WO2022209262A1 - Lighting device for biological specimen observation device, biological specimen observation device, lighting device for observation device, and observation system - Google Patents

Lighting device for biological specimen observation device, biological specimen observation device, lighting device for observation device, and observation system Download PDF

Info

Publication number
WO2022209262A1
WO2022209262A1 PCT/JP2022/004051 JP2022004051W WO2022209262A1 WO 2022209262 A1 WO2022209262 A1 WO 2022209262A1 JP 2022004051 W JP2022004051 W JP 2022004051W WO 2022209262 A1 WO2022209262 A1 WO 2022209262A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological sample
light
light source
optical filter
observation
Prior art date
Application number
PCT/JP2022/004051
Other languages
French (fr)
Japanese (ja)
Inventor
航 松井
智之 大木
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2022209262A1 publication Critical patent/WO2022209262A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements

Definitions

  • the present disclosure relates to an illumination device for a biological sample observation device, a biological sample observation device, an illumination device for an observation device, and an observation system.
  • Lamp light sources (halogen lamps and xenon lamps) were widely used as light sources for lighting equipment for observing pathological specimens due to their good color rendering properties and high brightness. However, since such a lamp light source has a short life and thus requires a running cost, a white LED (Light Emitting Diode) light source has come to be used in recent years.
  • a white LED Light Emitting Diode
  • the present disclosure proposes an illuminating device for a biological sample observation device, a biological sample observation device, an illuminating device for an observation device, and an observation system that can suppress color temperature changes due to individual differences and aging deterioration.
  • a light source for irradiating a biological sample with light the light source and the an optical filter provided between the biological sample and the biological sample, wherein the optical filter transmits the fluorescence and cuts at least part of the excitation light having a shorter wavelength than the fluorescence.
  • An illumination device for a viewing device is provided.
  • a biological sample observation apparatus including an illumination device for illuminating a biological sample, wherein the illumination device includes a plurality of light-emitting elements, and fluorescence emitted from the plurality of light-emitting elements by absorbing excitation light emitted from the plurality of light-emitting elements. and a light source for irradiating the biological sample with light; and an optical filter provided between the light source and the biological sample, wherein the optical filter transmits the fluorescence. and cuts at least part of the excitation light having a shorter wavelength than the fluorescence.
  • a light source that includes a plurality of light emitting elements and a phosphor layer that absorbs excitation light from the plurality of light emitting elements and emits fluorescence, and irradiates a sample with light; an optical filter provided between the sample and the sample, wherein the optical filter transmits the fluorescence and cuts at least part of the excitation light having a shorter wavelength than the fluorescence.
  • a lighting device is provided.
  • an observation device that observes a biological sample, and a computer that controls the observation device and processes signals obtained from the observation device, the observation device includes a plurality of light emitting elements and , a phosphor layer that absorbs the excitation light from the plurality of light emitting elements and emits fluorescence, a light source that irradiates the biological sample with light, and an optical device provided between the light source and the biological sample Observation comprising a filter and an imaging unit for imaging the biological sample, wherein the optical filter transmits the fluorescence and cuts at least part of the excitation light having a shorter wavelength than the fluorescence.
  • a system is provided.
  • FIG. 1 is a block diagram showing a configuration example of an observation system 10 according to an embodiment of the present disclosure
  • FIG. 2 is a diagram showing a configuration example of an illumination unit 102 shown in FIG. 1
  • FIG. 3 is a diagram showing a configuration example of a light source 500 shown in FIG. 2
  • FIG. FIG. 5 is a diagram showing a configuration example of a light source 500a according to a comparative example
  • FIG. 5 is a diagram showing a spectrum distribution of emitted light from a light source 500a according to a comparative example
  • FIG. 5 is a diagram showing differences in spectral distribution of emitted light due to individual differences in a light source 500a according to a comparative example
  • FIG. 5 is a diagram showing changes in spectrum distribution of radiated light due to aged deterioration of a light source 500a according to a comparative example; 1 is a diagram showing a configuration example of a light source 500 according to an embodiment of the present disclosure; FIG. FIG. 5 shows a spectral distribution of emitted light from a light source 500 according to an embodiment of the present disclosure; 4A and 4B are diagrams showing transmittance characteristics of an optical filter 420 according to an embodiment of the present disclosure; 1 is a diagram (part 1) showing a configuration example of an optical system 400 according to an embodiment of the present disclosure; FIG. FIG. 2 is a diagram (part 2) showing a configuration example of an optical system 400 according to an embodiment of the present disclosure; FIG.
  • FIG. 2 is a diagram (Part 1) showing the spectral distribution of illumination light from the illumination unit 102 according to the embodiment of the present disclosure
  • FIG. 5 is a diagram showing differences in spectral distribution of emitted light due to individual differences in the light source 500 according to the embodiment of the present disclosure
  • FIG. 2 is a diagram (part 2) showing the spectral distribution of illumination light from the illumination unit 102 according to the embodiment of the present disclosure
  • FIG. 5 is a diagram showing changes in the spectral distribution of emitted light due to aging of the light source 500 according to an embodiment of the present disclosure
  • FIG. 3 is a diagram (Part 3) showing the spectral distribution of illumination light from the illumination unit 102 according to the embodiment of the present disclosure
  • FIG. 10 is a diagram showing transmittance characteristics of an optical filter 420 according to a modified example of the embodiment of the present disclosure; It is a figure which shows roughly the whole structure of a microscope system. It is a figure which shows the example of an imaging system. It is a figure which shows the example of an imaging system. 1 is a block diagram showing an example of a schematic configuration of a diagnostic support system; FIG.
  • a tissue section or cell that is part of a tissue obtained from a living body (eg, human body, plant, etc.) is referred to as a biological sample.
  • the biological sample described below may be subjected to various staining as necessary.
  • the biological sample does not have to be dyed in various ways.
  • staining includes not only general staining represented by HE (hematoxylin-eosin) staining, Giemsa staining or Papanicolaou staining, but also periodic acid-Schiff (PAS) staining used when focusing on a specific tissue. and fluorescent staining such as FISH (Fluorescence In-Situ Hybridization) and enzyme antibody method.
  • FIG. 1 is a block diagram showing a configuration example of an observation system 10 according to an embodiment of the present disclosure.
  • the observation system 10 according to this embodiment is a scanner system that digitally photographs a slide 300 on which a biological sample (for example, cell tissue or the like) is mounted.
  • a biological sample for example, cell tissue or the like
  • an observation system 10 can include a scanner (observation device) 100 and an image processing device 200 .
  • the scanner 100 and the image processing apparatus 200 may be communicatively connected to each other via various wired or wireless communication networks.
  • the number of scanners 100 and image processing devices 200 included in the observation system 10 according to the present embodiment is not limited to the number illustrated in FIG. 1, and may include more.
  • the observation system 10 according to this embodiment may include other servers, devices, and the like (not shown). Below, an outline of each device included in the observation system 10 according to the present embodiment will be described.
  • the scanner 100 irradiates the slide 300 of the biological sample placed on the stage 108 of the scanner 100 with predetermined illumination light, and emits light transmitted through the slide 300 or light emitted from the slide 300. can be photographed (imaged).
  • the scanner 100 can be a microscope including a magnifying glass (not shown) and a digital camera (not shown) that can magnify and photograph a biological sample.
  • the scanner 100 may be implemented by any device having a photographing function, such as a smartphone, tablet, game machine, or wearable device.
  • the scanner 100 is driven and controlled by an image processing device 200, which will be described later, and the image captured by the scanner 100 is stored in the image processing device 200, for example. A detailed configuration of the scanner 100 will be described later.
  • the image processing device 200 is a device having a function of controlling the scanner 100 and processing an image (signal) captured by the scanner 100 . Specifically, the image processing apparatus 200 controls the scanner 100 to capture a digital image of the biological sample, and performs predetermined image processing on the obtained digital image.
  • the image processing device 200 is realized by any device having a control function and an image processing function, such as a PC (Personal Computer), a tablet, a smartphone, or the like.
  • the scanner 100 and the image processing device 200 may be integrated devices, that is, they may not be realized by a single device. Further, in this embodiment, the scanner 100 and the image processing apparatus 200 described above may be realized by a plurality of devices that are connected via various wired or wireless communication networks and cooperate with each other. Furthermore, the image processing apparatus 200 described above can be realized by, for example, a hardware configuration of a computer described later.
  • the scanner 100 can mainly have an illumination section (illumination device) 102, a sensor section (imaging section) 104, a control section 106, and a stage . Each functional block of the scanner 100 will be sequentially described below.
  • the illumination unit 102 is provided on the side of the stage 108 opposite to the slide placement surface on which the slide 300 can be placed, and irradiates the slide 300 of the biological sample with illumination light under the control of the control unit 106, which will be described later. It is a lighting device that can Also, the illumination unit 102 may have, for example, a lens (optical system) (not shown) that collects the illumination light emitted from the illumination unit 102 and guides it to the slide 300 on the stage 108 . A detailed configuration of the illumination unit 102 will be described later.
  • the sensor unit 104 is provided on the side of the slide arrangement surface of the stage 108, and is a color sensor that detects, for example, red (R), green (G), and blue (B) light, which are the three primary colors. More specifically, the sensor unit 104 can have, for example, an objective lens (not shown) and an imaging element (not shown). Then, the sensor unit 104 can digitally photograph (image) the biological sample and output the photographed digital image to the image processing apparatus 200 under the control of the control unit 106 to be described later.
  • the objective lens (not shown) is provided on the side of the slide arrangement surface of the stage 108, and makes it possible to magnify and photograph the biological sample. That is, the transmitted light transmitted through the slide 300 arranged on the stage 108 is condensed by the objective lens, and the imaging element (illustrated omitted).
  • the imaging device (not shown) has a photographing range having a predetermined horizontal width and vertical width on the slide arrangement surface of the stage 108 according to the pixel size of the imaging device and the magnification of the objective lens (not shown). An image is formed.
  • the imaging range described above is sufficiently narrower than the imaging range of the imaging element.
  • the imaging element can be realized by an imaging element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the sensor unit 104 may directly photograph the biological sample without using an objective lens or the like, or may photograph the biological sample via an objective lens or the like, and is not particularly limited. do not have.
  • the control unit 106 can comprehensively control the operation of the scanner 100, and includes processing circuits realized by, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. .
  • the control unit 106 can control the lighting unit 102 and the sensor unit 104 described above. Further, the controller 106 may control a stage drive mechanism (not shown) that moves the stage 108 in various directions.
  • control unit 106 may control the number of shots N and the shooting time of the sensor unit 104 according to commands output from the image processing device 200 . More specifically, the control unit 106 may control the sensor unit 104 to intermittently perform imaging N times at predetermined intervals. Also, the control unit 106 may control the wavelength, irradiation intensity, or irradiation time of the illumination light emitted from the illumination unit 102 . Furthermore, the control unit 106 controls a stage drive mechanism (not shown) that moves the stage 108 in various directions according to the region of interest so that a preset region of interest (ROI) is imaged. good too.
  • ROI region of interest
  • region of interest as used herein means a region (target region) of a biological sample that a user pays attention to for analysis or the like.
  • the stage 108 is a mounting table on which the slide 300 is mounted. Further, the stage 108 may be provided with a stage drive mechanism (not shown) for moving the stage 108 in various directions. For example, by controlling the stage drive mechanism, the stage 108 is freely moved in a direction parallel to the slide arrangement surface (X-axis-Y-axis direction) and in a direction orthogonal to the slide arrangement surface (Z-axis direction). be able to. Further, in this embodiment, the stage 108 may be provided with a sample transport device (not shown) that transports the slide 300 to the stage 108 . By providing such a transport device, the slide 300 to be photographed can be automatically placed on the stage 108, and the replacement of the slide 300 can be automated.
  • FIG. 2 is a diagram showing a configuration example of the lighting unit 102 shown in FIG.
  • the illumination unit 102 includes a plurality of lenses to irradiate a slide 300 on which a biological sample such as a pathological specimen is mounted with illumination light that is uniform and has high color rendering properties. It includes an optical system 400 including 402 and the like, and a light source 500 . Details of each block of the illumination unit 102 will be described below.
  • the optical system 400 is a Koehler illumination composed of lenses 402a, 402b, and 402c, a field stop 412, and an aperture stop 414.
  • the focus of the condenser lens passes through the condenser lens (lens 402a in FIG. 2) and the relay lens (lens 402b in FIG. 2) to the light source (
  • the condenser lens, condenser lens, and relay lens are arranged so as to coincide with the point where the image of the light source 500) is formed, and furthermore, the aperture stop 414 is arranged at the coincident point.
  • the condenser lens and the relay lens are arranged so that the focal point of the relay lens coincides with the point where the image of the object is formed through the condenser lens, and the field stop 412 is arranged between the condenser lens and the relay lens. be done.
  • Such Koehler illumination not only irradiates uniform light but also does not directly irradiate the light from the light source, so the distance between the subject and the light source can be increased. The impact can be suppressed. Further, in Koehler illumination, the magnification can be adjusted by adjusting the lens or the like, so the light source can be made small.
  • a field stop 412 is provided above the lens 402a and can adjust the illumination range. Furthermore, since the field stop 412 cuts unnecessary light, it is possible to suppress the occurrence of flare, ghost, etc., and obtain a clear field of view. Also, the lens 402b is provided above the field stop 412 and can converge the substantially parallel light. An aperture stop 414 is provided above the lens 402b and can adjust the brightness. Furthermore, the lens 402c is provided above the aperture stop 414, and can make the condensed light into substantially parallel light again.
  • optical system 400 is not limited to the Kohler illumination as described above, and may be critical illumination that does not include the condenser lens 402c.
  • the light source 500 is a white LED (Light Emitting Diode) lighting device that emits white light. A detailed configuration of the light source 500 will be described later.
  • FIG. 3 is a diagram showing a configuration example of the light source 500 shown in FIG.
  • the light source 500 has a housing 510, a plurality of LED chips (light emitting elements) 522, and a phosphor layer 524, as shown in FIG. Details of each block of the light source 500 will be described below.
  • the housing 510 has an open top surface, and a plurality of LED chips 522 are mounted on the inner side of the bottom surface (substrate) facing the top surface.
  • the LED chip 522 is a diode that emits light when a voltage is applied, and includes an electrode (not shown) provided on a semiconductor substrate (not shown), a light emitting layer (not shown), and the like. Furthermore, the light source 500 preferably has multiple LED chips 522 to increase brightness. Details of the LED chip 522 according to the present embodiment will be described later.
  • the phosphor layer 524 is provided above the plurality of LED chips 522 and can absorb excitation light from the LED chips 522 and emit fluorescence in a wavelength range different from that of the excitation light.
  • the phosphor layer 524 contains one or more kinds of phosphors, and preferably contains plural kinds of phosphors in order to improve the color rendering properties. In addition, a plurality of types of phosphors emit light in different wavelength ranges. The details of the phosphor layer 524 according to this embodiment will be described later.
  • FIG. 4 is a diagram showing a configuration example of a light source 500a according to a comparative example
  • FIG. 5 is a diagram showing a spectral distribution of emitted light from the light source 500a according to a comparative example
  • FIG. 6 is a diagram showing differences in spectral distribution of radiated light due to individual differences in the light source 500a according to the comparative example
  • FIG. It is a figure which shows the change of.
  • the comparative example means the lighting unit 102 and the light source 500 that were repeatedly studied by the present inventors before the embodiment of the present disclosure.
  • a pathological diagnosis method for definitive diagnosis of a disease a method has been proposed in which a pathological specimen is imaged by the scanner 100, the image is digitized and displayed, and the image is referred to for pathological diagnosis.
  • the illumination unit 102 of the scanner 100 for performing pathological diagnosis has a color-rendering property for the entire observation area of the pathological specimen so that information necessary for diagnosis is not overlooked in order to appropriately perform a pathological diagnosis.
  • Illumination light having a high optical spectrum for example, a Color Rendering Index (CRI) of 90 or higher
  • CRI Color Rendering Index
  • the color rendering properties (color shades) of the illumination unit 102 are directly related to how pathological specimens are viewed, and are therefore a very important factor in pathological diagnosis.
  • Color rendering refers to the properties of a lighting device, etc., that affect how the color of an object appears when the lighting device, etc. irradiates light onto the object. It is said that it is preferable to be close to the direction. More specifically, the color rendering property is indicated by an index called CRI.
  • CRI is 100 in sunlight, and CRI approaches 100 as the appearance of an object is closer to that in sunlight.
  • lamp light sources halogen lamps and xenon lamps
  • halogen lamps and xenon lamps have been widely used as the light source 500 of the illumination unit 102 due to their good color rendering properties and high luminance.
  • a lamp light source has a short life and thus requires high running costs. Therefore, in recent years, white LED light sources have come to be used.
  • a light source 500a according to a comparative example that has been studied until now has excitation light (an arrow corresponds), and the fluorescence emitted from the phosphor layer 524a (specifically, including a yellow phosphor that emits yellow light) that has absorbed the excitation light (corresponds to the short arrow shown in the figure) Mixed white light can be emitted.
  • the radiated light emitted from the light source 500a according to the comparative example exhibits a spectral distribution as shown in FIG.
  • the light source 500a according to the comparative example emits excitation light with a peak wavelength of around 450 nm and fluorescent light with a wavelength range of about 500 nm to about 650 nm.
  • the CRI of the light source 500a according to the comparative example is about 70.
  • the color temperature of the light source 500a is reduced to about 100K.
  • the peak wavelength (450 nm ⁇ 5 nm) of the excitation light varies due to manufacturing variations (individual differences) of the LED chips 522a. It is 6510K (median value 6652K), and the maximum difference is 100K or more.
  • the intensity of the excitation light component (peak wavelength 450 nm) changes. It has been found that a degree of color temperature variation occurs. Specifically, as shown in FIG. 7, due to aging, the range of color temperature variation is from 5812K (aging deterioration of the LED chip 522) to 7440K (aging deterioration of the phosphor) (initial value 6652K). A difference of several thousand K or more will exist.
  • the present inventors diligently studied the light source 500 in such a situation and independently obtained the knowledge that the difference in color temperature of the light source 500 is mainly due to the change in the excitation light component. Based on such findings, the present inventors came up with the idea of using an optical filter that appropriately cuts the excitation light component. According to the embodiments of the present disclosure created by the present inventors, by using such an optical filter, it is possible to reduce the effects of changes in the components of the excitation light. can be obtained. Hereinafter, the details of the embodiments of the present disclosure created by the present inventors will be sequentially described.
  • FIG. 8 is a diagram showing a configuration example of the light source 500 according to this embodiment
  • FIG. 9 is a diagram showing a spectral distribution of emitted light from the light source 500 according to this embodiment.
  • the light source 500 according to this embodiment is a lighting device that emits white light, and has a CRI of 90 or higher.
  • the light source 500 has a housing 510, a plurality of LED chips (light emitting elements) 522, and a phosphor layer 524, as shown in FIG. Details of each block of the light source 500 according to the present embodiment will be described below.
  • the housing 510 has an open top surface, and an LED chip 522 is mounted on the inner side of the bottom surface (substrate) facing the top surface, as in the comparative example described above.
  • the LED chip 522 is a diode that emits light when a voltage is applied, and includes an electrode (not shown) and a light emitting layer (not shown) provided on a semiconductor substrate (not shown). Furthermore, the light source 500 according to this embodiment preferably has a plurality of LED chips 522 to increase brightness.
  • the LED chip 522 emits excitation light having a peak wavelength of 425 nm or less, which is a wavelength band from violet to blue-violet ( corresponding to the thick arrow).
  • the LED chip 522 emits excitation light with a peak wavelength of 420 nm.
  • the LED chip 522 preferably emits excitation light that does not easily affect the color rendering properties of the light source 500, and has a wavelength band separate from the wavelength band of fluorescence emitted from the phosphor layer 524 described later. It is preferable to emit excitation light with
  • the phosphor layer 524 is provided above the plurality of LED chips 522, as shown in FIG. can radiate.
  • the phosphor layer 524 includes a plurality of phosphors (not shown) that emit fluorescence in different wavelength ranges. For example, each phosphor emits red light, green light, and blue light. , respectively (corresponding to the thin arrows in FIG. 8).
  • the radiated light emitted from the light source 500 exhibits a spectral distribution as shown in FIG. More specifically, the light source 500 emits excitation light with a peak wavelength of 420 nm and fluorescent light with a wavelength band from about 450 nm to about 650 nm, which is longer than the excitation light.
  • FIG. 10 is a diagram showing transmittance characteristics of the optical filter 420 according to this embodiment
  • FIGS. 11 and 12 are diagrams showing configuration examples of the optical system 400 according to this embodiment.
  • an optical filter 420 (see FIGS. 11 and 12) is provided between the light source 500 and the slide 300 on which the biological sample is mounted.
  • the optical filter 420 can transmit fluorescence from the light source 500 and cut at least part of the excitation light from the light source 500 .
  • the excitation light has a wavelength band that is less likely to affect the color rendering properties and is separate from the wavelength band of the fluorescence emitted from the phosphor layer 524. Therefore, the optical filter 420 is can be transmitted, and the excitation light can be cut.
  • the optical filter 420 preferably cuts at least part of the peak wavelength component of the excitation light. It is preferable to have a transmittance of 50% or less at a wavelength longer than the peak wavelength by a predetermined wavelength. Furthermore, in the present embodiment, it is preferable that the predetermined wavelength is set to, for example, about 10 nm in consideration of the variation.
  • the optical filter 420 has, for example, a transmittance of 50% or less (specifically, 38.4%) at 430 nm, and transmits light with a wavelength longer than 430 nm. be able to.
  • an optical filter having such transmittance characteristics is a UV (ultraviolet) cut filter.
  • a lens 402a made of a collimating lens is provided on the side of the light source 500 of the optical system 400 included in the illumination unit 102 so that the light beam from the light source 500 becomes substantially parallel light.
  • the optical filter 420 can be provided between the light source 500 and the lens 402a, as shown in FIG. is narrower, an effect of suppressing chromatic aberration can be expected.
  • the optical filter 420 can be provided between the lens 402a and the slide 300, as shown in FIG. In such a case, the lens 402a narrows the incident angle distribution of the light rays incident on the optical filter 420, so that it is expected to suppress the influence of the difference in the transmission characteristics of the optical filter due to the difference in the incident angle of the light. can.
  • the optical system 400 shown in FIGS. 11 and 12 has the above-described Koehler illumination configuration, the present embodiment is not limited to such Koehler illumination, and may be critical illumination.
  • the optical system 400 includes an aperture stop 414 provided between the light source 500 and the slide 300 , between the light source 500 and the aperture stop 414 , and between the aperture stop 414 and the slide 300 .
  • Critical illumination with multiple lenses 402 is an illumination method that allows the image of the light source 500 to be directly focused on the observation area. can do. However, since the image of the light source 500 can be directly focused on the observation area, illumination unevenness is likely to occur, and the subject is likely to be affected by the heat from the light source 500 .
  • FIG. 13 is a diagram showing the spectral distribution of illumination light from the illumination unit 102 according to this embodiment.
  • FIG. 14 is a diagram showing differences in spectral distribution of radiated light due to individual differences in the light source 500 according to this embodiment, and FIG. 15 shows differences in spectral distribution of radiated light due to individual differences as shown in FIG.
  • FIG. 10 is a diagram showing a spectral distribution of illumination light from an illumination unit 102 when it exists.
  • FIG. 16 is a diagram showing changes in spectral distribution of radiated light due to aged deterioration of the light source 500 according to the present embodiment, and FIG. 17 shows spectral distribution of radiated light due to aged deterioration as shown in FIG.
  • FIG. 10 is a diagram showing the spectral distribution of illumination light from the illumination unit 102 when there is a change;
  • Illumination light emitted from the illumination unit 102 including the light source 500 and the optical filter 420 according to this embodiment exhibits a spectral distribution as shown in FIG. More specifically, the light source 500 cuts the excitation light component from the light source 500 by the optical filter 420 compared to the comparative example shown in FIG. Can be irradiated.
  • the peak wavelength of the excitation light varies within a range of 420 nm ⁇ 5 nm. think about. Even in such a case, by using the optical filter 420 according to the present embodiment, it is possible to suppress the influence of the variations described above. Specifically, the illumination light emitted from the illumination unit 102 according to the present embodiment exhibits a spectrum distribution as shown in FIG. The difference in color temperature can be suppressed to about 10K. On the other hand, in the comparative example (not using the optical filter 420 according to the present embodiment) described above, as shown in FIG. The color temperature range is from 6510K to 6690K (the median value is 6652K), and the maximum color temperature difference is 100K or more.
  • the intensity of the excitation light component decreases due to deterioration of the LED chip 522, and the deterioration of the phosphor makes it difficult for the excitation light component to be absorbed by the phosphor, reducing the intensity of the excitation light component. shown to do.
  • the optical filter 420 according to the present embodiment the influence of the aged deterioration can be suppressed.
  • the illumination light emitted from the illumination unit 102 according to the present embodiment exhibits a spectrum distribution as shown in FIG. deterioration) (initial value 4691K), and the difference in color temperature can be suppressed to about K.
  • the comparative example not using the optical filter 420 according to the present embodiment described above, as shown in FIG. ) to 7440K (degradation of phosphor over time) (initial value 6652K), and the difference in color temperature becomes several thousand K or more at maximum.
  • FIG. 18 is a diagram showing transmittance characteristics of an optical filter 420 according to a modification of this embodiment.
  • the optical filter 420 may have transmittance characteristics as shown in FIG. Specifically, as shown in FIG. 18, the optical filter 420 has a transmittance of 50% or less at 430 nm and can transmit light with wavelengths longer than 430 nm. Furthermore, the optical filter 420 has a transmittance of 50% or less (specifically 48.1%) at 700 nm.
  • an optical filter 420 having such transmittance characteristics may be a UV-IR (infrared) cut filter. Since the optical filter 420 according to this modification can also function as an IR filter for avoiding infrared light from entering the sensor unit 104, it has the advantage of suppressing an increase in the number of parts of the scanner 100 described above. have.
  • the illumination unit (illumination device) 102 is not limited to being applied to the scanner 100 as described above. may be used as an illumination device for an optical microscope (not shown). Further, the scanner 100 is not limited to being used in the observation system 10 as described above, and may be used alone.
  • observation targets are not limited to biological samples.
  • the above-described embodiments of the present disclosure are not limited to application to medical or research applications, and industrial microscopes and the like that require high-precision analysis using images. is not particularly limited as long as it is used for
  • a microscope system 5000 shown in FIG. 19 includes a microscope device 5100 , a control section 5110 and an information processing section 5120 .
  • the microscope device 5100 has a light irradiation section 5101 , an optical section 5102 and a signal acquisition section 5103 .
  • the microscope device 5100 may further have a sample placement section 5104 on which the biological sample S is placed. Note that the configuration of the microscope device is not limited to that shown in FIG. It may be used as the light irradiation unit 5101 . Further, the light irradiation section 5101 may be arranged such that the sample mounting section 5104 is sandwiched between the light irradiation section 5101 and the optical section 5102, and may be arranged on the side where the optical section 5102 exists, for example.
  • the microscope apparatus 5100 may be configured to be able to perform one or more of bright field observation, phase contrast observation, differential interference contrast observation, polarization observation, fluorescence observation, and dark field observation.
  • the microscope system 5000 may be configured as a so-called WSI (Whole Slide Imaging) system or a digital pathology imaging system, and can be used for pathological diagnosis.
  • Microscope system 5000 may also be configured as a fluorescence imaging system, in particular a multiplex fluorescence imaging system.
  • the microscope system 5000 may be used to perform intraoperative pathological diagnosis or remote pathological diagnosis.
  • the microscope device 5100 acquires data of the biological sample S obtained from the subject of the surgery, and transmits the data to the information processing unit 5120. and can be sent.
  • the microscope device 5100 can transmit the acquired data of the biological sample S to the information processing unit 5120 located in a place (another room, building, etc.) away from the microscope device 5100. .
  • the information processing section 5120 receives and outputs the data. Further, the user of the information processing section 5120 can make a pathological diagnosis based on the output data.
  • the biological sample S may be a sample containing a biological component.
  • the biological components may be tissues, cells, liquid components of a living body (blood, urine, etc.), cultures, or living cells (cardiomyocytes, nerve cells, fertilized eggs, etc.).
  • the biological sample may be a solid substance, a specimen fixed with a fixing reagent such as paraffin, or a solid substance formed by freezing.
  • the biological sample can be a section of the solid.
  • a specific example of the biological sample is a section of a biopsy sample.
  • the above biological sample may be one that has undergone processing such as staining or labeling.
  • the treatment may be staining for indicating the morphology of biological components or for indicating substances (surface antigens, etc.) possessed by biological components, such as HE (Hematoxylin-Eosin) staining, immunohistochemistry staining, and the like. can be mentioned.
  • the biological sample may have been subjected to the above treatment with one or more reagents, and the reagents may be fluorescent dyes, coloring reagents, fluorescent proteins, or fluorescently labeled antibodies.
  • the specimen may be one prepared from a tissue sample for the purpose of pathological diagnosis or clinical examination.
  • the specimen is not limited to the human body, and may be derived from animals, plants, or other materials.
  • the type of specimen used e.g., organs or cells, etc.
  • the type of target disease e.g., the type of target disease
  • the subject's attributes e.g., age, sex, blood type, race, etc.
  • the subject's lifestyle For example, eating habits, exercise habits, smoking habits, etc.
  • the specimens may be managed with identification information (one-dimensional or two-dimensional code such as bar code or QR code (registered trademark)) that allows each specimen to be identified.
  • the light irradiation unit 5101 is a light source for illuminating the biological sample S and an optical system for guiding the light irradiated from the light source to the specimen.
  • the light source may irradiate the biological sample with visible light, ultraviolet light, or infrared light, or a combination thereof.
  • the light source may be one or more of a halogen light source, a laser light source, an LED light source, a mercury light source, and a xenon light source.
  • a plurality of light source types and/or wavelengths may be used in fluorescence observation, and may be appropriately selected by those skilled in the art.
  • the light irradiation unit 5101 can have a transmissive, reflective, or episcopic (coaxial or lateral) configuration.
  • the optical section 5102 is configured to guide the light from the biological sample S to the signal acquisition section 5103 .
  • the optical unit 5102 can be configured to allow the microscope device 5100 to observe or image the biological sample S.
  • Optics 5102 may include an objective lens. The type of objective lens may be appropriately selected by a person skilled in the art according to the observation method.
  • the optical unit 5102 may include a relay lens for relaying the image magnified by the objective lens to the signal acquisition unit.
  • the optical section 5102 may further include optical components other than the objective lens and relay lens, eyepiece lens, phase plate, condenser lens, and the like.
  • the optical section 5102 may further include a wavelength separation section configured to separate light having a predetermined wavelength from the light from the biological sample S.
  • the wavelength separation section may be configured to selectively allow light of a predetermined wavelength or range of wavelengths to reach the signal acquisition section.
  • the wavelength separator may include, for example, one or more of a filter that selectively transmits light, a polarizing plate, a prism (Wollaston prism), and a diffraction grating.
  • the optical components included in the wavelength separation section may be arranged, for example, on the optical path from the objective lens to the signal acquisition section.
  • the wavelength separation unit is provided in the microscope device when fluorescence observation is performed, particularly when an excitation light irradiation unit is included.
  • the wavelength separator may be configured to separate fluorescent light from each other or white light and fluorescent light.
  • the signal acquisition unit 5103 can be configured to receive light from the biological sample S and convert the light into an electrical signal, particularly a digital electrical signal.
  • the signal acquisition unit 5103 may be configured to acquire data regarding the biological sample S based on the electrical signal.
  • the signal acquisition unit 5103 may be configured to acquire data of an image (image, particularly a still image, a time-lapse image, or a moving image) of the biological sample S. can be configured to acquire data for an image obtained by
  • the signal acquisition unit 5103 includes one or more imaging elements having a plurality of pixels arranged one-dimensionally or two-dimensionally, a CMOS (Complementary Metal Oxide Semiconductor), a CCD (Charge CoupLED Device), or the like.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge CoupLED Device
  • the signal acquisition unit 5103 may include an image sensor for acquiring a low-resolution image and an image sensor for acquiring a high-resolution image, or an image sensor for sensing for AF (Auto Focus) and the like and an image sensor for observation.
  • An imaging device for image output may also be included.
  • the image sensor includes a signal processing unit (CPU (Central Processing Unit) that performs signal processing using pixel signals from each pixel, a DSP (Digital Signal Processor), and one or two memories. above), and an output control unit that controls output of image data generated from the pixel signals and processed data generated by the signal processing unit.
  • the imaging device including the plurality of pixels, the signal processing section, and the output control section can preferably be configured as a one-chip semiconductor device.
  • the microscope system 5000 may further include an event detection sensor.
  • the event detection sensor includes a pixel that photoelectrically converts incident light, and can be configured to detect, as an event, a change in luminance of the pixel exceeding a predetermined threshold.
  • the event detection sensor may be asynchronous.
  • the control unit 5110 controls imaging by the microscope device 5100 .
  • the control unit 5110 can drive the movement of the optical unit 5102 and/or the sample placement unit 5104 to adjust the positional relationship between the optical unit 5102 and the sample placement unit 5104.
  • the control unit 5110 can move the optical unit 5102 and/or the sample mounting unit 5104 in a direction toward or away from each other (for example, the optical axis direction of the objective lens).
  • the control section 5110 may move the optical section 5102 and/or the sample placement section 5104 in any direction on a plane perpendicular to the optical axis direction.
  • the control unit 5110 may control the light irradiation unit 5101 and/or the signal acquisition unit 5103 for imaging control.
  • the sample mounting section 5104 may be configured such that the position of the biological sample S on the sample mounting section 5104 can be fixed, and may be a so-called stage.
  • the sample placement section 5104 can be configured to move the position of the biological sample S in the optical axis direction of the objective lens and/or in a direction perpendicular to the optical axis direction.
  • the information processing section 5120 can acquire data (such as imaging data) acquired by the microscope device 5100 from the microscope device 5100 .
  • the information processing section 5120 can perform image processing on captured data.
  • the image processing may include an unmixing process, in particular a spectral unmixing process.
  • the unmixing process is a process of extracting data of light components of a predetermined wavelength or wavelength range from the imaging data to generate image data, or removing data of light components of a predetermined wavelength or wavelength range from the imaging data. It can include processing and the like.
  • the image processing may include an autofluorescence separation process for separating the autofluorescence component and the dye component of the tissue section, and a fluorescence separation process for separating the wavelengths between dyes having different fluorescence wavelengths.
  • autofluorescence separation processing a process of removing an autofluorescence component from the image information of the other specimen using an autofluorescence signal extracted from one of a plurality of specimens having the same or similar properties may be performed.
  • the information processing section 5120 may transmit data for imaging control by the control section 5110, and the control section 5110 receiving the data may control imaging by the microscope apparatus 5100 according to the data.
  • the information processing section 5120 may be configured as an information processing device such as a general-purpose computer, and may have a CPU, RAM (Random Access Memory), and ROM (Read Only Memory).
  • the information processing section 5120 may be included in the housing of the microscope device 5100 or may be outside the housing.
  • Various processing or functions by the information processing section 5120 may be realized by a server computer or cloud connected via a network.
  • a method of imaging the biological sample S by the microscope device 5100 may be appropriately selected by a person skilled in the art according to the type of the biological sample S, the purpose of imaging, and the like. An example of the imaging method will be described below with reference to FIGS. 20 and 21.
  • FIG. 20 and 21 are diagrams showing examples of imaging methods.
  • the microscope device 5100 can first identify an imaging target region.
  • the imaging target region may be specified so as to cover the entire region in which the biological sample S exists, or a target portion of the biological sample S (a target tissue section, a target cell, or a target lesion where the target lesion exists). may be specified to cover the Next, the microscope device 5100 divides the imaging target region into a plurality of divided regions of a predetermined size, and the microscope device 5100 sequentially images each divided region. As a result, an image of each divided area is acquired.
  • the microscope device 5100 identifies an imaging target region R that covers the entire biological sample S. Then, the microscope device 5100 divides the imaging target region R into 16 divided regions. Then, the microscope device 5100 can image the divided region R1, and then any region included in the imaging target region R, such as a region adjacent to the divided region R1. Furthermore, the microscope device 5100 captures images of the divided areas until there are no unimaged divided areas. Note that the microscope device 5100 may also capture an area other than the imaging target area R based on the captured image information of the divided area. At this time, the positional relationship between the microscope device 5100 and the sample mounting section 5104 is adjusted in order to image the next divided area after imaging a certain divided area. The adjustment can be performed by moving the microscope device 5100, moving the sample placement section 5104, or moving both of them.
  • the imaging device that captures each divided area may be a two-dimensional imaging device (area sensor) or a one-dimensional imaging device (line sensor).
  • the signal acquisition unit 5103 may image each divided area via the optical unit 5102 .
  • the imaging of each divided region may be performed continuously while moving the microscope device 5100 and/or the sample placement unit 5104, or when imaging each divided region, the microscope device 5100 and/or Alternatively, the movement of the sample placement section 5104 may be stopped.
  • the imaging target region may be divided so that the divided regions partially overlap each other, or the imaging target region may be divided so that the divided regions do not overlap.
  • Each divided area may be imaged multiple times by changing imaging conditions such as focal length and/or exposure time.
  • the information processing section 5120 can stitch a plurality of adjacent divided regions to generate image data of a wider region. By performing the stitching process over the entire imaging target area, it is possible to obtain an image of a wider area of the imaging target area. Further, image data with lower resolution can be generated from the image of the divided area or the image subjected to the stitching process.
  • the microscope device 5100 can first identify an imaging target region.
  • the imaging target region may be specified so as to cover the entire region where the biological sample S is present, or a target portion (a target tissue section or a portion where target cells are present) of the biological sample S. may be specified to cover.
  • the microscope device 5100 scans a partial region (also referred to as a “divided scan region”) of the imaging target region in one direction (also referred to as a “scanning direction”) within a plane perpendicular to the optical axis. Take an image.
  • the microscope device 5100 scans the divided scan area next to the scan area. Then, the microscope device 5100 repeats these scanning operations until the entire imaging target region is imaged.
  • the microscope device 5100 identifies the region (gray portion) where the tissue section exists in the biological sample S as the imaging target region Sa. Then, the microscope device 5100 scans the divided scan area Rs in the imaging target area Sa in the Y-axis direction. After completing scanning of the divided scan region Rs, the microscope device 5100 next scans an adjacent divided scan region in the X-axis direction. The microscope device 5100 repeats this operation until scanning is completed for the entire imaging target area Sa.
  • the positional relationship between the microscope device 5100 and the sample placement section 5104 is adjusted for scanning each divided scan area and for imaging the next divided scan area after imaging a certain divided scan area.
  • the adjustment may be performed by moving the microscope device 5100, moving the sample placement section 5104, or moving both of them.
  • the imaging device that captures each divided scan area may be a one-dimensional imaging device (line sensor) or a two-dimensional imaging device (area sensor).
  • the signal acquisition unit 5103 may capture an image of each divided area via an enlarging optical system.
  • the imaging of each divided scan region may be performed continuously while moving the microscope device 5100 and/or the sample placement unit 5104 .
  • the imaging target area may be divided such that the divided scan areas partially overlap each other, or the imaging target area may be divided so that the divided scan areas do not overlap.
  • Each divided scan area may be imaged multiple times while changing imaging conditions such as focal length and/or exposure time.
  • the information processing section 5120 can stitch a plurality of adjacent divided scan regions to generate image data of a wider region. By performing the stitching process over the entire imaging target area, it is possible to obtain an image of a wider area of the imaging target area. Further, image data with lower resolution can be generated from images of divided scan regions or images subjected to stitching processing.
  • a diagnosis support system in which a doctor or the like observes cells and tissues collected from a patient and diagnoses a lesion.
  • This diagnosis support system may be a WSI (Whole Slide Imaging) system that diagnoses or supports diagnosis of lesions based on images acquired using digital pathology technology.
  • FIG. 22 is a diagram showing an example of a schematic configuration of a diagnostic support system 5500 to which the technology according to the present disclosure is applied.
  • the diagnostic support system 5500 includes one or more pathology systems 5510.
  • a medical information system 5530 and a derivation device 5540 may also be included.
  • Each of the one or more pathology systems 5510 is a system mainly used by pathologists, and is installed in laboratories and hospitals, for example.
  • Each pathology system 5510 may be installed in a different hospital, and each uses various networks such as WAN (Wide Area Network) (including the Internet), LAN (Local Area Network), public line network, and mobile communication network. It is connected to the medical information system 5530 and the derivation device 5540 via.
  • WAN Wide Area Network
  • LAN Local Area Network
  • public line network public line network
  • mobile communication network mobile communication network
  • Each pathology system 5510 includes a microscope (specifically, a microscope used in combination with digital imaging technology) 5511, a server 5512, a display control device 5513, and a display device 5514.
  • a microscope specifically, a microscope used in combination with digital imaging technology
  • server 5512 a server 5512
  • display control device 5513 a display device 5514.
  • the microscope 5511 has the function of an optical microscope, photographs an observation object contained in a glass slide, and acquires a pathological image, which is a digital image.
  • Observation objects are, for example, tissues and cells collected from a patient, and may be pieces of flesh of organs, saliva, blood, and the like.
  • microscope 5511 functions as scanner 30 shown in FIG.
  • the server 5512 stores and saves pathological images acquired by the microscope 5511 in a storage unit (not shown). Further, when receiving a viewing request from the display control device 5513 , the server 5512 searches for pathological images from a storage unit (not shown) and sends the searched pathological images to the display control device 5513 .
  • the display control device 5513 sends to the server 5512 the pathological image viewing request received from the user. Then, the display control device 5513 displays the pathological image received from the server 5512 on the display device 5514 using liquid crystal, EL (Electro-Luminescence), CRT (Cathode Ray Tube), or the like. Note that the display device 5514 may be compatible with 4K or 8K, and is not limited to one device, and may be a plurality of devices.
  • the observation target is a solid object such as a piece of flesh of an organ
  • the observation target may be, for example, a stained slice.
  • a sliced piece may be produced, for example, by slicing a block piece excised from a specimen such as an organ. Also, when slicing, the block pieces may be fixed with paraffin or the like.
  • staining thin sections including general staining that indicates the morphology of tissues such as HE (Hematoxylin-Eosin) staining, immunostaining that indicates the immune status of tissues such as IHC (Immunohistochemistry) staining, and fluorescent immunostaining.
  • general staining that indicates the morphology of tissues
  • immunostaining that indicates the immune status of tissues
  • IHC Immunohistochemistry
  • fluorescent immunostaining may be applied.
  • one thin section may be stained with a plurality of different reagents, or two or more thin sections (also referred to as adjacent thin sections) continuously cut out from the same block piece may be stained with different reagents. may be dyed using
  • the microscope 5511 can include a low-resolution imaging unit for low-resolution imaging and a high-resolution imaging unit for high-resolution imaging.
  • the low-resolution imaging section and the high-resolution imaging section may be different optical systems, or may be the same optical system. In the case of the same optical system, the resolution of the microscope 5511 may be changed according to the imaging target.
  • the glass slide containing the observation target is placed on the stage located within the angle of view of the microscope 5511.
  • the microscope 5511 first acquires the entire image within the angle of view using the low-resolution imaging unit, and specifies the region of the observation object from the acquired entire image. Subsequently, the microscope 5511 divides the region where the observation target exists into a plurality of divided regions of a predetermined size, and sequentially captures each divided region by the high-resolution imaging unit, thereby obtaining a high-resolution image of each divided region. do.
  • the stage may be moved, the imaging optical system may be moved, or both of them may be moved.
  • each divided area may overlap adjacent divided areas in order to prevent occurrence of an imaging omission area due to unintended slippage of the glass slide.
  • the whole image may contain identification information for associating the whole image with the patient. This identification information may be, for example, a character string, a QR code (registered trademark), or the like.
  • a high-resolution image acquired by the microscope 5511 is input to the server 5512.
  • the server 5512 divides each high resolution image into smaller size partial images (hereinafter referred to as tile images). For example, the server 5512 divides one high-resolution image into a total of 100 tile images of 10 ⁇ 10. At that time, if adjacent divided areas overlap, the server 5512 may perform stitching processing on adjacent high-resolution images using a technique such as template matching. In that case, the server 5512 may generate tile images by dividing the entire high-resolution image stitched together by the stitching process. However, the generation of tile images from high-resolution images may be performed before the stitching process.
  • the server 5512 can generate tile images of smaller sizes by further dividing the tile images. Such generation of tile images may be repeated until a tile image having the size set as the minimum unit is generated.
  • the server 5512 After generating tile images of the minimum unit in this way, the server 5512 performs tile composition processing for generating a single tile image by compositing a predetermined number of adjacent tile images for all tile images. This tile synthesis process can be repeated until finally one tile image is generated.
  • a pyramid-structured tile image group in which each layer is composed of one or more tile images is generated.
  • a tile image in one layer and a tile image in a different layer have the same number of pixels, but different resolutions. For example, when synthesizing a total of four 2 ⁇ 2 tile images to generate one upper layer tile image, the resolution of the upper layer tile image is half the resolution of the lower layer tile image used for synthesis. It has become.
  • the generated pyramid-structured tile image group is stored in a storage unit (not shown) together with, for example, identification information (referred to as tile identification information) that can uniquely identify each tile image.
  • identification information referred to as tile identification information
  • the server 5512 receives a tile image acquisition request including tile identification information from another device (for example, the display control device 5513 or the derivation device 5540), the server 5512 transmits the tile image corresponding to the tile identification information to the other device. do.
  • tile images which are pathological images
  • a specific pathological image and other pathological images corresponding to imaging conditions different from the specific imaging condition and having the same region as the specific pathological image are generated. They may be displayed side by side.
  • Specific shooting conditions may be specified by the viewer.
  • pathological images of the same region corresponding to each imaging condition may be displayed side by side.
  • the server 5512 may store the pyramid-structured tile image group in a storage device other than the server 5512, such as a cloud server. Furthermore, part or all of the tile image generation processing as described above may be executed by a cloud server or the like.
  • the display control device 5513 extracts a desired tile image from the pyramid-structured tile image group according to the user's input operation, and outputs it to the display device 5514 . Through such processing, the user can obtain the feeling of observing the observation object while changing the observation magnification. That is, the display control device 5513 functions as a virtual microscope. The virtual observation magnification here actually corresponds to the resolution.
  • a high-resolution image may be obtained by photographing the divided areas while the stage is repeatedly stopped and moved, or a high-resolution image on the strip may be obtained by photographing the divided areas while moving the stage at a predetermined speed. good too.
  • the process of generating tile images from high-resolution images is not an essential configuration, and by changing the resolution of the entire high-resolution image stitched together by the stitching process, images with gradual changes in resolution can be created. may be generated. Even in this case, it is possible to present the user with a step-by-step process from a low-resolution image of a wide area to a high-resolution image of a narrow area.
  • the medical information system 5530 is a so-called electronic medical record system, and stores information related to diagnosis, such as patient identification information, patient disease information, test information and image information used for diagnosis, diagnosis results, and prescription drugs.
  • information related to diagnosis such as patient identification information, patient disease information, test information and image information used for diagnosis, diagnosis results, and prescription drugs.
  • a pathological image obtained by photographing an observation target of a certain patient can be temporarily stored via the server 5512 and then displayed on the display device 5514 by the display control device 5513 .
  • a pathologist using the pathological system 5510 makes a pathological diagnosis based on the pathological image displayed on the display device 5514 .
  • Pathological diagnosis results made by the pathologist are stored in the medical information system 5530 .
  • a derivation device 5540 may perform analysis on pathological images.
  • a learning model created by machine learning can be used for this analysis.
  • the derivation device 5540 may derive a classification result of a specific region, a tissue identification result, or the like as the analysis result. Further, the deriving device 5540 may derive identification results such as cell information, number, position, brightness information, and scoring information for them. These pieces of information derived by the derivation device 5540 may be displayed on the display device 5514 of the pathology system 5510 as diagnosis support information.
  • the derivation device 5540 may be a server system configured with one or more servers (including cloud servers). Also, the derivation device 5540 may be configured to be incorporated in, for example, the display control device 5513 or the server 5512 in the pathological system 5510 . That is, various analyzes on pathological images may be performed within the pathological system 5510 .
  • the technology according to the present disclosure can be preferably applied to the microscope 5511 as described above among the configurations described above.
  • the technology according to the present disclosure to the microscope 5511, it is possible to obtain a clearer pathological image, and thus it is possible to more accurately diagnose a lesion.
  • the configuration described above can be applied not only to the diagnostic support system, but also to general biological microscopes such as confocal microscopes, fluorescence microscopes, and video microscopes that use digital imaging technology.
  • the object to be observed may be a biological sample such as cultured cells, fertilized eggs, or sperm, a biological material such as a cell sheet or a three-dimensional cell tissue, or a living body such as a zebrafish or mouse.
  • the object to be observed is not limited to the glass slide, and can be observed while being stored in a well plate, petri dish, or the like.
  • a moving image may be generated from still images of the observed object acquired using a microscope that utilizes digital imaging technology.
  • a moving image may be generated from still images captured continuously over a predetermined period of time, or an image sequence may be generated from still images captured at predetermined intervals.
  • it is possible to observe the movements of cancer cells, nerve cells, myocardial tissue, sperm, etc. such as pulsation, elongation, and migration, and the division process of cultured cells and fertilized eggs. It becomes possible to analyze the dynamic features of objects using machine learning.
  • each component of each illustrated device is functionally conceptual, and does not necessarily need to be physically configured as illustrated.
  • the specific form of distribution and integration of each device is not limited to the one shown in the figure, and all or part of them can be functionally or physically distributed and integrated in arbitrary units according to various loads and usage conditions. Can be integrated and configured.
  • the present technology can also take the following configuration.
  • a light source that includes a plurality of light emitting elements and a phosphor layer that absorbs excitation light from the plurality of light emitting elements and emits fluorescence, and irradiates a biological sample with light; an optical filter provided between the light source and the biological sample; with The optical filter transmits the fluorescence and cuts at least part of the excitation light having a shorter wavelength than the fluorescence.
  • Illumination device for biological sample observation device The excitation light has a peak wavelength of 425 nm or less, the optical filter cuts at least part of the light having the peak wavelength;
  • the illumination device for a biological sample observation device according to (6) above wherein the plurality of types of phosphors respectively emit fluorescence of red light, green light, and blue light.
  • the illumination device for a biological sample observation device according to any one of (1) to (7) above which is an illumination device that emits white light.
  • the illumination device for a biological sample observation device according to (8) above which has a CRI of 90 or more.
  • the illumination device for a biological sample observation device (11) above, wherein the optical filter is provided between the light source and the collimating lens.
  • the optical filter is provided between the collimator lens and the biological sample.
  • the illumination device for a biological sample observation device according to any one of (1) to (13) above, further comprising an optical system for guiding light from the light source to the biological sample.
  • the optical system is a field stop provided between the light source and the biological sample; an aperture stop provided between the field stop and the biological sample; a plurality of lenses provided between the field stop and the aperture stop and between the aperture stop and the biological sample;
  • the optical system is an aperture stop provided between the light source and the biological sample; a plurality of lenses provided between the light source and the aperture stop and between the aperture stop and the biological sample;
  • a biological sample observation device comprising an illumination device for illuminating a biological sample,
  • the lighting device a light source that includes a plurality of light emitting elements and a phosphor layer that absorbs excitation light from the plurality of light emitting elements and emits fluorescence, and irradiates the biological sample with light;
  • an optical filter provided between the light source and the biological sample; has The optical filter transmits the fluorescence and cuts
  • Biological sample observation device (18) The biological sample observation device according to (17) above, which is a microscope device. (19) The biological sample observation apparatus according to (17) above, further comprising an imaging unit that captures an image of the biological sample, including an imaging device. (20) a light source that irradiates a sample with light, including a plurality of light emitting elements and a phosphor layer that absorbs excitation light from the plurality of light emitting elements and emits fluorescence; an optical filter provided between the light source and the sample; with The optical filter transmits the fluorescence and cuts at least part of the excitation light having a shorter wavelength than the fluorescence. Illumination device for observation equipment.
  • the observation device for observing a biological sample, and a computer for controlling the observation device and processing signals obtained from the observation device,
  • the observation device is a light source that includes a plurality of light emitting elements and a phosphor layer that absorbs excitation light from the plurality of light emitting elements and emits fluorescence, and irradiates the biological sample with light; an optical filter provided between the light source and the biological sample; an imaging unit that images the biological sample; has The optical filter transmits the fluorescence and cuts at least part of the excitation light having a shorter wavelength than the fluorescence. observation system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Provided is a lighting device for a biological specimen observation device. The lighting device includes: a plurality of light-emitting elements (522); and a phosphor layer (524) which absorbs excitation light from the plurality of light-emitting elements and radiates fluorescent light. The lighting device also comprises: a light source (500) which irradiates light onto a biological specimen; and an optical filter (420) disposed between the light source and the biological specimen. The optical filter transmits the fluorescent light, and cuts at least some of the excitation light having a shorter wavelength than the fluorescent light.

Description

生体試料観察装置用照明装置、生体試料観察装置、観察装置用照明装置及び観察システムIllumination device for biological sample observation device, biological sample observation device, illumination device for observation device, and observation system
 本開示は、生体試料観察装置用照明装置、生体試料観察装置、観察装置用照明装置及び観察システムに関する。 The present disclosure relates to an illumination device for a biological sample observation device, a biological sample observation device, an illumination device for an observation device, and an observation system.
 近年、疾患の確定診断を担う病理診断方法として、病理標本(生体試料)を顕微鏡(観察装置)により確認しながら病理診断を行う従来の手法に加えて、病理標本をスキャナにより撮像し、画像をデジタル化して表示し、当該画像を参照して病理診断を行う手法が提案されている。そして、適切に病理診断を行うために診断に必要な情報が見落とされることがないよう、病理標本の観察エリアの全体を演色性の高い光を照射することが可能な照明装置が求められている。 In recent years, as a pathological diagnosis method responsible for the definitive diagnosis of diseases, in addition to the conventional method of making a pathological diagnosis while confirming a pathological specimen (biological sample) with a microscope (observation device), the pathological specimen is imaged with a scanner and an image is obtained. A method of digitizing and displaying the image and referring to the image to make a pathological diagnosis has been proposed. In addition, there is a demand for an illumination device capable of illuminating the entire observation area of a pathological specimen with light having a high color rendering property so that information necessary for diagnosis is not overlooked in order to perform an appropriate pathological diagnosis. .
 病理標本等を観察するための照明装置の光源としては、演色性の良さと輝度の高さとからランプ光源(ハロゲンランプやキセノンランプ)が広く使用されていた。しかしながら、このようなランプ光源は、寿命が短いことからランニングコストがかかるため、近年、白色LED(Light Emitting Diode)光源が用いられるようになってきている。  Lamp light sources (halogen lamps and xenon lamps) were widely used as light sources for lighting equipment for observing pathological specimens due to their good color rendering properties and high brightness. However, since such a lamp light source has a short life and thus requires a running cost, a white LED (Light Emitting Diode) light source has come to be used in recent years.
特開2011-41156号公報JP 2011-41156 A
 しかしながら、上記LED光源を病理標本の観察用光源として使用することを検討した場合、LED光源の色温度に、製造バラツキ(個体差)や長期使用における経年劣化による有意差が存在することから、さらなる改善の余地があるといえる。 However, when considering the use of the LED light source as a light source for observing pathological specimens, there is a significant difference in the color temperature of the LED light source due to manufacturing variations (individual differences) and aging deterioration in long-term use. It can be said that there is room for improvement.
 そこで、本開示では、個体差や経年劣化による色温度変化を抑えることができる、生体試料観察装置用照明装置、生体試料観察装置、観察装置用照明装置及び観察システムを提案する。 Therefore, the present disclosure proposes an illuminating device for a biological sample observation device, a biological sample observation device, an illuminating device for an observation device, and an observation system that can suppress color temperature changes due to individual differences and aging deterioration.
 本開示によれば、複数の発光素子と、前記複数の発光素子からの励起光を吸収して蛍光を放射する蛍光体層とを含み、生体試料に光を照射する光源と、前記光源と前記生体試料との間に設けられた光学フィルタとを備え、前記光学フィルタは、前記蛍光を透過し、且つ、前記蛍光に比べて短い波長を持つ前記励起光の少なくとも一部をカットする、生体試料観察装置用照明装置が提供される。 According to the present disclosure, a light source for irradiating a biological sample with light, the light source and the an optical filter provided between the biological sample and the biological sample, wherein the optical filter transmits the fluorescence and cuts at least part of the excitation light having a shorter wavelength than the fluorescence. An illumination device for a viewing device is provided.
 また、本開示によれば、生体試料を照明する照明装置を備える生体試料観察装置であって、前記照明装置は、複数の発光素子と、前記複数の発光素子からの励起光を吸収して蛍光を放射する蛍光体層とを含み、前記生体試料に光を照射する光源と、前記光源と前記生体試料との間に設けられた光学フィルタとを有し、前記光学フィルタは、前記蛍光を透過し、且つ、前記蛍光に比べて短い波長を持つ前記励起光の少なくとも一部をカットする、生体試料観察装置が提供される。 Further, according to the present disclosure, there is provided a biological sample observation apparatus including an illumination device for illuminating a biological sample, wherein the illumination device includes a plurality of light-emitting elements, and fluorescence emitted from the plurality of light-emitting elements by absorbing excitation light emitted from the plurality of light-emitting elements. and a light source for irradiating the biological sample with light; and an optical filter provided between the light source and the biological sample, wherein the optical filter transmits the fluorescence. and cuts at least part of the excitation light having a shorter wavelength than the fluorescence.
 また、本開示によれば、複数の発光素子と、前記複数の発光素子からの励起光を吸収して蛍光を放射する蛍光体層とを含み、試料に光を照射する光源と、前記光源と前記試料との間に設けられた光学フィルタとを備え、前記光学フィルタは、前記蛍光を透過し、且つ、前記蛍光に比べて短い波長を持つ前記励起光の少なくとも一部をカットする、観察装置用照明装置が提供される。 Further, according to the present disclosure, a light source that includes a plurality of light emitting elements and a phosphor layer that absorbs excitation light from the plurality of light emitting elements and emits fluorescence, and irradiates a sample with light; an optical filter provided between the sample and the sample, wherein the optical filter transmits the fluorescence and cuts at least part of the excitation light having a shorter wavelength than the fluorescence. A lighting device is provided.
 さらに、本開示によれば、生体試料を観察する観察装置と、当該観察装置を制御し、当該観察装置から得られた信号を処理するコンピュータとを含み、前記観察装置は、複数の発光素子と、前記複数の発光素子からの励起光を吸収して蛍光を放射する蛍光体層とを含み、前記生体試料に光を照射する光源と、前記光源と前記生体試料との間に設けられた光学フィルタと、前記生体試料を撮像する撮像部とを有し、前記光学フィルタは、前記蛍光を透過し、且つ、前記蛍光に比べて短い波長を持つ前記励起光の少なくとも一部をカットする、観察システムが提供される。 Furthermore, according to the present disclosure, an observation device that observes a biological sample, and a computer that controls the observation device and processes signals obtained from the observation device, the observation device includes a plurality of light emitting elements and , a phosphor layer that absorbs the excitation light from the plurality of light emitting elements and emits fluorescence, a light source that irradiates the biological sample with light, and an optical device provided between the light source and the biological sample Observation comprising a filter and an imaging unit for imaging the biological sample, wherein the optical filter transmits the fluorescence and cuts at least part of the excitation light having a shorter wavelength than the fluorescence. A system is provided.
本開示の実施形態に係る観察システム10の構成例を示すブロック図である。1 is a block diagram showing a configuration example of an observation system 10 according to an embodiment of the present disclosure; FIG. 図1に示す照明部102の構成例を示す図である。2 is a diagram showing a configuration example of an illumination unit 102 shown in FIG. 1; FIG. 図2に示す光源500の構成例を示す図である。3 is a diagram showing a configuration example of a light source 500 shown in FIG. 2; FIG. 比較例に係る光源500aの構成例を示す図である。FIG. 5 is a diagram showing a configuration example of a light source 500a according to a comparative example; 比較例に係る光源500aの放射光のスペクトル分布を示す図である。FIG. 5 is a diagram showing a spectrum distribution of emitted light from a light source 500a according to a comparative example; 比較例に係る光源500aの、個体差による放射光のスペクトル分布の違いを示す図である。FIG. 5 is a diagram showing differences in spectral distribution of emitted light due to individual differences in a light source 500a according to a comparative example; 比較例に係る光源500aの、経年劣化による放射光のスペクトル分布の変化を示す図である。FIG. 5 is a diagram showing changes in spectrum distribution of radiated light due to aged deterioration of a light source 500a according to a comparative example; 本開示の実施形態に係る光源500の構成例を示す図である。1 is a diagram showing a configuration example of a light source 500 according to an embodiment of the present disclosure; FIG. 本開示の実施形態に係る光源500の放射光のスペクトル分布を示す図である。FIG. 5 shows a spectral distribution of emitted light from a light source 500 according to an embodiment of the present disclosure; 本開示の実施形態に係る光学フィルタ420の透過率特性を示す図である。4A and 4B are diagrams showing transmittance characteristics of an optical filter 420 according to an embodiment of the present disclosure; 本開示の実施形態に係る光学系400の構成例を示す図(その1)である。1 is a diagram (part 1) showing a configuration example of an optical system 400 according to an embodiment of the present disclosure; FIG. 本開示の実施形態に係る光学系400の構成例を示す図(その2)である。FIG. 2 is a diagram (part 2) showing a configuration example of an optical system 400 according to an embodiment of the present disclosure; 本開示の実施形態に係る照明部102の照明光のスペクトル分布を示す図(その1)である。FIG. 2 is a diagram (Part 1) showing the spectral distribution of illumination light from the illumination unit 102 according to the embodiment of the present disclosure; 本開示の実施形態に係る光源500の、個体差による放射光のスペクトル分布の違いを示す図である。FIG. 5 is a diagram showing differences in spectral distribution of emitted light due to individual differences in the light source 500 according to the embodiment of the present disclosure; 本開示の実施形態に係る照明部102の照明光のスペクトル分布を示す図(その2)である。FIG. 2 is a diagram (part 2) showing the spectral distribution of illumination light from the illumination unit 102 according to the embodiment of the present disclosure; 本開示の実施形態に係る光源500の、経年劣化による放射光のスペクトル分布の変化を示す図である。FIG. 5 is a diagram showing changes in the spectral distribution of emitted light due to aging of the light source 500 according to an embodiment of the present disclosure; 本開示の実施形態に係る照明部102の照明光のスペクトル分布を示す図(その3)である。FIG. 3 is a diagram (Part 3) showing the spectral distribution of illumination light from the illumination unit 102 according to the embodiment of the present disclosure; 本開示の実施形態の変形例に係る光学フィルタ420の透過率特性を示す図である。FIG. 10 is a diagram showing transmittance characteristics of an optical filter 420 according to a modified example of the embodiment of the present disclosure; 顕微鏡システムの全体構成を概略的に示す図である。It is a figure which shows roughly the whole structure of a microscope system. 撮像方式の例を示す図である。It is a figure which shows the example of an imaging system. 撮像方式の例を示す図である。It is a figure which shows the example of an imaging system. 診断支援システムの概略的な構成の一例を示すブロック図である。1 is a block diagram showing an example of a schematic configuration of a diagnostic support system; FIG.
 以下に、添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。また、本明細書及び図面において、実質的に同一又は類似の機能構成を有する複数の構成要素を、同一の符号の後に異なるアルファベットを付して区別する場合がある。ただし、実質的に同一又は類似の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。 Preferred embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description. In addition, in this specification and drawings, a plurality of components having substantially the same or similar functional configuration may be distinguished by attaching different alphabets after the same reference numerals. However, when there is no particular need to distinguish between a plurality of components having substantially the same or similar functional configurations, only the same reference numerals are used.
 なお、以下の説明においては、生体(例えば、人体、植物等)から取得された、組織(例えば、臓器や上皮組織)の一部である組織切片や細胞のことを生体試料と呼ぶ。なお、以下に説明する生体試料は、必要に応じて各種の染色が施されていてもよい。言い換えると、以下に説明する各実施形態においては、特に断りがない限りは、生体試料に各種の染色が施されていなくてもよい。さらに、例えば、染色には、HE(ヘマトキシリン・エオシン)染色、ギムザ染色又はパパニコロウ染色等に代表される一般染色のみならず、特定の組織に着目する場合に用いる過ヨウ素酸シッフ(PAS)染色等や、FISH(Fluorescence In-Situ Hybridization)や酵素抗体法等の蛍光染色が含まれる。 In the following description, a tissue section or cell that is part of a tissue (eg, organ or epithelial tissue) obtained from a living body (eg, human body, plant, etc.) is referred to as a biological sample. In addition, the biological sample described below may be subjected to various staining as necessary. In other words, in each of the embodiments described below, unless otherwise specified, the biological sample does not have to be dyed in various ways. Furthermore, for example, staining includes not only general staining represented by HE (hematoxylin-eosin) staining, Giemsa staining or Papanicolaou staining, but also periodic acid-Schiff (PAS) staining used when focusing on a specific tissue. and fluorescent staining such as FISH (Fluorescence In-Situ Hybridization) and enzyme antibody method.
 また、説明は以下の順序で行うものとする。
1. 本開示の実施形態を創作するに至る背景
   1.1 観察システム
   1.2 スキャナ
   1.3 照明部
   1.4 光源
   1.5 背景
2. 実施形態
   2.1 光源
   2.2 光学フィルタ
   2.3 照明光
   2.4 変形例
3. まとめ
4. 応用例
   4.1 顕微鏡システム
   4.2 病理診断システム
5. 補足
Also, the description shall be given in the following order.
1. Background leading to creation of embodiments of the present disclosure 1.1 Observation system 1.2 Scanner 1.3 Illumination unit 1.4 Light source 1.5 Background 2. Embodiment 2.1 Light source 2.2 Optical filter 2.3 Illumination light 2.4 Modification 3. Summary 4. Application examples 4.1 Microscope system 4.2 Pathological diagnosis system 5. supplement
 <<1. 本開示の実施形態を創作するに至る背景>>
 <1.1 観察システム>
 まずは、本開示の実施形態を説明する前に、図1を参照して、本開示の第1の実施形態に係る観察システム10の構成例を説明する。図1は、本開示の実施形態に係る観察システム10の構成例を示すブロック図である。本実施形態に係る観察システム10は、生体試料(例えば、細胞組織等)を搭載するスライド300に対して、デジタル撮影を行うスキャナシステムである。
<<1. Background leading to the creation of the embodiments of the present disclosure>>
<1.1 Observation system>
First, before describing the embodiment of the present disclosure, a configuration example of an observation system 10 according to the first embodiment of the present disclosure will be described with reference to FIG. FIG. 1 is a block diagram showing a configuration example of an observation system 10 according to an embodiment of the present disclosure. The observation system 10 according to this embodiment is a scanner system that digitally photographs a slide 300 on which a biological sample (for example, cell tissue or the like) is mounted.
 図1に示すように、本実施形態に係る観察システム10は、スキャナ(観察装置)100と、画像処理装置200とを含むことができる。なお、スキャナ100と画像処理装置200との間は、互いに有線又は無線の各種の通信ネットワークを介して通信可能に接続してもよい。また、本実施形態に係る観察システム10に含まれるスキャナ100及び画像処理装置200は、図1に図示された数に限定されるものではなく、さらに多く含んでいてもよい。さらに、本実施形態に係る観察システム10は、図示しない他のサーバや装置等を含んでいてもよい。以下に、本実施形態に係る観察システム10に含まれる各装置の概要について説明する。 As shown in FIG. 1, an observation system 10 according to the present embodiment can include a scanner (observation device) 100 and an image processing device 200 . Note that the scanner 100 and the image processing apparatus 200 may be communicatively connected to each other via various wired or wireless communication networks. Further, the number of scanners 100 and image processing devices 200 included in the observation system 10 according to the present embodiment is not limited to the number illustrated in FIG. 1, and may include more. Furthermore, the observation system 10 according to this embodiment may include other servers, devices, and the like (not shown). Below, an outline of each device included in the observation system 10 according to the present embodiment will be described.
 (スキャナ100)
 スキャナ100は、スキャナ100のステージ108上に載置された、生体試料のスライド300に対して所定の照明光を照射して、当該スライド300を透過した光、又は、当該スライド300からの発光等を撮影(撮像)することができる。例えば、スキャナ100は、生体試料を拡大して撮影することができる、拡大鏡(図示省略)及びデジタルカメラ(図示省略)等からなる顕微鏡であることができる。なお、スキャナ100は、例えば、スマートフォン、タブレット、ゲーム機、又は、ウェアラブル装置等、撮影機能を有するあらゆる装置によって実現されてもよい。さらに、スキャナ100は、後述する画像処理装置200によって駆動制御されており、スキャナ100が撮影した画像は、例えば、上記画像処理装置200に保存される。なお、スキャナ100の詳細構成については、後述する。
(Scanner 100)
The scanner 100 irradiates the slide 300 of the biological sample placed on the stage 108 of the scanner 100 with predetermined illumination light, and emits light transmitted through the slide 300 or light emitted from the slide 300. can be photographed (imaged). For example, the scanner 100 can be a microscope including a magnifying glass (not shown) and a digital camera (not shown) that can magnify and photograph a biological sample. Note that the scanner 100 may be implemented by any device having a photographing function, such as a smartphone, tablet, game machine, or wearable device. Further, the scanner 100 is driven and controlled by an image processing device 200, which will be described later, and the image captured by the scanner 100 is stored in the image processing device 200, for example. A detailed configuration of the scanner 100 will be described later.
 (画像処理装置200)
 画像処理装置200は、スキャナ100を制御し、且つ、スキャナ100が撮影した画像(信号)を処理する機能を有する装置である。詳細には、画像処理装置200は、スキャナ100を制御して、生体試料のデジタル画像を撮影するとともに、得られたデジタル画像に対して、所定の画像処理を実施する。画像処理装置200は、PC(Personal Computer)、タブレット、スマートフォン等、制御機能及び画像処理機能を有するあらゆる装置により実現される。
(Image processing device 200)
The image processing device 200 is a device having a function of controlling the scanner 100 and processing an image (signal) captured by the scanner 100 . Specifically, the image processing apparatus 200 controls the scanner 100 to capture a digital image of the biological sample, and performs predetermined image processing on the obtained digital image. The image processing device 200 is realized by any device having a control function and an image processing function, such as a PC (Personal Computer), a tablet, a smartphone, or the like.
 なお、本実施形態においては、スキャナ100及び画像処理装置200は、一体の装置であってもよく、すなわち、それぞれ単一の装置によって実現されていなくてもよい。また、本実施形態においては、上述のスキャナ100及び画像処理装置200のそれぞれは、有線又は無線の各種の通信ネットワークを介して接続され、互いに協働する複数の装置によって実現されてもよい。さらに、上述した画像処理装置200は、例えば後述するコンピュータのハードウェア構成によって実現することができる。 Note that in the present embodiment, the scanner 100 and the image processing device 200 may be integrated devices, that is, they may not be realized by a single device. Further, in this embodiment, the scanner 100 and the image processing apparatus 200 described above may be realized by a plurality of devices that are connected via various wired or wireless communication networks and cooperate with each other. Furthermore, the image processing apparatus 200 described above can be realized by, for example, a hardware configuration of a computer described later.
 <1.2 スキャナ>
 さらに、図1を参照して、本実施形態に係るスキャナ100の詳細構成を説明する。図1に示すように、スキャナ100は、照明部(照明装置)102と、センサ部(撮像部)104と、制御部106と、ステージ108とを主に有することができる。以下に、スキャナ100の各機能ブロックについて順次説明する。
<1.2 Scanner>
Further, the detailed configuration of the scanner 100 according to this embodiment will be described with reference to FIG. As shown in FIG. 1, the scanner 100 can mainly have an illumination section (illumination device) 102, a sensor section (imaging section) 104, a control section 106, and a stage . Each functional block of the scanner 100 will be sequentially described below.
 (照明部102)
 照明部102は、ステージ108の、スライド300が配置され得るスライド配置面とは逆の面側に設けられ、後述する制御部106の制御に従って、生体試料のスライド300に対して照明光を照射することができる照明装置である。また、照明部102は、照明部102から照射された照明光を集光して、ステージ108上のスライド300に導く、例えばレンズ(光学系)(図示省略)等を有していてもよい。なお、照明部102の詳細構成については、後述する。
(Illumination unit 102)
The illumination unit 102 is provided on the side of the stage 108 opposite to the slide placement surface on which the slide 300 can be placed, and irradiates the slide 300 of the biological sample with illumination light under the control of the control unit 106, which will be described later. It is a lighting device that can Also, the illumination unit 102 may have, for example, a lens (optical system) (not shown) that collects the illumination light emitted from the illumination unit 102 and guides it to the slide 300 on the stage 108 . A detailed configuration of the illumination unit 102 will be described later.
 (センサ部104)
 センサ部104は、ステージ108のスライド配置面側に設けられ、例えば、色の3原色である、赤色(R)、緑色(G)、青色(B)の光を検知するカラーセンサである。より具体的には、センサ部104は、例えば、対物レンズ(図示省略)と、撮像素子(図示省略)とを有することができる。そして、センサ部104は、後述する制御部106の制御に従って、生体試料をデジタル撮影(撮像)し、撮影によるデジタル画像を画像処理装置200へ出力することができる。
(Sensor unit 104)
The sensor unit 104 is provided on the side of the slide arrangement surface of the stage 108, and is a color sensor that detects, for example, red (R), green (G), and blue (B) light, which are the three primary colors. More specifically, the sensor unit 104 can have, for example, an objective lens (not shown) and an imaging element (not shown). Then, the sensor unit 104 can digitally photograph (image) the biological sample and output the photographed digital image to the image processing apparatus 200 under the control of the control unit 106 to be described later.
 詳細には、上記対物レンズ(図示省略)は、ステージ108のスライド配置面側に設けられ、生体試料を拡大して撮影することを可能にする。すなわち、ステージ108上に配設されたスライド300を透過した透過光は、当該対物レンズによって集光されて、対物レンズの後方(言い換えると、照明光の進行方向)に設けられた撮像素子(図示省略)に結像することとなる。 Specifically, the objective lens (not shown) is provided on the side of the slide arrangement surface of the stage 108, and makes it possible to magnify and photograph the biological sample. That is, the transmitted light transmitted through the slide 300 arranged on the stage 108 is condensed by the objective lens, and the imaging element (illustrated omitted).
 そして、上記撮像素子(図示省略)には、当該撮像素子の画素サイズ及び対物レンズ(図示省略)の倍率に応じて、ステージ108のスライド配置面上における所定の横幅及び縦幅からなる撮影範囲の像が結像される。なお、対物レンズにより生体試料の一部が拡大される場合には、上述の撮影範囲は、撮像素子の撮影範囲に比べて十分に狭い範囲となる。より具体的には、上記撮像素子は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子により実現することができる。 The imaging device (not shown) has a photographing range having a predetermined horizontal width and vertical width on the slide arrangement surface of the stage 108 according to the pixel size of the imaging device and the magnification of the objective lens (not shown). An image is formed. It should be noted that when part of the biological sample is magnified by the objective lens, the imaging range described above is sufficiently narrower than the imaging range of the imaging element. More specifically, the imaging element can be realized by an imaging element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
 なお、本実施形態においては、センサ部104は、生体試料を、対物レンズ等を介さずに直接撮影してもよいし、対物レンズ等を介して撮影してもよく、特に限定されるものではない。 In this embodiment, the sensor unit 104 may directly photograph the biological sample without using an objective lens or the like, or may photograph the biological sample via an objective lens or the like, and is not particularly limited. do not have.
 (制御部106)
 制御部106は、スキャナ100の動作を統括的に制御することができ、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等により実現される処理回路を含む。例えば、制御部106は、上述した照明部102及びセンサ部104を制御することができる。さらに、制御部106は、ステージ108を様々な方向に移動させるステージ駆動機構(図示省略)を制御してもよい。
(control unit 106)
The control unit 106 can comprehensively control the operation of the scanner 100, and includes processing circuits realized by, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. . For example, the control unit 106 can control the lighting unit 102 and the sensor unit 104 described above. Further, the controller 106 may control a stage drive mechanism (not shown) that moves the stage 108 in various directions.
 例えば、制御部106は、画像処理装置200から出力されたコマンドに従って、センサ部104の撮影回数Nや撮影時間を制御してもよい。より具体的には、制御部106は、所定の間隔を空けて断続的に撮影回数Nの撮影を行うようセンサ部104を制御してもよい。また、制御部106は、照明部102から照射される照明光の波長、照射強度又は照射時間を制御してもよい。さらに、制御部106は、予め設定された関心領域(ROI:Region of Interest)が撮像されるよう、関心領域に従って、ステージ108を様々な方向に移動させるステージ駆動機構(図示省略)を制御してもよい。なお、ここでいう関心領域とは、生体試料のうち、ユーザが解析等のために注目する領域(対象となる領域)のことを意味する。 For example, the control unit 106 may control the number of shots N and the shooting time of the sensor unit 104 according to commands output from the image processing device 200 . More specifically, the control unit 106 may control the sensor unit 104 to intermittently perform imaging N times at predetermined intervals. Also, the control unit 106 may control the wavelength, irradiation intensity, or irradiation time of the illumination light emitted from the illumination unit 102 . Furthermore, the control unit 106 controls a stage drive mechanism (not shown) that moves the stage 108 in various directions according to the region of interest so that a preset region of interest (ROI) is imaged. good too. The term "region of interest" as used herein means a region (target region) of a biological sample that a user pays attention to for analysis or the like.
 (ステージ108)
 ステージ108は、スライド300が載置される載置台である。さらに、ステージ108には、ステージ108を様々な方向に移動させるためのステージ駆動機構(図示省略)が設けられていてもよい。例えば、当該ステージ駆動機構を制御することにより、ステージ108を、スライド配置面に対して平行となる方向(X軸-Y軸方向)と、直交する方向(Z軸方向)とに自由に移動させることができる。また、本実施形態においては、ステージ108には、スライド300をステージ108に搬送するサンプル搬送装置(図示省略)が設けられていてもよい。かかる搬送装置を設けることで、ステージ108に、撮影予定のスライド300が自動的に載置されるようになり、スライド300の入れ替えを自動化することが可能となる。
(Stage 108)
The stage 108 is a mounting table on which the slide 300 is mounted. Further, the stage 108 may be provided with a stage drive mechanism (not shown) for moving the stage 108 in various directions. For example, by controlling the stage drive mechanism, the stage 108 is freely moved in a direction parallel to the slide arrangement surface (X-axis-Y-axis direction) and in a direction orthogonal to the slide arrangement surface (Z-axis direction). be able to. Further, in this embodiment, the stage 108 may be provided with a sample transport device (not shown) that transports the slide 300 to the stage 108 . By providing such a transport device, the slide 300 to be photographed can be automatically placed on the stage 108, and the replacement of the slide 300 can be automated.
 <1.3 照明部>
 次に、図2を参照して、本実施形態に係る照明部102の基本構成を説明する。図2は、図1に示す照明部102の構成例を示す図である。例えば、照明部102は、図2に示すように、病理標本等の生体試料が搭載されたスライド300に対して、均一、且つ、高い演色性を持つ照明光を照射するために、複数のレンズ402等を含む光学系400と、光源500とを含む。以下、当該照明部102の各ブロックの詳細を説明する。
<1.3 Lighting unit>
Next, the basic configuration of the lighting unit 102 according to this embodiment will be described with reference to FIG. FIG. 2 is a diagram showing a configuration example of the lighting unit 102 shown in FIG. For example, as shown in FIG. 2, the illumination unit 102 includes a plurality of lenses to irradiate a slide 300 on which a biological sample such as a pathological specimen is mounted with illumination light that is uniform and has high color rendering properties. It includes an optical system 400 including 402 and the like, and a light source 500 . Details of each block of the illumination unit 102 will be described below.
 光学系400は、図2に示すように、レンズ402a、402b、402cと、視野絞り412と、開口絞り414とで構成されるケーラー照明である。 The optical system 400, as shown in FIG. 2, is a Koehler illumination composed of lenses 402a, 402b, and 402c, a field stop 412, and an aperture stop 414.
 詳細には、上記ケーラー照明においては、コンデンサレンズ(図2では、レンズ402c)の焦点が、集光レンズ(図2では、レンズ402a)及びリレーレンズ(図2では、レンズ402b)を通して、光源(図2では、光源500)の像が結像される点に一致するように、コンデンサレンズと集光レンズとリレーレンズとは配置され、さらに、一致する点には、開口絞り414が配置される。また、リレーレンズの焦点が、コンデンサレンズを通して被写体の像が結像される点に一致するよう、コンデンサレンズとリレーレンズとは配置され、集光レンズとリレーレンズの間に、視野絞り412が配置される。このようなケーラー照明では、均一な光を照射するだけなく、光源からの光を直接照射することがないため、被写体と光源との距離を離すことができるため、被写体への光源からの熱の影響を抑制することができる。また、ケーラー照明では、レンズ等を調整することで、倍率を調整することができることから、光源を小さなものにすることができる。 Specifically, in the Koehler illumination, the focus of the condenser lens (lens 402c in FIG. 2) passes through the condenser lens (lens 402a in FIG. 2) and the relay lens (lens 402b in FIG. 2) to the light source ( In FIG. 2, the condenser lens, condenser lens, and relay lens are arranged so as to coincide with the point where the image of the light source 500) is formed, and furthermore, the aperture stop 414 is arranged at the coincident point. . The condenser lens and the relay lens are arranged so that the focal point of the relay lens coincides with the point where the image of the object is formed through the condenser lens, and the field stop 412 is arranged between the condenser lens and the relay lens. be done. Such Koehler illumination not only irradiates uniform light but also does not directly irradiate the light from the light source, so the distance between the subject and the light source can be increased. The impact can be suppressed. Further, in Koehler illumination, the magnification can be adjusted by adjusting the lens or the like, so the light source can be made small.
 より具体的には、図2の光源500側から順に光学系400を説明すると、レンズ402aは、例えばコリメートレンズからなり、光源500側に設けられ、光源500からの光束を略平行光とすることができる。視野絞り412は、レンズ402aの上方に設けられ、照明範囲を調整することができる。さらに、視野絞り412は、不必要な光をカットするため、フレアやゴースト等の発生を抑制し、鮮明な視野を得ることができる。また、レンズ402bは、視野絞り412の上方に設けられ、上記略平行光を収束させることができる。開口絞り414は、レンズ402bの上方に設けられ、明るさを調整することができる。さらに、レンズ402cは、開口絞り414の上方に設けられ、集光を再び略平行光とすることができる。 More specifically, the optical system 400 will be described in order from the light source 500 side in FIG. can be done. A field stop 412 is provided above the lens 402a and can adjust the illumination range. Furthermore, since the field stop 412 cuts unnecessary light, it is possible to suppress the occurrence of flare, ghost, etc., and obtain a clear field of view. Also, the lens 402b is provided above the field stop 412 and can converge the substantially parallel light. An aperture stop 414 is provided above the lens 402b and can adjust the brightness. Furthermore, the lens 402c is provided above the aperture stop 414, and can make the condensed light into substantially parallel light again.
 なお、光学系400は、上述のようなケーラー照明であることに限定されるものではなく、コンデンサレンズ402cを含まないクリティカル照明であってもよい。 Note that the optical system 400 is not limited to the Kohler illumination as described above, and may be critical illumination that does not include the condenser lens 402c.
 (光源500)
 光源500は、白色光を出射する白色LED(Light Emitting Diode)照明装置である。なお、光源500の詳細構成については、後述する。
(Light source 500)
The light source 500 is a white LED (Light Emitting Diode) lighting device that emits white light. A detailed configuration of the light source 500 will be described later.
 <1.4 光源>
 次に、図3を参照して、本実施形態に係る光源500の基本構成を説明する。図3は、図2に示す光源500の構成例を示す図である。例えば、光源500は、図3に示すように、筐体510と、複数のLEDチップ(発光素子)522と、蛍光体層524とを有する。以下、当該光源500の各ブロックの詳細を説明する。
<1.4 Light source>
Next, the basic configuration of the light source 500 according to this embodiment will be described with reference to FIG. FIG. 3 is a diagram showing a configuration example of the light source 500 shown in FIG. For example, the light source 500 has a housing 510, a plurality of LED chips (light emitting elements) 522, and a phosphor layer 524, as shown in FIG. Details of each block of the light source 500 will be described below.
 (筐体510)
 詳細には、筐体510は、上面が開口しており、上面と対向する底面(基板)の内側上に複数のLEDチップ522がマウントされている。
(Case 510)
Specifically, the housing 510 has an open top surface, and a plurality of LED chips 522 are mounted on the inner side of the bottom surface (substrate) facing the top surface.
 (LEDチップ522)
 LEDチップ522は、電圧を印加することにより発光するダイオードであり、半導体基板(図示省略)上に設けられた電極(図示省略)や発光層(図示省略)等からなる。さらに、光源500は、輝度を高めるために複数のLEDチップ522を有することが好ましい。なお、本実施形態に係るLEDチップ522の詳細については、後述する。
(LED chip 522)
The LED chip 522 is a diode that emits light when a voltage is applied, and includes an electrode (not shown) provided on a semiconductor substrate (not shown), a light emitting layer (not shown), and the like. Furthermore, the light source 500 preferably has multiple LED chips 522 to increase brightness. Details of the LED chip 522 according to the present embodiment will be described later.
 (蛍光体層524)
 蛍光体層524は、複数のLEDチップ522の上方に設けられ、LEDチップ522からの励起光を吸収し、励起光とは異なる波長域の蛍光を放射することができる。そして、蛍光体層524は、1種類以上の蛍光体を含むが、演色性を向上させるために複数種の蛍光体を含むことが好ましい。なお、複数種の蛍光体は、互いに異なる波長域の光を放射する。なお、本実施形態に係る蛍光体層524の詳細については、後述する。
(Phosphor layer 524)
The phosphor layer 524 is provided above the plurality of LED chips 522 and can absorb excitation light from the LED chips 522 and emit fluorescence in a wavelength range different from that of the excitation light. The phosphor layer 524 contains one or more kinds of phosphors, and preferably contains plural kinds of phosphors in order to improve the color rendering properties. In addition, a plurality of types of phosphors emit light in different wavelength ranges. The details of the phosphor layer 524 according to this embodiment will be described later.
 <1.5 背景>
 次に、図4から図7を参照して、本発明者らが本開示の実施形態を創作するに至る背景について説明する。図4は、比較例に係る光源500aの構成例を示す図であり、図5は、比較例に係る光源500aの放射光のスペクトル分布を示す図である。また、図6は、比較例に係る光源500aの、個体差による放射光のスペクトル分布の違いを示す図であり、図7は、比較例に係る光源500aの、経年劣化による放射光のスペクトル分布の変化を示す図である。なお、ここで、比較例とは、本発明者らが本開示の実施形態をなす前に、検討を重ねていた照明部102や光源500のことを意味するものとする。
<1.5 Background>
Next, the background leading to the creation of the embodiments of the present disclosure by the present inventors will be described with reference to FIGS. 4 to 7. FIG. FIG. 4 is a diagram showing a configuration example of a light source 500a according to a comparative example, and FIG. 5 is a diagram showing a spectral distribution of emitted light from the light source 500a according to a comparative example. Also, FIG. 6 is a diagram showing differences in spectral distribution of radiated light due to individual differences in the light source 500a according to the comparative example, and FIG. It is a figure which shows the change of. Here, the comparative example means the lighting unit 102 and the light source 500 that were repeatedly studied by the present inventors before the embodiment of the present disclosure.
 先に説明したように、近年、疾患の確定診断を担う病理診断方法として、病理標本をスキャナ100により撮像し、画像をデジタル化して表示し、当該画像を参照して病理診断を行う手法が提案されている。そして、また、病理診断を行うためのスキャナ100の照明部102としては、適切に病理診断を行うために診断に必要な情報が見落とされることがないよう、病理標本の観察エリアの全体を演色性の高い光スペクトル(例えば、Color Rendering Index(CRI)が90以上)を持つ照明光を照射することが求められている。照明部102の演色性(色合い)は、病理標本の見え方と直結しているため、病理診断においては非常に重要な要素であるといえる。演色性は、照明装置等が対象物に光を照射した際に、当該対象物の色の見え方に及ぼす照明装置等の性質を示し、一般的には、太陽光下での対象物の見え方に近いことが好ましいとされている。詳細には、演色性は、CRIと呼ばれる指標で示され、太陽光ではCRIが100となっており、太陽光下での対象物の見え方に近いほど、CRIが100に近づくこととなる。 As described above, in recent years, as a pathological diagnosis method for definitive diagnosis of a disease, a method has been proposed in which a pathological specimen is imaged by the scanner 100, the image is digitized and displayed, and the image is referred to for pathological diagnosis. It is In addition, the illumination unit 102 of the scanner 100 for performing pathological diagnosis has a color-rendering property for the entire observation area of the pathological specimen so that information necessary for diagnosis is not overlooked in order to appropriately perform a pathological diagnosis. Illumination light having a high optical spectrum (for example, a Color Rendering Index (CRI) of 90 or higher) is required. The color rendering properties (color shades) of the illumination unit 102 are directly related to how pathological specimens are viewed, and are therefore a very important factor in pathological diagnosis. Color rendering refers to the properties of a lighting device, etc., that affect how the color of an object appears when the lighting device, etc. irradiates light onto the object. It is said that it is preferable to be close to the direction. More specifically, the color rendering property is indicated by an index called CRI. CRI is 100 in sunlight, and CRI approaches 100 as the appearance of an object is closer to that in sunlight.
 そして、これまで、照明部102の光源500としては、演色性の良さと輝度の高さとからランプ光源(ハロゲンランプやキセノンランプ)が広く使用されていた。しかし、先に説明したように、このようなランプ光源は、寿命が短いことからランニングコストがかかるため、近年、白色LED光源が用いられるようになってきている。 Further, until now, lamp light sources (halogen lamps and xenon lamps) have been widely used as the light source 500 of the illumination unit 102 due to their good color rendering properties and high luminance. However, as described above, such a lamp light source has a short life and thus requires high running costs. Therefore, in recent years, white LED light sources have come to be used.
 例えば、これまで検討されていた比較例に係る光源500aは、図4に示すように、LEDチップ522a(詳細には、青色光を放射する青色LED)からの励起光(図中中央に示す矢印が対応する)と、当該励起光を吸収した蛍光体層524a(詳細には、黄色光を放射する黄色蛍光体を含む)から放射された蛍光(図中に示す短い矢印が対応する)とを混合させた白色光を放射することができる。詳細には、比較例に係る光源500aから放射される放射光は、図5に示すようなスペクトル分布を示す。より具体的には、比較例に係る光源500aは、450nm前後のピーク波長を持つ励起光と、約500nmから約650nmの波長域を持つ蛍光とを放射する。なお、比較例に係る光源500aのCRIは70程度である。 For example, as shown in FIG. 4, a light source 500a according to a comparative example that has been studied until now has excitation light (an arrow corresponds), and the fluorescence emitted from the phosphor layer 524a (specifically, including a yellow phosphor that emits yellow light) that has absorbed the excitation light (corresponds to the short arrow shown in the figure) Mixed white light can be emitted. Specifically, the radiated light emitted from the light source 500a according to the comparative example exhibits a spectral distribution as shown in FIG. More specifically, the light source 500a according to the comparative example emits excitation light with a peak wavelength of around 450 nm and fluorescent light with a wavelength range of about 500 nm to about 650 nm. The CRI of the light source 500a according to the comparative example is about 70.
 さらに、比較例に係る光源500aにおいては、LEDチップ522aの製造バラツキ(個体差)や、長期使用におけるLEDチップ522aや蛍光体層524に含まれる蛍光体の経年劣化により、100K程度の色温度の違いが生じることが分かっている。詳細には、図6に示すように、LEDチップ522aの製造バラツキ(個体差)によって、励起光のピーク波長(450nm±5nm)に差異が生じることから、色温度のバラツキの範囲は、6690Kから6510K(中央値6652K)となり、最大で100K以上の差が存在することとなる。 Furthermore, in the light source 500a according to the comparative example, due to manufacturing variations (individual differences) of the LED chips 522a and deterioration over time of the LED chips 522a and the phosphor contained in the phosphor layer 524 during long-term use, the color temperature of the light source 500a is reduced to about 100K. I know it makes a difference. Specifically, as shown in FIG. 6, the peak wavelength (450 nm±5 nm) of the excitation light varies due to manufacturing variations (individual differences) of the LED chips 522a. It is 6510K (median value 6652K), and the maximum difference is 100K or more.
 また、LEDチップ522aや蛍光体の経年劣化により、励起光成分(ピーク波長450nm)の強度が変化することから、光源500aからの白色光における励起光と蛍光との混合比率が変化し、数100K程度の色温度の変化が生じることが分かっている。詳細には、図7に示すように、経年劣化によって、色温度のバラツキの範囲は、5812K(LEDチップ522の経年劣化)から7440K(蛍光体の経年劣化)(初期値6652K)となり、最大で数千K以の差が存在することとなる。 In addition, due to deterioration over time of the LED chip 522a and the phosphor, the intensity of the excitation light component (peak wavelength 450 nm) changes. It has been found that a degree of color temperature variation occurs. Specifically, as shown in FIG. 7, due to aging, the range of color temperature variation is from 5812K (aging deterioration of the LED chip 522) to 7440K (aging deterioration of the phosphor) (initial value 6652K). A difference of several thousand K or more will exist.
 このように光源500aの色温度に個体差や経年劣化による有意差が存在するため、例えば、病理標本の画像をデジタル化の際には、光源500aごとの色補正や、経年変化に対応した色補正を行うことが求められることとなる。しかしながら、補正によって見え方を一定にすることには限界があるため、このような個体差や経年劣化による色温度変化を抑えることが求められていた。 In this way, since there are significant differences due to individual differences and aging deterioration in the color temperature of the light source 500a, for example, when digitizing an image of a pathological specimen, color correction for each light source 500a and color correction corresponding to aging are required. A correction will be required. However, since there is a limit to making the appearance constant by correction, it has been required to suppress such color temperature changes due to individual differences and aging deterioration.
 そこで、本発明者らは、このような状況において光源500を鋭意検討し、光源500の色温度の違いは、主に励起光成分の変化によるものであるとの知見を独自に得た。そして、このような知見に基づき、本発明者らは、上記励起光成分を適切にカットする光学フィルタを用いることを着想した。本発明者らが創作した本開示の実施形態によれば、このような光学フィルタを用いることにより、励起光成分の変化の影響を低減することができることから、個体差や経年劣化による色温度変化の少ない照明部102を得ることができる。以下、本発明者らは創作した本開示の実施形態の詳細を順次説明する。 Therefore, the present inventors diligently studied the light source 500 in such a situation and independently obtained the knowledge that the difference in color temperature of the light source 500 is mainly due to the change in the excitation light component. Based on such findings, the present inventors came up with the idea of using an optical filter that appropriately cuts the excitation light component. According to the embodiments of the present disclosure created by the present inventors, by using such an optical filter, it is possible to reduce the effects of changes in the components of the excitation light. can be obtained. Hereinafter, the details of the embodiments of the present disclosure created by the present inventors will be sequentially described.
 <<2. 実施形態>>
 <2.1 光源>
 まずは、図8及び図9を参照して、本開示の実施形態に係る光源500の詳細構成を説明する。図8は、本実施形態に係る光源500の構成例を示す図であり、図9は、本実施形態に係る光源500の放射光のスペクトル分布を示す図である。本実施形態に係る光源500は、白色光を放射する照明装置であり、CRIが90以上である。
<<2. Embodiment>>
<2.1 Light source>
First, the detailed configuration of the light source 500 according to the embodiment of the present disclosure will be described with reference to FIGS. 8 and 9. FIG. FIG. 8 is a diagram showing a configuration example of the light source 500 according to this embodiment, and FIG. 9 is a diagram showing a spectral distribution of emitted light from the light source 500 according to this embodiment. The light source 500 according to this embodiment is a lighting device that emits white light, and has a CRI of 90 or higher.
 詳細には、光源500は、図8に示すように、筐体510と、複数のLEDチップ(発光素子)522と、蛍光体層524とを有する。以下、本実施形態に係る光源500の各ブロックの詳細を説明する。 Specifically, the light source 500 has a housing 510, a plurality of LED chips (light emitting elements) 522, and a phosphor layer 524, as shown in FIG. Details of each block of the light source 500 according to the present embodiment will be described below.
 (筐体510)
 筐体510は、上述の比較例と同様に、上面が開口しており、上面と対向する底面(基板)の内側上にLEDチップ522がマウントされている。
(Case 510)
The housing 510 has an open top surface, and an LED chip 522 is mounted on the inner side of the bottom surface (substrate) facing the top surface, as in the comparative example described above.
 (LEDチップ522)
 LEDチップ522は、比較例と同様に、電圧を印加することにより発光するダイオードであり、半導体基板(図示省略)上に設けられた電極(図示省略)や発光層(図示省略)等からなる。さらに、本実施形態に係る光源500は、輝度を高めるために複数のLEDチップ522を有することが好ましい。
(LED chip 522)
As in the comparative example, the LED chip 522 is a diode that emits light when a voltage is applied, and includes an electrode (not shown) and a light emitting layer (not shown) provided on a semiconductor substrate (not shown). Furthermore, the light source 500 according to this embodiment preferably has a plurality of LED chips 522 to increase brightness.
 さらに、本実施形態においては、比較例(励起光のピーク波長として450nmを持つ)と異なり、LEDチップ522は、紫から青紫の波長帯域である425nm以下にピーク波長を持つ励起光(図8中太い矢印が対応する)を放射する。例えば、LEDチップ522は、420nmにピーク波長を持つ励起光を放射する。本実施形態においては、LEDチップ522は、光源500の演色性に影響を与えにくい励起光を放射することが好ましく、後述する蛍光体層524から放射される蛍光の波長帯域とは離れた波長帯域を持つ励起光を放射することが好ましい。 Furthermore, in the present embodiment, unlike the comparative example (which has a peak wavelength of excitation light of 450 nm), the LED chip 522 emits excitation light having a peak wavelength of 425 nm or less, which is a wavelength band from violet to blue-violet ( corresponding to the thick arrow). For example, the LED chip 522 emits excitation light with a peak wavelength of 420 nm. In this embodiment, the LED chip 522 preferably emits excitation light that does not easily affect the color rendering properties of the light source 500, and has a wavelength band separate from the wavelength band of fluorescence emitted from the phosphor layer 524 described later. It is preferable to emit excitation light with
 (蛍光体層524)
 蛍光体層524は、比較例と同様に、図8に示すように、複数のLEDチップ522の上方に設けられ、LEDチップ522からの励起光を吸収し、当該励起光と異なる波長域の蛍光を放射することができる。そして、本実施形態においては、蛍光体層524は、互いに異なる波長域の蛍光を放射する複数種の蛍光体(図示省略)を含み、例えば、各蛍光体は、赤色光、緑色光、青色光の蛍光をそれぞれ放射することができる(図8中細い矢印が対応する)。
(Phosphor layer 524)
As in the comparative example, the phosphor layer 524 is provided above the plurality of LED chips 522, as shown in FIG. can radiate. In this embodiment, the phosphor layer 524 includes a plurality of phosphors (not shown) that emit fluorescence in different wavelength ranges. For example, each phosphor emits red light, green light, and blue light. , respectively (corresponding to the thin arrows in FIG. 8).
 詳細には、本実施形態に係る光源500から放射される放射光は、図9に示すようなスペクトル分布を示す。より具体的には、光源500は、420nmにピーク波長を持つ励起光と、励起光よりも波長の長い約450nmから約650nmの波長帯域を持つ蛍光とを放射する。 Specifically, the radiated light emitted from the light source 500 according to this embodiment exhibits a spectral distribution as shown in FIG. More specifically, the light source 500 emits excitation light with a peak wavelength of 420 nm and fluorescent light with a wavelength band from about 450 nm to about 650 nm, which is longer than the excitation light.
 <2.2 光学フィルタ>
 次に、図10から図12を参照して、本開示の実施形態に係る光学フィルタ420の詳細を説明する。図10は、本実施形態に係る光学フィルタ420の透過率特性を示す図であり、図11及び図12は、本実施形態に係る光学系400の構成例を示す図である。
<2.2 Optical Filter>
Details of the optical filter 420 according to an embodiment of the present disclosure will now be described with reference to FIGS. 10-12. FIG. 10 is a diagram showing transmittance characteristics of the optical filter 420 according to this embodiment, and FIGS. 11 and 12 are diagrams showing configuration examples of the optical system 400 according to this embodiment.
 本実施形態においては、光源500と生体試料が搭載されたスライド300との間には、光学フィルタ420(図11及び図12 参照)が設けられる。当該光学フィルタ420は、光源500からの蛍光を透過し、光源500からの励起光の少なくとも一部をカットすることができる。本実施形態においては、励起光は、演色性に影響を与えにくく、且つ、蛍光体層524から放射される蛍光の波長帯域とは離れた波長帯域を持つことから、上記光学フィルタ420は、蛍光を透過しつつ、且つ、励起光をカットすることができる。 In this embodiment, an optical filter 420 (see FIGS. 11 and 12) is provided between the light source 500 and the slide 300 on which the biological sample is mounted. The optical filter 420 can transmit fluorescence from the light source 500 and cut at least part of the excitation light from the light source 500 . In the present embodiment, the excitation light has a wavelength band that is less likely to affect the color rendering properties and is separate from the wavelength band of the fluorescence emitted from the phosphor layer 524. Therefore, the optical filter 420 is can be transmitted, and the excitation light can be cut.
 詳細には、本実施形態においては、光学フィルタ420は、励起光のピーク波長成分の少なくとも一部をカットすることが好ましく、上述した個体差による励起光のピーク波長の変動分を加味して、上記ピーク波長に比べて所定の波長分だけ長い波長において、50%以下の透過率を持つことが好ましい。さらに、本実施形態においては、上記所定の波長は、上記変動分を加味して、例えば10nm程度とすることが好ましい。 Specifically, in this embodiment, the optical filter 420 preferably cuts at least part of the peak wavelength component of the excitation light. It is preferable to have a transmittance of 50% or less at a wavelength longer than the peak wavelength by a predetermined wavelength. Furthermore, in the present embodiment, it is preferable that the predetermined wavelength is set to, for example, about 10 nm in consideration of the variation.
 具体的には、図10に示すように、光学フィルタ420は、例えば、430nmで50%以下(詳細には、38.4%)の透過率を持ち、430nmよりも長い波長の光を透過することができる。例えば、このような透過率特性を持つ光学フィルタとしては、UV(ultraviolet)カットフィルタを挙げることができる。 Specifically, as shown in FIG. 10, the optical filter 420 has, for example, a transmittance of 50% or less (specifically, 38.4%) at 430 nm, and transmits light with a wavelength longer than 430 nm. be able to. For example, an optical filter having such transmittance characteristics is a UV (ultraviolet) cut filter.
 さらに、本実施形態においては、照明部102に含まれる光学系400の光源500側に、光源500からの光束を略平行光とするコリメートレンズからなるレンズ402aが設けられている。そして、上記光学フィルタ420は、図11に示すように、光源500とレンズ402aとの間に設けることができ、このような場合、光学フィルタ420により、当該光学フィルタ420透過後の光の波長範囲が狭くなるために、色収差抑制効果を期待することができる。もしくは、上記光学フィルタ420は、図12に示すように、レンズ402aとスライド300との間に設けることができる。このような場合、レンズ402aにより、光学フィルタ420に入射する光線の入射角分布が絞られるため、光の入射角の違いに起因した光学フィルタの透過特性の違いによる影響の抑制を期待することができる。 Furthermore, in the present embodiment, a lens 402a made of a collimating lens is provided on the side of the light source 500 of the optical system 400 included in the illumination unit 102 so that the light beam from the light source 500 becomes substantially parallel light. The optical filter 420 can be provided between the light source 500 and the lens 402a, as shown in FIG. is narrower, an effect of suppressing chromatic aberration can be expected. Alternatively, the optical filter 420 can be provided between the lens 402a and the slide 300, as shown in FIG. In such a case, the lens 402a narrows the incident angle distribution of the light rays incident on the optical filter 420, so that it is expected to suppress the influence of the difference in the transmission characteristics of the optical filter due to the difference in the incident angle of the light. can.
 なお、図11及び図12に示す光学系400は、上述したケーラー照明の構成を有するが、本実施形態においては、このようなケーラー照明に限定されるものではなく、クリティカル照明であってもよい。詳細には、光学系400は、光源500とスライド300との間に設けられた開口絞り414と、光源500と開口絞り414との間、及び、開口絞り414とスライド300との間に設けられた複数のレンズ402とを有するクリティカル照明であってもよい。なお、クリティカル照明は、光源500の像を観察エリアに直接結ばせることができる照明方法であり、このような照明方法であることから、照明光の強度を強くすることができ、開口数を大きくすることができる。しかしながら、光源500の像を観察エリアに直接結ばせることができることから、照明むらが生じやすく、さらに、被写体は光源500からの熱の影響を受けやすいこととなる。 Although the optical system 400 shown in FIGS. 11 and 12 has the above-described Koehler illumination configuration, the present embodiment is not limited to such Koehler illumination, and may be critical illumination. . Specifically, the optical system 400 includes an aperture stop 414 provided between the light source 500 and the slide 300 , between the light source 500 and the aperture stop 414 , and between the aperture stop 414 and the slide 300 . Critical illumination with multiple lenses 402 . Note that the critical illumination is an illumination method that allows the image of the light source 500 to be directly focused on the observation area. can do. However, since the image of the light source 500 can be directly focused on the observation area, illumination unevenness is likely to occur, and the subject is likely to be affected by the heat from the light source 500 .
 <2.3 照明光>
 次に、図13から図17を参照して、本実施形態に係る照明部102からの照明光について説明する。図13は、本実施形態に係る照明部102の照明光のスペクトル分布を示す図である。図14は、本実施形態に係る光源500の、個体差による放射光のスペクトル分布の違いを示す図であり、図15は、図14に示すような個体差による放射光のスペクトル分布の違いが存在する場合の、照明部102の照明光のスペクトル分布を示す図である。また、図16は、本実施形態に係る光源500の、経年劣化による放射光のスペクトル分布の変化を示す図であり、図17は、図16に示すような経年劣化による放射光のスペクトル分布の変化が存在する場合の、照明部102の照明光のスペクトル分布を示す図である。
<2.3 Illumination light>
Next, illumination light from the illumination unit 102 according to this embodiment will be described with reference to FIGS. 13 to 17. FIG. FIG. 13 is a diagram showing the spectral distribution of illumination light from the illumination unit 102 according to this embodiment. FIG. 14 is a diagram showing differences in spectral distribution of radiated light due to individual differences in the light source 500 according to this embodiment, and FIG. 15 shows differences in spectral distribution of radiated light due to individual differences as shown in FIG. FIG. 10 is a diagram showing a spectral distribution of illumination light from an illumination unit 102 when it exists. FIG. 16 is a diagram showing changes in spectral distribution of radiated light due to aged deterioration of the light source 500 according to the present embodiment, and FIG. 17 shows spectral distribution of radiated light due to aged deterioration as shown in FIG. FIG. 10 is a diagram showing the spectral distribution of illumination light from the illumination unit 102 when there is a change;
 そして、本実施形態に係る光源500及び光学フィルタ420を含む照明部102から照射される照明光は、図13に示すようなスペクトル分布を示す。より具体的には、光源500は、図5に示す比較例と比べて、光源500からの励起光成分が光学フィルタ420によってカットされており、約450nmから約650nmの波長域を持つ白色光を照射することができる。 Illumination light emitted from the illumination unit 102 including the light source 500 and the optical filter 420 according to this embodiment exhibits a spectral distribution as shown in FIG. More specifically, the light source 500 cuts the excitation light component from the light source 500 by the optical filter 420 compared to the comparative example shown in FIG. Can be irradiated.
 ここで、本実施形態に係る光源500において、LEDチップ522の製造バラツキ(個体差)によって、図14に示すように、励起光のピーク波長に420nm±5nmの範囲でバラツキが生じている場合を検討する。このような場合であっても、本実施形態に係る光学フィルタ420を用いることにより、上記バラツキの影響を抑えることができる。詳細には、本実施形態に係る照明部102から照射される照明光は、図15に示すようなスペクトル分布を示し、色温度の範囲を4677Kから4716K(中央値4691K)とすることができ、色温度の差を約十Kにまで抑えることができる。一方、先に説明した比較例(本実施形態に係る光学フィルタ420を用いていない)においては、図6に示すように、励起光のピーク波長に差異(450nm±5nm)が存在することから、色温度の範囲は6510Kから6690K(中央値6652K)となり、色温度の差が最大で100K以上となってしまう。 Here, in the light source 500 according to the present embodiment, as shown in FIG. 14, due to manufacturing variations (individual differences) of the LED chips 522, the peak wavelength of the excitation light varies within a range of 420 nm±5 nm. think about. Even in such a case, by using the optical filter 420 according to the present embodiment, it is possible to suppress the influence of the variations described above. Specifically, the illumination light emitted from the illumination unit 102 according to the present embodiment exhibits a spectrum distribution as shown in FIG. The difference in color temperature can be suppressed to about 10K. On the other hand, in the comparative example (not using the optical filter 420 according to the present embodiment) described above, as shown in FIG. The color temperature range is from 6510K to 6690K (the median value is 6652K), and the maximum color temperature difference is 100K or more.
 また、ここで、本実施形態に係る光源500において、LEDチップ522や蛍光体層524に含まれる蛍光体の経年劣化によって、図16に示すように、放射される白色光における励起光成分と蛍光成分との割合が変化する場合を検討する。詳細には、図16においては、LEDチップ522の劣化により励起光成分の強度が減少し、また、蛍光体の劣化により励起光成分が蛍光体に吸収されにくくなり、励起光成分の強度が減少することが示されている。このような場合であっても、本実施形態に係る光学フィルタ420を用いることにより、上記経年劣化の影響を抑えることができる。詳細には、本実施形態に係る照明部102から照射される照明光は、図17に示すようなスペクトル分布を示し、色温度の範囲を4690K(LEDチップ522の劣化)から4693K(蛍光体の劣化)(初期値4691K)とすることができ、色温度の差を約Kにまで抑えることができる。一方、先に説明した比較例(本実施形態に係る光学フィルタ420を用いていない)においては、図7に示すように、経年劣化により、色温度の範囲は、5812K(LEDチップ522の経年劣化)から7440K(蛍光体の経年劣化)(初期値6652K)となり、色温度の差が最大で数千K以上となってしまう。 Here, in the light source 500 according to the present embodiment, due to aged deterioration of the phosphor contained in the LED chip 522 and the phosphor layer 524, as shown in FIG. Consider the case where the proportions of the components vary. Specifically, in FIG. 16, the intensity of the excitation light component decreases due to deterioration of the LED chip 522, and the deterioration of the phosphor makes it difficult for the excitation light component to be absorbed by the phosphor, reducing the intensity of the excitation light component. shown to do. Even in such a case, by using the optical filter 420 according to the present embodiment, the influence of the aged deterioration can be suppressed. Specifically, the illumination light emitted from the illumination unit 102 according to the present embodiment exhibits a spectrum distribution as shown in FIG. deterioration) (initial value 4691K), and the difference in color temperature can be suppressed to about K. On the other hand, in the comparative example (not using the optical filter 420 according to the present embodiment) described above, as shown in FIG. ) to 7440K (degradation of phosphor over time) (initial value 6652K), and the difference in color temperature becomes several thousand K or more at maximum.
 <2.4 変形例>
 また、本実施形態を変形してもよく、図18を参照して、本実施形態に係る変形例を説明する。図18は、本実施形態の変形例に係る光学フィルタ420の透過率特性を示す図である。
<2.4 Modifications>
Moreover, this embodiment may be modified, and a modification according to this embodiment will be described with reference to FIG. 18 . FIG. 18 is a diagram showing transmittance characteristics of an optical filter 420 according to a modification of this embodiment.
 本変形例においては、光学フィルタ420は、図18に示すような透過率特性を持っていてもよい。詳細には、図18に示すように、光学フィルタ420は、430nmで50%以下の透過率を持ち、430nmよりも長い波長の光を透過することができる。さらに、当該光学フィルタ420は、700nmにおいて50%以下の透過率(詳細には48.1%)を持つ。例えば、このような透過率特性を持つ光学フィルタ420としては、UV-IR(infrared)カットフィルタを挙げることができる。なお、本変形例に係る光学フィルタ420は、センサ部104への赤外光の入射を避けるためのIRフィルタとして機能することもできることから、上述したスキャナ100の部品点数の増加を抑えるといった利点を有する。 In this modified example, the optical filter 420 may have transmittance characteristics as shown in FIG. Specifically, as shown in FIG. 18, the optical filter 420 has a transmittance of 50% or less at 430 nm and can transmit light with wavelengths longer than 430 nm. Furthermore, the optical filter 420 has a transmittance of 50% or less (specifically 48.1%) at 700 nm. For example, an optical filter 420 having such transmittance characteristics may be a UV-IR (infrared) cut filter. Since the optical filter 420 according to this modification can also function as an IR filter for avoiding infrared light from entering the sensor unit 104, it has the advantage of suppressing an increase in the number of parts of the scanner 100 described above. have.
 <<3. まとめ>>
 以上のように、本開示の実施形態によれば、上記励起光の成分を適切にカットする光学フィルタを用いることにより、励起光成分の変化の影響を低減することができることから、個体差や経年劣化による色温度変化の少ない照明部102を得ることができる。その結果、本実施形態によれば、例えば、病理標本の画像をデジタル化の際の、照明部102ごとの色補正や、経年変化に対応した色補正の必要性を低減することができる。さらには、本実施形態によれば、センサ部104の撮像素子(図示省略)の調整の必要性を低減することができる。
<<3. Summary>>
As described above, according to the embodiments of the present disclosure, by using an optical filter that appropriately cuts the components of the excitation light, it is possible to reduce the effects of changes in the components of the excitation light. It is possible to obtain the lighting unit 102 with little change in color temperature due to deterioration. As a result, according to the present embodiment, it is possible to reduce the need for color correction for each lighting unit 102 and color correction corresponding to aging when digitizing an image of a pathological specimen, for example. Furthermore, according to the present embodiment, it is possible to reduce the need for adjusting the imaging element (not shown) of the sensor unit 104 .
 なお、本実施形態に係る照明部(照明装置)102は、上述のようなスキャナ100に適用されることに限定されるものではなく、例えば、対物レンズ(図示省略)や接眼レンズ(図示省略)と組み合わされて光学顕微鏡(図示省略)の照明装置として用いられてもよい。また、上記スキャナ100は、上述したような観察システム10に用いられることに限定されるものではなく、単独で使用されてもよい。 Note that the illumination unit (illumination device) 102 according to the present embodiment is not limited to being applied to the scanner 100 as described above. may be used as an illumination device for an optical microscope (not shown). Further, the scanner 100 is not limited to being used in the observation system 10 as described above, and may be used alone.
 また、上述した本開示の実施形態においては、観察対象は、生体試料に限定されるものではない。また、上述した本開示の実施形態は、医療又は研究等の用途へ適用することに限定されるものではなく、画像を用いて高精度の解析等を行うことが求められるような工業用顕微鏡等の用途であれば、特に限定されるものではない。 In addition, in the above-described embodiments of the present disclosure, observation targets are not limited to biological samples. In addition, the above-described embodiments of the present disclosure are not limited to application to medical or research applications, and industrial microscopes and the like that require high-precision analysis using images. is not particularly limited as long as it is used for
 <<4. 応用例>>
 <4.1 顕微鏡システム>
 また、本開示に係る技術は、例えば、顕微鏡システム等に適用されることができる。以下、図19を参照して、適用され得る顕微鏡システムの構成例について説明する。図19は、顕微鏡システムの構成例を示す。
<<4. Application example >>
<4.1 Microscope system>
Also, the technology according to the present disclosure can be applied to, for example, a microscope system. A configuration example of an applicable microscope system will be described below with reference to FIG. FIG. 19 shows a configuration example of a microscope system.
 図19に示される顕微鏡システム5000は、顕微鏡装置5100、制御部5110、及び情報処理部5120を含む。顕微鏡装置5100は、光照射部5101、光学部5102、及び、信号取得部5103を有している。顕微鏡装置5100は、さらに、生体由来試料Sが配置される試料載置部5104を有していてもよい。なお、顕微鏡装置の構成は、図10に示されるものに限定されず、例えば、光照射部5101は、顕微鏡装置5100の外部に存在してもよく、例えば、顕微鏡装置5100に含まれない光源が光照射部5101として利用されてもよい。また、光照射部5101は、光照射部5101と光学部5102とによって試料載置部5104が挟まれるように配置されていてよく、例えば、光学部5102が存在する側に配置されてもよい。顕微鏡装置5100は、明視野観察、位相差観察、微分干渉観察、偏光観察、蛍光観察、及び暗視野観察のうちの1又は2以上を実行することができるように構成されてよい。 A microscope system 5000 shown in FIG. 19 includes a microscope device 5100 , a control section 5110 and an information processing section 5120 . The microscope device 5100 has a light irradiation section 5101 , an optical section 5102 and a signal acquisition section 5103 . The microscope device 5100 may further have a sample placement section 5104 on which the biological sample S is placed. Note that the configuration of the microscope device is not limited to that shown in FIG. It may be used as the light irradiation unit 5101 . Further, the light irradiation section 5101 may be arranged such that the sample mounting section 5104 is sandwiched between the light irradiation section 5101 and the optical section 5102, and may be arranged on the side where the optical section 5102 exists, for example. The microscope apparatus 5100 may be configured to be able to perform one or more of bright field observation, phase contrast observation, differential interference contrast observation, polarization observation, fluorescence observation, and dark field observation.
 顕微鏡システム5000は、いわゆるWSI(Whole Slide Imaging)システム又はデジタルパソロジーイメージングシステムとして構成されてよく、病理診断のために用いられうる。また、顕微鏡システム5000は、蛍光イメージングシステム、特には多重蛍光イメージングシステムとして構成されてもよい。 The microscope system 5000 may be configured as a so-called WSI (Whole Slide Imaging) system or a digital pathology imaging system, and can be used for pathological diagnosis. Microscope system 5000 may also be configured as a fluorescence imaging system, in particular a multiplex fluorescence imaging system.
 例えば、顕微鏡システム5000は、術中病理診断又は遠隔病理診断を行うために用いられてよい。当該術中病理診断においては、手術が行われている間に、顕微鏡装置5100が、当該手術の対象者から取得された生体由来試料Sのデータを取得し、そして、当該データを情報処理部5120へと送信し得る。当該遠隔病理診断においては、顕微鏡装置5100は、取得した生体由来試料Sのデータを、顕微鏡装置5100とは離れた場所(別の部屋又は建物など)に存在する情報処理部5120へと送信し得る。そして、これらの診断において、情報処理部5120は、当該データを受信し、出力する。さらに、出力されたデータに基づき、情報処理部5120のユーザが、病理診断を行い得る。 For example, the microscope system 5000 may be used to perform intraoperative pathological diagnosis or remote pathological diagnosis. In the intraoperative pathological diagnosis, while the surgery is being performed, the microscope device 5100 acquires data of the biological sample S obtained from the subject of the surgery, and transmits the data to the information processing unit 5120. and can be sent. In the remote pathological diagnosis, the microscope device 5100 can transmit the acquired data of the biological sample S to the information processing unit 5120 located in a place (another room, building, etc.) away from the microscope device 5100. . In these diagnoses, the information processing section 5120 receives and outputs the data. Further, the user of the information processing section 5120 can make a pathological diagnosis based on the output data.
 (生体由来試料S)
 生体由来試料Sは、生体成分を含む試料であってもよい。当該生体成分は、生体の組織、細胞、生体の液状成分(血液や尿等)、培養物、又は生細胞(心筋細胞、神経細胞、及び受精卵など)であってもよい。また、生体由来試料は、固形物であってもよく、パラフィンなどの固定試薬によって固定された標本又は凍結により形成された固形物であってもよい。当該生体由来試料は、当該固形物の切片であり得る。当該生体由来試料の具体的な例として、生検試料の切片を挙げることができる。
(Biological sample S)
The biological sample S may be a sample containing a biological component. The biological components may be tissues, cells, liquid components of a living body (blood, urine, etc.), cultures, or living cells (cardiomyocytes, nerve cells, fertilized eggs, etc.). Also, the biological sample may be a solid substance, a specimen fixed with a fixing reagent such as paraffin, or a solid substance formed by freezing. The biological sample can be a section of the solid. A specific example of the biological sample is a section of a biopsy sample.
 上記生体由来試料は、染色又は標識などの処理が施されたものであってもよい。当該処理は、生体成分の形態を示すための又は生体成分が有する物質(表面抗原など)を示すための染色であってもよく、HE(Hematoxylin-Eosin)染色、免疫組織化学(Immunohistochemistry)染色等を挙げることができる。また、生体由来試料は、1又は2以上の試薬により前記処理が施されたものであってよく、当該試薬は、蛍光色素、発色試薬、蛍光タンパク質、又は蛍光標識抗体であり得る。 The above biological sample may be one that has undergone processing such as staining or labeling. The treatment may be staining for indicating the morphology of biological components or for indicating substances (surface antigens, etc.) possessed by biological components, such as HE (Hematoxylin-Eosin) staining, immunohistochemistry staining, and the like. can be mentioned. Also, the biological sample may have been subjected to the above treatment with one or more reagents, and the reagents may be fluorescent dyes, coloring reagents, fluorescent proteins, or fluorescently labeled antibodies.
 また、標本は、組織サンプルから病理診断または臨床検査などを目的に作製されたものであってもよい。また、当該標本は、人体に限らず、動物、植物、又は他の材料に由来するものであってもよい。標本は、使用される組織(例えば臓器または細胞等)の種類、対象となる疾病の種類、対象者の属性(例えば、年齢、性別、血液型、または人種等)、または対象者の生活習慣(例えば、食生活、運動習慣、または喫煙習慣等)等により性質が異なる。そこで、当該標本は、各標本それぞれ識別可能な識別情報(バーコード又はQRコード(登録商標)等の1次元又は2次元コード)を付されて管理されてよい。 In addition, the specimen may be one prepared from a tissue sample for the purpose of pathological diagnosis or clinical examination. Moreover, the specimen is not limited to the human body, and may be derived from animals, plants, or other materials. The type of specimen used (e.g., organs or cells, etc.), the type of target disease, the subject's attributes (e.g., age, sex, blood type, race, etc.), or the subject's lifestyle (For example, eating habits, exercise habits, smoking habits, etc.) have different properties. Therefore, the specimens may be managed with identification information (one-dimensional or two-dimensional code such as bar code or QR code (registered trademark)) that allows each specimen to be identified.
 (光照射部5101)
 光照射部5101は、生体由来試料Sを照明するための光源、および光源から照射された光を標本に導く光学系である。光源は、可視光、紫外光、若しくは赤外光、又はこれらの組合せを生体由来試料に照射し得る。光源は、ハロゲン光源、レーザ光源、LED光源、水銀光源、及びキセノン光源のうちの1又は2以上であってもよい。蛍光観察における光源の種類、及び/又は、波長は、複数でもよく、当業者により適宜選択されてもよい。光照射部5101は、透過型、反射型又は落射型(同軸落射型若しくは側射型)の構成を有し得る。
(Light irradiation unit 5101)
The light irradiation unit 5101 is a light source for illuminating the biological sample S and an optical system for guiding the light irradiated from the light source to the specimen. The light source may irradiate the biological sample with visible light, ultraviolet light, or infrared light, or a combination thereof. The light source may be one or more of a halogen light source, a laser light source, an LED light source, a mercury light source, and a xenon light source. A plurality of light source types and/or wavelengths may be used in fluorescence observation, and may be appropriately selected by those skilled in the art. The light irradiation unit 5101 can have a transmissive, reflective, or episcopic (coaxial or lateral) configuration.
 (光学部5102)
 光学部5102は、生体由来試料Sからの光を信号取得部5103へと導くように構成される。光学部5102は、顕微鏡装置5100が生体由来試料Sを観察又は撮像することを可能とするように構成され得る。光学部5102は、対物レンズを含み得る。対物レンズの種類は、観察方式に応じて当業者により適宜選択されてもよい。また、光学部5102は、対物レンズによって拡大された像を信号取得部に中継するためのリレーレンズを含んでもよい。光学部5102は、対物レンズ及びリレーレンズ以外の光学部品、接眼レンズ、位相板、及びコンデンサレンズなど、をさらに含み得る。また、光学部5102は、生体由来試料Sからの光のうちから所定の波長を有する光を分離するように構成された波長分離部をさらに含んでもよい。波長分離部は、所定の波長又は波長範囲の光を選択的に信号取得部に到達させるように構成され得る。波長分離部は、例えば、光を選択的に透過させるフィルタ、偏光板、プリズム(ウォラストンプリズム)、及び回折格子のうちの1又は2以上を含んでもよい。波長分離部に含まれる光学部品は、例えば対物レンズから信号取得部までの光路上に配置されてもよい。波長分離部は、蛍光観察が行われる場合、特に励起光照射部を含む場合に、顕微鏡装置内に設けられる。波長分離部は、蛍光同士を互いに分離し又は白色光と蛍光とを分離するように構成され得る。
(Optical section 5102)
The optical section 5102 is configured to guide the light from the biological sample S to the signal acquisition section 5103 . The optical unit 5102 can be configured to allow the microscope device 5100 to observe or image the biological sample S. Optics 5102 may include an objective lens. The type of objective lens may be appropriately selected by a person skilled in the art according to the observation method. Also, the optical unit 5102 may include a relay lens for relaying the image magnified by the objective lens to the signal acquisition unit. The optical section 5102 may further include optical components other than the objective lens and relay lens, eyepiece lens, phase plate, condenser lens, and the like. In addition, the optical section 5102 may further include a wavelength separation section configured to separate light having a predetermined wavelength from the light from the biological sample S. The wavelength separation section may be configured to selectively allow light of a predetermined wavelength or range of wavelengths to reach the signal acquisition section. The wavelength separator may include, for example, one or more of a filter that selectively transmits light, a polarizing plate, a prism (Wollaston prism), and a diffraction grating. The optical components included in the wavelength separation section may be arranged, for example, on the optical path from the objective lens to the signal acquisition section. The wavelength separation unit is provided in the microscope device when fluorescence observation is performed, particularly when an excitation light irradiation unit is included. The wavelength separator may be configured to separate fluorescent light from each other or white light and fluorescent light.
 (信号取得部5103)
 信号取得部5103は、生体由来試料Sからの光を受光し、当該光を電気信号、特にはデジタル電気信号へと変換することができるように構成され得る。信号取得部5103は、当該電気信号に基づき、生体由来試料Sに関するデータを取得することができるように構成されてもよい。信号取得部5103は、生体由来試料Sの像(画像、特には静止画像、タイムラプス画像、又は動画像)のデータを取得することができるように構成されてもよく、特に光学部5102によって拡大された画像のデータを取得するように構成され得る。信号取得部5103は、1次元又は2次元に並んで配列された複数の画素を有する1つ又は複数の撮像素子、CMOS(Complementary Metal Oxide Semiconductor)又はCCD(Charge CoupLED Device)等を含む。信号取得部5103は、低解像度画像取得用の撮像素子と高解像度画像取得用の撮像素子とを含んでよく、又は、AF(Auto Focus)等のためのセンシング用撮像素子と観察などのための画像出力用撮像素子とを含んでもよい。撮像素子は、複数の画素に加え、各画素からの画素信号を用いた信号処理を行う信号処理部(CPU(Central Processing Unit)、DSP(Digital Signal Processor)、及びメモリのうちの1つ、2以上を含む)、及び、画素信号から生成された画像データ及び信号処理部により生成された処理データの出力の制御を行う出力制御部を含み得る。また、複数の画素、信号処理部、及び出力制御部を含む撮像素子は、好ましくは1チップの半導体装置として構成され得る。
(Signal acquisition unit 5103)
The signal acquisition unit 5103 can be configured to receive light from the biological sample S and convert the light into an electrical signal, particularly a digital electrical signal. The signal acquisition unit 5103 may be configured to acquire data regarding the biological sample S based on the electrical signal. The signal acquisition unit 5103 may be configured to acquire data of an image (image, particularly a still image, a time-lapse image, or a moving image) of the biological sample S. can be configured to acquire data for an image obtained by The signal acquisition unit 5103 includes one or more imaging elements having a plurality of pixels arranged one-dimensionally or two-dimensionally, a CMOS (Complementary Metal Oxide Semiconductor), a CCD (Charge CoupLED Device), or the like. The signal acquisition unit 5103 may include an image sensor for acquiring a low-resolution image and an image sensor for acquiring a high-resolution image, or an image sensor for sensing for AF (Auto Focus) and the like and an image sensor for observation. An imaging device for image output may also be included. In addition to a plurality of pixels, the image sensor includes a signal processing unit (CPU (Central Processing Unit) that performs signal processing using pixel signals from each pixel, a DSP (Digital Signal Processor), and one or two memories. above), and an output control unit that controls output of image data generated from the pixel signals and processed data generated by the signal processing unit. Also, the imaging device including the plurality of pixels, the signal processing section, and the output control section can preferably be configured as a one-chip semiconductor device.
 なお、顕微鏡システム5000は、イベント検出センサをさらに具備してもよい。当該イベント検出センサは、入射光を光電変換する画素を含み、当該画素の輝度変化が所定の閾値を超えたことをイベントとして検出するように構成され得る。当該イベント検出センサは、非同期型であってもよい。 Note that the microscope system 5000 may further include an event detection sensor. The event detection sensor includes a pixel that photoelectrically converts incident light, and can be configured to detect, as an event, a change in luminance of the pixel exceeding a predetermined threshold. The event detection sensor may be asynchronous.
 (制御部5110)
 制御部5110は、顕微鏡装置5100による撮像を制御する。制御部5110は、撮像制御のために、光学部5102、及び/又は、試料載置部5104の移動を駆動して、光学部5102と試料載置部5104との間の位置関係を調節しうる。制御部5110は、光学部5102、及び/又は、試料載置部5104を、互いに近づく又は離れる方向(例えば対物レンズの光軸方向)に移動させ得る。また、制御部5110は、光学部5102、及び/又は、試料載置部5104を、光軸方向と垂直な面におけるいずれかの方向に移動させてもよい。制御部5110は、撮像制御のために、光照射部5101、及び/又は、信号取得部5103を制御してもよい。
(control unit 5110)
The control unit 5110 controls imaging by the microscope device 5100 . For imaging control, the control unit 5110 can drive the movement of the optical unit 5102 and/or the sample placement unit 5104 to adjust the positional relationship between the optical unit 5102 and the sample placement unit 5104. . The control unit 5110 can move the optical unit 5102 and/or the sample mounting unit 5104 in a direction toward or away from each other (for example, the optical axis direction of the objective lens). Also, the control section 5110 may move the optical section 5102 and/or the sample placement section 5104 in any direction on a plane perpendicular to the optical axis direction. The control unit 5110 may control the light irradiation unit 5101 and/or the signal acquisition unit 5103 for imaging control.
 (試料載置部5104)
 試料載置部5104は、生体由来試料Sの試料載置部5104上における位置が固定できるように構成されてよく、いわゆるステージであってもよい。試料載置部5104は、生体由来試料Sの位置を、対物レンズの光軸方向、及び/又は、当該光軸方向と垂直な方向に移動させることができるように構成され得る。
(Sample mounting portion 5104)
The sample mounting section 5104 may be configured such that the position of the biological sample S on the sample mounting section 5104 can be fixed, and may be a so-called stage. The sample placement section 5104 can be configured to move the position of the biological sample S in the optical axis direction of the objective lens and/or in a direction perpendicular to the optical axis direction.
 (情報処理部5120)
 情報処理部5120は、顕微鏡装置5100が取得したデータ(撮像データなど)を、顕微鏡装置5100から取得し得る。情報処理部5120は、撮像データに対する画像処理を実行し得る。当該画像処理は、アンミキシング処理、特にスペクトラルアンミキシング処理を含んでもよい。当該アンミキシング処理は、撮像データから所定の波長又は波長範囲の光成分のデータを抽出して画像データを生成する処理、又は、撮像データから所定の波長又は波長範囲の光成分のデータを除去する処理などを含み得る。また、当該画像処理は、組織切片の自家蛍光成分と色素成分を分離する自家蛍光分離処理や互いに蛍光波長が異なる色素間の波長を分離する蛍光分離処理を含み得る。当該自家蛍光分離処理では、同一ないし性質が類似する複数の標本のうち、一方から抽出された自家蛍光シグナルを用いて他方の標本の画像情報から自家蛍光成分を除去する処理を行ってもよい。情報処理部5120は、制御部5110による撮像制御のためのデータを送信してよく、当該データを受信した制御部5110が、当該データに従い顕微鏡装置5100による撮像を制御してもよい。
(Information processing unit 5120)
The information processing section 5120 can acquire data (such as imaging data) acquired by the microscope device 5100 from the microscope device 5100 . The information processing section 5120 can perform image processing on captured data. The image processing may include an unmixing process, in particular a spectral unmixing process. The unmixing process is a process of extracting data of light components of a predetermined wavelength or wavelength range from the imaging data to generate image data, or removing data of light components of a predetermined wavelength or wavelength range from the imaging data. It can include processing and the like. Further, the image processing may include an autofluorescence separation process for separating the autofluorescence component and the dye component of the tissue section, and a fluorescence separation process for separating the wavelengths between dyes having different fluorescence wavelengths. In the autofluorescence separation processing, a process of removing an autofluorescence component from the image information of the other specimen using an autofluorescence signal extracted from one of a plurality of specimens having the same or similar properties may be performed. The information processing section 5120 may transmit data for imaging control by the control section 5110, and the control section 5110 receiving the data may control imaging by the microscope apparatus 5100 according to the data.
 情報処理部5120は、汎用のコンピュータ等の情報処理装置として構成されてよく、CPU、RAM(Random Access Memory)、及びROM(Read Only Memory)を有していてもよい。情報処理部5120は、顕微鏡装置5100の筐体内に含まれていてよく、又は、当該筐体の外にあってもよい。また、情報処理部5120による各種処理又は機能は、ネットワークを介して接続されたサーバコンピュータ又はクラウドにより実現されてもよい。 The information processing section 5120 may be configured as an information processing device such as a general-purpose computer, and may have a CPU, RAM (Random Access Memory), and ROM (Read Only Memory). The information processing section 5120 may be included in the housing of the microscope device 5100 or may be outside the housing. Various processing or functions by the information processing section 5120 may be realized by a server computer or cloud connected via a network.
 顕微鏡装置5100による生体由来試料Sの撮像の方式は、生体由来試料Sの種類及び撮像の目的などに応じて、当業者により適宜選択されてよい。当該撮像方式の例を、図20及び図21を参照して、以下に説明する。図20及び図21は、撮像方式の例を示す図である。 A method of imaging the biological sample S by the microscope device 5100 may be appropriately selected by a person skilled in the art according to the type of the biological sample S, the purpose of imaging, and the like. An example of the imaging method will be described below with reference to FIGS. 20 and 21. FIG. 20 and 21 are diagrams showing examples of imaging methods.
 撮像方式の一つの例は以下のとおりである。顕微鏡装置5100は、まず、撮像対象領域を特定しうる。当該撮像対象領域は、生体由来試料Sが存在する領域全体をカバーするように特定されてよく、又は、生体由来試料Sのうちの目的部分(目的組織切片、目的細胞、又は目的病変部が存在する部分)をカバーするように特定されてもよい。次に、顕微鏡装置5100は、当該撮像対象領域を、所定サイズの複数の分割領域へと分割し、顕微鏡装置5100は各分割領域を順次撮像する。これにより、各分割領域の画像が取得される。 An example of the imaging method is as follows. The microscope device 5100 can first identify an imaging target region. The imaging target region may be specified so as to cover the entire region in which the biological sample S exists, or a target portion of the biological sample S (a target tissue section, a target cell, or a target lesion where the target lesion exists). may be specified to cover the Next, the microscope device 5100 divides the imaging target region into a plurality of divided regions of a predetermined size, and the microscope device 5100 sequentially images each divided region. As a result, an image of each divided area is acquired.
 図20に示されるように、顕微鏡装置5100は、生体由来試料S全体をカバーする撮像対象領域Rを特定する。そして、顕微鏡装置5100は、撮像対象領域Rを16の分割領域へと分割する。そして、顕微鏡装置5100は、分割領域R1の撮像を行い、次に、その分割領域R1に隣接する領域等、撮像対象領域Rに含まれる領域の内のいずれか領域を撮像し得る。さらに、顕微鏡装置5100は、未撮像の分割領域がなくなるまで、分割領域の撮像を行う。なお、顕微鏡装置5100は、撮像対象領域R以外の領域についても、分割領域の撮像画像情報に基づき、撮像しても良い。この際、或る分割領域を撮像した後に次の分割領域を撮像するために、顕微鏡装置5100と試料載置部5104との位置関係が調整される。当該調整は、顕微鏡装置5100の移動、試料載置部5104の移動、又は、これらの両方の移動により行われることができる。 As shown in FIG. 20, the microscope device 5100 identifies an imaging target region R that covers the entire biological sample S. Then, the microscope device 5100 divides the imaging target region R into 16 divided regions. Then, the microscope device 5100 can image the divided region R1, and then any region included in the imaging target region R, such as a region adjacent to the divided region R1. Furthermore, the microscope device 5100 captures images of the divided areas until there are no unimaged divided areas. Note that the microscope device 5100 may also capture an area other than the imaging target area R based on the captured image information of the divided area. At this time, the positional relationship between the microscope device 5100 and the sample mounting section 5104 is adjusted in order to image the next divided area after imaging a certain divided area. The adjustment can be performed by moving the microscope device 5100, moving the sample placement section 5104, or moving both of them.
 この例において、各分割領域の撮像を行う撮像装置は、2次元撮像素子(エリアセンサ)又は1次元撮像素子(ラインセンサ)であってもよい。信号取得部5103は、光学部5102を介して各分割領域を撮像してもよい。また、各分割領域の撮像は、顕微鏡装置5100、及び/又は、試料載置部5104を移動させながら連続的に行われてもよく、又は、各分割領域の撮像に際して、顕微鏡装置5100、及び/又は、試料載置部5104の移動が停止されてもよい。さらに、各分割領域の一部が重なり合うように、撮像対象領域の分割が行われてよく、又は、重なり合わないように撮像対象領域の分割が行われてもよい。各分割領域は、焦点距離、及び/又は、露光時間等の撮像条件を変えて複数回撮像されてもよい。 In this example, the imaging device that captures each divided area may be a two-dimensional imaging device (area sensor) or a one-dimensional imaging device (line sensor). The signal acquisition unit 5103 may image each divided area via the optical unit 5102 . In addition, the imaging of each divided region may be performed continuously while moving the microscope device 5100 and/or the sample placement unit 5104, or when imaging each divided region, the microscope device 5100 and/or Alternatively, the movement of the sample placement section 5104 may be stopped. Furthermore, the imaging target region may be divided so that the divided regions partially overlap each other, or the imaging target region may be divided so that the divided regions do not overlap. Each divided area may be imaged multiple times by changing imaging conditions such as focal length and/or exposure time.
 また、情報処理部5120は、隣り合う複数の分割領域をステッチングして、より広い領域の画像データを生成し得る。当該ステッチング処理を、撮像対象領域全体にわたって行うことで、撮像対象領域について、より広い領域の画像を取得することができる。また、分割領域の画像、またはステッチング処理を行った画像から、より解像度の低い画像データを生成し得る。 Also, the information processing section 5120 can stitch a plurality of adjacent divided regions to generate image data of a wider region. By performing the stitching process over the entire imaging target area, it is possible to obtain an image of a wider area of the imaging target area. Further, image data with lower resolution can be generated from the image of the divided area or the image subjected to the stitching process.
 撮像方式の他の例は以下のとおりである。顕微鏡装置5100は、まず、撮像対象領域を特定し得る。当該撮像対象領域は、生体由来試料Sが存在する領域全体をカバーするように特定されてもよく、又は、生体由来試料Sのうちの目的部分(目的組織切片又は目的細胞が存在する部分)をカバーするように特定されてもよい。次に、顕微鏡装置5100は、撮像対象領域の一部の領域(「分割スキャン領域」ともいう)を、光軸と垂直な面内における一つの方向(「スキャン方向」ともいう)へスキャンして撮像する。顕微鏡装置5100は、当該分割スキャン領域のスキャンが完了したら、次に、当該スキャン領域の隣の分割スキャン領域を、スキャンする。そして、顕微鏡装置5100は、これらのスキャン動作が、撮像対象領域全体が撮像されるまで繰り返す。 Other examples of imaging methods are as follows. The microscope device 5100 can first identify an imaging target region. The imaging target region may be specified so as to cover the entire region where the biological sample S is present, or a target portion (a target tissue section or a portion where target cells are present) of the biological sample S. may be specified to cover. Next, the microscope device 5100 scans a partial region (also referred to as a “divided scan region”) of the imaging target region in one direction (also referred to as a “scanning direction”) within a plane perpendicular to the optical axis. Take an image. After completing the scan of the divided scan area, the microscope device 5100 scans the divided scan area next to the scan area. Then, the microscope device 5100 repeats these scanning operations until the entire imaging target region is imaged.
 図21に示されるように、顕微鏡装置5100は、生体由来試料Sのうち、組織切片が存在する領域(グレーの部分)を撮像対象領域Saとして特定する。そして、顕微鏡装置5100は、撮像対象領域Saのうち、分割スキャン領域Rsを、Y軸方向へスキャンする。顕微鏡装置5100は、分割スキャン領域Rsのスキャンが完了したら、次に、X軸方向における隣の分割スキャン領域をスキャンする。顕微鏡装置5100は、撮像対象領域Saの全てについてスキャンが完了するまで、この動作を繰り返す。 As shown in FIG. 21, the microscope device 5100 identifies the region (gray portion) where the tissue section exists in the biological sample S as the imaging target region Sa. Then, the microscope device 5100 scans the divided scan area Rs in the imaging target area Sa in the Y-axis direction. After completing scanning of the divided scan region Rs, the microscope device 5100 next scans an adjacent divided scan region in the X-axis direction. The microscope device 5100 repeats this operation until scanning is completed for the entire imaging target area Sa.
 各分割スキャン領域のスキャンのために、及び、或る分割スキャン領域を撮像した後に次の分割スキャン領域を撮像するために、顕微鏡装置5100と試料載置部5104との位置関係が調整される。当該調整は、顕微鏡装置5100の移動、試料載置部5104の移動、又は、これらの両方の移動により行われてもよい。この例において、各分割スキャン領域の撮像を行う撮像装置は、1次元撮像素子(ラインセンサ)又は2次元撮像素子(エリアセンサ)であってもよい。信号取得部5103は、拡大光学系を介して各分割領域を撮像してよい。また、各分割スキャン領域の撮像は、顕微鏡装置5100、及び/又は、試料載置部5104を移動させながら連続的に行われてよい。各分割スキャン領域の一部が重なり合うように、撮像対象領域の分割が行われてよく、又は、重なり合わないように撮像対象領域の分割が行われてもよい。各分割スキャン領域は、焦点距離、及び/又は、露光時間などの撮像条件を変えて複数回撮像されてもよい。 The positional relationship between the microscope device 5100 and the sample placement section 5104 is adjusted for scanning each divided scan area and for imaging the next divided scan area after imaging a certain divided scan area. The adjustment may be performed by moving the microscope device 5100, moving the sample placement section 5104, or moving both of them. In this example, the imaging device that captures each divided scan area may be a one-dimensional imaging device (line sensor) or a two-dimensional imaging device (area sensor). The signal acquisition unit 5103 may capture an image of each divided area via an enlarging optical system. Also, the imaging of each divided scan region may be performed continuously while moving the microscope device 5100 and/or the sample placement unit 5104 . The imaging target area may be divided such that the divided scan areas partially overlap each other, or the imaging target area may be divided so that the divided scan areas do not overlap. Each divided scan area may be imaged multiple times while changing imaging conditions such as focal length and/or exposure time.
 また、情報処理部5120は、隣り合う複数の分割スキャン領域をステッチングして、より広い領域の画像データを生成し得る。当該ステッチング処理を、撮像対象領域全体にわたって行うことで、撮像対象領域について、より広い領域の画像を取得することができる。また、分割スキャン領域の画像、またはステッチング処理を行った画像から、より解像度の低い画像データを生成し得る。 Also, the information processing section 5120 can stitch a plurality of adjacent divided scan regions to generate image data of a wider region. By performing the stitching process over the entire imaging target area, it is possible to obtain an image of a wider area of the imaging target area. Further, image data with lower resolution can be generated from images of divided scan regions or images subjected to stitching processing.
 <4.2 病理診断システム>
 また、本開示に係る技術は、例えば、医師等が患者から採取された細胞や組織を観察して病変を診断する病理診断システムやその支援システム等(以下、診断支援システムと称する)に適用されてもよい。この診断支援システムは、デジタルパソロジー技術を利用して取得された画像に基づいて病変を診断又はその支援をするWSI(Whole Slide Imaging)システムであってもよい。
<4.2 Pathological diagnosis system>
In addition, the technology according to the present disclosure is applied, for example, to a pathological diagnosis system and its support system (hereinafter referred to as a diagnosis support system) in which a doctor or the like observes cells and tissues collected from a patient and diagnoses a lesion. may This diagnosis support system may be a WSI (Whole Slide Imaging) system that diagnoses or supports diagnosis of lesions based on images acquired using digital pathology technology.
 図22は、本開示に係る技術が適用される診断支援システム5500の概略的な構成の一例を示す図である。図22に示すように、診断支援システム5500は、1以上の病理システム5510を含む。さらに医療情報システム5530と、導出装置5540とを含んでもよい。 FIG. 22 is a diagram showing an example of a schematic configuration of a diagnostic support system 5500 to which the technology according to the present disclosure is applied. As shown in FIG. 22, the diagnostic support system 5500 includes one or more pathology systems 5510. A medical information system 5530 and a derivation device 5540 may also be included.
 1以上の病理システム5510それぞれは、主に病理医が使用するシステムであり、例えば研究所や病院に導入される。各病理システム5510は、互いに異なる病院に導入されてもよく、それぞれWAN(Wide Area Network)(インターネットを含む)やLAN(Local Area Network)や公衆回線網や移動体通信網などの種々のネットワークを介して医療情報システム5530及び導出装置5540に接続される。 Each of the one or more pathology systems 5510 is a system mainly used by pathologists, and is installed in laboratories and hospitals, for example. Each pathology system 5510 may be installed in a different hospital, and each uses various networks such as WAN (Wide Area Network) (including the Internet), LAN (Local Area Network), public line network, and mobile communication network. It is connected to the medical information system 5530 and the derivation device 5540 via.
 各病理システム5510は、顕微鏡(詳細には、デジタル撮像技術と組み合わされて用いられる顕微鏡)5511と、サーバ5512と、表示制御装置5513と、表示装置5514とを含む。 Each pathology system 5510 includes a microscope (specifically, a microscope used in combination with digital imaging technology) 5511, a server 5512, a display control device 5513, and a display device 5514.
 顕微鏡5511は、光学顕微鏡の機能を有し、ガラススライドに収められた観察対象物を撮影し、デジタル画像である病理画像を取得する。観察対象物とは、例えば、患者から採取された組織や細胞であり、臓器の肉片、唾液、血液等であってよい。例えば、顕微鏡5511が図1に示されるスキャナ30として機能する。 The microscope 5511 has the function of an optical microscope, photographs an observation object contained in a glass slide, and acquires a pathological image, which is a digital image. Observation objects are, for example, tissues and cells collected from a patient, and may be pieces of flesh of organs, saliva, blood, and the like. For example, microscope 5511 functions as scanner 30 shown in FIG.
 サーバ5512は、顕微鏡5511によって取得された病理画像を図示しない記憶部に記憶、保存する。また、サーバ5512は、表示制御装置5513から閲覧要求を受け付けた場合に、図示しない記憶部から病理画像を検索し、検索された病理画像を表示制御装置5513に送る。 The server 5512 stores and saves pathological images acquired by the microscope 5511 in a storage unit (not shown). Further, when receiving a viewing request from the display control device 5513 , the server 5512 searches for pathological images from a storage unit (not shown) and sends the searched pathological images to the display control device 5513 .
 表示制御装置5513は、ユーザから受け付けた病理画像の閲覧要求をサーバ5512に送る。そして、表示制御装置5513は、サーバ5512から受け付けた病理画像を、液晶、EL(Electro‐Luminescence)、CRT(Cathode Ray Tube)などを用いた表示装置5514に表示させる。なお、表示装置5514は、4Kや8Kに対応していてもよく、また、1台に限られず、複数台であってもよい。 The display control device 5513 sends to the server 5512 the pathological image viewing request received from the user. Then, the display control device 5513 displays the pathological image received from the server 5512 on the display device 5514 using liquid crystal, EL (Electro-Luminescence), CRT (Cathode Ray Tube), or the like. Note that the display device 5514 may be compatible with 4K or 8K, and is not limited to one device, and may be a plurality of devices.
 ここで、観察対象物が臓器の肉片等の固形物である場合、この観察対象物は、例えば、染色された薄切片であってよい。薄切片は、例えば、臓器等の検体から切出されたブロック片を薄切りすることで作製されてもよい。また、薄切りの際には、ブロック片がパラフィン等で固定されてもよい。 Here, if the observation target is a solid object such as a piece of flesh of an organ, the observation target may be, for example, a stained slice. A sliced piece may be produced, for example, by slicing a block piece excised from a specimen such as an organ. Also, when slicing, the block pieces may be fixed with paraffin or the like.
 薄切片の染色には、HE(Hematoxylin-Eosin)染色などの組織の形態を示す一般染色や、IHC(Immunohistochemistry)染色などの組織の免疫状態を示す免疫染色や蛍光免疫染色など、種々の染色が適用されてよい。その際、1つの薄切片が複数の異なる試薬を用いて染色されてもよいし、同じブロック片から連続して切り出された2以上の薄切片(隣接する薄切片ともいう)が互いに異なる試薬を用いて染色されてもよい。 Various types of staining are available for staining thin sections, including general staining that indicates the morphology of tissues such as HE (Hematoxylin-Eosin) staining, immunostaining that indicates the immune status of tissues such as IHC (Immunohistochemistry) staining, and fluorescent immunostaining. may be applied. At that time, one thin section may be stained with a plurality of different reagents, or two or more thin sections (also referred to as adjacent thin sections) continuously cut out from the same block piece may be stained with different reagents. may be dyed using
 顕微鏡5511は、低解像度で撮影するための低解像度撮影部と、高解像度で撮影するための高解像度撮影部とを含み得る。低解像度撮影部と高解像度撮影部とは、異なる光学系であってもよいし、同一の光学系であってもよい。同一の光学系である場合には、顕微鏡5511は、撮影対象に応じて解像度が変更されてもよい。 The microscope 5511 can include a low-resolution imaging unit for low-resolution imaging and a high-resolution imaging unit for high-resolution imaging. The low-resolution imaging section and the high-resolution imaging section may be different optical systems, or may be the same optical system. In the case of the same optical system, the resolution of the microscope 5511 may be changed according to the imaging target.
 観察対象物が収容されたガラススライドは、顕微鏡5511の画角内に位置するステージ上に載置される。顕微鏡5511は、まず、低解像度撮影部を用いて画角内の全体画像を取得し、取得した全体画像から観察対象物の領域を特定する。続いて、顕微鏡5511は、観察対象物が存在する領域を所定サイズの複数の分割領域に分割し、各分割領域を高解像度撮影部により順次撮影することで、各分割領域の高解像度画像を取得する。対象とする分割領域の切替えでは、ステージを移動させてもよいし、撮影光学系を移動させてもよいし、それら両方を移動させてもよい。また、各分割領域は、ガラススライドの意図しない滑りによる撮影漏れ領域の発生等を防止するために、隣接する分割領域との間で重複していてもよい。さらに、全体画像には、全体画像と患者とを対応付けておくための識別情報が含まれていてもよい。この識別情報は、例えば、文字列やQRコード(登録商標)等であってよい。 The glass slide containing the observation target is placed on the stage located within the angle of view of the microscope 5511. The microscope 5511 first acquires the entire image within the angle of view using the low-resolution imaging unit, and specifies the region of the observation object from the acquired entire image. Subsequently, the microscope 5511 divides the region where the observation target exists into a plurality of divided regions of a predetermined size, and sequentially captures each divided region by the high-resolution imaging unit, thereby obtaining a high-resolution image of each divided region. do. In switching the target divided area, the stage may be moved, the imaging optical system may be moved, or both of them may be moved. In addition, each divided area may overlap adjacent divided areas in order to prevent occurrence of an imaging omission area due to unintended slippage of the glass slide. Furthermore, the whole image may contain identification information for associating the whole image with the patient. This identification information may be, for example, a character string, a QR code (registered trademark), or the like.
 顕微鏡5511で取得された高解像度画像は、サーバ5512に入力される。サーバ5512は、各高解像度画像をより小さいサイズの部分画像(以下、タイル画像と称する)に分割する。例えば、サーバ5512は、1つの高解像度画像を縦横10×10個の計100個のタイル画像に分割する。その際、隣接する分割領域が重複していれば、サーバ5512は、テンプレートマッチング等の技法を用いて互いに隣り合う高解像度画像にステッチング処理を施してもよい。その場合、サーバ5512は、ステッチング処理により貼り合わされた高解像度画像全体を分割してタイル画像を生成してもよい。ただし、高解像度画像からのタイル画像の生成は、上記ステッチング処理の前であってもよい。 A high-resolution image acquired by the microscope 5511 is input to the server 5512. The server 5512 divides each high resolution image into smaller size partial images (hereinafter referred to as tile images). For example, the server 5512 divides one high-resolution image into a total of 100 tile images of 10×10. At that time, if adjacent divided areas overlap, the server 5512 may perform stitching processing on adjacent high-resolution images using a technique such as template matching. In that case, the server 5512 may generate tile images by dividing the entire high-resolution image stitched together by the stitching process. However, the generation of tile images from high-resolution images may be performed before the stitching process.
 また、サーバ5512は、タイル画像をさらに分割することで、より小さいサイズのタイル画像を生成し得る。このようなタイル画像の生成は、最小単位として設定されたサイズのタイル画像が生成されるまで繰り返されてよい。 Also, the server 5512 can generate tile images of smaller sizes by further dividing the tile images. Such generation of tile images may be repeated until a tile image having the size set as the minimum unit is generated.
 このように最小単位のタイル画像を生成すると、サーバ5512は、隣り合う所定数のタイル画像を合成することで1つのタイル画像を生成するタイル合成処理を、全てのタイル画像に対して実行する。このタイル合成処理は、最終的に1つのタイル画像が生成されるまで繰り返され得る。このような処理により、各階層が1つ以上のタイル画像で構成されたピラミッド構造のタイル画像群が生成される。このピラミッド構造では、ある層のタイル画像とこの層とは異なる層のタイル画像との画素数は同じであるが、その解像度が異なっている。例えば、2×2個の計4つのタイル画像を合成して上層の1つのタイル画像を生成する場合、上層のタイル画像の解像度は、合成に用いた下層のタイル画像の解像度の1/2倍となっている。 After generating tile images of the minimum unit in this way, the server 5512 performs tile composition processing for generating a single tile image by compositing a predetermined number of adjacent tile images for all tile images. This tile synthesis process can be repeated until finally one tile image is generated. Through such processing, a pyramid-structured tile image group in which each layer is composed of one or more tile images is generated. In this pyramid structure, a tile image in one layer and a tile image in a different layer have the same number of pixels, but different resolutions. For example, when synthesizing a total of four 2×2 tile images to generate one upper layer tile image, the resolution of the upper layer tile image is half the resolution of the lower layer tile image used for synthesis. It has become.
 このようなピラミッド構造のタイル画像群を構築することによって、表示対象のタイル画像が属する階層次第で、表示装置に表示される観察対象物の詳細度を切り替えることが可能となる。例えば、最下層のタイル画像が用いられる場合には、観察対象物の狭い領域を詳細に表示し、上層のタイル画像が用いられるほど観察対象物の広い領域が粗く表示されるようにすることができる。 By constructing such a pyramid-structured tile image group, it is possible to switch the level of detail of the observation target displayed on the display device, depending on the hierarchy to which the tile image to be displayed belongs. For example, when the tile image of the lowest layer is used, a narrow area of the observation object is displayed in detail, and the wider the area of the observation object is displayed more coarsely as the tile image of the upper layer is used. can.
 生成されたピラミッド構造のタイル画像群は、例えば、各タイル画像を一意に識別可能な識別情報(タイル識別情報と称する)とともに、不図示の記憶部に記憶される。サーバ5512は、他の装置(例えば、表示制御装置5513や導出装置5540)からタイル識別情報を含むタイル画像の取得要求を受け付けた場合に、タイル識別情報に対応するタイル画像を他の装置へ送信する。 The generated pyramid-structured tile image group is stored in a storage unit (not shown) together with, for example, identification information (referred to as tile identification information) that can uniquely identify each tile image. When the server 5512 receives a tile image acquisition request including tile identification information from another device (for example, the display control device 5513 or the derivation device 5540), the server 5512 transmits the tile image corresponding to the tile identification information to the other device. do.
 なお、病理画像であるタイル画像は、焦点距離や染色条件等の撮影条件毎に生成されてもよい。撮影条件毎にタイル画像が生成される場合、特定の病理画像とともに、特定の撮影条件と異なる撮影条件に対応する他の病理画像であって、特定の病理画像と同一領域の他の病理画像を並べて表示してもよい。特定の撮影条件は、閲覧者によって指定されてもよい。また、閲覧者に複数の撮影条件が指定された場合には、各撮影条件に対応する同一領域の病理画像が並べて表示されてもよい。 Note that tile images, which are pathological images, may be generated for each imaging condition such as focal length and staining conditions. When tile images are generated for each imaging condition, a specific pathological image and other pathological images corresponding to imaging conditions different from the specific imaging condition and having the same region as the specific pathological image are generated. They may be displayed side by side. Specific shooting conditions may be specified by the viewer. Further, when a plurality of imaging conditions are designated by the viewer, pathological images of the same region corresponding to each imaging condition may be displayed side by side.
 また、サーバ5512は、ピラミッド構造のタイル画像群をサーバ5512以外の他の記憶装置、例えば、クラウドサーバ等に記憶してもよい。さらに、以上のようなタイル画像の生成処理の一部又は全部は、クラウドサーバ等で実行されてもよい。 In addition, the server 5512 may store the pyramid-structured tile image group in a storage device other than the server 5512, such as a cloud server. Furthermore, part or all of the tile image generation processing as described above may be executed by a cloud server or the like.
 表示制御装置5513は、ユーザからの入力操作に応じて、ピラミッド構造のタイル画像群から所望のタイル画像を抽出し、これを表示装置5514に出力する。このような処理により、ユーザは、観察倍率を変えながら観察対象物を観察しているような感覚を得ることができる。すなわち、表示制御装置5513は仮想顕微鏡として機能する。ここでの仮想的な観察倍率は、実際には解像度に相当する。 The display control device 5513 extracts a desired tile image from the pyramid-structured tile image group according to the user's input operation, and outputs it to the display device 5514 . Through such processing, the user can obtain the feeling of observing the observation object while changing the observation magnification. That is, the display control device 5513 functions as a virtual microscope. The virtual observation magnification here actually corresponds to the resolution.
 なお、高解像度画像の撮影方法は、どの様な方法を用いてもよい。ステージの停止、移動を繰り返しながら分割領域を撮影して高解像度画像を取得してもよいし、所定の速度でステージを移動しながら分割領域を撮影してストリップ上の高解像度画像を取得してもよい。また、高解像度画像からタイル画像を生成する処理は必須の構成ではなく、ステッチング処理により貼り合わされた高解像度画像全体の解像度を段階的に変化させることで、解像度が段階的に変化する画像を生成してもよい。この場合でも、広いエリア域の低解像度画像から狭いエリアの高解像度画像までを段階的にユーザに提示することが可能である。 Any method may be used to capture high-resolution images. A high-resolution image may be obtained by photographing the divided areas while the stage is repeatedly stopped and moved, or a high-resolution image on the strip may be obtained by photographing the divided areas while moving the stage at a predetermined speed. good too. In addition, the process of generating tile images from high-resolution images is not an essential configuration, and by changing the resolution of the entire high-resolution image stitched together by the stitching process, images with gradual changes in resolution can be created. may be generated. Even in this case, it is possible to present the user with a step-by-step process from a low-resolution image of a wide area to a high-resolution image of a narrow area.
 医療情報システム5530は、いわゆる電子カルテシステムであり、患者を識別する情報、患者の疾患情報、診断に用いた検査情報や画像情報、診断結果、処方薬などの診断に関する情報を記憶する。例えば、ある患者の観察対象物を撮影することで得られる病理画像は、一旦、サーバ5512を介して保存された後、表示制御装置5513によって表示装置5514に表示され得る。病理システム5510を利用する病理医は、表示装置5514に表示された病理画像に基づいて病理診断を行う。病理医によって行われた病理診断結果は、医療情報システム5530に記憶される。 The medical information system 5530 is a so-called electronic medical record system, and stores information related to diagnosis, such as patient identification information, patient disease information, test information and image information used for diagnosis, diagnosis results, and prescription drugs. For example, a pathological image obtained by photographing an observation target of a certain patient can be temporarily stored via the server 5512 and then displayed on the display device 5514 by the display control device 5513 . A pathologist using the pathological system 5510 makes a pathological diagnosis based on the pathological image displayed on the display device 5514 . Pathological diagnosis results made by the pathologist are stored in the medical information system 5530 .
 導出装置5540は、病理画像に対する解析を実行し得る。この解析には、機械学習によって作成された学習モデルを用いることができる。導出装置5540は、当該解析結果として、特定領域の分類結果や組織の識別結果等を導出してもよい。さらに、導出装置5540は、細胞情報、数、位置、輝度情報等の識別結果やそれらに対するスコアリング情報等を導出してもよい。導出装置5540によって導出されたこれらの情報は、診断支援情報として、病理システム5510の表示装置5514に表示されてもよい。 A derivation device 5540 may perform analysis on pathological images. A learning model created by machine learning can be used for this analysis. The derivation device 5540 may derive a classification result of a specific region, a tissue identification result, or the like as the analysis result. Further, the deriving device 5540 may derive identification results such as cell information, number, position, brightness information, and scoring information for them. These pieces of information derived by the derivation device 5540 may be displayed on the display device 5514 of the pathology system 5510 as diagnosis support information.
 なお、導出装置5540は、1台以上のサーバ(クラウドサーバを含む)等で構成されたサーバシステムであってもよい。また、導出装置5540は、病理システム5510内の例えば表示制御装置5513又はサーバ5512に組み込まれた構成であってもよい。すなわち、病理画像に対する各種解析は、病理システム5510内で実行されてもよい。 Note that the derivation device 5540 may be a server system configured with one or more servers (including cloud servers). Also, the derivation device 5540 may be configured to be incorporated in, for example, the display control device 5513 or the server 5512 in the pathological system 5510 . That is, various analyzes on pathological images may be performed within the pathological system 5510 .
 本開示に係る技術は、以上説明した構成のうち、先に説明したように、顕微鏡5511に好適に適用され得る。顕微鏡5511に本開示に係る技術を適用することにより、より鮮明な病理画像を得ることができるため、病変の診断をより正確に行うことが可能になる。 The technology according to the present disclosure can be preferably applied to the microscope 5511 as described above among the configurations described above. By applying the technology according to the present disclosure to the microscope 5511, it is possible to obtain a clearer pathological image, and thus it is possible to more accurately diagnose a lesion.
 なお、上記で説明した構成は、診断支援システムに限らず、デジタル撮像技術を利用する、共焦点顕微鏡や蛍光顕微鏡、ビデオ顕微鏡等の生物顕微鏡全般にも適用され得る。ここで、観察対象物は、培養細胞や受精卵、精子等の生体試料、細胞シート、三次元細胞組織等の生体材料、ゼブラフィッシュやマウス等の生体であってもよい。また、観察対象物は、ガラススライドに限らず、ウェルプレートやシャーレ等に保存された状態で観察されることもできる。 It should be noted that the configuration described above can be applied not only to the diagnostic support system, but also to general biological microscopes such as confocal microscopes, fluorescence microscopes, and video microscopes that use digital imaging technology. Here, the object to be observed may be a biological sample such as cultured cells, fertilized eggs, or sperm, a biological material such as a cell sheet or a three-dimensional cell tissue, or a living body such as a zebrafish or mouse. Further, the object to be observed is not limited to the glass slide, and can be observed while being stored in a well plate, petri dish, or the like.
 さらに、デジタル撮像技術を利用する顕微鏡を用いて取得した観察対象物の静止画像から動画像が生成されてもよい。例えば、所定期間連続的に撮影した静止画像から動画像を生成してもよいし、所定の間隔を空けて撮影した静止画像から画像シーケンスを生成してもよい。このように、静止画像から動画像を生成することで、がん細胞や神経細胞、心筋組織、精子等の拍動や伸長、遊走等の動きや培養細胞や受精卵の分裂過程など、観察対象物の動的な特徴を、機械学習を用いて解析することが可能となる。 Furthermore, a moving image may be generated from still images of the observed object acquired using a microscope that utilizes digital imaging technology. For example, a moving image may be generated from still images captured continuously over a predetermined period of time, or an image sequence may be generated from still images captured at predetermined intervals. In this way, by generating moving images from still images, it is possible to observe the movements of cancer cells, nerve cells, myocardial tissue, sperm, etc. such as pulsation, elongation, and migration, and the division process of cultured cells and fertilized eggs. It becomes possible to analyze the dynamic features of objects using machine learning.
 <<5. 補足>>
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
<<5. Supplement >>
Although the preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can conceive of various modifications or modifications within the scope of the technical idea described in the claims. are naturally within the technical scope of the present disclosure.
 なお、先に説明した本開示の実施形態においては、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。 It should be noted that, in the embodiments of the present disclosure described above, each component of each illustrated device is functionally conceptual, and does not necessarily need to be physically configured as illustrated. In other words, the specific form of distribution and integration of each device is not limited to the one shown in the figure, and all or part of them can be functionally or physically distributed and integrated in arbitrary units according to various loads and usage conditions. Can be integrated and configured.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 Also, the effects described in this specification are merely descriptive or exemplary, and are not limiting. In other words, the technology according to the present disclosure can produce other effects that are obvious to those skilled in the art from the description of this specification, in addition to or instead of the above effects.
 なお、本技術は以下のような構成も取ることができる。
(1)
 複数の発光素子と、前記複数の発光素子からの励起光を吸収して蛍光を放射する蛍光体層とを含み、生体試料に光を照射する光源と、
 前記光源と前記生体試料との間に設けられた光学フィルタと、
 を備え、
 前記光学フィルタは、前記蛍光を透過し、且つ、前記蛍光に比べて短い波長を持つ前記励起光の少なくとも一部をカットする、
 生体試料観察装置用照明装置。
(2)
 前記励起光は、425nm以下のピーク波長を持ち、
 前記光学フィルタは、前記ピーク波長を持つ光の少なくとも一部をカットする、
 上記(1)に記載の生体試料観察装置用照明装置。
(3)
 前記光学フィルタは、前記ピーク波長に比べて所定の波長分だけ長い波長において、50%以下の透過率を持つ、上記(2)に記載の生体試料観察装置用照明装置。
(4)
 前記所定の波長は、10nmである、上記(3)に記載の生体試料観察装置用照明装置。
(5)
 前記光学フィルタは、波長700nmにおいて、50%以下の透過率を持つ、上記(3)又は(4)に記載の生体試料観察装置用照明装置。
(6)
 前記蛍光体層は、複数種の蛍光体を含む、上記(1)~(5)のいずれか1つに記載の生体試料観察装置用照明装置。
(7)
 前記複数種の蛍光体は、赤色光、緑色光、青色光の蛍光をそれぞれ放射する、上記(6)に記載の生体試料観察装置用照明装置。
(8)
 白色光を出射する照明装置である、上記(1)~(7)のいずれか1つに記載の生体試料観察装置用照明装置。
(9)
 CRIが90以上である、上記(8)に記載の生体試料観察装置用照明装置。
(10)
 前記複数の発光素子は、発光ダイオードからなる、上記(1)~(9)のいずれか1つに記載の生体試料観察装置用照明装置。
(11)
 前記光源と前記生体試料との間に設けられたコリメートレンズをさらに備える、上記(1)~(10)のいずれか1つに記載の生体試料観察装置用照明装置。
(12)
 前記光学フィルタは、前記光源と前記コリメートレンズとの間に設けられる、上記(11)に記載の生体試料観察装置用照明装置。
(13)
 前記光学フィルタは、前記コリメートレンズと前記生体試料との間に設けられる、上記(11)に記載の生体試料観察装置用照明装置。
(14)
 前記生体試料に前記光源からの光を導く光学系をさらに備える、上記(1)~(13)のいずれか1つに記載の生体試料観察装置用照明装置。
(15)
 前記光学系は、
 前記光源と前記生体試料との間に設けられた視野絞りと、
 前記視野絞りと前記生体試料との間に設けられた開口絞りと、
 前記視野絞りと前記開口絞りとの間、及び、前記開口絞りと前記生体試料との間に設けられた複数のレンズと、
 を有する、上記(14)に記載の生体試料観察装置用照明装置。
(16)
 前記光学系は、
 前記光源と前記生体試料との間に設けられた開口絞りと、
 前記光源と前記開口絞りとの間、及び、前記開口絞りと前記生体試料との間に設けられた複数のレンズと、
 を有する、上記(14)に記載の生体試料観察装置用照明装置。
(17)
 生体試料を照明する照明装置を備える生体試料観察装置であって、
 前記照明装置は、
 複数の発光素子と、前記複数の発光素子からの励起光を吸収して蛍光を放射する蛍光体層とを含み、前記生体試料に光を照射する光源と、
 前記光源と前記生体試料との間に設けられた光学フィルタと、
 を有し、
 前記光学フィルタは、前記蛍光を透過し、且つ、前記蛍光に比べて短い波長を持つ前記励起光の少なくとも一部をカットする、
 生体試料観察装置。
(18)
 顕微鏡装置である、上記(17)に記載の生体試料観察装置。
(19)
 撮像素子を含む、前記生体試料を撮像する撮像部をさらに備える、上記(17)に記載の生体試料観察装置。
(20)
 複数の発光素子と、前記複数の発光素子からの励起光を吸収して蛍光を放射する蛍光体層とを含み、試料に光を照射する光源と、
 前記光源と前記試料との間に設けられた光学フィルタと、
 を備え、
 前記光学フィルタは、前記蛍光を透過し、且つ、前記蛍光に比べて短い波長を持つ前記励起光の少なくとも一部をカットする、
 観察装置用照明装置。
(21)
 生体試料を観察する観察装置と、当該観察装置を制御し、当該観察装置から得られた信号を処理するコンピュータとを含み、
 前記観察装置は、
 複数の発光素子と、前記複数の発光素子からの励起光を吸収して蛍光を放射する蛍光体層とを含み、前記生体試料に光を照射する光源と、
 前記光源と前記生体試料との間に設けられた光学フィルタと、
 前記生体試料を撮像する撮像部と、
 を有し、
 前記光学フィルタは、前記蛍光を透過し、且つ、前記蛍光に比べて短い波長を持つ前記励起光の少なくとも一部をカットする、
 観察システム。
Note that the present technology can also take the following configuration.
(1)
a light source that includes a plurality of light emitting elements and a phosphor layer that absorbs excitation light from the plurality of light emitting elements and emits fluorescence, and irradiates a biological sample with light;
an optical filter provided between the light source and the biological sample;
with
The optical filter transmits the fluorescence and cuts at least part of the excitation light having a shorter wavelength than the fluorescence.
Illumination device for biological sample observation device.
(2)
The excitation light has a peak wavelength of 425 nm or less,
the optical filter cuts at least part of the light having the peak wavelength;
The illumination device for a biological sample observation device according to (1) above.
(3)
The illumination device for a biological sample observation device according to (2) above, wherein the optical filter has a transmittance of 50% or less at a wavelength longer than the peak wavelength by a predetermined wavelength.
(4)
The illumination device for a biological sample observation device according to (3) above, wherein the predetermined wavelength is 10 nm.
(5)
The illumination device for a biological sample observation device according to (3) or (4) above, wherein the optical filter has a transmittance of 50% or less at a wavelength of 700 nm.
(6)
The illumination device for a biological sample observation device according to any one of (1) to (5) above, wherein the phosphor layer contains a plurality of types of phosphors.
(7)
The illumination device for a biological sample observation device according to (6) above, wherein the plurality of types of phosphors respectively emit fluorescence of red light, green light, and blue light.
(8)
The illumination device for a biological sample observation device according to any one of (1) to (7) above, which is an illumination device that emits white light.
(9)
The illumination device for a biological sample observation device according to (8) above, which has a CRI of 90 or more.
(10)
The illumination device for a biological sample observation device according to any one of (1) to (9) above, wherein the plurality of light emitting elements are light emitting diodes.
(11)
The illumination device for a biological sample observation device according to any one of (1) to (10) above, further comprising a collimating lens provided between the light source and the biological sample.
(12)
The illumination device for a biological sample observation device according to (11) above, wherein the optical filter is provided between the light source and the collimating lens.
(13)
The illumination device for a biological sample observation apparatus according to (11) above, wherein the optical filter is provided between the collimator lens and the biological sample.
(14)
The illumination device for a biological sample observation device according to any one of (1) to (13) above, further comprising an optical system for guiding light from the light source to the biological sample.
(15)
The optical system is
a field stop provided between the light source and the biological sample;
an aperture stop provided between the field stop and the biological sample;
a plurality of lenses provided between the field stop and the aperture stop and between the aperture stop and the biological sample;
The illumination device for a biological sample observation device according to (14) above, comprising:
(16)
The optical system is
an aperture stop provided between the light source and the biological sample;
a plurality of lenses provided between the light source and the aperture stop and between the aperture stop and the biological sample;
The illumination device for a biological sample observation device according to (14) above, comprising:
(17)
A biological sample observation device comprising an illumination device for illuminating a biological sample,
The lighting device
a light source that includes a plurality of light emitting elements and a phosphor layer that absorbs excitation light from the plurality of light emitting elements and emits fluorescence, and irradiates the biological sample with light;
an optical filter provided between the light source and the biological sample;
has
The optical filter transmits the fluorescence and cuts at least part of the excitation light having a shorter wavelength than the fluorescence.
Biological sample observation device.
(18)
The biological sample observation device according to (17) above, which is a microscope device.
(19)
The biological sample observation apparatus according to (17) above, further comprising an imaging unit that captures an image of the biological sample, including an imaging device.
(20)
a light source that irradiates a sample with light, including a plurality of light emitting elements and a phosphor layer that absorbs excitation light from the plurality of light emitting elements and emits fluorescence;
an optical filter provided between the light source and the sample;
with
The optical filter transmits the fluorescence and cuts at least part of the excitation light having a shorter wavelength than the fluorescence.
Illumination device for observation equipment.
(21)
An observation device for observing a biological sample, and a computer for controlling the observation device and processing signals obtained from the observation device,
The observation device is
a light source that includes a plurality of light emitting elements and a phosphor layer that absorbs excitation light from the plurality of light emitting elements and emits fluorescence, and irradiates the biological sample with light;
an optical filter provided between the light source and the biological sample;
an imaging unit that images the biological sample;
has
The optical filter transmits the fluorescence and cuts at least part of the excitation light having a shorter wavelength than the fluorescence.
observation system.
  10  観察システム
  100  スキャナ
  102  照明部
  104  センサ部
  106  制御部
  108  ステージ
  200  画像処理装置
  300  スライド
  400  光学系
  402、402a、402b、402c  レンズ
  412  視野絞り
  414  開口絞り
  420  光学フィルタ
  500、500a  光源
  510  筐体
  522、522a  LEDチップ
  524、524a  蛍光体層
REFERENCE SIGNS LIST 10 observation system 100 scanner 102 illumination section 104 sensor section 106 control section 108 stage 200 image processing device 300 slide 400 optical system 402, 402a, 402b, 402c lens 412 field stop 414 aperture stop 420 optical filter 500, 500a light source 510 housing 522 , 522a LED chip 524, 524a phosphor layer

Claims (21)

  1.  複数の発光素子と、前記複数の発光素子からの励起光を吸収して蛍光を放射する蛍光体層とを含み、生体試料に光を照射する光源と、
     前記光源と前記生体試料との間に設けられた光学フィルタと、
     を備え、
     前記光学フィルタは、前記蛍光を透過し、且つ、前記蛍光に比べて短い波長を持つ前記励起光の少なくとも一部をカットする、
     生体試料観察装置用照明装置。
    a light source that includes a plurality of light emitting elements and a phosphor layer that absorbs excitation light from the plurality of light emitting elements and emits fluorescence, and irradiates a biological sample with light;
    an optical filter provided between the light source and the biological sample;
    with
    The optical filter transmits the fluorescence and cuts at least part of the excitation light having a shorter wavelength than the fluorescence.
    Illumination device for biological sample observation device.
  2.  前記励起光は、425nm以下のピーク波長を持ち、
     前記光学フィルタは、前記ピーク波長を持つ光の少なくとも一部をカットする、
     請求項1に記載の生体試料観察装置用照明装置。
    The excitation light has a peak wavelength of 425 nm or less,
    the optical filter cuts at least part of the light having the peak wavelength;
    The illumination device for a biological sample observation device according to claim 1.
  3.  前記光学フィルタは、前記ピーク波長に比べて所定の波長分だけ長い波長において、50%以下の透過率を持つ、請求項2に記載の生体試料観察装置用照明装置。 3. The illumination device for a biological sample observation apparatus according to claim 2, wherein said optical filter has a transmittance of 50% or less at a wavelength longer than said peak wavelength by a predetermined wavelength.
  4.  前記所定の波長は、10nmである、請求項3に記載の生体試料観察装置用照明装置。 The illumination device for a biological sample observation device according to claim 3, wherein said predetermined wavelength is 10 nm.
  5.  前記光学フィルタは、波長700nmにおいて、50%以下の透過率を持つ、請求項3に記載の生体試料観察装置用照明装置。 The illumination device for a biological sample observation device according to claim 3, wherein the optical filter has a transmittance of 50% or less at a wavelength of 700 nm.
  6.  前記蛍光体層は、複数種の蛍光体を含む、請求項1に記載の生体試料観察装置用照明装置。 The illumination device for a biological sample observation device according to claim 1, wherein the phosphor layer contains a plurality of types of phosphors.
  7.  前記複数種の蛍光体は、赤色光、緑色光、青色光の蛍光をそれぞれ放射する、請求項6に記載の生体試料観察装置用照明装置。 The illumination device for a biological sample observation device according to claim 6, wherein said plurality of types of phosphors respectively emit fluorescence of red light, green light, and blue light.
  8.  白色光を出射する照明装置である、請求項1に記載の生体試料観察装置用照明装置。 The illumination device for a biological sample observation device according to claim 1, which is an illumination device that emits white light.
  9.  CRIが90以上である、請求項8に記載の生体試料観察装置用照明装置。 The illumination device for a biological sample observation device according to claim 8, wherein the CRI is 90 or higher.
  10.  前記複数の発光素子は、発光ダイオードからなる、請求項1に記載の生体試料観察装置用照明装置。 The illumination device for a biological sample observation device according to claim 1, wherein the plurality of light emitting elements are composed of light emitting diodes.
  11.  前記光源と前記生体試料との間に設けられたコリメートレンズをさらに備える、請求項1に記載の生体試料観察装置用照明装置。 The illumination device for a biological sample observation device according to claim 1, further comprising a collimating lens provided between said light source and said biological sample.
  12.  前記光学フィルタは、前記光源と前記コリメートレンズとの間に設けられる、請求項11に記載の生体試料観察装置用照明装置。 The illumination device for a biological sample observation device according to claim 11, wherein said optical filter is provided between said light source and said collimating lens.
  13.  前記光学フィルタは、前記コリメートレンズと前記生体試料との間に設けられる、請求項11に記載の生体試料観察装置用照明装置。 The illumination device for a biological sample observation apparatus according to claim 11, wherein said optical filter is provided between said collimator lens and said biological sample.
  14.  前記生体試料に前記光源からの光を導く光学系をさらに備える、請求項1に記載の生体試料観察装置用照明装置。 The illumination device for a biological sample observation device according to claim 1, further comprising an optical system for guiding light from said light source to said biological sample.
  15.  前記光学系は、
     前記光源と前記生体試料との間に設けられた視野絞りと、
     前記視野絞りと前記生体試料との間に設けられた開口絞りと、
     前記視野絞りと前記開口絞りとの間、及び、前記開口絞りと前記生体試料との間に設けられた複数のレンズと、
     を有する、請求項14に記載の生体試料観察装置用照明装置。
    The optical system is
    a field stop provided between the light source and the biological sample;
    an aperture stop provided between the field stop and the biological sample;
    a plurality of lenses provided between the field stop and the aperture stop and between the aperture stop and the biological sample;
    15. The illumination device for a biological sample observation device according to claim 14, comprising:
  16.  前記光学系は、
     前記光源と前記生体試料との間に設けられた開口絞りと、
     前記光源と前記開口絞りとの間、及び、前記開口絞りと前記生体試料との間に設けられた複数のレンズと、
     を有する、請求項14に記載の生体試料観察装置用照明装置。
    The optical system is
    an aperture stop provided between the light source and the biological sample;
    a plurality of lenses provided between the light source and the aperture stop and between the aperture stop and the biological sample;
    15. The illumination device for a biological sample observation device according to claim 14, comprising:
  17.  生体試料を照明する照明装置を備える生体試料観察装置であって、
     前記照明装置は、
     複数の発光素子と、前記複数の発光素子からの励起光を吸収して蛍光を放射する蛍光体層とを含み、前記生体試料に光を照射する光源と、
     前記光源と前記生体試料との間に設けられた光学フィルタと、
     を有し、
     前記光学フィルタは、前記蛍光を透過し、且つ、前記蛍光に比べて短い波長を持つ前記励起光の少なくとも一部をカットする、
     生体試料観察装置。
    A biological sample observation device comprising an illumination device for illuminating a biological sample,
    The lighting device
    a light source that includes a plurality of light emitting elements and a phosphor layer that absorbs excitation light from the plurality of light emitting elements and emits fluorescence, and irradiates the biological sample with light;
    an optical filter provided between the light source and the biological sample;
    has
    The optical filter transmits the fluorescence and cuts at least part of the excitation light having a shorter wavelength than the fluorescence.
    Biological sample observation device.
  18.  顕微鏡装置である、請求項17に記載の生体試料観察装置。 The biological sample observation device according to claim 17, which is a microscope device.
  19.  撮像素子を含む、前記生体試料を撮像する撮像部をさらに備える、請求項17に記載の生体試料観察装置。 The biological sample observation device according to claim 17, further comprising an imaging unit that captures an image of the biological sample, including an imaging device.
  20.  複数の発光素子と、前記複数の発光素子からの励起光を吸収して蛍光を放射する蛍光体層とを含み、試料に光を照射する光源と、
     前記光源と前記試料との間に設けられた光学フィルタと、
     を備え、
     前記光学フィルタは、前記蛍光を透過し、且つ、前記蛍光に比べて短い波長を持つ前記励起光の少なくとも一部をカットする、
     観察装置用照明装置。
    a light source that irradiates a sample with light, including a plurality of light emitting elements and a phosphor layer that absorbs excitation light from the plurality of light emitting elements and emits fluorescence;
    an optical filter provided between the light source and the sample;
    with
    The optical filter transmits the fluorescence and cuts at least part of the excitation light having a shorter wavelength than the fluorescence.
    Illumination device for observation equipment.
  21.  生体試料を観察する観察装置と、当該観察装置を制御し、当該観察装置から得られた信号を処理するコンピュータとを含み、
     前記観察装置は、
     複数の発光素子と、前記複数の発光素子からの励起光を吸収して蛍光を放射する蛍光体層とを含み、前記生体試料に光を照射する光源と、
     前記光源と前記生体試料との間に設けられた光学フィルタと、
     前記生体試料を撮像する撮像部と、
     を有し、
     前記光学フィルタは、前記蛍光を透過し、且つ、前記蛍光に比べて短い波長を持つ前記励起光の少なくとも一部をカットする、
     観察システム。
    an observation device for observing a biological sample, and a computer for controlling the observation device and processing signals obtained from the observation device,
    The observation device is
    a light source that includes a plurality of light emitting elements and a phosphor layer that absorbs excitation light from the plurality of light emitting elements and emits fluorescence, and irradiates the biological sample with light;
    an optical filter provided between the light source and the biological sample;
    an imaging unit that images the biological sample;
    has
    The optical filter transmits the fluorescence and cuts at least part of the excitation light having a shorter wavelength than the fluorescence.
    observation system.
PCT/JP2022/004051 2021-03-31 2022-02-02 Lighting device for biological specimen observation device, biological specimen observation device, lighting device for observation device, and observation system WO2022209262A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021061830A JP2022157546A (en) 2021-03-31 2021-03-31 Illumination device for biological sample observation apparatus, biological sample observation apparatus, illumination device for observation apparatus, and observation system
JP2021-061830 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209262A1 true WO2022209262A1 (en) 2022-10-06

Family

ID=83458719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004051 WO2022209262A1 (en) 2021-03-31 2022-02-02 Lighting device for biological specimen observation device, biological specimen observation device, lighting device for observation device, and observation system

Country Status (2)

Country Link
JP (1) JP2022157546A (en)
WO (1) WO2022209262A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035373A (en) * 2013-08-09 2015-02-19 山田医療照明株式会社 Lighting unit and medical lighting device
WO2020031668A1 (en) * 2018-08-09 2020-02-13 ソニー株式会社 Optical microscope device and optical microscope system
JP2020168409A (en) * 2013-07-31 2020-10-15 富士フイルム株式会社 Light source device for endoscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020168409A (en) * 2013-07-31 2020-10-15 富士フイルム株式会社 Light source device for endoscope
JP2015035373A (en) * 2013-08-09 2015-02-19 山田医療照明株式会社 Lighting unit and medical lighting device
WO2020031668A1 (en) * 2018-08-09 2020-02-13 ソニー株式会社 Optical microscope device and optical microscope system

Also Published As

Publication number Publication date
JP2022157546A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
US10768402B2 (en) Microscopy of a tissue sample using structured illumination
KR101349664B1 (en) Microscope with led illumination source
JP2024038437A (en) Fluorescence observation device and fluorescence observation method
JP5316161B2 (en) Observation device
JP7167276B2 (en) Low-Resolution Slide Imaging, Slide Label Imaging and High-Resolution Slide Imaging Using Dual Optical Paths and Single Imaging Sensor
JP2013044967A (en) Microscope system, specimen image forming method and program
JP6161399B2 (en) Microscope system
CN109863441A (en) Fluorescence microscope
US11842555B2 (en) Signal acquisition apparatus, signal acquisition system, and signal acquisition method
WO2022209262A1 (en) Lighting device for biological specimen observation device, biological specimen observation device, lighting device for observation device, and observation system
WO2022209349A1 (en) Lighting device for observation device, observation device, and observation system
WO2022050109A1 (en) Image processing device, image processing method, and image processing system
WO2022270015A1 (en) Biological specimen observation device and biological specimen observation system
Van Der Graaff et al. Fluorescence imaging for whole slide scanning using LED-based color sequential illumination
WO2022259647A1 (en) Information processing device, information processing method, and microscope system
US20180271368A1 (en) Device for determining a condition of an organ and method of operating the same
WO2023248954A1 (en) Biological specimen observation system, biological specimen observation method, and dataset creation method
WO2023189393A1 (en) Biological sample observation system, information processing device, and image generation method
US11335454B2 (en) Biopsy device for digital pathology and artificial intelligent analytics
US20230085045A1 (en) Microscope for high-resolution and specific analysis of biological substances, and method of analysis
WO2023161375A1 (en) Device for measuring intrinsic autofluorescence of a biological sample and method using thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779491

Country of ref document: EP

Kind code of ref document: A1