 400a including a plurality of lenses 402 and the like, and a light source 500a. Details of each block of the illumination unit 102a according to the comparative example will be described below.
 (光学系400a)
 光学系400aは、図2に示すように、レンズ402a、402b、402cと、視野絞り412と、開口絞り414とで構成されるケーラー照明であり、さらに、より均一な光を照射するために拡散板420を含む。
(Optical system 400a)
The optical system 400a, as shown in FIG. 2, is a Koehler illumination composed of lenses 402a, 402b, 402c, a field stop 412, and an aperture stop 414, and is further diffused to illuminate more uniform light. Includes plate 420 .
 詳細には、上記ケーラー照明においては、コンデンサレンズ(図2では、レンズ402c)の焦点が、集光レンズ(図2では、レンズ402a)及びリレーレンズ(図2では、レンズ402b)を通して、光源(図2では、光源500)の像が結像される点に一致するように、コンデンサレンズと集光レンズとリレーレンズとは配置され、さらに、一致する点には、開口絞り414が配置される。また、リレーレンズの焦点が、コンデンサレンズを通して被写体の像が結像される点に一致するよう、コンデンサレンズとリレーレンズとは配置され、集光レンズとリレーレンズの間に、視野絞り412が配置される。このようなケーラー照明では、均一な光を照射するだけなく、光源からの光を直接照射することがないため、被写体と光源との距離を離すことができるため、被写体への光源からの熱の影響を抑制することができる。また、ケーラー照明では、レンズ等を調整することで、倍率を調整することができることから、光源を小さなものにすることができる。 Specifically, in the Koehler illumination, the focus of the condenser lens (lens 402c in FIG. 2) passes through the condenser lens (lens 402a in FIG. 2) and the relay lens (lens 402b in FIG. 2) to the light source ( In FIG. 2, the condenser lens, condenser lens, and relay lens are arranged so as to coincide with the point where the image of the light source 500) is formed, and furthermore, the aperture stop 414 is arranged at the coincident point. . The condenser lens and the relay lens are arranged so that the focal point of the relay lens coincides with the point where the image of the object is formed through the condenser lens, and the field stop 412 is arranged between the condenser lens and the relay lens. be done. Such Koehler illumination not only irradiates uniform light but also does not directly irradiate the light from the light source, so the distance between the subject and the light source can be increased. The impact can be suppressed. Further, in Koehler illumination, the magnification can be adjusted by adjusting the lens or the like, so the light source can be made small.
 より具体的には、図2の光源500a側から順に光学系400aを説明すると、レンズ402aは、光源500a側に設けられ、光源500aからの光束を略平行光とすることができる。拡散板420は、レンズ402aの上方に設けられ、光を拡散することにより均一化することができる。視野絞り412は、拡散板420の上方に設けられ、照明範囲を調整することができる。さらに、視野絞り412は、不必要な光をカットするため、フレアやゴースト等の発生を抑制し、鮮明な視野を得ることができる。また、レンズ402bは、視野絞り412の上方に設けられ、上記略平行光を収束させることができる。開口絞り414は、レンズ402bの上方に設けられ、明るさを調整することができる。さらに、レンズ402cは、開口絞り414の上方に設けられ、集光を再び略平行光とすることができる。 More specifically, the optical system 400a will be described in order from the light source 500a side in FIG. A diffuser plate 420 is provided above the lens 402a and can make the light uniform by diffusing it. A field stop 412 is provided above the diffusion plate 420 and can adjust the illumination range. Furthermore, since the field stop 412 cuts unnecessary light, it is possible to suppress the occurrence of flare, ghost, etc., and obtain a clear field of view. Also, the lens 402b is provided above the field stop 412 and can converge the substantially parallel light. An aperture stop 414 is provided above the lens 402b and can adjust the brightness. Furthermore, the lens 402c is provided above the aperture stop 414, and can make the condensed light into substantially parallel light again.
 なお、比較例では、均一な光を得るために拡散板420を設けている。また、比較例の光学系400aは、上述のようなケーラー照明であることに限定されるものではなく、コンデンサレンズ402cを含まないクリティカル照明であってもよい。 In addition, in the comparative example, a diffusion plate 420 is provided in order to obtain uniform light. Further, the optical system 400a of the comparative example is not limited to the Kohler illumination as described above, and may be a critical illumination that does not include the condenser lens 402c.
 (光源500a)
 次に、図3を参照して、比較例に係る光源500aを説明する。光源500aは、白色光や単一光を出射する照明装置である。詳細には、図3に示すように、光源500aは、筐体510と、複数の発光素子(例えば、LEDチップ)522と、蛍光体層524とを有する。
(Light source 500a)
Next, a light source 500a according to a comparative example will be described with reference to FIG. The light source 500a is an illumination device that emits white light or single light. Specifically, as shown in FIG. 3, the light source 500a has a housing 510, a plurality of light emitting elements (eg, LED chips) 522, and a phosphor layer 524. As shown in FIG.
 詳細には、当該筐体510は、上面が開口(以下の説明では、開口面510bと呼ぶ)しており、当該開口面510bと対向する底面(基板)510aの内側上に複数の発光素子522がマウントされている。発光素子522は、電圧を印加することにより発光するダイオードであり、半導体基板(図示省略)上に設けられた電極(図示省略)や発光層(図示省略)等からなる。さらに、光源500aは、輝度を高めるために複数の発光素子522を有することが好ましい。 Specifically, the housing 510 has an opening at the top (referred to as an opening surface 510b in the following description), and a plurality of light emitting elements 522 are arranged on the inner side of a bottom surface (substrate) 510a facing the opening surface 510b. is mounted. The light emitting element 522 is a diode that emits light when a voltage is applied, and includes an electrode (not shown) provided on a semiconductor substrate (not shown), a light emitting layer (not shown), and the like. Furthermore, the light source 500a preferably has a plurality of light emitting elements 522 to enhance brightness.
 また、蛍光体層524は、複数の発光素子522の上方に設けられ、発光素子522からの光を吸収し、異なる波長域の光を放射することができる。そして、蛍光体層524は、1種類以上の蛍光体を含むが、演色性を向上させるために複数種の蛍光体を含むことが好ましい。なお、複数種の蛍光体は、互いに異なる波長域の光を放射する。 Also, the phosphor layer 524 is provided above the plurality of light emitting elements 522, and can absorb light from the light emitting elements 522 and emit light in different wavelength ranges. The phosphor layer 524 contains one or more kinds of phosphors, and preferably contains plural kinds of phosphors in order to improve the color rendering properties. In addition, a plurality of types of phosphors emit light in different wavelength ranges.
 そして、当該光源500aにおいては、複数の発光素子522から放射された光や、発光素子522からの光を吸収することで蛍光体層524から放射された光は、底面510aと対向するように設けられた開口面510bを介して、筐体510の外部へ出射する。すなわち、開口面510bは、光源500aの発光面であるといえる。 In the light source 500a, the light emitted from the plurality of light emitting elements 522 and the light emitted from the phosphor layer 524 by absorbing the light from the light emitting elements 522 are provided to face the bottom surface 510a. The light is emitted to the outside of the housing 510 through the opening surface 510b. That is, it can be said that the opening surface 510b is the light emitting surface of the light source 500a.
 先に説明したように、光源500aの演色性を向上させるために、蛍光体層524は多種の蛍光体を含む。そして、多種の蛍光体を含むことから、光源500aの輝度が低下してしまうこととなる。そこで、比較例においては、輝度の低下を抑えるために、発光素子522の数を多くしたり、発光素子522のチップサイズを大きくしたりすることで対処している。 As described above, the phosphor layer 524 contains various phosphors in order to improve the color rendering properties of the light source 500a. In addition, since various phosphors are included, the luminance of the light source 500a is lowered. Therefore, in the comparative example, the number of light emitting elements 522 is increased or the chip size of the light emitting elements 522 is increased in order to suppress the decrease in luminance.
 しかしながら、発光素子522の数を増加させると、光源500aの発光面(開口面510b)での輝度分布が不均一となるため、比較例に係る照明部102aにより、観察エリアの平面での均一性と、角度空間での均一性とを担保することが難しくなる。詳細には、比較例においては、光源500aを小型化するために、蛍光体層524の膜厚を薄くし、且つ、蛍光体層524と発光素子522との間の距離を短くしている。このような小型化も起因して、図4に示す、光源500aの発光面(開口面510b)での輝度分布のシミュレーション結果からわかるように、発光素子522の像が認識できるような輝度分布を示す。 However, if the number of light emitting elements 522 is increased, the luminance distribution on the light emitting surface (opening surface 510b) of the light source 500a becomes uneven. , it becomes difficult to ensure uniformity in the angular space. Specifically, in the comparative example, the film thickness of the phosphor layer 524 is reduced and the distance between the phosphor layer 524 and the light emitting element 522 is shortened in order to downsize the light source 500a. Due to such miniaturization as well, as can be seen from the simulation result of the luminance distribution on the light emitting surface (opening surface 510b) of the light source 500a shown in FIG. show.
 すなわち、比較例においては、発光素子522の数だけ輝度のピークが生じることから、光源500aの発光面での輝度分布が不均一となる。その結果、このような光源500aを用いた場合、照明部102aにより、観察エリアの平面での均一性と、角度空間での均一性とを担保することが難しくなる。また、比較例においては、このような光源500aの輝度分布の不均一を改善するために、光学系400aにおいて拡散板420を用いているが、拡散板420による改善効果にも限界がある。 That is, in the comparative example, luminance peaks corresponding to the number of light emitting elements 522 occur, so the luminance distribution on the light emitting surface of the light source 500a becomes uneven. As a result, when such a light source 500a is used, it becomes difficult for the illumination unit 102a to ensure uniformity in the plane of the observation area and uniformity in angular space. Further, in the comparative example, the diffuser plate 420 is used in the optical system 400a in order to improve the nonuniformity of the luminance distribution of the light source 500a, but the improvement effect of the diffuser plate 420 is limited.
 そこで、本発明者らは、このような状況において光源500を鋭意検討し、発光素子522と蛍光体層524とを関係性に着目することで、光源500の発光面(開口面510b)での輝度分布を均一することができる、以下に説明する本開示の実施形態を創作するに至った。以下、本発明者らは創作した本開示の実施形態の詳細を順次説明する。 Therefore, the present inventors diligently studied the light source 500 in such a situation, and paid attention to the relationship between the light emitting element 522 and the phosphor layer 524. We have created the embodiments of the present disclosure described below that can uniform the luminance distribution. Hereinafter, the details of the embodiments of the present disclosure created by the present inventors will be sequentially described.
 <<2. 実施形態>>
 <2.1 光源>
 まずは、図5から図7を参照して、本開示の実施形態に係る光源500の詳細構成を説明する。図5は、本実施形態に係る発光素子522から放射される光の放射強度分布(放射角)を示す図であり、図6及び図7は、本実施形態に係る光源500の構成例を示す図である。詳細には、図6の上段においては、光源500の平面視を示し、図6の下段においては、上段に示されるA-A´線で切断した光源500の断面を示す。さらに、図7は、光源500の断面の一部と、各要素の位置関係や長さ等の情報とを示し、図中の太線は、光の進む方向を示す。
<<2. Embodiment>>
<2.1 Light source>
First, the detailed configuration of the light source 500 according to the embodiment of the present disclosure will be described with reference to FIGS. 5 to 7. FIG. FIG. 5 is a diagram showing the radiation intensity distribution (radiation angle) of light emitted from the light emitting element 522 according to this embodiment, and FIGS. 6 and 7 show configuration examples of the light source 500 according to this embodiment. It is a diagram. Specifically, the upper part of FIG. 6 shows a plan view of the light source 500, and the lower part of FIG. 6 shows a cross section of the light source 500 taken along line AA' shown in the upper part. Furthermore, FIG. 7 shows a part of the cross section of the light source 500 and information such as the positional relationship and length of each element.
 なお、本実施形態においては、使用する発光素子522から放射される光の配光特性は、図5に示されるような分布をしているものとし、その放射光の強度が最大強度の50%となる際(Full Width at Half Maximum(FWHM))の角度をθとする。 In this embodiment, it is assumed that the light distribution characteristic of the light emitted from the light emitting element 522 used has a distribution as shown in FIG. Let the angle at (Full Width at Half Maximum (FWHM)) be θ.
 詳細には、図6に示すように、比較例と同様に、本実施形態に係る光源500は、白色光又は単一光を出射する照明装置であって、筐体510と、複数の発光素子(LEDチップ)522と、蛍光体層524とを有する。当該筐体510は、上面が開口(開口面510bと呼ぶ)しており、当該開口面510bと対向する底面(基板)510aの内側上に複数の発光素子522がマウントされている。 Specifically, as shown in FIG. 6, similarly to the comparative example, the light source 500 according to the present embodiment is a lighting device that emits white light or single light, and includes a housing 510 and a plurality of light emitting elements. It has an (LED chip) 522 and a phosphor layer 524 . The housing 510 has an open top (referred to as an open surface 510b), and a plurality of light emitting elements 522 are mounted on the inside of a bottom surface (substrate) 510a facing the open surface 510b.
 発光素子522は、電圧を印加することにより発光する発光ダイオード又はレーザダイオードであって、先に説明したように、図5に示すような放射光の強度分布(放射角)を有するものとする。また、発光素子522は、半導体基板(図示省略)上に設けられた電極(図示省略)や発光層(図示省略)等からなり、ここではその1辺の長さをdとする(図7 参照)。詳細には、本実施形態においては、図6の上段に示すように、5つの発光素子522が底面510a上に配置されている。より具体的には、底面510aの中心に位置する1つの発光素子522に対して点対称になるように4つの発光素子522が底面510aの同一円周上に配置されている。なお、本実施形態においては、発光素子522の数は5つに限定されるものではなく、複数個であればよい。また、本実施形態においては、複数の発光素子522は、底面510aの中心に対して点対象になるように配置されることが好ましく、さらに、後述するような条件を満たすように配置されることとなる。なお、本実施形態においては、互いに隣り合う発光素子522の間隔の最大値をPとし、筐体510内の発光素子522と蛍光体層524との間に充填された媒体512(例えば、空気)の屈折率をnとする(図7 参照)。 The light-emitting element 522 is a light-emitting diode or laser diode that emits light when a voltage is applied, and has an intensity distribution (radiation angle) of emitted light as shown in FIG. 5, as described above. In addition, the light emitting element 522 consists of an electrode (not shown) and a light emitting layer (not shown) provided on a semiconductor substrate (not shown), and here the length of one side is d (see FIG. 7 ). Specifically, in this embodiment, as shown in the upper part of FIG. 6, five light emitting elements 522 are arranged on the bottom surface 510a. More specifically, four light emitting elements 522 are arranged on the same circumference of the bottom surface 510a so as to be point symmetrical with respect to one light emitting element 522 positioned at the center of the bottom surface 510a. In addition, in the present embodiment, the number of light emitting elements 522 is not limited to five, and may be plural. Further, in this embodiment, the plurality of light emitting elements 522 are preferably arranged so as to be point-symmetrical with respect to the center of the bottom surface 510a, and further arranged so as to satisfy the conditions described later. becomes. In this embodiment, the maximum distance between the light emitting elements 522 adjacent to each other is defined as P, and the medium 512 (for example, air) filled between the light emitting elements 522 and the phosphor layer 524 in the housing 510 is Let n be the refractive index of (see Fig. 7).
 蛍光体層524は、比較例と同様に、図6の下段に示すように、複数の発光素子522の上方に設けられ、発光素子522からの光を吸収し、異なる波長域の光を放射することができる。さらに、蛍光体層524は、少なくとも1種類以上の蛍光体を含み、さらに、演色性の向上させるために複数種の蛍光体を含むことが好ましい。複数種の蛍光体は、互いに異なる波長帯域の光を放射する。なお、本実施形態においては、発光素子522と蛍光体層524との間の距離をLとし、蛍光体層524の膜厚をTとし、屈折率をnとする(図7 参照)。 As in the comparative example, the phosphor layer 524 is provided above the plurality of light emitting elements 522, absorbs light from the light emitting elements 522, and emits light in different wavelength ranges, as shown in the lower part of FIG. be able to. Furthermore, the phosphor layer 524 preferably contains at least one kind of phosphor and further contains plural kinds of phosphors in order to improve the color rendering properties. The multiple types of phosphors emit light in different wavelength bands. In this embodiment, the distance between the light emitting element 522 and the phosphor layer 524 is L, the film thickness of the phosphor layer 524 is T, and the refractive index is np (see FIG. 7).
 そして、本実施形態においても、比較例と同様に、複数の発光素子522から放射された光や、発光素子522からの光を吸収することで蛍光体層524から放射された光を筐体510の外部へ出射するために、底面510aと対向するように開口する開口面510bが設けられている。すなわち、開口面510bは、比較例と同様に、光源500の発光面であるといえる。 Also in the present embodiment, as in the comparative example, the light emitted from the plurality of light emitting elements 522 and the light emitted from the light emitting elements 522 are absorbed so that the light emitted from the phosphor layer 524 is absorbed by the housing 510 . An opening surface 510b is provided to face the bottom surface 510a in order to emit the light to the outside. That is, it can be said that the opening surface 510b is the light emitting surface of the light source 500 as in the comparative example.
 さらに、本実施形態においては、光源500の発光面(開口面510b)での輝度分布を均一するために、開口面510bにおいて、各発光素子522からの光が拡散する範囲である配光範囲(FWHMの4分の1)の一部が互いに重なり合うように、複数の発光素子522が底面510aにマウントされている。すなわち、本実施形態においては、以下の条件を満たすことで、発光面(開口面510b)において各発光素子522の配光範囲の一部が互いに重なり合うようにすることができる。 Furthermore, in the present embodiment, in order to uniform the luminance distribution on the light emitting surface (opening surface 510b) of the light source 500, a light distribution range ( A plurality of light emitting elements 522 are mounted on the bottom surface 510a such that a portion of the FWHM (1/4) overlaps each other. That is, in this embodiment, by satisfying the following conditions, the light distribution ranges of the light emitting elements 522 can partially overlap each other on the light emitting surface (opening surface 510b).
 詳細には、本実施形態においては、図7に示すように、各発光素子522の放射強度のFWHMをθとし、各発光素子522の1辺の長さをdとし、互いに隣り合う発光素子522の間隔の最大値をPとし、発光素子522と蛍光体層524との間の距離をLとし、筐体510内の媒体512の屈折率をnとし、蛍光体層524の膜厚をTとし、蛍光体層524の屈折率をnとする。このような場合、本実施形態においては、2つの媒質中の光の伝播速度と入射角及び屈折角の関係を表した法則であるスネルの法則に基づき(具体的には、nsinβ=nsinβ、光源500は、下記の数式(1)で示す条件を満たすような構成であることが求められる。なお、βは媒体512の屈折角、βは蛍光体層524の屈折角である。
Figure JPOXMLDOC01-appb-M000010
Specifically, in this embodiment, as shown in FIG. 7, the FWHM of the radiation intensity of each light emitting element 522 is θ, the length of one side of each light emitting element 522 is d, and the adjacent light emitting elements 522 Let P be the maximum value of the interval, L be the distance between the light emitting element 522 and the phosphor layer 524, n be the refractive index of the medium 512 in the housing 510, and T be the film thickness of the phosphor layer 524. , the refractive index of the phosphor layer 524 is np . In such a case, in this embodiment, based on Snell's law, which is a law representing the relationship between the propagation speed of light in two media and the angle of incidence and angle of refraction (specifically, n sin β=n p sin β p and the light source 500 are required to have a configuration that satisfies the following equation (1), where β is the refraction angle of the medium 512 and β p is the refraction angle of the phosphor layer 524 .
Figure JPOXMLDOC01-appb-M000010
 言い換えると、本実施形態においては、光源500を上記の数式(1)を満たすような構成にすることにより、発光面(開口面510b)において各発光素子522の配光範囲の一部が互いに重なり合うようにすることができる(配光)ことから、結果として、光源500の発光面での輝度分布を均一することができる。 In other words, in the present embodiment, by configuring the light source 500 to satisfy the above formula (1), the light distribution ranges of the light emitting elements 522 partly overlap each other on the light emitting surface (opening surface 510b). (light distribution), as a result, the luminance distribution on the light emitting surface of the light source 500 can be made uniform.
 なお、βは、各発光素子522の間隔に対する制限から(1/10)×θよりも大きいことが好ましく、また、蛍光体層524の膜厚Tにより、(1/2)×θよりも小さいことが好ましい。 Note that β is preferably larger than (1/10)×θ from the limitation on the interval between the light emitting elements 522, and is smaller than (1/2)×θ due to the film thickness T of the phosphor layer 524. is preferred.
 さらに、本実施形態においては、光源500からの熱、輝度、サイズ等のバランスを鑑みると、βは、(1/5)×θよりも大きく、(1/3)×θよりも小さいことがより好ましい。なお、シミュレーション及び実験では、βが(1/4)×θの際に、良い結果を得ることができた。 Furthermore, in this embodiment, considering the balance of heat from the light source 500, brightness, size, etc., β is larger than (1/5)×θ and smaller than (1/3)×θ. more preferred. In simulations and experiments, good results were obtained when β was (1/4)×θ.
 また、発光素子522の熱による影響を抑制するために、各発光素子522の1辺の長さdと発光素子522の間隔の最大値Pとの関係は、発光素子522を離すために、P>dであることが好ましく、P>2dであることがより好ましく、P>4dであることがさらに好ましい。 In order to suppress the influence of the heat of the light emitting elements 522, the relationship between the length d of one side of each light emitting element 522 and the maximum value P of the interval between the light emitting elements 522 is set to P >d, more preferably P>2d, and even more preferably P>4d.
 さらに、光源500を小型化したい場合や蛍光体層524を薄くしたい場合は、各発光素子522の1辺の長さdと、発光素子522の間隔の最大値Pとの関係は、P<5dが好ましい。 Furthermore, when the light source 500 is desired to be miniaturized or the phosphor layer 524 is desired to be thin, the relationship between the length d of one side of each light emitting element 522 and the maximum value P of the interval between the light emitting elements 522 is P<5d. is preferred.
 本実施形態においては、上記数式(1)で示されるαは、1以上であって、配光範囲の重なりが十分になるように、例えば1.4以上であることが好ましい。例えば、θを120度とし、βを(1/4)×θとし、dを0.35mmとし、Pを√2mmをとし、Lを0.1mmとし、nを1とし、Tを0.7mmとし、nを1.8とすることで、αを1.4とすることができる。 In this embodiment, α represented by the above formula (1) is 1 or more, and is preferably 1.4 or more, for example, so that the light distribution ranges overlap sufficiently. For example, θ is 120 degrees, β is (1/4)×θ, d is 0.35 mm, P is √2 mm, L is 0.1 mm, n is 1, and T is 0.7 mm. and by setting np to 1.8, α can be set to 1.4.
 <2.2 光学系>
 次に、図8を参照して、本開示の実施形態に係る光学系400の詳細構成を説明する。図8は、本実施形態に係る照明部102の構成例を示す図である。詳細には、本実施形態においては、図8に示すように、比較例と同様に、光学系400は、レンズ402a、402b、402cと、視野絞り412と、開口絞り414とで構成されるケーラー照明であることができる。しかしながら、本実施形態においては、本実施形態に係る光源500からの光が均一であることから、比較例と異なり、拡散板420を設けることは必要とされない。なお、光学系400の各要素については、比較例と同様であるため、ここではその説明を省略する。
<2.2 Optical system>
Next, with reference to FIG. 8, the detailed configuration of the optical system 400 according to the embodiment of the present disclosure will be described. FIG. 8 is a diagram showing a configuration example of the illumination unit 102 according to this embodiment. Specifically, in the present embodiment, as shown in FIG. 8, the optical system 400 includes a Koehler lens composed of lenses 402a, 402b, and 402c, a field stop 412, and an aperture stop 414, as in the comparative example. It can be lighting. However, in this embodiment, since the light from the light source 500 according to this embodiment is uniform, it is not necessary to provide the diffusion plate 420 unlike the comparative example. Since each element of the optical system 400 is the same as that of the comparative example, the description thereof is omitted here.
 なお、本実施形態においては、光学系400は、上述のようなケーラー照明であることに限定されるものではなく、視野絞り412を含まないクリティカル照明であってもよい。詳細には、光学系400は、光源500とスライド300との間に設けられた開口絞り414と、光源500と開口絞り414との間、及び、開口絞り414とスライド300との間に設けられた複数のレンズ402とを有するクリティカル照明であってもよい。 In this embodiment, the optical system 400 is not limited to Koehler illumination as described above, and may be critical illumination that does not include the field stop 412 . Specifically, the optical system 400 includes an aperture stop 414 provided between the light source 500 and the slide 300 , between the light source 500 and the aperture stop 414 , and between the aperture stop 414 and the slide 300 . Critical illumination with multiple lenses 402 .
 すなわち、本実施形態においては、光学系400は、光源500からの光が開口絞り414の開口内に投影されるような構成を持つ。なお、本実施形態においては、照明部102からの光の均一性をより向上させたい場合には、光源500と開口絞り414との間に、ホモジナイザー(光均一化部材)(図示省略)を設けてもよい。例えば、ホモジナイザーは、拡散板420又はロッドインテグレータ(図示省略)等であることができる。 That is, in this embodiment, the optical system 400 has a configuration in which the light from the light source 500 is projected into the aperture of the aperture stop 414 . In this embodiment, if it is desired to further improve the uniformity of the light from the illumination section 102, a homogenizer (light homogenizing member) (not shown) is provided between the light source 500 and the aperture stop 414. may For example, the homogenizer can be a diffusion plate 420, a rod integrator (not shown), or the like.
 以上のような構成を持つ本実施形態に係る光源500によれば、発光面(開口面510b)での輝度分布を均一することができる。詳細には、本開示の実施形態に係る光源500の発光面での輝度分布のシミュレーション結果を示す図である図9に示すように、発光素子522の像が認識できない、言い換えると、発光素子522の数だけ輝度のピークが生じることもなく、輝度分布が均一となる。すなわち、本実施形態によれば、発光面(開口面510b)の輝度分布において、1つのピークが存在し、且つ、変曲点が存在しない。従って、光源500の発光面での輝度分布は、従来使用されていたランプ光源と同等となる。なお、図9に示す結果は、θを120度とし、βを(1/4)×θとし、dを0.35mmとし、Pを√2mmをとし、Lを0.1mmとし、nを1とし、Tを0.7mmとし、nを1.8とした場合の結果であり、上記数式(1)のαは1.4となっている。 According to the light source 500 according to this embodiment having the configuration as described above, it is possible to uniform the luminance distribution on the light emitting surface (opening surface 510b). Specifically, as shown in FIG. 9, which is a diagram showing the simulation result of the luminance distribution on the light emitting surface of the light source 500 according to the embodiment of the present disclosure, the image of the light emitting element 522 cannot be recognized, in other words, the light emitting element 522 The luminance distribution becomes uniform without the occurrence of luminance peaks corresponding to the number of . That is, according to this embodiment, the luminance distribution of the light emitting surface (aperture surface 510b) has one peak and no inflection point. Therefore, the luminance distribution on the light emitting surface of the light source 500 becomes equivalent to that of the conventionally used lamp light source. In addition, the results shown in FIG. , T is 0.7 mm, np is 1.8, and α in the above formula (1) is 1.4.
 一方、上記数式(1)のαを0.5とした場合を説明する。αが0.5の場合の、本開示の実施形態に係る光源500の発光面での輝度分布のシミュレーション結果を示す図である図10では、発光素子522の像が認識できる。すなわち、αが0.5では、発光素子522の数だけ輝度のピークが生じ、輝度分布が均一ではない。なお、図10に示す結果は、θを120度とし、βを(1/4)×θとし、dを0.35mmとし、Pを√2mmをとし、Lを0.1mmとし、nを1とし、Tを0.7mmとし、nを1.8とした場合の結果であり、上記数式(1)のαは0.5となっている。 On the other hand, a case where α in the above formula (1) is set to 0.5 will be described. An image of the light emitting element 522 can be recognized in FIG. 10 , which is a diagram showing a simulation result of luminance distribution on the light emitting surface of the light source 500 according to the embodiment of the present disclosure when α is 0.5. That is, when α is 0.5, luminance peaks are generated as many as the number of light emitting elements 522, and the luminance distribution is not uniform. 10, θ is 120 degrees, β is (1/4)×θ, d is 0.35 mm, P is √2 mm, L is 0.1 mm, and n is 1. , T is 0.7 mm, np is 1.8, and α in the above formula (1) is 0.5.
 すなわち、本実施形態によれば、光源500の発光面での輝度分布を均一することができる。従って、本実施形態に係る光源500を用いることにより、照明部102によって観察エリアの平面での均一性と、角度空間での均一性とを担保することが可能となる。 That is, according to this embodiment, the luminance distribution on the light emitting surface of the light source 500 can be made uniform. Therefore, by using the light source 500 according to the present embodiment, the illumination unit 102 can ensure uniformity in the plane of the observation area and uniformity in the angular space.
 <<3. まとめ>>
 以上のように、本開示の実施形態においては、蛍光体の種類の増加により減少した輝度を向上させるために発光素子522の数を増やしても、光源500の発光面での輝度分布を均一することができる。従って、本実施形態に係る光源500を用いることにより、高い演色性及び高い輝度を維持ししつ、観察エリアの平面での均一性と、角度空間での均一性とを担保することが可能となる。加えて、本実施形態においては、高い光量の光を観察エリアに照射することができることから、センサ部104の撮像素子(図示省略)のゲインを上げる必要がなくなるため、センサ部104で捉えた画像にノイズが発生することを抑制することができる。また、本実施形態によれば、光源500からの光が均一であることから、拡散板420を設けることは必要とせず、その結果、光学系400の製造コストの増加を抑制することができる。
<<3. Summary>>
As described above, in the embodiment of the present disclosure, even if the number of light emitting elements 522 is increased in order to improve the brightness that has decreased due to the increase in the types of phosphors, the brightness distribution on the light emitting surface of the light source 500 is uniformed. be able to. Therefore, by using the light source 500 according to the present embodiment, it is possible to ensure uniformity in the plane of the observation area and uniformity in the angular space while maintaining high color rendering properties and high luminance. Become. In addition, in the present embodiment, since the observation area can be irradiated with a high amount of light, there is no need to increase the gain of the imaging device (not shown) of the sensor unit 104, so the image captured by the sensor unit 104 noise can be suppressed. Moreover, according to this embodiment, since the light from the light source 500 is uniform, it is not necessary to provide the diffusion plate 420, and as a result, an increase in the manufacturing cost of the optical system 400 can be suppressed.
 また、本実施形態の光源500を、観察システム10のスキャナ100の照明装置として用いた場合には、得られた画像の品質が高いため、例えば、複数の画像に対してステッチング処理を施した際、画像の境界に違和感を与えることのない広域画像を生成することができる。また、取得した画像を教師データとして使用して機械学習を行った際も、教師データとして使用される画像の品質が高いため、精度の高い学習モデルを得ることができる。さらには、このような学習モデルを使用して、高精度に推定や診断等を行うことができる。 Further, when the light source 500 of the present embodiment is used as the illumination device of the scanner 100 of the observation system 10, the quality of the obtained image is high. In this case, it is possible to generate a wide-area image that does not give a sense of discomfort to the boundary of the image. Also, when machine learning is performed using the acquired images as training data, a highly accurate learning model can be obtained because the quality of the images used as training data is high. Furthermore, using such a learning model, highly accurate estimation, diagnosis, and the like can be performed.
 なお、本実施形態に係る照明部(照明装置)102は、上述のようなスキャナ100に適用されることに限定されるものではなく、例えば、対物レンズ(図示省略)や接眼レンズ(図示省略)と組み合わされて光学顕微鏡(図示省略)の照明装置として用いられてもよい。また、上記スキャナ100は、上述したような観察システム10に用いられることに限定されるものではなく、単独で使用されてもよい。 Note that the illumination unit (illumination device) 102 according to the present embodiment is not limited to being applied to the scanner 100 as described above. may be used as an illumination device for an optical microscope (not shown). Further, the scanner 100 is not limited to being used in the observation system 10 as described above, and may be used alone.
 なお、上述した本開示の実施形態においては、観察対象は、生体試料に限定されるものではない。また、上述した本開示の実施形態は、医療又は研究等の用途へ適用することに限定されるものではなく、画像を用いて高精度の解析等を行うことが求められるような工業用顕微鏡等の用途であれば、特に限定されるものではない。 Note that in the above-described embodiments of the present disclosure, observation targets are not limited to biological samples. In addition, the above-described embodiments of the present disclosure are not limited to application to medical or research applications, and industrial microscopes and the like that require high-precision analysis using images. is not particularly limited as long as it is used for
 <<4. 応用例>>
 <4.1 顕微鏡システム>
 また、本開示に係る技術は、例えば、顕微鏡システム等に適用されることができる。以下、図11を参照して、適用され得る顕微鏡システムの構成例について説明する。図11は、顕微鏡システムの構成例を示す。
<<4. Application example >>
<4.1 Microscope system>
Also, the technology according to the present disclosure can be applied to, for example, a microscope system. A configuration example of an applicable microscope system will be described below with reference to FIG. FIG. 11 shows a configuration example of a microscope system.
 図11に示される顕微鏡システム5000は、顕微鏡装置5100、制御部5110、及び情報処理部5120を含む。顕微鏡装置5100は、光照射部5101、光学部5102、及び、信号取得部5103を有している。顕微鏡装置5100は、さらに、生体由来試料Sが配置される試料載置部5104を有していてもよい。なお、顕微鏡装置の構成は、図11に示されるものに限定されず、例えば、光照射部5101は、顕微鏡装置5100の外部に存在してもよく、例えば、顕微鏡装置5100に含まれない光源が光照射部5101として利用されてもよい。また、光照射部5101は、光照射部5101と光学部5102とによって試料載置部5104が挟まれるように配置されていてよく、例えば、光学部5102が存在する側に配置されてもよい。顕微鏡装置5100は、明視野観察、位相差観察、微分干渉観察、偏光観察、蛍光観察、及び暗視野観察のうちの1又は2以上を実行することができるように構成されてよい。 A microscope system 5000 shown in FIG. 11 includes a microscope device 5100 , a control section 5110 and an information processing section 5120 . The microscope device 5100 has a light irradiation section 5101 , an optical section 5102 and a signal acquisition section 5103 . The microscope device 5100 may further have a sample placement section 5104 on which the biological sample S is placed. Note that the configuration of the microscope apparatus is not limited to that shown in FIG. It may be used as the light irradiation unit 5101 . Further, the light irradiation section 5101 may be arranged such that the sample mounting section 5104 is sandwiched between the light irradiation section 5101 and the optical section 5102, and may be arranged on the side where the optical section 5102 exists, for example. The microscope apparatus 5100 may be configured to be able to perform one or more of bright field observation, phase contrast observation, differential interference contrast observation, polarization observation, fluorescence observation, and dark field observation.
 顕微鏡システム5000は、いわゆるWSI(Whole Slide Imaging)システム又はデジタルパソロジーイメージングシステムとして構成されてよく、病理診断のために用いられうる。また、顕微鏡システム5000は、蛍光イメージングシステム、特には多重蛍光イメージングシステムとして構成されてもよい。 The microscope system 5000 may be configured as a so-called WSI (Whole Slide Imaging) system or a digital pathology imaging system, and can be used for pathological diagnosis. Microscope system 5000 may also be configured as a fluorescence imaging system, in particular a multiplex fluorescence imaging system.
 例えば、顕微鏡システム5000は、術中病理診断又は遠隔病理診断を行うために用いられてよい。当該術中病理診断においては、手術が行われている間に、顕微鏡装置5100が、当該手術の対象者から取得された生体由来試料Sのデータを取得し、そして、当該データを情報処理部5120へと送信し得る。当該遠隔病理診断においては、顕微鏡装置5100は、取得した生体由来試料Sのデータを、顕微鏡装置5100とは離れた場所(別の部屋又は建物など)に存在する情報処理部5120へと送信し得る。そして、これらの診断において、情報処理部5120は、当該データを受信し、出力する。さらに、出力されたデータに基づき、情報処理部5120のユーザが、病理診断を行い得る。 For example, the microscope system 5000 may be used to perform intraoperative pathological diagnosis or remote pathological diagnosis. In the intraoperative pathological diagnosis, while the surgery is being performed, the microscope device 5100 acquires data of the biological sample S obtained from the subject of the surgery, and transmits the data to the information processing unit 5120. and can be sent. In the remote pathological diagnosis, the microscope device 5100 can transmit the acquired data of the biological sample S to the information processing unit 5120 located in a place (another room, building, etc.) away from the microscope device 5100. . In these diagnoses, the information processing section 5120 receives and outputs the data. Further, the user of the information processing section 5120 can make a pathological diagnosis based on the output data.
 (生体由来試料S)
 生体由来試料Sは、生体成分を含む試料であってもよい。当該生体成分は、生体の組織、細胞、生体の液状成分(血液や尿等)、培養物、又は生細胞(心筋細胞、神経細胞、及び受精卵など)であってもよい。また、生体由来試料は、固形物であってもよく、パラフィンなどの固定試薬によって固定された標本又は凍結により形成された固形物であってもよい。当該生体由来試料は、当該固形物の切片であり得る。当該生体由来試料の具体的な例として、生検試料の切片を挙げることができる。
(Biological sample S)
The biological sample S may be a sample containing a biological component. The biological components may be tissues, cells, liquid components of a living body (blood, urine, etc.), cultures, or living cells (cardiomyocytes, nerve cells, fertilized eggs, etc.). Also, the biological sample may be a solid substance, a specimen fixed with a fixing reagent such as paraffin, or a solid substance formed by freezing. The biological sample can be a section of the solid. A specific example of the biological sample is a section of a biopsy sample.
 上記生体由来試料は、染色又は標識などの処理が施されたものであってもよい。当該処理は、生体成分の形態を示すための又は生体成分が有する物質(表面抗原など)を示すための染色であってもよく、HE(Hematoxylin-Eosin)染色、免疫組織化学(Immunohistochemistry)染色等を挙げることができる。また、生体由来試料は、1又は2以上の試薬により前記処理が施されたものであってよく、当該試薬は、蛍光色素、発色試薬、蛍光タンパク質、又は蛍光標識抗体であり得る。 The above biological sample may be one that has undergone processing such as staining or labeling. The treatment may be staining for indicating the morphology of biological components or for indicating substances (surface antigens, etc.) possessed by biological components, such as HE (Hematoxylin-Eosin) staining, immunohistochemistry staining, and the like. can be mentioned. Also, the biological sample may have been subjected to the above treatment with one or more reagents, and the reagents may be fluorescent dyes, coloring reagents, fluorescent proteins, or fluorescently labeled antibodies.
 また、標本は、組織サンプルから病理診断または臨床検査などを目的に作製されたものであってもよい。また、当該標本は、人体に限らず、動物、植物、又は他の材料に由来するものであってもよい。標本は、使用される組織(例えば臓器または細胞等)の種類、対象となる疾病の種類、対象者の属性(例えば、年齢、性別、血液型、または人種等)、または対象者の生活習慣(例えば、食生活、運動習慣、または喫煙習慣等)等により性質が異なる。そこで、当該標本は、各標本それぞれ識別可能な識別情報(バーコード又はQRコード(登録商標)等の1次元又は2次元コード)を付されて管理されてよい。 In addition, the specimen may be one prepared from a tissue sample for the purpose of pathological diagnosis or clinical examination. Moreover, the specimen is not limited to the human body, and may be derived from animals, plants, or other materials. The type of specimen used (e.g., organs or cells, etc.), the type of target disease, the subject's attributes (e.g., age, sex, blood type, race, etc.), or the subject's lifestyle (For example, eating habits, exercise habits, smoking habits, etc.) have different properties. Therefore, the specimens may be managed with identification information (one-dimensional or two-dimensional code such as bar code or QR code (registered trademark)) that allows each specimen to be identified.
 (光照射部5101)
 光照射部5101は、生体由来試料Sを照明するための光源、および光源から照射された光を標本に導く光学系である。光源は、可視光、紫外光、若しくは赤外光、又はこれらの組合せを生体由来試料に照射し得る。光源は、ハロゲン光源、レーザ光源、LED光源、水銀光源、及びキセノン光源のうちの1又は2以上であってもよい。蛍光観察における光源の種類、及び/又は、波長は、複数でもよく、当業者により適宜選択されてもよい。光照射部5101は、透過型、反射型又は落射型(同軸落射型若しくは側射型)の構成を有し得る。
(Light irradiation unit 5101)
The light irradiation unit 5101 is a light source for illuminating the biological sample S and an optical system for guiding the light irradiated from the light source to the specimen. The light source may irradiate the biological sample with visible light, ultraviolet light, or infrared light, or a combination thereof. The light source may be one or more of a halogen light source, a laser light source, an LED light source, a mercury light source, and a xenon light source. A plurality of light source types and/or wavelengths may be used in fluorescence observation, and may be appropriately selected by those skilled in the art. The light irradiation unit 5101 can have a transmissive, reflective, or episcopic (coaxial or lateral) configuration.
 (光学部5102)
 光学部5102は、生体由来試料Sからの光を信号取得部5103へと導くように構成される。光学部5102は、顕微鏡装置5100が生体由来試料Sを観察又は撮像することを可能とするように構成され得る。光学部5102は、対物レンズを含み得る。対物レンズの種類は、観察方式に応じて当業者により適宜選択されてもよい。また、光学部5102は、対物レンズによって拡大された像を信号取得部に中継するためのリレーレンズを含んでもよい。光学部5102は、対物レンズ及びリレーレンズ以外の光学部品、接眼レンズ、位相板、及びコンデンサレンズなど、をさらに含み得る。また、光学部5102は、生体由来試料Sからの光のうちから所定の波長を有する光を分離するように構成された波長分離部をさらに含んでもよい。波長分離部は、所定の波長又は波長範囲の光を選択的に信号取得部に到達させるように構成され得る。波長分離部は、例えば、光を選択的に透過させるフィルタ、偏光板、プリズム(ウォラストンプリズム)、及び回折格子のうちの1又は2以上を含んでもよい。波長分離部に含まれる光学部品は、例えば対物レンズから信号取得部までの光路上に配置されてもよい。波長分離部は、蛍光観察が行われる場合、特に励起光照射部を含む場合に、顕微鏡装置内に設けられる。波長分離部は、蛍光同士を互いに分離し又は白色光と蛍光とを分離するように構成され得る。
(Optical section 5102)
The optical section 5102 is configured to guide the light from the biological sample S to the signal acquisition section 5103 . The optical unit 5102 can be configured to allow the microscope device 5100 to observe or image the biological sample S. Optics 5102 may include an objective lens. The type of objective lens may be appropriately selected by a person skilled in the art according to the observation method. Also, the optical unit 5102 may include a relay lens for relaying the image magnified by the objective lens to the signal acquisition unit. The optical section 5102 may further include optical components other than the objective lens and relay lens, eyepiece lens, phase plate, condenser lens, and the like. In addition, the optical section 5102 may further include a wavelength separation section configured to separate light having a predetermined wavelength from the light from the biological sample S. The wavelength separation section may be configured to selectively allow light of a predetermined wavelength or range of wavelengths to reach the signal acquisition section. The wavelength separator may include, for example, one or more of a filter that selectively transmits light, a polarizing plate, a prism (Wollaston prism), and a diffraction grating. The optical components included in the wavelength separation section may be arranged, for example, on the optical path from the objective lens to the signal acquisition section. The wavelength separation unit is provided in the microscope device when fluorescence observation is performed, particularly when an excitation light irradiation unit is included. The wavelength separator may be configured to separate fluorescent light from each other or white light and fluorescent light.
 (信号取得部5103)
 信号取得部5103は、生体由来試料Sからの光を受光し、当該光を電気信号、特にはデジタル電気信号へと変換することができるように構成され得る。信号取得部5103は、当該電気信号に基づき、生体由来試料Sに関するデータを取得することができるように構成されてもよい。信号取得部5103は、生体由来試料Sの像(画像、特には静止画像、タイムラプス画像、又は動画像)のデータを取得することができるように構成されてもよく、特に光学部5102によって拡大された画像のデータを取得するように構成され得る。信号取得部5103は、1次元又は2次元に並んで配列された複数の画素を有する1つ又は複数の撮像素子、CMOS(Complementary Metal Oxide Semiconductor)又はCCD(Charge Coupled Device)等を含む。信号取得部5103は、低解像度画像取得用の撮像素子と高解像度画像取得用の撮像素子とを含んでよく、又は、AF(Auto Focus)等のためのセンシング用撮像素子と観察などのための画像出力用撮像素子とを含んでもよい。撮像素子は、複数の画素に加え、各画素からの画素信号を用いた信号処理を行う信号処理部(CPU(Central Processing Unit)、DSP(Digital Signal Processor)、及びメモリのうちの1つ、2以上を含む)、及び、画素信号から生成された画像データ及び信号処理部により生成された処理データの出力の制御を行う出力制御部を含み得る。また、複数の画素、信号処理部、及び出力制御部を含む撮像素子は、好ましくは1チップの半導体装置として構成され得る。
(Signal acquisition unit 5103)
The signal acquisition unit 5103 can be configured to receive light from the biological sample S and convert the light into an electrical signal, particularly a digital electrical signal. The signal acquisition unit 5103 may be configured to acquire data regarding the biological sample S based on the electrical signal. The signal acquisition unit 5103 may be configured to acquire data of an image (image, particularly a still image, a time-lapse image, or a moving image) of the biological sample S. can be configured to acquire data for an image obtained by The signal acquisition unit 5103 includes one or more image sensors having a plurality of pixels arranged one-dimensionally or two-dimensionally, a CMOS (Complementary Metal Oxide Semiconductor), a CCD (Charge Coupled Device), or the like. The signal acquisition unit 5103 may include an image sensor for acquiring a low-resolution image and an image sensor for acquiring a high-resolution image, or an image sensor for sensing for AF (Auto Focus) and the like and an image sensor for observation. An imaging device for image output may also be included. In addition to a plurality of pixels, the image sensor includes a signal processing unit (CPU (Central Processing Unit) that performs signal processing using pixel signals from each pixel, a DSP (Digital Signal Processor), and one or two memories. above), and an output control unit that controls output of image data generated from the pixel signals and processed data generated by the signal processing unit. Also, the imaging device including the plurality of pixels, the signal processing section, and the output control section can preferably be configured as a one-chip semiconductor device.
 なお、顕微鏡システム5000は、イベント検出センサをさらに具備してもよい。当該イベント検出センサは、入射光を光電変換する画素を含み、当該画素の輝度変化が所定の閾値を超えたことをイベントとして検出するように構成され得る。当該イベント検出センサは、非同期型であってもよい。 Note that the microscope system 5000 may further include an event detection sensor. The event detection sensor includes a pixel that photoelectrically converts incident light, and can be configured to detect, as an event, a change in luminance of the pixel exceeding a predetermined threshold. The event detection sensor may be asynchronous.
 (制御部5110)
 制御部5110は、顕微鏡装置5100による撮像を制御する。制御部5110は、撮像制御のために、光学部5102、及び/又は、試料載置部5104の移動を駆動して、光学部5102と試料載置部5104との間の位置関係を調節しうる。制御部5110は、光学部5102、及び/又は、試料載置部5104を、互いに近づく又は離れる方向(例えば対物レンズの光軸方向)に移動させ得る。また、制御部5110は、光学部5102、及び/又は、試料載置部5104を、光軸方向と垂直な面におけるいずれかの方向に移動させてもよい。制御部5110は、撮像制御のために、光照射部5101、及び/又は、信号取得部5103を制御してもよい。
(control unit 5110)
The control unit 5110 controls imaging by the microscope device 5100 . For imaging control, the control unit 5110 can drive the movement of the optical unit 5102 and/or the sample placement unit 5104 to adjust the positional relationship between the optical unit 5102 and the sample placement unit 5104. . The control unit 5110 can move the optical unit 5102 and/or the sample mounting unit 5104 in a direction toward or away from each other (for example, the optical axis direction of the objective lens). Also, the control section 5110 may move the optical section 5102 and/or the sample placement section 5104 in any direction on a plane perpendicular to the optical axis direction. The control unit 5110 may control the light irradiation unit 5101 and/or the signal acquisition unit 5103 for imaging control.
 (試料載置部5104)
 試料載置部5104は、生体由来試料Sの試料載置部5104上における位置が固定できるように構成されてよく、いわゆるステージであってもよい。試料載置部5104は、生体由来試料Sの位置を、対物レンズの光軸方向、及び/又は、当該光軸方向と垂直な方向に移動させることができるように構成され得る。
(Sample mounting portion 5104)
The sample mounting section 5104 may be configured such that the position of the biological sample S on the sample mounting section 5104 can be fixed, and may be a so-called stage. The sample placement section 5104 can be configured to move the position of the biological sample S in the optical axis direction of the objective lens and/or in a direction perpendicular to the optical axis direction.
 (情報処理部5120)
 情報処理部5120は、顕微鏡装置5100が取得したデータ(撮像データなど)を、顕微鏡装置5100から取得し得る。情報処理部5120は、撮像データに対する画像処理を実行し得る。当該画像処理は、アンミキシング処理、特にスペクトラルアンミキシング処理を含んでもよい。当該アンミキシング処理は、撮像データから所定の波長又は波長範囲の光成分のデータを抽出して画像データを生成する処理、又は、撮像データから所定の波長又は波長範囲の光成分のデータを除去する処理などを含み得る。また、当該画像処理は、組織切片の自家蛍光成分と色素成分を分離する自家蛍光分離処理や互いに蛍光波長が異なる色素間の波長を分離する蛍光分離処理を含み得る。当該自家蛍光分離処理では、同一ないし性質が類似する複数の標本のうち、一方から抽出された自家蛍光シグナルを用いて他方の標本の画像情報から自家蛍光成分を除去する処理を行ってもよい。情報処理部5120は、制御部5110による撮像制御のためのデータを送信してよく、当該データを受信した制御部5110が、当該データに従い顕微鏡装置5100による撮像を制御してもよい。
(Information processing unit 5120)
The information processing section 5120 can acquire data (such as imaging data) acquired by the microscope device 5100 from the microscope device 5100 . The information processing section 5120 can perform image processing on captured data. The image processing may include an unmixing process, in particular a spectral unmixing process. The unmixing process is a process of extracting data of light components of a predetermined wavelength or wavelength range from the imaging data to generate image data, or removing data of light components of a predetermined wavelength or wavelength range from the imaging data. It can include processing and the like. Further, the image processing may include an autofluorescence separation process for separating the autofluorescence component and the dye component of the tissue section, and a fluorescence separation process for separating the wavelengths between dyes having different fluorescence wavelengths. In the autofluorescence separation processing, a process of removing an autofluorescence component from the image information of the other specimen using an autofluorescence signal extracted from one of a plurality of specimens having the same or similar properties may be performed. The information processing section 5120 may transmit data for imaging control by the control section 5110, and the control section 5110 receiving the data may control imaging by the microscope apparatus 5100 according to the data.
 情報処理部5120は、汎用のコンピュータ等の情報処理装置として構成されてよく、CPU、RAM(Random Access Memory)、及びROM(Read Only Memory)を有していてもよい。情報処理部5120は、顕微鏡装置5100の筐体内に含まれていてよく、又は、当該筐体の外にあってもよい。また、情報処理部5120による各種処理又は機能は、ネットワークを介して接続されたサーバコンピュータ又はクラウドにより実現されてもよい。 The information processing section 5120 may be configured as an information processing device such as a general-purpose computer, and may have a CPU, RAM (Random Access Memory), and ROM (Read Only Memory). The information processing section 5120 may be included in the housing of the microscope device 5100 or may be outside the housing. Various processing or functions by the information processing section 5120 may be realized by a server computer or cloud connected via a network.
 顕微鏡装置5100による生体由来試料Sの撮像の方式は、生体由来試料Sの種類及び撮像の目的などに応じて、当業者により適宜選択されてよい。当該撮像方式の例を、図12及び図13を参照して、以下に説明する。図12及び図13は、撮像方式の例を示す図である。 A method of imaging the biological sample S by the microscope device 5100 may be appropriately selected by a person skilled in the art according to the type of the biological sample S, the purpose of imaging, and the like. An example of the imaging method will be described below with reference to FIGS. 12 and 13. FIG. 12 and 13 are diagrams showing examples of imaging methods.
 撮像方式の一つの例は以下のとおりである。顕微鏡装置5100は、まず、撮像対象領域を特定しうる。当該撮像対象領域は、生体由来試料Sが存在する領域全体をカバーするように特定されてよく、又は、生体由来試料Sのうちの目的部分(目的組織切片、目的細胞、又は目的病変部が存在する部分)をカバーするように特定されてもよい。次に、顕微鏡装置5100は、当該撮像対象領域を、所定サイズの複数の分割領域へと分割し、顕微鏡装置5100は各分割領域を順次撮像する。これにより、各分割領域の画像が取得される。 An example of the imaging method is as follows. The microscope device 5100 can first identify an imaging target region. The imaging target region may be specified so as to cover the entire region in which the biological sample S exists, or a target portion of the biological sample S (a target tissue section, a target cell, or a target lesion where the target lesion exists). may be specified to cover the Next, the microscope device 5100 divides the imaging target region into a plurality of divided regions of a predetermined size, and the microscope device 5100 sequentially images each divided region. As a result, an image of each divided area is obtained.
 図12に示されるように、顕微鏡装置5100は、生体由来試料S全体をカバーする撮像対象領域Rを特定する。そして、顕微鏡装置5100は、撮像対象領域Rを16の分割領域へと分割する。そして、顕微鏡装置5100は、分割領域R1の撮像を行い、次に、その分割領域R1に隣接する領域等、撮像対象領域Rに含まれる領域の内のいずれか領域を撮像し得る。さらに、顕微鏡装置5100は、未撮像の分割領域がなくなるまで、分割領域の撮像を行う。なお、顕微鏡装置5100は、撮像対象領域R以外の領域についても、分割領域の撮像画像情報に基づき、撮像しても良い。この際、或る分割領域を撮像した後に次の分割領域を撮像するために、顕微鏡装置5100と試料載置部5104との位置関係が調整される。当該調整は、顕微鏡装置5100の移動、試料載置部5104の移動、又は、これらの両方の移動により行われることができる。 As shown in FIG. 12, the microscope device 5100 identifies an imaging target region R that covers the entire biological sample S. Then, the microscope device 5100 divides the imaging target region R into 16 divided regions. Then, the microscope device 5100 can image the divided region R1, and then any region included in the imaging target region R, such as a region adjacent to the divided region R1. Furthermore, the microscope device 5100 captures images of the divided areas until there are no unimaged divided areas. Note that the microscope device 5100 may also capture an area other than the imaging target area R based on the captured image information of the divided area. At this time, the positional relationship between the microscope device 5100 and the sample mounting section 5104 is adjusted in order to image the next divided area after imaging a certain divided area. The adjustment can be performed by moving the microscope device 5100, moving the sample placement section 5104, or moving both of them.
 この例において、各分割領域の撮像を行う撮像装置は、2次元撮像素子(エリアセンサ)又は1次元撮像素子(ラインセンサ)であってもよい。信号取得部5103は、光学部5102を介して各分割領域を撮像してもよい。また、各分割領域の撮像は、顕微鏡装置5100、及び/又は、試料載置部5104を移動させながら連続的に行われてもよく、又は、各分割領域の撮像に際して、顕微鏡装置5100、及び/又は、試料載置部5104の移動が停止されてもよい。さらに、各分割領域の一部が重なり合うように、撮像対象領域の分割が行われてよく、又は、重なり合わないように撮像対象領域の分割が行われてもよい。各分割領域は、焦点距離、及び/又は、露光時間等の撮像条件を変えて複数回撮像されてもよい。 In this example, the imaging device that captures each divided area may be a two-dimensional imaging device (area sensor) or a one-dimensional imaging device (line sensor). The signal acquisition unit 5103 may image each divided area via the optical unit 5102 . In addition, the imaging of each divided region may be performed continuously while moving the microscope device 5100 and/or the sample placement unit 5104, or when imaging each divided region, the microscope device 5100 and/or Alternatively, the movement of the sample placement section 5104 may be stopped. Furthermore, the imaging target region may be divided so that the divided regions partially overlap each other, or the imaging target region may be divided so that the divided regions do not overlap. Each divided area may be imaged multiple times by changing imaging conditions such as focal length and/or exposure time.
 また、情報処理部5120は、隣り合う複数の分割領域をステッチングして、より広い領域の画像データを生成し得る。当該ステッチング処理を、撮像対象領域全体にわたって行うことで、撮像対象領域について、より広い領域の画像を取得することができる。また、分割領域の画像、またはステッチング処理を行った画像から、より解像度の低い画像データを生成し得る。 Also, the information processing section 5120 can stitch a plurality of adjacent divided regions to generate image data of a wider region. By performing the stitching process over the entire imaging target area, it is possible to obtain an image of a wider area of the imaging target area. Further, image data with lower resolution can be generated from the image of the divided area or the image subjected to the stitching process.
 撮像方式の他の例は以下のとおりである。顕微鏡装置5100は、まず、撮像対象領域を特定し得る。当該撮像対象領域は、生体由来試料Sが存在する領域全体をカバーするように特定されてもよく、又は、生体由来試料Sのうちの目的部分(目的組織切片又は目的細胞が存在する部分)をカバーするように特定されてもよい。次に、顕微鏡装置5100は、撮像対象領域の一部の領域(「分割スキャン領域」ともいう)を、光軸と垂直な面内における一つの方向(「スキャン方向」ともいう)へスキャンして撮像する。顕微鏡装置5100は、当該分割スキャン領域のスキャンが完了したら、次に、当該スキャン領域の隣の分割スキャン領域を、スキャンする。そして、顕微鏡装置5100は、これらのスキャン動作が、撮像対象領域全体が撮像されるまで繰り返す。 Other examples of imaging methods are as follows. The microscope device 5100 can first identify an imaging target region. The imaging target region may be specified so as to cover the entire region where the biological sample S is present, or a target portion (a target tissue section or a portion where target cells are present) of the biological sample S. may be specified to cover. Next, the microscope device 5100 scans a partial region (also referred to as a “divided scan region”) of the imaging target region in one direction (also referred to as a “scanning direction”) within a plane perpendicular to the optical axis. Take an image. After completing the scan of the divided scan area, the microscope device 5100 scans the divided scan area next to the scan area. Then, the microscope device 5100 repeats these scanning operations until the entire imaging target region is imaged.
 図13に示されるように、顕微鏡装置5100は、生体由来試料Sのうち、組織切片が存在する領域(グレーの部分)を撮像対象領域Saとして特定する。そして、顕微鏡装置5100は、撮像対象領域Saのうち、分割スキャン領域Rsを、Y軸方向へスキャンする。顕微鏡装置5100は、分割スキャン領域Rsのスキャンが完了したら、次に、X軸方向における隣の分割スキャン領域をスキャンする。顕微鏡装置5100は、撮像対象領域Saの全てについてスキャンが完了するまで、この動作を繰り返す。 As shown in FIG. 13, the microscope device 5100 identifies the region (gray portion) where the tissue section exists in the biological sample S as the imaging target region Sa. Then, the microscope device 5100 scans the divided scan area Rs in the imaging target area Sa in the Y-axis direction. After completing scanning of the divided scan region Rs, the microscope device 5100 next scans an adjacent divided scan region in the X-axis direction. The microscope device 5100 repeats this operation until scanning is completed for the entire imaging target area Sa.
 各分割スキャン領域のスキャンのために、及び、或る分割スキャン領域を撮像した後に次の分割スキャン領域を撮像するために、顕微鏡装置5100と試料載置部5104との位置関係が調整される。当該調整は、顕微鏡装置5100の移動、試料載置部5104の移動、又は、これらの両方の移動により行われてもよい。この例において、各分割スキャン領域の撮像を行う撮像装置は、1次元撮像素子(ラインセンサ)又は2次元撮像素子(エリアセンサ)であってもよい。信号取得部5103は、拡大光学系を介して各分割領域を撮像してよい。また、各分割スキャン領域の撮像は、顕微鏡装置5100、及び/又は、試料載置部5104を移動させながら連続的に行われてよい。各分割スキャン領域の一部が重なり合うように、撮像対象領域の分割が行われてよく、又は、重なり合わないように撮像対象領域の分割が行われてもよい。各分割スキャン領域は、焦点距離、及び/又は、露光時間などの撮像条件を変えて複数回撮像されてもよい。 The positional relationship between the microscope device 5100 and the sample placement section 5104 is adjusted for scanning each divided scan area and for imaging the next divided scan area after imaging a certain divided scan area. The adjustment may be performed by moving the microscope device 5100, moving the sample placement section 5104, or moving both of them. In this example, the imaging device that captures each divided scan area may be a one-dimensional imaging device (line sensor) or a two-dimensional imaging device (area sensor). The signal acquisition unit 5103 may capture an image of each divided area via an enlarging optical system. Also, the imaging of each divided scan region may be performed continuously while moving the microscope device 5100 and/or the sample placement unit 5104 . The imaging target area may be divided such that the divided scan areas partially overlap each other, or the imaging target area may be divided so that the divided scan areas do not overlap. Each divided scan area may be imaged multiple times while changing imaging conditions such as focal length and/or exposure time.
 また、情報処理部5120は、隣り合う複数の分割スキャン領域をステッチングして、より広い領域の画像データを生成し得る。当該ステッチング処理を、撮像対象領域全体にわたって行うことで、撮像対象領域について、より広い領域の画像を取得することができる。また、分割スキャン領域の画像、またはステッチング処理を行った画像から、より解像度の低い画像データを生成し得る。 Also, the information processing section 5120 can stitch a plurality of adjacent divided scan regions to generate image data of a wider region. By performing the stitching process over the entire imaging target area, it is possible to obtain an image of a wider area of the imaging target area. Further, image data with lower resolution can be generated from images of divided scan regions or images subjected to stitching processing.
 <4.2 病理診断システム>
 また、本開示に係る技術は、例えば、医師等が患者から採取された細胞や組織を観察して病変を診断する病理診断システムやその支援システム等(以下、診断支援システムと称する)に適用されてもよい。この診断支援システムは、デジタルパソロジー技術を利用して取得された画像に基づいて病変を診断又はその支援をするWSI(Whole Slide Imaging)システムであってもよい。
<4.2 Pathological diagnosis system>
In addition, the technology according to the present disclosure is applied, for example, to a pathological diagnosis system and its support system (hereinafter referred to as a diagnosis support system) in which a doctor or the like observes cells and tissues collected from a patient and diagnoses a lesion. may This diagnosis support system may be a WSI (Whole Slide Imaging) system that diagnoses or supports diagnosis of lesions based on images acquired using digital pathology technology.
 図14は、本開示に係る技術が適用される診断支援システム5500の概略的な構成の一例を示す図である。図14に示すように、診断支援システム5500は、1以上の病理システム5510を含む。さらに医療情報システム5530と、導出装置5540とを含んでもよい。 FIG. 14 is a diagram showing an example of a schematic configuration of a diagnostic support system 5500 to which the technology according to the present disclosure is applied. As shown in FIG. 14, the diagnostic support system 5500 includes one or more pathology systems 5510. A medical information system 5530 and a derivation device 5540 may also be included.
 1以上の病理システム5510それぞれは、主に病理医が使用するシステムであり、例えば研究所や病院に導入される。各病理システム5510は、互いに異なる病院に導入されてもよく、それぞれWAN(Wide Area Network)(インターネットを含む)やLAN(Local Area Network)や公衆回線網や移動体通信網などの種々のネットワークを介して医療情報システム5530及び導出装置5540に接続される。 Each of the one or more pathology systems 5510 is a system mainly used by pathologists, and is installed in laboratories and hospitals, for example. Each pathology system 5510 may be installed in a different hospital, and each uses various networks such as WAN (Wide Area Network) (including the Internet), LAN (Local Area Network), public line network, and mobile communication network. It is connected to the medical information system 5530 and the derivation device 5540 via.
 各病理システム5510は、顕微鏡(詳細には、デジタル撮像技術と組み合わされて用いられる顕微鏡)5511と、サーバ5512と、表示制御装置5513と、表示装置5514とを含む。 Each pathology system 5510 includes a microscope (specifically, a microscope used in combination with digital imaging technology) 5511, a server 5512, a display control device 5513, and a display device 5514.
 顕微鏡5511は、光学顕微鏡の機能を有し、ガラススライドに収められた観察対象物を撮影し、デジタル画像である病理画像を取得する。観察対象物とは、例えば、患者から採取された組織や細胞であり、臓器の肉片、唾液、血液等であってよい。例えば、顕微鏡5511が図1に示されるスキャナ30として機能する。 The microscope 5511 has the function of an optical microscope, photographs an observation object contained in a glass slide, and acquires a pathological image, which is a digital image. Observation objects are, for example, tissues and cells collected from a patient, and may be pieces of flesh of organs, saliva, blood, and the like. For example, microscope 5511 functions as scanner 30 shown in FIG.
 サーバ5512は、顕微鏡5511によって取得された病理画像を図示しない記憶部に記憶、保存する。また、サーバ5512は、表示制御装置5513から閲覧要求を受け付けた場合に、図示しない記憶部から病理画像を検索し、検索された病理画像を表示制御装置5513に送る。 The server 5512 stores and saves pathological images acquired by the microscope 5511 in a storage unit (not shown). Further, when receiving a viewing request from the display control device 5513 , the server 5512 searches for pathological images from a storage unit (not shown) and sends the searched pathological images to the display control device 5513 .
 表示制御装置5513は、ユーザから受け付けた病理画像の閲覧要求をサーバ5512に送る。そして、表示制御装置5513は、サーバ5512から受け付けた病理画像を、液晶、EL(Electro‐Luminescence)、CRT(Cathode Ray Tube)などを用いた表示装置5514に表示させる。なお、表示装置5514は、4Kや8Kに対応していてもよく、また、1台に限られず、複数台であってもよい。 The display control device 5513 sends to the server 5512 the pathological image viewing request received from the user. Then, the display control device 5513 displays the pathological image received from the server 5512 on the display device 5514 using liquid crystal, EL (Electro-Luminescence), CRT (Cathode Ray Tube), or the like. Note that the display device 5514 may be compatible with 4K or 8K, and is not limited to one device, and may be a plurality of devices.
 ここで、観察対象物が臓器の肉片等の固形物である場合、この観察対象物は、例えば、染色された薄切片であってよい。薄切片は、例えば、臓器等の検体から切出されたブロック片を薄切りすることで作製されてもよい。また、薄切りの際には、ブロック片がパラフィン等で固定されてもよい。 Here, if the observation target is a solid object such as a piece of flesh of an organ, the observation target may be, for example, a stained slice. A sliced piece may be produced, for example, by slicing a block piece excised from a specimen such as an organ. Also, when slicing, the block pieces may be fixed with paraffin or the like.
 薄切片の染色には、HE(Hematoxylin-Eosin)染色などの組織の形態を示す一般染色や、IHC(Immunohistochemistry)染色などの組織の免疫状態を示す免疫染色や蛍光免疫染色など、種々の染色が適用されてよい。その際、1つの薄切片が複数の異なる試薬を用いて染色されてもよいし、同じブロック片から連続して切り出された2以上の薄切片(隣接する薄切片ともいう)が互いに異なる試薬を用いて染色されてもよい。 Various types of staining are available for staining thin sections, including general staining that indicates the morphology of tissues such as HE (Hematoxylin-Eosin) staining, immunostaining that indicates the immune status of tissues such as IHC (Immunohistochemistry) staining, and fluorescent immunostaining. may be applied. At that time, one thin section may be stained with a plurality of different reagents, or two or more thin sections (also referred to as adjacent thin sections) continuously cut out from the same block piece may be stained with different reagents. may be dyed using
 顕微鏡5511は、低解像度で撮影するための低解像度撮影部と、高解像度で撮影するための高解像度撮影部とを含み得る。低解像度撮影部と高解像度撮影部とは、異なる光学系であってもよいし、同一の光学系であってもよい。同一の光学系である場合には、顕微鏡5511は、撮影対象に応じて解像度が変更されてもよい。 The microscope 5511 can include a low-resolution imaging unit for low-resolution imaging and a high-resolution imaging unit for high-resolution imaging. The low-resolution imaging section and the high-resolution imaging section may be different optical systems, or may be the same optical system. In the case of the same optical system, the resolution of the microscope 5511 may be changed according to the imaging target.
 観察対象物が収容されたガラススライドは、顕微鏡5511の画角内に位置するステージ上に載置される。顕微鏡5511は、まず、低解像度撮影部を用いて画角内の全体画像を取得し、取得した全体画像から観察対象物の領域を特定する。続いて、顕微鏡5511は、観察対象物が存在する領域を所定サイズの複数の分割領域に分割し、各分割領域を高解像度撮影部により順次撮影することで、各分割領域の高解像度画像を取得する。対象とする分割領域の切替えでは、ステージを移動させてもよいし、撮影光学系を移動させてもよいし、それら両方を移動させてもよい。また、各分割領域は、ガラススライドの意図しない滑りによる撮影漏れ領域の発生等を防止するために、隣接する分割領域との間で重複していてもよい。さらに、全体画像には、全体画像と患者とを対応付けておくための識別情報が含まれていてもよい。この識別情報は、例えば、文字列やQRコード(登録商標)等であってよい。 The glass slide containing the observation target is placed on the stage located within the angle of view of the microscope 5511. The microscope 5511 first acquires the entire image within the angle of view using the low-resolution imaging unit, and specifies the region of the observation object from the acquired entire image. Subsequently, the microscope 5511 divides the region where the observation target exists into a plurality of divided regions of a predetermined size, and sequentially captures each divided region by the high-resolution imaging unit, thereby obtaining a high-resolution image of each divided region. do. In switching the target divided area, the stage may be moved, the imaging optical system may be moved, or both of them may be moved. In addition, each divided area may overlap adjacent divided areas in order to prevent occurrence of an imaging omission area due to unintended slippage of the glass slide. Furthermore, the whole image may contain identification information for associating the whole image with the patient. This identification information may be, for example, a character string, a QR code (registered trademark), or the like.
 顕微鏡5511で取得された高解像度画像は、サーバ5512に入力される。サーバ5512は、各高解像度画像をより小さいサイズの部分画像(以下、タイル画像と称する)に分割する。例えば、サーバ5512は、1つの高解像度画像を縦横10×10個の計100個のタイル画像に分割する。その際、隣接する分割領域が重複していれば、サーバ5512は、テンプレートマッチング等の技法を用いて互いに隣り合う高解像度画像にステッチング処理を施してもよい。その場合、サーバ5512は、ステッチング処理により貼り合わされた高解像度画像全体を分割してタイル画像を生成してもよい。ただし、高解像度画像からのタイル画像の生成は、上記ステッチング処理の前であってもよい。 A high-resolution image acquired by the microscope 5511 is input to the server 5512. The server 5512 divides each high resolution image into smaller size partial images (hereinafter referred to as tile images). For example, the server 5512 divides one high-resolution image into a total of 100 tile images of 10×10. At that time, if adjacent divided areas overlap, the server 5512 may perform stitching processing on adjacent high-resolution images using a technique such as template matching. In that case, the server 5512 may generate tile images by dividing the entire high-resolution image stitched together by the stitching process. However, the generation of tile images from high-resolution images may be performed before the above stitching process.
 また、サーバ5512は、タイル画像をさらに分割することで、より小さいサイズのタイル画像を生成し得る。このようなタイル画像の生成は、最小単位として設定されたサイズのタイル画像が生成されるまで繰り返されてよい。 Also, the server 5512 can generate tile images of smaller sizes by further dividing the tile images. Such generation of tile images may be repeated until a tile image having the size set as the minimum unit is generated.
 このように最小単位のタイル画像を生成すると、サーバ5512は、隣り合う所定数のタイル画像を合成することで1つのタイル画像を生成するタイル合成処理を、全てのタイル画像に対して実行する。このタイル合成処理は、最終的に1つのタイル画像が生成されるまで繰り返され得る。このような処理により、各階層が1つ以上のタイル画像で構成されたピラミッド構造のタイル画像群が生成される。このピラミッド構造では、ある層のタイル画像とこの層とは異なる層のタイル画像との画素数は同じであるが、その解像度が異なっている。例えば、2×2個の計4つのタイル画像を合成して上層の1つのタイル画像を生成する場合、上層のタイル画像の解像度は、合成に用いた下層のタイル画像の解像度の1/2倍となっている。 After generating tile images of the minimum unit in this way, the server 5512 performs tile composition processing for generating a single tile image by compositing a predetermined number of adjacent tile images for all tile images. This tile synthesis process can be repeated until finally one tile image is generated. Through such processing, a pyramid-structured tile image group in which each layer is composed of one or more tile images is generated. In this pyramid structure, a tile image in one layer and a tile image in a different layer have the same number of pixels, but different resolutions. For example, when synthesizing a total of four 2×2 tile images to generate one upper layer tile image, the resolution of the upper layer tile image is half the resolution of the lower layer tile image used for synthesis. It has become.
 このようなピラミッド構造のタイル画像群を構築することによって、表示対象のタイル画像が属する階層次第で、表示装置に表示される観察対象物の詳細度を切り替えることが可能となる。例えば、最下層のタイル画像が用いられる場合には、観察対象物の狭い領域を詳細に表示し、上層のタイル画像が用いられるほど観察対象物の広い領域が粗く表示されるようにすることができる。 By constructing such a pyramid-structured tile image group, it is possible to switch the level of detail of the observation target displayed on the display device, depending on the hierarchy to which the tile image to be displayed belongs. For example, when the tile image of the lowest layer is used, a narrow area of the observation object is displayed in detail, and the wider the area of the observation object is displayed more coarsely as the tile image of the upper layer is used. can.
 生成されたピラミッド構造のタイル画像群は、例えば、各タイル画像を一意に識別可能な識別情報(タイル識別情報と称する)とともに、不図示の記憶部に記憶される。サーバ5512は、他の装置(例えば、表示制御装置5513や導出装置5540)からタイル識別情報を含むタイル画像の取得要求を受け付けた場合に、タイル識別情報に対応するタイル画像を他の装置へ送信する。 The generated pyramid-structured tile image group is stored in a storage unit (not shown) together with, for example, identification information (referred to as tile identification information) that can uniquely identify each tile image. When the server 5512 receives a tile image acquisition request including tile identification information from another device (for example, the display control device 5513 or the derivation device 5540), the server 5512 transmits the tile image corresponding to the tile identification information to the other device. do.
 なお、病理画像であるタイル画像は、焦点距離や染色条件等の撮影条件毎に生成されてもよい。撮影条件毎にタイル画像が生成される場合、特定の病理画像とともに、特定の撮影条件と異なる撮影条件に対応する他の病理画像であって、特定の病理画像と同一領域の他の病理画像を並べて表示してもよい。特定の撮影条件は、閲覧者によって指定されてもよい。また、閲覧者に複数の撮影条件が指定された場合には、各撮影条件に対応する同一領域の病理画像が並べて表示されてもよい。 Note that tile images, which are pathological images, may be generated for each imaging condition such as focal length and staining conditions. When tile images are generated for each imaging condition, a specific pathological image and other pathological images corresponding to imaging conditions different from the specific imaging condition and having the same region as the specific pathological image are generated. They may be displayed side by side. Specific shooting conditions may be specified by the viewer. Further, when a plurality of imaging conditions are designated by the viewer, pathological images of the same region corresponding to each imaging condition may be displayed side by side.
 また、サーバ5512は、ピラミッド構造のタイル画像群をサーバ5512以外の他の記憶装置、例えば、クラウドサーバ等に記憶してもよい。さらに、以上のようなタイル画像の生成処理の一部又は全部は、クラウドサーバ等で実行されてもよい。 In addition, the server 5512 may store the pyramid-structured tile image group in a storage device other than the server 5512, such as a cloud server. Furthermore, part or all of the tile image generation processing as described above may be executed by a cloud server or the like.
 表示制御装置5513は、ユーザからの入力操作に応じて、ピラミッド構造のタイル画像群から所望のタイル画像を抽出し、これを表示装置5514に出力する。このような処理により、ユーザは、観察倍率を変えながら観察対象物を観察しているような感覚を得ることができる。すなわち、表示制御装置5513は仮想顕微鏡として機能する。ここでの仮想的な観察倍率は、実際には解像度に相当する。 The display control device 5513 extracts a desired tile image from the pyramid-structured tile image group according to the user's input operation, and outputs it to the display device 5514 . Through such processing, the user can obtain the feeling of observing the observation object while changing the observation magnification. That is, the display control device 5513 functions as a virtual microscope. The virtual observation magnification here actually corresponds to the resolution.
 なお、高解像度画像の撮影方法は、どの様な方法を用いてもよい。ステージの停止、移動を繰り返しながら分割領域を撮影して高解像度画像を取得してもよいし、所定の速度でステージを移動しながら分割領域を撮影してストリップ上の高解像度画像を取得してもよい。また、高解像度画像からタイル画像を生成する処理は必須の構成ではなく、ステッチング処理により貼り合わされた高解像度画像全体の解像度を段階的に変化させることで、解像度が段階的に変化する画像を生成してもよい。この場合でも、広いエリア域の低解像度画像から狭いエリアの高解像度画像までを段階的にユーザに提示することが可能である。 Any method may be used to capture high-resolution images. A high-resolution image may be obtained by photographing the divided areas while the stage is repeatedly stopped and moved, or a high-resolution image on the strip may be obtained by photographing the divided areas while moving the stage at a predetermined speed. good too. In addition, the process of generating tile images from high-resolution images is not an essential configuration, and by changing the resolution of the entire high-resolution image stitched together by the stitching process, images with gradual changes in resolution can be created. may be generated. Even in this case, it is possible to present the user with a step-by-step process from a low-resolution image of a wide area to a high-resolution image of a narrow area.
 医療情報システム5530は、いわゆる電子カルテシステムであり、患者を識別する情報、患者の疾患情報、診断に用いた検査情報や画像情報、診断結果、処方薬などの診断に関する情報を記憶する。例えば、ある患者の観察対象物を撮影することで得られる病理画像は、一旦、サーバ5512を介して保存された後、表示制御装置5513によって表示装置5514に表示され得る。病理システム5510を利用する病理医は、表示装置5514に表示された病理画像に基づいて病理診断を行う。病理医によって行われた病理診断結果は、医療情報システム5530に記憶される。 The medical information system 5530 is a so-called electronic medical record system, and stores information related to diagnosis, such as patient identification information, patient disease information, test information and image information used for diagnosis, diagnosis results, and prescription drugs. For example, a pathological image obtained by photographing an observation target of a certain patient can be temporarily stored via the server 5512 and then displayed on the display device 5514 by the display control device 5513 . A pathologist using the pathological system 5510 makes a pathological diagnosis based on the pathological image displayed on the display device 5514 . Pathological diagnosis results made by the pathologist are stored in the medical information system 5530 .
 導出装置5540は、病理画像に対する解析を実行し得る。この解析には、機械学習によって作成された学習モデルを用いることができる。導出装置5540は、当該解析結果として、特定領域の分類結果や組織の識別結果等を導出してもよい。さらに、導出装置5540は、細胞情報、数、位置、輝度情報等の識別結果やそれらに対するスコアリング情報等を導出してもよい。導出装置5540によって導出されたこれらの情報は、診断支援情報として、病理システム5510の表示装置5514に表示されてもよい。 A derivation device 5540 may perform analysis on pathological images. A learning model created by machine learning can be used for this analysis. The derivation device 5540 may derive a classification result of a specific region, a tissue identification result, or the like as the analysis result. Further, the deriving device 5540 may derive identification results such as cell information, number, position, brightness information, and scoring information for them. These pieces of information derived by the derivation device 5540 may be displayed on the display device 5514 of the pathology system 5510 as diagnosis support information.
 なお、導出装置5540は、1台以上のサーバ(クラウドサーバを含む)等で構成されたサーバシステムであってもよい。また、導出装置5540は、病理システム5510内の例えば表示制御装置5513又はサーバ5512に組み込まれた構成であってもよい。すなわち、病理画像に対する各種解析は、病理システム5510内で実行されてもよい。 Note that the derivation device 5540 may be a server system configured with one or more servers (including cloud servers). Also, the derivation device 5540 may be configured to be incorporated in, for example, the display control device 5513 or the server 5512 in the pathological system 5510 . That is, various analyzes on pathological images may be performed within the pathological system 5510 .
 本開示に係る技術は、以上説明した構成のうち、先に説明したように、顕微鏡5511に好適に適用され得る。顕微鏡5511に本開示に係る技術を適用することにより、より鮮明な病理画像を得ることができるため、病変の診断をより正確に行うことが可能になる。 The technology according to the present disclosure can be preferably applied to the microscope 5511 as described above among the configurations described above. By applying the technology according to the present disclosure to the microscope 5511, it is possible to obtain a clearer pathological image, and thus it is possible to more accurately diagnose a lesion.
 なお、上記で説明した構成は、診断支援システムに限らず、デジタル撮像技術を利用する、共焦点顕微鏡や蛍光顕微鏡、ビデオ顕微鏡等の生物顕微鏡全般にも適用され得る。ここで、観察対象物は、培養細胞や受精卵、精子等の生体試料、細胞シート、三次元細胞組織等の生体材料、ゼブラフィッシュやマウス等の生体であってもよい。また、観察対象物は、ガラススライドに限らず、ウェルプレートやシャーレ等に保存された状態で観察されることもできる。 It should be noted that the configuration described above can be applied not only to the diagnostic support system, but also to general biological microscopes such as confocal microscopes, fluorescence microscopes, and video microscopes that use digital imaging technology. Here, the object to be observed may be a biological sample such as cultured cells, fertilized eggs, or sperm, a biological material such as a cell sheet or a three-dimensional cell tissue, or a living body such as a zebrafish or mouse. Further, the object to be observed is not limited to the glass slide, and can be observed while being stored in a well plate, petri dish, or the like.
 さらに、デジタル撮像技術を利用する顕微鏡を用いて取得した観察対象物の静止画像から動画像が生成されてもよい。例えば、所定期間連続的に撮影した静止画像から動画像を生成してもよいし、所定の間隔を空けて撮影した静止画像から画像シーケンスを生成してもよい。このように、静止画像から動画像を生成することで、がん細胞や神経細胞、心筋組織、精子等の拍動や伸長、遊走等の動きや培養細胞や受精卵の分裂過程など、観察対象物の動的な特徴を、機械学習を用いて解析することが可能となる。 Furthermore, a moving image may be generated from still images of the observed object acquired using a microscope that utilizes digital imaging technology. For example, a moving image may be generated from still images captured continuously over a predetermined period of time, or an image sequence may be generated from still images captured at predetermined intervals. In this way, by generating moving images from still images, it is possible to observe the movements of cancer cells, nerve cells, myocardial tissue, sperm, etc. such as pulsation, elongation, and migration, and the division process of cultured cells and fertilized eggs. It becomes possible to analyze the dynamic features of objects using machine learning.
 <<5. 補足>>
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
<<5. Supplement >>
Although the preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can conceive of various modifications or modifications within the scope of the technical idea described in the claims. are naturally within the technical scope of the present disclosure.
 なお、先に説明した本開示の実施形態においては、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。 It should be noted that, in the embodiments of the present disclosure described above, each component of each illustrated device is functionally conceptual, and does not necessarily need to be physically configured as illustrated. In other words, the specific form of distribution and integration of each device is not limited to the one shown in the figure, and all or part of them can be functionally or physically distributed and integrated in arbitrary units according to various loads and usage conditions. Can be integrated and configured.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 Also, the effects described in this specification are merely descriptive or exemplary, and are not limiting. In other words, the technology according to the present disclosure can produce other effects that are obvious to those skilled in the art from the description of this specification, in addition to or instead of the above effects.
 なお、本技術は以下のような構成も取ることができる。
(1)
 筐体と、当該筐体の底面にマウントされた複数の発光素子と、当該複数の発光素子の上方に設けられた蛍光体層と、を有する光源と、
 前記光源からの光を集光する光学系と、
 を備え、
 前記各発光素子のFWHMの角度をθとし、前記発光素子の1辺の長さをdとし、互いに隣り合う前記発光素子の間隔の最大値をPとし、前記発光素子と前記蛍光体層との間の距離をLとし、前記筐体内の媒体の屈折率をnとし、前記蛍光体層の膜厚をTとし、前記蛍光体層の屈折率をnとしたとき、前記複数の発光素子は、下記の数式(1)を満たすように設けられる、
 観察装置用照明装置。
Figure JPOXMLDOC01-appb-M000011
(2)
 前記複数の発光素子は、下記の数式(2)を満たすように設けられる、
 上記(1)に記載の観察装置用照明装置。
Figure JPOXMLDOC01-appb-M000012
(3)
 前記複数の発光素子は、下記の数式(3)を満たすように設けられる、
 上記(2)に記載の観察装置用照明装置。
Figure JPOXMLDOC01-appb-M000013
(4)
 前記複数の発光素子は、発光ダイオード又はレーザダイオードからなる、上記(1)~(3)のいずれか1つに記載の観察装置用照明装置。
(5)
 白色光又は単一光を出射する、上記(1)~(4)のいずれか1つに記載の観察装置用照明装置。
(6)
 前記光学系は、
 前記照明装置と試料との間に設けられた視野絞りと、
 前記視野絞りと前記試料との間に設けられた開口絞りと、
 前記照明装置と前記視野絞りとの間、前記視野絞りと前記開口絞りとの間、及び、前記開口絞りと前記試料との間に設けられた複数のレンズと、
 を有する、上記(1)~(5)のいずれか1つに記載の観察装置用照明装置。
(7)
 前記光学系は、
 前記照明装置と試料との間に設けられた開口絞りと、
 前記照明装置と前記開口絞りとの間、及び、前記開口絞りと前記試料との間に設けられた複数のレンズと、
 を有する、上記(1)~(5)のいずれか1つに記載の観察装置用照明装置。
(8)
 前記光学系は、
 前記照明装置と前記開口絞りとの間に設けられた光均一化部材をさらに有する、
 上記(6)又は(7)に記載の観察装置用照明装置。
(9)
 前記光均一化部材は、拡散板又はロッドインテグレータからなる、上記(8)に記載の観察装置用照明装置。
(10)
 前記蛍光体層は、少なくとも1種以上の蛍光体を含む、上記(1)~(9)のいずれか1つに記載の観察装置用照明装置。
(11)
 前記蛍光体層は、互いに異なる波長帯域の光を放射する複数種の前記蛍光体を含む、上記(10)に記載の観察装置用照明装置。
(12)
 前記光源は、生体試料に光を照射する、上記(1)~(11)のいずれか1つに記載の観察装置用照明装置。
(13)
 筐体と、当該筐体の底面にマウントされた複数の発光素子と、当該複数の発光素子の上方に設けられた蛍光体層と、を有する光源を備え、
 前記各発光素子のFWHMの角度をθとし、前記発光素子の1辺の長さをdとし、互いに隣り合う前記発光素子の間隔の最大値をPとし、前記発光素子と前記蛍光体層との間の距離をLとし、前記筐体内の媒体の屈折率をnとし、前記蛍光体層の膜厚をTとし、前記蛍光体層の屈折率をnとしたとき、前記複数の発光素子は、下記の数式(1)を満たすように設けられる、
 観察装置用照明装置。
Figure JPOXMLDOC01-appb-M000014
(14)
 筐体と、当該筐体の底面にマウントされた複数の発光素子と、当該複数の発光素子の上方に設けられた蛍光体層と、を有する光源と、
 前記光源からの光を集光する光学系と、
 を備え
 前記筐体は、前記底面と対向するように設けられ、前記複数の発光素子からの光が外部へ出射する開口面を有し、
 前記開口面の輝度分布において1つのピークが存在し、且つ、変曲点が存在しないように、前記複数の発光素子は前記底面に設けられている、
 観察装置用照明装置。
(15)
 筐体と、当該筐体の底面にマウントされた複数の発光素子と、当該複数の発光素子の上方に設けられた蛍光体層と、を有する光源と、
 前記光源からの光を集光する光学系と、
 を備え
 前記筐体は、前記底面と対向するように設けられ、前記複数の発光素子からの光が外部へ出射する開口面を有し、
 前記開口面において前記各発光素子の配光範囲の一部が互いに重なり合うように、前記複数の発光素子は前記底面に設けられている、
 観察装置用照明装置。
(16)
 光を照射する照明装置と
 試料を拡大する対物レンズと、
 を備え、
 前記照明装置は、
 筐体と、当該筐体の底面にマウントされた複数の発光素子と、当該複数の発光素子の上方に設けられた蛍光体層と、を有する光源と、
 前記光源からの光を集光する光学系と、
 を有し、
 前記各発光素子のFWHMの角度をθとし、前記発光素子の1辺の長さをdとし、互いに隣り合う前記発光素子の間隔の最大値をPとし、前記発光素子と前記蛍光体層との間の距離をLとし、前記筐体内の媒体の屈折率をnとし、前記蛍光体層の膜厚をTとし、前記蛍光体層の屈折率をnとしたとき、前記複数の発光素子は、下記の数式(1)を満たすように設けられる、
 観察装置。
Figure JPOXMLDOC01-appb-M000015
(17)
 接眼レンズをさらに備える、上記(16)に記載の観察装置。
(18)
 撮像素子からなる撮像部をさらに備える、上記(16)に記載の観察装置。
(19)
 生体試料を観察する観察装置と、当該観察装置を制御し、当該観察装置から得られた信号を処理するコンピュータとを含み、
 前記観察装置は、光を照射する照明装置と、前記生体試料を撮像する撮像素子からなる撮像部と、を有し、
 前記照明装置は、
 筐体と、当該筐体の底面にマウントされた複数の発光素子と、当該複数の発光素子の上方に設けられた蛍光体層と、を有する光源と、
 前記光源からの光を集光する光学系と、
 を備え、
 前記各発光素子のFWHMの角度をθとし、前記発光素子の1辺の長さをdとし、互いに隣り合う前記発光素子の間隔の最大値をPとし、前記発光素子と前記蛍光体層との間の距離をLとし、前記筐体内の媒体の屈折率をnとし、前記蛍光体層の膜厚をTとし、前記蛍光体層の屈折率をnとしたとき、前記複数の発光素子は、下記の数式(1)を満たすように設けられる、
 観察システム。
Figure JPOXMLDOC01-appb-M000016
Note that the present technology can also take the following configuration.
(1)
a light source having a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements;
an optical system that collects light from the light source;
with
The FWHM angle of each light emitting element is θ, the length of one side of the light emitting element is d, the maximum distance between the light emitting elements adjacent to each other is P, and the distance between the light emitting element and the phosphor layer is When L is the distance between the , provided to satisfy the following formula (1),
Illumination device for observation equipment.
Figure JPOXMLDOC01-appb-M000011
(2)
The plurality of light emitting elements are provided so as to satisfy the following formula (2),
The illumination device for an observation device according to (1) above.
Figure JPOXMLDOC01-appb-M000012
(3)
The plurality of light emitting elements are provided so as to satisfy the following formula (3),
The illumination device for an observation device according to (2) above.
Figure JPOXMLDOC01-appb-M000013
(4)
The illumination device for an observation device according to any one of (1) to (3) above, wherein the plurality of light emitting elements are light emitting diodes or laser diodes.
(5)
The observation device illumination device according to any one of the above (1) to (4), which emits white light or single light.
(6)
The optical system is
a field stop provided between the illumination device and the sample;
an aperture stop provided between the field stop and the sample;
a plurality of lenses provided between the illumination device and the field stop, between the field stop and the aperture stop, and between the aperture stop and the sample;
The illumination device for an observation device according to any one of (1) to (5) above, comprising:
(7)
The optical system is
an aperture stop provided between the illumination device and the sample;
a plurality of lenses provided between the illumination device and the aperture stop and between the aperture stop and the sample;
The illumination device for an observation device according to any one of (1) to (5) above, comprising:
(8)
The optical system is
further comprising a light homogenizing member provided between the illumination device and the aperture stop;
The illumination device for an observation device according to (6) or (7) above.
(9)
The illumination device for an observation device according to (8) above, wherein the light homogenizing member is composed of a diffusion plate or a rod integrator.
(10)
The illumination device for an observation device according to any one of (1) to (9) above, wherein the phosphor layer contains at least one or more phosphors.
(11)
The illumination device for an observation device according to (10) above, wherein the phosphor layer includes a plurality of types of phosphors that emit light in different wavelength bands.
(12)
The illumination device for an observation device according to any one of (1) to (11) above, wherein the light source irradiates the biological sample with light.
(13)
A light source having a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements,
The FWHM angle of each light emitting element is θ, the length of one side of the light emitting element is d, the maximum distance between the light emitting elements adjacent to each other is P, and the distance between the light emitting element and the phosphor layer is When L is the distance between the , provided to satisfy the following formula (1),
Illumination device for observation equipment.
Figure JPOXMLDOC01-appb-M000014
(14)
a light source having a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements;
an optical system that collects light from the light source;
The housing has an opening face provided to face the bottom face and through which light from the plurality of light emitting elements is emitted to the outside,
The plurality of light emitting elements are provided on the bottom surface so that the brightness distribution of the aperture surface has one peak and no inflection point exists.
Illumination device for observation equipment.
(15)
a light source having a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements;
an optical system that collects light from the light source;
The housing has an opening face provided to face the bottom face and through which light from the plurality of light emitting elements is emitted to the outside,
The plurality of light emitting elements are provided on the bottom surface such that a part of the light distribution range of each of the light emitting elements overlaps with each other on the opening surface.
Illumination device for observation equipment.
(16)
an illumination device that irradiates light, an objective lens that magnifies the sample, and
with
The lighting device
a light source having a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements;
an optical system that collects light from the light source;
has
The FWHM angle of each light emitting element is θ, the length of one side of the light emitting element is d, the maximum distance between the light emitting elements adjacent to each other is P, and the distance between the light emitting element and the phosphor layer is When L is the distance between the , provided to satisfy the following formula (1),
Observation device.
Figure JPOXMLDOC01-appb-M000015
(17)
The observation device according to (16) above, further comprising an eyepiece.
(18)
The observation device according to (16) above, further comprising an imaging unit made up of an imaging element.
(19)
an observation device for observing a biological sample, and a computer for controlling the observation device and processing signals obtained from the observation device,
The observation device has an illumination device that emits light and an imaging unit that includes an imaging element that images the biological sample,
The lighting device
a light source having a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements;
an optical system that collects light from the light source;
with
The FWHM angle of each light emitting element is θ, the length of one side of the light emitting element is d, the maximum distance between the light emitting elements adjacent to each other is P, and the distance between the light emitting element and the phosphor layer is When L is the distance between the , provided to satisfy the following formula (1),
observation system.
Figure JPOXMLDOC01-appb-M000016
  10  観察システム
  100  スキャナ
  102、102a  照明部
  104  センサ部
  106  制御部
  108  ステージ
  200  画像処理装置
  300  スライド
  400、400a  光学系
  402、402a、402b、402c  レンズ
  412  視野絞り
  414  開口絞り
  420  拡散板
  500、500a  光源
  510  筐体
  510a  底面
  510b  開口面
  512  媒体
  522  発光素子
  524  蛍光体層
REFERENCE SIGNS LIST 10 observation system 100 scanner 102, 102a illumination unit 104 sensor unit 106 control unit 108 stage 200 image processing device 300 slide 400, 400a optical system 402, 402a, 402b, 402c lens 412 field stop 414 aperture stop 420 diffusion plate 500, 500a light source 510 Housing 510a Bottom 510b Opening 512 Medium 522 Light Emitting Element 524 Phosphor Layer

Claims (19)

  1.  筐体と、当該筐体の底面にマウントされた複数の発光素子と、当該複数の発光素子の上方に設けられた蛍光体層と、を有する光源と、
     前記光源からの光を集光する光学系と、
     を備え、
     前記各発光素子のFWHMの角度をθとし、前記発光素子の1辺の長さをdとし、互いに隣り合う前記発光素子の間隔の最大値をPとし、前記発光素子と前記蛍光体層との間の距離をLとし、前記筐体内の媒体の屈折率をnとし、前記蛍光体層の膜厚をTとし、前記蛍光体層の屈折率をnとしたとき、前記複数の発光素子は、下記の数式(1)を満たすように設けられる、
     観察装置用照明装置。
    Figure JPOXMLDOC01-appb-M000001
    a light source having a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements;
    an optical system that collects light from the light source;
    with
    The FWHM angle of each light emitting element is θ, the length of one side of the light emitting element is d, the maximum distance between the light emitting elements adjacent to each other is P, and the distance between the light emitting element and the phosphor layer is When L is the distance between the , provided to satisfy the following formula (1),
    Illumination device for observation equipment.
    Figure JPOXMLDOC01-appb-M000001
  2.  前記複数の発光素子は、下記の数式(2)を満たすように設けられる、
     請求項1に記載の観察装置用照明装置。
    Figure JPOXMLDOC01-appb-M000002
    The plurality of light emitting elements are provided so as to satisfy the following formula (2),
    The illumination device for an observation device according to claim 1.
    Figure JPOXMLDOC01-appb-M000002
  3.  前記複数の発光素子は、下記の数式(3)を満たすように設けられる、
     請求項2に記載の観察装置用照明装置。
    Figure JPOXMLDOC01-appb-M000003
    The plurality of light emitting elements are provided so as to satisfy the following formula (3),
    3. The illumination device for an observation device according to claim 2.
    Figure JPOXMLDOC01-appb-M000003
  4.  前記複数の発光素子は、発光ダイオード又はレーザダイオードからなる、請求項1に記載の観察装置用照明装置。 The illumination device for an observation device according to claim 1, wherein the plurality of light emitting elements are composed of light emitting diodes or laser diodes.
  5.  白色光又は単一光を出射する、請求項1に記載の観察装置用照明装置。 The illumination device for an observation device according to claim 1, which emits white light or single light.
  6.  前記光学系は、
     前記照明装置と試料との間に設けられた視野絞りと、
     前記視野絞りと前記試料との間に設けられた開口絞りと、
     前記照明装置と前記視野絞りとの間、前記視野絞りと前記開口絞りとの間、及び、前記開口絞りと前記試料との間に設けられた複数のレンズと、
     を有する、請求項1に記載の観察装置用照明装置。
    The optical system is
    a field stop provided between the illumination device and the sample;
    an aperture stop provided between the field stop and the sample;
    a plurality of lenses provided between the illumination device and the field stop, between the field stop and the aperture stop, and between the aperture stop and the sample;
    The illumination device for an observation device according to claim 1, comprising:
  7.  前記光学系は、
     前記照明装置と試料との間に設けられた開口絞りと、
     前記照明装置と前記開口絞りとの間、及び、前記開口絞りと前記試料との間に設けられた複数のレンズと、
     を有する、請求項1に記載の観察装置用照明装置。
    The optical system is
    an aperture stop provided between the illumination device and the sample;
    a plurality of lenses provided between the illumination device and the aperture stop and between the aperture stop and the sample;
    The illumination device for an observation device according to claim 1, comprising:
  8.  前記光学系は、
     前記照明装置と前記開口絞りとの間に設けられた光均一化部材をさらに有する、
     請求項6に記載の観察装置用照明装置。
    The optical system is
    further comprising a light homogenizing member provided between the illumination device and the aperture stop;
    The illumination device for an observation device according to claim 6.
  9.  前記光均一化部材は、拡散板又はロッドインテグレータからなる、請求項8に記載の観察装置用照明装置。 The illumination device for an observation device according to claim 8, wherein the light homogenizing member comprises a diffusion plate or a rod integrator.
  10.  前記蛍光体層は、少なくとも1種以上の蛍光体を含む、請求項1に記載の観察装置用照明装置。 The illumination device for an observation device according to claim 1, wherein the phosphor layer contains at least one or more phosphors.
  11.  前記蛍光体層は、互いに異なる波長帯域の光を放射する複数種の前記蛍光体を含む、請求項10に記載の観察装置用照明装置。 11. The illumination device for an observation device according to claim 10, wherein said phosphor layer includes a plurality of types of said phosphors emitting light in different wavelength bands.
  12.  前記光源は、生体試料に光を照射する、請求項1に記載の観察装置用照明装置。 The illumination device for an observation device according to claim 1, wherein the light source irradiates the biological sample with light.
  13.  筐体と、当該筐体の底面にマウントされた複数の発光素子と、当該複数の発光素子の上方に設けられた蛍光体層と、を有する光源を備え、
     前記各発光素子のFWHMの角度をθとし、前記発光素子の1辺の長さをdとし、互いに隣り合う前記発光素子の間隔の最大値をPとし、前記発光素子と前記蛍光体層との間の距離をLとし、前記筐体内の媒体の屈折率をnとし、前記蛍光体層の膜厚をTとし、前記蛍光体層の屈折率をnとしたとき、前記複数の発光素子は、下記の数式(1)を満たすように設けられる、
     観察装置用照明装置。
    Figure JPOXMLDOC01-appb-M000004
    A light source having a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements,
    The FWHM angle of each light emitting element is θ, the length of one side of the light emitting element is d, the maximum distance between the light emitting elements adjacent to each other is P, and the distance between the light emitting element and the phosphor layer is When L is the distance between the , provided to satisfy the following formula (1),
    Illumination device for observation equipment.
    Figure JPOXMLDOC01-appb-M000004
  14.  筐体と、当該筐体の底面にマウントされた複数の発光素子と、当該複数の発光素子の上方に設けられた蛍光体層と、を有する光源と、
     前記光源からの光を集光する光学系と、
     を備え
     前記筐体は、前記底面と対向するように設けられ、前記複数の発光素子からの光が外部へ出射する開口面を有し、
     前記開口面の輝度分布において1つのピークが存在し、且つ、変曲点が存在しないように、前記複数の発光素子は前記底面に設けられている、
     観察装置用照明装置。
    a light source having a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements;
    an optical system that collects light from the light source;
    The housing has an opening face provided to face the bottom face and through which light from the plurality of light emitting elements is emitted to the outside,
    The plurality of light emitting elements are provided on the bottom surface so that the brightness distribution of the aperture surface has one peak and no inflection point exists.
    Illumination device for observation equipment.
  15.  筐体と、当該筐体の底面にマウントされた複数の発光素子と、当該複数の発光素子の上方に設けられた蛍光体層と、を有する光源と、
     前記光源からの光を集光する光学系と、
     を備え
     前記筐体は、前記底面と対向するように設けられ、前記複数の発光素子からの光が外部へ出射する開口面を有し、
     前記開口面において前記各発光素子の配光範囲の一部が互いに重なり合うように、前記複数の発光素子は前記底面に設けられている、
     観察装置用照明装置。
    a light source having a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements;
    an optical system that collects light from the light source;
    The housing has an opening face provided to face the bottom face and through which light from the plurality of light emitting elements is emitted to the outside,
    The plurality of light emitting elements are provided on the bottom surface such that a part of the light distribution range of each of the light emitting elements overlaps with each other on the opening surface.
    Illumination device for observation equipment.
  16.  光を照射する照明装置と
     試料を拡大する対物レンズと、
     を備え、
     前記照明装置は、
     筐体と、当該筐体の底面にマウントされた複数の発光素子と、当該複数の発光素子の上方に設けられた蛍光体層と、を有する光源と、
     前記光源からの光を集光する光学系と、
     を有し、
     前記各発光素子のFWHMの角度をθとし、前記発光素子の1辺の長さをdとし、互いに隣り合う前記発光素子の間隔の最大値をPとし、前記発光素子と前記蛍光体層との間の距離をLとし、前記筐体内の媒体の屈折率をnとし、前記蛍光体層の膜厚をTとし、前記蛍光体層の屈折率をnとしたとき、前記複数の発光素子は、下記の数式(1)を満たすように設けられる、
     観察装置。
    Figure JPOXMLDOC01-appb-M000005
    an illumination device that irradiates light, an objective lens that magnifies the sample, and
    with
    The lighting device
    a light source having a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements;
    an optical system that collects light from the light source;
    has
    The FWHM angle of each light emitting element is θ, the length of one side of the light emitting element is d, the maximum distance between the light emitting elements adjacent to each other is P, and the distance between the light emitting element and the phosphor layer is When L is the distance between the , provided to satisfy the following formula (1),
    Observation device.
    Figure JPOXMLDOC01-appb-M000005
  17.  接眼レンズをさらに備える、請求項16に記載の観察装置。 The viewing device according to claim 16, further comprising an eyepiece.
  18.  撮像素子からなる撮像部をさらに備える、請求項16に記載の観察装置。 The observation device according to claim 16, further comprising an imaging unit made up of an imaging element.
  19.  生体試料を観察する観察装置と、当該観察装置を制御し、当該観察装置から得られた信号を処理するコンピュータとを含み、
     前記観察装置は、光を照射する照明装置と、前記生体試料を撮像する撮像素子からなる撮像部と、を有し、
     前記照明装置は、
     筐体と、当該筐体の底面にマウントされた複数の発光素子と、当該複数の発光素子の上方に設けられた蛍光体層と、を有する光源と、
     前記光源からの光を集光する光学系と、
     を備え、
     前記各発光素子のFWHMの角度をθとし、前記発光素子の1辺の長さをdとし、互いに隣り合う前記発光素子の間隔の最大値をPとし、前記発光素子と前記蛍光体層との間の距離をLとし、前記筐体内の媒体の屈折率をnとし、前記蛍光体層の膜厚をTとし、前記蛍光体層の屈折率をnとしたとき、前記複数の発光素子は、下記の数式(1)を満たすように設けられる、
     観察システム。
    Figure JPOXMLDOC01-appb-M000006
    an observation device for observing a biological sample, and a computer for controlling the observation device and processing signals obtained from the observation device,
    The observation device has an illumination device that emits light and an imaging unit that includes an imaging element that images the biological sample,
    The lighting device
    a light source having a housing, a plurality of light emitting elements mounted on the bottom surface of the housing, and a phosphor layer provided above the plurality of light emitting elements;
    an optical system that collects light from the light source;
    with
    The FWHM angle of each light emitting element is θ, the length of one side of the light emitting element is d, the maximum distance between the light emitting elements adjacent to each other is P, and the distance between the light emitting element and the phosphor layer is When L is the distance between the , provided to satisfy the following formula (1),
    observation system.
    Figure JPOXMLDOC01-appb-M000006
PCT/JP2022/005575 2021-03-31 2022-02-14 Lighting device for observation device, observation device, and observation system WO2022209349A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-060432 2021-03-31
JP2021060432A JP2022156634A (en) 2021-03-31 2021-03-31 Lighting device for observation devices, observation device, and observation system

Publications (1)

Publication Number Publication Date
WO2022209349A1 true WO2022209349A1 (en) 2022-10-06

Family

ID=83455861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005575 WO2022209349A1 (en) 2021-03-31 2022-02-14 Lighting device for observation device, observation device, and observation system

Country Status (2)

Country Link
JP (1) JP2022156634A (en)
WO (1) WO2022209349A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337925A (en) * 2005-06-06 2006-12-14 Olympus Corp Lighting device of microscope
JP2018200332A (en) * 2017-05-25 2018-12-20 オリンパス株式会社 Illuminator for microscope, and microscope
JP2019531513A (en) * 2016-09-30 2019-10-31 深▲せん▼市玲涛光電科技有限公司Shenzhen Lt Optoelectronics Co.,Ltd. Light source module, display device, and light source module manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337925A (en) * 2005-06-06 2006-12-14 Olympus Corp Lighting device of microscope
JP2019531513A (en) * 2016-09-30 2019-10-31 深▲せん▼市玲涛光電科技有限公司Shenzhen Lt Optoelectronics Co.,Ltd. Light source module, display device, and light source module manufacturing method
JP2018200332A (en) * 2017-05-25 2018-12-20 オリンパス株式会社 Illuminator for microscope, and microscope

Also Published As

Publication number Publication date
JP2022156634A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
KR101349664B1 (en) Microscope with led illumination source
JP6416887B2 (en) Microscopic observation of tissue samples using structured illumination
CN105103190B (en) Full visual field glass slide multi-optical spectrum imaging system and method
CN105308949B (en) Image acquiring device, image acquiring method and recording medium
WO2010109811A1 (en) Observation device
JPS59160743A (en) Observing and quantitative device for phenomenon which can be detected by fluorescence
JP2021193459A (en) Low resolution slide imaging, slide label imaging and high resolution slide imaging using dual optical path and single imaging sensor
JP2014098575A (en) Image acquisition device and image acquisition method
JP2013044967A (en) Microscope system, specimen image forming method and program
US10342433B2 (en) Insitu diagnostic tool for digital pathology
CN103168265A (en) Imaging systems and associated methods thereof
WO2022209349A1 (en) Lighting device for observation device, observation device, and observation system
WO2022209262A1 (en) Lighting device for biological specimen observation device, biological specimen observation device, lighting device for observation device, and observation system
WO2022050109A1 (en) Image processing device, image processing method, and image processing system
WO2022270015A1 (en) Biological specimen observation device and biological specimen observation system
WO2022202233A1 (en) Information processing device, information processing method, information processing system and conversion model
WO2022259647A1 (en) Information processing device, information processing method, and microscope system
US11335454B2 (en) Biopsy device for digital pathology and artificial intelligent analytics
WO2023248954A1 (en) Biological specimen observation system, biological specimen observation method, and dataset creation method
WO2022138254A1 (en) Glass slide storage rack, slide storage, and glass slide imaging system
WO2023157755A1 (en) Information processing device, biological specimen analysis system, and biological specimen analysis method
US20230085045A1 (en) Microscope for high-resolution and specific analysis of biological substances, and method of analysis
WO2023157756A1 (en) Information processing device, biological sample analysis system, and biological sample analysis method
WO2021220857A1 (en) Image processing device, image processing method, and image processing system
WO2021157397A1 (en) Information processing apparatus and information processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779577

Country of ref document: EP

Kind code of ref document: A1