WO2022206953A1 - 跳频的配置方法、装置、终端及存储介质 - Google Patents

跳频的配置方法、装置、终端及存储介质 Download PDF

Info

Publication number
WO2022206953A1
WO2022206953A1 PCT/CN2022/084805 CN2022084805W WO2022206953A1 WO 2022206953 A1 WO2022206953 A1 WO 2022206953A1 CN 2022084805 W CN2022084805 W CN 2022084805W WO 2022206953 A1 WO2022206953 A1 WO 2022206953A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
frequency hopping
rbs corresponding
starting
maximum bandwidth
Prior art date
Application number
PCT/CN2022/084805
Other languages
English (en)
French (fr)
Other versions
WO2022206953A9 (zh
Inventor
胡丽洁
杨拓
张嘉真
李男
胡南
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2022206953A1 publication Critical patent/WO2022206953A1/zh
Publication of WO2022206953A9 publication Critical patent/WO2022206953A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of wireless technologies, and in particular, to a frequency hopping configuration method, device, terminal, and storage medium.
  • Reduced Capability NR devices also known as Redcap terminals
  • Redcap terminals have the characteristics of low cost, low energy consumption and low complexity, and are designed to be used in wireless sensing, video surveillance, wearable devices and other scenarios.
  • the RedCap terminal may not be able to start frequency hopping transmission.
  • the embodiments of the present application provide a frequency hopping configuration method, device, terminal, and storage medium.
  • the embodiment of the present application provides a configuration method for frequency hopping, including:
  • the terminal determines the initial resource block (RB, Resource Block) for frequency hopping of the Physical Uplink Shared Channel (PUSCH, Physical Uplink Shared Channel); wherein,
  • the starting RB is determined based on a first parameter of the terminal; the first parameter represents the number of RBs corresponding to the maximum bandwidth of the terminal or the number of RBs corresponding to the terminal type.
  • the embodiment of the present application also provides a configuration device for frequency hopping, including:
  • a determining unit configured to determine the starting RB for PUSCH frequency hopping
  • the starting RB is determined based on a first parameter of the terminal; the first parameter represents the number of RBs corresponding to the maximum bandwidth of the terminal or the number of RBs corresponding to the terminal type.
  • the embodiment of the present application further provides a terminal, including: a first processor and a first communication interface; wherein,
  • the first processor is configured to determine the starting RB for PUSCH frequency hopping; wherein,
  • the starting RB is determined based on a first parameter of the terminal; the first parameter represents the number of RBs corresponding to the maximum bandwidth of the terminal or the number of RBs corresponding to the terminal type.
  • Embodiments of the present application further provide a terminal, including: a first processor and a first memory configured to store a computer program that can be run on the processor,
  • the first processor is configured to execute the steps of any of the above-mentioned frequency hopping configuration methods when running the computer program.
  • An embodiment of the present application further provides a storage medium, on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of any of the above-mentioned frequency hopping configuration methods.
  • the terminal determines the starting RB for PUSCH frequency hopping; wherein, the starting RB is determined based on a first parameter of the terminal; the first parameter Indicates the number of RBs corresponding to the maximum bandwidth of the terminal or the number of RBs corresponding to the terminal type.
  • the RedCap terminal can determine the starting RB for PUSCH frequency hopping according to the number of RBs corresponding to the maximum bandwidth or the number of RBs corresponding to the terminal type. This configuration can avoid the coexistence of RedCap terminals and non-RedCap terminals. In the case where the RedCap terminal jumps out of the maximum bandwidth, the RedCap terminal can enjoy the frequency domain diversity gain through PUSCH frequency hopping.
  • FIG. 1 is a schematic flowchart of a configuration method for frequency hopping according to an embodiment of the present application
  • FIG. 2 is an example diagram of frequency hopping according to an embodiment of the present application
  • FIG. 3 is an exemplary diagram of frequency hopping according to another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a configuration device for frequency hopping according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • the methods used include but are not limited to: reducing the number of terminal receiving antennas, reducing the maximum bandwidth of the terminal, supporting half-duplex frequency division duplex (FDD) , Frequency Division Duplexing), reduce terminal processing time requirements, and reduce terminal processing capacity requirements.
  • FDD frequency division duplex
  • the fifth generation mobile communication technology (5G, 5th Generation) system defines the system bandwidth of the terminal in different frequency bands, which puts forward higher requirements for the terminal capability.
  • reducing the maximum bandwidth of the terminal refers to the frequency range 1 ( FR1, Frequency Range1), reduce the maximum bandwidth of the terminal from 100MHz to 20MHz, for frequency range 2 (FR2, Frequency Range 2), reduce the maximum bandwidth of the terminal from 200MHz to 100MHz, so if the maximum bandwidth of the terminal can be reduced, set the From the perspective of radio frequency and baseband, the cost and complexity of the terminal are reduced.
  • the bandwidth of 20MHz is the maximum bandwidth of RedCap terminals.
  • the maximum bandwidth of control resource set 0 (COREST#0, Control Resource Set 0) in the access process is also 20MHz , but the network side can reconfigure the initial uplink (Uplink) BWP through the System Information Block 1 (SIB1, System Information Block 1) message, that is, the initial uplink BWP used in the random access process of the non-RedCap terminal It may be the initial upstream BWP after SIB1 is reconfigured.
  • SIB1 System Information Block 1
  • the terminal In the initial random access process, when the terminal initiates a random access request, it will receive a random access response (RAR, Random Access Response) replied by the network side, and the RAR is used to schedule the terminal to transmit the PUSCH of MSG.3.
  • RAR Random Access Response
  • the network side can configure whether to use frequency hopping when scheduling MSG.3 or when MSG.3 performs retransmission.
  • frequency hopping is enabled, the frequency domain offset value of the second hop is determined based on Table 8.3-1 in the 3rd Generation Partnership Project (3GPP, 3rd Generation Partnership Project) protocol.
  • the frequency domain offset value of the second hop can be taken as or
  • the initial RB of the terminal in each hop is determined according to the following formula:
  • RB offset represents the RB interval between the first hop and the second hop during frequency hopping
  • the starting RB of is determined according to the following formula:
  • the offset of frequency hopping is not configured by Radio Resource Control (RRC, Radio Resource Control), and needs to pass 1 or 2 of the frequency hopping bits in the protocol related table.
  • RRC Radio Resource Control
  • the bit value determines the frequency domain offset value of the second hop during frequency hopping.
  • a non-RedCap terminal there is a situation that the bandwidth of the initial uplink BWP after reconfiguration by the network side is greater than 20 MHz. Based on the above situation, when the RedCap terminal and the non-RedCap terminal coexist, the base station schedules the MSG.3 of the RedCap terminal through RAR, and the current initial uplink BWP is reconfigured to 100MHz by the network side.
  • the base station cannot enable frequency hopping for the RedCap terminal, otherwise, if the RedCap terminal will jump out of the RedCap The maximum bandwidth of the terminal.
  • the starting position of the RB for the second hop calculated according to the above formula is 156.
  • the span of the two frequency hopping has obviously exceeded 20MHz, that is, the maximum bandwidth of the RedCap terminal. That is to say, in the case where the RedCap terminal and the non-RedCap terminal coexist and the network side reconfigures a larger initial uplink BWP for the non-RedCap terminal, the Msg.3 transmission of the RedCap terminal cannot be performed.
  • RedCap terminals in the case of the coexistence of RedCap terminals and non-RedCap terminals, if the network side configures a non-RedCap terminal with a downlink initial BWP larger than the maximum bandwidth supported by the RedCap terminal, it may also occur that the RedCap terminal jumps out of its maximum bandwidth after frequency hopping. range, and the RedCap terminal cannot start frequency hopping transmission.
  • the terminal determines the starting RB for PUSCH frequency hopping; wherein, the starting RB is determined based on the first parameter of the terminal; the first parameter represents the number of RBs corresponding to the maximum bandwidth of the terminal or The number of RBs corresponding to the terminal type.
  • the RedCap terminal can determine the starting RB for PUSCH frequency hopping according to the number of RBs corresponding to the maximum bandwidth or the number of RBs corresponding to the terminal type. This configuration can avoid the coexistence of RedCap terminals and non-RedCap terminals. In the case where the RedCap terminal jumps out of the maximum bandwidth, the RedCap terminal can enjoy the frequency domain diversity gain through PUSCH frequency hopping.
  • An embodiment of the present application provides a frequency hopping configuration method, which is applied to a terminal. As shown in FIG. 1 , the method includes:
  • Step 101 The terminal determines the starting RB for PUSCH frequency hopping; wherein,
  • the starting RB is determined based on a first parameter of the terminal; the first parameter represents the number of RBs corresponding to the maximum bandwidth of the terminal or the number of RBs corresponding to the terminal type.
  • the first parameter may be the maximum bandwidth of the terminal or the terminal type, that is, the first parameter can represent the number of RBs corresponding to the maximum bandwidth of the terminal or the number of RBs corresponding to the terminal type.
  • the first parameter is the maximum bandwidth of the terminal
  • the corresponding number of RBs can be determined according to the maximum bandwidth of the terminal
  • the maximum bandwidth of the terminal can be determined according to the terminal type.
  • the number of RBs corresponding to the maximum bandwidth of the terminal is determined.
  • the terminal type represented by the first parameter is a low-capability terminal, that is, a RedCap terminal
  • the maximum bandwidth of the RedCap terminal is 20MHz.
  • the subcarrier spacing is 30KHz
  • the number of RBs corresponding to the 20MHz bandwidth is 51.
  • the RedCap terminal may jump out of the maximum bandwidth when performing PUSCH frequency hopping. Therefore, in the physical broadcast channel (PBCH, Physical Broadcast Channel) or SIB 1 message When the configured initial uplink BWP is greater than the maximum bandwidth of the terminal, configure the starting RB for the terminal to perform PUSCH frequency hopping.
  • PBCH Physical Broadcast Channel
  • SIB 1 message When the configured initial uplink BWP is greater than the maximum bandwidth of the terminal, configure the starting RB for the terminal to perform PUSCH frequency hopping.
  • the method when determining the starting RB, includes:
  • a modulo operation is performed on the number of RBs corresponding to the maximum bandwidth of the terminal or the number of RBs corresponding to the terminal type.
  • the terminal determines the starting RB for PUSCH frequency hopping based on one of the following formulas:
  • i 0 represents the first hop during frequency hopping
  • i 1 represents the second hop during frequency hopping
  • RB start represents the starting RB in the uplink BWP
  • RB offset represents the RB of the first hop and the second hop during frequency hopping interval
  • the terminal determines the starting RB of PUSCH frequency hopping based on formula (1).
  • the base station ensures that the starting RB of each hop of the PUSCH frequency hopping allocated to the terminal during resource allocation is located at the lowest initial uplink BWP configured by the network side. within RBs.
  • offset represents the frequency domain offset value of the first hop and the second hop
  • the number of RBs corresponding to the initial uplink BWP configured by the network side is The number of RBs corresponding to the maximum bandwidth of the RedCap terminal is That is to say, the bandwidth of the initial uplink BWP configured on the network side is greater than the maximum bandwidth of the RedCap terminal.
  • the starting RB of the second hop when the terminal is frequency hopping is located at the lowest initial uplink BWP configured on the network side. Based on the above formula (1), referring to the right figure of Fig. 2, the starting RB of the second hop is still located at the lowest RB among the initial uplink BWPs configured by the network side when the terminal is frequency hopping. Within each RB, the maximum bandwidth of the RedCap terminal is not exceeded.
  • the terminal determines the starting RB for PUSCH frequency hopping based on formula (2).
  • the initial uplink BWP configured on the network side is 100MHz
  • the maximum bandwidth of the RedCap terminal is 20MHz
  • the RedCap terminal can be scheduled to work in any one of the five 20MHz subbands.
  • the terminal works in a 20MHz subband before the second hop of frequency hopping, and works in another 20MHz subband after the second hop, and based on the above formula (2), see In the right picture of Figure 3, the terminal works in the same 20MHz subband before and after the second hop, and does not exceed the range of one 20MHz subband.
  • the terminal determines the starting RB of the first time slot when the PUSCH frequency hopping is based on one of the following formulas:
  • RB start represents the starting RB in the uplink BWP
  • RB offset represents the RB interval between two adjacent hops in the radio frame
  • Table 2 shows the frequency domain interval of two hops when the number of RBs in the frequency hopping interval is 136 and 68 when the starting RBs of each hop configured by the network side are different, where it is assumed that the network side only wants the terminal Use the lowest position among the current frequency domain resource positions RBs, so the RB start position for each hop ranges from 0 to 50:
  • the frequency domain interval between two hops is both 17 or 34 RBs, so that the transmission of different two hops is more evenly distributed in the current In the frequency domain resource of , the frequency domain offset value of each hop needs to be updated as well.
  • the terminal determines the starting RB for PUSCH frequency hopping, including:
  • the terminal determines the frequency domain offset value of the second hop during PUSCH frequency hopping.
  • the terminal determines the frequency domain offset value of the second hop during PUSCH frequency hopping.
  • the frequency domain offset value of the second hop determined by the terminal is one of a plurality of first candidate values.
  • the method further includes:
  • the terminal receives the plurality of first candidate values configured by the network side.
  • the network side may configure a plurality of first candidate values of the frequency domain offset value of the second hop for the terminal.
  • the terminal determines the frequency domain offset value of the second hop during PUSCH frequency hopping, including:
  • the terminal determines, from the plurality of first candidate values, the frequency domain offset values of two adjacent hops during PUSCH frequency hopping by using the bit values of the M frequency hopping bits in the uplink scheduling grant; the M is greater than or an integer equal to 1.
  • a column may be added on the basis of Table 1, so that the network side can indicate to the terminal multiple first candidate values through the bit values of the M frequency hopping bits in the uplink scheduling grant.
  • M can be understood as N UL,hop .
  • the frequency domain offset value of the second hop is related to a first coefficient; the first coefficient is determined based on the first parameter of the terminal and the number of RBs corresponding to the initial uplink BWP configured by the network side.
  • the frequency domain offset value of the second hop during PUSCH frequency hopping is determined by multiplying the original frequency domain offset value of the second hop by a first coefficient.
  • the original frequency domain offset value of the second hop may be the frequency domain offset value of the second hop indicated by the bit value of the frequency hopping bit in Table 1.
  • the first coefficient can be set to 1 /5, the terminal multiplies the frequency domain offset value indicated by the bit value of the frequency hopping bit in Table 1 by 1/5 to determine the frequency domain offset value of the second hop during PUSCH frequency hopping.
  • the available subcarrier interval for the terminal during data transmission is 15KHz or 30KHz, and for FR2, the available subcarrier interval is 60KHz or 120KHz, then the initial uplink configured on the network side
  • the number of RBs corresponding to BWP is less than 50, for FR1, the total bandwidth is less than 20MHz, and for FR2, the total bandwidth is less than 100MHz, both within the range of the maximum bandwidth of the RedCap terminal. That is to say, when the number of RBs corresponding to the initial uplink BWP configured by the network side is less than 50, the frequency domain offset value of the second hop does not need to be changed.
  • the first coefficient F is determined based on the following formula:
  • the method 1 corresponds to the example in Table 3, wherein, on the basis of Table 1, "the second hop of a specific terminal type is added" Frequency Domain Offset" column:
  • the above method of determining the first coefficient based on the number of RBs corresponding to the initial uplink BWP configured by the network side cannot well match the bandwidth.
  • the plurality of first candidate values are determined based on the product of the number of RBs corresponding to the maximum bandwidth of the terminal and different constant factors, or based on the number of RBs corresponding to the terminal type of the terminal and The product of different constant factors is determined.
  • predefined This value corresponds to the number of RBs corresponding to the maximum bandwidth of the terminal in the current frequency band, then when the maximum bandwidth of the terminal in FR1 is 20MHz and the subcarrier spacing is 30KHz, is 51, when the maximum bandwidth of the terminal in FR2 is 100MHz and the subcarrier spacing is 60KHz, is 132.
  • Mode 2 corresponds to the example in Table 4, wherein, on the basis of Table 1, the "specific terminal type second hop” is added.
  • Mode 3 corresponds to the example in Table 5:
  • a plurality of dedicated first candidate values are configured for the RedCap terminal through the SIB1 message.
  • the network side configures at most four first candidate values for the terminal simultaneously through the SIB1 message. For example, configure Similarly, the terminal determines the frequency domain offset value of the second hop by using the bit value of the frequency hopping bit in the RAR.
  • the starting RB of the PUSCH frequency hopping is determined according to the number of RBs corresponding to the maximum bandwidth of the terminal.
  • the starting RB is determined based on a first parameter of the terminal; the first parameter represents the number of RBs corresponding to the maximum bandwidth of the terminal or the number of RBs corresponding to the terminal type.
  • the frequency domain offset value of the second hop of the PUSCH frequency hopping is determined according to the first parameter of the terminal.
  • the RedCap terminal can determine the RB starting position of PUSCH frequency hopping according to the number of RBs corresponding to the maximum bandwidth or the number of RBs corresponding to the terminal type, and the RedCap terminal and non-RedCap terminal coexist, and the network side reconfigures
  • the bandwidth of the initial uplink BWP is greater than the maximum bandwidth of the RedCap terminal
  • this configuration can avoid the situation that the RedCap terminal jumps out of the maximum bandwidth, and the RedCap terminal can enjoy the frequency domain diversity gain through PUSCH frequency hopping.
  • the embodiment of the present application further provides a frequency hopping configuration device, which is set on the terminal.
  • the device includes:
  • the determining unit 401 is configured to determine the starting RB of PUSCH frequency hopping; wherein,
  • the starting RB is determined based on a first parameter of the terminal; the first parameter represents the number of RBs corresponding to the maximum bandwidth of the terminal or the number of RBs corresponding to the terminal type.
  • the determining unit 401 when determining the starting RB, is configured to:
  • a modulo operation is performed on the number of RBs corresponding to the maximum bandwidth of the terminal or the number of RBs corresponding to the terminal type.
  • the determining unit 401 determines the starting RB for PUSCH frequency hopping based on one of the following formulas:
  • RB start represents the starting RB in the uplink BWP
  • RB offset represents the first hop and the second hop during frequency hopping RB interval
  • the determining unit 501 determines the starting RB for PUSCH frequency hopping based on one of the following formulas:
  • RB start represents the starting RB in the uplink BWP
  • RB offset represents the RB interval between two adjacent hops
  • the determining unit 401 is configured to determine a frequency domain offset value of the second hop during PUSCH frequency hopping.
  • the frequency domain offset value of the second hop determined by the determining unit 401 is one of a plurality of first candidate values.
  • the apparatus further includes:
  • a receiving unit configured for the terminal to receive the plurality of first candidate values configured by the network side.
  • the determining unit 401 is configured to:
  • the frequency domain offset value of two adjacent hops during PUSCH frequency hopping is determined from the plurality of first candidate values; the M is greater than or equal to 1 the integer.
  • the frequency domain offset value of the second hop is related to a first coefficient; the first coefficient is based on the first parameter of the terminal and the number of RBs corresponding to the initial uplink BWP of the terminal configured by the network side OK.
  • the first coefficient F is determined based on the following formula:
  • the plurality of first candidate values are determined based on the product of the number of RBs corresponding to the maximum bandwidth of the terminal and different constant factors, or based on the number of RBs corresponding to the terminal type of the terminal and different constant factors. The product of is determined.
  • the determining unit 401 may be implemented by a processor in a frequency hopping configuration device; the receiving unit may be implemented by a communication interface in the frequency hopping configuration device.
  • the configuration device by frequency hopping when the configuration device by frequency hopping provided in the above embodiment performs the configuration by frequency hopping, only the division of the above program modules is used as an example for illustration. In practical applications, the above processing may be allocated by Different program modules are completed, that is, the internal structure of the device is divided into different program modules, so as to complete all or part of the above-described processing.
  • the configuration device by frequency hopping provided in the above embodiment and the embodiment of the configuration method by frequency hopping belong to the same concept, and the specific implementation process thereof is detailed in the method embodiment, which will not be repeated here.
  • the embodiments of the present application further provide a terminal.
  • the terminal 500 includes:
  • a first communication interface 501 capable of information interaction with other network nodes
  • the first processor 502 is connected to the first communication interface 501 to implement information interaction with other network nodes, and is configured to execute the method provided by one or more of the foregoing technical solutions when running a computer program. And the computer program is stored on the first memory 503 .
  • the first processor 502 is configured as:
  • the terminal determines the starting RB for PUSCH frequency hopping; wherein,
  • the starting RB is determined based on a first parameter of the terminal; the first parameter represents the number of RBs corresponding to the maximum bandwidth of the terminal or the number of RBs corresponding to the terminal type.
  • the first processor 502 is configured to: when determining the starting RB, perform a modulo operation on the number of RBs corresponding to the maximum bandwidth of the terminal or the number of RBs corresponding to the terminal type.
  • the first processor 502 is configured to:
  • the starting RB for PUSCH frequency hopping is determined based on one of the following formulas:
  • RB start represents the starting RB in the BWP of the uplink bandwidth part
  • RB offset represents the first hop and the second hop during frequency hopping.
  • RB interval of two hops Indicates the number of RBs corresponding to the maximum bandwidth of the terminal or the number of RBs corresponding to the terminal type.
  • the first processor 502 is configured to:
  • the starting RB for PUSCH frequency hopping is determined based on one of the following formulas:
  • RB start represents the starting RB in the BWP of the uplink bandwidth part
  • RB offset represents the RB interval between two adjacent hops
  • the first processor 502 is configured to:
  • the frequency domain offset value of the second hop determined by the terminal is one of a plurality of first candidate values.
  • the first communication interface 501 is configured as:
  • the plurality of first candidate values configured by the network side are received.
  • the first processor 502 is configured to:
  • the frequency domain offset value of two adjacent hops during PUSCH frequency hopping is determined from the plurality of first candidate values; the M is greater than or equal to 1 the integer.
  • the frequency domain offset value of the second hop is related to a first coefficient; the first coefficient is determined based on the first parameter and the number of RBs corresponding to the initial uplink BWP configured by the network side.
  • the first processor 502 is configured to:
  • the first coefficient F is determined based on the following formula:
  • the first processor 502 is configured to:
  • the plurality of first candidate values are determined based on the product of the number of RBs corresponding to the maximum bandwidth of the terminal and different constant factors, or based on the product of the number of RBs corresponding to the terminal type of the terminal and different constant factors.
  • bus system 504 is configured to enable connection communication between these components.
  • bus system 504 also includes a power bus, a control bus, and a status signal bus.
  • the various buses are labeled as bus system 504 in FIG. 5 .
  • the first memory 503 in the embodiment of the present application is configured to store various types of data to support the operation of the terminal 500 .
  • Examples of such data include: any computer program configured to operate on terminal 500 .
  • the methods disclosed in the above embodiments of the present application may be applied to the first processor 502 or implemented by the first processor 502 .
  • the first processor 502 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above-mentioned method may be completed by an integrated logic circuit of hardware in the first processor 502 or an instruction in the form of software.
  • the above-mentioned first processor 502 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the first processor 502 may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of this application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the first memory 503, and the first processor 502 reads the information in the first memory 503, and completes the steps of the foregoing method in combination with its hardware.
  • the terminal 500 may be implemented by one or more Application Specific Integrated Circuit (ASIC, Application Specific Integrated Circuit), DSP, Programmable Logic Device (PLD, Programmable Logic Device), Complex Programmable Logic Device (CPLD, Complex Programmable Logic Device), Field Programmable Gate Array (FPGA, Field-Programmable Gate Array), general-purpose processor, controller, microcontroller (MCU, Micro Controller Unit), microprocessor (Microprocessor), or other electronic components implementation for performing the aforementioned method.
  • ASIC Application Specific Integrated Circuit
  • DSP Programmable Logic Device
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • general-purpose processor controller, microcontroller (MCU, Micro Controller Unit), microprocessor (Microprocessor), or other electronic components implementation for performing the aforementioned method.
  • MCU Microcontroller
  • Microprocessor Microprocessor
  • the first memory 503 in this embodiment of the present application may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM, Read Only Memory), a programmable read-only memory (PROM, Programmable Read-Only Memory), an erasable programmable read-only memory (EPROM, Erasable Programmable Read-only memory) Only Memory), Electrically Erasable Programmable Read-Only Memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), Magnetic Random Access Memory (FRAM, ferromagnetic random access memory), Flash Memory (Flash Memory), Magnetic Surface Memory , CD-ROM, or CD-ROM (Compact Disc Read-Only Memory); magnetic surface memory can be disk memory or tape memory.
  • RAM Random Access Memory
  • SRAM Static Random Access Memory
  • SSRAM Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Type Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus Random Access Memory
  • DRRAM Direct Rambus Random Access Memory
  • an embodiment of the present application further provides a storage medium, that is, a computer storage medium, specifically a computer-readable storage medium, for example, including a first memory 503 that stores a computer program, and the above-mentioned computer program can be stored in the terminal 500.
  • the first processor 502 executes the steps described in the foregoing method.
  • the computer-readable storage medium may be memory such as FRAM, ROM, PROM, EPROM, EEPROM, Flash Memory, magnetic surface memory, optical disk, or CD-ROM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Channel Selection Circuits, Automatic Tuning Circuits (AREA)

Abstract

本申请公开了一种跳频配置的方法、装置、终端及存储介质,其中,方法包括:终端确定PUSCH跳频的起始RB;其中,起始RB起始基于所述终端的第一参数确定出;所述第一参数表征终端的最大带宽对应的RB数量或者终端类型对应的RB数量。

Description

跳频的配置方法、装置、终端及存储介质
相关申请的交叉引用
本申请基于申请号为202110357435.1、申请日为2021年4月1日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及无线技术领域,尤其涉及一种跳频的配置方法、装置、终端及存储介质。
背景技术
低能力终端(Reduced Capability NR devices),又称为Redcap终端,具备低成本、低能耗及低复杂度等特点,被设计应用于无线传感、视频监控、可穿戴设备等场景。相关技术中,在RedCap终端与非RedCap(non-RedCap)终端共存的情况下,RedCap终端可能无法启动跳频传输。
发明内容
为解决相关技术问题,本申请实施例提供一种跳频的配置方法、装置、终端及存储介质。
本申请实施例的技术方案是这样实现的:
本申请实施例提供了一种跳频的配置方法,包括:
终端确定物理上行共享信道(PUSCH,Physical Uplink Shared Channel)跳频的起始资源块(RB,Resource Block);其中,
起始RB基于所述终端的第一参数确定出;所述第一参数表征终端的最大带宽对应的RB数量或者终端类型对应的RB数量。
本申请实施例还提供了一种跳频的配置装置,包括:
确定单元,配置为确定PUSCH跳频的起始RB;其中,
起始RB基于所述终端的第一参数确定出;所述第一参数表征终端的最大带宽对应的RB数量或者终端类型对应的RB数量。
本申请实施例还提供了一种终端,包括:第一处理器及第一通信接口;其中,
所述第一处理器,配置为确定PUSCH跳频的起始RB;其中,
起始RB基于所述终端的第一参数确定出;所述第一参数表征终端的最大带宽对应的RB数量或者终端类型对应的RB数量。
本申请实施例还提供了一种终端,包括:第一处理器和配置为存储能够在处理器上运行的计算机程序的第一存储器,
其中,所述第一处理器配置为运行所述计算机程序时,执行上述任一跳频的配置方法的步骤。
本申请实施例还提供了一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一跳频的配置方法的步骤。
本申请实施例提供的跳频的配置方法、装置、终端及存储介质,终端确定PUSCH跳频的起始RB;其中,起始RB基于所述终端的第一参数确定出;所述第一参数表征终端的最大带宽对应的RB数量或者终端类型对应的RB数量。基于上述跳频的配置方法,RedCap终端可以根据最大带宽对应的RB数量或者终端类型对应的RB数量确定PUSCH跳频的起始RB,这样的配置可以避免在RedCap终端与non-RedCap终端共存的情况下RedCap终端跳出最大带宽的情况,RedCap终端可以通过PUSCH跳频享受到频域分集增益。
附图说明
图1为本申请实施例一种跳频的配置方法流程示意图;
图2为本申请实施例跳频的示例图;
图3为本申请另一实施例跳频的示例图;
图4为本申请实施例一种跳频的配置装置结构示意图;
图5为本申请实施例终端结构示意图。
具体实施方式
在低能力终端,即RedCap终端的相关研究中,为了降低终端成本,采用的手段包括但不限于:减少终端接收天线的数量、降低终端的最大带宽、支持半双工的频分双工(FDD,Frequency Division Duplexing)、降低终端处理时间要求、降低终端的处理能力要求。第五代移动通信技术(5G,5th Generation)系统中定义了终端在不同频段的系统带宽,对终端能力提出了较高的要求,其中,降低终端的最大带宽,指的是对于频率范围1(FR1,Frequency Range1),将终端的最大带宽由100MHz降低至20MHz,对于频率范围2(FR2,Frequency Range 2),将终端的最大带宽由200MHz降低至100MHz,因此如果能够降低终端的最大带宽,将从向射频和基带的角度双重降低终端的成本和复杂度。
以FR1为例,20MHz的带宽是RedCap终端的最大带宽,而对于non-RedCap终端来说,虽然接入过程中的控制资源集0(COREST#0,Control Resource Set 0)的最大带宽也为20MHz,但是网络侧可以通过系统信息块1(SIB1,System Information Block 1)消息进行初始上行(Uplink)BWP的重新配置,也就是说,在non-RedCap终端进行随机接入过程中使用的初始上行BWP可以是SIB1重新配置后的初始上行BWP。
在初始的随机接入过程中,当终端发起了随机接入请求,会接收到网络侧回复的随机接入响应(RAR,Random Access Response),RAR用于调度终端传输MSG.3的PUSCH。相关技术中,网络侧在调度MSG.3时或者MSG.3在进行重传时,可以配置是否使用跳频。当启用跳频时,第二跳的频域偏移值是基于第三代合作伙伴计划(3GPP,3rd Generation Partnership Project)协议中的表格8.3-1确定的。
表1
Figure PCTCN2022084805-appb-000001
从表1中可以看出,当初始上行BWP对应的RB数量大于或等于50个RB时,第二跳的频域偏移值可以取
Figure PCTCN2022084805-appb-000002
或者
Figure PCTCN2022084805-appb-000003
相关技术中,当使用时隙内跳频(intra-slot frequency hopping)时,终端在每一跳的起始RB根据以下公式确定:
Figure PCTCN2022084805-appb-000004
其中,i=0表征跳频时的第一跳;i=1表征跳频时的第二跳;RB offset表征跳频时第一跳与第二跳的RB间隔;
Figure PCTCN2022084805-appb-000005
表征网络侧配置的初始上行BWP对应的RB数量。
当使用时隙间跳频(inter-slot frequency hopping)时,在时隙
Figure PCTCN2022084805-appb-000006
的起始RB根据以下公式确定:
Figure PCTCN2022084805-appb-000007
其中,
Figure PCTCN2022084805-appb-000008
是当前多时隙PUSCH传输发生的时隙在一个无线帧内的序号。
同时,相关技术中,对于RAR调度的MSG.3,跳频的偏移并不是无线资源控制(RRC,Radio Resource Control)配置的,并且需要通过协议相关表格中跳频比特的1个或2个比特值确定跳频时第二跳的频域偏移值。此外,对于non-RedCap终端,存在网络侧重新配置后的初始上行BWP的带宽大于20MHz的情况。基于上述情况,当RedCap终端与non-RedCap终端共存,基 站通过RAR调度了RedCap终端的MSG.3,而当前初始上行BWP被网络侧重新配置成了100MHz。当子载波为30KHz时,初始上行BWP对应的RB数量为273,
Figure PCTCN2022084805-appb-000009
Figure PCTCN2022084805-appb-000010
对应的RB数量分别为136和68,而20MHz带宽对应30KHz的子载波间隔时,对应的RB数量为51,那么此时,基站是无法给RedCap终端开启跳频的,否则如果RedCap终端会跳出RedCap终端的最大带宽。
例如,如果配置了100MHz的初始上行BWP,当前指示的起始RB的位置为20,第二跳的频域偏移值为
Figure PCTCN2022084805-appb-000011
那么按照上文公式计算得到的第二跳的RB起始位置为156,这样,两次跳频的跨度显然已经超出了20MHz,也即超出了RedCap终端的最大带宽。也就是说,对于RedCap终端与non-RedCap终端共存且网络侧为non-RedCap终端重新配置了更大的初始上行BWP的情况,RedCap终端的Msg.3传输会无法进行。
类似地,在RedCap终端与非RedCap终端共存的情况下,如果网络侧为non-RedCap终端配置了大于RedCap终端支持的最大带宽的下行初始BWP,也可能出现由于RedCap终端跳频后跳出其最大带宽的范围,而导致RedCap终端无法启动跳频传输的情况。
基于此,本申请实施例中,终端确定PUSCH跳频的起始RB;其中,起始RB基于所述终端的第一参数确定出;所述第一参数表征终端的最大带宽对应的RB数量或者终端类型对应的RB数量。基于上述跳频的配置方法,RedCap终端可以根据最大带宽对应的RB数量或者终端类型对应的RB数量确定PUSCH跳频的起始RB,这样的配置可以避免在RedCap终端与non-RedCap终端共存的情况下RedCap终端跳出最大带宽的情况,RedCap终端可以通过PUSCH跳频享受到频域分集增益。
下面结合附图及实施例对本申请再作进一步详细的描述。
本申请实施例提供了一种跳频的配置方法,应用于终端,如图1所示,该方法包括:
步骤101:终端确定PUSCH跳频的起始RB;其中,
起始RB基于所述终端的第一参数确定出;所述第一参数表征终端的最大带宽对应的RB数量或者终端类型对应的RB数量。
这里,第一参数可以为终端的最大带宽或者终端类型,也就是说,第一参数能够表征终端的最大带宽对应的RB数量或者终端类型对应的RB数量。在第一参数为终端的最大带宽的情况下,可以根据终端的最大带宽确定出对应的RB数量;在第一参数为终端的终端类型的情况下,可以根据终端类型确定出终端的最大带宽,进而确定出终端的最大带宽对应的RB数量。例如,第一参数表征的终端类型为低能力终端,即RedCap终端,那么可以确定出RedCap终端的最大带宽为20MHz,当子载波间隔为30KHz时,20MHz的带宽对应的RB数量为51。
考虑到的网络侧配置的初始上行BWP的带宽较大时,会出现RedCap终端在进行PUSCH跳频时跳出最大带宽的情况,因此,在物理广播信道(PBCH, Physical Broadcast Channel)或者SIB 1消息中配置的初始上行BWP大于终端的最大带宽的情况下,对终端进行PUSCH跳频的起始RB进行配置。
在一实施例中,在确定起始RB时,所述方法包括:
对终端的最大带宽对应的RB数量或者终端类型对应的RB数量进行取模操作。
其中,在所述终端启用时隙内跳频的情况下,所述终端基于以下公式之一确定PUSCH跳频的起始RB:
Figure PCTCN2022084805-appb-000012
Figure PCTCN2022084805-appb-000013
其中,i 0表征跳频时的第一跳;i 1表征跳频时的第二跳;RB start表征上行BWP中的起始RB;RB offset表征跳频时第一跳与第二跳的RB间隔;
Figure PCTCN2022084805-appb-000014
表征所述终端的最大带宽对应的RB数量或终端类型对应的RB数量。
终端基于公式(1)确定PUSCH跳频的起始RB的方式,由基站保证资源分配时分配给终端的PUSCH跳频的每一跳的起始RB位于网络侧配置的初始上行BWP中最低的
Figure PCTCN2022084805-appb-000015
个RB内。参照图2,offset表示第一跳与第二跳的频域偏移值,网络侧配置的初始上行BWP对应的RB数量为
Figure PCTCN2022084805-appb-000016
RedCap终端的最大带宽对应的RB数量为
Figure PCTCN2022084805-appb-000017
也就是说,网络侧配置的初始上行BWP的带宽大于RedCap终端的最大带宽。图2的左图中,终端跳频时的第二跳的起始RB位于网络侧配置的初始上行BWP中最低的
Figure PCTCN2022084805-appb-000018
个RB的位置之外,而基于上述公式(1),参见图2的右图,终端跳频时第二跳的起始RB仍然位于网络侧配置的初始上行BWP中最低的
Figure PCTCN2022084805-appb-000019
个RB内,未超出RedCap终端的最大带宽的范围。
实际应用时,如果基站想要实现在初始上行BWP的多个子带中均能调度MSG3的传输,那么终端基于公式(2)确定PUSCH跳频的起始RB。参照图3的例子,例如网络侧配置的初始上行BWP为100MHz,那么在RedCap终端的最大带宽为20MHz的情况下,RedCap终端可以被调度工作在5个20MHz子带中的任意一个。图3的左图中,终端在跳频的第二跳前工作在一个20MHz的子带中,而在第二跳后工作在另一个20MHz的子带中,而基于上述公式(2),参见图3的右图,终端在第二跳前后均工作在同一个20MHz的子带中,未超出一个20MHz子带的范围。
基于上述公式(1)和公式(2)的思路,在所述终端启用时隙间跳频的情况下,所述终端基于以下公式之一确定PUSCH跳频时第一时隙的起始RB:
Figure PCTCN2022084805-appb-000020
Figure PCTCN2022084805-appb-000021
其中,
Figure PCTCN2022084805-appb-000022
表征当前PUSCH传输发生的时隙在一个无线帧内的序号;RB start表征上行BWP中的起始RB;RB offset表征无线帧内两个相邻两跳间的RB间隔;
Figure PCTCN2022084805-appb-000023
表征所述终端的最大带宽对应的RB数量或终端类型对应的RB数量。
实际应用时,跳频时还需要实现不同两跳的传输比较均匀地分布在当前的频域资源内,否则跳频的效果会受到影响。例如,假设当前初始上行BWP被重新配置成了100MHz,当子载波为30KHz时,初始上行BWP对应的RB数量为273,
Figure PCTCN2022084805-appb-000024
Figure PCTCN2022084805-appb-000025
对应的RB数量分别为136和68,假设RedCap终端的最大带宽为20MHz,对应的RB数量为51,通过指示不同的跳频偏移值,可以实现与第一跳传输间隔不同的第二跳的传输。表2中示出了当网络侧配置的每一跳的起始RB不同的情况下,跳频间隔的RB数量分别为136和68时两跳的频域间隔,其中,假设网络侧只希望终端使用当前的频域资源位置中位置最低的
Figure PCTCN2022084805-appb-000026
个RB,因此每一跳的RB起始位置的范围在0至50:
表2
Figure PCTCN2022084805-appb-000027
Figure PCTCN2022084805-appb-000028
从表2中可以看出,虽然指示了不同的跳频间隔,但是两跳之间的频域间隔均是17或34个RB这两种情况,实现不同两跳的传输比较均匀地分布在当前的频域资源内,需要对每一跳的频域偏移值也进行更新。
基于此,在一实施例中,所述终端确定PUSCH跳频的起始RB,包括:
所述终端确定PUSCH跳频时第二跳的频域偏移值。
实际应用时,在PBCH或者SIB 1中指示的网络侧配置的初始上行BWP 的带宽大于终端的最大带宽的情况下,终端确定PUSCH跳频时第二跳的频域偏移值。
在一实施例中,所述终端确定出的第二跳的频域偏移值为多个第一候选值中的一个。
在一实施例中,所述方法还包括:
所述终端接收网络侧配置的所述多个第一候选值。
这里,网络侧可以为终端配置第二跳的频域偏移值的多个第一候选值。在一实施例中,所述终端确定PUSCH跳频时第二跳的频域偏移值,包括:
所述终端通过上行调度授权中的M个跳频比特的比特值,从所述多个第一候选值中确定出PUSCH跳频时相邻两跳的频域偏移值;所述M为大于或等于1的整数。
实际应用时,可以通过在表1的基础上增加一列,这样,网络侧可以通过上行调度授权中的M个跳频比特的比特值向终端指示多个第一候选值。其中,M可以理解为N UL,hop
这里,给出了PUSCH跳频时第二跳的频域偏移值的若干确定方式:
方式1:
在一实施例中,第二跳的频域偏移值与第一系数相关;所述第一系数基于所述终端的第一参数与网络侧配置的初始上行BWP对应的RB数量确定出。
这里,通过在原本第二跳的频域偏移值的基础上乘以一个第一系数,确定出PUSCH跳频时第二跳的频域偏移值。其中,原本第二跳的频域偏移值可以为表1中由跳频比特的比特值指示的第二跳的频域偏移值。
例如,在网络侧为终端配置100MHz的初始上行BWP,终端的最大带宽为20MHz的情况下,网络侧配置的初始上行BWP的带宽为终端的最大带宽的5倍,那么可以设置第一系数为1/5,终端在表1中跳频比特的比特值指示的频域偏移值的基础上再乘以1/5,就确定出了PUSCH跳频时第二跳的频域偏移值。
实际应用时,在终端初始接入阶段,对于FR1,终端在数据传输时可用的子载波间隔为15KHz或30KHz,对于FR2,可用的子载波间隔为60KHz或120KHz,那么在网络侧配置的初始上行BWP对应的RB数量小于50时,对于FR1,总带宽小于20MH,对于FR2,总带宽小于100MHz,均在RedCap终端的最大带宽的范围内。也就是说,当网络侧配置的初始上行BWP对应的RB数量小于50时,第二跳的频域偏移值不需要改变,当网络侧配置的初始上行BWP对应的RB数量大于或等于50时,才需要进行频域偏移值的调整。因此,为了设置取值更为灵活的第一系数,在一实施例中,所述第一系数F基于以下公式确定出:
Figure PCTCN2022084805-appb-000029
其中,
Figure PCTCN2022084805-appb-000030
表征所述终端的最大带宽对应的RB数量或终端类型 对应的RB数量;
Figure PCTCN2022084805-appb-000031
表征网络侧配置的初始上行BWP对应的RB数量。
当采用在表1的基础上增设相应的列向终端下发多个第一候选值时,方式1对应表3的示例,其中,在表1的基础上增加了“特定终端类型第二跳的频域偏移”列:
表3
Figure PCTCN2022084805-appb-000032
实际应用时,由于网络侧配置的初始上行BWP是灵活可变的,因此,上述基于网络侧配置初始上行BWP对应的RB数量确定出第一系数的方式并不能很好地匹配带宽。基于此,在一实施例中,所述多个第一候选值基于所述终端的最大带宽对应的RB数量与不同常数因子的乘积确定出,或者基于所述终端的终端类型对应的RB数量与不同常数因子的乘积确定出。
这里,预定义
Figure PCTCN2022084805-appb-000033
该值对应终端在当前频段的最大带宽对应的RB数量,那么在终端在FR1的最大带宽为20MHz,子载波间隔为30KHz的情况下,
Figure PCTCN2022084805-appb-000034
为51,在终端在FR2的最大带宽为100MHz,子载波间隔为60KHz的情况下,
Figure PCTCN2022084805-appb-000035
为132。
当采用在表1的基础上增设相应的列向终端下发多个第一候选值时,方式2对应表4的示例,其中,在表1的基础上增加了“特定终端类型第二跳的频域偏移”列:
表4
Figure PCTCN2022084805-appb-000036
Figure PCTCN2022084805-appb-000037
方式3:
网络侧通过跳频比特对应的比特值为11时指示的保留字段配置频域偏移值,方式3对应表5的示例:
表5
Figure PCTCN2022084805-appb-000038
方式4:
通过SIB1消息为RedCap终端配置专属的多个第一候选值。
实际应用时,网络侧为non-RedCap终端配置的初始上行BWP的带宽大于RedCap终端的最大带宽时,网络侧通过SIB1消息为终端同时配置至多4个第一候选值。例如,配置
Figure PCTCN2022084805-appb-000039
同样地,终端通过RAR中跳频比特的比特值来确定出第二跳的频域偏移值。
本申请实施例提供的跳频的配置方法,根据终端的最大带宽对应的RB数量确定PUSCH跳频的起始RB。其中,起始RB基于所述终端的第一参数确定出;所述第一参数表征终端的最大带宽对应的RB数量或者终端类型对应的RB数量。进一步地,根据终端的第一参数确定PUSCH跳频的第二跳的频域偏移值。基于上述跳频的配置方法,RedCap终端可以根据最大带宽对应的RB数量或者终端类型对应的RB数量确定PUSCH跳频的RB起始位置,在RedCap终端与non-RedCap终端共存,且网络侧重新配置的初始上行BWP的带宽大于RedCap终端的最大带宽的情况下,这样的配置可以避免RedCap终端跳出最大带宽的情况,RedCap终端可以通过PUSCH跳频享受到频域分集增益。
为了实现本申请实施例的方法,本申请实施例还提供了一种跳频的配置装置,设置在终端上。如图4所示,该装置包括:
确定单元401,配置为确定PUSCH跳频的起始RB;其中,
起始RB基于所述终端的第一参数确定出;所述第一参数表征终端的最大带宽对应的RB数量或者终端类型对应的RB数量。
其中,在一实施例中,在确定起始RB时,所述确定单元401配置为:
对终端的最大带宽对应的RB数量或者终端类型对应的RB数量进行取模操作。
在所述终端启用时隙内跳频的情况下,所述确定单元401基于以下公式之一确定PUSCH跳频的起始RB:
Figure PCTCN2022084805-appb-000040
Figure PCTCN2022084805-appb-000041
其中,i=0表征跳频时的第一跳;i=1表征跳频时的第二跳;RB start表征上行BWP中的起始RB;RB offset表征跳频时第一跳与第二跳的RB间隔;
Figure PCTCN2022084805-appb-000042
表征所述终端的最大带宽对应的RB数量或终端类型对应的RB数量。
在一实施例中,在所述终端启用时隙间跳频的情况下,所述确定单元501基于以下公式之一确定PUSCH跳频时的起始RB:
Figure PCTCN2022084805-appb-000043
Figure PCTCN2022084805-appb-000044
其中,
Figure PCTCN2022084805-appb-000045
表征当前PUSCH传输发生的时隙在一个无线帧内的序号;RB start表征上行BWP中的起始RB;RB offset表征相邻两跳间的RB间隔;
Figure PCTCN2022084805-appb-000046
表征所述终端的最大带宽对应的RB数量或终端类型对应的RB数量。
在一实施例中,所述确定单元401配置为确定PUSCH跳频时第二跳的频域偏移值。
在一实施例中,所述确定单元401确定出的第二跳的频域偏移值为多个第一候选值中的一个。
在一实施例中,所述装置还包括:
接收单元,配置为终端接收网络侧配置的所述多个第一候选值。
在一实施例中,所述确定单元401配置为:
通过上行调度授权中的M个跳频比特的比特值,从所述多个第一候选值中确定出PUSCH跳频时相邻两跳的频域偏移值;所述M为大于或等于1的整数。
在一实施例中,第二跳的频域偏移值与第一系数相关;所述第一系数基于所述终端的第一参数与网络侧配置的所述终端的初始上行BWP对应的RB数量确定出。
在一实施例中,所述第一系数F基于以下公式确定出:
Figure PCTCN2022084805-appb-000047
其中,
Figure PCTCN2022084805-appb-000048
表征所述终端的最大带宽对应的RB数量或终端类型对应的RB数量;
Figure PCTCN2022084805-appb-000049
表征征网络侧配置的初始上行BWP对应的RB数量。
在一实施例中,所述多个第一候选值基于所述终端的最大带宽对应的RB数量与不同常数因子的乘积确定出,或者基于所述终端的终端类型对应的RB数量与不同常数因子的乘积确定出。
实际应用时,所述确定单元401可由跳频的配置装置中的处理器实现;所述接收单元可由可由跳频的配置装置中的通信接口实现。
需要说明的是:上述实施例提供的由跳频的配置装置在进行由跳频的配置时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的由跳频的配置装置与由跳频的配置方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
基于上述程序模块的硬件实现,且为了实现本申请实施例的方法,本申请实施例还提供了一种终端,如图5所示,终端500包括:
第一通信接口501,能够与其他网络节点进行信息交互;
第一处理器502,与所述第一通信接口501连接,以实现与其他网络节点进行信息交互,配置为运行计算机程序时,执行上述一个或多个技术方案提供的方法。而所述计算机程序存储在第一存储器503上。
具体地,所述第一处理器502配置为:
终端确定PUSCH跳频的起始RB;其中,
起始RB基于所述终端的第一参数确定出;所述第一参数表征终端的最大带宽对应的RB数量或者终端类型对应的RB数量。
在一实施例中,所述第一处理器502配置为:在确定起始RB时,对终端的最大带宽对应的RB数量或者终端类型对应的RB数量进行取模操作。
在一实施例中,所述第一处理器502配置为:
在所述终端启用时隙内跳频的情况下,基于以下公式之一确定PUSCH跳频的起始RB:
Figure PCTCN2022084805-appb-000050
Figure PCTCN2022084805-appb-000051
其中,i=0表征跳频时的第一跳;i=1表征跳频时的第二跳;RB start表征上行带宽部分BWP中的起始RB;RB offset表征跳频时第一跳与第二跳的RB间隔;
Figure PCTCN2022084805-appb-000052
表征所述终端的最大带宽对应的RB数量或终端类型对应的RB数量。
在一实施例中,所述第一处理器502配置为:
在所述终端启用时隙间跳频的情况下,基于以下公式之一确定PUSCH跳频时的起始RB:
Figure PCTCN2022084805-appb-000053
Figure PCTCN2022084805-appb-000054
其中,
Figure PCTCN2022084805-appb-000055
表征当前PUSCH传输发生的时隙在一个无线帧内的序号;RB start表征上行带宽部分BWP中的起始RB;RB offset表征相邻两跳间的RB间隔;
Figure PCTCN2022084805-appb-000056
表征所述终端的最大带宽对应的RB数量或终端类型对应的RB数量。
在一实施例中,所述第一处理器502配置为:
确定PUSCH跳频时第二跳的频域偏移值。
在一实施例中,所述终端确定出的第二跳的频域偏移值为多个第一候选值中的一个。
在一实施例中,所述第一通信接口501配置为:
接收网络侧配置的所述多个第一候选值。
在一实施例中,所述第一处理器502配置为:
通过上行调度授权中的M个跳频比特的比特值,从所述多个第一候选值中确定出PUSCH跳频时相邻两跳的频域偏移值;所述M为大于或等于1的整数。
在一实施例中,第二跳的频域偏移值与第一系数相关;所述第一系数基 于所述第一参数与网络侧配置的初始上行BWP对应的RB数量确定出。
在一实施例中,所述第一处理器502配置为:
所述第一系数F基于以下公式确定出:
Figure PCTCN2022084805-appb-000057
其中,
Figure PCTCN2022084805-appb-000058
表征所述终端的最大带宽对应的RB数量或终端类型对应的RB数量;
Figure PCTCN2022084805-appb-000059
表征征网络侧配置的初始上行BWP对应的RB数量。
在一实施例中,所述第一处理器502配置为:
所述多个第一候选值基于所述终端的最大带宽对应的RB数量与不同常数因子的乘积确定出,或者基于所述终端的终端类型对应的RB数量与不同常数因子的乘积确定出。
需要说明的是:第一处理器502和第一通信接口501的具体处理过程可参照上述方法理解。
当然,实际应用时,终端500中的各个组件通过总线系统504耦合在一起。可理解,总线系统504配置为实现这些组件之间的连接通信。总线系统504除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图5中将各种总线都标为总线系统504。
本申请实施例中的第一存储器503配置为存储各种类型的数据以支持终端500的操作。这些数据的示例包括:配置为在终端500上操作的任何计算机程序。
上述本申请实施例揭示的方法可以应用于所述第一处理器502中,或者由所述第一处理器502实现。所述第一处理器502可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过所述第一处理器502中的硬件的集成逻辑电路或者软件形式的指令完成。上述的所述第一处理器502可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。所述第一处理器502可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于第一存储器503,所述第一处理器502读取第一存储器503中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,终端500可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或者其他电子元件实现,用于执行前述方法。
可以理解,本申请实施例的第一存储器503可以是易失性存储器或者非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本申请实施例描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在示例性实施例中,本申请实施例还提供了一种存储介质,即计算机存储介质,具体为计算机可读存储介质,例如包括存储计算机程序的第一存储器503,上述计算机程序可由终端500的第一处理器502执行,以完成前述方法所述步骤。计算机可读存储介质可以是FRAM、ROM、PROM、EPROM、EEPROM、Flash Memory、磁表面存储器、光盘、或CD-ROM等存储器。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中术语“至少一种”表示多个中的任意一种或多种中的至少两种的任意组合,例如,包括A、B、C中的至少一种,可以表示包括从A、B和C构成的集合中选择的任意一个或多个元素。
需要说明的是:“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。另外,本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。

Claims (15)

  1. 一种跳频的配置方法,包括:
    终端确定物理上行共享信道PUSCH跳频的起始资源块RB;其中,
    起始RB基于所述终端的第一参数确定出;所述第一参数表征终端的最大带宽对应的RB数量或者终端类型对应的RB数量。
  2. 根据权利要求1所述的方法,其中,在确定起始RB时,所述方法包括:
    对终端的最大带宽对应的RB数量或者终端类型对应的RB数量进行取模操作。
  3. 根据权利要求2所述的方法,其中,所述终端确定PUSCH跳频的起始RB,包括:
    在所述终端启用时隙内跳频的情况下,所述终端基于以下公式之一确定PUSCH跳频的起始RB:
    Figure PCTCN2022084805-appb-100001
    Figure PCTCN2022084805-appb-100002
    其中,i=0表征跳频时的第一跳;i=1表征跳频时的第二跳;RB start表征上行带宽部分BWP中的起始RB;RB offset表征跳频时第一跳与第二跳的RB间隔;
    Figure PCTCN2022084805-appb-100003
    表征所述终端的最大带宽对应的RB数量或终端类型对应的RB数量。
  4. 根据权利要求2所述的方法,其中,所述终端确定PUSCH跳频的起始RB,包括:
    在所述终端启用时隙间跳频的情况下,所述终端基于以下公式之一确定PUSCH跳频时的起始RB:
    Figure PCTCN2022084805-appb-100004
    Figure PCTCN2022084805-appb-100005
    其中,
    Figure PCTCN2022084805-appb-100006
    表征当前PUSCH传输发生的时隙在一个无线帧内的序号; RB start表征上行BWP中的起始RB;RB offset表征相邻两跳间的RB间隔;
    Figure PCTCN2022084805-appb-100007
    表征所述终端的最大带宽对应的RB数量或终端类型对应的RB数量。
  5. 根据权利要求1所述的方法,其中,所述终端确定PUSCH跳频的起始RB,包括:
    所述终端确定PUSCH跳频时第二跳的频域偏移值。
  6. 根据权利要求5所述的方法,其中,所述终端确定出的第二跳的频域偏移值为多个第一候选值中的一个。
  7. 根据权利要求6所述的方法,其中,所述方法还包括:
    所述终端接收网络侧配置的所述多个第一候选值。
  8. 根据权利要求6所述的方法,其中,所述终端确定PUSCH跳频时第二跳的频域偏移值,包括:
    所述终端通过上行调度授权中的M个跳频比特的比特值,从所述多个第一候选值中确定出PUSCH跳频时相邻两跳的频域偏移值;所述M为大于或等于1的整数。
  9. 根据权利要求5至8任一项所述的方法,其中,第二跳的频域偏移值与第一系数相关;所述第一系数基于所述终端的第一参数与网络侧配置的初始上行BWP对应的RB数量确定出。
  10. 根据权利要求9所述的方法,其中,所述第一系数F基于以下公式确定出:
    Figure PCTCN2022084805-appb-100008
    其中,
    Figure PCTCN2022084805-appb-100009
    表征所述终端的最大带宽对应的RB数量或终端类型对应的RB数量;
    Figure PCTCN2022084805-appb-100010
    表征网络侧配置的初始上行BWP对应的RB数量。
  11. 根据权利要求5至8任一项所述的方法,其中,所述多个第一候选值基于所述终端的最大带宽对应的RB数量与不同常数因子的乘积确定出,或者基于所述终端的终端类型对应的RB数量与不同常数因子的乘积确定出。
  12. 一种跳频的配置装置,包括:
    确定单元,配置为确定PUSCH跳频的起始RB;其中,
    起始RB基于所述终端的第一参数确定出;所述第一参数表征终端的最大带宽对应的RB数量或者终端类型对应的RB数量。
  13. 一种终端,包括:第一处理器及第一通信接口;其中,
    所述第一处理器,配置为确定PUSCH跳频的起始RB;其中,
    起始RB基于所述终端的第一参数确定出;所述第一参数表征终端的最大带宽对应的RB数量或者终端类型对应的RB数量。
  14. 一种终端,包括:第一处理器和配置为存储能够在处理器上运行的计算机程序的第一存储器,
    其中,所述第一处理器配置为运行所述计算机程序时,执行权利要求1 至11任一项所述方法的步骤。
  15. 一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至11任一项所述方法的步骤。
PCT/CN2022/084805 2021-04-01 2022-04-01 跳频的配置方法、装置、终端及存储介质 WO2022206953A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110357435.1A CN115189818A (zh) 2021-04-01 2021-04-01 跳频的配置方法、装置、终端及存储介质
CN202110357435.1 2021-04-01

Publications (2)

Publication Number Publication Date
WO2022206953A1 true WO2022206953A1 (zh) 2022-10-06
WO2022206953A9 WO2022206953A9 (zh) 2022-12-08

Family

ID=83458068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084805 WO2022206953A1 (zh) 2021-04-01 2022-04-01 跳频的配置方法、装置、终端及存储介质

Country Status (2)

Country Link
CN (1) CN115189818A (zh)
WO (1) WO2022206953A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111567117A (zh) * 2018-01-13 2020-08-21 韦勒斯标准与技术协会公司 无线通信系统的资源分配方法、装置和系统
WO2020218529A1 (ja) * 2019-04-25 2020-10-29 シャープ株式会社 基地局装置、端末装置、および、通信方法
WO2021034171A1 (ko) * 2019-08-16 2021-02-25 엘지전자 주식회사 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 및 컴퓨터 판독 가능 저장 매체, 그리고 상향링크 전송을 수신하는 방법 및 기지국
CN112449419A (zh) * 2019-08-15 2021-03-05 大唐移动通信设备有限公司 一种跳频方法、装置及设备
US20210076384A1 (en) * 2019-09-11 2021-03-11 Samsung Electronics Co., Ltd. Random access response and contention resolution

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103167614A (zh) * 2011-12-16 2013-06-19 北京三星通信技术研究有限公司 一种动态调整lte物理上行共享信道跳频范围的方法
CN106464296B (zh) * 2014-08-07 2019-06-18 华为技术有限公司 传输数据的方法、设备及系统
CN108631976B (zh) * 2017-03-23 2021-07-16 华为技术有限公司 一种通信方法及装置
EP3687237B1 (en) * 2017-09-30 2022-11-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device
CN112740727A (zh) * 2018-08-23 2021-04-30 Oppo广东移动通信有限公司 确定频率资源的方法及装置、用户设备
CN112020144B (zh) * 2019-05-30 2022-09-02 华为技术有限公司 确定异步物理上行共享信道的资源的方法及设备
CN112448800A (zh) * 2019-08-30 2021-03-05 华为技术有限公司 一种srs的传输方法及装置
CN110708722B (zh) * 2019-09-16 2021-08-17 Oppo广东移动通信有限公司 传输速率控制方法及终端、计算机存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111567117A (zh) * 2018-01-13 2020-08-21 韦勒斯标准与技术协会公司 无线通信系统的资源分配方法、装置和系统
WO2020218529A1 (ja) * 2019-04-25 2020-10-29 シャープ株式会社 基地局装置、端末装置、および、通信方法
CN112449419A (zh) * 2019-08-15 2021-03-05 大唐移动通信设备有限公司 一种跳频方法、装置及设备
WO2021034171A1 (ko) * 2019-08-16 2021-02-25 엘지전자 주식회사 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 및 컴퓨터 판독 가능 저장 매체, 그리고 상향링크 전송을 수신하는 방법 및 기지국
US20210076384A1 (en) * 2019-09-11 2021-03-11 Samsung Electronics Co., Ltd. Random access response and contention resolution

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
APPLE INC: "Remaining issues on PUSCH enhancements", 3GPP DRAFT; R1-1912818, vol. RAN WG1, 9 November 2019 (2019-11-09), Reno, USA, pages 1 - 3, XP051823618 *
INTERDIGITAL, INC.: "Discussion on UE complexity reduction features", 3GPP DRAFT; R1-2101507, vol. RAN WG1, 19 January 2021 (2021-01-19), pages 1 - 4, XP051971668 *
NOKIA, NOKIA SHANGHAI BELL: "Remaining details on PUSCH hopping procedure", 3GPP DRAFT; R1-1800940 PUSCH HOPPING, vol. RAN WG1, 12 January 2018 (2018-01-12), Vancouver, BC, Canada, pages 1 - 5, XP051384447 *

Also Published As

Publication number Publication date
WO2022206953A9 (zh) 2022-12-08
CN115189818A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
US8948081B2 (en) Device, system and method of multiple-stream wireless communication
TWI821368B (zh) 非連續傳輸的方法和設備
WO2019056383A9 (zh) 资源配置的方法、终端设备和网络设备
WO2020047856A1 (zh) 配置信息的传输方法和终端设备
WO2019214424A1 (zh) 通信方法和通信装置
JP7250038B2 (ja) 早期データ送信のためのトランスポートブロックサイズ選択
JP2022506187A (ja) データ伝送方法及び端末デバイス
WO2017139969A1 (zh) 频带配置装置、方法以及通信系统
US20220352923A1 (en) Frequency hopping methods, electronic device, and storage medium
CN114071745A (zh) 一种无线接入的方法以及装置
WO2020087226A1 (zh) 无线通信的方法、终端设备和网络设备
JP7450752B2 (ja) ランダムアクセス信号を送信するための方法および装置
WO2021109461A1 (zh) 无线通信的方法、终端设备和网络设备
TWI785202B (zh) 配置同步載波的方法、設備及電腦存儲媒介
JP2020528230A (ja) 無線通信方法及び装置
WO2022206953A1 (zh) 跳频的配置方法、装置、终端及存储介质
JP7080904B2 (ja) 無線通信方法及びデバイス
WO2022188638A1 (zh) 一种数据传输方法及装置
WO2023082356A1 (zh) 无线通信的方法和终端设备
WO2022147797A1 (zh) 信道接入方法及设备
WO2022056885A1 (zh) 一种通信方法和装置
WO2020056777A1 (zh) 无线通信的方法、发送节点和接收节点
WO2021030996A1 (zh) 一种信道处理方法、终端设备及存储介质
WO2020087467A1 (zh) 无线通信的方法、终端设备和网络设备
TW202008817A (zh) 一種訊號傳輸方法及適用該方法的裝置、終端設備及網路設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23/11/2023)