WO2022209111A1 - 触覚提示装置、触覚提示方法及びプログラム - Google Patents

触覚提示装置、触覚提示方法及びプログラム Download PDF

Info

Publication number
WO2022209111A1
WO2022209111A1 PCT/JP2022/000217 JP2022000217W WO2022209111A1 WO 2022209111 A1 WO2022209111 A1 WO 2022209111A1 JP 2022000217 W JP2022000217 W JP 2022000217W WO 2022209111 A1 WO2022209111 A1 WO 2022209111A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
presentation device
tactile
conversion element
temperature
Prior art date
Application number
PCT/JP2022/000217
Other languages
English (en)
French (fr)
Inventor
正樹 折橋
正啓 佐藤
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to US18/551,223 priority Critical patent/US20240161589A1/en
Priority to EP22779344.5A priority patent/EP4318617A1/en
Publication of WO2022209111A1 publication Critical patent/WO2022209111A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B6/00Tactile signalling systems, e.g. personal calling systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/014Hand-worn input/output arrangements, e.g. data gloves
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present technology relates to a tactile sense presentation device, a tactile sense presentation method, and a program that present a tactile sense to a user.
  • Japanese Unexamined Patent Application Publication No. 2002-100000 discloses a transducer that provides stimulation to a user, in which a Peltier device that creates temperature changes is placed on a pneumatic inflation bladder. The transducer uses an inflated bladder to lift the Peltier device, presenting pressure to the finger and presenting the hard surface of the Peltier device to the skin.
  • the purpose of this technology is to provide a technology capable of presenting various tactile sensations to the user.
  • a tactile sense presentation device includes a support, an expansion film, a thermoelectric conversion element, and a driving section.
  • the inflatable membrane forms a fluid-retaining space with the support.
  • a plurality of the thermoelectric conversion elements are arranged on the support side surface of the expansion film.
  • the drive section controls the inflow and outflow of the fluid.
  • the inflatable membrane includes a first inflatable membrane and a second inflatable membrane located closer to the support than the first inflatable membrane, and the space is defined between the second inflatable membrane and the support.
  • the thermoelectric conversion element may be formed between and arranged on the support side surface of the first expansion film.
  • At least one of the plurality of thermoelectric conversion elements may have a different contact area with the expansion film than other thermoelectric conversion elements.
  • a plurality of the inflatable membranes may be provided.
  • At least one of a temperature sensor arranged on the expansion membrane where the thermoelectric conversion element is arranged, a distance sensor arranged in the space, and an air pressure sensor arranged in the space may be further provided.
  • the expansion film may have a thermal conductivity of 0.2 W/mK or more.
  • the plurality of thermoelectric conversion elements may be individually controlled. After driving the thermoelectric conversion element, the drive section may be controlled to flow the fluid into the space.
  • the thermoelectric conversion element may be driven with a temperature rising/falling rate varying from 0 to ⁇ 10° C./s.
  • the tactile presentation device is arranged such that the inflatable membrane is in contact with the user's skin,
  • the thermoelectric conversion element heats up to an arbitrary temperature at a first temperature rise rate, and then cools down at a rate equal to or less than 1/2 of the first temperature rise rate, so that the temperature of the thermoelectric conversion element reaches the user's skin.
  • the temperature may be controlled to rise when the temperature falls within ⁇ 1°C.
  • the tactile presentation device is arranged such that the inflatable membrane is in contact with the user's skin, After the temperature of the thermoelectric conversion element is lowered to an arbitrary temperature at the first temperature decrease rate, the temperature is increased at a rate equal to or less than 1/2 of the first temperature decrease rate, and the temperature of the thermoelectric conversion element is the skin temperature of the user.
  • the temperature may be controlled so as to fall within the range of ⁇ 1°C.
  • thermoelectric conversion element may be driven so as to provide a thermal sensation stimulation according to the image displayed to the user wearing the tactile presentation device.
  • thermoelectric conversion element may be driven using a previously prepared control pattern of the thermoelectric conversion element for each type of thermal sensation stimulation represented by the thermoelectric conversion element.
  • a tactile sensation presentation method drives a plurality of thermoelectric conversion elements arranged on the support-side surface of an expansion film that forms a space for holding a fluid between the support and controls the inflow and outflow of the fluid. do.
  • a program according to the present technology is a process of driving a plurality of thermoelectric conversion elements arranged on a support-side surface of an inflatable membrane that forms a space for holding a fluid between itself and a support, and controlling the inflow and outflow of the fluid. run on the computer.
  • FIG. 1A and 1B are a schematic cross-sectional view and a schematic plan view showing a configuration of a tactile presentation device according to a first embodiment of the present technology
  • FIG. 2 is a block diagram showing an internal control configuration of the tactile sense presentation device according to the first to third embodiments, and a diagram showing a control configuration of thermoelectric conversion elements; It is a figure explaining the principle of operation of a thermoelectric conversion element.
  • FIG. 2 is a schematic diagram showing an operation example of the tactile sense presentation device of FIG. 1 during use;
  • FIG. 11 is a schematic cross-sectional view showing an example of the configuration and operation of a tactile sense presentation device according to a second embodiment;
  • FIG. 11 is a schematic cross-sectional view showing an example of the configuration and operation of a tactile sense presentation device according to a third embodiment;
  • FIG. 11 is a schematic plan view showing a configuration example of a tactile presentation device according to a third embodiment;
  • FIG. 11 is a schematic cross-sectional view showing a configuration example of a tactile sense presentation device according to a fourth embodiment; It is a figure explaining the example of application of a tactile sense presentation device.
  • FIG. 10 is a diagram showing a usage example of the tactile presentation device of FIG. 9;
  • FIG. 10 is a functional block diagram showing a control configuration of the tactile sense presentation device of FIG. 9;
  • FIG. 10 is a diagram showing another application example of the tactile sense presentation device;
  • FIG. 10 is a diagram showing a usage example of the tactile presentation device of FIG. 9;
  • FIG. 10 is a functional block diagram showing a control configuration of the tactile sense presentation device of FIG. 9;
  • FIG. 10 is a diagram showing another application example of the tactile sense presentation
  • FIG. 10 is a diagram showing still another application example of the tactile presentation device; 14 is a functional block diagram showing a control configuration of the tactile sense presentation device of FIG. 13; FIG. FIG. 10 is a diagram showing still another application example of the tactile presentation device; FIG. 10 is a diagram showing still another application example of the tactile presentation device; FIG. 10 is a diagram showing still another application example of the tactile presentation device; It is a figure which shows the example of arrangement
  • FIG. 4 is a diagram for explaining a preferable contact area between a thermoelectric conversion element and an expansion film in a tactile presentation device; FIG. 4 is a diagram for explaining an example of control of thermoelectric conversion elements in the tactile sense presentation device; FIG.
  • FIG. 10 is a diagram for explaining another control example of the thermoelectric conversion elements in the tactile sense presentation device;
  • FIG. 11 is a diagram for explaining still another control example of the thermoelectric conversion elements in the tactile sense presentation device;
  • FIG. 11 is a diagram for explaining still another control example of the thermoelectric conversion elements in the tactile sense presentation device;
  • FIG. 11 is a diagram for explaining still another control example of the thermoelectric conversion elements in the tactile sense presentation device;
  • FIG. 11 is a diagram for explaining still another control example of the thermoelectric conversion elements in the tactile sense presentation device;
  • FIG. 4 is a flow chart showing a basic tactile sense presentation method in the tactile sense presentation device;
  • 10 is a flowchart showing a method of controlling thermoelectric conversion elements in the tactile sense presentation device in presentation example 1.
  • FIG. 11 is a flowchart showing a method of controlling thermoelectric conversion elements in the tactile sense presentation device in presentation example 2; 11 is a flowchart showing a method of controlling thermoelectric conversion elements in the tactile sense presentation device in presentation example 3.
  • FIG. 10 is a schematic cross-sectional view and a schematic plan view of a modification of the tactile sense presentation device; 8A and 8B are a schematic cross-sectional view and a schematic plan view of another modification of the tactile sense presentation device;
  • FIG. 1A and 1B are a perspective view and a schematic cross-sectional view illustrating a structural example of a thermoelectric conversion element;
  • FIG. 3A and 3B are a perspective view and a schematic cross-sectional view illustrating another structural example of a thermoelectric conversion element;
  • FIG. 1A is a schematic cross-sectional view showing the configuration of a tactile presentation device 10 according to the first embodiment of the present technology.
  • FIG. 1(B) is a schematic plan view of the tactile sense presentation device 10 of FIG. 1(A) as viewed from above.
  • the thickness direction of the tactile sense presentation device 10 is the Z-axis
  • the axes perpendicular to the Z-axis are the X-axis and the Y-axis.
  • the case where the tactile presentation device 10 is viewed from above in the Z-axis direction is referred to as a planar view.
  • the side closer to the user's skin may be referred to as the upper side or the skin side, and the opposite side may be referred to as the lower side or the non-skin side.
  • an inflatable membrane which constitutes a part of the tactile sense presentation device and will be described later, comes into contact with the user's skin, and presents tactile sensations such as pressure, hardness, and temperature to the skin.
  • the tactile sensation presentation target part is the fingertip of a hand will be described, but it is not limited to the fingertip. Other examples are described later.
  • the tactile sense presentation device 10 has a support 3 and a presentation section 9 .
  • the support 3 is, for example, a base having a flat surface large enough to allow the entire fingertip to be placed thereon.
  • the support 3 is placed, for example, on a desk having a horizontal surface, and the fingertip is placed on the presentation section 9 for use.
  • the presentation unit 9 presents tactile sensations such as pressure sensations, hard/soft sensations, and hot/cold sensations by pressure stimulation and thermal stimulation.
  • the presentation unit 9 includes a space 4 through which fluid can flow in and out, an expansion film 1 provided to cover the space 4, and a plurality of thermoelectric conversion elements 2 arranged on a second surface 1b of the expansion film 1. have.
  • the presentation unit 9 includes a supply source 14 that supplies fluid, an actuator 5 as a driving unit that controls the inflow and outflow of the fluid to the space 4 by driving the supply source 14, and a pipe 15 that connects the space 4 and the supply source 14. have.
  • the inflatable membrane 1 has a substantially circular planar shape.
  • the peripheral portion of the inflatable membrane 1 is fixed to the support 3 .
  • a space 4 for holding fluid is formed between the inflatable membrane 1 and the support 3 by providing the inflatable membrane 1 with respect to the support 3 .
  • the shape of the inflatable membrane 1 is not limited to a circular shape, and can be appropriately set depending on the application of the tactile sense presentation device and the target site for tactile sense presentation.
  • the fluid held in the space 4 may be gas such as air or helium, or liquid such as water or oil.
  • the type of fluid is not particularly limited, and various fluids can be used.
  • the thermoelectric conversion element 2 may be waterproofed.
  • the inflatable membrane 1 has a first surface 1a and a second surface 1b. In the tactile presentation device 10, the inflatable membrane 1 is exposed.
  • the first surface 1a is the skin side that contacts the user's skin when the tactile presentation device 10 is used.
  • the second surface 1b is a non-skin side surface opposite to the first surface 1a and located on the support 3 side.
  • the inflatable membrane 1 is configured in the form of a thin membrane, and is configured to be deformable by the inflow and outflow of fluid to and from the space 4 .
  • various rubbers such as silicone rubber, urethane rubber, ethylene propylene diene rubber (EPDM), and natural rubber are typically used in consideration of stretchability.
  • the inflatable membrane 1 may be deformable (expandable and contractible) according to the inflow and outflow of fluid into and out of the space 4, and may be made of a material other than rubber.
  • the inflatable membrane 1 can expand (protrude) outward by stretching in response to the inflow of fluid into the space 4 . Due to the expansion of the inflatable membrane 1, a pressure sensation is applied to the user's fingertip. In addition, the inflatable membrane 1 shrinks in accordance with the outflow of the fluid from the space 4, so that it can return to its original state by contracting from an outwardly inflated state.
  • a pressure stimulus to the user's skin that is in contact with the inflatable membrane 1, thereby presenting tactile sensations such as pressure and hardness. For example, it is possible to adjust the hardness presented by adjusting the pressure in the space 4 .
  • the actuator 5 is attached to the pipe 15 that connects the space 4 and the supply source 14 .
  • the actuator 5 controls the flow of fluid into and out of the space 4 by its drive.
  • the actuator 5 is composed of, for example, various actuators 5 such as a pump, a fan, and a blower, but may have any configuration.
  • the supply source 14 can supply fluid to the space 4 via the pipe 15 .
  • Source 14 may be, for example, a source of compressed air pressure, such as an air compressor, if the fluid used is air.
  • a source of compressed air pressure such as an air compressor
  • the fluid used is a liquid such as water, or when it is a special gas other than air (for example, helium)
  • a tank capable of storing the fluid may be used.
  • thermoelectric conversion element 2 is typically a Peltier element.
  • the tactile sense presentation device 10 uses the heat generated by the heat radiation or heat absorption of the thermoelectric conversion element to give a thermal stimulus to the user, thereby presenting a warm or cold sensation.
  • FIG. 3 is an operation explanatory diagram showing the principle of a Peltier element (thermoelectric conversion element).
  • thermoelectric conversion element 2 a P-type thermoelectric semiconductor 23p and an N-type thermoelectric semiconductor 23n are joined to electrodes 21a and 21b, and a power supply 22 for supplying a direct current to the P-type thermoelectric semiconductor 23p and the N-type thermoelectric semiconductor 23n is provided. It is connected to the electrode 21b.
  • thermoelectric conversion element 2 heat is transferred from the electrode 21a side to the electrode 21b side when a direct current is passed from the N-type thermoelectric semiconductor 23n to the P-type thermoelectric semiconductor 23p as indicated by an arrow E1 in FIG. 3(A).
  • the electrode 21a side is cooled by heat absorption, and the electrode 21b side is heated by heat dissipation.
  • an arrow E2 in FIG. 3B when a direct current is passed from the P-type thermoelectric semiconductor 23p to the N-type thermoelectric semiconductor 23n, heat is transported from the electrode 21b side to the electrode 21a side.
  • the electrode 21b side is cooled by heat absorption, and the electrode 21a side is heated by heat dissipation.
  • the thermoelectric conversion element 2 can be switched between heating and cooling.
  • thermoelectric conversion elements 2 are arranged on the second surface 1b side of the expansion film 1 .
  • the thermoelectric conversion element 2 is typically a thin plate having a rectangular planar shape. Note that the planar shape is not limited to a rectangle, and may be a desired shape such as a circle. In the example shown in FIG. 1B, five thermoelectric conversion elements 2 having the same size are arranged.
  • One of the plurality of thermoelectric conversion elements 2 is positioned at the center of the expansion membrane 1 in plan view.
  • the other four thermoelectric conversion elements 2 are positioned above and below the central thermoelectric conversion element 2 along the Y-axis direction and on the left and right sides thereof along the X-axis direction.
  • a plurality of thermoelectric conversion elements 2 are positioned apart from each other.
  • thermoelectric conversion elements 2 When using the tactile sense presentation device 10, the user's fingertip is placed on the first surface 1a of the inflatable membrane 1 so that the direction in which the finger extends is substantially parallel to the Y-axis direction.
  • the three thermoelectric conversion elements located in the center of the expansion film 1 in the X-axis direction are denoted by 2C.
  • Two thermoelectric conversion elements located on the left and right sides of the center of the expansion membrane 1 in the X-axis direction are denoted by reference numeral 2S.
  • These thermoelectric conversion elements are referred to as thermoelectric conversion elements 2 when there is no particular need to distinguish them, such as 2C and 2S. Note that the number and arrangement of the thermoelectric conversion elements 2 are not limited to this. Specific dimensions and arrangement of the thermoelectric conversion elements 2 will be described later.
  • thermoelectric conversion element 2 Since the thermoelectric conversion element 2 is arranged on the second surface 1b, which is the non-skin side surface of the expansion membrane 1, when the tactile sense presentation device 10 is used, the fingertip of the user U is thermoelectrically converted through the expansion membrane 1. It comes in contact with the element 2 indirectly.
  • the thermoelectric conversion element 2 when the thermoelectric conversion element 2 is arranged on the first surface 1a of the expansion film 1, the user U is presented with the texture of the thermoelectric conversion element 2 being hard and flat. For this reason, even if a texture such as hard or soft is presented by the pressure sensation stimulation due to the expansion of the expansion membrane 1, it is difficult to sufficiently present the texture due to the presence of the thermoelectric conversion element 2 in direct contact with the fingertip of the user U.
  • thermoelectric conversion element 2 is arranged on the second surface 1b, which is the non-skin side surface of the expansion membrane 1, so that textures such as hard and soft can be presented using pressure stimulation. , the thermoelectric conversion element 2 is not damaged by arranging it on the side of the first surface 1a. In this way, by arranging the thermoelectric conversion elements 2 on the second surface 1b of the expansion film 1 to prevent the fingers of the user U from directly contacting the thermoelectric conversion elements 2, various tactile sensations can be presented. In addition, since the thermoelectric conversion elements 2 are arranged on the expansion film 1 that directly contacts the user's skin when the tactile sense presentation device 10 is used, hot/cold presentation by the thermoelectric conversion elements 2 can be quickly performed on the user's skin.
  • thermoelectric conversion element 2 heat utilization efficiency such as heat dissipation and heat absorption by the thermoelectric conversion element 2 can be improved, and the thermoelectric conversion element 2 can present hot and cold to the user U with a small temperature rise or drop. Since the Peltier element as a thermoelectric conversion element consumes a large amount of power, placing the thermoelectric conversion element 2 on the expansion membrane 1 that is in direct contact with the user's skin is preferable from the viewpoint of heat utilization efficiency and power consumption.
  • the thermoelectric conversion element 2 is fixedly arranged on the second surface 1b of the expansion membrane 1 with an adhesive (not shown).
  • the adhesive is applied, for example, on the entire surface (upper surface) of the thermoelectric conversion element 2 on the side where the adhesive is applied as a coating region.
  • the coating pattern of the adhesive is not particularly limited.
  • the adhesive may be formed in an intermittent coating pattern, such as a spiral, in which coated portions and non-coated portions coexist, or the non-coated portions may be formed over the entire coating region. It may be formed with a coating pattern that does not exist.
  • the adhesive-coated region means a region obtained by surrounding the entire adhesive-coated portion, and may include a non-coated portion.
  • the adhesive may be formed with a partial area of the coating-side surface of the thermoelectric conversion element 2 as the coating area.
  • the coating area of the thermoelectric conversion elements 2 is widened. It is preferable to widen the contact area with the inflatable membrane 1 .
  • an example in which the entire surface of the thermoelectric conversion element 2 is formed as the coating region is given.
  • thermoelectric conversion elements 2 are intermittently arranged at intervals.
  • the second surface 1b of the expansion film 1 has a thermoelectric conversion element adhesion area to which the thermoelectric conversion elements 2 are adhered with an adhesive and a thermoelectric conversion element non-adhesion area to which the thermoelectric conversion elements 2 are not adhered.
  • the expansion of the expansion film 1 is inhibited by the adhesion between the thermoelectric conversion element 2 and the expansion film 1 .
  • the expansion of the expansion film 1 is not hindered in the thermoelectric conversion element non-bonded region of the expansion film 1 .
  • thermoelectric conversion element non-bonded regions where the expansion of the expansion film 1 is not hindered are distributed throughout the expansion film 1 . form.
  • thermoelectric conversion elements 2 may be arranged in contact with each other instead of intermittently arranged, and the same applies to other embodiments described later.
  • the thermoelectric conversion element bonding area to the expansion film 1 corresponds to the adhesive coating area of the thermoelectric conversion element 2 .
  • the adhesive is applied to a part of the coating side surface of the thermoelectric conversion element 2, the expansion film 1 is bonded to the thermoelectric conversion element 2 in the area other than the adhesive coating area. Since it is not covered, it can be a region where expansion is not hindered.
  • thermoelectric conversion element 2 when the adhesive coating area of the thermoelectric conversion element 2 is a rectangular shape that is one size smaller than the planar shape of the thermoelectric conversion element 2, in the thermoelectric conversion element 2, the small rectangular coating area is the thermoelectric conversion element Although it becomes an adhesion region, the frame-shaped portion around it becomes a thermoelectric conversion element non-adhesion region.
  • the adhesive coating area of the thermoelectric conversion element 2 is a rectangular shape that is one size smaller than the planar shape of the thermoelectric conversion element 2
  • the small rectangular coating area is the thermoelectric conversion element
  • the frame-shaped portion around it becomes a thermoelectric conversion element non-adhesion region.
  • the vicinity of the boundary between adjacent thermoelectric conversion elements can become a thermoelectric conversion element non-bonding region. Therefore, even if a plurality of thermoelectric conversion elements are arranged in contact with each other, by setting the adhesive coating area, the area where expansion is not hindered by the presence of the thermoelectric conversion elements is distributed within the plane of the expansion film. is possible.
  • thermoelectric conversion elements 2 may be collectively controlled at the same time, and thermal sensation stimulation may be performed on the target region for thermal presentation (in this embodiment, the fingertips of the hand). Also, a plurality of thermoelectric conversion elements 2 may be controlled individually. A control example will be described later.
  • thermoelectric conversion elements 2 As described above, in the tactile sense presentation device 10, by intermittently arranging a plurality of thermoelectric conversion elements 2 on the second surface 1b of the expansion membrane 1, it is possible to present various tactile senses by pressure stimulation and thermal/cold sensation stimulation. In addition, power consumption can be reduced.
  • a thin resistance heater it is conceivable to use a thin resistance heater to raise the temperature, but by using a thermoelectric conversion element (Peltier element), it presents temperature changes with lower power consumption and faster response than a thin resistance heater. becomes possible.
  • the temperature of the thin resistance heater drops due to natural heat dissipation, it takes time to drop the temperature.
  • the thermoelectric conversion element (Peltier element) can be cooled, the temperature drop can be easily controlled, and the desired temperature can be quickly presented.
  • FIG. 2A is a block diagram showing the configuration of the tactile sense presentation device 10.
  • FIG. 2B is a diagram for explaining a part of the configuration of the tactile sense presentation device 10 in more detail, and is a diagram showing the control configuration of the thermoelectric conversion elements.
  • the tactile presentation device 10 includes a control section 6 , the thermoelectric conversion elements 2 and actuators 5 in the presentation section 9 , a communication section 7 and a storage section 8 .
  • the control unit 6 executes various calculations based on various programs stored in the storage unit 8 and controls each unit of the tactile sense presentation device 10 in an integrated manner.
  • the controller 6 is realized by hardware or a combination of hardware and software.
  • the hardware is configured as part or all of the control unit 6, and the hardware includes a CPU (Central Processing Unit), DSP (Digital Signal Processor), FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit ), or a combination of two or more of these.
  • the actuator 5 is a part of the presentation section 9 and is driven under the control of the control section 6 to control the flow of fluid into and out of the space 4 .
  • the thermoelectric conversion element 2 is a part of the presentation unit 9 and is driven under the control of the control unit 6 to switch between heating and cooling.
  • the tactile sense presentation device 10 includes a DC power supply 22 that drives the thermoelectric conversion elements 2 and a switch 26 that switches the direction of current.
  • the control unit 6 controls the switch 26 based on a control signal based on information (to be described later) relating to tactile presentation, and switches between heating and cooling by the thermoelectric conversion element 2 .
  • the power source 22 is, for example, a battery. Although an example in which the tactile sense presentation device 10 includes the power supply 22 is given here, the present invention is not limited to this.
  • the tactile presentation device and the external device are connected by wire, the external device is equipped with a rectification, step-down or step-up circuit, the power of the piezoelectric conversion element is supplied from the external device, and the current is supplied by the switch provided in the external device. You may make it switch the direction of .
  • the storage unit 8 includes a non-volatile memory that stores various programs and various data necessary for the processing of the control unit 6, and a volatile memory that is used as a work area for the control unit 6.
  • the various programs described above may be read from a portable recording medium such as an optical disc or semiconductor memory, or may be downloaded from a server device or the like on a network.
  • the communication unit 7 is configured to be able to communicate with other devices such as another tactile presentation device 10 by wire or wirelessly.
  • the tactile presentation device 10 may communicate directly with other devices, or indirectly communicate with other devices via other devices such as server devices on a network. you can go
  • FIG. 4A shows a state before fluid is introduced into the space 4 in the tactile presentation device.
  • FIG. 4(B) shows a state after the fluid has flowed into the space 4 in the tactile presentation device.
  • the finger of the user U is placed on the inflatable membrane 1 so that the fingertip of the user U contacts the inflatable membrane 1 of the tactile sense presentation device 10 .
  • FIG. 4(A) when the inflatable membrane 1 is in a contracted state before the inflow of fluid, the abdomen of the fingertip of the user U is positioned 3 at the center in the X-axis direction via the inflatable membrane 1 . It is placed in contact with two thermoelectric conversion elements 2C. As shown in FIG.
  • the entire inflatable membrane 1 is inflated.
  • the bulge in the Z-axis direction is suppressed in the central portion of the direction.
  • the side portion of the inflatable membrane 1 in the X-axis direction swells upward in the Z-axis direction.
  • the expansion film 1 is deformed so as to entirely wrap the fingertip of the user U, and the abdomen and sides of the finger of the user U are three thermoelectric conversion elements 2C located in the center in the X-axis direction via the expansion film 1. and the two thermoelectric conversion elements 2S located on the side in the X-axis direction.
  • thermoelectric conversion element 2 Since the thermoelectric conversion element 2 is adhesively fixed to the expansion film 1, the position of the thermoelectric conversion element 2 changes following the deformation of the expansion film 1 when the expansion film 1 expands.
  • the inflatable membrane 1 deforms along the shape of the user's U fingertip. Therefore, since the thermoelectric conversion element 2 and the fingertip are in contact with each other with the expansion film 1 interposed therebetween, the heat utilization efficiency of the thermoelectric conversion element 2 is improved, and hot and cold presentation can be effectively performed.
  • FIG. 5 is a schematic cross-sectional view showing the configuration of the tactile sense presentation device 30 according to the second embodiment of the present technology, and is a schematic view showing an operation example during use.
  • This embodiment differs from the first embodiment in that there are two inflatable membranes.
  • the first inflatable membrane 11 that constitutes the tactile sense presentation device 30, which will be described later is in contact with the user's skin, and presents tactile sensations such as pressure, hardness, and hot/cold sensations to the skin.
  • the tactile sensation presentation target part is the fingertip of the hand.
  • FIG. 5A shows a state of the tactile presentation device 30 before fluid is introduced into the space 4 .
  • FIG. 5(B) shows the state of the tactile presentation device 30 after the fluid has flowed into the space 4 .
  • the tactile sense presentation device 30 has a support 3 and a presentation section 9 .
  • the presentation unit 9 presents a tactile sensation to the user's fingertip during use.
  • the presentation unit 9 includes a space 4 through which fluid can flow in and out, a second inflatable membrane 12 provided to cover the space 4, and a first inflatable membrane arranged above the second inflatable membrane 12. 11 and a plurality of thermoelectric conversion elements 2 arranged on the second surface 11 b of the first expansion film 11 .
  • the presentation unit 9 includes a supply source 14 that supplies fluid, an actuator 5 as a driving unit that controls the inflow and outflow of the fluid to the space 4 by driving the supply source 14, and a pipe 15 that connects the space 4 and the supply source 14. have.
  • the first inflatable membrane 11 has a substantially circular planar shape similar to that of the first embodiment.
  • the plurality of thermoelectric conversion elements 2 arranged on the second surface 11b of the first expansion film 11 are arranged in the same manner as in the first embodiment, as shown in FIG. 1(B).
  • the second inflatable membrane 12 has substantially the same shape as the first inflatable membrane 11 in plan view. Peripheral portions of the first inflatable membrane 11 and the second inflatable membrane 12 are fixed to the support 3 . By providing the second inflatable membrane 12 with respect to the support 3 , a space 4 for retaining fluid is formed between the second inflatable membrane 12 and the support 3 .
  • the first inflatable membrane 11 has a first surface 11a and a second surface 11b. In the tactile presentation device 30, the first inflatable membrane 11 is exposed.
  • the first surface 11a is the skin side that contacts the user's skin when the tactile presentation device 30 is used.
  • the second surface 11b is a non-skin side surface opposite to the first surface 11a and located on the support 3 side.
  • the second inflatable membrane 12 has a first side 12a and a second side 12b. In the tactile sense presentation device 30 , the second inflatable membrane 12 is not exposed and is positioned below the first inflatable membrane 11 .
  • the first side 12a is the skin side.
  • the second surface 12b is a non-skin side opposite to the first surface 12a, and is located on the support 3 side.
  • the first inflatable membrane 11 and the second inflatable membrane 12 are each configured in a thin membrane shape, and are configured to be deformable by the inflow and outflow of fluid to and from the space 4 .
  • Materials used for the first expansion membrane 11 and the second expansion membrane 12 are typically silicon rubber, urethane rubber, ethylene propylene diene rubber (EPDM), natural rubber, etc., in consideration of stretchability. Rubber is used.
  • the first inflatable membrane 11 and the second inflatable membrane 12 need only be deformable (expandable and contractible) according to the flow of fluid into and out of the space 4, and are made of a material other than rubber. good too.
  • Thermoelectric conversion element 2 is located between first expansion film 11 and second expansion film 12 .
  • the thermoelectric conversion element 2 has a first surface 2a that is a skin side and a second surface 2b that is a non-skin side.
  • the first surface 2a of each of the plurality of thermoelectric conversion elements 2 is adhered to the second surface 11b of the first expansion film 11 with an adhesive (not shown).
  • the second surface 2b of each of the plurality of thermoelectric conversion elements 2 is adhered to the first surface 12a of the second expansion film 12 with an adhesive (not shown).
  • an example is given in which the second expansion film 12 is adhered to the thermoelectric conversion element 2 with an adhesive, but the two may not be adhered with an adhesive.
  • the space between the first inflatable membrane 11 and the second inflatable membrane 12 and the space 4 between the second inflatable membrane 12 and the support 3 are disconnected and independent of each other.
  • the second inflatable membrane 12 can expand (protrude) outward by stretching according to the inflow of fluid into the space 4 .
  • the first expansion film 11 which adheres to the second expansion film 12 with the thermoelectric conversion element 2 interposed therebetween, also expands.
  • a pressure sensation is presented to the user's fingertip by the expansion of the first inflatable membrane 11 and the second inflatable membrane 12 .
  • the second inflatable membrane 12 shrinks in accordance with the outflow of the fluid from the space 4, so that the outwardly inflated state can be shrunk and returned to its original state.
  • the first inflatable membrane 11 also contracts following the contraction of the second inflatable membrane 12 .
  • the first expansion film 11 and the second expansion film 12 are bonded with the thermoelectric conversion element 2 interposed therebetween. As a result, even if the thermoelectric conversion element 2 falls from the first expansion film 11, the thermoelectric conversion element 2 can be supported by the second expansion film 12, and hot/cold presentation can be continued. Furthermore, the second expansion film 12 functions as a heat radiating section that disperses the heat transferred from the thermoelectric conversion element 2, so that desired hot/cold presentation can be performed quickly. In the case where the second expansion film 12 is not bonded to the thermoelectric conversion element 2 with an adhesive, the second expansion film 12 and the thermoelectric conversion element 2 may be arranged so as to be in contact with each other before the fluid flows in. may be arranged so that they do not touch each other.
  • thermoelectric conversion element 2 Even if the thermoelectric conversion element 2 falls, the thermoelectric conversion element 2 can be supported by the second expansion film 12, and the hot/cold presentation can be continued. Further, even if the second expansion film 12 and the thermoelectric conversion element 2 are arranged so as not to be in contact with each other before the fluid flows in, the flow of the fluid into the space 4 causes the thermoelectric conversion element 2 to be pushed up. Since the second expansion film 12 expands, the second expansion film 12 and the thermoelectric conversion element 2 come into contact with each other. As a result, the second expansion film 12 can be efficiently functioned as a heat radiating portion, and the desired hot/cold presentation can be performed quickly.
  • the plurality of thermoelectric conversion elements 2 can be intermittently arranged at intervals, as in the first embodiment.
  • the second surface 11b of the first expansion film 11 has a thermoelectric conversion element adhesion region to which the thermoelectric conversion elements 2 are adhered by the adhesive and a thermoelectric conversion element non-adhesion region to which the thermoelectric conversion elements 2 are not adhered.
  • the first surface 12a of the second expansion film 12 is divided into a thermoelectric conversion element adhesion region to which the thermoelectric conversion elements 2 are adhered with an adhesive and a thermoelectric conversion element non-adhesion region to which the thermoelectric conversion elements 2 are not adhered. have.
  • thermoelectric conversion element adhesion region of the first expansion film 11 the expansion of the first expansion film 11 is inhibited by the adhesion between the thermoelectric conversion element 2 and the first expansion film 11 .
  • thermoelectric conversion element adhesion region of the second expansion film 12 the expansion of the second expansion film 12 is inhibited by adhesion between the thermoelectric conversion element 2 and the second expansion film 12 .
  • the presence of the thermoelectric conversion element 2 does not hinder the expansion of the first expansion film 11 .
  • the expansion of the second expansion film 12 is not hindered by the presence of the thermoelectric conversion element 2 .
  • thermoelectric conversion element non-adhesion region where the expansion of the first expansion film 11 and the second expansion film 12 is not hindered is the first expansion film 11 and the second expansion film 12 by intermittently arranging the thermoelectric conversion elements 2 . is distributed over the entire area of the inflatable membrane 11 and the second inflatable membrane 12 .
  • thermoelectric conversion element 2 is arranged on the second surface 11b, which is the non-skin side surface of the first expandable membrane 11. Therefore, when the tactile sense presentation device 30 is used, the user U 's fingertip is indirectly in contact with the thermoelectric conversion element 2 with the first expansion film 11 interposed therebetween. This makes it difficult for the hard and flat texture of the thermoelectric conversion element 2 to be directly presented to the user's fingertip. Therefore, presentation of textures such as hard and soft using pressure stimulation is not impaired by placing the thermoelectric conversion element 2 on the first surface 11a side.
  • thermoelectric conversion elements 2 are arranged on the second surface 11b of the first expansion film 11 and by providing a structure in which the fingers of the user U do not directly contact the thermoelectric conversion elements 2, various tactile sensations can be presented. becomes.
  • thermoelectric conversion elements 2 are arranged on the first expansion film 11 that is in direct contact with the user's skin when the tactile sense presentation device 30 is used, the thermoelectric conversion elements 2 quickly present hot and cold to the user's skin. can break That is, heat utilization efficiency such as heat dissipation and heat absorption by the thermoelectric conversion element 2 can be improved, and hot and cold presentation to the user U is possible with a small temperature rise or drop in the thermoelectric conversion element 2 . Also, power consumption can be reduced.
  • thermoelectric conversion elements 2 As described above, in the tactile sense presentation device 30, by intermittently arranging a plurality of thermoelectric conversion elements 2 on the second surface 11b of the first expansion membrane 11, various tactile senses can be presented by pressure stimulation and thermal/cold sensation stimulation. and power consumption can be reduced.
  • FIG. 2A is a block diagram showing the configuration of the tactile presentation device 30.
  • FIG. 2B is a diagram for explaining a part of the configuration of the tactile sense presentation device 30 in more detail, and is a diagram showing the control configuration of the thermoelectric conversion elements.
  • the tactile sense presentation device 30 includes a control section 6 , the thermoelectric conversion elements 2 and actuators 5 in the presentation section 9 , a communication section 7 and a storage section 8 .
  • a basic configuration is the same as that of the first embodiment.
  • the finger of the user U is placed on the first inflatable membrane 11 of the tactile presentation device 30 so that the fingertip comes into contact with the first inflatable membrane 11 .
  • FIG. 5A in a state in which the first inflatable membrane 11 and the second inflatable membrane 12 are contracted before the inflow of fluid, the abdomen of the fingertip of the user U is in the first inflated state. It is placed in contact with the three thermoelectric conversion elements 2C located in the center in the X-axis direction via the film 11 .
  • FIG. 5B when the fluid is introduced and the first inflatable membrane 11 is inflated, the entire first inflatable membrane 11 and the second inflatable membrane 12 are inflated.
  • the weight of U's fingertips suppresses swelling in the Z-axis direction at the central portions of the first inflatable membrane 11 and the second inflatable membrane 12 in the X-axis direction.
  • the side portions in the X-axis direction of the first inflatable membrane 11 and the second inflatable membrane 12 swell upward in the Z-axis direction.
  • the first inflatable membrane 11 and the second inflatable membrane 12 are deformed so as to envelop the user's U fingertip as a whole, and the abdomen and sides of the user's U finger extend through the first inflatable membrane 11 to the X-axis. It is in contact with the three thermoelectric conversion elements 2C positioned in the central portion in the axial direction and the two thermoelectric conversion elements 2S positioned in the side portions in the X-axis direction.
  • thermoelectric conversion element 2 Since the thermoelectric conversion element 2 is adhesively fixed to the first expansion film 11 and the second expansion film 12, the position of the thermoelectric conversion element 2 when the first expansion film 11 and the second expansion film 12 expand. changes following the deformation of the first inflatable membrane 11 and the second inflatable membrane 12 . Therefore, since the thermoelectric conversion element 2 and the fingertip are in contact with each other with the first expansion film 11 interposed therebetween, the heat utilization efficiency of the thermoelectric conversion element 2 is improved, and hot and cold presentation can be effectively performed. can be done.
  • FIGS. 6A and 6B are schematic cross-sectional views showing the configuration of the tactile sense presentation device 31 according to the third embodiment of the present technology, and are schematic views showing an operation example during use.
  • FIG. 6C is a schematic cross-sectional view showing the configuration of the tactile presentation device 32 according to the third embodiment of the present technology. Both of the tactile presentation devices 31 and 32 have a configuration with a plurality of spaces through which fluid can flow in and out. In the tactile sense presentation device 31, there is one inflatable membrane corresponding to each space as in the first embodiment.
  • the tactile presentation device 32 there are two inflatable membranes corresponding to each space as in the second embodiment.
  • the tactile sense presentation device 31 (32) is configured such that the inflatable membrane 1 (first inflatable membrane 11) that constitutes the presentation unit 9 can come into contact with the user's skin. , provides tactile sensations such as hot and cold sensations.
  • the tactile sensation presentation target part is the fingertip of the hand.
  • FIG. 6A shows a state of the tactile presentation device 31 before fluid is introduced into the space 4 .
  • FIG. 6(B) shows a state after the fluid has flowed into the space 4 in the tactile presentation device 31 .
  • the tactile sense presentation device 31 has a support 3 and a presentation section 9 .
  • the presentation unit 9 is composed of a plurality of hot/cold expansion chambers 90 .
  • the tactile sense presentation devices 10 and 30 described in the first and second embodiments have one thermal expansion chamber.
  • Each hot/cold expansion chamber 90 includes a space 4 through which a fluid can flow in and out, an expansion film 1 provided to cover the space 4, and a plurality of thermoelectric conversion chambers adhered to the second surface 1b of the expansion film 1.
  • Each hot and cold expansion chamber 90 includes a supply source 14 for supplying fluid, an actuator 5 as a driving unit for controlling the inflow and outflow of the fluid to the space 4 by driving the supply source 14, and a pipe connecting the space 4 and the supply source 14. 15.
  • the expansion of each hot/cold expansion chamber 90 can be individually controlled, and the contact area between the fingertip and the presentation unit 9 can be changed.
  • thermoelectric conversion elements 2 of the respective hot and cold expansion chambers 90 independently of each other, more various tactile sensations can be presented.
  • the tactile sense presentation device 32 has a support 3 and a presentation section 9 .
  • the presentation unit 9 is composed of a plurality of hot/cold expansion chambers 91 .
  • Each hot and cold expansion chamber 91 includes a space 4 through which fluid can flow in and out, a second expansion film 12 provided to cover the space 4, and a first expansion film 12 disposed above the second expansion film 12. and a plurality of thermoelectric conversion elements 2 .
  • thermoelectric conversion element 2 is arranged between the first expansion film 11 and the second expansion film 12 as in the second embodiment, and one surface (surface on the skin side) is The second surface 11 b of the first inflatable membrane 11 is placed with the other surface (non-skin side surface) adhered to the first surface 12 a of the second inflatable membrane 12 .
  • the presentation unit 9 includes a supply source 14 that supplies fluid, an actuator 5 as a driving unit that controls the inflow and outflow of the fluid to the space 4 by driving the supply source 14, and a pipe 15 that connects the space 4 and the supply source 14. have.
  • each actuator 5 By independently controlling each actuator 5, the expansion of each of the hot and cold expansion chambers 90 can be individually controlled, and various tactile sensations can be presented.
  • FIG. 7(A) to (D) are plan views of the tactile sense presentation device 31 (32) and are configuration examples of the presentation unit 9.
  • FIG. it is not limited to the illustrated form, and can take various forms.
  • the presentation unit 9 may be configured by arranging three hot and cold expansion chambers 90 (91) in the X-axis direction.
  • the expansion membrane 1 (first expansion membrane 11) forming each hot/cold expansion chamber 90 (91) has a substantially rectangular planar shape.
  • the planar shape of the expansion membranes 1 (first expansion membranes 11) constituting each hot/cold expansion chamber 90 (91) is substantially the same.
  • the inflatable membrane 1 (first inflatable membrane 11) extends in the longitudinal direction (Y-axis direction) of the fingertip of the user U placed on the inflatable membrane 1 (first inflatable membrane 11). have.
  • thermoelectric conversion elements 2 intermittently arranged along the Y-axis direction are located in the hot/cold expansion chamber 90 (91) located at the center in the X-axis direction among the three warm-cool expansion chambers 90 (91). .
  • the thermoelectric conversion element 2 positioned in the middle is positioned substantially in the center of the expansion film 1 (first expansion film 11).
  • Two hot and cold expansion chambers 90 (91) located on both sides of the three hot and cold expansion chambers 90 (91) have expansion membranes 1 that constitute the hot and cold expansion chambers 90 (91) when viewed from above.
  • One thermoelectric conversion element 2 is positioned substantially in the center of (the first expansion film 11).
  • the presentation unit 9 is configured with three hot/cold expansion chambers 90 (91) arranged side by side in the X-axis direction.
  • the expansion membrane 1 (first expansion membrane 11) that constitutes each hot/cold expansion chamber 90 (91) has a substantially rectangular shape.
  • the hot/cold expansion chamber 90 positioned in the central portion in the X-axis direction is longer in the Y-axis direction than the hot/cold expansion chambers 90 (91) positioned on both sides thereof. In this way, the size of the expansion membrane 1 of each hot/cold expansion chamber 90 (91) may be different.
  • the hot/cold expansion chamber 90 (91) located at the center in the X-axis direction has three thermoelectric conversion elements 2 intermittently arranged along the Y-axis direction. .
  • the thermoelectric conversion element 2 positioned in the middle is positioned substantially in the center of the expansion film 1 (first expansion film 11).
  • Two hot/cold expansion chambers 90 (91) located on both sides of the three hot/cold expansion chambers 90 have expansion membranes 1 (first One thermoelectric conversion element 2 is positioned substantially in the center of the expansion film 11).
  • the presentation unit 9 is composed of five hot/cold expansion chambers 90 (91).
  • the expansion membrane 1 (first expansion membrane 11) constituting each hot/cold expansion chamber 90 (91) has a substantially square planar shape, and each hot/cold expansion chamber 90 (91) The planar shape of the inflatable membrane 1 (first inflatable membrane 11) constituting the is substantially the same.
  • One thermoelectric conversion element 2 is arranged in each hot/cold expansion chamber 90 (91). The thermoelectric conversion element 2 is positioned substantially in the center of the expansion film 1 (first expansion film 11) in plan view.
  • the presentation unit 9 has three hot and cold expansion chambers 90 (91) arranged side by side in the X-axis direction.
  • the (first inflatable membrane 11) has a substantially rectangular planar shape.
  • the planar shape of the expansion membranes 1 (first expansion membranes 11) constituting each hot/cold expansion chamber 90 (91) is substantially the same.
  • Three thermoelectric conversion elements 2 intermittently arranged along the y-axis direction are positioned in each hot/cold expansion chamber 90 (91). Among them, the thermoelectric conversion element 2 positioned in the middle is positioned substantially in the center of the expansion film 1 (first expansion film 11) in plan view.
  • thermoelectric conversion elements 2 are arranged intermittently over the entirety of the plurality of expansion films 1 (first expansion films 11).
  • the tactile sense presentation device 31 (32) has a thermoelectric conversion element adhesion region where the expansion film 1 (first expansion film 11) and the thermoelectric conversion element 2 are adhered, and a thermoelectric conversion element non-adhesion region where they are not adhered.
  • each hot/cold expansion chamber 90 (91) also has a thermoelectric conversion element bonded region and a thermoelectric conversion element non-bonded region. In the thermoelectric conversion element bonding region, expansion of the expansion film 1 (first expansion film 11) is inhibited by the existence of the thermoelectric conversion element.
  • thermoelectric conversion element non-bonded region the expansion of the expansion film 1 (first expansion film 11) is not hindered by the thermoelectric conversion element.
  • the thermoelectric conversion element non-bonded region where the expansion of the expansion film 1 (first expansion film 11) is not hindered is provided over the entire expansion film 1 (first expansion film 11). It becomes a distributed form.
  • thermoelectric conversion element 2 is arranged on the second surface 1b (11b) of the inflatable membrane 1 (first inflatable membrane 11), which is the non-skin side surface, when the tactile sense presentation device 31 (32) is used,
  • the fingertip of the user U indirectly touches the thermoelectric conversion element 2 with the expansion film 1 (first expansion film 11) interposed therebetween. This makes it difficult for the hard and flat texture of the thermoelectric conversion element 2 to be directly presented to the user's fingertip. Therefore, presentation of textures such as hard and soft using pressure stimulation is not impaired by the thermoelectric conversion element 2 being arranged on the first surface 11a side.
  • thermoelectric conversion element 2 is arranged on the second surface 1b (11b) of the expansion film 1 (first expansion film 11) so that the finger of the user U does not come into direct contact with the thermoelectric conversion element 2.
  • the thermoelectric conversion element 2 is arranged on the expansion film 1 (first expansion film 11) that directly contacts the user's skin when the tactile sense presentation device 31 (32) is used. Therefore, hot/cold presentation by the thermoelectric conversion element 2 can be quickly performed on the user's skin. That is, the heat dissipation and heat absorption efficiency of the thermoelectric conversion element 2 can be improved, and the thermoelectric conversion element 2 can present hot and cold to the user U with a small temperature rise or drop. Also, power consumption can be reduced.
  • the tactile presentation device 31 As described above, in the tactile presentation device 31 (32), it is possible to present various tactile sensations by pressure stimulation and thermal stimulation, and to reduce power consumption.
  • FIG. 2A is a block diagram showing the configuration of the tactile presentation device 31 (32).
  • FIG. 2B is a diagram for explaining a part of the configuration of the tactile sense presentation device 30 in more detail, and is a diagram showing the control configuration of the thermoelectric conversion elements.
  • the tactile sense presentation device 31 (32) includes a control section 6, the thermoelectric conversion elements 2 and actuators 5 in the presentation section 9, a communication section 7, and a storage section 8.
  • FIG. A basic configuration is the same as that of the first embodiment.
  • the abdomen of the fingertip of the user U is positioned 3 at the center in the X-axis direction via the inflatable membrane 1 . It is placed in contact with two thermoelectric conversion elements 2C.
  • the fluid is controlled to flow into and expand the spaces 4 of some of the hot and cold expansion chambers 90 and not to flow into the spaces 4 of the other hot and cold expansion chambers 90. can be done.
  • the fluid does not flow into the hot/cold expansion chamber 90 positioned at the center in the X-axis direction, but flows only into the hot/cold expansion chambers 90 on both left and right sides thereof.
  • the entire presentation unit 9 is deformed along the shape of the fingertip of the user U so as to partially cover the fingertip.
  • the abdomen and side portions of the fingers of the user U are in contact with the three thermoelectric conversion elements 2C located in the central portion in the X-axis direction and the two thermoelectric conversion elements 2S located in the side portions in the X-axis direction through the expansion film 1. state.
  • thermoelectric conversion element 2 Since the thermoelectric conversion element 2 is adhesively fixed to the expansion film 1, the position of the thermoelectric conversion element 2 changes following the deformation of the expansion film 1 when the expansion film 1 expands. Therefore, since the thermoelectric conversion element 2 and the fingertip are in contact with each other with the expansion film 1 interposed therebetween, the heat utilization efficiency of the thermoelectric conversion element 2 is improved, and hot and cold presentation can be effectively performed.
  • the tactile sense presentation device 32 shown in FIG. 6(C) similarly to the tactile sense presentation device 31, by selecting the warm/cold expansion chamber 91 into which the fluid flows, the shape of the first expansion film 11 in the entire presentation section 9 can be changed. can be changed.
  • the tactile presentation device can be configured to have a plurality of hot and cold expansion chambers. As a result, it is possible to change the thermal sensation stimulation using the thermoelectric conversion element while freely changing the feeling of oppression and the feeling of hardness.
  • each tactile presentation device may be provided with one or more sensors selected from a temperature sensor, a distance sensor, and an air pressure sensor.
  • FIG. 8 shows an example of the tactile presentation device 33 provided with sensors.
  • FIG. 8 an example in which there are two inflatable membranes will be described as in the above-described second embodiment, but the tactile sense presentation devices of the first and third embodiments are similarly applicable.
  • a temperature sensor 18 may be arranged on the first expansion membrane 11 .
  • the temperature sensor 18 is arranged on the second surface 11 b of the first expansion membrane 11 .
  • a temperature sensor 18 measures the temperature of the first expansion membrane 11 .
  • the temperature sensor 18 can be used to estimate the temperature of the fingertip of the user U that is in contact with the first expansion membrane 11 . For example, when the fingertip is placed on the temperature sensor 18 via the first expansion film 11, the difference between the measured value of the temperature sensor 18 and the actual fingertip temperature is measured in advance. The temperature of the fingertip can be estimated from the value.
  • the measurement result of the temperature sensor 18 is used for temperature control of the first expansion membrane 11 and the like.
  • the temperature sensor 18 By using the temperature sensor 18, it is possible to control the temperature range of the first expansion film 11 due to heat radiation and heat absorption of the thermoelectric conversion element 2 so as to be within a desired range.
  • the temperature sensor 18 can be used as a limiter, e.g., not to get too hot above 40° C. or too cold below 20° C. to prevent burns. Safety can be improved.
  • the temperature sensor 18 in a tactile sense presentation device having one inflatable membrane, the temperature sensor 18 is arranged on the inflatable membrane 1 . Also, the temperature sensor 18 may be provided in the thermoelectric conversion element.
  • a distance sensor 16 may be arranged on the support 3, as shown in FIG.
  • a distance sensor 16 can measure the distance to the second inflatable membrane 12 . Since the first inflatable membrane 11 deforms following the deformation of the second inflatable membrane 12 , the distance to the first inflatable membrane 11 can also be estimated from the measurement result of the distance sensor 16 .
  • a plurality of distance sensors 16 are provided. By providing a plurality of distance sensors 16, it is possible to obtain distribution information of the distances of the first and second inflatable membranes from the support 3 in plan view. The measurement result of the distance sensor 16 is used for force control of pressure stimulation.
  • the degree of expansion can be controlled within a desired range so that the second inflatable membrane 12 and, in turn, the first inflatable membrane 11 do not rupture due to excessive expansion of the membrane when a fluid flows in. can be controlled to
  • the distance sensor 16 can be used as a limiter, and safety during use can be enhanced.
  • An air pressure sensor 17 may be arranged on the support 3, as shown in FIG.
  • An atmospheric pressure sensor 17 measures the pressure within the space 4 .
  • the measurement result of the atmospheric pressure sensor 17 is used for force control of pressure stimulation.
  • the degree of expansion can be controlled within a desired range so that the second inflatable membrane 12 and, in turn, the first inflatable membrane 11 do not rupture due to excessive expansion of the membrane when fluid flows in. can be controlled to
  • the air pressure sensor 17 can be used as a limiter, and safety during use can be enhanced.
  • the atmospheric pressure sensor 17 can detect changes in the pressure when gripped, and the detection result can be obtained in addition to pressure stimulation. , may be fed back to the thermal stimulation.
  • the tactile presentation device can be used for various purposes. For example, by using a tactile sense presentation device in a VR (Virtual Reality), an AR (Augmented Reality) device, or the like, it is possible to present a tactile sensation to a user as if they were actually touching a virtual object.
  • a tactile presentation device can typically be used for any application that presents a tactile sensation to a user, such as a wearable device, an input device, a medical device, a simulation device, an entertainment device, and the like. Also, the shape of the tactile sense presentation device can be appropriately set according to the application.
  • the tactile sensation target part is the fingertip
  • the tactile sensation presentation device has a shape in which the presentation unit is provided on a flat support.
  • FIG. 9A is a perspective view of the tactile presentation device 50.
  • FIG. 9B is a plan view of the tactile sense presentation device 50 viewed from the side where the presentation unit 9 is arranged.
  • FIG. 10 is a diagram showing a tactile sense presentation system 100 using the tactile sense presentation device 50.
  • FIG. 11 is a block diagram showing the internal configuration of the tactile presentation device 50.
  • FIG. an example is given in which a plurality of users located at separate locations perform tactile communication with each other using the tactile presentation device 50 .
  • the tactile presentation device 50 includes a support 3 that is a housing, a detection unit 51 provided on the support 3, and a presentation unit 9 provided on the support 3. ing.
  • the support 3 has a size that allows the user U to hold it with one hand.
  • the shape of the support 3 is a cylinder with both ends closed.
  • the shape of the support 3 is not limited to this.
  • the support 3 may be configured in a polygonal cylindrical shape such as a triangle, a square, or the like, or may have a shape that imitates a human hand.
  • the detection unit 51 includes a pressure sensor 511 that detects the force of the user U and a temperature sensor 18 that detects the temperature of the skin of the user's U hand.
  • the detection unit 51 includes two pressure sensors 511, but the number is not limited to this.
  • the detection unit 51 is provided at a position corresponding to the finger of the user when the user grips the tactile presentation device 50 .
  • the detection unit 51 is provided at a position corresponding to the vicinity of the first joint of the four fingers of the index finger, the middle finger, the ring finger, and the little finger.
  • the position where the detection part 51 is provided is not restricted to this.
  • the detection unit 51 is provided at a position corresponding to 1, 2, 3, 4, or 5 fingers selected from the thumb, index finger, middle finger, ring finger, and little finger. may have been Further, the detection unit 51 may be provided at a position corresponding to the second joint or the third joint of the finger (other than the thumb).
  • the detection units 51 may be separately provided at two or more separate locations.
  • the first detection unit 51 may be arranged at positions corresponding to the index finger, the middle finger, the ring finger, and the little finger
  • the second detection unit 51 may be arranged at the position corresponding to the thumb.
  • the first detection unit 51 is arranged at a position corresponding to the first joint portions of the index finger, the middle finger, the ring finger, and the little finger
  • the second detection unit 51 is arranged at the position corresponding to the first joint portion of the index finger, the middle finger, the ring finger, and the little finger. It may be arranged at a position corresponding to the second joint portion, the third joint portion, or the like.
  • the detection unit 51 may be provided at any position as long as it is provided at a position different from the presentation unit 9 as long as it can appropriately detect the gripping force of the user.
  • a plurality of them may be separately provided for one tactile presentation device.
  • the presentation unit 9 presents the user U with a tactile sensation.
  • the presentation unit 9 is provided at a position different from the detection unit 51 on the support 3 .
  • the presenting unit shown in each of the above embodiments can be applied to the presenting unit 9 .
  • the presentation unit 9 includes a space 4 through which fluid can flow in and out, an expansion film 1 provided to cover the space 4, and a plurality of thermoelectric conversion elements 2 arranged on a second surface 1b of the expansion film 1. have.
  • the presentation unit 9 includes a supply source 14 that supplies fluid, an actuator 5 as a driving unit that controls the inflow and outflow of the fluid to the space 4 by driving the supply source 14, and a pipe 15 that connects the space 4 and the supply source 14.
  • the presentation unit 9 includes two thermoelectric conversion elements 2 .
  • the two thermoelectric conversion elements 2 are spaced apart.
  • Inflatable membrane 1 has an elliptical shape with its longitudinal direction parallel to the longitudinal direction of support 3 in plan view.
  • the presentation unit 9 presents various tactile sensations by applying a pressure stimulus and a thermal stimulus to the hand of the user U holding the tactile sense presentation device 50 .
  • the presentation unit 9 expands and contracts the inflatable membrane 1 with fluid according to the force detected by the detection unit 51 of the other tactile presentation device 50 and the temperature of the skin of the hand.
  • a tactile sensation is presented to the user.
  • the detection unit 51 and the presentation unit 9 are provided at the same place, does the user feel the reaction force of gripping the tactile presentation device 50? There is a problem that it is difficult to recognize whether the force is felt by the force. Therefore, in this embodiment, the detection unit 51 and the presentation unit 9 are provided at separate locations.
  • the presentation unit 9 is provided at a position corresponding to the palm (center of the palm) when the user grips the tactile presentation device 50 .
  • the position where the presentation part 9 is provided is not restricted to this.
  • the presentation unit 9 may be provided at a position corresponding to the user's finger, and in this case, the detection unit 51 may be provided at a position other than the finger, such as the palm.
  • the presentation unit 9 may be separately provided at two or more separate locations.
  • the first presentation unit 9 may be arranged at a position closer to the index finger on the palm, and the second presentation unit 9 may be arranged at a position closer to the little finger on the palm.
  • the presentation unit 9 can be positioned at any position as long as it is provided at a position different from the detection unit 51 as long as it can appropriately present the tactile sensation of one user's force to the other user. , or may be provided separately for one tactile presentation device 50 .
  • the positions of the presentation unit 9 and the detection unit 51 may be set in consideration of the hand positions at which two people actually feel the force when they shake hands. For example, when two people actually shake hands, one person feels the force of the index finger, middle finger, ring finger, little finger, etc. of the other person in the area of the palm on the little finger side. Therefore, if the detection unit 51 is provided at a position corresponding to the index finger, the middle finger, the ring finger, the little finger, or the like, the presentation unit 9 may be provided in the region on the little finger side of the palm.
  • the tactile sense presentation device 50 includes a control unit 6, a pressure sensor 511 and a temperature sensor 18 in the detection unit 51, a thermoelectric conversion element 2 and an actuator 5 in the presentation unit 9, a communication unit 7, a storage a portion 8;
  • the control unit 6 executes various calculations based on various programs stored in the storage unit 8 and controls each unit of the tactile sense presentation device 50 in an integrated manner.
  • the pressure sensor 511 is part of the detection section 51 .
  • the pressure sensor 511 is provided at a position corresponding to the detection section 51 on the surface side of the support 3 .
  • the pressure sensor 511 detects the user's force (grasping force) and outputs the detected value to the control unit 6 .
  • Temperature sensor 18 is part of detector 51 .
  • the temperature sensor 18 is provided, for example, on the expansion membrane 1 of the presentation unit 9 with which the skin of the hand of the user U comes into direct contact when the tactile presentation device 50 is gripped.
  • the temperature sensor 18 detects the skin temperature of the user's U hand and outputs the detected temperature to the control unit 6 .
  • the storage unit 8 includes a non-volatile memory storing various programs and various data necessary for the processing of the control unit 6 and a volatile memory used as a work area for the control unit 6 .
  • the communication unit 7 is configured to be able to communicate with another tactile presentation device 50 by wire or wirelessly. Note that the tactile sense presentation device 50 may directly communicate with another tactile sense presentation device 50, or communicate with another tactile sense presentation device 50 via another device such as a server device on a network. may communicate indirectly between
  • FIG. 10A is a diagram illustrating a tactile presentation system 100 that enables tactile communication between two users even when they are located at separate locations.
  • FIG. 10B shows two users performing tactile communication using the tactile presentation device 50 .
  • one tactile sense presentation device 50 is called a first tactile sense presentation device 50a
  • the other tactile sense presentation device 50 is called a second tactile sense presentation device 50b.
  • the user who operates the first tactile presentation device 50a is called a first user U1
  • the user who operates the second tactile presentation device 50b is called a second user U2. call.
  • first and second are used in the first tactile sense presentation device 50a and the second tactile sense presentation device 50b.
  • a first user U1 and a second user U2 while looking at the display 13 on which the other party is shown, hold the first tactile presentation device 50a and the second tactile presentation device 50a, respectively. Tactile communication can be performed using the tactile presentation device 50b.
  • the number of the tactile sense presentation devices 50 may be three or more.
  • the number of users is not limited to two, and may be three or more.
  • some of the users may include fictitious characters (comic characters displayed on the screen, virtual idols, etc.).
  • the first detection unit 51a a first pressure value corresponding to the gripping force of the first user U1 is detected by the pressure sensor 511 in .
  • the first temperature value of the skin of the hand of the first user U1 is detected by the temperature sensor 18 in the first detection unit 51a.
  • the first control unit 6 transmits the detected first pressure value and first temperature value to the second tactile presentation device 50b directly or indirectly via a server device or the like. .
  • the detected first pressure value and first temperature value are information related to tactile presentation.
  • the second control unit 6 of the second tactile sense presentation device 50b receives the first pressure value and the first temperature value directly from the first tactile sense presentation device 50a or indirectly via a server device or the like. receive.
  • the second control unit 6 drives the actuator 5 of the second presentation unit 9b according to the first pressure value to control the inflow and outflow of the fluid within the second space 4 .
  • the second control unit 6 expands and contracts the inflatable membrane 1 of the second presentation unit 9b, thereby presenting the pressure sensation corresponding to the first pressure value to the second user U2.
  • the second tactile sense presentation device 50b can present to the second user U2 the sensation of being pressed by the expansion of the inflatable membrane, and the contraction of the inflatable membrane causes the palm to be pressed.
  • the second user U2 can be presented with the feeling of returning to Furthermore, the second control unit 6 controls the temperature of the thermoelectric conversion element 2 of the second presentation unit 9b so that the expansion film 1 of the second presentation unit 9b has the first temperature value. A temperature sensation corresponding to one temperature value is presented to the second user U2. Thereby, the second tactile sense presentation device 50b can present to the second user U2 a feeling as if the hands of the first user U1 were being squeezed.
  • the pressure sensor 511 in the second detection unit 51b detects that the second user U2 has gripped the second tactile sense presentation device 50b.
  • a second pressure value responsive to the force is detected.
  • the second temperature value of the skin of the hand of the second user U2 is detected by the temperature sensor 18 in the second detection unit 51b.
  • the second control unit 6 transmits the detected second pressure value and second temperature value to the first tactile presentation device 50a directly or indirectly via a server device or the like. .
  • the detected second pressure value and second temperature value are information related to tactile presentation.
  • the first control unit 6 of the first tactile sense presentation device 50a receives the second pressure value and the second temperature value directly from the second tactile sense presentation device 50b or indirectly via a server device or the like. to receive The first control unit 6 drives the actuator 5 of the first presentation unit 9a according to the second pressure value to control the inflow and outflow of fluid within the first space 4 . Accordingly, the first control unit 6 expands and contracts the inflatable membrane 1 of the first presentation unit 9a to present the first user U1 with a pressure sensation corresponding to the second pressure value.
  • the first tactile sense presentation device 50a can present to the first user U1 a feeling that the palm is pressed by the expansion of the expansion membrane, and the contraction of the expansion membrane causes the pressed palm to return to its original state. feeling can be presented to the first user U1.
  • the first control unit 6 controls the thermoelectric conversion element 2 of the first presentation unit 9a so that the expansion film 1 of the first presentation unit 9a has the second temperature value, thereby 2 is presented to the first user U1.
  • the first tactile sense presentation device 50a can present to the first user U1 a feeling as if the hand of the second user U2 was being squeezed.
  • FIGS. 12A and 12B are examples in which the force when the first user U1 grips the first tactile presentation device 50a is reflected and presented as a temperature rise in the second tactile presentation device 50b. It is a schematic diagram showing. FIG. 12(A) shows a case where the gripping force is relatively small, and FIG. 12(B) shows a case where the gripping force is greater than that of FIG. 12(A).
  • the arrows schematically show the force applied to the first tactile sense presentation device 50a when gripped, and the magnitude of the force is the magnitude of the force when gripped. indicates In the second tactile sense presentation device 50b of FIG.
  • the arrow indicates the direction of expansion of the expansion film, and the magnitude thereof indicates the magnitude of temperature rise by the thermoelectric conversion element 2 of the second presentation portion 9b.
  • temperature presentation reflecting mutual gripping force will be mainly described, but pressure sensation due to expansion of the expansion membrane reflecting mutual gripping force is also presented at the same time.
  • hot/cold presentation is performed by the other tactile sense presentation device.
  • the numerical values given here are only examples, and the present invention is not limited to these.
  • the temperature of the inflatable membrane 1 of the second tactile presentation device 50b is 1°C.
  • the thermoelectric conversion element 2 is controlled so as to rise.
  • the temperature of the expansion membrane 1 is controlled to be 34°C to 35°C.
  • thermoelectric conversion element 2 is controlled so that the temperature of the film 1 rises by 2.degree.
  • the thermoelectric conversion element 2 is controlled such that the temperature of the expansion film is 35°C to 37°C. In the rise of the suggested temperature, the temperature is controlled so as not to exceed 40° C. from the viewpoint of safety.
  • thermoelectric conversion element 2 of the second presentation unit 9b may be controlled so as to increase the presentation temperature of the second tactile presentation device 50b.
  • the second user U2 on the receiving side receives the second An increased heating stimulus is presented by the thermoelectric conversion element 2 of the presentation unit 9b.
  • the second user U2 can feel the first user U1's grip force more strongly.
  • thermoelectric conversion element Peltier element
  • a change in the action of the user on the transmitting side such as weakening or releasing the grip of the tactile presentation device, can be promptly presented as a change in temperature on the tactile presentation device on the receiving side.
  • the sensitivity to the pressure sensation presentation and the temperature sensation presentation differs depending on individual differences such as the user U's age, sex, and skin hardness. For this reason, for example, personal information such as age and sex may be set in the initial setting at the time of use, and the degree of pressure and the degree of hot and cold may be finely adjusted according to age and sex.
  • grandchildren can use the tactile presentation device 50 to deepen communication with their grandparents in remote locations.
  • a speaker such as a singer grips the tactile presentation device 50 at a concert venue
  • the feeling of gripping can be presented to a plurality of spectators by the tactile presentation device 50 gripped by the spectators.
  • the user can shake hands with the tactile presentation device 50 even from a remote location. In this way, based on the detection result detected by one tactile sense presentation device 50, it is also possible to simultaneously present a tactile sense to each of a plurality of people using the tactile sense presentation device 50 held by the person.
  • FIG. 13 shows how the tactile presentation device is used.
  • FIG. 14 is a block diagram showing the internal configuration of the main body of the game machine and the tactile presentation device.
  • the user U can hold the tactile sense presentation device 60, which is a game controller, and play the game while watching the display 13 such as a television device.
  • the tactile sense presentation device 60 presents the user U with a tactile sense corresponding to the game image displayed on the display 13 .
  • the tactile sense presentation device 60 includes a support 3 which is a game controller main body, and a presentation section 9 provided on the support 3 .
  • the tactile sense presentation device 60 of the present embodiment functions not only as a tactile sense presentation function but also as an input device that receives game input operations.
  • the support 3 is, for example, a molded product made of a resin material such as plastic.
  • the support 3 has convex grips 36 on both the left and right sides, which the user U holds by hand.
  • the support 3 includes an operation unit consisting of various keypads 37 for receiving user U's operations.
  • the presentation unit 9 presents the user U with a tactile sensation.
  • One presentation section 9 is provided for each of the left and right grip sections 36 .
  • the presenting unit shown in each of the above embodiments can be applied to the presenting unit 9 .
  • the game device 38 includes a game machine body 61 to which a tactile presentation device 60, which is one or more game controllers, is connected, and the game machine body 61 is connected to a display 13 such as a television device. be.
  • the game machine body 61 includes a control section 62 , a display control section 63 , a playback section 64 , a storage section 65 and a communication control section 66 .
  • the communication control unit 66 is communication means to which the tactile sense presentation device 60 is connected.
  • the reproducing unit 64 reproduces a game program recorded on a recording medium 69 such as an optical disc.
  • the program may include information related to tactile sensation presentation according to the image linked to the game image.
  • the display control section 63 controls the display 13 .
  • the storage unit 65 is composed of a ROM (Read Only Memory) or the like.
  • the storage unit 65 stores an operating system (OS) and the like executed by the control unit 62 .
  • OS operating system
  • the control unit 62 is composed of a CPU (Central Processing Unit), a RAM (Random Access Memory), and the like.
  • the control unit 62 progresses the game based on the operation signal corresponding to the operation content received by the user U's operation on the tactile sense presentation device 60 and the game program reproduced from the recording medium 69 .
  • the control unit 62 displays images on the display 13 according to the progress of the game, and controls the actuators 5 and the thermoelectric conversion elements 2 of the tactile presentation device 60 for presenting the user U with tactile sensations corresponding to the content of the game video.
  • output information related to tactile presentation for As described above, the information related to the tactile sense presentation may be linked to the game video and prepared in advance. It may be generated according to the video based on the contents of the game video.
  • the database stores, for example, information related to tactile sensation presentation linked to each video content such as an explosion scene.
  • the information related to the tactile sensation presentation includes information related to the thermal sensation stimulation including the control pattern (control signal) of the thermoelectric conversion element and information related to the pressure sensation stimulation including the control pattern of the actuator (control signal).
  • the tactile presentation device 60 includes a control section 6 , the thermoelectric conversion elements 2 and actuators 5 in the presentation section 9 , a communication section 7 and a storage section 8 .
  • the control unit 6 controls the actuators 5 and the thermoelectric conversion elements 2 based on control signals output from the game machine body 61 . For example, in the example shown in FIG. 13 , an image of a dragon breathing fire is displayed on the display 13 .
  • the thermoelectric conversion element 2 is controlled so that the temperature rises. Thereby, the user U is presented with the heat of the flame.
  • the actuator 5 is controlled to allow fluid to flow into the space 4 .
  • the intensity of the hot air is presented to the user U by compression due to expansion of the inflatable membrane 1 (or the first inflatable membrane 11 and the second inflatable membrane 12) due to the inflow of fluid.
  • the game controller by providing the game controller with the presentation unit 9 that performs pressure stimulation and thermal stimulation, it is possible to present the user with a tactile sensation corresponding to the game image, thereby further increasing the sense of realism.
  • a television device has been taken as an example, but a head-mounted display, monitor, projector, or the like may also be used.
  • FIG. 15A shows a state in which the user U is using the tactile presentation device 70.
  • FIG. FIG. 15(B) is a partial cross-sectional view taken along line XVB--XVB of FIG. 15(A).
  • FIG. 15(C) is a diagram for explaining an example of tactile sense presentation, in which dashed lines indicate a virtual person.
  • the tactile sense presentation device 70 includes a support 3 and a presentation section 9 provided on the support 3 .
  • the support 3 has a wristband shape to be wrapped around the wrist of the user U, and is configured to be flexibly deformable.
  • the presentation unit 9 is arranged inside the wristband-shaped support 3, that is, in contact with the skin of the user U when used.
  • the presentation unit 9 may be arranged around the entire circumference of the wrist, or may be arranged partially, and can be appropriately set according to the application. Also, a single presentation unit 9 or a plurality of presentation units 9 can be arranged.
  • the presentation unit 9 presents the user U with a tactile sensation.
  • FIG. 15B exemplifies a form having two inflatable membranes, but the presentation section shown in each of the above-described embodiments can be applied to the presentation section 9 .
  • the first inflatable membrane 11 and the second inflatable membrane 12 are inflated toward the skin of the user U due to the inflow of fluid into the space 4, thereby presenting the user U with a feeling of oppression.
  • a head-mounted display capable of VR display, AR display, etc. is worn on the head of the user U, and the tactile presentation device 70 is worn on the wrist.
  • a video of the virtual space is presented to the user U by the head-mounted display.
  • the thermoelectric conversion element 2 is controlled, for example, so that the temperature rises.
  • the actuator 5 is controlled to allow fluid to flow into the space 4 .
  • a feeling of oppression when the virtual person grabs the wrist of the user U is represented by the pressure caused by the expansion of the first inflatable membrane 11 and the second inflatable membrane 12 due to the inflow of fluid.
  • the amount of fluid flowing into the space 4 may be controlled according to the gripping force of the wrist of the virtual person, and the degree of compression by the inflatable membrane may be controlled.
  • the actuator 5 and the thermoelectric conversion element 2 are controlled based on a tactile presentation control signal, which is information related to tactile presentation linked to video information, for example, as in the third application example.
  • the tactile presentation device can take the form shown in FIG. 16(A).
  • FIG. 16A is a perspective view of the tactile presentation device 71.
  • FIG. 16B is a diagram for explaining an example of tactile sense presentation using the tactile sense presentation device 71 .
  • the tactile sense presentation device 71 includes a support 3 and a presentation unit 9 provided on the support 3 .
  • the support 3 has a size that allows the user U to hold it with one hand.
  • the support 3 has a substantially cylindrical shape, and has a shape whose diameter gradually decreases from the center in the longitudinal direction to one end, and has a shape of a cup whose diameter decreases from the mouth to the bottom. It has an imitation shape.
  • thermoelectric conversion element 2 when an image of a person holding a glass filled with cold water is displayed on the display 13, the thermoelectric conversion element 2 is controlled so that the temperature drops. As a result, the user U is presented with the coldness of the glass of cold water. As shown in FIG. 16B, when an image of hot tea being poured into a cup held in the hand is displayed on the display 13, the thermoelectric conversion element 2 is controlled so that the temperature gradually rises. be done. As a result, the user U is presented with the feeling that hot tea is gradually being poured into the cup and the warmth of the tea.
  • the tactile presentation device can take the forms shown in FIGS. 17A and 17B, for example.
  • 17A and 17B are perspective views of tactile presentation devices 72 and 73.
  • the tactile sense presentation devices 72 and 73 each include a support 3 and a presentation section 9 provided on the support 3 .
  • the finger of the user U is in contact with the presentation unit 9 during use.
  • the presenting unit 9 can present to the user U a feeling of oppression, a feeling of hardness such as hard and soft, and a feeling of temperature such as warm and cold.
  • the presentation unit 9 can present the user U with a feeling of hardness and temperature of a virtual object in an image.
  • thermoelectric conversion elements can be appropriately set according to the application of the tactile presentation device and the target site for tactile presentation. Numerical values will be described below, but these are only examples, and the present invention is not limited to these.
  • the thermal conductivity of the expansion membrane 1 and the first expansion membrane 11 should be 0.2 W/mK or more. preferable. In addition, by setting the thermal conductivity to such a value, it is possible to improve heat dispersion in the plane of the expansion film, and the plurality of thermoelectric conversion elements 2 provide a warm or cold sensation to the entire tactile sensation presentation target portion. is likely to be presented.
  • the thermal conductivity of the second inflatable membrane 12 positioned on the non-skin side of the two inflatable membranes functions as a heat radiating part. From the point of view, it is preferably 0.2 W/mK or more. From the viewpoint of improving thermal conductivity, a polymer film containing carbon, carbon nanotubes, or the like may be used as the expansion film.
  • the dimensions of the inflatable membrane 1 (or the first inflatable membrane 11 and the second inflatable membrane 12) in plan view can be appropriately set depending on the tactile presentation target site.
  • the diameter a of the substantially circular inflatable membrane 1 (the first inflatable membrane 11 and the second inflatable membrane 12) is 30 mm.
  • the long axis e of the elliptical inflatable membrane 1 (the first inflatable membrane 11 and the second inflatable membrane 12) is 70 mm.
  • the minor axis f is 30 mm.
  • thermoelectric conversion element 2 can be appropriately set depending on the tactile presentation target site.
  • the vertical and horizontal dimensions of the thermoelectric conversion element which generally has a rectangular shape, are set so that when the expansion film expands, the user U does not feel uncomfortable due to the presence of the corners of the thermoelectric conversion element. is preferred. Since the sensitivity differs depending on the part of the body, the size that is less likely to cause discomfort differs. From the viewpoint that it is difficult for the user U to feel uncomfortable due to the presence of the corners of the thermoelectric conversion element, when the tactile sensation presentation target part is the fingertip of the hand as shown in FIG.
  • the vertical dimension of the thermoelectric conversion element 2 Preferably, b and lateral dimension c are each less than or equal to 6 mm. As shown in FIG. 9B, when the tactile sensation presentation target site is the palm, the vertical dimension g and the horizontal dimension c of the thermoelectric conversion element 2 are each preferably 10 mm or less. When the tactile sensation presentation target site is the forearm, the vertical dimension g and the horizontal dimension c of the thermoelectric conversion element 2 are each preferably 20 mm or less.
  • thermoelectric conversion elements 2 are not limited to those shown in FIG. 1(B) and FIG. 9(B). Also, the number and arrangement of the thermoelectric conversion elements 2 can be appropriately set depending on the tactile presentation target site. An example of arrangement will be described below with reference to FIG. Each figure in FIG. 18 is a plan view of the tactile presentation device.
  • thermoelectric conversion elements 2 As shown in FIG. 18A, a total of nine thermoelectric conversion elements 2, three vertically and three horizontally, may be arranged in a grid. As shown in FIGS. 18(B) to 18(D), the thermoelectric conversion element 2 is placed substantially in the center of the expansion film 1 (first expansion film 11) which is substantially circular in plan view, and the central thermoelectric conversion element A plurality of thermoelectric conversion elements 2 may be arranged so as to surround 2 . The thermoelectric conversion elements 2 surrounding the central thermoelectric conversion element 2 may be arranged, for example, on substantially concentric circles around the center of the expansion film 1 (first expansion film 11). When inflated, the inflatable membrane has a substantially circular shape, and when inflated, the inflatable membrane has a curved surface. tends to be smaller.
  • thermoelectric conversion elements 2 surrounding the central thermoelectric conversion element 2 are arranged on concentric circles around the center of the expansion film, so that they are arranged on curved surfaces exhibiting approximately the same curvature when expanded.
  • non-uniform distribution of deformation due to expansion within the plane of the expansion film on which the thermoelectric conversion elements 2 are arranged is less likely to occur, and the expansion film as a whole can be deformed in a more natural shape during expansion.
  • the plurality of thermoelectric conversion elements 2 have the same size. may be the same. Further, as shown in FIGS. 18C to 18E, the thermoelectric conversion elements 2 have different sizes, in other words, the contact areas between the expansion films and the thermoelectric conversion elements are different in the plurality of thermoelectric conversion elements 2.
  • the thermoelectric conversion elements of relatively small size are denoted by reference numeral 24, and the thermoelectric conversion elements of large size are denoted by reference numeral 25.
  • FIG. Although two types of thermoelectric conversion elements with different dimensions are used in FIGS. 18C to 18E, three or more types of thermoelectric conversion elements with different dimensions may be used. Also, the number of each type of thermoelectric conversion element can be one or more.
  • thermoelectric conversion element 2 located in the center is relatively small, and the size of the plurality of thermoelectric conversion elements 2 located surrounding the thermoelectric conversion element 2 located in the center is large.
  • the size of the thermoelectric conversion element 2 located in the center is relatively large, and the sizes of the plurality of thermoelectric conversion elements 2 located surrounding the thermoelectric conversion element 2 located in the center are small.
  • the inflatable membrane when inflated, has a curved surface, and the curvature of the curved surface tends to be large in the central portion and small in the periphery. Therefore, when using thermoelectric conversion elements 2 of different sizes, as shown in FIG.
  • thermoelectric conversion elements 2 located in the peripheral portion where the curvature is small.
  • non-uniform distribution of deformation due to expansion within the surface of the expansion film on which the thermoelectric conversion elements 2 are arranged is less likely to occur, and the expansion film as a whole can be deformed in a more natural shape during expansion.
  • FIG. 18(E) shows an example of the arrangement of the thermoelectric conversion elements 2 in the tactile presentation device shown in FIG. 9 in which the support 3 is cylindrical.
  • an expansion film 1 first expansion film 11
  • an elliptical shape in plan view is provided with two thermoelectric conversion elements along the longitudinal direction of the expansion film 1 (first expansion film 11).
  • An example of intermittently arranging 2 is given.
  • three or more thermoelectric conversion elements 2 may be provided.
  • a plurality of thermoelectric conversion element groups (three in the figure), which are formed by intermittently arranging a plurality of thermoelectric conversion elements 2 along the longitudinal direction, are spaced apart from each other and arranged along the lateral direction.
  • thermoelectric conversion element group located in the center in the width direction is larger than the size of the four thermoelectric conversion elements constituting the thermoelectric conversion element groups located on both sides. 2 and vice versa. Also, all the thermoelectric conversion elements 2 may have the same size.
  • the inflatable membrane In a substantially elliptical inflatable membrane, the inflatable membrane has a curved surface, and when inflated, the curvature of the curved surface tends to be greater at the central portion in each of the lateral and longitudinal directions than at both sides.
  • thermoelectric conversion elements it is preferable to arrange relatively small thermoelectric conversion elements in areas where the curvature of the curved surface is relatively large, and arrange relatively large thermoelectric conversion elements in areas where the curvature of the curved surface is relatively small.
  • non-uniform distribution of deformation due to expansion within the surface of the expansion film on which the thermoelectric conversion elements 2 are arranged is less likely to occur, and the expansion film as a whole can be deformed in a more natural shape during expansion.
  • the size of the thermoelectric conversion element may be varied according to the curvature of the curved surface of the expansion film during expansion. , the entire inflatable membrane can be deformed, and the pressure sensation stimulation due to the inflatable membrane can be improved.
  • the distance between the adjacent thermoelectric conversion elements 2 for example, the distance d shown in FIG. 1B and the distance i shown in FIG. .
  • the arrangement interval of the thermoelectric conversion elements can be appropriately set according to the part to be presented with the tactile sensation.
  • the distance d between the adjacent thermoelectric conversion elements 2 is preferably about 3 mm or less.
  • the distance i between adjacent thermoelectric conversion elements 2 is preferably about 10 mm or less. Further, when the tactile sensation presentation target site is the forearm, the distance between adjacent thermoelectric conversion elements 2 is preferably about 20 mm or less.
  • the arrangement area means an area obtained by surrounding the entirety of the plurality of thermoelectric conversion elements to be arranged in the expansion film.
  • the arrangement area includes an arrangement area where the thermoelectric conversion elements are arranged and a non-arrangement area where the thermoelectric conversion elements are not arranged.
  • the arrangement area is cross-shaped.
  • the arrangement area is square.
  • the arrangement area is substantially circular.
  • FIG. 19A is a diagram showing the relationship between the threshold for sensing a temperature change and the area of the thermoelectric conversion element when the tactile sense presentation target site is the forearm.
  • the thermoelectric conversion element 2 is placed on the forearm of the person to whom the tactile sensation is to be presented and is left for a while. As a result, the thermoelectric conversion element 2 reaches the skin temperature of the forearm of the tactile presentation target person. The temperature at this time is taken as the reference temperature. Electric power is supplied to the thermoelectric conversion element 2 from the state of the reference temperature to give the tactile sense presentation target person a warm or cold sense stimulus, and the thermoelectric conversion element when the tactile sense presentation target person feels warm or cold. Measure the temperature of 2.
  • thermoelectric conversion element The difference between the measured temperature and the reference temperature is used as a threshold for sensing temperature changes.
  • FIG. 19A shows the results of such measurements.
  • 10 mm, 20 mm, . . . indicate the length of one side of the thermoelectric conversion element.
  • the threshold for sensing a temperature change rapidly decreases until the flat area of the thermoelectric conversion element decreases from 100 mm 2 to 400 mm 2 , and then gradually decreases. , 900 mm 2 , it does not change much. In addition, almost the same behavior is exhibited in the cooling sensation.
  • the larger the presentation area the smaller the threshold for sensing temperature change. That is, it can be said that the greater the contact area between the skin and the thermoelectric conversion element, the more sensitive it is to heat and cold.
  • thermoelectric conversion elements even when a plurality of thermoelectric conversion elements are intermittently arranged in the arrangement area of the first area, the total area of the plurality of thermoelectric conversion elements is 70% or more of the first area (arrangement area area). If so, it is possible to obtain a threshold value at which temperature changes are felt substantially the same as when the size of one thermoelectric conversion element is the first area. That is, FIG. 19A shows the relationship between the area of one thermoelectric conversion element and the threshold for sensing temperature change. 19 shows a tendency similar to that of FIG. As shown in FIG.
  • the area of the arrangement region in which the plurality of thermoelectric conversion elements are arranged is set to 400 mm 2 or more, so that heating and cooling can be performed with a small temperature change. It is possible to present the information, and the power consumption can be reduced.
  • thermoelectric conversion elements The preferable area of the arrangement region in which a plurality of thermoelectric conversion elements are arranged differs depending on the tactile sensation presentation target site. They tend to be sensitive to heat and cold. Also, in regions other than the forearm, the behavior similar to that shown in FIG. 19 is exhibited with respect to the relationship between the threshold for sensing temperature change and the area of the thermoelectric conversion element.
  • thermoelectric conversion element having the largest area among the plurality of thermoelectric conversion elements 2 in one presentation unit 9 is used as a reference, and the temperature sensation measured by the reference thermoelectric conversion element It is preferable to set the area of the arrangement region where the plurality of thermoelectric conversion elements are arranged, in other words, the contact area where the skin and the entire plurality of thermoelectric conversion elements are in contact so that the threshold for sensing temperature changes in the area is 50% or less.
  • the threshold for sensing a temperature change in the warm sensation is used as a reference because, as shown in FIG. This is because it tends to be small overall.
  • the tactile sense presentation target site is a fingertip
  • setting the area of the placement region in which the plurality of thermoelectric conversion elements are placed to 100 mm 2 or more makes it possible to present hot and cold with a small temperature change.
  • setting the area of the arrangement region in which the plurality of thermoelectric conversion elements are arranged to 200 mm 2 or more makes it possible to present hot and cold with a small temperature change.
  • thermoelectric conversion elements In this way, by setting the lower limit area of the arrangement area in which a plurality of thermoelectric conversion elements are arranged, it is possible to present hot and cold with little temperature change. This enables effective hot/cold presentation with low power consumption.
  • thermoelectric conversion element control A control example will be described below. Two or more of the control examples given below may be combined to enable more various tactile presentations.
  • thermoelectric conversion elements 2 may be collectively controlled or individually controlled. An example of individual control will be described below with reference to FIGS. 1B, 4A and 4B, and 20.
  • FIG. FIGS. 20A and 20B show temporal changes in power supplied to the thermoelectric conversion element 2C (indicated by the solid line in the figure) and the thermoelectric conversion element 2S (indicated by the broken line in the figure).
  • thermoelectric conversion element 2C located in the center in the X-axis direction through.
  • the thermoelectric conversion element 2C in contact with the fingertip is supplied with power and controlled so as to give the user U a thermal stimulus.
  • the thermoelectric conversion element 2S is not in contact with the fingertip and does not need to be given a thermal stimulus, so it is not controlled.
  • the thermoelectric conversion element 2S is shown to be supplied with a small amount of electric power.
  • thermoelectric conversion elements 2C and 2S in contact with the fingertips are controlled by applying electric power so as to give the user U a thermal stimulus.
  • power may be supplied so that the amount of power supplied to the thermoelectric conversion element 2C and the amount of power supplied to the thermoelectric conversion element 2S are different.
  • a power supply may be provided.
  • thermoelectric conversion elements 2 By individually controlling the plurality of thermoelectric conversion elements 2, it is possible to selectively control only the thermoelectric conversion elements that need to be driven for stimulating the thermal sensation that is in contact with the fingertip according to the form of the expansion membrane 1. . As a result, the hot/cold presentation can be effectively performed, and the power consumption can be reduced.
  • thermoelectric conversion element 2 when performing the pressure sense stimulation and the thermal sense stimulation, the thermoelectric conversion element 2 is first powered to drive the thermoelectric conversion element 2, and then the actuator 5 is driven to cause the fluid to flow into the space. You may do so.
  • FIG. 21 is a diagram for explaining the difference in timing between the control signal for the thermoelectric conversion element (indicated by broken lines) and the control signal for driving the actuator (indicated by solid lines). The time from when power is supplied to the thermoelectric conversion element until the heat released or absorbed by the power supply is transmitted to the skin of the user U through the expansion membrane is the time from when the actuator is driven to when the pressure sensation due to the expansion of the expansion membrane is applied to the user U.
  • thermoelectric conversion element it is preferable to supply power to the thermoelectric conversion element first. Accordingly, it is possible to present the user U with the desired pressure sense stimulus and the desired thermal sense stimulus almost at the same time.
  • the thermoelectric conversion element may be driven and controlled by varying the rate of temperature increase/decrease within the range of 0 to ⁇ 10° C./s.
  • the rate of temperature increase/decrease within the range of 0 to ⁇ 10° C./s.
  • the strength of the thermal sensation stimulation presented to the user can be changed, and various tactile sensations can be presented.
  • FIG. 22A shows an example of a temperature rising pattern. In the drawing, the temperature rising speed increases in order of temperature rising pattern 1, temperature rising pattern 2, and temperature rising pattern 3.
  • FIG. 22B shows an example of a temperature drop pattern. In the figure, the temperature drop speed increases in order of temperature drop pattern 1, temperature drop pattern 2, and temperature drop pattern 3.
  • FIG. As the temperature lowering speed increases the illusion makes the user U feel colder.
  • FIG. 23 shows a control example of the thermoelectric conversion elements for sustaining the user U's sensation of warmth or coolness.
  • a solid line is an example of a control signal for sustaining a warm sensation
  • a dashed line is an example of a control signal for sustaining a cold sensation.
  • thermoelectric conversion elements In order to maintain the feeling of warmth, it is preferable to control the thermoelectric conversion elements as follows, as indicated by the solid line in FIG. That is, the thermoelectric conversion element is heated up to an arbitrary temperature at a first heating rate, and then cooled at a rate equal to or less than 1/2 of the first heating rate. After that, when the temperature of the thermoelectric conversion element reaches a range of ⁇ 1° C. of the user's skin temperature, the temperature is controlled to rise again. By repeating this, it is possible to avoid a state in which the skin becomes accustomed to the thermal stimulus and becomes difficult to be conscious of the thermal stimulus. As a result, it is possible to continuously present the sensation of warmth, although the sensation of warmth may be felt intermittently.
  • the user's skin temperature is measured in advance by a temperature sensor arranged on the inflatable membrane 1 before the presentation unit 9 is used. Also, the arbitrary temperature can be appropriately set according to the user's skin temperature.
  • thermoelectric conversion elements In order to maintain the cool sensation, it is preferable to control the thermoelectric conversion elements as follows, as indicated by the dashed line in FIG. That is, after the temperature of the thermoelectric conversion element is lowered to an arbitrary temperature at the first temperature-lowering rate, the temperature is raised at a rate equal to or less than 1/2 of the first temperature-lowering rate. After that, when the temperature of the thermoelectric conversion element falls within the range of ⁇ 1° C. of the user's skin temperature, the temperature is controlled to decrease again. By repeating this, it is possible to prevent the skin from becoming accustomed to the cold stimulus and becoming less conscious of the cold stimulus. As a result, although the cold stimulus may be felt intermittently, it is possible to continuously present the cold sensation.
  • the user's skin temperature is measured in advance by a temperature sensor arranged on the inflatable membrane 1 before using the presentation unit 9 .
  • the user's skin temperature is measured in advance by a temperature sensor arranged on the inflatable membrane 1 before using the presentation unit 9 .
  • the arbitrary temperature can be appropriately set according to the user's skin temperature.
  • thermoelectric conversion element By controlling the input power of the thermoelectric conversion element to change in this way, it is possible to continuously present a warm or cold sensation as described above, and to reduce power consumption. Also, a heat dissipation structure such as a heat sink or cooling fan is not required.
  • Control example 5 24A and 24B are diagrams for explaining an example of presenting hot and cold in accordance with an image projected on the display 13.
  • FIG. FIG. 24(A) is an example of a control signal for the thermoelectric conversion element for presenting the heat caused by the explosion displayed on the display 13.
  • FIG. 24(B) is an example of a control signal for the thermoelectric conversion element for presenting the coldness when holding a cup filled with cold water displayed on the display 13 .
  • the control described in Control Example 4 can be performed in order to continuously present the user with a warm sensation and a cold sensation.
  • the control unit 6 acquires temperature information of the inflatable membrane detected by the temperature sensor 18, and estimates the user's skin temperature from the temperature information (ST1).
  • the control unit 6 acquires information related to tactile presentation (ST2).
  • the information related to the tactile sense presentation is, for example, the pressure value and the temperature value detected by the tactile sense presentation device in the first application example, and the pressure value detected by the tactile sense presentation device in the second application example.
  • the information related to the tactile sensation presentation is information corresponding to the image, and includes information related to the thermal sensation stimulation and information related to the pressure sensation stimulation.
  • control unit 6 calculates a drive signal for the thermoelectric conversion element 2 and a drive signal for the actuator 5 based on the information related to the user's skin temperature and tactile sensation presentation, and outputs them to the thermoelectric conversion element 2 and the actuator 5 (ST3 ).
  • the control unit 6 calculates a drive signal corresponding to a feeling to be expressed, such as a feeling of being held by hands, a feeling of an explosion, a feeling of touching hot water containing hot tea, or the like.
  • the thermoelectric conversion elements 2 and actuators 5 are driven based on drive signals. Thereby, the pressure stimulus and the thermal stimulus are presented to the user.
  • thermoelectric conversion element [Specific example of tactile presentation]
  • FIG. 26 is an example showing an example of presenting the sensation of being held. Based on a drive signal having a control pattern of increasing the temperature at 0.4° C./second and decreasing the temperature at 0.2° C./second after 3 seconds, the control unit 6 expresses the sensation of being held by the hand.
  • the thermoelectric conversion element 2 is driven (ST11). At this time, it is assumed that the display 13 displays an image of the virtual person grasping the wrist for the user U.
  • the controller 6 determines whether or not the virtual person has released the wrist on the video (ST12). If it is determined that the wrist has been released (YES), the controller 6 controls the thermoelectric conversion element 2 to lower the temperature to the skin temperature (ST13), and the process ends. On the other hand, if it is determined that the wrist is not released, the process returns to ST11 and the process is repeated.
  • FIG. 27 is an example showing an example of presenting the sensation of touching a hot tea cup.
  • the control unit 6 controls the thermoelectric conversion element 2 based on a drive signal having a control pattern of increasing the temperature at 0.8° C./second and decreasing the temperature at 0.2° C./second after 3 seconds as an expression of the sensation of explosion. Drive (ST21).
  • the display 13 displays an image of the user U holding a cup filled with hot tea.
  • the control unit 6 determines the control unit 6 whether or not the teacup is released from the image (ST22). If it is determined that it has been released (YES), the controller 6 controls the thermoelectric conversion element 2 to lower the temperature to the skin temperature (ST23), and the process ends. On the other hand, if it is determined that it has not been released, the process returns to ST21 and the process is repeated.
  • FIG. 28 is an example showing an example of presenting the sensation of an explosion.
  • the control unit 6 drives the thermoelectric conversion element based on a drive signal having a control pattern in which the temperature rises at 1.2° C./second and after 2 seconds has passed, the temperature drops at 0.4° C./second as an expression of the sensation of an explosion. (ST31).
  • the controller 6 determines whether or not the explosion has ended on the image (ST32).
  • the controller 6 controls the thermoelectric conversion element 2 to lower the temperature to the skin temperature (ST33).
  • the process returns to ST31 and the process is repeated.
  • thermoelectric conversion elements shown in presentation examples 1 to 3 are for each type of thermal stimulation expressed by the thermoelectric conversion elements, such as holding hands, holding a teacup filled with hot tea, and exploding. It may be linked and stored in a database in advance. Then, a control pattern may be read out from the database according to the video content, and the thermoelectric conversion elements may be controlled based on the control pattern.
  • FIG. 29A is a schematic cross-sectional view showing the structure of the tactile presentation device 34.
  • FIG. 29(B) is a schematic plan view of the tactile sense presentation device 34 of FIG. 29(A) viewed from above.
  • a thin plate-like heat spreader 35 may be provided between the thermoelectric conversion element 2 located in the center and the expansion film 1 .
  • the heat spreader 35 has a disk shape with a plane area smaller than that of the thermoelectric conversion element 2 so as to be positioned inside the thermoelectric conversion element 2 in plan view.
  • the heat spreader 35 is made of metal with high thermal conductivity such as copper or aluminum, or ceramics such as aluminum nitride or silicon nitride. By configuring the heat spreader 35 with a material having a high thermal conductivity, the thermal stimulus by the thermoelectric conversion element 2 is efficiently transmitted to the user U's tactile presentation target site.
  • the thermoelectric conversion element typically has a polygonal shape such as a square or rectangle.
  • the expansion film corresponding to the corner portion of the thermoelectric conversion element may be torn due to tension during expansion.
  • a disk-shaped heat spreader 35 is interposed between the expansion film 1 and the thermoelectric conversion element. No tension is applied to the inflatable membrane, making it difficult to break.
  • the presentation unit 9 can have excellent durability.
  • FIG. 30A is a perspective view showing the configuration of the tactile presentation device 52.
  • FIG. 30(B) is a diagram of the tactile sense presentation device 52 of FIG. 30(A) viewed from the longitudinal direction.
  • the tactile sense presentation device 52 includes a cylindrical support 3, a detection unit 51 having a pressure sensor 511, a presentation unit 9, and two thermoelectric conversion elements 19.
  • the detection unit 51, the presentation unit 9, and the thermoelectric conversion element 19 are provided on the support 3 and are provided at positions different from each other.
  • the detection unit 51 and the presentation unit 9 are positioned substantially facing each other with the support 3 interposed therebetween.
  • Two thermoelectric conversion elements 19 are positioned between the detection section 51 and the presentation section 9 along the periphery of the cylindrical support 3 .
  • the thermoelectric conversion element 19 may be a flexible thermoelectric conversion element that is flexibly deformable, or may be a general thermoelectric conversion element having a ceramic substrate. From the viewpoint of being arranged on the support 3 having a curved surface, the thermoelectric conversion element is preferably a flexible thermoelectric conversion element that can be easily arranged along the curved surface. A configuration example of the thermoelectric conversion element will be described later.
  • the detection unit 51 is provided at a position corresponding to the area from the first joint to the fingertip of each of the index finger, middle finger, ring finger, and little finger.
  • the presentation unit 9 is provided at a position corresponding to the palm (center of the palm) when the user grips the tactile presentation device 52 .
  • the thermoelectric conversion elements 19 are provided at positions corresponding to the bases of the index finger, the middle finger, the ring finger, and the little finger when the user grips the tactile sense presentation device 52 .
  • the tactile sense presentation device 52 may be configured so as to have the thermoelectric conversion element 19 that performs only the thermal stimulation, separately from the presentation unit 9 that performs the pressure sense stimulation and the thermal sensation stimulation.
  • the presentation area of the thermal sensation stimulation can be made wider, and the thermal sensation can be efficiently presented even with a slight change in temperature.
  • some kind of stimulus such as a pressure stimulus or a thermal stimulus is presented over the entire palm, discomfort caused by localized stimuli can be alleviated.
  • thermoelectric conversion element 19 that performs only the thermal sensation stimulation is provided separately from the presentation unit 9, but a thin resistance heater is used instead of the thermoelectric conversion element 19, and the temperature sensation by the thin resistance heater is used. It is good also as a structure which stimulates. As a result, it is possible to widen the presentation area of the thermal stimulus by using both the presentation unit 9 and the thin resistance heater, and to efficiently present the thermal stimulus even with a slight temperature change.
  • thermoelectric conversion element (Peltier element)
  • Peltier element A configuration example of the thermoelectric conversion element will be described with reference to FIGS. 31 and 32.
  • FIG. Various thermoelectric conversion elements described below can be employed in the tactile sense presentation device according to the present technology. Note that the basic configuration of the thermoelectric conversion element has been described above with reference to FIG.
  • thermoelectric conversion element 2 includes two substrates 27 spaced apart from each other, and P-type thermoelectric semiconductors 23p and N between the two substrates 27. type thermoelectric semiconductor 23n, electrode 21a and electrode 21b.
  • the substrate 27 is made of ceramics such as alumina.
  • the substrate 27 made of ceramics has functions such as shape retention, insulation from an object to be cooled, and in-plane heat dispersion.
  • the electrodes 21a and 21b are made of copper, for example.
  • the P-type thermoelectric semiconductor 23p and the N-type thermoelectric semiconductor 23n are made of, for example, a Bi--Te compound semiconductor.
  • the skeleton-type thermoelectric conversion element 2 includes two resin films 28 spaced apart from each other and a P-type thermoelectric semiconductor 23p disposed between the two resin films 28. , N-type thermoelectric semiconductors 23n, electrodes 21a and 21b, and a separator 29 disposed between the thermoelectric semiconductors.
  • the resin film 28 is provided to insulate the object and the electrodes, for example, when the object to be cooled or heated is a conductor. Alternatively, the electrodes may be exposed without using the resin film 28 .
  • Skeleton-type thermoelectric conversion elements 2 are more easily deformed than general thermoelectric conversion elements 2 that use ceramic substrates.
  • the electrodes 21a and 21b are made of copper, for example.
  • the P-type thermoelectric semiconductor 23p and the N-type thermoelectric semiconductor 23n are made of, for example, a Bi--Te compound semiconductor.
  • a separator 29 is provided for shape retention.
  • a soft material may be used as the separator.
  • a configuration that does not use a separator may be adopted.
  • a flexible thermoelectric conversion element which is a kind of skeleton type, can have a structure with or without a resin film, and the separator is made of rubber, for example, and has a structure that can be flexibly deformed.
  • an organic semiconductor may be used as the thermoelectric semiconductor, and the flexibility can be further improved, and the weight can be reduced.
  • thermoelectric conversion element is arranged on the support side surface of the first expansion film.
  • thermoelectric conversion elements has a contact area with the expansion film different from that of the other thermoelectric conversion elements.
  • a tactile presentation device having a plurality of the inflatable membranes.
  • a tactile presentation device further comprising at least one of a temperature sensor arranged on the expansion film where the thermoelectric conversion element is arranged, a distance sensor arranged in the space, and an air pressure sensor arranged in the space.
  • thermoelectric conversion element is driven with a temperature rising/falling rate variable from 0 to ⁇ 10°C/s.
  • the tactile presentation device according to any one of (1) to (9) above, The tactile presentation device is arranged such that the inflatable membrane is in contact with the user's skin, After the temperature of the thermoelectric conversion element is increased to an arbitrary temperature at a first temperature increase rate, the temperature of the thermoelectric conversion element is decreased at a rate equal to or less than 1/2 of the first temperature increase rate.
  • a tactile presentation device that is controlled to raise the temperature when it reaches a temperature range of ⁇ 1°C.
  • the tactile presentation device is arranged such that the inflatable membrane is in contact with the user's skin, After the temperature of the thermoelectric conversion element is lowered to an arbitrary temperature at a first temperature decrease rate, the temperature of the thermoelectric conversion element is increased at a rate equal to or less than 1/2 of the first temperature decrease rate, and the temperature of the thermoelectric conversion element is the skin temperature of the user.
  • a tactile presentation device that is controlled to lower the temperature when it falls within the range of ⁇ 1°C.
  • a tactile presentation device that is controlled to lower the temperature when it falls within the range of ⁇ 1°C.
  • thermoelectric conversion element is driven using a previously prepared control pattern of the thermoelectric conversion element for each type of thermal stimulation expressed by the thermoelectric conversion element.
  • a computer executes a process of driving a plurality of thermoelectric conversion elements arranged on the support-side surface of the expansion membrane forming a space for holding the fluid between the support and controlling the inflow and outflow of the fluid. program to make

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

【課題】ユーザに対して様々な触覚を提示することが可能な技術を提供すること。 【解決手段】本技術に係る触覚提示装置は、支持体と、膨張膜と、熱電変換素子と、駆動部とを具備する。上記膨張膜は、上記支持体との間に流体を保持する空間を形成する。上記熱電変換素子は、上記膨張膜の上記支持体側の面に複数配置される。上記駆動部は、上記流体の流出入を制御する。

Description

触覚提示装置、触覚提示方法及びプログラム
 本技術は、ユーザに触覚を提示する触覚提示装置、触覚提示方法及びプログラムに関する。
 従来から、ユーザに対して触覚を提示する各種の触覚提示装置が知られている。
 例えば、下記特許文献1には、空気圧式の膨張空気袋上に温度の変化を作り出すペルチェデバイスが配置された、使用者に刺激を付与するトランスデューサが開示されている。該トランスデューサでは、膨張空気袋を用いてペルチェデバイスを持ち上げ、指に圧迫提示をし、ペルチェデバイスの硬い表面を皮膚に提供する。
特表2018-528046号公報
 このような分野において、ユーザに対して様々な触覚を提示することが可能な技術が求められている。
 以上のような事情に鑑み、本技術の目的は、ユーザに対して様々な触覚を提示することが可能な技術を提供することにある。
 本技術に係る触覚提示装置は、支持体と、膨張膜と、熱電変換素子と、駆動部とを具備する。
 上記膨張膜は、上記支持体との間に流体を保持する空間を形成する。
 上記熱電変換素子は、上記膨張膜の上記支持体側の面に複数配置される。
 上記駆動部は、上記流体の流出入を制御する。
 このような構成によれば、広い提示面積で、膨張膜の膨張による圧迫感や硬軟感といった圧覚刺激、及び、熱電変換素子による温冷覚刺激を行うことができ、様々な触感提示が可能となる。
 上記膨張膜は、第1の膨張膜と、上記第1の膨張膜よりも上記支持体側に位置する第2の膨張膜を含み、上記空間は、上記第2の膨張膜と上記支持体との間に形成され、上記熱電変換素子は、上記第1の膨張膜の上記支持体側の面に配置されてもよい。
 上記複数の熱電変換素子のうち少なくとも1つは、上記膨張膜との接触面積が他の熱電変換素子と異なってもよい。
 上記膨張膜を複数有しても良い。
 上記熱電変換素子が配置される上記膨張膜に配置された温度センサ、上記空間に配置された距離センサ、及び、上記空間に配置された気圧センサの少なくとも1つを更に具備しても良い。
 上記膨張膜の熱伝導率は0.2W/mK以上であってもよい。
 上記複数の熱電変換素子は個別に制御されてもよい。
 上記熱電変換素子の駆動後、上記駆動部は上記空間へ上記流体を流入するように制御されてもよい。
 上記熱電変換素子は、昇温・降温速度を0~±10℃/sに可変して駆動されてもよい。
 上記触覚提示装置は、上記膨張膜がユーザの皮膚に接するように配され、
 上記熱電変換素子は、第1の昇温速度で任意の温度まで昇温後、上記第1の昇温速度の1/2以下の速度で降温し、上記熱電変換素子の温度が上記ユーザの皮膚温度の±1℃の範囲となったら昇温するように制御されてもよい。
 上記触覚提示装置は、上記膨張膜がユーザの皮膚に接するように配され、
 上記熱電変換素子は、第1の降温速度で任意の温度まで降温後、上記第1の降温速度の1/2以下の速度で昇温し、上記熱電変換素子の温度が前記ユーザの皮膚温度の±1℃の範囲となったら降温するように制御されてもよい。
 上記熱電変換素子は、上記触覚提示装置を装着するユーザに表示される映像に応じた温冷覚刺激となるように駆動されてもよい。
 上記熱電変換素子は、予め準備されている、上記熱電変換素子により表現される温冷覚刺激の種類毎の上記熱電変換素子の制御パターンを用いて駆動されてもよい。
 本技術に係る触覚提示方法は、支持体との間に流体を保持する空間を形成する膨張膜の上記支持体側の面に配置された複数の熱電変換素子の駆動と上記流体の流出入を制御する。
 本技術に係るプログラムは、支持体との間に流体を保持する空間を形成する膨張膜の上記支持体側の面に配置された複数の熱電変換素子の駆動と上記流体の流出入を制御する処理をコンピュータに実行させる。
本技術の第1の実施形態に係る触覚提示装置の構成を示す模式断面図及び模式平面図である。 第1~第3の実施形態に係る触覚提示装置の内部制御構成を示すブロック図及び熱電変換素子の制御構成を示す図である。 熱電変換素子の動作原理を説明する図である。 図1の触覚提示装置における使用時の動作例を示す模式図である。 第2の実施形態に係る触覚提示装置の構成及び動作の一例を示す模式断面図である。 第3の実施形態に係る触覚提示装置の構成及び動作の一例を示す模式断面図である。 第3の実施形態に係る触覚提示装置の構成例を示す模式平面図である。 第4の実施形態に係る触覚提示装置の構成例を示す模式断面図である。 触覚提示装置の適用例を説明する図である。 図9の触覚提示装置の使用例を示す図である。 図9の触覚提示装置の制御構成を示す機能ブロック図である。 触覚提示装置の他の適用例を示す図である。 触覚提示装置の更に他の適用例を示す図である。 図13の触覚提示装置の制御構成を示す機能ブロック図である。 触覚提示装置の更に他の適用例を示す図である。 触覚提示装置の更に他の適用例を示す図である。 触覚提示装置の更に他の適用例を示す図である。 触覚提示装置における熱電変換素子の配置例を示す図である。 触覚提示装置における熱電変換素子と膨張膜とのの好ましい接触面積を説明するための図である。 触覚提示装置における熱電変換素子の制御例を説明するための図である。 触覚提示装置における熱電変換素子の他の制御例を説明するための図である。 触覚提示装置における熱電変換素子の更に他の制御例を説明するための図である。 触覚提示装置における熱電変換素子の更に他の制御例を説明するための図である。 触覚提示装置における熱電変換素子の更に他の制御例を説明するための図である。 触覚提示装置における基本的な触覚提示方法を示すフロー図である。 提示例1での触覚提示装置における熱電変換素子の制御方法を示すフロー図である。 提示例2での触覚提示装置における熱電変換素子の制御方法を示すフロー図である。 提示例3での触覚提示装置における熱電変換素子の制御方法を示すフロー図である。 触覚提示装置の変形例の模式断面図及び模式平面図である。 触覚提示装置の他の変形例の模式断面図及び模式平面図である。 熱電変換素子の構造例を説明する斜視図及び模式断面図である。 熱電変換素子の他の構造例を説明する斜視図及び模式断面図である。
 以下、本技術に係る実施形態を、図面を参照しながら説明する。以下の説明において、同様の構成については同様の符号を付し、既出の構成については説明を省略する場合がある。
<第1実施形態>
[全体構成及び各部の構成]
 図1(A)は、本技術の第1実施形態に係る触覚提示装置10の構成を示す模式断面図である。図1(B)は、図1(A)の触覚提示装置10を上からみた模式平面図である。図上、触覚提示装置10の厚み方向をZ軸とし、該Z軸に互いに直交する軸をX軸及びY軸とする。明細書において、Z軸方向に上から触覚提示装置10をみた場合を平面視という。また、触覚提示装置の使用時の形態において、ユーザの皮膚に近い側を上又は皮膚側、その反対の側を下又は非皮膚側ということがある。
 触覚提示装置は、触覚提示装置の一部を構成する後述する膨張膜が、ユーザの皮膚に接し、該皮膚に対して、圧迫感や硬軟感、温冷感といった触覚を提示する。本実施形態では、触覚提示対象部位が手の指先である例をあげて説明するが、指先に限定されない。他の例については後述する。
 図1に示すように、触覚提示装置10は、支持体3と、提示部9とを有する。
 支持体3は例えば指先全体を載置可能な程度の大きさの平面を有した土台である。使用時、支持体3は例えば水平面を有する机上等に設置され、提示部9に指先をおいて使用される。
 提示部9は、圧覚刺激及び温冷覚刺激によって、圧迫感や硬軟感、温冷感といった触覚を提示する。
 提示部9は、流体を流出入可能な空間4と、空間4を覆うように設けられた膨張膜1と、膨張膜1の第2の面1bに配置された複数の熱電変換素子2とを有している。また、提示部9は、流体を供給する供給源14と、その駆動により空間4への流体の流出入を制御する駆動部としてのアクチュエータ5と、空間4と供給源14を繋ぐパイプ15とを有している。
 図1に示す例では、膨張膜1は略正円形の平面形状を有する。膨張膜1の周縁部は支持体3に固定される。支持体3に対して膨張膜1が設けられることによって、膨張膜1と支持体3との間に流体を保持する空間4が形成される。
 尚、膨張膜1の形状は円形に限定されず、触覚提示装置の用途、触覚提示対象部位によって適宜設定され得る。
 空間4に保持される流体は、例えば、空気、ヘリウムなどの気体であってもよいし、水や油などの液体であってもよい。なお、流体の種類については特に限定されず、各種の流体を用いることができる。尚、流体として液体を用いる場合、熱電変換素子2に防水加工処理を施してもよい。
 膨張膜1は、第1の面1aと第2の面1bを有する。触覚提示装置10において、膨張膜1は露出している。第1の面1aは、触覚提示装置10の使用時に、ユーザの皮膚に接触する皮膚側面である。第2の面1bは、第1の面1aと反対側の非皮膚側面であり、支持体3側に位置する面である。
 膨張膜1は、薄い膜状に構成されており、空間4への流体の流出入により変形可能に構成されている。膨張膜1に用いられる材料としては、伸縮性を考慮して典型的にはシリコンゴム、ウレタンゴム、エチレンプロピレンジエンゴム(EPDM)、天然ゴムなどの各種のゴムが用いられる。なお、膨張膜1は、流体の空間4への流出入に応じて変形可能(膨張及び収縮可能)であればよく、ゴム以外の材料により構成されていてもよい。
 膨張膜1は、空間4への流体の流入に応じて伸びることで、外側に向けて膨張(突出)することが可能とされている。この膨張膜1の膨張により、ユーザの指先に対して圧覚刺激がなされる。また、膨張膜1は、空間4からの流体の流出に応じて縮むことで、外側へ向けて膨張した状態から収縮して元の状態へ戻ることが可能とされている。
 このように、空間4への流体の流出入を制御することにより、ユーザの膨張膜1と接する皮膚に対して圧覚刺激を与え、圧迫感や硬軟感といった触覚を提示することができる。例えば、空間4の圧力の調整により提示する硬さの調整が可能である。
 アクチュエータ5は、空間4及び供給源14を繋ぐパイプ15に対して取り付けられている。アクチュエータ5は、その駆動により、空間4に対する流体の流出入を制御する。アクチュエータ5は、例えば、ポンプ、ファン、ブロア等の各種のアクチュエータ5により構成されるが、どのような構成とされていてもよい。
 供給源14は、パイプ15を介して空間4に流体を供給可能とされる。供給源14は、例えば、用いられる流体が空気の場合、エアコンプレッサなどの圧縮空気圧源であってもよい。また、用いられる流体が水などの液体である場合や、空気以外の特殊な気体(例えば、ヘリウムなど)である場合、流体を貯留可能なタンクなどであってもよい。
 熱電変換素子2は、典型的にはペルチェ素子である。
 触覚提示装置10において、熱電変換素子の放熱または吸熱による熱を用いて、ユーザに対して温冷覚刺激を与え、温感や冷感を提示する。
 図3は、ペルチェ素子(熱電変換素子)の原理を示す動作説明図である。熱電変換素子2は、P型の熱電半導体23pとN型の熱電半導体23nが電極21aと電極21bに接合され、P型の熱電半導体23pとN型の熱電半導体23nに直流電流を流す電源22が電極21bに接続される。
 熱電変換素子2は、図3(A)に矢印E1で示すように、N型の熱電半導体23nからP型の熱電半導体23pに直流電流を流すと、電極21a側から電極21b側へ熱が輸送されることで、電極21a側が吸熱により冷却されるとともに、電極21b側が放熱により加熱される。
 これに対して、図3(B)に矢印E2で示すように、P型の熱電半導体23pからN型の熱電半導体23nに直流電流を流すと、電極21b側から電極21a側へ熱が輸送されることで、電極21b側が吸熱により冷却されると共に、電極21a側が放熱により加熱される。
 このように、供給される電流の向きを変えることで、熱電変換素子2の加熱と冷却を切り替えることができる。
 熱電変換素子2は、膨張膜1の第2の面1b側に複数配置される。熱電変換素子2は、典型的には、平面形状が矩形の薄い板状である。尚、平面形状は矩形に限定されず、円形等、所望の形状とすることができる。
 図1(B)に示す例では、同じ寸法の熱電変換素子2が5つ配置される。複数の熱電変換素子2のうちの1つは平面視で膨張膜1の中央に位置する。図1(B)において、他の4つの熱電変換素子2は、略中央に位置する熱電変換素子2のY軸方向に沿った上下、X軸方向に沿った左右それぞれに位置する。複数の熱電変換素子2は、互いに離間して位置する。
 触覚提示装置10の使用時、ユーザの指先は、指の延びる方向がY軸方向と略平行となるように膨張膜1の第1の面1a上におかれる。
 図1(B)において、膨張膜1のX軸方向における中央部に位置する3つの熱電変換素子に符号2Cを付す。膨張膜1のX軸方向における中央部の左右それぞれに位置する側部に位置する2つの熱電変換素子に符号2Sを付す。これら熱電変換素子を2C,2Sというように特に区別する必要がない場合は、熱電変換素子2という。
 尚、熱電変換素子2の数や配置はこれに限定されない。熱電変換素子2の具体的な寸法及び配置等については後述する。
 熱電変換素子2は、膨張膜1の非皮膚側面となる第2の面1bに配置されるため、触覚提示装置10の使用時、ユーザUの指先は、膨張膜1を間に介して熱電変換素子2に間接的に接することになる。
 ここで、熱電変換素子2を膨張膜1の第1の面1aに配置した場合、ユーザUには、熱電変換素子2の硬く平坦といった質感が提示される。このため、膨張膜1の膨張による圧覚刺激により、硬い、柔らかいといった質感を提示しても、ユーザUの指先に直接接する熱電変換素子2の存在によって、その質感を十分に提示することが難しい。
 これに対して、本実施形態では、熱電変換素子2は、膨張膜1の非皮膚側面となる第2の面1bに配置されるので、圧覚刺激を用いた、硬い、柔らかいといった質感の提示が、熱電変換素子2が第1の面1a側に配置されることによって損なわれる、ということがない。
 このように、膨張膜1の第2の面1bに熱電変換素子2を配置し、ユーザUの指が直接熱電変換素子2と接しない構造とすることにより、様々な触感提示が可能となる。
 また、触覚提示装置10の使用時にユーザの皮膚に直接接触する膨張膜1に熱電変換素子2が配置されるので、熱電変換素子2による温冷提示がユーザの皮膚に対し速やかに行われ得る。すなわち、熱電変換素子2による放熱及び吸熱といった熱の利用効率を良好なものとすることができ、熱電変換素子2において少ない温度上昇又は降下でユーザUへの温冷提示が可能となる。熱電変換素子としてのペルチェ素子は消費電力が大きいため、熱電変換素子2をユーザの皮膚に直接接触する膨張膜1に配置することは、熱利用効率の観点、ひいては消費電力の観点からも好ましい。
 熱電変換素子2は、膨張膜1の第2の面1bに接着剤(図示せず)によって固定して配置される。接着剤は、例えば、熱電変換素子2の接着剤の塗工側の面(上面)の全面を塗工領域として塗工される。接着剤の塗工パターンは特に限定されない。例えば、塗工領域において、接着剤は、スパイラル状といった塗工部と非塗工部とが混在する間欠塗工パターンで形成されてもよいし、塗工領域全域に亘って非塗工部が存在しないような塗工パターンで形成されてもよい。以下の説明において、接着剤の塗工領域とは、接着剤の塗工部全体を囲んで得られる領域を意味し、非塗工部が含まれていてもよい。
 尚、接着剤は、熱電変換素子2の塗工側の面の一部の領域を塗工領域として形成されてもよい。
 熱電変換素子2を膨張膜1から剥がれ落ちにくくし、また、熱電変換素子2の熱の利用効率を高めるという観点から、熱電変換素子2における塗工領域を広くとる、すなわち、熱電変換素子2と膨張膜1との接触面積を広くとることが好ましい。ここでは、熱電変換素子2の全面を塗工領域として形成される例をあげる。
 複数の熱電変換素子2は、互いに間隔をあけて間欠配置される。これにより、膨張膜1の第2の面1bは、接着剤によって熱電変換素子2が接着される熱電変換素子接着領域と、熱電変換素子2が接着されない熱電変換素子非接着領域とを有する。
 膨張膜1の熱電変換素子接着領域においては、熱電変換素子2と膨張膜1との接着によって膨張膜1の膨張が阻害される。
 一方、膨張膜1の熱電変換素子非接着領域においては、膨張膜1の膨張が阻害されない。
 このように、触覚提示装置10において、複数の熱電変換素子2が互いに離間して配置されることにより、膨張膜1の膨張が阻害されない熱電変換素子非接着領域が膨張膜1の全域に分布する形態となる。これにより、広い触覚提示範囲で、膨張膜の膨張による圧覚刺激が可能となるとともに圧電変換素子による温冷覚刺激も可能となる。
 尚、熱電変換素子2を間欠配置せず、接して配置してもよく、後述する他の実施形態においても同様である。
 膨張膜1に対する熱電変換素子接着領域は、熱電変換素子2における接着剤の塗工領域に対応する。
 接着剤が熱電変換素子2の塗工側の面の一部の領域を塗工領域として形成される場合、接着剤の塗工領域以外の領域では、膨張膜1は、熱電変換素子2と接着されていないので膨張が阻害されない領域となり得る。例えば、熱電変換素子2における接着剤の塗工領域を、熱電変換素子2の平面形状よりも一回り小さい矩形状とした場合、熱電変換素子2において、小さい矩形状の塗工領域は熱電変換素子接着領域となるが、その周囲にある枠状部分は熱電変換素子非接着領域となる。このような接着形状の場合、例えば複数の熱電変換素子を接して配置した場合、隣り合う熱電変換素子の境界付近は熱電変換素子非接着領域となり得る。従って、複数の熱電変換素子を接して配置したとしても、接着剤の塗工領域の設定によって、熱電変換素子の存在によって膨張が阻害されない領域を膨張膜の面内で分布するように構成することが可能である。
 複数の熱電変換素子2が一括して同時に制御され、温冷提示対象領域部位(本実施形態では手の指先)への温冷覚刺激が行なわれてもよい。また、複数の熱電変換素子2が個別に制御されてもよい。制御例については後述する。
 以上のように、触覚提示装置10において、複数の熱電変換素子2を膨張膜1の第2の面1bに複数、間欠配置することにより、圧覚刺激及び温冷覚刺激による様々な触覚提示を可能とするとともに、消費電力低減が可能となる。
 ここで、昇温のために薄型抵抗ヒータを用いることも考えられるが、熱電変換素子(ペルチェ素子)を用いることにより、薄型抵抗ヒータと比較して低消費電力かつ早い応答で温度変化を提示することが可能となる。また、薄型抵抗ヒータでは、自然放熱により温度低下するため、温度低下に時間がかかる。これに対し、熱電変換素子(ペルチェ素子)では冷却が可能であるので、温度低下も容易に制御可能となり、速やかに所望の温度を提示することができる。
 図2(A)は、触覚提示装置10の構成を示すブロック図である。図2(B)は、触覚提示装置10の構成の一部をより詳細に説明するための図であり、熱電変換素子の制御構成を示す図である。
 図2に示すように、触覚提示装置10は、制御部6と、提示部9における熱電変換素子2及びアクチュエータ5と、通信部7と、記憶部8を備えている。
 制御部6は、記憶部8に記憶された各種のプログラムに基づき種々の演算を実行し、触覚提示装置10の各部を統括的に制御する。
 制御部6は、ハードウェア、又は、ハードウェア及びソフトウェアの組合せにより実現される。ハードウェアは、制御部6の一部又は全部として構成され、このハードウェアとしては、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)、あるいは、これらのうち2以上の組合せなどが挙げられる。
 アクチュエータ5は、提示部9の一部であり、制御部6の制御により駆動されて、空間4に対する流体の流出入を制御する。
 熱電変換素子2は、提示部9の一部であり、制御部6の制御により駆動されて加熱と冷却が切り替えられる。
 図2(B)に示すように、触覚提示装置10は、熱電変換素子2を駆動する直流の電源22と、電流の向きを切り替えるスイッチ26を備える。制御部6は、触覚提示に係る情報(後述する)に基づく制御信号に基づいてスイッチ26を制御し、熱電変換素子2による加熱と冷却を切り替える。電源22は例えば電池である。
 尚、ここでは、触覚提示装置10が電源22を備える例をあげたが、これに限定されない。例えば、触覚提示装置と外部機器を有線で接続し、外部機器に整流や降圧又は昇圧回路を備え、圧電変換素子の電源を外部機器から供給するとともに、外部機器に備えたスイッチで供給される電流の向きを切り替えるようにしてもよい。
 記憶部8は、制御部6の処理に必要な各種のプログラムや、各種のデータが記憶される不揮発性のメモリと、制御部6の作業領域として用いられる揮発性のメモリとを含む。なお、上記各種のプログラムは、光ディスク、半導体メモリなどの可搬性の記録媒体から読み取られてもよいし、ネットワーク上のサーバ装置等からダウンロードされてもよい。
 通信部7は、有線又は無線により、他の触覚提示装置10等の他の装置と通信可能に構成されている。触覚提示装置10は、他の装置との間で直接的に通信を行ってもよいし、ネットワーク上のサーバ装置等の他の装置を介して、他の装置との間で間接的に通信を行ってもよい。
 次に、図4を用いて、使用時における触覚提示装置の動作について説明する。
 図4(A)は、触覚提示装置において、空間4への流体の流入が行われる前の状態を示す。
 図4(B)は、触覚提示装置において、空間4への流体の流入が行われた後の状態を示す。
 使用時、触覚提示装置10の膨張膜1にユーザUの指先が接するように膨張膜1上に指が載置される。
 図4(A)に示すように、流体の流入が行われる前の、膨張膜1が収縮した状態では、ユーザUの指先の腹部が、膨張膜1を介してX軸方向中央に位置する3つの熱電変換素子2Cに接して置かれた状態となる。
 図4(B)に示すように、流体の流入が行われ、膨張膜1が膨張した状態では、膨張膜1の全体が膨張するが、ユーザUの指先の重みによって、膨張膜1のX軸方向中央部ではZ軸方向における膨らみが抑えられる。一方、膨張膜1のX軸方向側部ではZ軸方向に上に向かって膨らむ。膨張膜1は全体的にユーザUの指先を包み込むように変形し、ユーザUの指の腹部及び側部は、膨張膜1を介して、X軸方向中央部に位置する3つの熱電変換素子2C及びX軸方向側部に位置する2つの熱電変換素子2Sに接した状態となる。膨張膜1に熱電変換素子2が接着固定されているため、膨張膜1の膨張時において、熱電変換素子2の位置は膨張膜1の変形に追従して変化する。膨張膜1は、ユーザUの指先の形状に沿って変形する。このため、膨張膜1を間に介して熱電変換素子2と指先とが接する形態となるので、熱電変換素子2の熱の利用効率が良好となり、効果的に温冷提示を行うことができる。
<第2実施形態>
[全体構成及び各部の構成]
 図5は、本技術の第2実施形態に係る触覚提示装置30の構成を示す模式断面図であり、使用時の動作例を示す模式図である。本実施形態は、第1実施形態と比較して、膨張膜が2つある点で相違する。
 触覚提示装置30は、後述する触覚提示装置30を構成する第1の膨張膜11が、ユーザの皮膚に接し、皮膚に対して、圧迫感や硬軟感、温冷感といった触覚を提示する。ここでは、触覚提示対象部位が手の指先である例をあげる。
 図5(A)は、触覚提示装置30において、空間4への流体の流入が行われる前の状態を示す。
 図5(B)は、触覚提示装置30において、空間4への流体の流入が行われた後の状態を示す。
 触覚提示装置30の構成について説明する。
 図5に示すように、触覚提示装置30は、支持体3と、提示部9とを有する。提示部9は、使用時、ユーザの指先に対して触覚を提示する。
 提示部9は、流体を流出入可能な空間4と、空間4を覆うように設けられた第2の膨張膜12と、第2の膨張膜12よりも上側に配置された第1の膨張膜11と、第1の膨張膜11の第2の面11bに配置された複数の熱電変換素子2とを有している。
 また、提示部9は、流体を供給する供給源14と、その駆動により空間4への流体の流出入を制御する駆動部としてのアクチュエータ5と、空間4と供給源14を繋ぐパイプ15とを有している。
 第1の膨張膜11は、図1(B)に示すように、第1の実施形態と同様の略正円形の平面形状を有する。また、第1の膨張膜11の第2の面11bに配置された複数の熱電変換素子2の配置は、図1(B)に示すように、第1の実施形態と同様に配置される。
 第2の膨張膜12は、平面視で第1の膨張膜11と略同一の形状を有する。
 第1の膨張膜11及び第2の膨張膜12それぞれの周縁部は支持体3に固定される。支持体3に対して第2の膨張膜12が設けられることによって、第2の膨張膜12と支持体3との間に流体を保持する空間4が形成される。
 第1の膨張膜11は、第1の面11aと第2の面11bを有する。触覚提示装置30において、第1の膨張膜11は露出している。第1の面11aは、触覚提示装置30の使用時に、ユーザの皮膚に接触する皮膚側面である。第2の面11bは、第1の面11aと反対側の非皮膚側面であり、支持体3側に位置する面である。
 第2の膨張膜12は、第1の面12aと第2の面12bを有する。触覚提示装置30において、第2の膨張膜12は露出しておらず、第1の膨張膜11よりも下側に位置する。第1の面12aは皮膚側面である。第2の面12bは、第1の面12aと反対側の非皮膚側面であり、支持体3側に位置する面である。
 第1の膨張膜11及び第2の膨張膜12は、それぞれ薄い膜状に構成されており、空間4への流体の流出入により変形可能に構成されている。第1の膨張膜11及び第2の膨張膜12に用いられる材料としては、伸縮性を考慮して典型的にはシリコンゴム、ウレタンゴム、エチレンプロピレンジエンゴム(EPDM)、天然ゴムなどの各種のゴムが用いられる。なお、第1の膨張膜11及び第2の膨張膜12は、流体の空間4への流出入に応じて変形可能(膨張及び収縮可能)であればよく、ゴム以外の材料により構成されていてもよい。
 熱電変換素子2は、第1の膨張膜11と第2の膨張膜12との間に位置する。
 熱電変換素子2は、皮膚側面である第1の面2aと、非皮膚側面である第2の面2bを有する。
 複数の熱電変換素子2それぞれの第1の面2aは、第1の膨張膜11の第2の面11bと接着剤(図示せず)により接着されて配置される。更に、複数の熱電変換素子2それぞれの第2の面2bは、第2の膨張膜12の第1の面12aと接着剤(図示せず)により接着されて配置される。
 尚、ここでは、第2の膨張膜12が熱電変換素子2と接着剤によって接着される例をあげるが、両者を接着剤によって接着しない形態としてもよい。
 第1の膨張膜11と第2の膨張膜12との間の空間と、第2の膨張膜12と支持体3との間の空間4とは非連結状態であり、互いに独立した空間である。
 第2の膨張膜12は、空間4への流体の流入に応じて伸びることで、外側に向けて膨張(突出)することが可能とされている。更に、第2の膨張膜12の膨張に追従して、第2の膨張膜12に熱電変換素子2を間に介して接着する第1の膨張膜11も膨張する。第1の膨張膜11及び第2の膨張膜12の膨張により、ユーザの指先に対して圧覚が提示される。
 また、第2の膨張膜12は、空間4からの流体の流出に応じて縮むことで、外側へ向けて膨張した状態から収縮して元の状態へ戻ることが可能とされている。更に、第2の膨張膜12の収縮に追従して第1の膨張膜11も収縮する。
 第1の膨張膜11と第2の膨張膜12とは、熱電変換素子2を間に介して接着されている。これにより、第1の膨張膜11から熱電変換素子2が落下しても該熱電変換素子2を第2の膨張膜12によって支持することができ、温冷提示を継続させることができる。更に、第2の膨張膜12は、熱電変換素子2から移動する熱を分散させる放熱部として機能し、所望の温冷提示を速やかに行うことができる。
 第2の膨張膜12が熱電変換素子2と接着剤によって接着されていない形態の場合、流体流入前の状態において、第2の膨張膜12と熱電変換素子2とを接するよう配置してもよいし、接しないように配置してもよい。熱電変換素子2が落下しても該熱電変換素子2を第2の膨張膜12によって支持することができ、温冷提示を継続させることができる。また、流体流入前の状態で第2の膨張膜12と熱電変換素子2とが接しないように配置されていても、空間4に流体を流入することにより、熱電変換素子2を押し上げるように第2の膨張膜12は膨張するので、第2の膨張膜12と熱電変換素子2とは接する形態となる。これにより、第2の膨張膜12を放熱部として効率よく機能させることができ、所望の温冷提示を速やかに行うことができる。
 また、本実施形態においても、第1の実施形態と同様に、複数の熱電変換素子2は、互いに間隔をあけて間欠配置することができる。これにより、第1の膨張膜11の第2の面11bは、接着剤によって熱電変換素子2が接着される熱電変換素子接着領域と、熱電変換素子2が接着されない熱電変換素子非接着領域とを有する。同様に、第2の膨張膜12の第1の面12aは、接着剤によって熱電変換素子2が接着される熱電変換素子接着領域と、熱電変換素子2が接着されない熱電変換素子非接着領域とを有する。
 第1の膨張膜11の熱電変換素子接着領域においては、熱電変換素子2と第1の膨張膜11との接着によって第1の膨張膜11の膨張が阻害される。第2の膨張膜12の熱電変換素子接着領域においては、熱電変換素子2と第2の膨張膜12との接着によって第2の膨張膜12の膨張が阻害される。
 一方、第1の膨張膜11の熱電変換素子非接着領域においては、第1の膨張膜11が熱電変換素子2の存在によって第1の膨張膜11の膨張が阻害されない。第2の膨張膜12の熱電変換素子非接着領域においては、第2の膨張膜12が熱電変換素子2の存在によって第2の膨張膜12の膨張が阻害されない。
 このように、触覚提示装置30において、熱電変換素子2が複数間欠配置されることにより、第1の膨張膜11及び第2の膨張膜12の膨張が阻害されない熱電変換素子非接着領域が第1の膨張膜11及び第2の膨張膜12の全域に分布する形態となる。これにより、広い触覚提示範囲で、膨張膜の膨張による圧覚刺激が可能となるとともに熱電変換素子による温冷覚刺激も可能となる。
 更に、熱電変換素子2は、第1の実施形態と同様に、第1の膨張膜11の非皮膚側面となる第2の面11bに配置されるため、触覚提示装置30の使用時、ユーザUの指先は、第1の膨張膜11を間に介して熱電変換素子2に間接的に接することになる。これにより、熱電変換素子2の硬く平坦といった質感が直接ユーザの指先に提示されにくくなる。従って、圧覚刺激を用いた、硬い、柔らかいといった質感の提示が、熱電変換素子2が第1の面11a側に配置されることによって損なわれる、ということがない。
 このように、第1の膨張膜11の第2の面11bに熱電変換素子2を配置し、ユーザUの指が直接熱電変換素子2と接しない構造とすることにより、様々な触感提示が可能となる。
 また、触覚提示装置30の使用時にユーザの皮膚に直接接触する第1の膨張膜11に熱電変換素子2が配置されるので、熱電変換素子2による温冷提示がユーザの皮膚に対し速やかに行われ得る。すなわち、熱電変換素子2による放熱及び吸熱といった熱の利用効率を良好なものとすることができ、熱電変換素子2において少ない温度上昇又は降下でユーザUへの温冷提示が可能となる。また、消費電力の低減が可能となる。
 以上のように、触覚提示装置30において、複数の熱電変換素子2を第1の膨張膜11の第2の面11bに複数間欠配置することにより、圧覚刺激及び温冷覚刺激による様々な触覚提示を可能とするとともに、消費電力低減が可能となる。
 図2(A)は、触覚提示装置30の構成を示すブロック図である。図2(B)は、触覚提示装置30の構成の一部をより詳細に説明するための図であり、熱電変換素子の制御構成を示す図である。
 図2に示すように、触覚提示装置30は、制御部6と、提示部9における熱電変換素子2及びアクチュエータ5と、通信部7と、記憶部8を備えている。基本的な構成は第1の実施形態と同様である。
 次に、図5を用いて、使用時における触覚提示装置の動作について説明する。
 使用時、触覚提示装置30の第1の膨張膜11にユーザUの指先が接するように第1の膨張膜11上に指が載置される。
 図5(A)に示すように、流体の流入が行われる前の、第1の膨張膜11及び第2の膨張膜12が収縮した状態では、ユーザUの指先の腹部が、第1の膨張膜11を介してX軸方向中央に位置する3つの熱電変換素子2Cに接して置かれた状態となる。
 図5(B)に示すように、流体の流入が行われ、第1の膨張膜11が膨張した状態では、第1の膨張膜11及び第2の膨張膜12の全体が膨張するが、ユーザUの指先の重みによって、第1の膨張膜11及び第2の膨張膜12のX軸方向中央部ではZ軸方向における膨らみが抑えられる。一方、第1の膨張膜11及び第2の膨張膜12のX軸方向側部ではZ軸方向に上に向かって膨らむ。第1の膨張膜11及び第2の膨張膜12は全体的にユーザUの指先を包み込むように変形し、ユーザUの指の腹部及び側部は、第1の膨張膜11を介して、X軸方向中央部に位置する3つの熱電変換素子2C及びX軸方向側部に位置する2つの熱電変換素子2Sに接した状態となる。第1の膨張膜11及び第2の膨張膜12に熱電変換素子2が接着固定されているため、第1の膨張膜11及び第2の膨張膜12の膨張時において、熱電変換素子2の位置は第1の膨張膜11及び第2の膨張膜12の変形に追従して変化する。このため、第1の膨張膜11を間に介して熱電変換素子2と指先とが接する形態となるので、熱電変換素子2の熱の利用効率が良好となり、効果的に温冷提示を行うことができる。
<第3実施形態>
[全体構成及び各部の構成]
 本実施形態は、第1及び第2実施形態と比較して、流体の流出入可能な空間が複数ある点で相違する。
 図6(A)及び(B)は、本技術の第3実施形態に係る触覚提示装置31の構成を示す模式断面図であり、使用時の動作例を示す模式図である。
 図6(C)は、本技術の第3実施形態に係る触覚提示装置32の構成を示す模式断面図である。
 触覚提示装置31及び32は、いずれも、流体の流出入可能な空間が複数ある構成を有する。触覚提示装置31においては、各空間に対応する膨張膜が第1の実施形態のように1つである。触覚提示装置32においては、各空間に対応する膨張膜が第2の実施形態のように2つである。
 触覚提示装置31(32)は、提示部9を構成する膨張膜1(第1の膨張膜11)が、ユーザの皮膚に接することが可能に構成され、皮膚に対して、圧迫感や硬軟感、温冷感といった触覚を提示する。ここでは、触覚提示対象部位が手の指先である例をあげる。
 触覚提示装置31の構成について説明する。
 図6(A)は、触覚提示装置31において、空間4への流体の流入が行われる前の状態を示す。
 図6(B)は、触覚提示装置31において、空間4への流体の流入が行われた後の状態を示す。
 図6(A)及び(B)に示すように、触覚提示装置31は、支持体3と、提示部9とを有する。提示部9は、複数の温冷膨張室90から構成される。これに対して、第1及び第2の実施形態で説明した触覚提示装置10及び30では、温冷膨張室が1つである。
 各温冷膨張室90は、流体を流出入可能な空間4と、空間4を覆うように設けられた膨張膜1と、膨張膜1の第2の面1bに接着配置された複数の熱電変換素子2とを有している。
 また、各温冷膨張室90は、流体を供給する供給源14と、その駆動により空間4への流体の流出入を制御する駆動部としてのアクチュエータ5と、空間4と供給源14を繋ぐパイプ15とを有している。各アクチュエータ5を独立して制御することにより、温冷膨張室90それぞれの膨張を個別に制御することができ、指先と提示部9との接触面積を変化させることができる。更に、各温冷膨張室90の熱電変換素子2を互いに独立して制御することにより、より様々な触覚提示が可能となる。
 触覚提示装置32の構成について説明する。
 図6(C)に示すように、触覚提示装置32は、支持体3と、提示部9とを有する。提示部9は、複数の温冷膨張室91から構成される。
 各温冷膨張室91は、流体を流出入可能な空間4と、空間4を覆うように設けられた第2の膨張膜12と、第2の膨張膜12よりも上側に配置された第1の膨張膜11と、複数の熱電変換素子2とを有している。
 触覚提示装置32において、熱電変換素子2は、第2の実施形態と同様に第1の膨張膜11と第2の膨張膜12との間に配置され、一方の面(皮膚側の面)が第1の膨張膜11の第2の面11bに、他方の面(非皮膚側の面)が第2の膨張膜12の第1の面12aに接着して、配置される。
 また、提示部9は、流体を供給する供給源14と、その駆動により空間4への流体の流出入を制御する駆動部としてのアクチュエータ5と、空間4と供給源14を繋ぐパイプ15とを有している。各アクチュエータ5を独立して制御することにより、温冷膨張室90それぞれの膨張を個別に制御することができ、より様々な触覚提示をすることができる。
 図7(A)~(D)は、触覚提示装置31(32)の平面図であり、提示部9の構成例である。尚、図示する形態に限定されず、種々の形態をとり得る。
 図7(A)に示すように、提示部9が、X軸方向に3つの温冷膨張室90(91)が並んで構成されてもよい。図に示す例では、各温冷膨張室90(91)を構成する膨張膜1(第1の膨張膜11)は、平面形状が略矩形状を有する。各温冷膨張室90(91)を構成する膨張膜1(第1の膨張膜11)の平面形状は略同じである。膨張膜1(第1の膨張膜11)は、膨張膜1(第1の膨張膜11)上に載置されるユーザUの指先の指の延びる方向(Y軸方向)に沿った長手方向を有する。3つの温冷膨張室90(91)のうちX軸方向中央部に位置する温冷膨張室90(91)には、Y軸方向に沿って間欠配置された熱電変換素子2が3つ位置する。このうち、真ん中に位置する熱電変換素子2は、膨張膜1(第1の膨張膜11)の略中央に位置する。3つの温冷膨張室90(91)のうち両側に位置する2つの温冷膨張室90(91)には、平面視したときに、該温冷膨張室90(91)を構成する膨張膜1(第1の膨張膜11)の略中央に熱電変換素子2が1つ位置する。
 図7(B)に示す例では、提示部9が、X軸方向に3つの温冷膨張室90(91)が並んで構成される。図に示す例では、各温冷膨張室90(91)を構成する膨張膜1(第1の膨張膜11)は、略矩形状を有する。X軸方向中央部に位置する温冷膨張室90は、その両側にそれぞれ位置する温冷膨張室90(91)よりもY軸方向の長さが長くなっている。このように、各温冷膨張室90(91)の膨張膜1の大きさが異なっていてもよい。3つの温冷膨張室90(91)のうちX軸方向中央部に位置する温冷膨張室90(91)には、Y軸方向に沿って間欠配置された熱電変換素子2が3つ位置する。このうち、真ん中に位置する熱電変換素子2は、膨張膜1(第1の膨張膜11)の略中央に位置する。3つの温冷膨張室90のうち両側に位置する2つの温冷膨張室90(91)には、平面視したときに、該温冷膨張室90(91)を構成する膨張膜1(第1の膨張膜11)の略中央に熱電変換素子2が1つ位置する。
 図7(C)に示す例では、提示部9が、5つの温冷膨張室90(91)により構成される。図に示す例では、各温冷膨張室90(91)を構成する膨張膜1(第1の膨張膜11)は、平面形状が略正方形状を有し、各温冷膨張室90(91)を構成する膨張膜1(第1の膨張膜11)の平面形状は略同じである。各温冷膨張室90(91)には1つの熱電変換素子2が配置される。熱電変換素子2は、平面視において膨張膜1(第1の膨張膜11)の略中央に位置する。
 図7(D)に示す例では、提示部9が、X軸方向に3つの温冷膨張室90(91)が並んで構成され、各温冷膨張室90(91)を構成する膨張膜1(第1の膨張膜11)は、平面形状が略矩形状を有する。各温冷膨張室90(91)を構成する膨張膜1(第1の膨張膜11)の平面形状は略同じである。各温冷膨張室90(91)には、y軸方向に沿って間欠配置された熱電変換素子2が3つ位置する。このうち、真ん中に位置する熱電変換素子2は、平面視において膨張膜1(第1の膨張膜11)の略中央に位置する。
 触覚提示装置31(32)では、提示部9において、複数の膨張膜1(第1の膨張膜11)全体に対し複数の熱電変換素子2が間欠して配置される構成となっている。触覚提示装置31(32)は、膨張膜1(第1の膨張膜11)と熱電変換素子2とが接着する熱電変換素子接着領域と、接着しない熱電変換素子非接着領域とを有する。更に、各温冷膨張室90(91)においても、熱電変換素子接着領域と、熱電変換素子非接着領域とを有する。
 熱電変換素子接着領域においては、膨張膜1(第1の膨張膜11)の膨張が熱電変換素子の存在によって阻害される。熱電変換素子非接着領域においては、膨張膜1(第1の膨張膜11)の膨張が熱電変換素子に阻害されない。
 触覚提示装置31(32)の提示部9において、膨張膜1(第1の膨張膜11)の膨張が阻害されない熱電変換素子非接着領域が膨張膜1(第1の膨張膜11)の全域に分布する形態となる。これにより、広い触覚提示範囲で、膨張膜の膨張による圧覚刺激が可能となるとともに圧電変換素子による温冷覚刺激も可能となる。
 更に、熱電変換素子2は、膨張膜1(第1の膨張膜11)の非皮膚側面となる第2の面1b(11b)に配置されるため、触覚提示装置31(32)の使用時、ユーザUの指先は、膨張膜1(第1の膨張膜11)を間に介して熱電変換素子2に間接的に接する。これにより、熱電変換素子2の硬く平坦といった質感が直接ユーザの指先に提示されにくくなる。従って、圧覚刺激を用いた、硬い、柔らかいといった質感の提示が、熱電変換素子2が第1の面11a側に配置されることによって損なわれるということがない。このように、膨張膜1(第1の膨張膜11)の第2の面1b(11b)に熱電変換素子2を配置し、ユーザUの指が直接熱電変換素子2と接しない構造とすることにより、より様々な触感提示が可能となる。
 また、触覚提示装置31(32)の使用時にユーザの皮膚に直接接触する膨張膜1(第1の膨張膜11)に熱電変換素子2が配置される。このため、熱電変換素子2による温冷提示がユーザの皮膚に対し速やかに行われ得る。すなわち、熱電変換素子2による放熱及び吸熱の利用効率を良好なものとすることができ、熱電変換素子2において少ない温度上昇又は降下でユーザUへの温冷提示が可能となる。また、消費電力の低減が可能となる。
 以上のように、触覚提示装置31(32)において、圧覚刺激及び温冷覚刺激による様々な触覚提示を可能とするとともに、消費電力低減が可能となる。
 図2(A)は、触覚提示装置31(32)の構成を示すブロック図である。図2(B)は、触覚提示装置30の構成の一部をより詳細に説明するための図であり、熱電変換素子の制御構成を示す図である。
 図2に示すように、触覚提示装置31(32)は、制御部6と、提示部9における熱電変換素子2及びアクチュエータ5と、通信部7と、記憶部8を備える。基本的な構成は第1の実施形態と同様である。
 次に、図6(A)及び(B)を用いて、使用時における触覚提示装置31の動作について説明する。
 図6(A)に示すように、流体の流入が行われる前の、膨張膜1が収縮した状態では、ユーザUの指先の腹部が、膨張膜1を介してX軸方向中央に位置する3つの熱電変換素子2Cに接して置かれた状態となる。
 図6(B)に示すように、一部の温冷膨張室90の空間4に流体を流入し膨張させ、他の温冷膨張室90の空間4には流体を流入しないように制御することができる。図に示す例では、X軸方向中央部に位置する温冷膨張室90には流体を流入させず、その左右両側にある温冷膨張室90にのみ流体を流入する。これにより、ユーザUの指先の形状に沿って指先の一部を覆うように提示部9全体が変形する。ユーザUの指の腹部及び側部は、膨張膜1を介して、X軸方向中央部に位置する3つの熱電変換素子2C及びX軸方向側部に位置する2つの熱電変換素子2Sに接した状態となる。膨張膜1に熱電変換素子2が接着固定されているため、膨張膜1の膨張時において、熱電変換素子2の位置は膨張膜1の変形に追従して変化する。このため、膨張膜1を間に介して熱電変換素子2と指先とが接する形態となるので、熱電変換素子2の熱の利用効率が良好となり、効果的に温冷提示を行うことができる。
 図6(C)に示す触覚提示装置32においても、触覚提示装置31と同様に、流体を流入する温冷膨張室91を選択することによって、提示部9全体における第1の膨張膜11の形状を変化させることができる。
 以上のように、複数の温冷膨張室を有するように触覚提示装置を構成することができる。これにより、圧迫感や硬柔感をより自在に変化させつつ、熱電変換素子を用いて温冷覚刺激を変化させることができる。
<第4実施形態>
 上述の第1~第3の実施形態において、各触覚提示装置に、温度センサ、距離センサ、気圧センサから選択される1以上のセンサが設けられてもよい。
 図8は、センサが設けられた触覚提示装置33の一例を示す。図8では、上述の第2の実施形態のように、膨張膜が2つある例をあげて説明するが、第1及び第3の実施形態の触覚提示装置についても同様に適用可能である。
 図8に示すように、温度センサ18が第1の膨張膜11に配置されていてもよい。図に示す例では、温度センサ18は、第1の膨張膜11の第2の面11bに配置される。温度センサ18は、第1の膨張膜11の温度を測定する。また、温度センサ18を用いて、第1の膨張膜11に接するユーザUの指先の温度を推測することができる。例えば、温度センサ18に対し第1の膨張膜11を介して指先を配置した場合の、温度センサ18の実測値と実際の指先の温度との差を予め計測しておき、温度センサ18の実測値から指先の温度を推定することができる。
 温度センサ18での測定結果は、第1の膨張膜11の温度制御等に用いられる。
 温度センサ18を用いることにより、熱電変換素子2の放熱及び吸熱による第1の膨張膜11の温度範囲が所望の範囲となるように制御することができる。例えば、火傷の発生を防止するために40℃を超えて熱くなりすぎないようにする、20℃を下回って冷えすぎないようにする等、温度センサ18をリミッタとして用いることができ、使用時の安全性を高めることができる。
 尚、膨張膜が1つの触覚提示装置においては、膨張膜1に温度センサ18が配置される。また、温度センサ18は熱電変換素子に設けられていても良い。
 図8に示すように、距離センサ16が支持体3上に配置されてもよい。距離センサ16は、第2の膨張膜12までの距離を測定することができる。第1の膨張膜11は第2の膨張膜12の変形に追従して変形するので、距離センサ16の測定結果から第1の膨張膜11までの距離も推定することができる。図に示す例では、距離センサ16は、複数設けられる。距離センサ16を複数設けることにより、平面視における第1及び第2の膨張膜の支持体3からの距離の分布情報を得ることができる。
 距離センサ16での測定結果は、圧覚刺激の力制御に用いられる。
 また、距離センサ16を用いることによって、流体流入時の第2の膨張膜12、ひいては第1の膨張膜11が膨張しすぎて膜が破裂しないように、膨張の度合いを所望の範囲となるように制御することができる。このように、距離センサ16をリミッタとして用いることができ、使用時の安全性を高めることができる。
 図8に示すように、気圧センサ17が支持体3上に配置されてもよい。気圧センサ17は空間4内の圧力を測定する。
 気圧センサ17での測定結果は、圧覚刺激の力制御に用いられる。
 また、気圧センサ17を用いることによって、流体流入時の第2の膨張膜12、ひいては第1の膨張膜11が膨張しすぎて膜が破裂しないように、膨張の度合いを所望の範囲となるように制御することができる。このように、気圧センサ17をリミッタとして用いることができ、使用時の安全性を高めることができる。
 また、例えば後述する第1適用例のように、触覚提示装置を手で握って使用する場合、握った時の圧力の変化を気圧センサ17により検出することができ、検出結果を圧覚刺激の他、温冷覚刺激にフィードバックさせてもよい。
<適用例>
 本技術に係る触覚提示装置は、各種の用途に用いることができる。例えば、触覚提示装置が、VR(Virtual Reality)、AR(Augmented Reality)装置等に用いられることで、仮想の物体に実際に触れたかのような触覚をユーザに提示することができる。
 触覚提示装置は、例えば、ウェアラブル装置、入力装置、医療装置、シミュレート装置、娯楽機器等、典型的には、ユーザに触覚を提示する用途であればどのような用途にも用いることができる。
 また、用途に応じて、触覚提示装置の形状を適宜設定することができる。上述の実施形態では、触覚対象部位が指先で、触覚提示装置が平坦な支持体上に提示部が設けられる形状である例をあげたが、触覚提示対象部位や用途に応じて支持体は種々の形状をとり得る。
 以下、具体的な触覚提示装置の適用例及び形態例について説明するが、ここに記載されるものに限定されない。
[第1適用例]
 図9~図11を用いて、第1適用例について説明する。
 図9(A)は、触覚提示装置50の斜視図である。図9(B)は触覚提示装置50を提示部9が配置される側からみたときの平面図である。
 図10は、触覚提示装置50を用いた触覚提示システム100を示す図である。
 図11は、触覚提示装置50の内部構成を示すブロック図である。
 ここでは、離れた場所に位置する複数のユーザが、触覚提示装置50を用いて、相互に触覚コミュニケーションを行う例をあげる。
 図9(A)に示すように、触覚提示装置50は、筐体である支持体3と、支持体3に設けられた検出部51と、支持体3に設けられた提示部9とを備えている。
 支持体3は、ユーザUが片手で把持することが可能な程度の大きさを有する。本実施形態では、支持体3の形状が、両端が閉じられた円筒状とされている。尚、支持体3の形状については、これに限定されない。例えば、支持体3は、3角形、四角形、・・等の多角筒状に構成されていてもよいし、人の手を模した形状等とされていてもよい。
 検出部51は、ユーザUの力を検出する圧力センサ511と、ユーザUの手の皮膚の温度を検出する温度センサ18を備える。本実施形態では、検出部51は2つの圧力センサ511を備えるが、数はこれに限定されない。
 検出部51は、ユーザが触覚提示装置50を握ったときのユーザの指に対応する位置に設けられている。本実施形態では、検出部51は、人差し指、中指、薬指、小指の4本の指における、第1関節部付近に対応する位置に設けられている。
 なお、検出部51が設けられる位置は、これに限られない。例えば、検出部51は、親指、人差し指、中指、薬指、小指の5本の指の中から選択された、1本、2本、3本、4本又は5本の指に対応する位置に設けられていてもよい。また、検出部51は、指の第2関節部や第3関節部(親指以外)に対応する位置に設けられていてもよい。
 また、検出部51は、分離した2以上の箇所に別々に設けられていてもよい。例えば、1つ目の検出部51が、人差し指、中指、薬指、小指に対応する位置に配置され、2つ目の検出部51が親指に対応する位置に配置されていてもよい。また、例えば、1つ目の検出部51が、人差し指、中指、薬指、小指の第1関節部に対応する位置に配置され、2つ目の検出部51が人差し指、中指、薬指、小指の第2関節部、第3関節部等に対応する位置に配置されていてもよい。
 典型的には、検出部51は、ユーザによる握った力を適切に検出可能な位置であれば、提示部9と別の位置に設けられている限り、どのような位置に設けられていてもよいし、1つの触覚提示装置に対して複数個分離して設けられていてもよい。
 提示部9は、ユーザUに触覚を提示する。提示部9は、支持体3において検出部51とは別の位置に設けられている。
 提示部9には、上述の各実施形態で示した提示部を適用することができる。ここでは、第1の実施形態で示した提示部のように膨張膜が1つの場合を例にあげる。
 提示部9は、流体を流出入可能な空間4と、空間4を覆うように設けられた膨張膜1と、膨張膜1の第2の面1bに配置された複数の熱電変換素子2とを有している。また、提示部9は、流体を供給する供給源14と、その駆動により空間4への流体の流出入を制御する駆動部としてのアクチュエータ5と、空間4と供給源14を繋ぐパイプ15とを有している。
 本実施形態では、提示部9は、2つの熱電変換素子2を備える。2つの熱電変換素子2は、離間して配置される。また、膨張膜1は、平面視で、支持体3の長手方向に平行な長手方向を有する楕円状を有する。
 提示部9は、触覚提示装置50を把持するユーザUの手に対し、圧覚刺激及び温冷覚刺激を与え、様々な触覚を提示する。
 また、提示部9は、後述するように、他の触覚提示装置50の検出部51で検出された力及び手の皮膚の温度に応じて、流体により膨張膜1を膨張及び収縮し、また、熱電変換素子2を用いた温冷提示を行うことで、ユーザに対して触覚を提示する。
 ここで、仮に、検出部51と提示部9とが同じ場所に設けられているとすると、ユーザは、自ら触覚提示装置50を握った反力によって力を感じているのか、相手のユーザが握った力により力を感じているのかが認識しにくいといった問題がある。このため、本実施形態では、検出部51と提示部9とが別々の場所に設けられている。
 本実施形態では、提示部9は、ユーザが触覚提示装置50を握ったときの掌(掌の中央)に対応する位置に設けられる。なお、提示部9が設けられる位置は、これに限られない。例えば、提示部9は、ユーザの指に対応する位置に設けられていてもよく、この場合、検出部51は掌などの指以外の位置に設けられてもよい。
 また、提示部9は、分離した2以上の箇所に別々に設けられていてもよい。例えば、1つ目の提示部9が、掌において人差し指寄りの位置に配置され、2つ目の提示部9が掌において小指寄りの位置に配置されていてもよい。
 典型的には、提示部9は、一方のユーザの力による触覚を他方のユーザに適切に提示可能な位置であれば、検出部51と別の位置に設けられている限り、どのような位置に設けられていてもよいし、1つの触覚提示装置50に対して複数個分離して設けられていてもよい。
 なお、提示部9及び検出部51の位置は、実際に2人の人が握手をしたときに、人が力を感じる手の位置を考慮して設定されていてもよい。例えば、実際に2人の人が握手をしたとき、一方の人は、他方の人の人差し指、中指、薬指、小指等の力を、掌において小指側の領域で感じることになる。従って、検出部51が人差し指、中指、薬指、小指等に対応する位置に設けられていた場合、提示部9は、掌において小指側の領域に設けられていてもよい。
 図11に示すように、触覚提示装置50は、制御部6と、検出部51における圧力センサ511及び温度センサ18と、提示部9における熱電変換素子2及びアクチュエータ5と、通信部7と、記憶部8とを備えている。
 制御部6は、記憶部8に記憶された各種のプログラムに基づき種々の演算を実行し、触覚提示装置50の各部を統括的に制御する。
 圧力センサ511は、検出部51の一部である。圧力センサ511は、支持体3の表面側において、検出部51に対応する位置に設けられている。この圧力センサ511は、ユーザの力(握った力)を検出して、検出値を制御部6と出力する。
 温度センサ18は、検出部51の一部である。温度センサ18は、例えば、触覚提示装置50を把持した際、ユーザUの手の皮膚が直接接する提示部9の膨張膜1に設けられる。温度センサ18は、ユーザUの手の皮膚温度を検出して、検出された温度を制御部6に出力する。
 記憶部8は、制御部6の処理に必要な各種のプログラムや、各種のデータが記憶される不揮発性のメモリと、制御部6の作業領域として用いられる揮発性のメモリとを含む。
 通信部7は、有線又は無線により、他の触覚提示装置50との間で相互に通信可能に構成されている。なお、触覚提示装置50は、他の触覚提示装置50との間で直接的に通信を行ってもよいし、ネットワーク上のサーバ装置等の他の装置を介して、他の触覚提示装置50との間で間接的に通信を行ってもよい
[動作説明]
 ここでは、離れた場所に位置する複数のユーザが、触覚提示装置50を用いて、相互に触覚コミュニケーションを行う例をあげる。
 図10(A)は、2人のユーザがそれぞれ離れた場所に位置しているような場合でも、相互に触覚コミュニケーションを可能とするための触覚提示システム100を説明する図である。
 図10(B)は、2人のユーザが、触覚提示装置50を用いて触覚コミュニケーションを行っている様子を示す。
 ここでは、2つの触覚提示装置50を特に区別するために、一方の触覚提示装置50を第1の触覚提示装置50aと呼び、他方の触覚提示装置50を第2の触覚提示装置50bと呼ぶ。また、2人のユーザをそれぞれ区別するために、第1の触覚提示装置50aを操作するユーザを第1のユーザU1と呼び、第2の触覚提示装置50bを操作するユーザを第2のユーザU2と呼ぶ。
 また、第1の触覚提示装置50a及び第2の触覚提示装置50bにおいて、同様の構成を有する各部等をそれぞれ区別するために、第1の・・、第2の・・との用語を使用する。
 図10(B)に示すように、第1のユーザU1と第2のユーザU2は、相手が映し出されているディスプレイ13を見ながら、それぞれが把持する第1の触覚提示装置50a及び第2の触覚提示装置50bを用いて触覚コミュニケーションを行うことができる。
 尚、ここでは、触覚提示装置50の数が2つである場合について説明するが、触覚提示装置50の数については、3以上であってもよい。同様に、ユーザの数は、2人に限られず、3人以上であってもよい。また、ユーザの一部に架空の人物(画面上に表示される漫画の登場人物、バーチャルアイドル等)を含んでいてもよい。
 (第1のユーザU1が第1の触覚提示装置50aを握った場合)
 図10(A)及び(B)に示すように、第1のユーザU1が、第1の触覚提示装置50aを把持して、第1の触覚提示装置50aを握ると、第1の検出部51aにおける圧力センサ511によって、第1のユーザU1の握った力に応じた第1の圧力値が検出される。更に、第1の検出部51aにおける温度センサ18によって、第1のユーザU1の手の皮膚の第1の温度値が検出される。第1の制御部6は、検出された第1の圧力値及び第1の温度値を、直接的に、あるいは、サーバ装置等を介して間接的に第2の触覚提示装置50bへと送信する。
 検出された第1の圧力値及び第1の温度値は、触覚提示に係る情報である。
 第2の触覚提示装置50bの第2の制御部6は、第1の触覚提示装置50aから直接的に、あるいは、サーバ装置等を介して間接的に第1の圧力値及び第1の温度値を受信する。
 第2の制御部6は、第1の圧力値に応じて第2の提示部9bのアクチュエータ5を駆動させて、第2の空間4内における流体の流出入を制御する。これにより、第2の制御部6は、第2の提示部9bの膨張膜1を膨張及び収縮させることで、第1の圧力値に応じた圧覚を第2のユーザU2に提示する。これにより、第2の触覚提示装置50bは、膨張膜の膨張により掌が押されるような感覚を第2のユーザU2に提示することができ、また、膨張膜の収縮により押された掌が元に戻るような感覚を第2のユーザU2に提示することができる。
 更に、第2の制御部6は、第2の提示部9bの膨張膜1が第1の温度値となるように第2の提示部9bの熱電変換素子2を温冷制御することで、第1の温度値に応じた温度感覚を第2のユーザU2に提示する。
 これにより、第2の触覚提示装置50bは、第1のユーザU1に手を握られたような感触を第2のユーザU2に提示することができる。
 (第2のユーザU2が第2の触覚提示装置50bを握った場合)
 第2のユーザU2が、第2の触覚提示装置50bを把持して、第2の触覚提示装置50bを握ると、第2の検出部51bにおける圧力センサ511によって、第2のユーザU2の握った力に応じた第2の圧力値が検出される。更に、第2の検出部51bにおける温度センサ18によって、第2のユーザU2の手の皮膚の第2の温度値が検出される。第2の制御部6は、検出された第2の圧力値及び第2の温度値を、直接的に、あるいは、サーバ装置等を介して間接的に第1の触覚提示装置50aへと送信する。
 検出された第2の圧力値及び第2の温度値は、触覚提示に係る情報である。
 第1の触覚提示装置50aの第1の制御部6は、第2の触覚提示装置50bから直接的に、あるいは、サーバ装置等を介して間接的に第2の圧力値及び第2の温度値を受信する。
 第1の制御部6は、第2の圧力値に応じて第1の提示部9aのアクチュエータ5を駆動させて、第1の空間4内における流体の流出入を制御する。これにより、第1の制御部6は、第1の提示部9aの膨張膜1を膨張及び収縮させることで、第2の圧力値に応じた圧覚を第1のユーザU1に提示する。第1の触覚提示装置50aは、膨張膜の膨張により掌が押されるような感覚を第1のユーザU1に提示することができ、また、膨張膜の収縮により押された掌が元に戻るような感覚を第1のユーザU1に提示することができる。
 更に、第1の制御部6は、第1の提示部9aの膨張膜1が第2の温度値となるように第1の提示部9aの熱電変換素子2を温冷制御することで、第2の温度値に応じた温度感覚を第1のユーザU1に提示する。
 これにより、第1の触覚提示装置50aは、第2のユーザU2に手を握られたような感触を第1のユーザU1に提示することができる。
 このように、第1のユーザU1(第2のユーザU2)が把持する第1の触覚提示装置50a(第2の触覚提示装置50b)の温度センサ18で検出された温度値に応じて、検出された温度値がそのまま反映された温度提示が第2のユーザU2(第1のユーザU1)に対し行なわれる。
[第2適用例]
 図12を用いて、第2適用例について説明する。
 上述の第1適用例では、2人のユーザには互いの手の温度が反映された温度提示がなされる例をあげた。本適用例では、手の温度に係らず、互いの握った力が反映された温度提示がなされる例をあげる。また、本適用例では、触覚提示装置の全体の形状が第1適用例とは異なり、掌に収まる程度の大きさを有する例をあげるが、基本的な構成は第1適用例と同様である。
 図12(A)及び(B)は、第1のユーザU1が第1の触覚提示装置50aを握った時の力が反映されて、第2の触覚提示装置50bにおいて温度上昇として提示される例を示す模式図である。
 図12(A)は握ったときの力が相対的に小さい場合を示し、図12(B)は握ったときの力が図12(A)より大きい場合を示す。
 図12の第1の触覚提示装置50aにおいて、矢印は、握ったときの第1の触覚提示装置50aにかかる力を模式的に示したものであり、その大きさは握ったときの力の大きさを示す。
 図12の第2の触覚提示装置50bにおいて、矢印は、膨張膜の膨張の方向を示すとともに、その大きさは、第2の提示部9bの熱電変換素子2による温度上昇の大きさを示す。
 以下では、互いの握った力が反映された温度提示について主に説明するが、互いの握った力が反映された膨張膜の膨張による圧覚も同時に提示される。
 本適用例では、一方の触覚提示装置で検出された圧力値の大きさに応じて、他方の触覚提示装置での温冷提示が行われる。尚、ここで挙げる数値はあくまでも一例であり、これらに限定されない。
 図12(A)に示す例では、第1のユーザU1が、圧力値Aで第1の触覚提示装置50aを握った場合、第2の触覚提示装置50bでは、膨張膜1の温度が1℃あがるように熱電変換素子2が制御される。例えば、膨張膜1の温度が34℃から35℃となるように制御される。
 図12(B)に示す例では、第1のユーザU1が、圧力値Aよりも大きい圧力値Bで第1の触覚提示装置50aを更に握った場合、第2の触覚提示装置50bでは、膨張膜1の温度が2℃あがるように熱電変換素子2が制御される。例えば、膨張膜の温度が35℃から37℃となるように熱電変換素子2が制御される。
 提示温度の上昇において、安全性の観点から、温度が40℃より大きくならないように制御される。
 このように、送信側となる第1のユーザU1が第1の触覚提示装置50aをより強く握って圧力が増加するにつれて、換言すると、検出される圧力値が大きくなるにつれて、受信側となる第2の触覚提示装置50bでの提示温度を上昇させるように第2の提示部9bの熱電変換素子2が制御されてもよい。
 これにより、送信側となる第1のユーザU1の握る力が大きくなることによる圧力値の増加に合わせて、受信側となる第2のユーザU2には、圧覚刺激の増加に加え、第2の提示部9bの熱電変換素子2による増加した加熱刺激が提示される。第2のユーザU2は、第1のユーザU1の握る力をより強調して感じることができる。
 また、熱電変換素子(ペルチェ素子)を用いて温冷提示を行うことにより、速やかに所望の温度を提示することができる。これにより、送信側のユーザが触覚提示装置を握る力を弱めたり離したりといった動作の変化を、受信側の触覚提示装置において速やかに温度変化として提示することができる。
 尚、ユーザUの年齢や性別、皮膚の硬さなどの個人差によって、圧覚提示や温冷覚提示に対する感度が異なる。このため、例えば、使用時の初期設定で年齢や性別などの個人情報を設定し、年齢や性別に応じて圧迫の度合いや温冷の度合いを微調整するようにしてもよい。
 第1及び第2適用例では、例えば、孫が、遠隔地にいる祖父母と触覚提示装置50を用いてコミュニケーションを深めたりすることができる。
 他には、コンサート会場で、歌手などの講演者が触覚提示装置50を握ることにより、その握った感触を複数の観客に対し観客が把持する触覚提示装置50によって提示することができる。また、有名人との握手会において、遠隔からでも触覚提示装置50を用いて握手をしたりすることができる。このように、1つの触覚提示装置50で検出された検出結果に基づいて、複数の人それぞれに対し、該人が把持する触覚提示装置50を用いて触覚を同時に提示するということもできる。
[第3適用例]
 図13及び図14を用いて、第3適用例について説明する。ここでは、ゲーム映像に応じた触覚提示を行う例をあげる。
 図13は、触覚提示装置を用いるときの様子を示す。
 図14は、ゲーム機本体及び触覚提示装置の内部構成を示すブロック図である。
 図13に示すように、ユーザUは、ゲームコントローラである触覚提示装置60を把持し、テレビジョン装置等のディスプレイ13を見ながらゲームを行うことができる。触覚提示装置60は、ディスプレイ13に映し出されるゲーム映像に応じた触覚をユーザUに提示する。
 触覚提示装置60は、ゲームコントローラ本体である支持体3と、該支持体3に設けられた提示部9を備える。本実施形態の触覚提示装置60は、触覚提示機能の他、ゲームの入力操作を受け付ける入力装置としても機能する。
 支持体3は、例えばプラスチック等の樹脂材料による成型品である。支持体3は、左右両側に、ユーザUが手で持つ凸状の把持部36を備える。支持体3は、ユーザUの操作を受け付ける各種キーパッド37からなる操作部を備える。
 提示部9は、ユーザUに触覚を提示する。提示部9は、左右の把持部36それぞれに1つずつ設けられている。
 提示部9には、上述の各実施形態で示した提示部を適用することができる。
 図14に示すように、ゲーム装置38は、単数又は複数のゲームコントローラである触覚提示装置60が接続されるゲーム機本体61を備え、ゲーム機本体61がテレビジョン装置等のディスプレイ13に接続される。
 ゲーム機本体61は、制御部62と、表示制御部63と、再生部64と、記憶部65と、通信制御部66とを備える。
 通信制御部66は、触覚提示装置60が接続される通信手段である。
 再生部64は、光ディスク等の記録媒体69に記録されたゲームのプログラムを再生する。該プログラムには、ゲームの映像に紐づけられた映像に応じた触覚提示に係る情報が含まれていてもよい。
 表示制御部63は、ディスプレイ13を制御する。
 記憶部65は、ROM(Read Only Memory)等で構成される。記憶部65は、制御部62で実行されるオペレーティングシステム(OS)等が記憶される。
 制御部62は、CPU(Central Processing Unit)及びRAM(Random Access Memory)等で構成される。制御部62は、触覚提示装置60でのユーザUの操作で受信した操作内容に応じた操作信号と、記録媒体69から再生されたゲームのプログラムに基づいてゲームを進行する。制御部62は、ゲームの進行に従ってディスプレイ13に画像を表示するとともに、ゲーム映像の内容に応じた触覚をユーザUに提示するための触覚提示装置60のアクチュエータ5及び熱電変換素子2それぞれを制御するための触覚提示に係る情報を出力する。該触覚提示に係る情報は、上述したように、ゲーム映像に紐づけられて予め用意されてもよいし、触覚提示装置60の制御部6が、データベース化された触覚提示に係る情報を用い、ゲーム映像の内容に基づいて、映像に応じた生成してもよい。該データベースには、例えば、爆発の場面といった映像内容毎に紐づけられた、触覚提示に係る情報が格納される。触覚提示に係る情報には、熱電変換素子の制御パターン(制御信号)を含む温冷覚刺激に係る情報と、アクチュエータの制御パターンを含む圧覚刺激に係る情報(制御信号)が含まれる。
 触覚提示装置60は、制御部6と、提示部9における熱電変換素子2及びアクチュエータ5と、通信部7と、記憶部8とを備えている。
 制御部6は、ゲーム機本体61から出力された制御信号に基づき、アクチュエータ5及び熱電変換素子2を制御する。
 例えば、図13に示す例では、ディスプレイ13にドラゴンが炎を吐いている映像が映し出されている。熱電変換素子2は、温度が上昇するように制御される。これにより、ユーザUに対し炎の熱さが提示される。また、アクチュエータ5は、空間4内に流体を流入するように制御される。流体の流入による膨張膜1(又は、第1の膨張膜11及び第2の膨張膜12)の膨張による圧迫により、ユーザUに対し熱風の強さが提示される。
 このように、ゲームコントローラに圧覚刺激及び温冷覚刺激を行う提示部9を設けることにより、ゲーム映像に応じた触覚をユーザに提示することができ、臨場感を更に増すことができる。
 ここで、ユーザUに対して映像を提示する装置の一例として、テレビジョン装置を例にあげたが、ヘッドマウントディスプレイ、モニタ、プロジェクタ等であっても構わない。
[第4適用例]
 図15を用いて、第4適用例について説明する。
 図15(A)は、ユーザUが触覚提示装置70を使用している状態を示す。
 図15(B)は、図15(A)のXVB-XVB線での部分断面図である。
 図15(C)は、触覚提示例を説明するための図であり、図上、破線は仮想人物を示す。
 図15(A)に示すように、触覚提示装置70は、支持体3と、支持体3上に設けられた提示部9とを備える。支持体3は、ユーザUの手首に巻き付けられるリストバンド形状を有し、フレキシブルに変形可能に構成される。
 図15(B)に示すように、提示部9は、使用時、リストバンド形状の支持体3の内側、すなわち、ユーザUの皮膚と接するように配置される。提示部9は、手首周り全周に配置されてもよいし、部分的に配置されてもよく、用途に応じて適宜設定することができる。また、提示部9は単数又は複数配置することができる。
 提示部9は、ユーザUに触覚を提示する。図15(B)では、膨張膜が2枚ある形態を例に挙げているが、提示部9には、上述の各実施形態で示した提示部を適用することができる。使用時、空間4に流体が流入することにより、第1の膨張膜11及び第2の膨張膜12は、ユーザUの皮膚に向かって膨張し、ユーザUに圧迫感を提示する。
 具体的な適用例について説明する。
 例えば、ユーザUの頭部にVR表示、AR表示等が可能なヘッドマウントディスプレイを装着させ、手首に触覚提示装置70を装着させる。
 ユーザUに対し、ヘッドマウントディスプレイによって仮想空間の映像を提示する。仮想空間内で仮想人物から手首をつかまれたという状況が発生した場合、図15(C)に示すように、手首をつかまれた感覚をユーザUに提示するようにアクチュエータ5及び熱電変換素子2それぞれが制御される。
 熱電変換素子2は、例えば、温度が上昇するように制御される。これにより、ユーザUに対し仮想人物の手の温かさが提示される。
 また、アクチュエータ5は、空間4内に流体を流入するように制御される。流体の流入による第1の膨張膜11及び第2の膨張膜12の膨張による圧迫により、ユーザUに対し仮想人物がユーザUの手首をつかんだ時の圧迫感が表現される。この際、仮想人物の手首の掴む力に応じて、空間4内に流入する流体量を制御し、膨張膜による圧迫の度合いを制御してもよい。
 アクチュエータ5及び熱電変換素子2は、例えば第3適用例と同様に、映像情報に紐づけられた触覚提示に係る情報である触覚提示制御信号に基づいて制御される。これにより、ユーザUに対し映像に応じた触覚をユーザに提示することができ、臨場感を増すことができる。
[第5適用例]
 触覚提示装置は、図16(A)に示す形態をとり得る。
 図16(A)は触覚提示装置71の斜視図である。
 図16(B)は、触覚提示装置71を用いた触覚提示例を説明するための図である。
 図16(A)に示すように、触覚提示装置71は、支持体3と、支持体3上に設けられた提示部9とを備える。支持体3は、ユーザUが片手で把持することが可能な程度の大きさを有する。本実施形態では、支持体3は略円筒形状を有し、長手方向中央から一端に向かって径が徐々に小さくなる形状を有し、飲み口から底面に向かって径が小さくなるコップの形状に模した形状となっている。
 図16(B)に示すように、ディスプレイ13に冷水が注がれたグラスを手に持つ画像が映し出された場合、熱電変換素子2は、温度が下降するように制御される。これにより、ユーザUに対し冷水のコップの冷たさが提示される。
 図16(B)に示すように、ディスプレイ13に、手に持った湯飲みに温かいお茶が注がれている画像が映し出された場合、熱電変換素子2は例えば温度が徐々に上昇するように制御される。これにより、ユーザUに対し、湯飲みに徐々に温かいお茶が注がれている感覚と、お茶の温かさが提示される。
[第6適用例]
 触覚提示装置は、例えば図17(A)及び(B)に示す形態をとり得る。
 図17(A)及び(B)は、触覚提示装置72及び73の斜視図である。
 図17(A)及び(B)に示すように、触覚提示装置72及び73は、支持体3と、支持体3上に設けられた提示部9とを備える。いずれも、使用時、ユーザUの指が提示部9に接する形態となっている。触覚提示装置72及び73では、提示部9により、ユーザUに対して、圧迫感、硬い、柔らかいといった硬軟感、温かい、冷たいといった温冷感を提示することができる。例えば映像内の仮想物体の硬軟感、温冷感を提示部9によりユーザUに対して提示することができる。
<提示部に係る構成例>
 以下、提示部9に係る構成について説明する。
 熱電変換素子の寸法、数、配置は、触覚提示装置の用途、触覚提示対象部位によって適宜設定され得る。以下、数値をあげて説明するが、これらはあくまで一例であり、これらに限定されない。
[膨張膜の熱伝導率]
 熱電変換素子2の温冷覚刺激が、ユーザUの触覚提示対象部位に効率よく伝わる観点から、膨張膜1及び第1の膨張膜11の熱伝導率は0.2W/mK以上であることが好ましい。また、このような熱伝導率とすることにより、膨張膜の面内での熱分散を良好なものとすることができ、複数の熱電変換素子2によって触覚提示対象部位全体に温覚又は冷覚が提示されやすい。
 第2の実施形態の提示部9のように、膨張膜が2つある場合、2つの膨張膜のうち非皮膚側に位置する第2の膨張膜12の熱伝導率は、放熱部として機能する観点から、0.2W/mK以上であることが好ましい。
 熱伝導率を向上させる観点から、カーボンやカーボンナノチューブ等を配合した高分子膜を膨張膜に用いてもよい。
[膨張膜の寸法]
 膨張膜1(又は、第1の膨張膜11及び第2の膨張膜12)の平面視での寸法は、触覚提示対象部位によって適宜設定され得る。例えば、図1(B)に示すように、触覚提示対象部位が手の指先である場合、略正円形の膨張膜1(第1の膨張膜11及び第2の膨張膜12)の直径aは30mmである。例えば、図9(B)に示すように、触覚提示対象部位が掌である場合、楕円形状の膨張膜1(第1の膨張膜11及び第2の膨張膜12)の長軸eは70mmであり、短軸fは30mmである。
[熱電変換素子の寸法例]
 熱電変換素子2の寸法は、触覚提示対象部位によって適宜設定され得る。例えば、一般的に矩形形状を有する熱電変換素子の縦及び横の寸法は、膨張膜が膨張したときに、ユーザUに対して熱電変換素子の角の存在による違和感を与えにくい程度の大きさとすることが好ましい。身体の部位によって感度が異なるため、違和感を与えにくい大きさは異なる。
 ユーザUに熱電変換素子の角の存在による違和感を与えにくいという観点から、図1(B)に示すように、触覚提示対象部位が手の指先である場合、熱電変換素子2の縦方向の寸法b及び横方向の寸法cはそれぞれ6mm以下であることが好ましい。図9(B)に示すように、触覚提示対象部位が掌である場合、熱電変換素子2の縦方向の寸法g及び横方向の寸法cはそれぞれ10mm以下であることが好ましい。触覚提示対象部位が前腕部である場合、熱電変換素子2の縦方向の寸法g及び横方向の寸法cはそれぞれ20mm以下であることが好ましい。
[熱電変換素子の配置例]
 第1及び第2実施形態において、熱電変換素子2の数及び配置は、図1(B)や図9(B)に示す形態に限定されない。また、熱電変換素子2の数及び配置は、触覚提示対象部位によって適宜設定され得る。以下、図18を用いて配置の一例を説明する。図18の各図は触覚提示装置の平面図である。
 図18(A)に示すように、縦に3つ、横に3つ、計9個の熱電変換素子2が格子状に配置されてもよい。
 図18(B)~(D)に示すように、平面視で略円形の膨張膜1(第1の膨張膜11)の略中央に熱電変換素子2を載置し、該中央の熱電変換素子2を囲むように複数の熱電変換素子2が配置されてもよい。中央の熱電変換素子2を囲んで位置する熱電変換素子2は、例えば膨張膜1(第1の膨張膜11)の中心を中心としたほぼ同心円上に配置されてもよい。
 略正円形の膨張膜において、膨張時、膨張膜は曲面を有し、中央部は曲面の曲率が大きく、その周囲は曲率が小さい傾向にあり、中央部から径方向に周縁に向かうに従って、曲率が小さくなっていく傾向にある。このため、中央の熱電変換素子2を囲んで位置する複数の熱電変換素子2は、膨張膜の中心を中心とした同心円上に配置されることにより、膨張時にほぼ同じ曲率を示す曲面上に配置されることになる。これにより、熱電変換素子2が配置された膨張膜面内での膨張による変形の分布の不均一性が生じにくく、膨張時、より自然な形状で膨張膜全体が変形され得る。
 図18(A)及び(B)に示すように、複数の熱電変換素子2の大きさがいずれも同じ、換言すると、複数の熱電変換素子2において、膨張膜と熱電変換素子との接触面積が同じであってもよい。
 また、図18(C)~(E)に示すように、熱電変換素子2の大きさが異なる、換言すると、複数の熱電変換素子2において、膨張膜と熱電変換素子との接触面積が異なるように構成してもよい。図18(C)~(E)において、相対的に大きさが小さい熱電変換素子に符号24を付し、大きい熱電変換素子に符号25を付している。尚、図18(C)~(E)においては、寸法が異なる2種類の熱電変換素子を用いる例をあげているが、寸法が互いに異なる3種類以上の熱電変換素子を用いてもよい。また各種類の熱電変換素子の数は1以上とすることができる。
 図18(C)においては、中央に位置する熱電変換素子2の大きさが相対的に小さく、この中央に位置する熱電変換素子2を囲んで位置する複数の熱電変換素子2の大きさが大きい。
 図18(D)においては、中央に位置する熱電変換素子2の大きさが相対的に大きく、この中央に位置する熱電変換素子2を囲んで位置する複数の熱電変換素子2の大きさが小さい。
 ここで、膨張時、膨張膜は曲面を有し、中央部は曲面の曲率が大きく、その周囲は曲率が小さい傾向にある。このため、異なる大きさの熱電変換素子2を用いる場合、図18(B)に示すように、膨張時の曲率が大きい中央部に位置する熱電変換素子2の大きさを相対的に小さくし、曲率が小さい周囲部に位置する熱電変換素子2の大きさを大きくすることがより好ましい。これにより、熱電変換素子2が配置された膨張膜面内での膨張による変形の分布の不均一性が生じにくく、膨張時、より自然な形状で膨張膜全体が変形され得る。
 図18(E)は、図9で示した支持体3が円筒状の触覚提示装置における熱電変換素子2の配置の一例を示す。
 図9(B)においては、平面視で楕円状の膨張膜1(第1の膨張膜11)に、該膨張膜1(第1の膨張膜11)の長手方向に沿って2つの熱電変換素子2を間欠配置する例をあげた。
 図18(E)に示すように、3以上の熱電変換素子2を備えていてもよい。また、図に示すように、長手方向に沿って複数の熱電変換素子2が間欠配置されてなる熱電変換素子群が複数(図では3つ)、互いに離間して、短手方向に沿って配置される形態であってもよい。また、図に示すように、短手方向中央に位置する熱電変換素子群を構成する5つの熱電変換素子2の大きさが、両側にそれぞれ位置する熱電変換素子群を構成する4つの熱電変換素子2の大きさよりも小さく構成されていてもよいし、その逆でもよい。また、全ての熱電変換素子2の大きさを同じとしてもよい。
 略楕円形の膨張膜において、膨張膜は曲面を有し、膨張時、短手方向及び長手方向それぞれにおける中央部は、その両側部と比較して曲面の曲率が大きい傾向にある。曲面の曲率が相対的に大きい領域には相対的に小さい熱電変換素子を配置し、曲面の曲率が相対的に小さい領域には相対的に大きい熱電変換素子を配置することが好ましい。これにより、熱電変換素子2が配置された膨張膜面内での膨張による変形の分布の不均一性が生じにくく、膨張時、より自然な形状で膨張膜全体が変形され得る。
 以上のように、膨張時の膨張膜における曲面の曲率の大きさに応じて熱電変換素子の大きさを異ならせてもよく、熱電変換素子が配置されていても、膨張時、より自然な形状で膨張膜全体を変形させることができ、膨張膜の膨張による圧覚刺激を良好なものとすることができる。
 隣り合う熱電変換素子2間の距離、例えば図1(B)に示す距離dや図9(B)に示す距離iは、2点の空間距離における温覚弁別閾より小さい範囲とすることが好ましい。これにより、隣り合う熱電変換素子で別々に温冷覚刺激を受けているような感覚が提示されにくく、複数の熱電変換素子2によって広面積で違和感のない自然な温冷提示が可能となる。
 身体の部位によって温覚弁別閾は異なるため、触覚提示対象となる部位に応じて、熱電変換素子の配置間隔を適宜設定することができる。
 例えば、図1(B)に示すように、触覚提示対象部位が手の指先である場合、隣り合う熱電変換素子2間の距離dは、3mm以下程度とすることが好ましい。図9(B)に示すように、触覚提示対象部位が掌である場合、隣り合う熱電変換素子2間の距離iは、10mm以下程度とすることが好ましい。また、触覚提示対象部位が前腕部である場合、隣り合う熱電変換素子2間の距離は、20mm以下程度とすることが好ましい。
[熱電変換素子の配置領域面積]
 少ない温度変化で温冷を提示する観点から、複数の熱電変換素子が配置される配置領域の下限面積を設定することが好ましい。以下、図19を用いて説明する。
 尚、配置領域とは、膨張膜において、配置される複数の熱電変換素子全体を囲んで得られる領域を意味する。熱電変換素子が膨張膜上に間欠配置される場合、配置領域には、熱電変換素子が配置される配置領域と、配置されない非配置領域とが含まれる。例えば、図1(B)に示す例では、配置領域は十字形状である。図18(A)では、配置領域は正方形状である。図18(B)~(D)に示す例では、配置領域は略正円形状である。
 図19(A)は、触覚提示対象部位を前腕部としたときの温度変化を感じる閾値と熱電変換素子の面積との関係を示す図である。
 図19(B)に示すように触覚提示対象者の前腕部に熱電変換素子2を載置し、しばらく放置する。これにより、熱電変換素子2は触覚提示対象者の前腕部の皮膚温度になる。このときの温度を基準温度とする。基準温度の状態から熱電変換素子2に電力を供給して温覚刺激又は冷覚刺激を触覚提示対象者に与えていき、触覚提示対象者が温かい、又は、冷たいと感じたときの熱電変換素子2の温度を測定する。この測定温度と基準温度との差を、温度変化を感じる閾値とする。大きさの異なる正方形の熱電変換素子を複数用意し、熱電変換素子毎に温度変化を感じる閾値を測定した。図19(A)は、このように測定した結果を示す。図上、10mm、20mm・・・とは、熱電変換素子の一辺の長さを示す。
 図19(A)に示すように、温度変化を感じる閾値は、温感において、熱電変換素子の平面積が100mmから400mmになるまでは急激に小さくなり、以降は穏やかに小さくなっていき、900mmを超え始めると、あまり変化しなくなる。また、冷感においても、ほぼ同じ挙動を示す。このように、提示面積が大きくなるほど、温度変化を感じる閾値が小さくなる。すなわち、皮膚と熱電変換素子との接触面積が大きいほど、温冷に対して敏感になるといえる。
 また、例えば、第1の面積の配置領域に、複数の熱電変換素子を間欠配置した場合においても、複数の熱電変換素子の合計の面積が第1の面積(配置領域面積)の70%以上であれば、1つの熱電変換素子の大きさが第1の面積である場合とほぼ同じ温度変化を感じる閾値を得ることができる。
 すなわち、図19(A)では、1つの熱電変換素子の面積と温度変化を感じる閾値との関係を示しているが、複数の熱電変換素子が配置される配置領域の面積と温度変化を感じる閾値との関係についても、複数の熱電変換素子の合計の面積が配置領域面積の70%以上であれば、図19とほぼ同様の傾向を示す。
 図19(A)に示すように、触覚提示対象部位が前腕部である場合、複数の熱電変換素子が配置される配置領域の面積を400mm以上とすることにより、少ない温度変化で温冷を提示することが可能となり、消費電力を低減することができる。
 触覚提示対象部位によって、好ましい、複数の熱電変換素子が配置される配置領域の面積は異なるが、いずれの部位においても、前腕部と同様に、皮膚と熱電変換素子との接触面積が大きいほど、温冷に対して敏感になる傾向にある。また、前腕部以外の部位においても、温度変化を感じる閾値と熱電変換素子の面積との関係については図19に示す挙動と類似する挙動を示す。
 少ない温度変化で温冷を提示する観点から、1つの提示部9において、複数の熱電変換素子2のうち最も面積が大きい熱電変換素子を基準として、該基準の熱電変換素子で測定される温感における温度変化を感じる閾値の50%以下となるように、複数の熱電変換素子が配置される配置領域の面積、言い換えると皮膚と複数の熱電変換素子全体が接触する接触面積を設定することが好ましい。
 尚、ここで、温感における温度変化を感じる閾値を基準としたのは、図19に示すように、温感は冷感と比べて、接触面積に対しての温度変化を感じる閾値の変化が全体的に小さい傾向にあるからである。温感における温度変化を感じる閾値を基準として適切な配置領域面積を算出することにより、冷感においても少ない温度変化で冷感を提示するのに適切な配置領域面積とすることができる。
 触覚提示対象部位が指先である場合、複数の熱電変換素子が配置される配置領域の面積を100mm以上とすることにより、少ない温度変化で温冷を提示することが可能となる。
 触覚提示対象部位が掌である場合、複数の熱電変換素子が配置される配置領域の面積を200mm以上とすることにより、少ない温度変化で温冷を提示することが可能となる。
 このように、複数の熱電変換素子が配置される配置領域の下限面積を設定することにより、少ない温度変化で温冷を提示することができる。これにより、低消費電力で効果的な温冷提示が可能となる。
<熱電変換素子の制御例>
 以下、制御例について説明する。以下に挙げる制御例は、2以上組み合わせてもよく、より様々な触覚提示が可能となる。
[制御例1]
 提示部9において、複数の熱電変換素子2は一括して制御されてもよいし、個別に制御されてもよい。以下、図1(B)、図4(A)及び(B)、図20を用いて、個別に制御する例を説明する。
 図20(A)及び(B)は、熱電変換素子2C(図上、実線で図示)及び熱電変換素子2S(図上、破線で示す)への供給電力の経時変化を示す。
 上述したように、図1(B)及び図4(A)に示すように、流体の流入が行われる前の膨張膜1が収縮した状態では、ユーザUの指先の腹部は、膨張膜1を介してX軸方向中央に位置する3つの熱電変換素子2Cに接して位置する。このような場合、図20(A)に示すように、指先と接する熱電変換素子2CはユーザUに対して温冷覚刺激を与えるように電力が供給され制御される。一方、熱電変換素子2Sは、指先と接しておらず、温冷覚刺激を与える必要がないため、制御を行わない。尚、図20(A)において、便宜的に、熱電変換素子2Sに若干電力が供給されるように図示している。
 図1(B)及び図4(B)に示すように、流体の流入が行われ、膨張膜1が膨張した状態では、ユーザUの指の腹部及び側部は、膨張膜1を介して、X軸方向中央部に位置する3つの熱電変換素子2C及びX軸方向両側部に位置する2つの熱電変換素子2Sに接した状態となる。このような場合、図20(B)に示すように、指先と接する熱電変換素子2C及び2SはユーザUに対して温冷覚刺激を与えるように電力が印加され制御される。尚、図20(B)に示すように、熱電変換素子2Cへの電力供給量と熱電変換素子2Sへの電力供給量が異なるように電力供給が行われてもよいし、同じ電力供給量で電力供給が行われてもよい。
 図4(A)及び(B)に示すように、膨張膜1の形態に応じて、指先と膨張膜1との接触面積が変化すると、必要な温冷提示面積も変化する。複数の熱電変換素子2を個別に制御することにより、膨張膜1の形態に応じて、指先と接する温冷覚刺激のための駆動が必要な熱電変換素子のみを選択的に制御することができる。これにより、効果的に温冷提示を行うことができるとともに消費電力を低減することができる。
[制御例2]
 提示部9において、圧覚刺激と温冷覚刺激を行う場合、先に熱電変換素子2に電力を投入して熱電変換素子2を駆動し、その後、アクチュエータ5を駆動して空間へ流体を流入するようにしてもよい。図21は、熱電変換素子の制御信号(破線で図示)とアクチュエータの駆動用制御信号(実線で図示)のタイミングの違いを説明する図である。
 熱電変換素子に電力を供給してから該電力供給による放熱又は吸熱が膨張膜を介してユーザUの皮膚に伝わるまでの時間は、アクチュエータを駆動してから膨張膜の膨張による圧覚刺激がユーザUに提示されるまでの時間と比較して、長くなる傾向にある。また、温覚は順応速度が遅いのに対し、圧覚は順応速度が速い。このため、先に熱電変換素子に電力を投入することが好ましい。これにより、ユーザUに対して目的の圧覚刺激及び温冷覚刺激をほぼ同時に提示することができる。
[制御例3]
 熱電変換素子は、昇温・降温速度が0~±10℃/sの範囲で可変して駆動制御されてもよい。昇温・降温速度を変化させることにより、ユーザに対して提示する温冷覚刺激の強さを変化させることができ、様々な触覚を提示することができる。
 図22(A)は昇温パターン例を示す。図上、昇温スピードは、昇温パターン1、昇温パターン2、昇温パターン3の順に上がる。昇温スピードが上がるほど、錯覚でユーザUはより熱く感じるようになる。
 図22(B)は降温パターン例を示す。図上、降温スピードは、降温パターン1、降温パターン2、降温パターン3の順に上がる。降温スピードが上がるほど、錯覚でユーザUはより冷たく感じるようになる。
[制御例4]
 図23は、ユーザUの体感として温感又は冷感を持続させるための熱電変換素子の制御例を示す。実線は温感を、破線は冷感を持続させるための制御信号例である。
 ここで、皮膚に対し温刺激を継続して行うと、温刺激に順応し、温刺激を意識しなくなる。また、冷刺激においても同様である。このような順応によって温感又は冷感が継続して感じられなくなってしまうことを回避するために、次のように制御することが好ましい。
 温感を持続させるために、図23の実線に示すように、次のように熱電変換素子を制御することが好ましい。
 すなわち、熱電変換素子を、第1の昇温速度で任意の温度まで昇温した後、第1の昇温速度の1/2以下の速度で降温させる。その後、熱電変換素子の温度がユーザの皮膚温度の±1℃の範囲となったら再び昇温するように制御する。これを繰り返すことによって、皮膚が温覚刺激に慣れて温覚刺激を意識しづらくなる状態となることを避けることができる。これにより、温覚刺激が断続的に感じる場合はあるものの、継続して温感を提示することができる。尚、ユーザの皮膚温度は、提示部9の使用前に予め膨張膜1に配置された温度センサにより測定しておく。また、任意の温度は、ユーザの皮膚温度により適宜設定され得る。
 冷感を持続させるために、図23の破線に示すように、次のように熱電変換素子を制御することが好ましい。
 すなわち、熱電変換素子を、第1の降温速度で任意の温度まで降温した後、第1の降温速度の1/2以下の速度で昇温させる。その後、熱電変換素子の温度がユーザの皮膚温度の±1℃の範囲となったら再び降温するように制御する。これを繰り返すことによって、皮膚が冷覚刺激に慣れて冷覚刺激を意識しづらくなる状態となることを避けることができる。これにより、冷覚刺激が断続的に感じる場合はあるものの、継続して冷感を提示することができる。尚、ユーザの皮膚温度は、提示部9の使用前に予め膨張膜1に配置された温度センサにより測定しておく。尚、ユーザの皮膚温度は、提示部9の使用前に予め膨張膜1に配置された温度センサにより測定しておく。また、任意の温度は、ユーザの皮膚温度により適宜設定され得る。
 このように熱電変換素子の入力電力が変わるように制御することにより、上述したように継続した温感又は冷感の提示が可能となるとともに、消費電力を低減させることができる。また、ヒートシンクや冷却ファン等の放熱構造も必要でなくなる。
[制御例5]
 図24は、ディスプレイ13に映し出された映像に応じた温冷を提示する例を説明する図である。図24(A)はディスプレイ13に映し出された爆発による熱さを提示するための熱電変換素子の制御信号例である。図24(B)はディスプレイ13に映し出された冷水が入ったコップを持った時の冷たさを提示するための熱電変換素子の制御信号例である。図24(A)及び(B)のいずれにおいても、温感及び冷感を持続してユーザに提示するために、上記制御例4で説明した制御を行うことができる。
[基本的な提示部の制御方法]
 図25を用いて、提示部9の制御方法の基本的な流れを説明する。提示部9が制御されることにより触覚提示が行われる。触覚提示装置において、制御部6により提示部9の制御が行われる。
 図25に示すように、制御部6は、温度センサ18により検出された膨張膜の温度情報を取得し、該温度情報からユーザの皮膚温度を推定する(ST1)。
 次に、制御部6は、触覚提示に係る情報を取得する(ST2)。この触覚提示に係る情報は、例えば、上記第1適用例においては触覚提示装置で検出された圧力値及び温度値であり、上記第2適用例においては触覚提示装置で検出された圧力値である。また、上記第3~第5適用例においては、触覚提示に係る情報は、映像に応じた情報であり、温冷覚刺激に係る情報と圧覚刺激に係る情報を含む。
 次に、制御部6は、ユーザの皮膚温度及び触覚提示に係る情報に基づき、熱電変換素子2の駆動信号及びアクチュエータ5の駆動信号を算出し、熱電変換素子2及びアクチュエータ5に出力する(ST3)。制御部6は、例えば、手を握られたような感覚、爆発のような感覚、温かいお茶入りの湯のみを触ったような感覚等、表現する感覚に応じた駆動信号を算出する。
 熱電変換素子2及びアクチュエータ5は、駆動信号に基づき駆動する。これにより、圧覚刺激及び温冷覚刺激がユーザに対して提示される。
[具体的な触覚提示例]
 次に、上述であげた適用例に沿った熱電変換素子の具体的な制御例について、図26~28を用いて説明する。尚、ここでは、アクチュエータの駆動については説明を省略する。
(提示例1)
 図26は、手を握られた感覚を提示する例を示す例である。
 制御部6は、手を握られたような感覚の表現として、0.4℃/秒で昇温、3秒経過後、0.2℃/秒で降温の制御パターンを有する駆動信号に基づいて熱電変換素子2を駆動する(ST11)。この際、ユーザUに対してはディスプレイ13で、手首を仮想人物によってつかまれている映像が表示されているとする。
 次に、映像上、仮想人物が手首を離したか否かが制御部6によって判定される(ST12)。手首を離したと判定すると(YES)、制御部6は、熱電変換素子2を、皮膚温度まで降温するように制御し(ST13)、処理が終了する。一方、手首は離されていないと判定すると、ST11に戻って処理が繰り返される。
(提示例2)
 図27は、温かいお茶いりの湯飲みを触る感覚を提示する例を示す例である。
 制御部6は、爆発の感覚の表現として、0.8℃/秒で昇温、3秒経過後、0.2℃/秒で降温の制御パターンを有する駆動信号に基づいて熱電変換素子2を駆動する(ST21)。この際、ユーザUに対しては、ディスプレイ13で、温かいお茶が入った湯飲みを手にした映像が表示されているとする。
 次に、映像上、湯飲みを離したか否かが制御部6によって判定される(ST22)。離したと判定すると(YES)、制御部6は、熱電変換素子2を、皮膚温度まで降温するように制御し(ST23)、処理が終了する。一方、離されていないと判定すると、ST21に戻って処理が繰り返される。
(提示例3)
 図28は、爆発の感覚を提示する例を示す例である。
 制御部6は、爆発の感覚の表現として、1.2℃/秒で昇温、2秒経過後、0.4℃/秒で降温の制御パターンを有する駆動信号に基づいて熱電変換素子を駆動する(ST31)。この際、ユーザUに対してはディスプレイ13で爆発の映像が表示されているとする。
 次に、映像上、爆発が終了したか否かが制御部6によって判定される(ST32)。爆発が終了したしたと判定すると(YES)、制御部6は、熱電変換素子2を、皮膚温度まで降温するように制御する(ST33)。一方、手首は離されていないと判定すると、ST31に戻って処理が繰り返される。
 提示例1~3に示した熱電変換素子における制御パターンは、手を握られた、温かいお茶が入った湯飲みを持つ、爆発、といった、熱電変換素子により表現される温冷覚刺激の種類毎に紐づけられ、予めデータベース化されていてもよい。そして、映像内容に応じて該データベースから制御パターンが読み出され、該制御パターンに基づいて熱電変換素子が制御されてもよい。
<その他>
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、以下の変形例1~3のような構成としてもよい。
[変形例1]
 図29を用いて、変形例の触覚提示装置34について説明する。
 図29(A)は触覚提示装置34の構成を示す模式断面図である。図29(B)は、図29(A)の触覚提示装置34を上からみた模式平面図である。
 図29(A)及び(B)に示すように、中央に位置する熱電変換素子2と、膨張膜1との間に、薄い板状のヒートスプレッダ35を設けてもよい。
 ヒートスプレッダ35は、平面視において、熱電変換素子2内に位置するように、熱電変換素子2よりも平面積が小さい円盤形状を有する。ヒートスプレッダ35は、銅やアルミニウムなどの熱伝導率の高い金属や窒化アルミニウムや窒化珪素等のセラミックス等により構成される。熱伝導率の高い材質でヒートスプレッダ35を構成することにより、熱電変換素子2による温冷覚刺激がユーザUの触覚提示対象部位に効率よく伝わる。
 ここで、熱電変換素子は、典型的には正方形や長方形といった多角形状を有する。このため、熱電変換素子を接着配置した膨張膜において、膨張時、熱電変換素子の角部分に対応する膨張膜にテンションがかかり破れる可能性がある。
 これに対し、触覚提示装置34においては、円盤状のヒートスプレッダ35を膨張膜1と熱電変換素子との間に介在させることにより、円盤状のヒートスプレッダ35では、角がないため、局所的に膨張膜にテンションがかかることがなく、膨張膜が破れにくくなる。これにより耐久性にすぐれた提示部9とすることができる。
[変形例2]
 図30を用いて、変形例の触覚提示装置52について説明する。
 図30(A)は触覚提示装置52の構成を示す斜視図である。図30(B)は、図30(A)の触覚提示装置52を、長手方向に沿った方向からみた図である。
 図30(A)及び(B)に示すように、触覚提示装置52は、円筒状の支持体3と、圧力センサ511を有する検出部51と、提示部9と、2つの熱電変換素子19とを有する。
 検出部51、提示部9及び熱電変換素子19は、支持体3上に設けられ、互いに別の位置に設けられている。例えば、図30(B)に示すように、検出部51と提示部9とは、支持体3を介してほぼ対向して位置する。2つの熱電変換素子19は、円筒状の支持体3の周囲に沿って検出部51と提示部9との間に位置する。熱電変換素子19は、フレキシブルに変形可能なフレキシブル熱電変換素子であってもよいし、セラミックス基板を備えた一般的な熱電変換素子であってもよい。尚、曲面を有する支持体3に配置するという観点から、熱電変換素子は、曲面に沿って配置しやすいフレキシブル熱電変換素子であることが好ましい。熱電変換素子の構成例については後述する。
 図30に示す例では、触覚提示装置52をユーザUが握ったときに、検出部51は、人差し指、中指、薬指、小指それぞれの第1関節から指先までの領域に対応する位置に設けられる。提示部9は、ユーザが触覚提示装置52を握ったときの掌(掌の中央)に対応する位置に設けられる。熱電変換素子19は、ユーザが触覚提示装置52を握ったときに、人差し指、中指、薬指、小指の付け根付近に対応する位置に設けられる。
 このように、圧覚刺激及び温冷覚刺激を行う提示部9とは別に、温冷覚刺激のみを行う熱電変換素子19を有するように触覚提示装置52を構成してもよい。これにより、温冷覚刺激の提示面積をより広くすることができ、わずかな温度変化でも効率よく温冷覚提示をすることができる。また、掌全体において、圧覚刺激や温冷覚刺激といった何等かの刺激が提示される構成となるため、局所的に刺激が行われる違和感が緩和される。
 また、ここでは、提示部9とは別に温冷覚刺激のみを行う熱電変換素子19を設ける例をあげたが、熱電変換素子19の代わりに薄型抵抗ヒータを用い、該薄型抵抗ヒータによる温覚刺激を行う構成としてもよい。これにより、提示部9と薄型抵抗ヒータの双方を用いて温覚刺激の提示面積を広くすることができ、わずかな温度変化でも効率よく温覚提示をすることができる。
[変形例3]
 上述の膨張膜を2つ有する提示部9について説明した第2の実施形態では、第2の膨張膜12と支持体3との間の空間4に流体を流出入して圧覚提示を行う例をあげたが、これに限定されない。第2の膨張膜12と支持体3との間の空間4への流体の流出入に加えて、第1の膨張膜11と第2の膨張膜12との間に空間へ流体を流出入が可能な形態としてもよい。この場合、第2の膨張膜12と熱電変換素子2とは接着されない。これにより、より様々な触覚提示が可能となる。
[熱電変換素子(ペルチェ素子)の構成例]
 図31及び32を用いて熱電変換素子の構成例について説明する。本技術に係る触覚提示装置において、以下に説明する各種の熱電変換素子を採用することが可能である。尚、基本的な熱電変換素子の構成については図3を用いて前述している。
 図31(A)及び(B)は一般的な熱電変換素子2の斜視図及び模式断面図である。
 図31に示すように、一般的な熱電変換素子2は、互いに離間して配置された2枚の基板27と、これら2枚の基板27間に配置された、P型の熱電半導体23p、N型の熱電半導体23n、電極21a及び電極21bを有する。
 基板27は、アルミナ等のセラミックスから構成される。セラミックスからなる基板27は、形状保持、冷却対象物との絶縁、面内での熱分散といった機能を有する。
 電極21a及び電極21bは例えば銅から構成される。
 P型の熱電半導体23p、N型の熱電半導体23nは、例えばBi-Te系化合物半導体から構成される。
 図32(A)及び(B)はスケルトンタイプの熱電変換素子2の斜視図及び模式断面図である。
 図32に示すように、スケルトンタイプの熱電変換素子2は、互いに離間して配置された2枚の樹脂フィルム28と、これら2枚の樹脂フィルム28間に配置された、P型の熱電半導体23p、N型の熱電半導体23n、電極21a及び電極21bと、熱電半導体間に配置されたセパレータ29を有する。
 樹脂フィルム28は、例えば、冷却又は加熱対象物が導体である場合、対象物と電極とを絶縁するために設けられる。尚、樹脂フィルム28を用いず、電極が露出する構成としてもよい。スケルトンタイプの熱電変換素子2は、セラミックス基板を用いる一般的な熱電変換素子2と比較して、変形しやすい。
 電極21a及び電極21bは例えば銅から構成される。
 P型の熱電半導体23p、N型の熱電半導体23nは、例えばBi-Te系化合物半導体から構成される。
 セパレータ29は、形状保持のため設けられる。セパレータとして柔らかい材質のものを用いてもよい。また、セパレータを用いない構成としてもよい。
 スケルトンタイプの一種であるフレキシブル熱電変換素子は、樹脂フィルムあり又は樹脂フィルムなしの構造を有し得、セパレータが例えばゴムであり、フレキシブルに変形可能な構成となっている。
 また、熱電半導体として有機半導体を用いてもよく、フレキシブル性をより向上させることができるとともに、軽量化することができる。
 本技術は、以下の構成をとることもできる。
(1) 支持体と、
 前記支持体との間に流体を保持する空間を形成する膨張膜と、
 前記膨張膜の前記支持体側の面に配置された複数の熱電変換素子と、
 前記流体の流出入を制御する駆動部と
 を具備する触覚提示装置。
(2) 上記(1)に記載の触覚提示装置であって、
 前記膨張膜は、第1の膨張膜と、前記第1の膨張膜よりも前記支持体側に位置する第2の膨張膜を含み、
 前記空間は、前記第2の膨張膜と前記支持体との間に形成され、
 前記熱電変換素子は、前記第1の膨張膜の前記支持体側の面に配置される
 触覚提示装置。
(3) 上記(1)又は(2)に記載の触覚提示装置であって、
 前記複数の熱電変換素子のうち少なくとも1つは、前記膨張膜との接触面積が他の熱電変換素子と異なる
 触覚提示装置。
(4) 上記(1)~(3)のいずれか1つに記載の触覚提示装置であって、
 前記膨張膜を複数有する
 触覚提示装置。
(5) 上記(1)~(4)のいずれか1つに記載の触覚提示装置であって、
 前記熱電変換素子が配置される前記膨張膜に配置された温度センサ、前記空間に配置された距離センサ、及び、前記空間に配置された気圧センサの少なくとも1つを更に具備する
 触覚提示装置。
(6) 上記(1)~(5)のいずれか1つに記載の触覚提示装置であって、
 前記膨張膜の熱伝導率は0.2W/mK以上である
 触覚提示装置。
(7) 上記(1)~(6)のうちいずれか1つに記載の触覚提示装置であって、
 前記複数の熱電変換素子は個別に制御される
 触覚提示装置。
(8) 上記(1)~(7)のうちいずれか1つに記載の触覚提示装置であって、
 前記熱電変換素子の駆動後、前記駆動部は前記空間へ前記流体を流入するように制御される
 触覚提示装置。
(9) 上記(1)~(8)のうちいずれか1つに記載の触覚提示装置であって、
 前記熱電変換素子は、昇温・降温速度を0~±10℃/sに可変して駆動される
 触覚提示装置。
(10) 上記(1)~(9)のうちいずれか1つに記載の触覚提示装置であって、
 前記触覚提示装置は、前記膨張膜がユーザの皮膚に接するように配され、
 前記熱電変換素子は、第1の昇温速度で任意の温度まで昇温後、前記第1の昇温速度の1/2以下の速度で降温し、前記熱電変換素子の温度が前記ユーザの皮膚温度の±1℃の範囲となったら昇温するように制御される
 触覚提示装置。
(11) 上記(1)~(10)のうちいずれか1つに記載の触覚提示装置であって、
 前記触覚提示装置は、前記膨張膜がユーザの皮膚に接するように配され、
 前記熱電変換素子は、第1の降温速度で任意の温度まで降温後、前記第1の降温速度の1/2以下の速度で昇温し、前記熱電変換素子の温度が前記ユーザの皮膚温度の±1℃の範囲となったら降温するように制御される
 触覚提示装置。
(12) 上記(1)~(11)のうちいずれか1つに記載の触覚提示装置であって、
 前記熱電変換素子は、前記触覚提示装置を装着するユーザに表示される映像に応じた温冷覚刺激となるように駆動される
 触覚提示装置。
(13) 上記(1)~(12)のうちいずれか1つに記載の触覚提示装置であって、
 前記熱電変換素子は、予め準備されている、前記熱電変換素子により表現される温冷覚刺激の種類毎の前記熱電変換素子の制御パターンを用いて駆動される
 触覚提示装置。
(14) 支持体との間に流体を保持する空間を形成する膨張膜の前記支持体側の面に配置された複数の熱電変換素子の駆動と前記流体の流出入を制御する
 触覚提示方法。
(15) 支持体との間に流体を保持する空間を形成する膨張膜の前記支持体側の面に配置された複数の熱電変換素子の駆動と前記流体の流出入を制御する
 処理をコンピュータに実行させるプログラム。
 1…膨張膜
 2…熱電変換素子
 3…支持体
 4…空間
 5…アクチュエータ(駆動部)
 10、30~34、50、52、60、70~73…触覚提示装置
 11…第1の膨張膜
 12…第2の膨張膜
 16…距離センサ
 17…気圧センサ
 18…温度センサ

Claims (15)

  1.  支持体と、
     前記支持体との間に流体を保持する空間を形成する膨張膜と、
     前記膨張膜の前記支持体側の面に配置された複数の熱電変換素子と、
     前記流体の流出入を制御する駆動部と
     を具備する触覚提示装置。
  2.  請求項1に記載の触覚提示装置であって、
     前記膨張膜は、第1の膨張膜と、前記第1の膨張膜よりも前記支持体側に位置する第2の膨張膜を含み、
     前記空間は、前記第2の膨張膜と前記支持体との間に形成され、
     前記熱電変換素子は、前記第1の膨張膜の前記支持体側の面に配置される
     触覚提示装置。
  3.  請求項1に記載の触覚提示装置であって、
     前記複数の熱電変換素子のうち少なくとも1つは、前記膨張膜との接触面積が他の熱電変換素子と異なる
     触覚提示装置。
  4.  請求項1に記載の触覚提示装置であって、
     前記膨張膜を複数有する
     触覚提示装置。
  5.  請求項1に記載の触覚提示装置であって、
     前記熱電変換素子が配置される前記膨張膜に配置された温度センサ、前記空間に配置された距離センサ、及び、前記空間に配置された気圧センサの少なくとも1つを更に具備する
     触覚提示装置。
  6.  請求項1に記載の触覚提示装置であって、
     前記膨張膜の熱伝導率は0.2W/mK以上である
     触覚提示装置。
  7.  請求項1に記載の触覚提示装置であって、
     前記複数の熱電変換素子は個別に制御される
     触覚提示装置。
  8.  請求項1に記載の触覚提示装置であって、
     前記熱電変換素子の駆動後、前記駆動部は前記空間へ前記流体を流入するように制御される
     触覚提示装置。
  9.  請求項1に記載の触覚提示装置であって、
     前記熱電変換素子は、昇温・降温速度を0~±10℃/sに可変して駆動される
     触覚提示装置。
  10.  請求項1に記載の触覚提示装置であって、
     前記触覚提示装置は、前記膨張膜がユーザの皮膚に接するように配され、
     前記熱電変換素子は、第1の昇温速度で任意の温度まで昇温後、前記第1の昇温速度の1/2以下の速度で降温し、前記熱電変換素子の温度が前記ユーザの皮膚温度の±1℃の範囲となったら昇温するように制御される
     触覚提示装置。
  11.  請求項1に記載の触覚提示装置であって、
     前記触覚提示装置は、前記膨張膜がユーザの皮膚に接するように配され、
     前記熱電変換素子は、第1の降温速度で任意の温度まで降温後、前記第1の降温速度の1/2以下の速度で昇温し、前記熱電変換素子の温度が前記ユーザの皮膚温度の±1℃の範囲となったら降温するように制御される
     触覚提示装置。
  12.  請求項1に記載の触覚提示装置であって、
     前記熱電変換素子は、前記触覚提示装置を装着するユーザに表示される映像に応じた温冷覚刺激となるように駆動される
     触覚提示装置。
  13.  請求項1に記載の触覚提示装置であって、
     前記熱電変換素子は、予め準備されている、前記熱電変換素子により表現される温冷覚刺激の種類毎の前記熱電変換素子の制御パターンを用いて駆動される
     触覚提示装置。
  14.  支持体との間に流体を保持する空間を形成する膨張膜の前記支持体側の面に配置された複数の熱電変換素子の駆動と前記流体の流出入を制御する
     触覚提示方法。
  15.  支持体との間に流体を保持する空間を形成する膨張膜の前記支持体側の面に配置された複数の熱電変換素子の駆動と前記流体の流出入を制御する
     処理をコンピュータに実行させるプログラム。
PCT/JP2022/000217 2021-03-29 2022-01-06 触覚提示装置、触覚提示方法及びプログラム WO2022209111A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/551,223 US20240161589A1 (en) 2021-03-29 2022-01-06 Tactile presentation apparatus, tactile presentation method, and program
EP22779344.5A EP4318617A1 (en) 2021-03-29 2022-01-06 Haptic sensation presentation device, haptic sensation presentation method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-054582 2021-03-29
JP2021054582 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022209111A1 true WO2022209111A1 (ja) 2022-10-06

Family

ID=83455977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000217 WO2022209111A1 (ja) 2021-03-29 2022-01-06 触覚提示装置、触覚提示方法及びプログラム

Country Status (3)

Country Link
US (1) US20240161589A1 (ja)
EP (1) EP4318617A1 (ja)
WO (1) WO2022209111A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166676A (ja) * 1999-12-09 2001-06-22 Sony Corp 触覚提示機構及びこれを用いた力触覚提示装置
WO2012093725A1 (ja) * 2011-01-07 2012-07-12 日本電気株式会社 タブレット装置及び触覚提示方法
JP2013137659A (ja) * 2011-12-28 2013-07-11 Nikon Corp 表示装置
WO2018097049A1 (ja) * 2016-11-28 2018-05-31 アルプス電気株式会社 触覚呈示装置
JP2018528046A (ja) 2015-08-19 2018-09-27 モーガン イノベーション アンド テクノロジー リミテッド 触覚刺激装置
WO2020110721A1 (ja) * 2018-11-28 2020-06-04 ソニー株式会社 触覚提示装置、電子機器、装身具および保持装置
WO2020116010A1 (ja) * 2018-12-07 2020-06-11 ソニー株式会社 触覚及び温度のフィードバックシステム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166676A (ja) * 1999-12-09 2001-06-22 Sony Corp 触覚提示機構及びこれを用いた力触覚提示装置
WO2012093725A1 (ja) * 2011-01-07 2012-07-12 日本電気株式会社 タブレット装置及び触覚提示方法
JP2013137659A (ja) * 2011-12-28 2013-07-11 Nikon Corp 表示装置
JP2018528046A (ja) 2015-08-19 2018-09-27 モーガン イノベーション アンド テクノロジー リミテッド 触覚刺激装置
WO2018097049A1 (ja) * 2016-11-28 2018-05-31 アルプス電気株式会社 触覚呈示装置
WO2020110721A1 (ja) * 2018-11-28 2020-06-04 ソニー株式会社 触覚提示装置、電子機器、装身具および保持装置
WO2020116010A1 (ja) * 2018-12-07 2020-06-11 ソニー株式会社 触覚及び温度のフィードバックシステム

Also Published As

Publication number Publication date
US20240161589A1 (en) 2024-05-16
EP4318617A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
US11500465B1 (en) Systems including vibrotactile actuators and inflatable bladders, and related methods
US20090120105A1 (en) Thermal Haptic Effects
US20210081048A1 (en) Artificial reality devices, including haptic devices and coupling sensors
KR20150006415A (ko) 감각 회복 훈련 시스템 및 그 실시 방법
US20210284525A1 (en) Electrostatic zipper
WO2019044111A1 (ja) 触覚提示装置
Zhang et al. Pneumod: A modular haptic device with localized pressure and thermal feedback
JP2016018420A (ja) 触覚型デバイス
US11084031B1 (en) Methods of fabricating microfluidic valves and systems
CN109085922B (zh) 一种多元触觉融合反馈手柄
WO2022209111A1 (ja) 触覚提示装置、触覚提示方法及びプログラム
US20220096317A1 (en) Thermal and vibrotactile haptic actuators
US20220072545A1 (en) Microfluidic systems and related methods
CN114942694A (zh) 一种用于虚拟握手的多模态触觉反馈手套及系统
WO2022054323A1 (ja) 触覚提示装置、触覚提示システム、触覚提示制御方法及びプログラム
US11236846B1 (en) Fluidic control: using exhaust as a control mechanism
US11627418B1 (en) Multilayer membranes for haptic devices
CN111176455A (zh) 一种温度和纹理一致性呈现的柔性触觉反馈装置
US20110168685A1 (en) Thermal Pixel Array Device
US11467669B2 (en) Operational feedback using capacitive sensing
US11763647B2 (en) Multimode haptic patch and multimodal haptic feedback interface
US11334163B1 (en) Spiral haptic vibrotactile actuators and related systems and methods
US11899841B2 (en) Haptic actuators and related wearable devices
US20210399186A1 (en) Low power thermoelectric systems
US11934578B1 (en) Apparatus, system, and method for controlling soft fluidic actuators via sensor feedback and machine learning models

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779344

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18551223

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022779344

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022779344

Country of ref document: EP

Effective date: 20231030