WO2022209189A1 - 圧力測定方法、制御方法、圧力測定装置、及び分析装置 - Google Patents

圧力測定方法、制御方法、圧力測定装置、及び分析装置 Download PDF

Info

Publication number
WO2022209189A1
WO2022209189A1 PCT/JP2022/002028 JP2022002028W WO2022209189A1 WO 2022209189 A1 WO2022209189 A1 WO 2022209189A1 JP 2022002028 W JP2022002028 W JP 2022002028W WO 2022209189 A1 WO2022209189 A1 WO 2022209189A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction force
tube
pressure
measuring
detection unit
Prior art date
Application number
PCT/JP2022/002028
Other languages
English (en)
French (fr)
Inventor
尚英 宮本
清美 清井
敦 中村
英吉 柴田
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2023510520A priority Critical patent/JPWO2022209189A1/ja
Priority to US18/550,977 priority patent/US20240167900A1/en
Publication of WO2022209189A1 publication Critical patent/WO2022209189A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0026Transmitting or indicating the displacement of flexible, deformable tubes by electric, electromechanical, magnetic or electromagnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/08Means for indicating or recording, e.g. for remote indication
    • G01L19/12Alarms or signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1425Optical investigation techniques, e.g. flow cytometry using an analyser being characterised by its control arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/149Optical investigation techniques, e.g. flow cytometry specially adapted for sorting particles, e.g. by their size or optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology

Definitions

  • This technology relates to a pressure measurement method, a control method, a pressure measurement device, and an analysis device. More specifically, the present invention relates to a pressure measurement method, a control method, a pressure measurement device, and an analysis device capable of measuring pressure with high accuracy without contacting the liquid from the outside of the tube.
  • Flow cytometry is a technique for particle analysis and fractionation by irradiating light on particles that flow as if they are enclosed in a sheath flow and detecting the fluorescence and scattered light emitted from individual particles. be.
  • the inside of the flow path through which particles and other chemical liquids flow is It is required to be sterile and replaceable in flow path structure after a single use. Furthermore, since the device is a mechanism for flowing a fluid, it is often necessary to monitor the pressure state inside the members constituting the flow path structure from the viewpoint of safety and control. Moreover, although pressure measurement is possible by making some of the members disposable, there is a problem that the cost of the flow path structure is increased by the amount of the disposable members.
  • the infusion pump is incorporated in an infusion pump provided with a pump section that moves liquid passing through the tube while sequentially pressing a flexible tube, and a A occlusion detection device for detecting occlusion of the tube, comprising: expansion detection means for detecting expansion of the tube due to an increase in internal pressure of the tube due to occlusion; temperature detection means for detecting the operating environment temperature of the infusion pump; Control means for changing a blockage detection level based on the operating environment temperature detected by the temperature detection means, comparing the blockage detection level with the expansion of the tube detected by the expansion detection means, and determining blockage of the tube.
  • An occlusion detection device for an infusion pump is disclosed.
  • the main purpose of this technology is to provide a technology that can measure pressure with high accuracy from the outside of the tube without contacting the liquid.
  • a pressure measurement method comprising at least a reaction force measurement step and a measurement step of measuring the internal pressure of the tube based on the reaction force in the reaction force measurement step.
  • performing at least a reaction force measurement step, a measurement step of measuring the internal pressure of the tube based on the reaction force in the reaction force measurement step, and a determination step of determining whether the internal pressure in the measurement step exceeds a threshold value A device control method is also provided, wherein in the determining step, if the internal pressure in the measuring step exceeds a threshold value, a predetermined operation in the device is stopped and/or a warning is issued.
  • the present technology includes at least a detection unit that detects a force associated with deformation of a flexible tube, and a moving unit that moves the detection unit by a predetermined distance in a load measurement direction of the tube.
  • a pressure measuring device is also provided that measures the reaction force of the tube and measures the internal pressure of the tube based on the reaction force.
  • an analysis unit having a flexible tube through which liquid flows, a detection unit that detects a force associated with deformation of the flexible tube, and a predetermined distance in the load measurement direction of the tube. and a pressure measuring unit having a moving unit that moves, wherein the pressure measuring unit measures the reaction force of the tube by the detection unit, and measures the internal pressure of the tube based on the reaction force. It also provides analytical equipment.
  • FIG. 4 is a diagram showing the relationship with the normalized value (v) on the horizontal axis and the standard pressure (P′) on the vertical axis. It is a figure which shows the relationship between the change of outside temperature, and the output by a detection part. It is a figure which shows an example of the flow of the control method which concerns on this technique.
  • FIG. 1 is a conceptual diagram schematically showing an example of an analysis device according to the present technology
  • FIG. 2 is a conceptual diagram schematically showing an example of an analysis kit
  • It is a conceptual diagram which shows an example of a microchip typically.
  • Analysis device 100 (1) Analysis unit 101 (1-1) Analysis Kit 1011 (1-2) Case of sorting target particles using analysis kit 1011 (1-3) Others (2) Pressure measuring unit 102 (3) Processing unit 103 (4) Determination unit 104 (5) Warning unit 105 (6) Light irradiation unit 106 (7) Photodetector 107 (8) Storage unit 108 (9) Display unit 109 (10) User interface 110
  • FIG. 1 is a diagram showing an example of a flow of a pressure measurement method according to the present technology.
  • the pressure measuring method according to this embodiment performs at least a moving step S1, a reaction force measuring step S2, and a measuring step S3.
  • the correction coefficient determination step S4, the correction step S5, the determination step S6, and other steps may be performed as necessary. Each step will be described in detail below.
  • the moving step S1 is a step of quantitatively moving the detection unit 11 that detects the force associated with the deformation of the flexible tube F by a predetermined distance in the load measurement direction of the tube F.
  • the material forming the flexible tube F is not particularly limited, and examples thereof include fluororesin, silicon, vinyl chloride, polyurethane, polyolefin such as polypropylene and polyethylene, or combinations thereof. Further, the hardness, inner and outer diameters, etc. of the tube are not particularly limited.
  • the detector 11 is not particularly limited as long as it can detect the force associated with the deformation of the flexible tube F.
  • a force sensor can be used.
  • Types of force sensors include, for example, a sensor using a link mechanism, a strain cage sensor, a piezoelectric (piezo) sensor, an optical sensor, a capacitance sensor, or a combination thereof.
  • "deformation of the flexible tube” in the present technology means deformation due to applying an external force to the flexible tube F, or expansion or contraction of the tube F itself due to fluctuations in the internal pressure of the flexible tube F.
  • the "force associated with the deformation of the flexible tube” includes a reaction force generated by applying an external force to the flexible tube F, and expansion of the tube F itself due to fluctuations in the internal pressure of the flexible tube F. Forces generated in the radial direction due to expansion or contraction may be included.
  • the detection unit 11 measures the reaction force generated by applying an external force to the flexible tube F and the expansion or contraction of the tube F itself due to fluctuations in the internal pressure of the flexible tube F as forces. can do.
  • the “load measuring direction” is specifically the direction in which the tube F is contacted.
  • a method for moving the detection unit 11 in the load measurement direction by a predetermined distance is not particularly limited.
  • the detection unit 11 can be moved in the direction by a predetermined distance.
  • the "predetermined distance” referred to here can be appropriately set by those skilled in the art. In this embodiment, for example, it can be set within the range of 0.1 cm to 1.0 cm.
  • the movement step S1 and the reaction force measurement step S2, which will be described later, may be performed simultaneously as shown in FIG. Further, the moving step S1 may be performed multiple times. This will be described in detail later in "(2) Reaction force measurement step S2".
  • the reaction force measurement step S2 is a step of measuring the reaction force of the tube F by the detection unit 11.
  • reaction force is specifically a force generated in a direction opposite to the external force by bringing the detection unit 11 into contact with the tube F and applying an external force.
  • the moving step S1 and the reaction force measuring step S2 may be performed simultaneously.
  • the reaction force measurement step S2 while performing the movement step S1, the reaction force accompanying the gradual deformation of the flexible tube F can be measured over time.
  • the detection unit 11 in the direction until the reaction force in the reaction force measurement step S2 reaches a specified value.
  • the “specified value” referred to here can be appropriately set by a person skilled in the art.
  • the moving step S1 may be performed multiple times. Specifically, for example, in the movement step S1, after the detection unit 11 is moved in the direction until the reaction force in the reaction force measurement step S2 reaches a specified value, the detection unit 11 is further moved to the It is possible to move a predetermined distance in a direction.
  • the specified value may also include "0".
  • reaction force measurement step S2 may also be performed multiple times.
  • a person skilled in the art appropriately selects two reaction forces from the reaction forces obtained in the reaction force measurement step S2 performed multiple times, and the difference between the two reaction forces is used as a parameter related to the physical properties of the tube F. can be used.
  • FIG. 2 is a diagram explaining in detail how to obtain the reaction force difference.
  • the detection unit 11 is moved by a predetermined distance in the load measuring direction of the tube F in the moving step S1.
  • FIG. 2B after confirming that the reaction force in the reaction force measurement step S2 has reached a specified value, as shown in FIG. move in the direction
  • the detection unit 11 is returned to the initial position as shown in FIG. 2D.
  • the reaction force difference can be obtained from two reaction forces, the reaction force when reaching the specified value and the reaction force when the fixed dimension detection unit 11 is further moved therefrom.
  • the measurement step S3 is a step of measuring the internal pressure of the tube F based on the reaction force.
  • the physical properties of the flexible tube F itself e.g., hardness, inner and outer diameters
  • the internal pressure of the tube F can be measured without contact with the liquid based on the parameter, taking into consideration the difference in the physical properties of each flexible tube F.
  • the physical properties of the flexible tube F affect the coefficient for converting the value measured as a force into a pressure value, and the difference between the measured pressure value and the true pressure value increases due to the deviation of the coefficient. , leading to a decrease in pressure measurement accuracy as a mechanism.
  • the method of measuring the inner pressure of the tube based on the reaction force is not particularly limited, but specifically, for example, the pressure correction coefficient described later in "(4) Correction coefficient determination step S4" is used for measurement. be able to.
  • a correction coefficient determination step S4 may be further performed as necessary.
  • the correction coefficient determination step S4 is a step of determining the pressure correction coefficient based on the reaction force in the reaction force measurement step S2.
  • reaction force difference when the reaction force measurement step S2 is performed multiple times.
  • the reaction force difference obtained from the reaction force when reaching the specified value and the reaction force when the constant dimension detection unit 11 is further moved from there. can be used.
  • the reaction force difference is obtained, for example, as shown in FIG. Used.
  • the flexible tube F has different physical properties depending on the material forming the tube F, the variation in the inner and outer diameters of the tube F, the outside temperature at the time of measurement, etc. Therefore, the pressure correction coefficient is used. Therefore, it is possible to reduce the internal pressure measurement error caused by the difference in physical properties.
  • the pressure correction coefficient is obtained, for example, as follows.
  • the horizontal axis is the difference (h) between the two reaction forces obtained before and after the detection unit 11 is moved in the direction by a predetermined distance
  • the vertical axis is the pressure correction coefficient (A) at that time. showing relationships.
  • a pressure correction coefficient derived from the obtained reaction force difference is determined.
  • This relational expression can be represented by a quadratic function shown in Equation (1) below.
  • the internal pressure of the tube F is measured by substituting the output value from the detection unit 11 and the pressure correction coefficient determined by the procedure described above into the output from the detection unit 11 - pressure conversion formula.
  • FIG. 4 shows the relationship in which the horizontal axis is the normalized value (v) of the value output from the detection unit 11 and the vertical axis is the standard pressure (P').
  • This relational expression can be represented by a quadratic function shown in Equation (2) below.
  • the internal pressure (P) of the tube F can be obtained by the following formula (3). can.
  • a correction step S5 may be further performed as necessary.
  • the correction step S5 is a step of correcting the internal pressure with respect to changes in the external environment.
  • the measurement error of the internal pressure due to changes in the physical properties (for example, hardness, inner and outer diameters, etc.) of the flexible tube F due to fluctuations in the outside air environment during pressure measurement is reduced.
  • the "outside environment” referred to here includes, for example, the outside temperature, the outside pressure, etc., but in the present embodiment, the outside temperature is preferable.
  • the method of correcting the internal pressure in response to changes in the external environment is not particularly limited, but specifically, it can be corrected, for example, by the method described below.
  • FIG. 5 shows the relationship between changes in the outside air temperature and the output from the detector 11. As shown in FIG. As shown in FIG. 5, it is possible to predict the variation in the internal pressure of the tube F with respect to the variation in the outside air temperature in a proportional relationship.
  • the determination step S6 may be performed as necessary.
  • the determination step S6 is a step of determining whether or not the internal pressure in the measurement step S3 exceeds a threshold value.
  • the "threshold” referred to here can be appropriately set by those skilled in the art. Specifically, for example, it is assumed that the pressure value may exceed or fall below the desired pressure value. In addition to these, the concept of "threshold” can also be assumed to be a state in which the desired pressure value is exceeded or decreased for a predetermined period of time.
  • the present embodiment since the internal pressure is measured with high accuracy in the measurement step S3, the present embodiment has the advantage that the threshold value in the determination step S6 can be set more finely than in the prior art.
  • steps may be further performed as necessary. Specifically, for example, as shown in FIG. 1, after the correction coefficient determination step S4 and before the measurement step S3, the detection unit 11 that has moved in the load measurement direction of the tube F returns to its initial position. A return step S7 (in which the detection unit 11 moves in the direction opposite to the load measurement direction) may be performed.
  • FIG. 6 is a diagram illustrating an example of a flow of a control method according to the present technology.
  • a movement step S1, a reaction force measurement step S2, a measurement step S3, and a determination step S6 are performed. If exceeded, it stops certain actions in the device and/or issues a warning. Moreover, you may perform another process etc. as needed.
  • the moving step S1, the reaction force measuring step S2, and the measuring step S3 are the same as those described in the above-mentioned "1. First Embodiment", so descriptions thereof are omitted here.
  • the term "apparatus” as used herein means, for example, a pressure measuring device 10, an analyzing device 100, an analyzing device, a particle sorting device, etc., which will be described later, but is not limited to these.
  • Predetermined operations in the apparatus include, for example, feeding of various solutions (eg, sample liquid containing particles, sheath liquid, buffer liquid, gate liquid, etc.), priming operation of microchip for analysis, rotation of pump, detection unit movement of particles, irradiation of particles with light, detection of light, analysis of particles, fractionation of particles, or combinations thereof, etc., but not limited to these.
  • solutions eg, sample liquid containing particles, sheath liquid, buffer liquid, gate liquid, etc.
  • Examples of methods for issuing a warning include, but are not limited to, emitting an alert sound or displaying an alert.
  • an alert is displayed on the display unit of the device to notify the user.
  • control step S8 may be further performed as necessary.
  • the control step S8 is a step of controlling a predetermined operation in the apparatus based on the internal pressure in the measurement step S3.
  • the predetermined operation in the device is as described above. More specifically, for example, the rotation of the pump in the device is feedback-controlled based on the measured internal pressure. More specifically, in the priming operation for filling the inside of an analysis microchip or the like with various solutions, it is determined that the solution is not sufficiently filled and the pump is rotated at high speed until the internal pressure reaches a constant value. On the other hand, when the internal pressure exceeds a certain value, it is determined that the priming operation is completed, and the rotation speed of the pump is decreased. As a result, it is possible to shorten the time required for the priming operation and to avoid destruction and deterioration of various members such as the microchip for analysis.
  • a of FIG. 7 is a conceptual diagram schematically showing an example of the pressure measuring device 10 according to the present technology
  • B of FIG. 7 is a partially enlarged view of A.
  • the pressure measuring device 10 according to the present embodiment includes at least a detection unit 11 and a moving unit 12, the reaction force of the tube F is measured by the detection unit 10, and the reaction force of the tube F is measured based on the reaction force. Measure internal pressure.
  • other parts may be provided as required. Each part will be described in detail below.
  • the detection unit 11 detects force accompanying deformation of the flexible tube F.
  • FIG. A detailed description of the detection unit 11 and a method of measuring the internal pressure of the tube F based on the reaction force of the tube F measured by the detection unit 11 are described in the above-mentioned "1. First embodiment". Since it is the same as that explained in , the explanation is omitted here.
  • the moving unit 12 moves the detecting unit 11 by a predetermined distance in the load measuring direction of the tube F.
  • the moving part 12 can be composed of, for example, a feed motor (power) 121 and a feed screw 122 as shown in FIG. Further, the moving unit 12 can be set by a person skilled in the art to temporarily stop moving and then move again. Further, it may be moved in the direction opposite to the direction of load measurement. For example, after measurement of the reaction force by the detection unit 11, the detection unit 11 can be set to return to the initial position by the moving unit 12.
  • a contactor 13 that directly contacts the tube F and an opening/closing lid 14 that opens and closes when the tube F is attached may be provided.
  • the opening/closing lid 14 may function as a retainer for the tube F after the tube F is attached.
  • various sensors such as a temperature sensor for measuring outside air temperature and an air pressure sensor for measuring outside air pressure may be provided.
  • FIG. 8 is a conceptual diagram schematically showing an example of the analysis device 100 according to the present technology.
  • the analysis device 100 includes at least an analysis section 101 and a pressure measurement section 102 . Further, a processing unit 103, a determination unit 104, a warning unit 105, a light irradiation unit 106, a light detection unit 107, a storage unit 108, a display unit 109, a user interface 110, and the like may be provided as necessary. Each part will be described in detail below.
  • the analysis unit 101 has a flexible tube F through which liquid flows.
  • the liquid may be, for example, one or more selected from the group consisting of a sample liquid containing particles, a sheath liquid, and a buffer liquid.
  • the sample liquid containing particles is not particularly limited. Specific examples include liquids such as whole blood, peripheral blood mononuclear cells contained in whole blood, and cell suspensions containing only lymphocytes.
  • microparticles may include not only biologically relevant microparticles such as cells, microorganisms, and ribosomes, but also synthetic particles such as latex particles, gel particles, industrial particles, and the like.
  • Biologically relevant microparticles can include chromosomes, ribosomes, mitochondria, organelles, etc. that constitute various cells.
  • Cells can include animal cells (eg, blood cells, etc.), plant cells, and the like.
  • Microorganisms can include bacteria such as E. coli, viruses such as tobacco mosaic virus, fungi such as yeast, and the like.
  • bio-related microparticles can include bio-related macromolecules such as nucleic acids, proteins, and complexes thereof.
  • Technical particles may also be, for example, organic or inorganic polymeric materials, metals, and the like.
  • Organic polymeric materials may include polystyrene, styrene-divinylbenzene, polymethylmethacrylate, and the like.
  • Inorganic polymeric materials can include glass, silica, magnetic materials, and the like.
  • Metals can include colloidal gold, aluminum, and the like. The shape of these microparticles is generally spherical, but in the present embodiment, they may be non-spherical, and their size, mass and the like are not particularly limited.
  • the analysis unit 101 is not particularly limited as long as it has a flexible tube F through which liquid flows, and may be an analysis kit 1011, for example.
  • the analysis kit 1011 will be described in detail below.
  • FIG. 9 is a conceptual diagram schematically showing an example of the analysis kit 1011.
  • the analysis kit 1011 includes at least a sample storage section 1012, a sample channel T12, and a detection region T13.
  • a sample liquid containing particles to be analyzed is stored in the sample storage unit 1012 .
  • the sample storage part 1012 can be composed of, for example, a cylindrical body with one end open, and a lid part that fits into the cylindrical body and closes the opening.
  • a plurality of opening valves may be formed in the lid portion for containing the sample liquid in the cylindrical body, and a structure of a check valve may be adopted for each opening valve.
  • the sample containing portion 1012 may be provided with a substance that suppresses aggregation of particles in the sample liquid. Thereby, aggregation of particles in the sample liquid can be suppressed.
  • the substance include deoxyribonuclease (DNase), ethylenediaminetetraacetic acid (EDTA), poloxamer, and the like.
  • DNase deoxyribonuclease
  • EDTA ethylenediaminetetraacetic acid
  • poloxamer poloxamer
  • PBS phosphate-buffered saline
  • the fractionation kit 1011 can be provided with a pre-sample storage section upstream of the sample storage section 1012 .
  • the sample storage section 1012 has a flexible tube F through which liquid flows.
  • the sample liquid is sent to the sample inlet T121 of the microchip T through the member. As a result, the sample liquid flows into the channel of the microchip T, forming a sheath flow.
  • a dashed line portion in FIG. 9 is a portion where the pressure measurement unit 102 may be provided. Arrows in FIG. 9 indicate the liquid feeding direction.
  • a plurality of pressure measurement units 102 may be provided, but in the present technology, one or more may be provided. By providing the pressure measurement units 102 at these positions, the internal pressure of the flexible tube F can be measured in a non-connected manner when one or more liquids selected from the group consisting of a sample liquid, a sheath liquid, and a buffer liquid are fed. It can be measured with a liquid, and based on the result of the internal pressure, clogging in the channel structure, liquid leakage from the tubular member, failure of the priming operation, etc. can be detected.
  • one or more pressure measurement units 102 can be provided at any point of the flexible tube F that constitutes the analysis kit 1011, even in areas other than the dashed line portion in FIG.
  • the sample channel T12 can be provided in, for example, a microchip T for analysis, which will be described later, but the present technology is not limited to this. Specifically, for example, although not shown, a channel or the like used in a conventional flow cytometer can also be used.
  • FIG. 10 is a conceptual diagram schematically showing an example of the microchip T.
  • a sample liquid containing particles is introduced from the sample inlet T121 into the sample channel T12.
  • the sheath liquid introduced from the sheath inlet T411 is divided and sent to the two sheath flow paths T41a and T41b.
  • the sample channel T12 and the sheath channels T41a and T41b merge to form a main channel T124.
  • the sample liquid laminar flow sent by the sample channel T12 and the sheath liquid laminar flow sent by the sheath liquid channels T41a and T41b join in the main channel T124, resulting in a sample liquid laminar flow.
  • a sheath flow sandwiched by the sheath liquid laminar flow is formed.
  • the detection region T13 is, for example, a region where excitation light is irradiated by the light irradiation unit 106 described later, and fluorescence and scattered light are detected by the light detection unit 107 described later.
  • the particles are sent to the detection region T13 in a state of being arranged in a line in the sheath flow formed in the main channel T124, and are irradiated with excitation light from the light irradiation unit 106.
  • FIG. By detecting the fluorescence and scattered light emitted from the particles irradiated with the excitation light by the photodetector 107, the optical characteristics of the particles can be analyzed.
  • the tube pump section 1013 can be made of an elastic material. Note that the roller for squeezing the flexible tube F may be provided in the preparative collection kit 1011 itself, but the tube pump section 1013 By installing , it is also possible to allow the sample liquid or the like in the flexible tube F to flow.
  • the analysis kit 1011 or the like can be used to fractionate particles determined to satisfy predetermined optical characteristics (also referred to as "target particles").
  • predetermined optical characteristics also referred to as "target particles”
  • a method for sorting target particles in the analysis kit 1011 will be described in detail below.
  • the main channel T124 communicates with the three branch channels of the fractionation channel T51 and the waste channels T52a and T52b downstream of the detection region T13.
  • the fractionation channel T51 is a channel into which the target particles are taken.
  • particles determined not to satisfy the predetermined optical properties also referred to as “non-target particles” are not taken into the fractionation channel T51 and flow in one direction or the other.
  • a negative pressure is generated in the sorting channel T51 by a piezoelectric element such as a piezoelectric element, and this negative pressure is used to extract the sample liquid and the sheath liquid containing the target particles. is sucked into the fractionation channel T51.
  • the piezoelectric element is arranged in contact with the surface of the microchip T and arranged at a position corresponding to the fractionation channel T51. More specifically, the piezoelectric element is arranged at a position corresponding to a pressure chamber T511 provided as an expanded region in the fractionation channel T51.
  • the inner space of the pressure chamber T511 expands in the planar direction (the width direction of the fractionation channel T51) and also in the cross-sectional direction (the height direction of the fractionation channel T51). ing. That is, the fractionation channel T51 is expanded in the width direction and the height direction in the pressure chamber T511. In other words, the fractionation channel T51 is formed so that the cross section perpendicular to the flow direction of the sample liquid and the sheath liquid becomes large in the pressure chamber T511.
  • the piezoelectric element generates an expansion/contraction force as the applied voltage changes, and causes a pressure change in the fractionation channel T51 via the surface (contact surface) of the microchip T.
  • a flow occurs in the fractionation channel T51, and the volume in the fractionation channel T51 changes.
  • the volume in the fractionation channel T51 changes until it reaches the volume defined by the amount of displacement of the piezoelectric element corresponding to the applied voltage.
  • the piezoelectric element presses the displacement plate forming the pressure chamber T511 to keep the volume of the pressure chamber T511 small when the voltage is applied and the piezoelectric element is expanded. Then, when the applied voltage drops, the piezoelectric element generates a force in the direction of contraction, weakening the pressure on the displacement plate, thereby generating a negative pressure in the pressure chamber T511.
  • the microchip T can be formed by bonding together substrate layers on which the sample channel T12, the fractionation channel T51, and the like are formed. Formation of the sample channel T12, the fractionation channel T51, and the like in the substrate layer can be performed, for example, by injection molding of a thermoplastic resin using a mold.
  • a thermoplastic resin conventionally known materials such as polycarbonate, polymethyl methacrylate resin (PMMA), cyclic polyolefin, polyethylene, polystyrene, polypropylene, and polydimethylsiloxane (PDMS) can be used.
  • the number of substrate layers constituting the microchip T is not particularly limited, and may be composed of two or more layers, for example.
  • the microchip T may further include a gate inlet T611 into which the gate liquid is introduced, and a gate channel T61 through which the gate liquid introduced from the gate inlet T611 flows.
  • the gate flow path T61 is connected to one or more of the separation flow paths T51 from the three branch flow paths of the separation flow path T51 and the waste flow paths T52a and T52b to the front of the pressure chamber T511. , may be provided so as to intersect vertically.
  • the “gate liquid” referred to here is the liquid that flows through the gate channel T61, and serves as the main solvent for the target particles and the like, so various liquids can be selected according to the application. Specifically, for example, a liquid medium used as the particle-containing liquid, a sheath liquid, and a pH-adjusted buffer liquid when the particles are proteins can be used.
  • gate flow the flow created by the gating liquid will be referred to as "gate flow".
  • the upstream side of the gate flow path T61 can be introduced independently from the gate flow inlet T611 and flowed at an appropriate flow rate.
  • the flow rate of the liquid introduced into the gate channel T61 is smaller than the flow rate of the liquid introduced into the sheath channels T41a and T41b. is useful when using expensive liquids of
  • the gate flow can be generated by branching from the sheath liquid flow.
  • the sheath flow paths T41a and T41b after the sheath inlet T411 are connected to the upstream end of the gate flow path T61, and the sheath liquid flow is branched so as to flow into the gate flow path T61. It can also be streamed. In that case, it is necessary to appropriately design the flow path resistance of the gate flow path T61 so that the gate flow rate becomes an appropriate flow rate.
  • a gate flow toward the detection region T13 side and the pressure chamber T511 side is also generated along with the gate flow that tries to go straight through the gate flow path T61.
  • the latter gate flow can prevent non-target particles from entering the pressure chamber T511 side of the fractionation channel T51.
  • the gate flow that has flowed through the gate flow path T61 flows out to the fractionation flow path T51 and branches into the gate flow toward the detection region T13 side and the pressure chamber T511 side of the fractionation flow path T51.
  • the former gate flow can prevent non-target particles from entering the pressure chamber T511 side of the fractionation channel T51.
  • Assay kit 1011 may optionally include target particle reservoir 1014 .
  • the target particle reservoir 1014 stores the sorted target particles.
  • the target particle reservoir 1014 is formed in the shape of a bag that stores the target particles, for example, and has an opening valve that is connected to the fractionation channel T51 of the microchip T. As shown in FIG.
  • the opening valve employs a so-called check valve configuration, and in a state in which the target particles are stored in the target particle storage section 1014 via the opening valve, the target particles flow out of the target particle storage section 1014. It is designed not to come out. Also, the configuration of the opening valve prevents the target particles from coming into contact with the external atmosphere.
  • the analysis kit 1011 may have a disposal section 1015 as required.
  • the microchip T when the microchip T separates only the target particles from the sample liquid, it is necessary to exclude non-target particles.
  • the microchip T since the microchip T forms a sheath flow to collect the target particles, it is necessary to remove the sample liquid containing the non-target particles. Therefore, liquid containing non-target particles (waste liquid) is collected in the disposal unit 1015 .
  • the analysis kit 1011 may include a sheath liquid storage section 1016 as required.
  • a sheath flow is formed in the sample channel T12 to fractionate the target particles from the sample liquid. Therefore, the sheath liquid is stored in the sheath liquid storage section 1016 .
  • the sheath liquid storage part 1016 has a flexible tube F through which the sheath liquid flows in part thereof, and sends the sheath liquid to the sheath inlet T411 of the microchip T via the member. As a result, the sheath liquid flows into the channel of the microchip T, forming a sheath flow.
  • the configuration of the sheath liquid storage section 1016 is not particularly limited, and a conventionally known configuration can be adopted. Also, the configuration for discharging the sheath liquid from the sheath liquid storage section 1016 is not particularly limited, and for example, a drive source such as an actuator may be used.
  • the preparative collection kit 1011 may include a gate liquid container 1017 as required.
  • a gate liquid is stored in the gate liquid storage portion 1017 . Since the "gate liquid" is the same as described above, the explanation is omitted here.
  • the gate liquid storage unit 1017 has a flexible tube F through which the gate liquid flows, and feeds the gate liquid to the gate liquid inlet T611 of the microchip T via the member. As a result, the gate liquid flows into the channel of the microchip T, and the target particles are sorted.
  • the configuration of the gate liquid containing portion 1017 is not particularly limited, and a conventionally known configuration can be adopted. Also, the configuration for discharging the gate liquid from the gate liquid storage section 1017 is not particularly limited, and for example, a drive source such as an actuator may be used.
  • the preparative collection kit 1011 can be provided with a filter or the like in the middle of each member of the preparative collection kit 1011 to reduce the contamination of foreign substances and the reduction of dead volume.
  • each part of the analysis kit 1011 can be hermetically connected. Therefore, particle analysis, target particle fractionation, target particle storage, and the like can be performed in a closed space, thereby improving the accuracy of analysis and fractionation. In addition, it is possible to prevent contamination of the analysis kit 1011 itself by mist containing particles and/or contamination of target particles with other substances. As a result, the analysis kit 1011 can also be applied clinically, such as for immuno-cell therapy.
  • the analysis kit 1011 itself can be made disposable, avoiding the risk of contamination between samples, etc., and improving usability.
  • each part of the analysis kit 1011 it is also possible to have a plurality of each part of the analysis kit 1011 .
  • analysis kit 1011 will be distributed as cartridges, units, devices, kits, instruments, etc. for closed cell sorters.
  • the pressure measuring section 102 has a detecting section 11 and a moving section 12 .
  • the configuration of the pressure measurement unit 102, the specific processing performed in the pressure measurement unit 102, and the like are the same as those described in the above-mentioned "3. Third Embodiment", so description thereof will be omitted here.
  • a processing unit 103 may be provided as necessary.
  • the processing unit 103 determines a pressure correction coefficient based on the reaction force. Since the method for determining the pressure correction coefficient is the same as that described in the above-mentioned "(4) Correction coefficient determination step S4", the description is omitted here.
  • an electrical signal converted by a photodetector 107 may be input to the processor 103 .
  • the processing unit 103 determines optical properties of particles contained in the sample liquid based on the input electrical signal.
  • the processing unit 103 includes a gating circuit for calculating a threshold value for sorting target particles from the sample liquid, a threshold value for determining whether or not more target particles than the required number have been sorted, and the like. may be As a result, when the threshold value for fractionating the target particles from the sample liquid is calculated, this is converted into an electric signal for fractionation, and the signal is output to the piezoelectric element provided in the microchip T.
  • a gating circuit for calculating a threshold value for sorting target particles from the sample liquid, a threshold value for determining whether or not more target particles than the required number have been sorted, and the like.
  • the configuration of the processing unit 103 is not particularly limited, and a conventionally known configuration can be adopted. Furthermore, the processing performed by the gating circuit of the processing unit 103 is not particularly limited, either, and conventionally known methods can be employed.
  • a determination unit 104 may be provided as necessary.
  • a determination unit 104 determines whether or not the internal pressure exceeds a threshold. Specific processing and the like performed in the determination unit 104 are described in "1. (6) Determination step S6 of the first embodiment" and “2. Variation of (1) Determination step S6 of the second embodiment" described above. Since it is the same as that explained in , the explanation is omitted here.
  • a warning unit 105 may be provided as necessary.
  • a warning unit 105 issues a warning when the internal pressure exceeds a threshold value in the determination unit 104 .
  • the specific processing and the like performed in the warning section are the same as those described in the above-mentioned "2. Variation of (1) determination step S6 of the second embodiment", so description thereof will be omitted here.
  • warning unit 105 and the display unit 109 which will be described later, do not necessarily need to be separated from each other as in the present embodiment. may be performed.
  • a light irradiation unit 106 may be provided as necessary.
  • the light irradiation unit 106 irradiates light onto particles to be analyzed or sorted. Specifically, the light irradiation unit 106 irradiates light (excitation light) to the particles flowing through the detection region T13 described above.
  • the light irradiation unit 106 is composed of, for example, a light source that emits excitation light and an objective lens that collects the excitation light with respect to the sample liquid flowing through the main flow path T124.
  • the light source can be appropriately selected and used from laser diodes, SHG lasers, solid-state lasers, gas lasers, high-brightness LEDs, and the like, depending on the purpose of analysis.
  • the light irradiation unit 106 may have an optical element other than the light source and the objective lens, if necessary.
  • a photodetector 107 may be provided as necessary.
  • the light detection unit 107 detects light emitted from the particles irradiated with the excitation light. Specifically, the photodetector 107 detects fluorescence and scattered light emitted from particles and converts them into electrical signals. Then, the electrical signal is output to the processing unit 103 described above.
  • the configuration of the photodetector 107 is not particularly limited, and a conventionally known configuration can be adopted. Also, the conversion method to an electric signal is not particularly limited.
  • a storage unit 108 may be provided as necessary.
  • Storage unit 108 stores various data.
  • Various data include, for example, the internal pressure result measured by the pressure measuring unit 102, optical information of particles detected by the light detecting unit 107, processing records in the processing unit 103, and the like. can be memorized.
  • the storage unit 108 can be provided in a cloud environment. As a result, it is also possible for those skilled in the art to share various information recorded in the storage unit 108 on the cloud via a network.
  • the storage unit 108 instead of the storage unit 108, it is also possible to store various data using an external storage device or the like connected via the Internet.
  • a display unit 109 may be provided as necessary.
  • the display unit 109 displays various data.
  • Various data include, for example, the internal pressure result measured by the pressure measuring unit 102, optical information of particles detected by the light detecting unit 107, processing records in the processing unit 103, and the like. can be displayed.
  • the display unit 109 instead of the display unit 109, it is also possible to display various data using an external display device or the like. Specifically, for example, a display, a printer, a personal digital assistant, etc. connected via the Internet can be used.
  • a user interface 110 may be provided as required.
  • a user can access and operate each unit of the analysis device 100 according to the present embodiment via the user interface 110 .
  • each unit it is also possible to operate each unit using an external operating device or the like instead of the user interface 110 .
  • an external operating device for example, a mouse, keyboard, personal digital assistant, etc. connected via the Internet can be used.
  • the detecting unit In the moving step, the detecting unit is moved in the direction until the reaction force in the reaction force measuring step reaches a specified value, and then the detecting unit is further moved in the direction by a predetermined distance, [3] The pressure measurement method described in . [5] a correction coefficient determination step of determining a pressure correction coefficient based on the reaction force in the reaction force measurement step; Further performing the pressure measurement method according to any one of [1] to [4]. [6] A correction step of correcting the internal pressure with respect to changes in the external environment; Further performing the pressure measurement method according to any one of [1] to [5].
  • the control method further comprising a control step of controlling a predetermined operation in the device based on the internal pressure in the measuring step.
  • a detection unit that detects a force associated with deformation of the flexible tube; a moving unit that moves the detection unit by a predetermined distance in the load measurement direction of the tube; with at least A pressure measuring device, wherein the detector measures the reaction force of the tube and measures the internal pressure of the tube based on the reaction force.
  • an analysis section having a flexible tube through which liquid flows; a pressure measurement unit having a detection unit that detects a force associated with deformation of a flexible tube, and a moving unit that moves the detection unit by a predetermined distance in a load measurement direction of the tube; with at least The analysis device, wherein the pressure measurement unit measures the reaction force of the tube by the detection unit, and measures the internal pressure of the tube based on the reaction force.
  • [12] a processing unit that determines a pressure correction coefficient based on the reaction force;
  • the analyzer according to any one of [11] to [14], wherein the liquid is at least one selected from the group consisting of a sample liquid containing particles, a sheath liquid, and a buffer liquid.
  • a light irradiation unit that irradiates the particles with light
  • a light detection unit that detects light emitted from the particles
  • the analyzer according to [15] further comprising:

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electromagnetism (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

チューブの外側から非接液で、精度高く圧力を測定することが可能な技術を提供すること。 本技術では、可撓性チューブの変形に伴う力を検知する検知部を、前記チューブの荷重測定方向に所定の距離移動させる移動工程と、前記検知部により前記チューブの反力を測定する反力測定工程と、前記反力測定工程における反力に基づいて、前記チューブの内圧を測定する測定工程と、を少なくとも行う、圧力測定方法などを提供する。

Description

圧力測定方法、制御方法、圧力測定装置、及び分析装置
 本技術は、圧力測定方法、制御方法、圧力測定装置、及び分析装置に関する。より詳しくは、チューブの外側から非接液で、精度高く圧力を測定することが可能な、圧力測定方法、制御方法、圧力測定装置、及び分析装置に関する。
 現在、細胞や微生物などの粒子の分析には、フローサイトメトリーという技術が利用されている。このフローサイトメトリーは、シース流に内包されるように流れる粒子に光を照射し、個々の粒子から発せられた蛍光や散乱光を検出することで、粒子の解析や分取などを行う手法である。
 ここで、細胞や微生物などの粒子の分析に使用される装置は、例えばその粒子が治療等に用いられる場合、コンタミネーション防止などの目的で、粒子や他の薬液が通流する流路内が滅菌されており、且つ、一度の使用で流路構造物が交換可能であることが求められる。更に、当該装置は、流体を流す機構であるため、安全性や制御の観点から、流路構造物を構成する部材内部の圧力状態を監視することが必要となる場合が多い。また、一部の部材を使い捨てにすることで圧力測定は可能であるが、当該部材を使い捨てにする分、流路構造物が高価になってしまうという問題がある。
 そこで、圧力測定のための専用部材を必要とせず、流路構造物を構成する可撓性チューブの外側から非接液でチューブ内部の圧力測定が可能な技術が望まれている。
 これに対し、例えば、特許文献1には、「可撓性チューブを順次押圧しながら該チューブ内を通る液体を移動させるポンプ部を備えた輸液ポンプに組み込まれ、前記ポンプ部よりも下流側における前記チューブの閉塞を検知する閉塞検知装置であって、閉塞によるチューブ内圧の上昇に伴う前記チューブの膨張を検出する膨張検出手段と、前記輸液ポンプの使用環境温度を検出する温度検出手段と、前記温度検出手段で検出した前記使用環境温度に基づいて閉塞検知レベルを変更し、この閉塞検知レベルと前記膨張検出手段で検出した前記チューブの膨張とを比較して前記チューブの閉塞を判断する制御手段とを有することを特徴とする輸液ポンプ用の閉塞検知装置」が開示されている。
特開平06-30993号公報
 前述の通り、可撓性チューブの外側から非接液でチューブ内部の圧力測定が可能な技術は、以前から存在している手法ではあるが、圧力測定の要求精度が高い場合においては、従来の方法では、測定する可撓性チューブの物性に起因する影響により、圧力測定を正確に行うことが困難であった。
 そこで、本技術では、チューブの外側から非接液で、精度高く圧力を測定することが可能な技術を提供することを主目的とする。
 本技術では、まず、可撓性チューブの変形に伴う力を検知する検知部を、前記チューブの荷重測定方向に所定の距離移動させる移動工程と、前記検知部により前記チューブの反力を測定する反力測定工程と、前記反力測定工程における反力に基づいて、前記チューブの内圧を測定する測定工程と、を少なくとも行う、圧力測定方法を提供する。
 また、本技術では、可撓性チューブの変形に伴う力を検知する検知部を、前記チューブの荷重測定方向に所定の距離移動させる移動工程と、前記検知部により前記チューブの反力を測定する反力測定工程と、前記反力測定工程における反力に基づいて前記チューブの内圧を測定する測定工程と、前記測定工程における内圧が閾値を超えたか否か判定する判定工程と、を少なくとも行い、前記判定工程において、前記測定工程における内圧が閾値を超えた場合、装置における所定の動作を停止する、及び/又は、警告を発する、装置の制御方法も提供する。
 更に、本技術では、可撓性チューブの変形に伴う力を検知する検知部と、前記検知部を前記チューブの荷重測定方向に所定の距離移動させる移動部と、を少なくとも備え、前記検知部により前記チューブの反力を測定し、前記反力に基づいて前記チューブの内圧を測定する、圧力測定装置も提供する。
 加えて、本技術では、液体が流れる可撓性チューブを有する分析部と、可撓性チューブの変形に伴う力を検知する検知部と、前記検知部を前記チューブの荷重測定方向に所定の距離移動させる移動部と、を有する圧力測定部と、を少なくとも備え、前記圧力測定部では、前記検知部により前記チューブの反力を測定し、前記反力に基づいて前記チューブの内圧を測定する、分析装置も提供する。
本技術に係る圧力測定方法のフローの一例を示す図である。 反力差を得る方法について詳細に説明する図である。 横軸を反力差(h)、縦軸をその際の圧力補正係数(A)とした関係を示す図である。 横軸を規格化した値(v)、縦軸を標準圧力(P’)とした関係を示す図である。 外気温の変化と検知部による出力との関係を示す図である。 本技術に係る制御方法のフローの一例を示す図である。 Aは、本技術に係る圧力測定装置の一例を模式的に示す概念図であり、Bは、Aの一部拡大図である。 本技術に係る分析装置の一例を模式的に示す概念図である。 分析キットの一例を模式的に示す概念図である。 マイクロチップの一例を模式的に示す概念図である。
 以下、本技術を実施するための好適な形態について図面を参照しながら説明する。
 以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、説明は以下の順序で行う。

1.第1実施形態(圧力測定方法)
(1)移動工程S1
(2)反力測定工程S2
(3)測定工程S3
(4)補正係数決定工程S4
(5)補正工程S5
(6)判定工程S6
(7)その他の工程
2.第2実施形態(制御方法)
(1)判定工程S6の変形例
(2)制御工程S8
3.第3実施形態(圧力測定装置10)
(1)検知部11
(2)移動部12
(3)その他
4.第4実施形態(分析装置100)
(1)分析部101
 (1-1)分析キット1011
 (1-2)分析キット1011を用いて目標粒子を分取する場合
 (1-3)その他
(2)圧力測定部102
(3)処理部103
(4)判定部104
(5)警告部105
(6)光照射部106
(7)光検出部107
(8)記憶部108
(9)表示部109
(10)ユーザインターフェース110
1.第1実施形態(圧力測定方法)
 図1は、本技術に係る圧力測定方法のフローの一例を示す図である。
 本実施形態に係る圧力測定方法は、移動工程S1と、反力測定工程S2と、測定工程S3と、を少なくとも行う。また、必要に応じて、補正係数決定工程S4、補正工程S5、判定工程S6、その他の工程等を行ってもよい。以下、各工程について詳細に説明する。
(1)移動工程S1
 移動工程S1は、可撓性チューブFの変形に伴う力を検知する検知部11を、前記チューブFの荷重測定方向に所定の距離、定量的に移動させる工程である。
 本実施形態において、可撓性チューブFを形成する素材は特に限定されず、例えば、フッ素樹脂、シリコン、塩化ビニル、ポリウレタン、ポリプロピレンやポリエチレン等のポリオレフィン、或いはこれらの組み合わせ等が挙げられる。また、当該チューブの硬さ、内外径等も特に限定されない。
 検知部11は、可撓性チューブFの変形に伴う力を検知することができれば特に限定されない。具体的には、例えば、力センサ(フォースセンサ)が挙げられる。力センサの種類としては、例えば、リンク機構を用いたセンサ、ひずみケージ式センサ、圧電式(ピエゾ式)センサ、光学式センサ、静電容量式センサ、或いはこれらの組み合わせ等が挙げられる。
 なお、本技術における「可撓性チューブの変形」とは、可撓性チューブFに対して外力を加えることによる変形や、可撓性チューブFの内圧の変動によるチューブF自体の膨出又は収縮等も含まれる広い概念である。また、「可撓性チューブの変形に伴う力」としては、可撓性チューブFに対して外力を加えることにより発生する反力や、可撓性チューブFの内圧の変動によりチューブF自体の膨出又は収縮が起きることで径方向に発生する力等が含まれ得る。
 本実施形態において、検知部11は、可撓性チューブFに対して外力を加えることにより生じる反力や、可撓性チューブFの内圧の変動によるチューブF自体の膨出又は収縮を力として測定することができる。
 本実施形態において、「荷重測定方向」とは、具体的には、前記チューブFに接触する方向である。荷重測定方向に検知部11を所定の距離移動させる方法は特に限定されず、例えば、送り機構等を備えることで、検知部11を前記方向に所定の距離移動させることができる。
 なお、ここでいう「所定の距離」は、当業者によって適宜設定することができる。本実施形態では、例えば、0.1cm~1.0cmの範囲内で設定することができる。
 本実施形態において、移動工程S1と後述する反力測定工程S2とは、図1に示すように、同時に行われてもよい。また、移動工程S1は、複数回行われてもよい。これについては、後述する「(2)反力測定工程S2」で詳しく説明する。
(2)反力測定工程S2
 反力測定工程S2は、前記検知部11により前記チューブFの反力を測定する工程である。
 本実施形態において、「反力」とは、具体的には、検知部11を前記チューブFに接触させて外力を与えることで、当該外力と反対方向に発生する力である。
 前述の通り、本実施形態において、移動工程S1と反力測定工程S2とは、同時に行われてもよい。例えば、移動工程S1を行いつつ、反力測定工程S2も行うことで、可撓性チューブFが徐々に変形することに伴う反力を経時的に測定できる。より具体的には、例えば、移動工程S1において、反力測定工程S2における前記反力が規定値に到達するまで前記検知部11を前記方向に移動させることも可能である。
 なお、ここでいう「規定値」は、当業者によって適宜設定することができる。
 また、前述の通り、移動工程S1は、複数回行われてもよい。具体的には、例えば、移動工程S1において、前記反力測定工程S2における前記反力が規定値に到達するまで前記検知部11を前記方向に移動させた後、更に、前記検知部11を前記方向に所定の距離移動させることが可能である。また、移動工程S1が複数回行われる場合、規定値には、「0」も含まれ得る。
 この場合、反力測定工程S2も、複数回行われてもよい。これにより、例えば、複数回行った反力測定工程S2で得られた反力から、当業者が適宜2つの反力を選択し、当該2つの反力の差を前記チューブFの物性に関するパラメータとして用いることができる。
 図2は、反力差を得る方法について詳細に説明する図である。
 まず、図2のAに示すように、移動工程S1で前記チューブFの荷重測定方向に、検知部11を所定の距離移動させる。次いで、図2のBに示すように、前記反力測定工程S2における前記反力が規定値に到達したことを確認したら、図2のCに示すように、更に、一定寸法検知部11を前記方向に移動させる。次いで、前記反力測定工程S2を行って一定寸法移動後の反力を測定したら、図2のDに示すように、検知部11を初期位置まで戻す。これにより、規定値に到達した際の反力と、そこから更に一定寸法検知部11を移動させた際の反力と、の2つの反力から、反力差を得ることができる。
(3)測定工程S3
 測定工程S3は、前記反力に基づいて前記チューブFの内圧を測定する工程である。
 本実施形態では、反力測定工程S2において測定した反力の変化量(例えば、反力差など)等に基づき、内圧測定開始前に、可撓性チューブF自体の物性(例えば、硬さ、内外径など)に関するパラメータを得ることができる。したがって、測定工程S3では、当該パラメータに基づいて、可撓性チューブF毎の物性の違いを考慮した上で、前記チューブFの内圧を非接液で測定することができる。可撓性チューブFの物性は、力として測定される値を圧力値として換算する係数に影響を及ぼし、当該係数のズレにより、測定された圧力値と真の圧力値との差が大きくなるため、機構としての圧力測定精度の低下に繋がってしまう。これに対し、本実施形態では、可撓性チューブFの物性に起因する測定誤差を低減でき、結果として、圧力測定の精度を向上させることができる。
 また、本実施形態によれば、前記チューブFの内圧を非接液で測定することができるため、圧力計等の高価な部材を使い捨てる必要がなく、コスト削減にも繋がる。
 前記反力に基づいて前記チューブの内圧を測定する方法は特に限定されないが、具体的には、例えば、後述する「(4)補正係数決定工程S4」で説明する圧力補正係数を用いて測定することができる。
(4)補正係数決定工程S4
 本実施形態では、必要に応じて、補正係数決定工程S4を更に行ってもよい。
 補正係数決定工程S4は、前記反力測定工程S2における反力に基づいて、圧力補正係数を決定する工程である。
 より具体的には、例えば、反力測定工程S2を複数回行った場合における、反力差を用いることができる。例えば、図2に示すように、規定値に到達した際の反力と、そこから更に一定寸法検知部11を移動させた際の反力と、の2つの反力から得られた反力差を用いることができる。
 前記反力差は、例えば、図3に示すように、反力差と前記チューブFに圧力をかけた時の出力との関係を取得し、この関係に基づいて圧力補正係数を決定する際に用いられる。可撓性チューブFは、前述の通り、当該チューブFを形成する素材や、当該チューブFの内外径のバラつき、測定時の外気温等によって物性が各々で異なるため、当該圧力補正係数を用いることで、この物性の違いに起因する内圧の測定誤差を軽減できる。
 前記圧力補正係数は、具体的には、例えば、以下のようにして求められる。
 図3は、横軸を、前記検知部11を前記方向に所定の距離移動させる前後で取得した2つの反力の差(h)、縦軸を、その際の圧力補正係数(A)とした関係を示している。図3に示すグラフに基づいて、得られた反力差から導き出される圧力補正係数を決定する。この関係式は、下記数式(1)に示す2次関数で表すことができる。
Figure JPOXMLDOC01-appb-M000001
A:圧力補正係数
h:反力差
a,b,c:実験的に求められる定数
 次いで、検知部11からの出力-圧力換算式に対し、検知部11からの出力値と、前述した手順で決定した圧力補正係数とを代入することで、前記チューブFの内圧を測定する。
 前記チューブFの内圧は、具体的には、例えば、以下のようにして求められる。
 図4は、横軸を、検知部11から出力された値を規格化した値(v)、縦軸を、標準圧力(P’)とした関係を示している。この関係式は、下記数式(2)に示す2次関数で表すことができる。
Figure JPOXMLDOC01-appb-M000002
 
P’:標準圧力
v:検知部11からの出力値を規格化した値
d,e,v:実験的に求められる定数
 ここで、前記標準圧力に対して、圧力補正係数を用いた補正は、全点において比例的に補正可能であるため、前記チューブFの内圧(P)は、下記数式(3)により求めることができる。
Figure JPOXMLDOC01-appb-M000003
P:前記チューブFの内圧
v:検知部11からの出力値を規格化した値
h:反力差
(5)補正工程S5
 本実施形態では、必要に応じて、補正工程S5を更に行ってもよい。
 補正工程S5は、外部環境の変動に対して、前記内圧を補正する工程である。
 補正工程S5を行うことで、圧力測定中の外気環境の変動に起因して可撓性チューブFの物性(例えば、硬さ、内外径など)が変化することによる、前記内圧の測定誤差を軽減できる。
 なお、ここでいう「外気環境」は、例えば、外気温、外気圧等が挙げられるが、本実施形態では、好ましくは外気温である。
 外部環境の変動に対して、前記内圧を補正する方法は特に限定されないが、具体的には、例えば、以下で説明する方法により補正することができる。
 図5は、外気温の変化と検知部11による出力との関係を示している。
 外気温の変動に対して、前記チューブFの内圧の変動は、図5に示す通り、比例関係で予測することが可能である。
 また、温度センサを取り付け、当該センサにより外気温を測定し、その測定値(t)から、測定中の外気温変化を下記数式(4)及び下記数式(5)により補正することも可能である。
Figure JPOXMLDOC01-appb-M000004
P’:標準圧力
P:前記チューブFの内圧
v:検知部11からの出力値を規格化した値
h:反力差
t:温度センサから得られた測定値
k:実験的に求められる定数
(6)判定工程S6
 本実施形態では、必要に応じて、判定工程S6を行ってもよい。
 判定工程S6は、前記測定工程S3における内圧が閾値を超えたか否か判定する工程である。
 送液等の動作中に判定工程S3を行うことで、ユーザが測定時におけるトラブルを発見し易くなる。
 なお、ここでいう「閾値」は、当業者により適宜設定できる。具体的には、例えば、所望の圧力値を上回ったり、下回ったりする場合が想定される。また、これらに加えて、所望の圧力値を上回ったり、下回ったりする状態が所定時間続く場合も、「閾値」の概念として想定され得る。
 また、本実施形態では、前記測定工程S3における内圧の測定精度が高いため、判定工程S6における前記閾値も、従来技術と比較してより細かく設定することができるという利点を有する。
(7)その他の工程
 本実施形態では、必要に応じて、その他の工程を更に行ってもよい。
 具体的には、例えば、図1に示すように、前記補正係数決定工程S4の後で、前記測定工程S3の前に、前記チューブFの荷重測定方向に移動した検知部11が初期位置に戻る(前記荷重測定方向と反対方向に検知部11が移動する)戻り工程S7を行ってもよい。
2.第2実施形態(制御方法)
 図6は、本技術に係る制御方法のフローの一例を示す図である。
 本実施形態に係る制御方法は、移動工程S1と、反力測定工程S2と、測定工程S3と、判定工程S6と、を少なくとも行い、前記判定工程S6において、前記測定工程S3における内圧が閾値を超えた場合、装置における所定の動作を停止する、及び/又は、警告を発する。また、必要に応じて、その他の工程等を行ってもよい。以下、各工程について詳細に説明する。
 なお、移動工程S1、反力測定工程S2、及び測定工程S3については、前述した「1.第1実施形態」において説明したものと同様であるため、ここでは説明を割愛する。
(1)判定工程S6の変形例
 本実施形態では、前述した判定工程S6に加えて、判定工程S6において前記測定工程S3における内圧が閾値を超えたと判定された場合、装置における所定の動作を停止する、及び/又は、警告を発する。これにより、測定時の当該装置内のトラブルを発見することができ、当該装置を扱う当業者のユーザビリティが向上する。
 なお、ここでいう「装置」とは、例えば、後述する圧力測定装置10や分析装置100、解析装置、粒子分取装置等を意味するが、これらに限定されない。
 装置における所定の動作としては、例えば、各種溶液(例えば、粒子を含むサンプル液、シース液、バッファ液、ゲート液など)の送液、分析用マイクロチップ等のプライミング動作、ポンプの回転、検知部等の移動、粒子への光の照射、光の検出、粒子の分析、粒子の分取、或いはこれらの組み合わせ等が挙げられるが、これらに限定されない。
 より具体的には、例えば、所望の圧力値を超えたと判定された場合、検知部11の後段にあるフィルタや分析用マイクロチップ等の各種部材が詰まったと判断し、送液を停止する。また、例えば、所望の圧力値を下回ったと判定された場合、配管中で漏れがあると判断し、送液を停止する。
 警告を発する方法としては、例えば、アラート音を出したり、アラートを表示したりすること等が挙げられるが、これに限定されない。
 より具体的には、例えば、所望の圧力値を超えた状態が続いていると判定された場合、装置の表示部等にアラートを表示して、ユーザに知らせる。
(2)制御工程S8
 本実施形態では、必要に応じて、制御工程S8を更に行ってもよい。
 制御工程S8は、前記測定工程S3における内圧に基づいて、装置における所定の動作を制御する工程である。
 装置における所定の動作とは、前述した通りである。より具体的には、例えば、測定された内圧に基づいて、装置におけるポンプの回転をフィードバック制御する。より詳しくは、分析用マイクロチップ等の内部を各種溶液で満たすプライミング動作において、前記内圧が一定値に達するまでは、前記溶液が十分に満たされていないと判定してポンプを高速で回転させる。一方で、前記内圧が一定値を超えたら、プライミング動作が完了したと判定してポンプの回転数を下げる。これにより、プライミング動作に要する時間の短縮や、分析用マイクロチップ等の各種部材の破壊や劣化などを回避することができる。
3.第3実施形態(圧力測定装置10)
 図7のAは、本技術に係る圧力測定装置10の一例を模式的に示す概念図であり、図7のBは、Aの一部拡大図である。
 本実施形態に係る圧力測定装置10は、検知部11と、移動部12と、を少なくとも備え、前記検知部10により前記チューブFの反力を測定し、前記反力に基づいて前記チューブFの内圧を測定する。また、必要に応じて、その他の部等を備えていてもよい。以下、各部について詳細に説明する。
(1)検知部11
 検知部11は、可撓性チューブFの変形に伴う力を検知する。
 なお、検知部11の詳細な説明や、検知部11により測定された前記チューブFの反力に基づいて前記チューブFの内圧を測定する方法等については、前述した「1.第1実施形態」において説明したものと同様であるため、ここでは説明を割愛する。
(2)移動部12
 移動部12は、前記チューブFの荷重測定方向に、前記検知部11を所定の距離移動させる。移動部12は、例えば、図7に示すように、送りモーター(動力)121と送りねじ122とで構成することができる。また、移動部12は、当業者の設定により一旦移動を停止してから、再度、移動を行うことも可能である。更に、前記荷重測定方向と反対方向に移動してもよく、例えば、検知部11による反力の測定後は、移動部12により検知部11が初期位置に戻るように設定することができる。
(3)その他
 本実施形態では、必要に応じて、図7に示すように、前記チューブFに直接接触する接触子13や、前記チューブFを取り付ける際に開閉する開閉蓋14を備えていてもよい。また、前記開閉蓋14は、前記チューブFの取り付け後は、チューブFの押さえとして機能してもよい。更に、図示しないが、外気温を測定するための温度センサ、外気圧を測定するための気圧センサ等の各種センサを備えていてもよい。
4.第4実施形態(分析装置100)
 図8は、本技術に係る分析装置100の一例を模式的に示す概念図である。
 本実施形態に係る分析装置100は、分析部101と、圧力測定部102と、を少なくとも備える。また、必要に応じて、処理部103、判定部104、警告部105、光照射部106、光検出部107、記憶部108、表示部109、ユーザインターフェース110等を備えていてもよい。以下、各部について詳細に説明する。
(1)分析部101
 分析部101は、液体が流れる可撓性チューブFを有する。
 前記液体としては、例えば、粒子を含むサンプル液、シース液、及びバッファ液からなる群より選ばれるいずれか1種以上とすることができる。
 粒子を含むサンプル液は、特に限定されない。具体的には、例えば、全血、全血に含まれる末梢血単核細胞やリンパ球のみを含む細胞懸濁液等の液体が挙げられる。
 なお、ここでいう「粒子」には、細胞や微生物、リボソーム等の生体関連微小粒子のみならず、ラテックス粒子、ゲル粒子、工業用粒子等の合成粒子などが含まれ得る。
 生体関連微小粒子には、各種細胞を構成する染色体、リボソーム、ミトコンドリア、オルガネラ(細胞小器官)などが含まれ得る。細胞には、動物細胞(例えば、血球系細胞など)、植物細胞などが含まれ得る。微生物には、大腸菌等の細菌類、タバコモザイクウイルス等のウイルス類、イースト菌等の菌類などが含まれ得る。更に、生体関連微小粒子には、核酸やタンパク質、これらの複合体等の生体関連高分子なども包含され得る。
 また、工業用粒子は、例えば、有機又は無機高分子材料、金属などであってもよい。有機高分子材料には、ポリスチレン、スチレン・ジビニルベンゼン、ポリメチルメタクリレートなどが含まれ得る。無機高分子材料には、ガラス、シリカ、磁性体材料などが含まれ得る。金属には、金コロイド、アルミなどが含まれ得る。これらの微小粒子の形状は、一般には球形であるが、本実施形態では、非球形であってもよく、また、その大きさ、質量等も特に限定されない。
 分析部101は液体が流れる可撓性チューブFを有していれば特に限定されず、例えば、分析キット1011であってもよい。以下、分析キット1011について詳細に説明する。
 (1-1)分析キット1011
 図9は、分析キット1011の一例を模式的に示す概念図である。
 分析キット1011は、サンプル収容部1012と、サンプル流路T12と、検出領域T13と、を少なくとも備える。
 サンプル収容部1012には、分析の対象となる粒子を含むサンプル液が収容される。サンプル収容部1012は、例えば、一端が開口した円筒状の筒体と、該筒体に嵌合すると共に前記開口を閉塞する蓋部と、で構成することができる。また、前記蓋部にはサンプル液を前記筒体内に収容するための開口弁が複数形成されていてもよく、各開口弁には逆止弁の構成が採用されていてもよい。これにより、前記開口弁を介してサンプル液がサンプル収容部1012に収容された状態では、当該サンプル液がサンプル収容部1012の外部へと出ないようになっている。また、前記開口弁の構成により、前記サンプル液が外部雰囲気と接触しないようになっている。
 サンプル収容部1012には、サンプル液中の粒子の凝集を抑制する物質が備えられていてもよい。これにより、サンプル液中の粒子の凝集を抑制することができる。
 前記物質としては、例えば、デオキシリボヌクレアーゼ(deoxyribonuclease、DNase)、エチレンジアミン四酢酸(EDTA)、ポロキサマー(Poloxamer)等が挙げられる。
 また、この場合、サンプル液に用いられる溶液としては、リン酸緩衝生理食塩水(PBS)が好ましい。
 なお、分取キット1011には、図示しないが、サンプル収容部1012の上流にプレサンプル収容部を設けることも可能である。
 サンプル収容部1012は、その一部に液体が流れる可撓性チューブFを有する。当該部材を介してマイクロチップTのサンプルインレットT121へとサンプル液を送液する。その結果、サンプル液がマイクロチップTの流路内に流入され、シースフローが形成されるようになっている。
 図9中の破線部分は、圧力測定部102が備えられ得る部分である。図9中の矢印は送液方向を示している。なお、圧力測定部102は、図9に示すように、複数備えることもできるが、本技術では、1つ以上備えられていればよい。圧力測定部102をこれらの位置に備えることで、サンプル液、シース液、及びバッファ液からなる群より選ばれるいずれか1種以上の液体送液時における、可撓性チューブFの内圧を非接液で測定することができ、前記内圧の結果に基づいて、流路構造物における詰まりや、管状部材からの液体漏れ、プライミング動作の失敗などを発見できる。その結果、ユーザビリティが向上し、また、後述する分析用のマイクロチップT等の各種部材の破壊や劣化なども回避できる。
 なお、本技術では、図9中の破線部分以外であっても、分析キット1011を構成する可撓性チューブFのいずれかの地点において、圧力測定部102が1つ以上設けられ得る。
 サンプル流路T12には、例えば、後述する分析用のマイクロチップTに備えることができるが、本技術では、これに限定されない。具体的には、例えば、図示しないが、従来のフローサイトメータで用いられている流路等を用いることもできる。
 図10は、マイクロチップTの一例を模式的に示す概念図である。
 粒子を含むサンプル液は、サンプルインレットT121からサンプル流路T12に導入される。また、シースインレットT411から導入されたシース液は、2本のシース流路T41a,T41bに分流されて送液される。サンプル流路T12とシース流路T41a,T41bは合流して主流路T124となる。これにより、サンプル流路T12が送液されるサンプル液層流と、シース液路T41a,T41bが送液されるシース液層流とが、主流路T124内にて合流し、サンプル液層流がシース液層流に挟み込まれたシースフローが形成される。
 検出領域T13は、例えば、後述する光照射部106により励起光が照射され、後述する光検出部107による蛍光及び散乱光の検出が行われる領域である。粒子は、主流路T124に形成されたシースフロー中に一列に配列した状態で当該検出領域T13に送流され、光照射部106から励起光が照射される。そして、励起光が照射された粒子から発せられた蛍光及び散乱光を光検出部107により検出することで、当該粒子の光学特性を分析することができる。
 チューブポンプ部1013は、弾力性のある素材で形成することができる。なお、可撓性チューブFをしごくためのローラは、分取キット1011自体に備えられていてもよいが、本実施形態に係る分析装置100側に備えられたローラ部分に、当該チューブポンプ部1013を設置することで、可撓性チューブF内のサンプル液等を通流させることも可能である。
 (1-2)分析キット1011を用いて目標粒子を分取する場合
 本実施形態では、分析キット1011等を用いて、所定の光学特性を満たすと判定された粒子(「目標粒子」とも称する。)を分取することも可能である。以下、分析キット1011における目標粒子の分取方法について詳細に説明する。
 主流路T124は、検出領域T13の下流において、分取流路T51、廃棄流路T52a,T52bの3つの分岐流路と連通する。このうち、分取流路T51は、目標粒子が取り込まれる流路である。一方で、所定の光学特性を満たさないと判定された粒子(「非目標粒子」とも称する。)は、分取流路T51内に取り込まれることなく、2本の廃棄流路T52a,T52bのいずれか一方に流れる。
 目標粒子の分取流路T51内への取り込みは、ピエゾ素子等の圧電素子によって分取流路T51内に負圧を発生させ、この負圧を利用して目標粒子を含むサンプル液及びシース液を分取流路T51内に吸い込むことによって行われる。圧電素子は、マイクロチップTの表面に接触して配置され、分取流路T51に対応する位置に配置されている。より具体的には、圧電素子は、分取流路T51において内空が拡張された領域として設けられた圧力室T511に対応する位置に配置されている。
 圧力室T511の内空は、図10に示すように、平面方向(分取流路T51の幅方向)に拡張されるとともに、断面方向(分取流路T51の高さ方向)にも拡張されている。すなわち、分取流路T51は、圧力室T511において幅方向及び高さ方向に拡張されている。言い換えれば、分取流路T51は、圧力室T511においてサンプル液及びシース液の流れ方向に対する垂直断面が大きくなるように形成されている。
 圧電素子は、印加される電圧の変化に伴って伸縮力を発生し、マイクロチップTの表面(接触面)を介して分取流路T51内に圧力変化を生じさせる。分取流路T51内の圧力変化に伴って分取流路T51内に流動が生じると共に、分取流路T51内の体積が変化する。分取流路T51内の体積は、印加電圧に対応した圧電素子の変位量によって規定される体積に到達するまで変化する。より具体的には、圧電素子は、電圧を印加されて伸張した状態においては、圧力室T511を構成する変位板を押圧して圧力室T511の体積を小さく維持している。そして、印加される電圧が低下すると、圧電素子は収縮する方向へ力を発生し、変位板への押圧を弱めることによって圧力室T511内に負圧を発生させる。
 マイクロチップTは、サンプル流路T12や分取流路T51等が形成された基板層を貼り合わせることで、形成することができる。基板層へのサンプル流路T12や分取流路T51等の形成は、例えば、金型を用いた熱可塑性樹脂の射出成形などにより行うことができる。熱可塑性樹脂としては、例えば、ポリカーボネート、ポリメタクリル酸メチル樹脂(PMMA)、環状ポリオレフィン、ポリエチレン、ポリスチレン、ポリプロピレン、ポリジメチルシロキサン(PDMS)等の従来公知の素材を採用できる。なお、マイクロチップTを構成する基板層の数は特に限定されず、例えば、2以上の複数の層からなるものとすることができる。
 また、マイクロチップTは、ゲート液が導入されるゲートインレットT611と、ゲートインレットT611から導入されたゲート液が流れるゲート流路T61と、を更に備えていてもよい。ゲート流路T61は、例えば、分取流路T51及び廃棄流路T52a,T52bの3つの分岐流路から圧力室T511手前までの分取流路T51と、1本以上接続し、更には、例えば、垂直に交差するように設けられていてもよい。なお、ここでいう「ゲート液」とは、ゲート流路T61に流す液体であり、目標粒子等の主溶媒となるため、用途に応じて、様々な液体を選択することができる。具体的には、例えば、粒子含有液体として用いられる液媒体や、シース液、粒子がタンパク質の場合は、pH等が調節されたバッファ液等が挙げられる。
 以降の段落において、ゲート液により形成される流れを「ゲート流」という。
 ゲート流路T61の上流側は、ゲート流インレットT611から独立して導入し、適切な流量で流すことができる。ゲート流路T61に導入する液体の流量は、シース流路T41a,T41bに導入する液体の流量に対して少ないため、例えば、ゲート流路T61のみに細胞培養液、細胞保存液、分化誘導液等の高価な液体を使用する場合において、有用である。
 また、ゲート流は、シース液流から分岐して発生させることもできる。例えば、シースインレットT411後のシース流路T41a,T41bと、ゲート流路T61の上流端とを接続し、シース液流が分岐してゲート流路T61へも流入するように形成することで、ゲート流とすることもできる。その際には、ゲート流量が適切な流量となるよう、ゲート流路T61の流路抵抗を適切に設計する必要がある。
 ゲート流路T61と分取流路T51とが交差したところで、ゲート流路T61をまっすぐ進もうとするゲート流と共に、検出領域T13側と圧力室T511側とに向かうゲート流も生じる。後者のゲート流により、非目標粒子が分取流路T51の圧力室T511側へ侵入することを阻止できる。ゲート流路T61を流れてきたゲート流は分取流路T51へ流出し、分取流路T51の検出領域T13側と圧力室T511側へ向かうゲート流に分岐する。前者のゲート流により、非目標粒子が分取流路T51の圧力室T511側へ侵入することを阻止できる。
 分析キット1011は、必要に応じて、目標粒子貯留部1014を備えていてもよい。
 目標粒子貯留部1014には、分取された目標粒子が収容される。目標粒子貯留部1014は、例えば、目標粒子が収容される袋状に形成されており、マイクロチップTの分取流路T51に連結される開口弁を備える。前記開口弁は所謂逆止弁の構成を採用しており、前記開口弁を介して目標粒子が目標粒子貯留部1014に収容された状態では、該目標粒子が目標粒子貯留部1014の外部へと出ないようになっている。また、前記開口弁の構成により、前記目標粒子が外部雰囲気と接触しないようになっている。
 分析キット1011は、必要に応じて、廃棄部1015を備えていてもよい。
 分析キット1011では、マイクロチップTにてサンプル液から目標粒子のみを分取する際に、非目標粒子を排除する必要がある。また、マイクロチップTにてシースフローを形成して目標粒子の分取を行っているため、非目標粒子を含むサンプル液を排除する必要がある。このため、廃棄部1015には、非目標粒子を含む液体(廃液)が回収される。
 分析キット1011は、必要に応じて、シース液収容部1016を備えていてもよい。
 分取キット1011では、サンプル流路T12においてシースフローが形成され、サンプル液からの目標粒子の分取を行っている。このため、シース液収容部1016には、シース液が収容される。
 シース液収容部1016は、その一部にシース液が流れる可撓性チューブFを備えており、当該部材を介してマイクロチップTのシースインレットT411へとシース液を送液する。その結果、シース液がマイクロチップTの流路内に流入され、シースフローが形成されるようになっている。
 シース液収容部1016の構成は特に限定されず、従来公知の構成を採用することができる。また、シース液収容部1016からシース液を排出する構成も特に限定されず、例えば、アクチュエータ等の駆動源を用いてもよい。
 分取キット1011は、必要に応じて、ゲート液収容部1017を備えていてもよい。ゲート液収容部1017には、ゲート液が収容される。なお、「ゲート液」については、前述したものと同様であるため、ここでは説明を割愛する。
 ゲート液収容部1017は、その一部にゲート液が流れる可撓性チューブFを備えており、当該部材を介してマイクロチップTのゲート液インレットT611へとゲート液を送液する。その結果、ゲート液がマイクロチップTの流路内に流入され、目標粒子の分取が行われるようになっている。
 ゲート液収容部1017の構成は特に限定されず、従来公知の構成を採用することができる。また、ゲート液収容部1017からゲート液を排出する構成も特に限定されず、例えば、アクチュエータ等の駆動源を用いてもよい。
 分取キット1011には、図示しないが、分取キット1011の各部材の途中にフィルタ等を設けることで、異物の混入や、デッドボリュームの低減等を図ることもできる。
 (1-3)その他
 分析キット1011の各部は、その一部又は全部を、密閉連結することができる。このため、粒子の分析、目標粒子の分取、目標粒子の貯留等を密閉空間で実行することができ、これにより、分析や分取の精度を向上させることができる。また、粒子を含むミストによる分析キット1011自体の汚染及び/又は目標粒子への他物質の混入等も防止することができる。その結果、分析キット1011は、免疫細胞治療等の臨床にも適用することができる。
 また、分析キット1011自体をディスポーザブルとすることもでき、サンプル間でのコンタミネーションのリスク等を回避して、ユーザビリティを向上させることもできる。
 更に、分析キット1011の各部を、それぞれ複数備えることも可能である。例えば、図示しないが、目標粒子貯留部1014の下流に、更にマイクロチップTを備えることで、分取された目標粒子を、更に細かく分取することも可能である。
 なお、分析キット1011は、閉鎖型セルソーター用の、カートリッジ、ユニット、デバイス、キット、器具等として流通することも想定される。
(2)圧力測定部102
 圧力測定部102は、検知部11と、移動部12と、を有する。
 圧力測定部102の構成や、圧力測定部102において行われる具体的な処理等は、前述した「3.第3実施形態」において説明したものと同様であるため、ここでは説明を割愛する。
(3)処理部103
 本実施形態では、必要に応じて、処理部103を備えていてもよい。
 処理部103では、前記反力に基づいて、圧力補正係数を決定する。
 圧力補正係数を決定する方法は、前述した「(4)補正係数決定工程S4」において説明したものと同様であるため、ここでは説明を割愛する。
 また、処理部103には、後述する光検出部107で変換された電気信号が入力されてもよい。処理部103は、入力された電気信号に基づいて、サンプル液内に含まれる粒子の光学特性を判定する。
 更に、処理部103では、サンプル液から目標粒子を分取するための閾値、要求個数以上の目標粒子が分取されたか否かを判定するための閾値等を算出するためのゲーティング回路を備えていてもよい。これにより、サンプル液から目標粒子を分取するための閾値が算出された場合、これを分取のための電気信号に変換し、該信号をマイクロチップTが備える圧電素子に出力する。
 なお、処理部103の構成は特に限定されず、従来公知の構成を採用できる。更に、処理部103のゲーティング回路により行われる処理も特に限定されず、従来公知の方法を採用できる。
(4)判定部104
 本実施形態では、必要に応じて、判定部104を備えていてもよい。
 判定部104は、前記内圧が、閾値を超えたか否か判定する。
 判定部104において行われる具体的な処理等は、前述した「1.第1実施形態の(6)判定工程S6」、及び「2.第2実施形態の(1)判定工程S6の変形例」において説明したものと同様であるため、ここでは説明を割愛する。
 なお、本技術では、本実施形態のように前述した処理部103と判定部104とを別体とする必要は必ずしもなく、処理部103において、前記内圧が、閾値を超えたか否か判定する処理を行ってもよい。
(5)警告部105
 本実施形態では、必要に応じて、警告部105を備えていてもよい。
 警告部105は、前記判定部104において、前記内圧が閾値を超えた場合、警告を発する。
 警告部において行われる具体的な処理等は、前述した「2.第2実施形態の(1)判定工程S6の変形例」において説明したものと同様であるため、ここでは説明を割愛する。
 なお、本技術では、本実施形態のように警告部105と後述する表示部109とを別体とする必要は必ずしもなく、表示部109において、前記内圧が閾値を超えた場合、警告を発する処理を行ってもよい。
(6)光照射部106
 本実施形態では、必要に応じて、光照射部106を備えていてもよい。
 光照射部106は、分析対象又は分取対象となる粒子に対して光を照射する。具体的には、光照射部106は、前述した検出領域T13を通流する粒子に光(励起光)を照射する。
 光照射部106は、例えば、励起光を出射する光源と、主流路T124を通流するサンプル液に対して励起光を集光する対物レンズと、により構成されている。光源は、分析の目的に応じて、レーザダイオード、SHGレーザ、固体レーザ、ガスレーザ、高輝度LED等から、適宜選択して用いることができる。また、光照射部106は、必要に応じて、光源及び対物レンズ以外の光学素子を有していてもよい。
(7)光検出部107
 本実施形態では、必要に応じて、光検出部107を備えていてもよい。
 光検出部107は、励起光が照射された粒子から発せられた光を検出する。具体的には、光検出部107は、粒子から発せられた蛍光及び散乱光を検出して、電気信号へと変換する。そして、当該電気信号を前述した処理部103へと出力する。
 光検出部107の構成は特に限定されず、従来公知の構成を採用することができる。また、電気信号への変換方法も、特に限定されない。
(8)記憶部108
 本実施形態では、必要に応じて、記憶部108を備えていてもよい。
 記憶部108は、各種データを記憶する。各種データとしては、例えば、圧力測定部102により測定された内圧の結果、光検出部107により検出された粒子の光学的情報、処理部103における処理記録等が挙げられ、分析に関わるあらゆる事項を記憶することができる。
 また、本技術では、図示しないが、記憶部108をクラウド環境に設けることもできる。これにより、ネットワークを介して当業者同士がクラウド上の記憶部108に記録された各種情報を共用することも可能である。
 なお、本技術では、記憶部108の代わりに、インターネットを介して接続された外部の記憶装置等を用いて各種データの記憶を行うことも可能である。
(9)表示部109
 本実施形態では、必要に応じて、表示部109を備えていてもよい。
 表示部109では、各種データを表示する。各種データとしては、例えば、圧力測定部102により測定された内圧の結果、光検出部107により検出された粒子の光学的情報、処理部103における処理記録等が挙げられ、分析に関わるあらゆる事項を表示することができる。
 なお、本技術では、表示部109の代わりに、外部の表示装置等を用いて各種データの表示を行うことも可能である。具体的には、例えば、インターネットを介して接続されたディスプレイやプリンタ、携帯情報端末などを用いることができる。
(10)ユーザインターフェース110
 本実施形態では、必要に応じて、ユーザインターフェース110を備えていてもよい。
 ユーザは、当該ユーザインターフェース110を介して、本実施形態に係る分析装置100の各部にアクセスし、各部を操作することができる。
 なお、本技術では、ユーザインターフェース110の代わりに、外部の操作装置等を用いて各部の操作を行うことも可能である。具体的には、例えば、インターネットを介して接続されたマウスやキーボード、携帯情報端末などを用いることができる。
 なお、本技術では、以下の構成を採用することもできる。
〔1〕
 可撓性チューブの変形に伴う力を検知する検知部を、前記チューブの荷重測定方向に所定の距離移動させる移動工程と、
 前記検知部により前記チューブの反力を測定する反力測定工程と、
 前記反力測定工程における反力に基づいて、前記チューブの内圧を測定する測定工程と、
を少なくとも行う、圧力測定方法。
〔2〕
 前記移動工程と前記反力測定工程とは、同時に行われる、〔1〕に記載の圧力測定方法。
〔3〕
 前記移動工程では、前記反力測定工程における反力が、規定値に到達するまで前記検知部を前記方向に移動させる、〔2〕に記載の圧力測定方法。
〔4〕
 前記移動工程では、前記反力測定工程における反力が規定値に到達するまで前記検知部を前記方向に移動させた後、更に、前記検知部を前記方向に所定の距離移動させる、〔3〕に記載の圧力測定方法。
〔5〕
 前記反力測定工程における反力に基づいて、圧力補正係数を決定する補正係数決定工程、
を更に行う、〔1〕から〔4〕のいずれかに記載の圧力測定方法。
〔6〕
 外部環境の変動に対して、前記内圧を補正する補正工程、
を更に行う、〔1〕から〔5〕のいずれかに記載の圧力測定方法。
〔7〕
 前記測定工程における内圧が閾値を超えたか否か判定する判定工程、
を更に行う、〔1〕から〔6〕のいずれかに記載の圧力測定方法。
〔8〕
 可撓性チューブの変形に伴う力を検知する検知部を、前記チューブの荷重測定方向に所定の距離移動させる移動工程と、
 前記検知部により前記チューブの反力を測定する反力測定工程と、
 前記反力測定工程における反力に基づいて前記チューブの内圧を測定する測定工程と、
 前記測定工程における内圧が閾値を超えたか否か判定する判定工程と、
を少なくとも行い、
 前記判定工程において、前記測定工程における内圧が閾値を超えた場合、装置における所定の動作を停止する、及び/又は、警告を発する、装置の制御方法。
〔9〕
 前記測定工程における内圧に基づいて、装置における所定の動作を制御する制御工程、を更に行う、〔9〕に記載の制御方法。
〔10〕
 可撓性チューブの変形に伴う力を検知する検知部と、
 前記検知部を前記チューブの荷重測定方向に所定の距離移動させる移動部と、
を少なくとも備え、
 前記検知部により前記チューブの反力を測定し、前記反力に基づいて前記チューブの内圧を測定する、圧力測定装置。
〔11〕
 液体が流れる可撓性チューブを有する分析部と、
 可撓性チューブの変形に伴う力を検知する検知部と、前記検知部を前記チューブの荷重測定方向に所定の距離移動させる移動部と、を有する圧力測定部と、
を少なくとも備え、
 前記圧力測定部では、前記検知部により前記チューブの反力を測定し、前記反力に基づいて前記チューブの内圧を測定する、分析装置。
〔12〕
 前記反力に基づいて、圧力補正係数を決定する処理部、
を更に備える、〔11〕に記載の分析装置。
〔13〕
 前記内圧が、閾値を超えたか否か判定する判定部、
を更に備える、〔11〕又は〔12〕に記載の分析装置。
〔14〕
 前記判定部において、前記内圧が閾値を超えた場合、警告を発する警告部、
を更に備える、〔13〕に記載の分析装置。
〔15〕
 前記液体は、粒子を含むサンプル液、シース液、及びバッファ液からなる群より選ばれるいずれか1種以上である、〔11〕から〔14〕のいずれかに記載の分析装置。
〔16〕
 前記粒子に対して光を照射する光照射部と、
 前記粒子から発せられた光を検出する光検出部と、
を更に備える、〔15〕に記載の分析装置。
10:圧力測定装置
11:検知部
12:移動部
13:接触子
14:開閉蓋
100:分析装置
101:分析部
1011:分析キット
1012:サンプル収容部
1013:チューブポンプ部
1014:目標粒子貯留部
1015:廃棄部
1016:シース液収容部
1017:ゲート液収容部
102:圧力測定部
103:処理部
104:判定部
105:警告部
106:光照射部
107:光検出部
108:記憶部
109:表示部
110:ユーザインターフェース
F:可撓性チューブ
T:マイクロチップ

Claims (16)

  1.  可撓性チューブの変形に伴う力を検知する検知部を、前記チューブの荷重測定方向に所定の距離移動させる移動工程と、
     前記検知部により前記チューブの反力を測定する反力測定工程と、
     前記反力測定工程における反力に基づいて、前記チューブの内圧を測定する測定工程と、
    を少なくとも行う、圧力測定方法。
  2.  前記移動工程と前記反力測定工程とは、同時に行われる、請求項1に記載の圧力測定方法。
  3.  前記移動工程では、前記反力測定工程における反力が、規定値に到達するまで前記検知部を前記方向に移動させる、請求項2に記載の圧力測定方法。
  4.  前記移動工程では、前記反力測定工程における反力が規定値に到達するまで前記検知部を前記方向に移動させた後、更に、前記検知部を前記方向に所定の距離移動させる、請求項3に記載の圧力測定方法。
  5.  前記反力測定工程における反力に基づいて、圧力補正係数を決定する補正係数決定工程、
    を更に行う、請求項1に記載の圧力測定方法。
  6.  外部環境の変動に対して、前記内圧を補正する補正工程、
    を更に行う、請求項1に記載の圧力測定方法。
  7.  前記測定工程における内圧が閾値を超えたか否か判定する判定工程、
    を更に行う、請求項1に記載の圧力測定方法。
  8.  可撓性チューブの変形に伴う力を検知する検知部を、前記チューブの荷重測定方向に所定の距離移動させる移動工程と、
     前記検知部により前記チューブの反力を測定する反力測定工程と、
     前記反力測定工程における反力に基づいて前記チューブの内圧を測定する測定工程と、
     前記測定工程における内圧が閾値を超えたか否か判定する判定工程と、
    を少なくとも行い、
     前記判定工程において、前記測定工程における内圧が閾値を超えた場合、装置における所定の動作を停止する、及び/又は、警告を発する、装置の制御方法。
  9.  前記測定工程における内圧に基づいて、装置における所定の動作を制御する制御工程、を更に行う、請求項8に記載の制御方法。
  10.  可撓性チューブの変形に伴う力を検知する検知部と、
     前記検知部を前記チューブの荷重測定方向に所定の距離移動させる移動部と、
    を少なくとも備え、
     前記検知部により前記チューブの反力を測定し、前記反力に基づいて前記チューブの内圧を測定する、圧力測定装置。
  11.  液体が流れる可撓性チューブを有する分析部と、
     可撓性チューブの変形に伴う力を検知する検知部と、前記検知部を前記チューブの荷重測定方向に所定の距離移動させる移動部と、を有する圧力測定部と、
    を少なくとも備え、
     前記圧力測定部では、前記検知部により前記チューブの反力を測定し、前記反力に基づいて前記チューブの内圧を測定する、分析装置。
  12.  前記反力に基づいて、圧力補正係数を決定する処理部、
    を更に備える、請求項11に記載の分析装置。
  13.  前記内圧が、閾値を超えたか否か判定する判定部、
    を更に備える、請求項11に記載の分析装置。
  14.  前記判定部において、前記内圧が閾値を超えた場合、警告を発する警告部、
    を更に備える、請求項13に記載の分析装置。
  15.  前記液体は、粒子を含むサンプル液、シース液、及びバッファ液からなる群より選ばれるいずれか1種以上である、請求項11に記載の分析装置。
  16.  前記粒子に対して光を照射する光照射部と、
     前記粒子から発せられた光を検出する光検出部と、
    を更に備える、請求項15に記載の分析装置。
     
PCT/JP2022/002028 2021-03-29 2022-01-20 圧力測定方法、制御方法、圧力測定装置、及び分析装置 WO2022209189A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023510520A JPWO2022209189A1 (ja) 2021-03-29 2022-01-20
US18/550,977 US20240167900A1 (en) 2021-03-29 2022-01-20 Pressure measurement method, control method, pressure measurement device, and analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-056021 2021-03-29
JP2021056021 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022209189A1 true WO2022209189A1 (ja) 2022-10-06

Family

ID=83458574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002028 WO2022209189A1 (ja) 2021-03-29 2022-01-20 圧力測定方法、制御方法、圧力測定装置、及び分析装置

Country Status (3)

Country Link
US (1) US20240167900A1 (ja)
JP (1) JPWO2022209189A1 (ja)
WO (1) WO2022209189A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014571A (ja) * 2001-06-29 2003-01-15 Terumo Corp 流体圧力検出装置
JP2010271168A (ja) * 2009-05-21 2010-12-02 Sony Corp 微小粒子測定装置
KR101597653B1 (ko) * 2014-10-14 2016-02-25 한국과학기술원 다중 범위 압력센서
WO2018151084A1 (ja) * 2017-02-20 2018-08-23 テルモ株式会社 圧力センサおよび体外循環装置
JP2019052936A (ja) * 2017-09-14 2019-04-04 オムロンヘルスケア株式会社 圧力測定装置、及び圧力測定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014571A (ja) * 2001-06-29 2003-01-15 Terumo Corp 流体圧力検出装置
JP2010271168A (ja) * 2009-05-21 2010-12-02 Sony Corp 微小粒子測定装置
KR101597653B1 (ko) * 2014-10-14 2016-02-25 한국과학기술원 다중 범위 압력센서
WO2018151084A1 (ja) * 2017-02-20 2018-08-23 テルモ株式会社 圧力センサおよび体外循環装置
JP2019052936A (ja) * 2017-09-14 2019-04-04 オムロンヘルスケア株式会社 圧力測定装置、及び圧力測定方法

Also Published As

Publication number Publication date
JPWO2022209189A1 (ja) 2022-10-06
US20240167900A1 (en) 2024-05-23

Similar Documents

Publication Publication Date Title
Lincoln et al. Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications
JP4661942B2 (ja) マイクロチップとその流路構造
JP6311312B2 (ja) 微小粒子測定装置及び微小粒子測定装置における送液方法
JP5304434B2 (ja) 微小粒子測定装置
US20070003434A1 (en) Flow metered analyzer
US20120103817A1 (en) Dielectric cytometric apparatus and dielectric-cytometric cell sorting method
CN105556279A (zh) 微流体芯片
CN1920575A (zh) 用于对液体分类的方法、装置和计算机程序产品
US20110244581A1 (en) Biologic fluid analysis system with sample motion
US20220381670A1 (en) Sorting control device, particle sorting device and particle sorting system using sorting control device, sorting control method, and control program
Huet et al. Real time observation and automated measurement of red blood cells agglutination inside a passive microfluidic biochip containing embedded reagents
Yang et al. Nanofluidics for sub-single cellular studies: Nascent progress, critical technologies, and future perspectives
CN109073532B (zh) 颗粒提取装置和颗粒提取方法
WO2022209189A1 (ja) 圧力測定方法、制御方法、圧力測定装置、及び分析装置
US20230415153A1 (en) Microfluidic devices and method for sampling and analysis of cells using optical forces and raman spectroscopy
US11135585B2 (en) Fluid control device, microparticle measurement device, and fluid control method
JP5316530B2 (ja) マイクロチップとその流路構造
WO2022187608A1 (en) Systems and methods for concentrating sorted cell populations
Civelekoglu et al. Automated lightless cytometry on a microchip with adaptive immunomagnetic manipulation
JP6801453B2 (ja) 制御装置、制御システム、解析装置、粒子分取装置、制御方法及び層流制御プログラム
US20220381655A1 (en) Particle sorting kit
JP6805560B2 (ja) 接続部材及び微小粒子測定装置
WO2022185980A1 (ja) 粒子分取キット
EP3851829B1 (en) Channel unit for fine particle isolation and fine particle isolation device
WO2021100618A1 (ja) マイクロチップ、サンプル分取キット及び微小粒子分取装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779419

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510520

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18550977

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779419

Country of ref document: EP

Kind code of ref document: A1