WO2022206521A1 - 一种复合层、柔性显示屏及终端 - Google Patents

一种复合层、柔性显示屏及终端 Download PDF

Info

Publication number
WO2022206521A1
WO2022206521A1 PCT/CN2022/082576 CN2022082576W WO2022206521A1 WO 2022206521 A1 WO2022206521 A1 WO 2022206521A1 CN 2022082576 W CN2022082576 W CN 2022082576W WO 2022206521 A1 WO2022206521 A1 WO 2022206521A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible display
layer
liquid crystal
display panel
display screen
Prior art date
Application number
PCT/CN2022/082576
Other languages
English (en)
French (fr)
Inventor
李霄
孟超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022206521A1 publication Critical patent/WO2022206521A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED

Definitions

  • the present application relates to the field of display technology, and in particular, to a composite layer, a flexible display screen and a terminal.
  • Electronic display products have developed from a fixed shape to a folded shape and a curled shape, enabling large-screen viewing while taking into account portability.
  • the rollable device combines a flexible display with a cylindrical scroll to achieve the advantages of a large unfolded screen area and easy portability after being rolled.
  • a rollable rigid support structure can be used at the bottom of the flexible display panel to increase the flatness of the screen surface after the flexible display panel is unfolded. As shown in FIG. 1, the support structure 20 is located at the bottom of the flexible display panel 10.
  • the support structure 20 includes a plurality of support members 21, and the adjacent support members 21 are connected as a whole by the connecting shaft 22.
  • the flexible display panel 10 and the support structure 20 are displayed In the flat state, at the position of the connecting shaft 22, the flexible display panel 10 is not subjected to stress and strain. As shown in FIG. 2 , after the flexible display panel 10 and the support structure 20 enter a rolled state around the scroll shaft 30 , at the position of the connection shaft 22 , the adjacent support members 21 will deflect at a certain angle, resulting in a flexible display above the support structure 20 . Panel 10 also undergoes stress stretching. The magnitude of the stress-strain stretch varies with the number of turns of the flexible display panel 10 rolled on the reel.
  • a graphic hollow design is usually made at the bottom of the flexible display panel corresponding to the position of the connecting shaft.
  • the hollow design at the bottom of the flexible display panel increases the risk of flatness of the surface of the flexible display panel, and is prone to curling and wrinkling, thereby affecting the curling reliability of the curlable device.
  • the present application provides a composite layer, a flexible display screen and a terminal for improving the curling reliability of the flexible display screen and the terminal.
  • the present application provides a composite layer, the composite layer includes a patterned metal layer and an anisotropic film, the patterned metal layer has at least one hollow area, and the anisotropic film is filled in in the at least one hollow area.
  • the elastic modulus of the anisotropic film along a first direction, which is parallel to the curling direction of the composite layer, is smaller than the elastic modulus along a second direction, the second direction and the first direction vertical.
  • the present application does not limit the number, shape and position of the hollow regions.
  • the directions perpendicular to the X-axis direction include the Y-axis direction and the Z-axis direction, that is, the second direction is the Y-axis direction and the Z-axis direction, the Y-axis direction and the Z-axis direction. Perpendicular to each other.
  • the curling direction of the composite layer is the length direction of the composite layer, then the first direction is the direction along the length, and the second direction is the direction along the thickness and the width.
  • the elastic modulus of the anisotropic film in the curling direction (for example, the length) is small, so that the stress and strain caused by the curling can be absorbed to realize the curling Characteristics, the elastic modulus of the anisotropic film in the thickness direction and the width direction is large, so that it can realize the function of rigid support.
  • the elastic modulus of the anisotropic film along the first direction can be set to 0.1Mpa ⁇ 10Mpa, for example: 0.1Mpa, 0.5Mpa, 1Mpa, 5Mpa, 10Mpa, etc.; the The elastic modulus of the anisotropic film layer along the second direction may be set to 1 Gpa ⁇ 20 Gpa, for example: 1 Gpa, 5 Gpa, 10 Gpa, 15 Gpa, 20 Gpa, etc., which are not limited herein.
  • the material of the anisotropic film may be polyacrylate or polyurethane, etc., of course, it may also be other material whose elastic modulus meets the above requirements, which is not limited here.
  • the thickness of the metal layer and the anisotropic film in the composite layer is not limited in this application, and can be designed according to actual products.
  • the thickness of the anisotropic film can be controlled between 20 ⁇ m and 100 ⁇ m, such as 20 ⁇ m, 50 ⁇ m, 80 ⁇ m, 100 ⁇ m, etc.
  • the thickness of the metal layer can be controlled between 20 ⁇ m and 150 ⁇ m, such as 20 ⁇ m. , 50 ⁇ m, 80 ⁇ m, 100 ⁇ m, 130 ⁇ m, 150 ⁇ m, etc., which are not limited here.
  • the thickness of the anisotropic film and the thickness of the metal layer may be set to be the same.
  • the thickness of the anisotropic film and the thickness of the metal layer may also be different, which is not limited herein.
  • the material of the metal layer is an alloy, such as stainless steel, nickel-titanium (Ni/Ti) alloy, titanium-copper (Ti/Cu) alloy, etc., which are not limited herein.
  • the anisotropic film can be combined with the metal layer by an inkjet printing process or a hot pressing process, and certainly can be combined by other processes, which are not limited herein.
  • the present application provides a flexible display screen, the flexible display screen includes a laminated flexible display panel, the composite layer provided in the first aspect, and a rollable support structure.
  • the flexible display panel has a display surface and a back surface, and the support structure and the composite layer are both arranged on the back side of the flexible display panel to support the flexible display panel; the composite layer is located on the support between the structure and the flexible display panel.
  • the composite layer includes a patterned metal layer and an anisotropic film, the patterned metal layer has a plurality of hollow areas, the anisotropic film is filled in the plurality of hollow areas, and the anisotropic film
  • the elastic modulus along a first direction which is parallel to the curling direction of the composite layer, is smaller than the elastic modulus along a second direction, the second direction being perpendicular to the first direction.
  • the curling direction of the composite layer is parallel to the curling direction of the flexible display screen.
  • the curling direction of the flexible display screen is the length direction of the flexible display screen, then the first direction is the direction along the length, and the second direction is the direction along the thickness and the width.
  • the patterned metal layer in the composite layer is used to realize the support of the flexible display panel and ensure the display of the flexible display panel.
  • the elastic modulus in the thickness direction and the width direction is large, which realizes the rigid support for the flexible display panel and reduces the deformation of the display surface.
  • the support structure, the composite layer and the flexible display panel may be combined by an adhesive layer, and the composite layer and the support structure are used to provide a certain support for the flexible display panel.
  • the adhesive layer may specifically be an optically clear adhesive (Optically Clear Adhesive, OCA), or may be an adhesive layer containing materials such as polyurethane, polyethylene, polypropylene, and the like.
  • OCA Optically Clear Adhesive
  • the shape, outline and size of the support structure and the composite layer may be the same as or different from those of the flexible display panel.
  • the support structure, the composite layer, and the flexible display panel are rectangular structures of the same size.
  • the support knot includes a plurality of support members and a connection shaft for connecting the adjacent support members, and each of the hollow regions in the metal layer corresponds to one of the connection shafts.
  • the metal layer is patterned to form the hollow area at the position corresponding to the connection shaft, so as to ensure the easy bending of the composite layer at the position of the connection shaft.
  • the shape of the hollow area is not limited in the present application, for example, it may be a regular figure such as a rectangle, a rhombus or an ellipse, and of course it may also be an irregular shape.
  • the support structure includes a plurality of support members and a connection shaft for connecting the adjacent support members, and at least one of the hollow regions in the metal layer corresponds to one of the connection shafts.
  • each of the hollow regions in the metal layer corresponds to one of the connecting shafts.
  • the metal layer is patterned to form the hollow area at the position corresponding to the connection shaft, so as to ensure the easy bending of the composite layer at the position of the connection shaft.
  • the shape of the hollow area is not limited in the present application, for example, it may be a regular figure such as a rectangle, a rhombus or an ellipse, and of course it may also be an irregular shape.
  • the composite layer can be divided into a plurality of regions along the first direction, that is, the curling direction of the flexible display screen: L1-LN (N is an integer greater than 1, and each of the regions Ln (n is 1- Any integer of N) along the first direction is nC, C is the circumference of the composite layer wound around the reel, and n is an integer greater than 0.
  • L1-LN N is an integer greater than 1
  • Ln any integer of N
  • C is the circumference of the composite layer wound around the reel
  • n is an integer greater than 0.
  • the elastic modulus of the anisotropic film along the first direction is larger, and the elastic modulus of the anisotropic film located in the same area along the first direction is the same.
  • the area of the composite layer L1 is the first turn around the reel
  • the area L2 of the composite layer is the second turn around the reel
  • the area L3 of the composite layer is the third turn around the reel
  • the anisotropic film located in the area L1 The elastic modulus along the first direction X is E1
  • the elastic modulus of the anisotropic film in the region L2 along the first direction is E2
  • the anisotropic film in the region L3 is along the
  • the elastic modulus in the first direction is E3
  • the elastic modulus of the anisotropic film located in each region along the first direction satisfies E1 ⁇ E2 ⁇ E3, for example, E1 is between 0.1Mpa and 1Mpa, and E2 is between 0.1Mpa and 1Mpa. Between 1Mpa and 5Mpa, E3 is between 5Mpa and 10Mpa.
  • the length of the region Ln along the first direction is an integer that can be rolled around the reel for an integer number of turns, such as the length of 1 turn, 2 turns, 3 turns, etc. , which is not limited here.
  • Different regions Ln in the composite layer may have the same number of turns around the reel or may be different.
  • the composite layers on different turns of the spool will have slightly different lengths of a turn, with the turns further from the spool, the longer the length of a turn.
  • the flexible display panel can be any flexible display device that can realize display, for example, the flexible display panel is an electrophoretic display panel, an electrowetting display panel, an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display panel, quantum dots Any one of a light-emitting diode (QLED) display panel or a micro-light-emitting diode (Micro-LED) display panel is not limited here.
  • the flexible display panel is an electrophoretic display panel, an electrowetting display panel, an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display panel, quantum dots
  • OLED Organic Light-Emitting Diode
  • QLED light-emitting diode
  • Micro-LED micro-light-emitting diode
  • the shape of the flexible display panel is not limited in the present application.
  • the flexible display panel may have a substantially rectangular shape, and of course may be any other suitable shape.
  • the flexible display panel is an OLED display panel, a QLED display panel or a Micro-LED display panel, etc.
  • the transmittance of light has a great influence, usually only >40% transmittance can be achieved.
  • a physical opening scheme can be adopted, and the liquid crystal polarizing structure is opened at the position of the camera.
  • the reflectivity at the position of the opening will change significantly, which affects the display effect of the flexible display from the appearance, and the position of the opening is likely to cause stress concentration and poor mechanical reliability.
  • additional processes such as alignment, drilling, cleaning, and visual inspection are required.
  • the liquid crystal polarizing structure is located in the flexible display On the display surface side of the panel, the camera is located on the backlight surface side of the flexible display panel.
  • the liquid crystal polarizing structure includes: a base substrate and a liquid crystal coating layer located on the side of the base substrate away from the flexible display panel, and the liquid crystal coating layer has a coating avoidance area in a region corresponding to the camera That is, in the opening area, the orthographic projection of the camera on the liquid crystal polarizing structure at least partially overlaps the coating avoidance area.
  • the liquid crystal polarizing structure does not require physical openings, only the coating area of the liquid crystal coating layer in the liquid crystal polarizing structure is designed so that the liquid crystal coating layer avoids the coating avoidance area. Coating, to avoid the liquid crystal coating layer blocking the camera, to ensure the light transmittance of the camera.
  • the other film layers in the liquid crystal polarizing structure that do not affect the transmittance remain the same, so that the reflectivity at the camera position will not change significantly, and the display effect of the flexible display screen will not be affected in appearance.
  • the liquid crystal polarizing structure eliminates the hole-digging process, the stress at the corresponding position of the camera is not easy to concentrate, and the optical and mechanical reliability of the flexible display is significantly enhanced.
  • the liquid crystal polarizing structure can be attached according to the marked position, which can save the process of digging holes, cleaning, and appearance inspection.
  • the liquid crystal polarizing structure may exist independently of the composite layer, that is, the flexible display screen provided by the present application may include only one of the liquid crystal polarizing structure and the composite layer, or may include both
  • the liquid crystal polarizing structure and the composite layer are not limited herein.
  • the flexible display screen includes both the liquid crystal polarizing structure and the composite layer, so that the reliability of the flexible display screen can be enhanced as much as possible.
  • the liquid crystal polarizing structure also includes other functional film layers, and the specific settings of other functions are the same as those in the prior art, which will not be repeated here.
  • the position of the orthographic projection of the camera on the flexible display panel is not limited, and can be designed according to actual products.
  • the camera and the support structure may be arranged on the same layer, that is, an opening is provided in the support structure, and the camera is placed in the opening.
  • the composite layer is also provided with openings at positions corresponding to the camera, so as to prevent the composite layer from blocking the camera. Further, when the anisotropic film is made of high light-transmitting material, the anisotropic film can be filled in the openings of the composite layer.
  • the base substrate in the liquid crystal polarizing structure includes a pressure-sensitive adhesive layer, a quarter-wave retardation layer, an ultraviolet cut-off layer, a half-wave retardation layer, and a dielectric layer that are stacked in sequence;
  • the pressure-sensitive adhesive layer is located on the side close to the flexible display panel, and the liquid crystal coating layer is disposed on the medium layer.
  • the thickness of the liquid crystal polarizing structure can be controlled between 25 ⁇ m and 60 ⁇ m, which is not limited herein.
  • liquid crystal polarizing structure can be combined with the flexible display panel through OCA.
  • the flexible display screen of the present application may further include a cover plate on the side of the liquid crystal polarizing structure away from the flexible display panel; the cover plate is used to protect the liquid crystal polarizing structure and the flexible display panel .
  • the cover plate can be combined with the liquid crystal polarizing structure through OCA.
  • the cover plate, the liquid crystal polarizing structure, the flexible display panel, the composite layer, the support structure and the camera can all be produced separately, and then the cover plate, liquid crystal polarizing structure, flexible display panel, composite Layers, support structures, and cameras are aligned.
  • the cover plate is attached to the liquid crystal polarizing structure through the first OCA layer
  • the liquid crystal polarizing structure is attached to the flexible display panel through the second OCA layer
  • the flexible display panel is attached to the composite layer through the third OCA layer.
  • the composite layer is attached to the support structure through the adhesive layer.
  • the preparations of the cover plate, the flexible display panel, the supporting structure and the camera can be the same as those in the prior art, which will not be described in detail here.
  • liquid crystal polarizing structure can be prepared by the following two methods, but is not limited thereto, and the following two methods are only used as examples for illustration.
  • Step 1 Clean the substrate substrate surface and activate the surface energy.
  • the base substrate may be all the film layers located under the liquid crystal coating layer in the liquid crystal polarizing structure.
  • Step 2 Place a shielding mold at the position corresponding to the camera to ensure that the coating avoidance area is effectively shielded, and place a support plate on the bottom side of the base substrate.
  • Step 3 Coating the shear stress coating liquid crystal solution on the substrate. Except for the coating avoidance area, the liquid crystal solution is uniformly coated on the substrate, and the concentration of the liquid crystal solution is controlled between 10% and 15%.
  • Step 4 thermally curing the coated liquid crystal solution to form a liquid crystal coating layer.
  • the thickness of the liquid crystal coating layer can be controlled between 1 ⁇ m and 2 ⁇ m, which is not limited herein.
  • the curing temperature can be controlled between 50°C and 55°C, and the curing time can be controlled between 10min and 15min.
  • the liquid crystal coating layer can complete the alignment by relying on the force of initial coating and the intermolecular force of the liquid crystal during the curing process, and no additional alignment layer is required.
  • Step 5 Remove the blocking mold and the support plate to form a liquid crystal polarizing structure.
  • step 1 and before step 2 it may further include: coating a primer layer on the surface of the base substrate, and performing thermal curing.
  • the curing temperature can be controlled between 50°C and 55°C
  • the curing time can be controlled between 10min and 15min.
  • the material composition of the primer layer can be silane.
  • the interaction of liquid crystals) with liquid crystals in the liquid crystal coating layer can be silane.
  • Step 1 Clean the substrate substrate surface and activate the surface energy.
  • the base substrate may be all the film layers located under the liquid crystal coating layer in the liquid crystal polarizing structure.
  • Step 2 Coating a developing layer with a high contact angle on the surface of the base substrate.
  • the contact angle of the developing layer is greater than 90 degrees, and the material of the developing layer may include fluorinated alkyl silane, and the thickness of the developing layer remains the same as that of the liquid crystal coating layer coated subsequently.
  • Step 3 Place an ultraviolet (UV) shielding mold at the position corresponding to the camera. After ultraviolet light irradiation, only the developing layer in the coating avoidance area remains, and the developing layer in other areas is removed by photolithography.
  • UV ultraviolet
  • Step 4 Coating the shear stress coating liquid crystal solution on the base substrate, except for the coating avoidance area, the liquid crystal solution is uniformly coated on the base substrate, and the concentration of the liquid crystal solution is controlled between 10% and 15%.
  • Step 5 thermally curing the coated liquid crystal solution to form a liquid crystal coating layer, thereby forming a liquid crystal polarizing structure.
  • the thickness of the liquid crystal coating layer can be controlled between 1 ⁇ m and 2 ⁇ m, which is not limited herein.
  • the curing temperature can be controlled between 50°C and 55°C, and the curing time can be controlled between 10min and 15min.
  • the liquid crystal coating layer can complete the alignment by relying on the force of initial coating and the intermolecular force of the liquid crystal during the curing process, and no additional alignment layer is required.
  • step 1 and before step 2 it may further include: coating a primer layer on the surface of the base substrate, and performing thermal curing.
  • the curing temperature can be controlled between 50°C and 55°C
  • the curing time can be controlled between 10min and 15min.
  • the material composition of the primer layer can be silane.
  • the interaction of liquid crystals) with liquid crystals in the liquid crystal coating layer can be silane.
  • the liquid crystal polarized structure prepared by the above two methods can be applied to the flexible display screen of the present application.
  • the liquid crystal polarizing structure formed by the second method has more developing layers located in the coating avoidance area, and the developing layer is used for forming the liquid crystal coating.
  • the liquid crystal coating layer is coated on the coating avoidance area. Since the contact angle of the developing layer is greater than 90 degrees, the liquid crystal solution can be prevented from gathering at the edge of the coating avoidance area, thereby preventing the liquid crystal coating layer at the edge of the coating escape area from being thicker than other areas.
  • the thickness uniformity of the liquid crystal coating layer at the edge of the coating avoidance area is good, which is conducive to keeping the same optical properties around the coating avoidance area.
  • the second method has high photolithography process accuracy, and the liquid crystal coating layer on the edge of the coating avoidance area is better handled.
  • an OCA layer and a release film can also be attached to the side of the liquid crystal polarizing structure facing the flexible display panel, and when the liquid crystal polarizing structure and the flexible display panel are pasted, the release film is removed, so that the OCA layer converts the liquid crystal polarizing structure Attached to the flexible display panel.
  • the flexible display screen can be applied to the in-roll design, that is, the flexible display screen is curled and the back cover is located on the side close to the reel, and the support structure is located on the side away from the reel; of course, the flexible display can also be applied to the out-roll design, that is, the flexible display After the screen is rolled, the support structure is located on the side close to the reel, and the cover plate is located on the side away from the reel.
  • an embodiment of the present application further provides a terminal, including: a casing and the flexible display screen provided in the first aspect; a scroll and an opening are arranged in the casing; a first end of the flexible display screen The second end is wound on the reel, and the second end enters and exits the casing from the opening with the rotation of the reel.
  • the flexible display screen can be rolled and/or unrolled relative to a roll in the housing.
  • FIG. 1 is a schematic cross-sectional structure diagram of a terminal provided by the related art
  • FIG. 2 is a schematic structural diagram of the terminal shown in FIG. 1 when it is in a curled state
  • FIG. 3 is a schematic cross-sectional structure diagram of another terminal provided by the related art.
  • FIG. 4 is a schematic structural diagram of a composite layer provided by an embodiment of the present application.
  • Fig. 5 is the sectional structure schematic diagram of the composite layer shown in Fig. 4 along AA' direction;
  • FIG. 6 is a schematic structural diagram of a flexible display screen provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a flexible display screen provided by another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a flexible display screen provided in an embodiment of the present application in a rolled state
  • FIG. 9 is a schematic structural diagram of a composite layer when the flexible display screen shown in FIG. 8 is in a flattened state
  • FIG. 10 is a schematic structural diagram of a flexible display screen provided by another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a liquid crystal polarizing structure provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a flexible display screen provided by another embodiment of the present application.
  • 13a and 13b are exemplary diagrams of the preparation of the liquid crystal polarizing structure in the first method in the example of the application;
  • 14a to 14c are exemplary diagrams of the preparation of the liquid crystal polarizing structure in the second method in the example of the present application.
  • FIG. 15 is a schematic structural diagram of a bendable device provided by an embodiment of the present application.
  • the flexible display screen provided by the embodiments of the present application can be applied to terminals, such as a rollable mobile phone, a foldable mobile phone, a rollable e-book, a foldable e-book, a rollable tablet computer, or a foldable tablet computer.
  • the flexible display screen has a certain degree of rollability, so in some cases the flexible display screen can be rolled, and in other cases the flexible display screen can be unfolded.
  • the flexible display screen can be rolled accordingly, so that the area of the terminal can be reduced to improve portability.
  • the flexible display screen can be unfolded accordingly, so as to provide a larger display area, so as to improve the user's convenience.
  • the bottom of the flexible display panel 10 is provided with a rollable support structure 20, the support structure 20 includes a plurality of support members 21, and the adjacent support members 21 are connected as a whole by a connecting shaft 22,
  • the flexible display panel 10 and the supporting structure 20 are in a flattened state, the flexible display panel 10 is not subjected to stress and strain at the position of the connecting shaft 22 .
  • the adjacent support members 21 will deflect at a certain angle, resulting in stress tension on the flexible display panel 10 above the support structure 20 . stretch.
  • the magnitude of the stress-strain stretch varies with the number of turns of the flexible display panel 10 rolled on the reel 30 .
  • a graphic hollow design is made at the bottom of the flexible display panel 10 corresponding to the position of the connecting shaft 22 .
  • the graphic hollow design at the bottom of the flexible display panel 10 increases the risk of flatness of the surface of the flexible display panel 10, and is prone to curling and wrinkling.
  • the embodiments of the present application provide a flexible display screen and a terminal using the flexible display screen, which can reduce the influence of dislocation and stretching of the support structure on the basis of not affecting the flatness of the display screen, improve the stress and strain of the film layer, and improve the terminal curl reliability.
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • FIG. 4 is a schematic plan view of the structure of the composite layer provided by the embodiment of the application
  • FIG. 5 is a schematic view of the cross-sectional structure of the composite layer shown in FIG. 4 along the AA' direction.
  • the composite layer 120 includes a patterned metal layer 121 and an anisotropic film 122, the patterned metal layer 121 has at least one hollow area S1, and the anisotropic film 122 is filled in the at least one hollow area S1 middle.
  • the present application does not limit the number, shape and position of the hollowed-out regions S1 , and the number, shape and position of the hollowed-out regions S1 in FIG. 5 are only a representation.
  • the elastic modulus of the anisotropic film 122 along the first direction X is smaller than the elastic modulus along the second directions Y and Z, the first direction X and the The curling directions of the composite layer 120 are parallel, and the second directions Y and Z are perpendicular to the first direction X. As shown in FIG.
  • the directions perpendicular to the X-axis direction include the Y-axis direction in FIG. 4 and the Z-axis direction in FIG. 5 , namely the second direction.
  • the directions are the Y-axis direction and the Z-axis direction, and the Y-axis direction and the Z-axis direction are perpendicular to each other.
  • the curling direction of the composite layer is the length direction of the composite layer, then the first direction is the direction along the length, and the second direction is the direction along the thickness and the width.
  • the anisotropic film 122 is arranged in the hollow area S1 of the metal layer 121, the elastic modulus of the anisotropic film 122 in the curling direction (for example, the length) is small, so that the stress caused by curling can be absorbed.
  • the elastic modulus of the anisotropic film 122 in the thickness direction and the width direction is large, so that the function of rigid support can be realized.
  • the elastic modulus of the anisotropic film along the first direction can be set to 0.1Mpa ⁇ 10Mpa, for example: 0.1Mpa, 0.5Mpa, 1Mpa, 5Mpa, 10Mpa, etc.; the The elastic modulus of the anisotropic film layer along the second direction may be set to 1 Gpa ⁇ 20 Gpa, for example: 1 Gpa, 5 Gpa, 10 Gpa, 15 Gpa, 20 Gpa, etc., which are not limited herein.
  • the material of the anisotropic film may be polyacrylate or polyurethane, etc., of course, it may also be other material whose elastic modulus meets the above requirements, which is not limited here.
  • the thickness of the metal layer and the anisotropic film in the composite layer is not limited in this application, and can be designed according to actual products.
  • the thickness of the anisotropic film can be controlled between 20 ⁇ m and 100 ⁇ m, such as 20 ⁇ m, 50 ⁇ m, 80 ⁇ m, 100 ⁇ m, etc.
  • the thickness of the metal layer can be controlled between 20 ⁇ m and 150 ⁇ m, such as 20 ⁇ m. , 50 ⁇ m, 80 ⁇ m, 100 ⁇ m, 130 ⁇ m, 150 ⁇ m, etc., which are not limited here.
  • the thickness of the anisotropic film and the thickness of the metal layer may be set to be the same.
  • the thickness of the anisotropic film and the thickness of the metal layer may also be different, which is not limited herein.
  • the material of the metal layer is an alloy, such as stainless steel, nickel-titanium (NiTi) alloy, titanium-copper (Ti/Cu) alloy, etc., which is not limited herein.
  • the anisotropic film can be combined with the metal layer by an inkjet printing process or a hot pressing process, and certainly can be combined by other processes, which are not limited herein.
  • FIG. 6 is a schematic structural diagram of a flexible display screen provided by an embodiment of the present application.
  • the flexible display screen 100 includes a laminated flexible display panel 110 , a composite layer 120 and a rollable support structure 130 .
  • the flexible display panel 110 has a display surface and a back surface; the support structure 130 and the composite layer 120 are both disposed on the back side of the flexible display panel 110 to support the flexible display panel 110;
  • the layer 120 is located between the support structure 130 and the flexible display panel 110 .
  • the elastic modulus of the anisotropic film 122 along the first direction X is smaller than the elastic modulus along the second direction Y and Z, the first direction X Parallel to the crimping direction of the composite layer, the second directions Y and Z are perpendicular to the first direction X.
  • the curling direction of the composite layer is parallel to the curling direction of the flexible display screen.
  • the directions perpendicular to the X-axis direction include the Y-axis direction and the Z-axis direction, that is, the second direction is the Y-axis direction and the Z-axis direction, and the Y-axis direction
  • the axis direction and the Z-axis direction are perpendicular to each other.
  • the curling direction of the flexible display screen is the length direction of the flexible display screen, then the first direction is the direction along the length, and the second direction is the direction along the thickness and the width.
  • the composite layer 120 is disposed between the rollable support structure 130 and the flexible display panel 110 , the patterned metal layer 121 in the composite layer 120 is used to realize the support for the flexible display panel 110 , to ensure the flatness of the display surface of the flexible display panel 110, an anisotropic film 122 is arranged in the hollow area S1, and the elastic modulus of the anisotropic film 122 in the curling direction (for example, the length) is small, so as to absorb the stress and strain caused by curling In order to realize the curling characteristic, the elastic modulus of the anisotropic film 122 in the thickness direction and the width direction is relatively large, so as to realize the rigid support for the flexible display panel 110 and reduce the deformation of the display surface.
  • the support structure, the composite layer and the flexible display panel may be combined by an adhesive layer, and the composite layer and the support structure are used to provide a certain support for the flexible display panel.
  • the adhesive layer may specifically be an optically clear adhesive (Optically Clear Adhesive, OCA), or may be an adhesive layer containing materials such as polyurethane, polyethylene, polypropylene, and the like.
  • OCA Optically Clear Adhesive
  • the shape, outline and size of the support structure and the composite layer may be the same as or different from those of the flexible display panel.
  • the support structure, the composite layer, and the flexible display panel are rectangular structures of the same size.
  • the support structure 130 includes a plurality of support members 131 and a connecting shaft 132 for connecting the adjacent support members 131 , and at least one of the hollow regions S1 in the metal layer 121 corresponds to one of the hollow regions S1 .
  • the connecting shaft 132 is described.
  • each of the hollow regions S1 in the metal layer 121 corresponds to one of the connecting shafts 132 .
  • the metal layer 121 is patterned to form the hollow area S1 at the position corresponding to the connecting shaft 132 , so as to ensure that the composite layer 120 is easily bent at the position of the connecting shaft 132 .
  • the present application does not limit the shape of the hollow area S1, for example, it can be a regular figure such as a rectangle, a rhombus or an ellipse, and of course it can also be an irregular shape.
  • FIG. 8 is a schematic structural diagram of a flexible display screen curled around a reel in an embodiment of the present application
  • FIG. 9 is a structural schematic diagram of the flexible display screen shown in FIG. 8 after the composite layer is flattened, along the first direction X is the curling direction of the flexible display screen 100, and the composite layer 120 can be divided into multiple regions: L1-LN (N is an integer greater than 1, and N is equal to 3 as an example in FIG. 8 and FIG.
  • the length of each of the regions Ln (n is any integer from 1 to N) along the first direction X is nC
  • C is the circumference of the composite layer 120 curled around the reel
  • n is greater than An integer of 0.
  • the elastic modulus of the anisotropic film 122 along the first direction (X direction) is larger, and the anisotropic film 122 located in the same region is in the first direction (X direction).
  • the elastic moduli of the directions are consistent. For example, in FIG.
  • the area L1 of the composite layer 120 is the first turn around the reel
  • the area L2 of the composite layer 120 is the second turn around the reel
  • the area L3 of the composite layer 120 is the second turn around the reel
  • the elastic modulus of the anisotropic film 122 in the region L1 along the first direction X is E1
  • the elasticity of the anisotropic film 122 in the region L2 along the first direction X The modulus is E2
  • the elastic modulus of the anisotropic film 122 in the region L3 along the first direction X is E3
  • the anisotropic film 122 in each region has an elastic modulus along the first direction X direction.
  • the elastic modulus satisfies E1 ⁇ E2 ⁇ E3, for example, E1 is between 0.1Mpa and 1Mpa, E2 is between 1Mpa and 5Mpa, and E3 is between 5Mpa and 10Mpa.
  • the length of the region Ln along the first direction X is an integer that can be rolled around the reel for an integer number of turns, such as 1 turn, 2 turns, 3 turns, etc.
  • the length is not limited here. Different regions Ln in the composite layer 120 may have the same number of turns around the reel or may be different. In addition, the composite layers 120 on different turns of the reel may have slightly different lengths of one turn, with the turns further from the reel, the longer the length of a turn.
  • the flexible display panel can be any flexible display device that can realize display, for example, the flexible display panel is an electrophoretic display panel, an electrowetting display panel, an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display panel, quantum dots Any one of a light-emitting diode (QLED) display panel or a micro-light-emitting diode (Micro-LED) display panel is not limited here.
  • the flexible display panel is an electrophoretic display panel, an electrowetting display panel, an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display panel, quantum dots
  • OLED Organic Light-Emitting Diode
  • QLED light-emitting diode
  • Micro-LED micro-light-emitting diode
  • the flexible display panel may include a substrate and a display function layer, and the display function layer is disposed on the substrate for realizing image display.
  • the substrate may be a transparent insulating substrate, but it is not limited thereto.
  • the substrate may include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polysulfone (PSF), polymethylmethacrylate (PMMA) , at least one of triacetate cellulose (TAC), cyclic olefin polymer (COP) and cyclic olefin copolymer (COC).
  • the shape of the flexible display panel is not limited in the present application.
  • the flexible display panel may have a substantially rectangular shape, and of course may be any other suitable shape.
  • the flexible display panel is an OLED display panel, a QLED display panel or a Micro-LED display panel, etc.
  • the transmittance of light has a great influence, usually only >40% transmittance can be achieved.
  • a physical opening scheme can be adopted, and the liquid crystal polarizing structure is opened at the position of the camera.
  • the reflectivity at the position of the opening will change significantly, which affects the display effect of the flexible display from the appearance, and the position of the opening is likely to cause stress concentration and poor mechanical reliability.
  • additional processes such as alignment, digging, cleaning, and visual inspection are required.
  • FIG. 10 which is another embodiment of the present application.
  • the liquid crystal polarizing structure 150 is located on the display surface side of the flexible display panel 110, and the camera 140 is located on the backlight surface side of the flexible display panel 110. Referring to FIG. 11 , FIG.
  • the liquid crystal polarizing structure 150 includes: a base substrate 151 and a portion located on the base substrate 151 away from the flexible display panel 110
  • the liquid crystal coating layer 152 on the side, the liquid crystal coating layer 152 has a coating avoidance area C1 or an opening area in the area corresponding to the camera 140 (not shown in FIG. 11 ), and the camera 140 is in the
  • the orthographic projection of the liquid crystal polarizing structure 150 at least partially overlaps the coating avoidance area C1 .
  • the liquid crystal polarizing structure does not require physical openings, only the coating area of the liquid crystal coating layer in the liquid crystal polarizing structure is designed so that the liquid crystal coating layer avoids the coating avoidance area. Coating, to avoid the liquid crystal coating layer blocking the camera, to ensure the light transmittance of the camera.
  • the other film layers in the liquid crystal polarizing structure that do not affect the transmittance remain as they are, so that the reflectivity will not change significantly at the camera position, and the display effect of the flexible display will not be affected in appearance.
  • the liquid crystal polarizing structure eliminates the hole-digging process, the stress at the corresponding position of the camera is not easy to concentrate, and the optical and mechanical reliability of the flexible display is significantly enhanced.
  • the liquid crystal polarizing structure can be attached according to the marked position, which can save the process of digging holes, cleaning, and appearance inspection.
  • the liquid crystal polarizing structure may exist independently of the composite layer, that is, the flexible display screen provided by the present application may include only one of the liquid crystal polarizing structure and the composite layer, or may include both
  • the liquid crystal polarizing structure and the composite layer are not limited herein.
  • the flexible display screen includes both the liquid crystal polarizing structure and the composite layer, so that the reliability of the flexible display screen can be enhanced as much as possible.
  • the liquid crystal polarizing structure also includes other functional film layers, and the specific settings of other functions are the same as those in the prior art, which will not be repeated here.
  • the position of the orthographic projection of the camera on the flexible display panel is not limited, and can be designed according to actual products.
  • the camera 140 and the support structure 130 may be disposed on the same layer, that is, an opening is provided in the support structure 130 , and the camera 140 is placed in the opening.
  • the composite layer 120 is also provided with openings at positions corresponding to the camera 140 to prevent the composite layer 120 from blocking the camera 140 .
  • the anisotropic film 122 is made of a material with high light transmission, the anisotropic film 122 can be filled in the openings of the composite layer 120 .
  • the base substrate may be all functional film layers in the liquid crystal polarizing structure 150 located under the liquid crystal coating layer.
  • the base substrate 151 includes a pressure-sensitive adhesive layer 1511 , a quarter-wave retardation layer 1512 , an ultraviolet cut-off layer 1513 , and a half-wave retardation layer 1514 that are stacked in sequence. and a dielectric layer 1515 ; the pressure-sensitive adhesive layer 1511 is located on the side close to the flexible display panel 110 , and the liquid crystal coating layer 152 is disposed on the dielectric layer 1515 .
  • the thickness of the liquid crystal polarizing structure 150 can be controlled between 25 ⁇ m ⁇ 60 ⁇ m, which is not limited herein.
  • liquid crystal polarizing structure 150 may be combined with the flexible display panel 110 through OCA.
  • the flexible display screen 100 of the present application may further include a cover plate 160 on the side of the liquid crystal polarizing structure 150 away from the flexible display panel 110; the cover plate 160 is used to The liquid crystal polarizing structure 150 and the flexible display panel 110 play a protective role.
  • the cover plate 160 may be combined with the liquid crystal polarizing structure 150 through OCA.
  • the cover plate, the liquid crystal polarizing structure, the flexible display panel, the composite layer, the support structure and the camera can all be produced separately, and then the cover plate, liquid crystal polarizing structure, flexible display panel, composite Layers, support structures, and cameras are aligned.
  • the cover plate 160 is attached to the liquid crystal polarizing structure 150 through the first OCA layer 171
  • the liquid crystal polarizing structure 150 is attached to the flexible display panel 110 through the second OCA layer 172
  • the flexible display panel 110 is attached to the flexible display panel 110 through the third OCA layer 172 .
  • the OCA layer 173 is bonded to the composite layer 120
  • the composite layer 120 is bonded to the support structure 130 through the adhesive layer 174 .
  • the preparations of the cover plate, the flexible display panel, the supporting structure and the camera can be the same as those in the prior art, which will not be described in detail here.
  • liquid crystal polarizing structure can be prepared by the following two methods, but is not limited thereto, and the following two methods are only used as examples for illustration.
  • Step 1 Clean the substrate substrate surface and activate the surface energy.
  • the base substrate may be all the film layers located under the liquid crystal coating layer in the liquid crystal polarizing structure.
  • Step 2 Referring to FIG. 13a, place a shielding mold at a position corresponding to the camera to ensure that the coating avoidance area is effectively shielded, and place a support plate on the bottom side of the base substrate 151.
  • Step 3 Continue to refer to FIG. 13a, apply the shear stress coating liquid crystal solution on the base substrate 151. Except for the coating avoidance area, the liquid crystal solution is uniformly coated on the base substrate 151, and the concentration of the liquid crystal solution is controlled at 10% ⁇ between 15%.
  • Step 4 thermally curing the coated liquid crystal solution to form a liquid crystal coating layer 152 .
  • the thickness of the liquid crystal coating layer can be controlled between 1 ⁇ m and 2 ⁇ m, which is not limited herein.
  • the curing temperature can be controlled between 50°C and 55°C, and the curing time can be controlled between 10min and 15min.
  • the liquid crystal coating layer can complete the alignment by relying on the force of initial coating and the intermolecular force of the liquid crystal during the curing process, and no additional alignment layer is required.
  • Step 5 Remove the blocking mold and the support plate to form the liquid crystal polarizing structure 150 as shown in FIG. 13b.
  • step 1 and before step 2 it may further include: coating a primer layer on the surface of the base substrate, and performing thermal curing.
  • the curing temperature can be controlled between 50°C and 55°C
  • the curing time can be controlled between 10min and 15min.
  • the material composition of the primer layer can be silane.
  • the interaction of liquid crystals) with liquid crystals in the liquid crystal coating layer can be silane.
  • Step 1 Clean the substrate substrate surface and activate the surface energy.
  • the base substrate may be all the film layers located under the liquid crystal coating layer in the liquid crystal polarizing structure.
  • Step 2 Referring to FIG. 14a, coating the surface of the base substrate 151 with a developing layer 153 with a high contact angle.
  • the contact angle of the developing layer is greater than 90 degrees, and the material of the developing layer may include fluorinated alkyl silane, and the thickness of the developing layer remains the same as that of the liquid crystal coating layer coated subsequently.
  • Step 3 Referring to FIG. 14b, place an ultraviolet (UV) shielding mold at the position corresponding to the camera. After the ultraviolet light is irradiated, only the developing layer 153 of the coating avoidance area C1 remains, and the developing layer 153 in other areas is removed by photolithography. .
  • UV ultraviolet
  • Step 4 Coating the shear stress coating liquid crystal solution on the base substrate, except for the coating avoidance area, the liquid crystal solution is uniformly coated on the base substrate, and the concentration of the liquid crystal solution is controlled between 10% and 15%.
  • Step 5 thermally curing the coated liquid crystal solution to form a liquid crystal coating layer 152, thereby forming a liquid crystal polarizing structure 150 as shown in FIG. 14c.
  • the thickness of the liquid crystal coating layer 152 can be controlled between 1 ⁇ m and 2 ⁇ m, which is not limited herein.
  • the curing temperature can be controlled between 50°C and 55°C, and the curing time can be controlled between 10min and 15min.
  • the liquid crystal coating layer can complete the alignment by relying on the force of initial coating and the intermolecular force of the liquid crystal during the curing process, and no additional alignment layer is required.
  • step 1 and before step 2 it may further include: coating a primer layer on the surface of the base substrate, and performing thermal curing.
  • the curing temperature can be controlled between 50°C and 55°C
  • the curing time can be controlled between 10min and 15min.
  • the material composition of the primer layer can be silane.
  • the interaction of liquid crystals) with liquid crystals in the liquid crystal coating layer can be silane.
  • the liquid crystal polarized structure prepared by the above two methods can be applied to the flexible display screen of the present application.
  • the liquid crystal polarized structure formed by the second method has more development layers 153 located in the coating avoidance area C1, and the development layer 153 is used for forming the
  • the liquid crystal coating layer 152 blocks the liquid crystal coating layer 152 from being coated on the coating avoidance area C1. Since the contact angle of the developing layer 153 is greater than 90 degrees, the liquid crystal solution can be prevented from gathering at the edge of the coating avoidance area C1, thereby preventing the thickness of the liquid crystal coating layer 152 at the edge of the coating avoidance area C1 from being thicker than other areas.
  • the thickness uniformity of the liquid crystal coating layer 152 at the edge of the coating avoidance area C1 is good, which is beneficial to keep the same optical properties around the coating avoidance area C1.
  • the second method has high photolithography process precision, and the liquid crystal coating layer 152 coating the edge of the avoidance area C1 is better handled.
  • an OCA layer and a release film can also be attached to the side of the liquid crystal polarizing structure facing the flexible display panel, and when the liquid crystal polarizing structure and the flexible display panel are pasted, the release film is removed, so that the OCA layer converts the liquid crystal polarizing structure It is attached to the flexible display panel.
  • the flexible display screen can be applied to the in-roll design, that is, the flexible display screen is curled and the back cover is located on the side close to the reel, and the support structure is located on the side away from the reel; of course, the flexible display can also be applied to the out-roll design, that is, the flexible display After the screen is rolled, the support structure is located on the side close to the reel, and the cover plate is located on the side away from the reel.
  • an embodiment of the present application further provides a terminal, including: a casing 200 and any one of the above-mentioned flexible display screens 100 provided in the embodiment of the present application; the casing 200 is provided with a scroll 300 and an opening 2001, wherein the reel extends along the Y direction; the first end of the flexible display screen 100 is wound around the reel 300, and the second end enters and exits the casing 200 from the opening 2001 as the reel 300 rotates.
  • the flexible display screen 100 may be rolled and/or unrolled relative to the scroll 300 in the housing 200 .
  • the flexible display screen 100 may be exposed to the outside of the housing 200 by applying an external force at the second end. For example, once an external force is applied, the flexible display screen 100 rolled and held in the case 200 may be exposed to the outside of the case 200 after passing through the opening part 2001 in the case 200 .
  • the case 200 is used to accommodate the flexible display screen 100 rolled on the reel 300, and the case 200 may have a substantially cylindrical shape, but the shape of the case 200 is not limited thereto.
  • the housing 200 may have any suitable shape as long as the flexible display screen 100 can be rolled and retained within the housing 200 .

Abstract

一种复合层(120)、柔性显示屏(100)及终端,其中柔性显屏(100)包括柔性显示面板(110)、可卷曲的支撑结构(130)和复合层(120),复合层(120)位于支撑结构(130)和柔性显示面板(110)之间;利用复合层(120)中的图形化的金属层(121)来实现对柔性显示面板(110)的支撑,保证柔性显示面板(110)显示面的平整度,在金属层(121)中设置镂空区域(S1)保证复合层(120)的可弯折性,在镂空区域(S1)中设置各向异性膜(122),各向异性膜(122)在卷曲方向的弹性模量较小,从而吸收卷曲造成的应力应变以实现卷曲特性,各向异性膜(122)在厚度方向和宽度方向的弹性模量较大,实现对柔性显示面板(110)的刚性支撑,减小显示面的形变。

Description

一种复合层、柔性显示屏及终端
相关申请的交叉引用
本申请要求在2021年03月29日提交中国专利局、申请号为202110334893.3、申请名称为“一种复合层、柔性显示屏及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种复合层、柔性显示屏及终端。
背景技术
电子显示产品从固定外形发展到折叠形态,卷曲形态,实现大屏观看的同时兼顾便携性。可卷曲设备是通过将柔性显示屏与圆柱形的卷轴结合,实现展开屏幕面积大,卷曲后可以方便携带的优点。
由于柔性显示面板是使用柔性的塑胶材料组合成的,当塑胶材料长时间处于一种受力而形变的状态下,会产生蠕变(creep)现象。而creep现象会使塑胶材料的长度比未受力前的总长度变长,此状况就会造成当柔性显示面板从卷曲被展平时,影响屏幕表面的平整度。可以在柔性显示面板底部采用可卷曲的刚性支撑结构来增加柔性显示面板展开后屏幕表面的平整度。如1图所示,支撑结构20位于柔性显示面板10底部,支撑结构20包括多个支撑件21,相邻支撑件21通过连接轴22连接为一个整体,柔性显示面板10与支撑结构20在展平状态时,在连接轴22的位置,柔性显示面板10没有受到应力应变。如图2所示,当柔性显示面板10和支撑结构20围绕卷轴30进入卷曲状态后,在连接轴22位置,相邻支撑件21会发生一定的角度偏转,从而导致支撑结构20上方的柔性显示面板10也发生应力拉伸。应力应变拉伸的大小随柔性显示面板10在卷轴上卷曲的圈数不同而发生变化。
目前为了降低支撑结构带来的应力拉伸,通常在连接轴位置对应的柔性显示面板底部做图形化镂空设计。但是柔性显示面板底部的镂空设计会加大柔性显示面板表面的平整度风险,并容易产生卷曲褶皱问题,从而影响可卷曲设备的卷曲可靠性。
发明内容
本申请提供一种复合层、柔性显示屏及终端,用于提高柔性显示屏及终端的卷曲可靠性。
第一方面,本申请提供了一种复合层,所述复合层包括图形化的金属层和各向异性膜,所述图形化的金属层具有至少一个镂空区域,所述各向异性膜填充于所述至少一个镂空区域中。所述各向异性膜沿第一方向的弹性模量小于沿第二方向的弹性模量,所述第一方向与所述复合层的卷曲方向平行,所述第二方向与所述第一方向垂直。本申请对所述镂空区域的数量、形状和位置不作限定。
可以理解的是,假如第一方向为X轴方向,与X轴方向垂直的方向有Y轴方向和Z轴方向,即第二方向为Y轴方向和Z轴方向,Y轴方向和Z轴方向互相垂直。示例性的。 所述复合层的卷曲方向为复合层的长度方向,那么第一方向为沿长度的方向,第二方向为沿厚度的方向和宽度的方向。
本申请提供的复合层,由于在金属层的镂空区域中设置各向异性膜,各向异性膜在卷曲方向(例如长度)的弹性模量较小,从而可以吸收卷曲造成的应力应变以实现卷曲特性,各向异性膜在厚度方向和宽度方向的弹性模量较大,从而可以实现刚性支撑的作用。
可选地,在本申请中,所述各向异性膜沿所述第一方向的弹性模量可以设置为0.1Mpa~10Mpa,例如:0.1Mpa、0.5Mpa、1Mpa、5Mpa、10Mpa等;所述各向异性膜层沿所述第二方向的弹性模量可以设置为1Gpa~20Gpa,例如:1Gpa、5Gpa、10Gpa、15Gpa、20Gpa等,在此不作限定。
在具体实施时,所述各向异性膜的材质可以为聚丙烯酸酯或聚氨酯等,当然还可以是弹性模量满足上述要求的其它材质,在此不作限定。
本申请对复合层中金属层和各向异性膜的厚度不作限定,可以根据实际产品进行设计。示例性的,所述各向异性膜的厚度可以控制在20μm~100μm之间,例如为20μm、50μm、80μm、100μm等,所述金属层的厚度可以控制在20μm~150μm之间,例如为20μm、50μm、80μm、100μm、130μm、150μm等,在此不作限定。进一步地,在本申请中,可以将所述各向异性膜的厚度和所述金属层的厚度设置为一致。当然,各向异性膜的厚度和所述金属层的厚度也可以不一致,在此不作限定。
在具体实施时,所述金属层的材质为合金,例如不锈钢、镍钛(Ni/Ti)合金、钛铜(Ti/Cu)合金等,在此不作限定。所述各向异性膜可以通过喷墨打印工艺或热压工艺和金属层结合,当然也可以通过其他工艺结合,在此不作限定。
第二方面,本申请提供了一种柔性显示屏,所述柔性显示屏包括层叠设置的柔性显示面板、第一方面提供的复合层和可卷曲的支撑结构。其中,所述柔性显示面板具有显示面和背面,所述支撑结构和复合层均设置在所述柔性显示面板的背面一侧,用于支撑所述柔性显示面板;所述复合层位于所述支撑结构和所述柔性显示面板之间。所述复合层包括图形化的金属层和各向异性膜,所述图形化的金属层具有多个镂空区域,所述各向异性膜填充于所述多个镂空区域,所述各向异性膜沿第一方向的弹性模量小于沿第二方向的弹性模量,所述第一方向与所述复合层的卷曲方向平行,所述第二方向与所述第一方向垂直。其中所述复合层的卷曲方向与所述柔性显示屏的卷曲方向平行。
示例性的。所述柔性显示屏的卷曲方向为柔性显示屏的长度方向,那么第一方向为沿长度的方向,第二方向为沿厚度的方向和宽度的方向。
本申请提供的柔性显示屏,由于在可卷曲的支撑结构和柔性显示面板之间设置有复合层,利用复合层中的图形化的金属层来实现对柔性显示面板的支撑,保证柔性显示面板显示面的平整度,在镂空区域中设置各向异性膜,各向异性膜在卷曲方向(例如长度方向)的弹性模量较小,从而吸收卷曲造成的应力应变以实现卷曲特性,各向异性膜在厚度方向和宽度方向的弹性模量较大,实现对柔性显示面板的刚性支撑,减小显示面的形变。
在具体实施时,支撑结构、复合层以及柔性显示面板之间可以通过粘结层结合,复合层和支撑结构用于对柔性显示面板提供一定的支撑作用。其中,粘结层具体可以是光学透明胶(Optically Clear Adhesive,OCA),也可以是包含有聚氨酯、聚乙烯、聚丙烯等材质的胶层。在具体实施时,支撑结构以及复合层的形状轮廓、大小可以与柔性显示面板的形状轮廓、大小可以相同也可以不同。例如,在本申请提供的一个实施例中,支撑结构、复 合层以及柔性显示面板是相同大小的矩形结构。
其中,所述支撑结包括多个支撑件以及用于连接相邻的所述支撑件的连接轴,所述金属层中的每一所述镂空区域对应一个所述连接轴。本申请中,所述金属层在与连接轴对应的位置图形化形成所述镂空区域,保证复合层在连接轴位置处的容易弯折。本申请对镂空区域的形状不作限定,例如可以为矩形,菱形或椭圆形等的规则图形,当然也可以为不规则的形状。
示例性的,所述支撑结构包括多个支撑件以及用于连接相邻的所述支撑件的连接轴,所述金属层中的至少有一个所述镂空区域对应一个所述连接轴。优选所述金属层中的每一所述镂空区域对应一个所述连接轴。本申请中,所述金属层在与连接轴对应的位置图形化形成所述镂空区域,保证复合层在连接轴位置处的容易弯折。本申请对镂空区域的形状不作限定,例如可以为矩形,菱形或椭圆形等的规则图形,当然也可以为不规则的形状。
在实际产品中,柔性显示面板上的拉伸应力的大小随其在卷轴上卷曲的圈数不同而不同,位于越靠近卷轴的圈(即越靠内的圈)上,柔性显示面板受到的拉伸应力越大。因此,可以沿第一方向即所述柔性显示屏的卷曲方向,将所述复合层分为多个区域:L1~LN(N为大于1的整数,每一所述区域Ln(n为1~N的任一整数)沿所述第一方向的长度为nC,C为所述复合层绕卷轴卷曲一圈的周长,n为大于0的整数。距离卷轴越远的区域中,所述各向异形膜沿所述第一方向的弹性模量越大,而位于同一区域的所述各向异形膜在沿所述第一方向的弹性模量是一致的。例如,所述复合层的区域L1为绕卷轴的第一圈,所述复合层的区域L2为绕卷轴的第二圈,所述复合层的区域L3为绕卷轴的第三圈,位于区域L1中的所述各向异形膜沿所述第一方向X的弹性模量为E1,位于区域L2中的所述各向异形膜沿所述第一方向的弹性模量为E2,区域L3中的所述各向异形膜沿所述第一方向的弹性模量为E3,位于各区域的所述各向异形膜沿所述第一方向的弹性模量满足E1<E2<E3,例如E1在0.1Mpa~1Mpa之间,E2在1Mpa~5Mpa之间,E3在5Mpa~10Mpa之间。
需要说明的是,针对所述复合层中每一区域Ln,该区域Ln沿所述第一方向的长度为可以绕卷轴卷曲整数圈的整数,例如卷曲1圈、2圈、3圈等的长度,在此不作限定。所述复合层中不同的区域Ln绕卷轴卷曲的圈数可以相同,也可以不相同。另外,位于卷轴的不同圈上的复合层,一圈的长度会有稍微不同,离卷轴越远的圈上,一圈的长度越长。
在具体实施时,柔性显示面板可以为任何能够实现显示的柔性显示装置,例如柔性显示面板为电泳显示面板、电湿润显示面板、有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板、量子点发光二极管(QLED)显示面板或微小发光二极管(Micro-LED)显示面板中的任一个,在此不作限定。
本申请对柔性显示面板的形状不作限定,例如,柔性显示面板可具有基本上呈矩形的形状,当然也可以是其它任何合适的形状。
在具体实施时,一些显示产品还具备摄像的功能,为了实现显示屏全屏效果,需要将摄像头设置在柔性显示面板的下方。对于例如柔性显示面板为OLED显示面板、QLED显示面板或Micro-LED显示面板等的柔性显示屏,还需要在柔性显示面板的显示面设置液晶偏光结构,其中液晶偏光结构中的液晶涂布层对光的透过率影响很大,通常仅能达到>40%的穿透率。为提高柔性显示屏在摄像头位置处的光透过率,可采用物理开孔方案,将液晶偏光结构在摄像头位置处开孔。但是开孔位置处反射率会发生明显变化,从外观上影响柔性显示屏的显示效果,并且,开孔位置处容易导致应力集中,机械可靠性变差。同时,在 制备过程中,需要额外增加对位,挖孔,清洁,外观检查等制程。
为了提高柔性显示屏在摄像头位置处的光透光率,且从外观上不影响柔性显示屏的显示效果和摄像头位置处的机械可靠性,在柔性显示屏中,液晶偏光结构位于所述柔性显示面板显示面一侧,摄像头位于所述柔性显示面板背光面一侧。所述液晶偏光结构包括:衬底基板以及位于所述衬底基板背离所述柔性显示面板一侧的液晶涂布层,所述液晶涂布层在与所述摄像头对应的区域具有涂布避让区即开孔区域,所述摄像头在所述液晶偏光结构的正投影与所述涂布避让区至少部分重叠。
可以理解的是,当所述摄像头在所述液晶偏光结构的正投影与所述涂布避让区完全重叠时,既可以保证摄像头对应区域的透光率,又可以保证除了摄像头之外其它区域的正常显示。当然在具体实施时,允许所述摄像头与所述涂布避让区之间存在一定的对位误差存在。
在本申请的柔性显示屏中,由于液晶偏光结构不需要进行物理开孔,仅是对液晶偏光结构中的液晶涂布层的涂布区域进行设计使液晶涂布层避开涂布避让区进行涂布,避免液晶涂布层遮挡住摄像头,保证了摄像头的透光率。而液晶偏光结构中的其他不影响穿透率的膜层保持原状,从而在摄像头位置处反射率不会发生明显变化,从外观上不影响柔性显示屏的显示效果。并且由于液晶偏光结构省去了挖孔工艺,因此摄像头对应位置处应力不易集中,柔性显示屏的光学和机械可靠性显著增强。另外,在模组组合工艺过程中,液晶偏光结构按标记的位置进行贴合即可完成,可以省去挖孔,清洁,外观检查等流程。
在具体实施时,所述液晶偏光结构可以独立于所述复合层存在,即本申请提供的柔性显示屏中,可以只包括所述液晶偏光结构和所述复合层中的一个,也可以同时包括所述液晶偏光结构和所述复合层,在此不作限定。优选所述柔性显示屏中同时包括所述液晶偏光结构和所述复合层,这样可以尽可能的增强柔性显示屏的可靠性。
需要说明的是,所述液晶偏光结构中,除了液晶涂布层之外还包括其它功能膜层,具体其它功能的设置与现有技术相同,在此不作赘述。
在本申请中,对摄像头在柔性显示面板上的正投影的位置不作限定,可以根据实际产品进行设计。
在一种可行的实现方式中,可以将摄像头与支撑结构设置为同层,即在支撑结构中设置开孔,将摄像头放置于开孔中。而复合层在与摄像头对应的位置同样设置开孔,以避免复合层遮挡摄像头。进一步地,当各向异性膜选用高透光材料时,可以在复合层的开孔中填充各向异性膜。
示例性的,所述液晶偏光结构中的所述衬底基板包括依次层叠设置的压敏胶层、四分之一波长延迟层、紫外光截止层、二分之一波长延迟层和介质层;所述压敏胶层位于靠近所述柔性显示面板一侧,所述液晶涂布层设置在所述介质层上。进一步地,所述液晶偏光结构的厚度可以控制在25μm~60μm之间,在此不作限定。
在具体实施时,所述液晶偏光结构可以通过OCA与所述柔性显示面板结合。
本申请的柔性显示屏中,还可以包括位于所述液晶偏光结构背离所述柔性显示面板一侧的盖板;所述盖板用于对所述液晶偏光结构以及所述柔性显示面板起保护作用。在具体实施时,所述盖板可以通过OCA与所述液晶偏光结构结合。
在实际生产柔性显示屏时,盖板、液晶偏光结构、柔性显示面板、复合层、支撑结构以及摄像头均可以分别单独制作,分别制作完成后再将盖板、液晶偏光结构、柔性显示面 板、复合层、支撑结构以及摄像头进行对位贴合。例如在一种实施例中,盖板通过第一OCA层与液晶偏光结构进行贴合,液晶偏光结构通过第二OCA层与柔性显示面板进行贴合,柔性显示面板通过第三OCA层与复合层进行贴合,复合层通过胶层与支撑结构进行贴合。
可选地,盖板、柔性显示面板、支撑结构以及摄像头的制备可以与现有技术相同,在此不作详述。
其中,所述液晶偏光结构可以通过如下两种方法制备,但不限于此,仅是以下面两种方法为例进行示意。
第一种方法
步骤1:清洁衬底基板表面,并激活表面能。
在具体实施时,衬底基板可以是所述液晶偏光结构中位于液晶涂布层下方的所有膜层。
步骤2:在摄像头对应的位置放置遮挡模具,保障涂布避让区有效被遮挡,并在衬底基板的底侧放置支撑板。
步骤3:在衬底基上涂布剪应力涂布液晶溶液,除了涂布避让区外,液晶溶液在衬底基板上均匀涂布,液晶溶液浓度控制在10%~15%之间。
步骤4:热固化涂布后的液晶溶液,形成液晶涂布层。
其中,液晶涂布层的厚度可以控制在1μm~2μm之间,在此不作限定。
示例性的,固化温度可以控制在50℃~55℃之间,固化时间可以控制在10min~15min之间。
液晶涂布层依靠初始涂布的作用力和固化过程中的液晶分子间作用力可以完成配向,不需要额外的配向层。
步骤5:移除遮挡模具和支撑板,形成液晶偏光结构。
在具体实施时,还可以步骤1之后,在步骤2之前,还可以包括:在衬底基板的表面涂布底漆(Primer)层,并进行热固化。示例性的,固化温度可以控制在50℃~55℃之间,固化时间可以控制在10min~15min之间。
底漆层的材料成分可以为硅烷,主要作用是使液晶涂布层与衬底基板表面隔离,减少衬底基板中的液晶(例如二分之一波长延迟层和四分之一波长延迟层中的液晶)与液晶涂布层中液晶的交互影响。
第二种方法
步骤1:清洁衬底基板表面,并激活表面能。
在具体实施时,衬底基板可以是所述液晶偏光结构中位于液晶涂布层下方的所有膜层。
步骤2:在衬底基板的表面涂布高接触角的显影层。
所述显影层的接触角大于90度,所述显影层的材料可以包括氟化烷基硅烷,厚度与后续涂布的液晶涂布层保持相同厚度。
步骤3:在摄像头对应的位置放置紫外光(UV)遮挡模具,紫外光照射后,只有涂布避让区的显影层保留,其他区域的显影层采用光刻工艺除掉。
步骤4:在衬底基板上涂布剪应力涂布液晶溶液,除了涂布避让区外,液晶溶液在衬底基板上均匀涂布,液晶溶液浓度控制在10%~15%之间。
步骤5:热固化涂布后的液晶溶液,形成液晶涂布层,从而形成液晶偏光结构。
其中,液晶涂布层的厚度可以控制在1μm~2μm之间,在此不作限定。
示例性的,固化温度可以控制在50℃~55℃之间,固化时间可以控制在10min~15min 之间。
液晶涂布层依靠初始涂布的作用力和固化过程中的液晶分子间作用力可以完成配向,不需要额外的配向层。
在具体实施时,还可以步骤1之后,在步骤2之前,还可以包括:在衬底基板的表面涂布底漆(Primer)层,并进行热固化。示例性的,固化温度可以控制在50℃~55℃之间,固化时间可以控制在10min~15min之间。
底漆层的材料成分可以为硅烷,主要作用是使液晶涂布层与衬底基板表面隔离,减少衬底基板中的液晶(例如二分之一波长延迟层和四分之一波长延迟层中的液晶)与液晶涂布层中液晶的交互影响。
上述两种方法制备形成的液晶偏光结构均可以应用于本申请的柔性显示屏中。两种方法形成的液晶偏光结构从结构上相比,第二种方法形成的液晶偏光结构多了位于所述涂布避让区内的显影层,所述显影层用于在形成所述液晶涂布层时阻挡所述液晶涂布层涂布于所述涂布避让区。由于所述显影层的接触角大于90度,因此可以避免液晶溶液在涂布避让区边缘聚集,从而避免造成涂布避让区边缘的液晶涂布层的厚度比其他区域更厚。因此采用第二种方法制备的液晶偏光结构中液晶涂布层在涂布避让区边缘厚度均匀性好,有利于涂布避让区周边光学特性保持一致。从工艺上相比,第二种方法光刻工艺精度高,涂布避让区边缘的液晶涂布层处理更好。
在本申请中,还可以在液晶偏光结构面向柔性显示面板一侧贴OCA层和离型膜,在液晶偏光结构与柔性显示面板进行贴合时,去除离型膜,从而OCA层将液晶偏光结构与柔性显示面板贴合在一起。
本申请中,柔性显示屏可以适用于内卷设计,即柔性显示屏卷曲后盖板位于靠近卷轴一侧,支撑结构位于远离卷轴一侧;当然柔性显示屏也可以适用于外卷设计即柔性显示屏卷曲后支撑结构位于靠近卷轴一侧,盖板位于远离卷轴一侧。
第三方面,本申请实施例还提供了一种终端,包括:壳体和第一方面提供的柔性显示屏;所述壳体内设有一卷轴以及一开口部;所述柔性显示屏的第一端缠绕于所述卷轴,第二端随所述卷轴的旋转自所述开口部进出所述壳体。所述柔性显示屏可相对于壳体中的卷轴卷曲和/或展开。
附图说明
图1为相关技术提供的一种终端的剖面结构示意图;
图2为图1所示的终端处于卷曲状态时的结构示意图;
图3为相关技术提供的另一种终端的剖面结构示意图;
图4为本申请一种实施例提供的复合层的结构示意图;
图5为图4所示的复合层沿AA’方向的剖面结构示意图;
图6为本申请一种实施例提供的柔性显示屏的结构示意图;
图7为本申请另一种实施例提供的柔性显示屏的结构示意图;
图8为本申请一种实施例提供的柔性显示屏在卷曲状态时的结构示意图;
图9为图8所示的柔性显示屏在展平状态时复合层的结构示意图;
图10为本申请又一种实施例提供的柔性显示屏的结构示意图;
图11为本申请一种实施例提供的液晶偏光结构的结构示意图;
图12为本申请又一种实施例提供的柔性显示屏的结构示意图;
图13a和图13b为本申请实例中第一种方法中液晶偏光结构的制备示例图;
图14a至图14c为本申请实例中第二种方法中液晶偏光结构的制备示例图;
图15为本申请实施例提供的一种可弯曲设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
为了方便理解本申请实施例提供的柔性显示屏,下面首先介绍一下其应用场景。
本申请实施例提供的柔性显示屏可以应用在终端,例如可卷曲手机、可折叠手机、可卷曲电子书、可折叠电子书、可卷曲平板电脑或可折叠平板电脑等。柔性显示屏具备一定的可卷曲性,因此,在一些情况下可以将柔性显示屏进行卷曲,在另一些情况下可以将柔性显示屏进行展开。例如,当终端被卷曲后,柔性显示屏可以随之被卷曲,从而可以降低终端的面积,以提升便携性。当终端被展开后,柔性显示屏可以随之被展开,从而可以提供较大的显示区域,以提升用户的使用便利性。
参见图1和图2,在终端中,柔性显示面板10的底部设置有可卷曲的支撑结构20,支撑结构20包括多个支撑件21,相邻支撑件21通过连接轴22连接为一个整体,柔性显示面板10与支撑结构20在展平状态时,在连接轴22的位置,柔性显示面板10没有受到应力应变。当柔性显示面板10和支撑结构20围绕卷轴30进入卷曲状态后,在连接轴22位置,相邻支撑件21会发生一定的角度偏转,从而导致支撑结构20上方的柔性显示面板10也发生应力拉伸。应力应变拉伸的大小随柔性显示面板10在卷轴30上卷曲的圈数不同而发生变化。
参见图3,为了降低支撑结构20带来的应力拉伸,在连接轴22位置对应的柔性显示面板10底部做图形化镂空设计。但是柔性显示面板10底部的图形化镂空设计会加大柔性显示面板10表面的平整度风险,并容易产生卷曲褶皱问题。
为此,本申请实施例提供了一种柔性显示屏和应用该柔性显示屏的终端,在不影响显示屏幕平整度的基础上降低支撑结构的错位拉伸影响,改善膜层应力应变,提高终端的卷曲可靠性。
为了便于理解本申请技术方案,下面将结合附图和具体实施方式对本申请所提供的柔性屏进行具体说明。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个、两个或两个以上。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外 一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
参见图4和图5,图4为本申请实施例提供的复合层的俯视结构示意图,图5为图4所示的复合层沿AA’方向的剖面结构示意图。所述复合层120包括图形化的金属层121和各向异性膜122,所述图形化的金属层121具有至少一个镂空区域S1,所述各向异性膜122填充于所述至少一个镂空区域S1中。本申请对所述镂空区域S1的数量、形状和位置不作限定,图5中镂空区域S1的数量、形状和位置只是一种示意。
可选地,继续参考图4和图5,所述各向异性膜122沿第一方向X的弹性模量小于沿第二方向Y和Z的弹性模量,所述第一方向X与所述复合层120的卷曲方向平行,所述第二方向Y和Z与所述第一方向X垂直。
可以理解的是,如图4和图5所示,假如第一方向为X轴方向,与X轴方向垂直的方向有图4中的Y轴方向和图5中的Z轴方向,即第二方向为Y轴方向和Z轴方向,Y轴方向和Z轴方向互相垂直。示例性的。所述复合层的卷曲方向为复合层的长度方向,那么第一方向为沿长度的方向,第二方向为沿厚度的方向和宽度的方向。
本申请提供的复合层,由于在金属层121的镂空区域S1中设置各向异性膜122,各向异性膜122在卷曲方向(例如长度)的弹性模量较小,从而可以吸收卷曲造成的应力应变以实现卷曲特性,各向异性膜122在厚度方向和宽度方向的弹性模量较大,从而可以实现刚性支撑的作用。
可选地,在本申请中,所述各向异性膜沿所述第一方向的弹性模量可以设置为0.1Mpa~10Mpa,例如:0.1Mpa、0.5Mpa、1Mpa、5Mpa、10Mpa等;所述各向异性膜层沿所述第二方向的弹性模量可以设置为1Gpa~20Gpa,例如:1Gpa、5Gpa、10Gpa、15Gpa、20Gpa等,在此不作限定。
在具体实施时,所述各向异性膜的材质可以为聚丙烯酸酯或聚氨酯等,当然还可以是弹性模量满足上述要求的其它材质,在此不作限定。
本申请对复合层中金属层和各向异性膜的厚度不作限定,可以根据实际产品进行设计。示例性的,所述各向异性膜的厚度可以控制在20μm~100μm之间,例如为20μm、50μm、80μm、100μm等,所述金属层的厚度可以控制在20μm~150μm之间,例如为20μm、50μm、80μm、100μm、130μm、150μm等,在此不作限定。进一步地,在本申请中,可以将所述各向异性膜的厚度和所述金属层的厚度设置为一致。当然,各向异性膜的厚度和所述金属层的厚度也可以不一致,在此不作限定。
在具体实施时,所述金属层的材质为合金,例如不锈钢、镍钛(NiTi)合金、钛铜(Ti/Cu)合金等,在此不作限定。所述各向异性膜可以通过喷墨打印工艺或热压工艺和金属层结合,当然也可以通过其他工艺结合,在此不作限定。
在实际应用中,所述复合层可以应用于柔性显示屏中。参见图6,图6为本申请一种实施例提供的柔性显示屏的结构示意图,所述柔性显示屏100包括层叠设置的柔性显示面板110、复合层120和可卷曲的支撑结构130。其中,所述柔性显示面板110具有显示面和背面;所述支撑结构130和复合层120均设置在所述柔性显示面板110的背面一侧,用于支撑所述柔性显示面板110;所述复合层120位于所述支撑结构130和所述柔性显示面板110之间。在所述柔性显示屏中,结合图4和图5,所述各向异性膜122沿第一方向X的 弹性模量小于沿第二方向Y和Z的弹性模量,所述第一方向X与所述复合层的卷曲方向平行,所述第二方向Y和Z与所述第一方向X垂直。其中所述复合层的卷曲方向与所述柔性显示屏的卷曲方向平行。
可以理解的是,如图6所示,假如第一方向为X轴方向,与X轴方向垂直的方向有Y轴方向和Z轴方向,即第二方向为Y轴方向和Z轴方向,Y轴方向和Z轴方向互相垂直。示例性的。所述柔性显示屏的卷曲方向为柔性显示屏的长度方向,那么第一方向为沿长度的方向,第二方向为沿厚度的方向和宽度的方向。
本申请提供的柔性显示屏,由于在可卷曲的支撑结构130和柔性显示面板110之间设置有复合层120,利用复合层120中的图形化的金属层121来实现对柔性显示面板110的支撑,保证柔性显示面板110显示面的平整度,在镂空区域S1中设置各向异性膜122,各向异性膜122在卷曲方向(例如长度)的弹性模量较小,从而吸收卷曲造成的应力应变以实现卷曲特性,各向异性膜122在厚度方向和宽度方向的弹性模量较大,实现对柔性显示面板110的刚性支撑,减小显示面的形变。
在具体实施时,支撑结构、复合层以及柔性显示面板之间可以通过粘结层结合,复合层和支撑结构用于对柔性显示面板提供一定的支撑作用。其中,粘结层具体可以是光学透明胶(Optically Clear Adhesive,OCA),也可以是包含有聚氨酯、聚乙烯、聚丙烯等材质的胶层。在具体实施时,支撑结构以及复合层的形状轮廓、大小可以与柔性显示面板的形状轮廓、大小可以相同也可以不同。例如,在本申请提供的一个实施例中,支撑结构、复合层以及柔性显示面板是相同大小的矩形结构。
参见图7,所述支撑结构130包括多个支撑件131以及用于连接相邻的所述支撑件131的连接轴132,所述金属层121中的至少有一个所述镂空区域S1对应一个所述连接轴132。优选所述金属层121中的每一所述镂空区域S1对应一个所述连接轴132。本申请中,所述金属层121在与连接轴132对应的位置图形化形成所述镂空区域S1,保证复合层120在连接轴132位置处的容易弯折。本申请对镂空区域S1的形状不作限定,例如可以为矩形,菱形或椭圆形等的规则图形,当然也可以为不规则的形状。
在实际产品中,柔性显示面板上的拉伸应力的大小随其在卷轴上卷曲的圈数不同而不同,位于越靠近卷轴的圈(即越靠内的圈)上,柔性显示面板受到的拉伸应力越大。参见图8和图9,图8为本申请实施例中柔性显示屏绕卷轴卷曲的结构示意图;图9为图8所示的柔性显示屏中复合层展平后的结构示意图,沿第一方向X即所述柔性显示屏100的卷曲方向,可以将所述复合层120分为多个区域:L1~LN(N为大于1的整数,图8和图9中以N等于3为例进行示意),每一所述区域Ln(n为1~N的任一整数)沿所述第一方向X的长度为nC,C为所述复合层120绕卷轴卷曲一圈的周长,n为大于0的整数。距离卷轴越远的区域中,所述各向异形膜122沿所述第一方向(X方向)的弹性模量越大,而位于同一区域的所述各向异形膜122在沿所述第一方向的弹性模量是一致的。例如图8中,所述复合层120的区域L1为绕卷轴的第一圈,所述复合层120的区域L2为绕卷轴的第二圈,所述复合层120的区域L3为绕卷轴的第三圈,位于区域L1中的所述各向异形膜122沿所述第一方向X的弹性模量为E1,位于区域L2中的所述各向异形膜122沿所述第一方向X的弹性模量为E2,区域L3中的所述各向异形膜122沿所述第一方向X的弹性模量为E3,位于各区域的所述各向异形膜122沿所述第一方向X方向的弹性模量满足E1<E2<E3,例如E1在0.1Mpa~1Mpa之间,E2在1Mpa~5Mpa之间,E3在5Mpa~10Mpa之间。
需要说明的是,针对所述复合层120中每一区域Ln,该区域Ln沿所述第一方向X的长度为可以绕卷轴卷曲整数圈的整数,例如卷曲1圈、2圈、3圈等的长度,在此不作限定。所述复合层120中不同的区域Ln绕卷轴卷曲的圈数可以相同,也可以不相同。另外,位于卷轴的不同圈上的复合层120,一圈的长度会有稍微不同,离卷轴越远的圈上,一圈的长度越长。
在具体实施时,柔性显示面板可以为任何能够实现显示的柔性显示装置,例如柔性显示面板为电泳显示面板、电湿润显示面板、有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板、量子点发光二极管(QLED)显示面板或微小发光二极管(Micro-LED)显示面板中的任一个,在此不作限定。
其中,柔性显示面板可包括衬底和显示功能层,显示功能层设置在衬底上,用于实现图像显示。衬底可以是透明绝缘衬底,但是其不限于此。衬底可包括聚碳酸酯(PC)、聚对苯二甲酸乙二酯(PET)、聚乙烯(PE)、聚丙烯(PP)、聚砜(PSF)、聚甲基丙烯酸甲酯(PMMA)、三醋酸纤维素(TAC)、环烯烃聚合物(COP)和环烯烃共聚物(COC)中的至少一种。
本申请对柔性显示面板的形状不作限定,例如,柔性显示面板可具有基本上呈矩形的形状,当然也可以是其它任何合适的形状。
在具体实施时,一些显示产品还具备摄像的功能,为了实现显示屏全屏效果,需要将摄像头设置在柔性显示面板的下方。对于例如柔性显示面板为OLED显示面板、QLED显示面板或Micro-LED显示面板等的柔性显示屏,还需要在柔性显示面板的显示面设置液晶偏光结构,其中液晶偏光结构中的液晶涂布层对光的透过率影响很大,通常仅能达到>40%的穿透率。为提高柔性显示屏在摄像头位置处的光透过率,可采用物理开孔方案,将液晶偏光结构在摄像头位置处开孔。但是开孔位置处反射率会发生明显变化,从外观上影响柔性显示屏的显示效果,并且,开孔位置处容易导致应力集中,机械可靠性变差。同时,在制备过程中,需要额外增加对位,挖孔,清洁,外观检查等制程。
为了提高柔性显示屏在摄像头位置处的光透光率,且从外观上不影响柔性显示屏的显示效果和摄像头位置处的机械可靠性,参见图10,图10为本申请实施例中另一种柔性显示屏的结构示意图;在柔性显示屏100中,液晶偏光结构150位于所述柔性显示面板110显示面一侧,摄像头140位于所述柔性显示面板110背光面一侧。参见图11,图11为本申请一种实施例中液晶偏光结构的俯视结构示意图;所述液晶偏光结构150包括:衬底基板151以及位于所述衬底基板151背离所述柔性显示面板110一侧的液晶涂布层152,所述液晶涂布层152在与所述摄像头140(图11中未视出)对应的区域具有涂布避让区C1即开孔区域,所述摄像头140在所述液晶偏光结构150的正投影与所述涂布避让区C1至少部分重叠。
可以理解的是,当所述摄像头140在所述液晶偏光结构150的正投影与所述涂布避让区C1完全重叠时,既可以保证摄像头对应区域的透光率,又可以保证除了摄像头140之外其它区域的正常显示。当然在具体实施时,允许所述摄像头140与所述涂布避让区C1之间存在一定的对位误差存在。
在本申请的柔性显示屏中,由于液晶偏光结构不需要进行物理开孔,仅是对液晶偏光结构中的液晶涂布层的涂布区域进行设计使液晶涂布层避开涂布避让区进行涂布,避免液晶涂布层遮挡住摄像头,保证了摄像头的透光率。而液晶偏光结构中的其他不影响穿透率 的膜层保持原状,从而在摄像头位置处反射率不会发生明显变化,从外观上不影响柔性显示屏的显示效果。并且由于液晶偏光结构省去了挖孔工艺,因此摄像头对应位置处应力不易集中,柔性显示屏的光学和机械可靠性显著增强。另外,在模组组合工艺过程中,液晶偏光结构按标记的位置进行贴合即可完成,可以省去挖孔,清洁,外观检查等流程。
在具体实施时,所述液晶偏光结构可以独立于所述复合层存在,即本申请提供的柔性显示屏中,可以只包括所述液晶偏光结构和所述复合层中的一个,也可以同时包括所述液晶偏光结构和所述复合层,在此不作限定。优选所述柔性显示屏中同时包括所述液晶偏光结构和所述复合层,这样可以尽可能的增强柔性显示屏的可靠性。
需要说明的是,所述液晶偏光结构中,除了液晶涂布层之外还包括其它功能膜层,具体其它功能的设置与现有技术相同,在此不作赘述。
在本申请中,对摄像头在柔性显示面板上的正投影的位置不作限定,可以根据实际产品进行设计。
参见图10,可以将摄像头140与支撑结构130设置为同层,即在支撑结构130中设置开孔,将摄像头140放置于开孔中。而复合层120在与摄像头140对应的位置同样设置开孔,以避免复合层120遮挡摄像头140。进一步地,当各向异性膜122选用高透光材料时,可以在复合层120的开孔中填充各向异性膜122。
所述衬底基板可以为所述液晶偏光结构150中位于所述液晶涂布层下方的所有功能膜层。示例性的,如图12所示,所述衬底基板151包括依次层叠设置的压敏胶层1511、四分之一波长延迟层1512、紫外光截止层1513、二分之一波长延迟层1514和介质层1515;所述压敏胶层1511位于靠近所述柔性显示面板110一侧,所述液晶涂布层152设置在所述介质层1515上。进一步地,所述液晶偏光结构150的厚度可以控制在25μm~60μm之间,在此不作限定。
在具体实施时,所述液晶偏光结构150可以通过OCA与所述柔性显示面板110结合。
继续参见图10和图12,本申请的柔性显示屏100中,还可以包括位于所述液晶偏光结构150背离所述柔性显示面板110一侧的盖板160;所述盖板160用于对所述液晶偏光结构150以及所述柔性显示面板110起保护作用。
在具体实施时,所述盖板160可以通过OCA与所述液晶偏光结构150结合。
在实际生产柔性显示屏时,盖板、液晶偏光结构、柔性显示面板、复合层、支撑结构以及摄像头均可以分别单独制作,分别制作完成后再将盖板、液晶偏光结构、柔性显示面板、复合层、支撑结构以及摄像头进行对位贴合。例如图10所示,盖板160通过第一OCA层171与液晶偏光结构150进行贴合,液晶偏光结构150通过第二OCA层172与柔性显示面板110进行贴合,柔性显示面板110通过第三OCA层173与复合层120进行贴合,复合层120通过胶层174与支撑结构130进行贴合。
可选地,盖板、柔性显示面板、支撑结构以及摄像头的制备可以与现有技术相同,在此不作详述。
其中,所述液晶偏光结构可以通过如下两种方法制备,但不限于此,仅是以下面两种方法为例进行示意。
第一种方法
步骤1:清洁衬底基板表面,并激活表面能。
在具体实施时,衬底基板可以是所述液晶偏光结构中位于液晶涂布层下方的所有膜层。
步骤2:参见图13a,在摄像头对应的位置放置遮挡模具,保障涂布避让区有效被遮挡,并在衬底基板151的底侧放置支撑板。
步骤3:继续参见图13a,在衬底基板151上涂布剪应力涂布液晶溶液,除了涂布避让区外,液晶溶液在衬底基板151上均匀涂布,液晶溶液浓度控制在10%~15%之间。
步骤4:热固化涂布后的液晶溶液,形成液晶涂布层152。
其中,液晶涂布层的厚度可以控制在1μm~2μm之间,在此不作限定。
示例性的,固化温度可以控制在50℃~55℃之间,固化时间可以控制在10min~15min之间。
液晶涂布层依靠初始涂布的作用力和固化过程中的液晶分子间作用力可以完成配向,不需要额外的配向层。
步骤5:移除遮挡模具和支撑板,形成如图13b所示的液晶偏光结构150。
在具体实施时,还可以步骤1之后,在步骤2之前,还可以包括:在衬底基板的表面涂布底漆(Primer)层,并进行热固化。示例性的,固化温度可以控制在50℃~55℃之间,固化时间可以控制在10min~15min之间。
底漆层的材料成分可以为硅烷,主要作用是使液晶涂布层与衬底基板表面隔离,减少衬底基板中的液晶(例如二分之一波长延迟层和四分之一波长延迟层中的液晶)与液晶涂布层中液晶的交互影响。
第二种方法
步骤1:清洁衬底基板表面,并激活表面能。
在具体实施时,衬底基板可以是所述液晶偏光结构中位于液晶涂布层下方的所有膜层。
步骤2:参见图14a,在衬底基板151的表面涂布高接触角的显影层153。
所述显影层的接触角大于90度,所述显影层的材料可以包括氟化烷基硅烷,厚度与后续涂布的液晶涂布层保持相同厚度。
步骤3:参见图14b,在摄像头对应的位置放置紫外光(UV)遮挡模具,紫外光照射后,只有涂布避让区C1的显影层153保留,其他区域的显影层153采用光刻工艺除掉。
步骤4:在衬底基板上涂布剪应力涂布液晶溶液,除了涂布避让区外,液晶溶液在衬底基板上均匀涂布,液晶溶液浓度控制在10%~15%之间。
步骤5:热固化涂布后的液晶溶液,形成液晶涂布层152,从而形成如图14c所示的液晶偏光结构150。
其中,液晶涂布层152的厚度可以控制在1μm~2μm之间,在此不作限定。
示例性的,固化温度可以控制在50℃~55℃之间,固化时间可以控制在10min~15min之间。
液晶涂布层依靠初始涂布的作用力和固化过程中的液晶分子间作用力可以完成配向,不需要额外的配向层。
在具体实施时,还可以步骤1之后,在步骤2之前,还可以包括:在衬底基板的表面涂布底漆(Primer)层,并进行热固化。示例性的,固化温度可以控制在50℃~55℃之间,固化时间可以控制在10min~15min之间。
底漆层的材料成分可以为硅烷,主要作用是使液晶涂布层与衬底基板表面隔离,减少衬底基板中的液晶(例如二分之一波长延迟层和四分之一波长延迟层中的液晶)与液晶涂布层中液晶的交互影响。
上述两种方法制备形成的液晶偏光结构均可以应用于本申请的柔性显示屏中。两种方法形成的液晶偏光结构从结构上相比,第二种方法形成的液晶偏光结构多了位于所述涂布避让区C1内的显影层153,所述显影层153用于在形成所述液晶涂布层152时阻挡所述液晶涂布层152涂布于所述涂布避让区C1。由于所述显影层153的接触角大于90度,因此可以避免液晶溶液在涂布避让区C1边缘聚集,从而避免造成涂布避让区C1边缘的液晶涂布层152的厚度比其他区域更厚。因此采用第二种方法制备的液晶偏光结构150中液晶涂布层152在涂布避让区C1边缘厚度均匀性好,有利于涂布避让区C1周边光学特性保持一致。从工艺上相比,第二种方法光刻工艺精度高,涂布避让区C1边缘的液晶涂布层152处理更好。
在本申请中,还可以在液晶偏光结构面向柔性显示面板一侧贴OCA层和离型膜,在液晶偏光结构与柔性显示面板进行贴合时,去除离型膜,从而OCA层将液晶偏光结构与柔性显示面板贴合在一起。
本申请中,柔性显示屏可以适用于内卷设计,即柔性显示屏卷曲后盖板位于靠近卷轴一侧,支撑结构位于远离卷轴一侧;当然柔性显示屏也可以适用于外卷设计即柔性显示屏卷曲后支撑结构位于靠近卷轴一侧,盖板位于远离卷轴一侧。
参见图15,本申请实施例还提供了一种终端,包括:壳体200和本申请实施例提供的上述任一种柔性显示屏100;所述壳体200内设有一卷轴300以及一开口部2001,其中卷轴沿Y方向延伸;所述柔性显示屏100的第一端缠绕于所述卷轴300,第二端随所述卷轴300的旋转自所述开口部2001进出所述壳体200。所述柔性显示屏100可相对于壳体200中的卷轴300卷曲和/或展开。柔性显示屏100可通过在第二端施加外力暴露于壳体200的外部。例如,一旦施加外力,卷曲并保持在壳体200内的柔性显示屏100便可在经过壳体200中的开口部2001后暴露于壳体200的外部。
壳体200用于容纳卷曲在卷轴300上的柔性显示屏100,壳体200可具有基本上呈圆柱形的形状,但是壳体200的形状不限于此。例如,壳体200可具有任何合适的形状,只要柔性显示屏100可卷曲并保持在壳体200内。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (15)

  1. 一种复合层,其特征在于,包括图形化的金属层和各向异性膜,所述图形化的金属层具有至少一个镂空区域,所述各向异性膜填充于所述至少一个镂空区域中;
    所述各向异性膜沿第一方向的弹性模量小于沿第二方向的弹性模量,所述第一方向与所述复合层的卷曲方向平行,所述第二方向与所述第一方向垂直。
  2. 如权利要求1所述的复合层,其特征在于,所述各向异性膜沿所述第一方向的弹性模量为0.1Mpa~10Mpa,所述各向异性膜层沿所述第二方向的弹性模量为1Gpa~20Gpa。
  3. 如权利要求1或2所述的复合层,其特征在于,所述各向异性膜的材质包括聚丙烯酸酯或聚氨酯。
  4. 如权利要求1~3任一项所述的复合层,其特征在于,所述各向异性膜的厚度为20μm~100μm,所述金属层的厚度为20μm~150μm。
  5. 如权利要求1~4任一项所述的复合层,其特征在于,所述金属层的材质为合金。
  6. 一种柔性显示屏,其特征在于,包括层叠设置的:柔性显示面板、可卷曲的支撑结构和如权利要求1~5任一项所述的复合层;
    所述柔性显示面板具有显示面和背面,所述复合层和所述支撑结构均位于所述柔性显示面板的背面一侧,且所述复合层位于所述柔性显示面板和所述支撑结构之间。
  7. 如权利要求6所述的柔性显示屏,其特征在于,沿所述第一方向,将所述复合层分为多个区域,每一所述区域沿所述第一方向的长度为nC,C为所述复合层绕卷轴卷曲一圈的周长,n为大于0的整数;
    距离所述卷轴越远的区域中,所述各向异形膜沿所述第一方向的弹性模量越大,位于同一区域的所述各向异形膜在沿所述第一方向的弹性模量一致。
  8. 如权利要求6或7所述的柔性显示屏,其特征在于,所述支撑结构包括多个支撑件以及用于连接相邻的所述支撑件的连接轴;
    所述金属层中的至少一个所述镂空区域对应一个所述连接轴。
  9. 如权利要求6~8任一项所述的柔性显示屏,其特征在于,还包括:液晶偏光结构和摄像头;其中:
    所述液晶偏光结构设置于所述柔性显示面板的显示面一侧;
    所述摄像头设置于所述柔性显示面板的背面一侧;
    所述液晶偏光结构包括:衬底基板以及位于所述衬底基板背离所述柔性显示面板一侧的液晶涂布层;所述液晶涂布层在与所述摄像头对应的区域具涂布避让区,所述摄像头在所述液晶偏光结构的正投影与所述涂布避让区至少部分重叠。
  10. 如权利要求9所述的柔性显示屏,其特征在于,所述液晶偏光结构还包括:位于所述涂布避让区内的显影层,所述显影层的接触角大于90度;
    所述显影层用于在形成所述液晶涂布层时阻挡所述液晶涂布层涂布于所述涂布避让区。
  11. 如权利要求10所述的柔性显示屏,其特征在于,所述显影层的材料包括氟化烷基硅烷。
  12. 如权利要求9~11任一项所述的柔性显示屏,其特征在于,所述液晶偏光结构中的所述衬底基板包括依次层叠设置的压敏胶层、四分之一波长延迟层、紫外光截止层、二分之一波长延迟层和介质层;
    所述压敏胶层位于靠近所述柔性显示面板的一侧,所述液晶涂布层设置在所述介质层上。
  13. 如权利要求12所述的柔性显示屏,其特征在于,所述液晶偏光结构还包括:位于所述介质层和所述液晶涂布层之间的底漆层,所述底漆层的材料包括硅烷。
  14. 如权利要求9~13任一项所述的柔性显示屏,其特征在于,还包括位于所述液晶偏光结构背离所述柔性显示面板一侧的盖板。
  15. 一种终端,其特征在于,包括:壳体和如权利要求6~14任一项所述的柔性显示屏;
    所述壳体内设有一卷轴以及一开口部,所述柔性显示屏的第一端缠绕于所述卷轴,第二端随所述卷轴的旋转自所述开口部进出所述壳体。
PCT/CN2022/082576 2021-03-29 2022-03-23 一种复合层、柔性显示屏及终端 WO2022206521A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110334893.3 2021-03-29
CN202110334893.3A CN115128861A (zh) 2021-03-29 2021-03-29 一种复合层、柔性显示屏及终端

Publications (1)

Publication Number Publication Date
WO2022206521A1 true WO2022206521A1 (zh) 2022-10-06

Family

ID=83375648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082576 WO2022206521A1 (zh) 2021-03-29 2022-03-23 一种复合层、柔性显示屏及终端

Country Status (2)

Country Link
CN (1) CN115128861A (zh)
WO (1) WO2022206521A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242799B1 (en) * 1997-11-18 2001-06-05 Shinko Electric Industries Co., Ltd. Anisotropic stress buffer and semiconductor device using the same
US20180011510A1 (en) * 2016-07-05 2018-01-11 Samsung Display Co., Ltd. Rollable display device and electronic device including the same
CN109980124A (zh) * 2019-04-09 2019-07-05 京东方科技集团股份有限公司 支撑膜及其制备方法、显示装置
US20200212327A1 (en) * 2018-12-27 2020-07-02 Lg Display Co., Ltd. Flexible display apparatus having a protective film
CN111583798A (zh) * 2020-05-15 2020-08-25 武汉华星光电半导体显示技术有限公司 卷曲显示装置
CN112150930A (zh) * 2020-09-27 2020-12-29 武汉华星光电半导体显示技术有限公司 显示装置
CN112436041A (zh) * 2020-11-25 2021-03-02 京东方科技集团股份有限公司 一种柔性支撑层及柔性显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242799B1 (en) * 1997-11-18 2001-06-05 Shinko Electric Industries Co., Ltd. Anisotropic stress buffer and semiconductor device using the same
US20180011510A1 (en) * 2016-07-05 2018-01-11 Samsung Display Co., Ltd. Rollable display device and electronic device including the same
US20200212327A1 (en) * 2018-12-27 2020-07-02 Lg Display Co., Ltd. Flexible display apparatus having a protective film
CN109980124A (zh) * 2019-04-09 2019-07-05 京东方科技集团股份有限公司 支撑膜及其制备方法、显示装置
CN111583798A (zh) * 2020-05-15 2020-08-25 武汉华星光电半导体显示技术有限公司 卷曲显示装置
CN112150930A (zh) * 2020-09-27 2020-12-29 武汉华星光电半导体显示技术有限公司 显示装置
CN112436041A (zh) * 2020-11-25 2021-03-02 京东方科技集团股份有限公司 一种柔性支撑层及柔性显示装置

Also Published As

Publication number Publication date
CN115128861A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
US11262613B2 (en) Flexible display apparatus
TWI391732B (zh) 部分可撓顯示裝置
KR102118016B1 (ko) 장척 광학 필름 적층체, 장척 광학 필름 적층체의 롤 및 ips 액정 표시 장치
CN111816678A (zh) 显示装置
WO2020073380A1 (zh) 一种显示装置、保护盖板
US10788863B1 (en) Flexible display device
JP2004279867A (ja) 表示装置
KR20220001038A (ko) 표시 장치
CN106094094B (zh) 偏光片、显示面板、曲面显示面板及制备方法、显示装置
WO2013116038A1 (en) Moisture barrier for electronic displays
KR20220006672A (ko) 윈도우 및 이를 포함하는 표시 장치
JP2021189452A (ja) 表示装置及びその製造方法
US20210043858A1 (en) Display device and method for manufacturing the same
US20160306477A1 (en) Touch panel
US20220310971A1 (en) Display device
US20230101087A1 (en) Foldable display screen, manufacturing method thereof and display device
WO2022206521A1 (zh) 一种复合层、柔性显示屏及终端
CN112396964A (zh) 一种显示面板和显示装置
CN115050267B (zh) 柔性盖板及显示模组
US20220052282A1 (en) Display device and method of manufacturing the same
CN108873141A (zh) 一种偏振光片及显示装置
US20220354009A1 (en) Cover for display panel, and display apparatus
US11177458B2 (en) Display device having shock absorbing layer
US11281041B2 (en) Cover glass structure and display apparatus comprising thereof
CN112927622A (zh) 可折叠显示屏和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778704

Country of ref document: EP

Kind code of ref document: A1