WO2022206249A1 - 一种信息处理方法、装置、终端及网络侧设备 - Google Patents

一种信息处理方法、装置、终端及网络侧设备 Download PDF

Info

Publication number
WO2022206249A1
WO2022206249A1 PCT/CN2022/078262 CN2022078262W WO2022206249A1 WO 2022206249 A1 WO2022206249 A1 WO 2022206249A1 CN 2022078262 W CN2022078262 W CN 2022078262W WO 2022206249 A1 WO2022206249 A1 WO 2022206249A1
Authority
WO
WIPO (PCT)
Prior art keywords
time window
measurement
measurement time
side device
information
Prior art date
Application number
PCT/CN2022/078262
Other languages
English (en)
French (fr)
Inventor
任晓涛
任斌
达人
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US18/552,846 priority Critical patent/US20240172173A1/en
Priority to EP22778434.5A priority patent/EP4319204A1/en
Publication of WO2022206249A1 publication Critical patent/WO2022206249A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/021Calibration, monitoring or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to an information processing method, apparatus, terminal, and network-side equipment.
  • the Multi Round Trip Time (Multi-RTT) positioning method is an important positioning method.
  • the working principle of the Multi-RTT positioning method is: the terminal (User Equipment, UE) will The obtained UE sending and receiving time difference is reported to the Location Management Function (LMF), and each sending and receiving point (Transmit Receive Point, TRP), that is, the transmission point, will also obtain the fifth-generation mobile communication (5th-Generation, 5G)
  • the base station (gNB) sending and receiving time difference is provided to the LMF, and the LMF obtains the distance between the UE and each TRP by using the UE sending and receiving time difference and the gNB sending and receiving time difference. Then add other known information (such as the geographic coordinates of the TRP) to calculate the location of the UE.
  • the TRP in order to complete the measurement of the UE's receiving and sending time difference or the gNB's sending and receiving difference, the TRP needs to send the Downlink Positioning Reference Signals (DL-PRS) and the UE sends the sounding reference signal for positioning. (Sounding Reference Signal for Positioning, SRS-Pos), and then the UE or gNB can complete the measurement of related measurement quantities based on DL-PRS and SRS-Pos.
  • DL-PRS Downlink Positioning Reference Signals
  • SRS-Pos Sounding Reference Signal for Positioning
  • the time measurement position of the signal is in the baseband unit, so the There will be time measurement errors, which exist for both signal transmission and signal reception, and are referred to as transceiver timing errors.
  • the existence of the transceiving timing error will cause inaccurate measurement results of all time-based positioning measurement quantities including the UE transceiving time difference and the gNB transceiving time difference, thereby affecting the final positioning accuracy.
  • this timing error of sending and receiving is time-varying, that is to say, the measurement quantities at different times have different timing errors of sending and receiving.
  • the time points at which the UE measures the DL-PRS and the gNB measures the SRS-Pos may be very different, resulting in the two measurement quantities having greatly different sending and receiving timing errors, which is not conducive to the subsequent LMF or UE computing the terminal.
  • the timing error of sending and receiving is estimated or eliminated during the location, which affects the final UE positioning accuracy.
  • the purpose of the present disclosure is to provide an information processing method, apparatus, terminal, and network-side device, so as to solve the problem of poor accuracy of positioning-related information processing solutions in the related art.
  • an embodiment of the present disclosure provides an information processing method, which is applied to a first network side device, and optionally includes:
  • the measurement time window information includes terminal measurement time window information and/or second network side device measurement time window information
  • the first network-side device is a positioning server or other network elements other than the positioning server that can determine terminal location information; the second network-side device is a base station or a transmission point TRP.
  • the terminal measurement time window information includes time window information for the terminal to measure the downlink positioning reference signal DL-PRS and/or time window information for other downlink reference signals used for positioning except the DL-PRS; and /or,
  • the time window information measured by the second network side device includes time window information of the sounding reference signal SRS-Pos used for positioning by the second network side device and/or other uplink reference used for positioning except the SRS-Pos Time window information for the signal.
  • the receiving at least one measurement quantity instance fed back by the terminal and/or the second network side device according to the measurement time window information includes:
  • the obtaining the location information of the terminal according to the at least one measurement instance includes:
  • the location information of the terminal is obtained according to the at least one measurement instance and the timestamp corresponding to the measurement instance.
  • the at least one measurement instance includes: a terminal measurement instance and/or a second network-side device measurement instance;
  • An example of the terminal measurement quantity includes: downlink reference signal time difference DL-RSTD, downlink reference signal received power DL-RSRP, and/or terminal send and receive time difference; and/or,
  • An example of the measurement quantity of the second network side device includes: uplink relative time of arrival UL-RTOA, uplink reference signal received power UL-RSRP, and/or a time difference between sending and receiving of the second network side device.
  • the measurement time window information includes the duration of the measurement time window; or,
  • the measurement time window information includes the duration and start time of the measurement time window; or,
  • the measurement time window information includes a start time and an end time of the measurement time window.
  • the measurement time window information includes UTC information; and/or,
  • the measurement time window information includes system radio frame number SFN information and time slot number Slot number information.
  • the measurement time window information includes a measurement time window index number
  • the measurement time window index number corresponds to a set of parameter information of the measurement time window
  • the parameter information includes the duration of the measurement time window; or, the duration and the start time; or, the start time and the end time.
  • the length of the measurement time window corresponding to the measurement time window information of the terminal is the same as the length of the measurement time window corresponding to the measurement time window information of the second network side device; or,
  • the measurement time window index number corresponding to the terminal measurement time window information is the same as the measurement time window index number corresponding to the measurement time window information of the second network side device.
  • the measurement time window information includes at least one of the following parameter information:
  • parameter J the parameter J represents the number of terminal measurement quantity instances included in a terminal measurement time window, and J ⁇ 1;
  • N i represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement quantity instance, and N i ⁇ 1;
  • the parameter K represents the number of second network side device measurement quantity instances included in a second network side device measurement time window, K ⁇ 1;
  • a parameter M i where the parameter M i represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, M i ⁇ 1.
  • the terminal measurement time window information includes a periodic or semi-persistent DL-PRS measurement time window length MTW UE ;
  • PD DL-PRS represents the period of DL-PRS
  • J P represents the number of terminal measurement quantity instances included in a terminal measurement time window, J P ⁇ 1;
  • N Pi represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the ith terminal measurement instance, and N Pi ⁇ 1.
  • the second network side device measurement time window information includes a periodic or semi-persistent SRS-Pos measurement time window length MTW TRP ;
  • PD SRS-Pos represents the period of SRS-Pos
  • K P represents the number of second network-side device measurement quantity instances included in a second network-side device measurement time window, and K P ⁇ 1;
  • M Pi represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, and M Pi ⁇ 1.
  • the terminal measurement time window information includes an aperiodic DL-PRS measurement time window length MTW' UE ;
  • LH DL-PRS indicates the duration or the number of time slots occupied by an aperiodic DL-PRS resource set or DL-PRS measurement occasion;
  • JA represents the number of UE measurement quantity instances included in a terminal measurement time window, JA ⁇ 1 ;
  • N Ai represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, and N Ai ⁇ 1.
  • one aperiodic DL-PRS measurement occasion corresponds to one aperiodic DL-PRS resource set instance.
  • the measurement time window information of the second network side device includes an aperiodic SRS-Pos measurement time window length MTW′ TRP ;
  • LH SRS-Pos represents the duration or the number of time slots occupied by an aperiodic SRS-Pos resource set or SRS-Pos measurement occasion;
  • K A represents the number of second network-side device measurement quantity instances included in a second network-side device measurement time window, and K A ⁇ 1;
  • M Ai represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, and M Ai ⁇ 1.
  • the measurement time window corresponding to the terminal measurement time window information includes at least two DL-PRS resource set instances located in different frequency layers; and/or,
  • the measurement time window corresponding to the measurement time window information of the second network side device includes at least two SRS-Pos resource set instances located in different uplink bandwidth parts UL BWP.
  • sending the measurement time window information to the terminal includes:
  • the measurement time window information is sent to the terminal according to the capability information of the terminal.
  • sending the measurement time window information to the second network side device includes:
  • the measurement time window information is sent to the second network side device.
  • the sending the measurement time window information to the terminal and/or the second network side device includes:
  • the measurement time window information is sent to the second network side device through the New Air Interface Positioning Protocol NRPPa signaling.
  • the terminal measurement time window information includes aperiodic DL-PRS measurement window information
  • the terminal measurement time window information includes aperiodic DL-PRS measurement window information
  • the first information configure the measurement window information of the aperiodic DL-PRS
  • the first information includes aperiodic DL-PRS resource information, aperiodic DL-PRS resource set information and/or aperiodic DL-PRS resource set instance information.
  • an aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource; and/or,
  • An instance of an aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource set, and when the number of the aperiodic DL-PRS resource sets is more than one, each of the aperiodic DL-PRS resource sets is the same Yes, each of the aperiodic DL-PRS resource sets is sent at different times.
  • Embodiments of the present disclosure also provide an information processing method, applied to a terminal, including:
  • the measurement time window information measure the first positioning signal within the corresponding measurement time window to obtain at least one measurement instance
  • the measurement time window information includes terminal measurement time window information
  • the first network-side device is a positioning server or other network elements other than the positioning server that can determine terminal location information.
  • the sending the at least one measurement instance to the first network-side device includes:
  • the measurement report carries at least one measurement instance.
  • the acquiring measurement time window information includes:
  • the measurement time window information is autonomously configured by the terminal.
  • the acquiring measurement time window information further includes:
  • the measurement time window information of different second network side devices is the same or different.
  • the terminal measurement time window information includes time window information for the terminal to measure the downlink positioning reference signal DL-PRS and/or time window information for other downlink reference signals used for positioning except the DL-PRS;
  • the first positioning signal includes DL-PRS and/or the other downlink reference signals used for positioning.
  • the sending the at least one measurement instance to the first network-side device includes:
  • the at least one measurement instance includes: a terminal measurement instance;
  • An example of the terminal measurement quantity includes: downlink reference signal time difference DL-RSTD, downlink reference signal received power DL-RSRP, and/or terminal transmission and reception time difference.
  • the measurement time window information includes the duration of the measurement time window; or,
  • the measurement time window information includes the duration and start time of the measurement time window; or,
  • the measurement time window information includes a start time and an end time of the measurement time window.
  • the measurement time window information includes UTC information; and/or,
  • the measurement time window information includes system radio frame number SFN information and time slot number Slot number information.
  • the measurement time window information includes a measurement time window index number
  • the measurement time window index number corresponds to a set of parameter information of the measurement time window
  • the parameter information includes the duration of the measurement time window; or, the duration and the start time; or, the start time and the end time.
  • the length of the measurement time window corresponding to the measurement time window information of the terminal is the same as the length of the measurement time window corresponding to the measurement time window information of the second network side device; or,
  • the measurement time window index number corresponding to the terminal measurement time window information is the same as the measurement time window index number corresponding to the measurement time window information of the second network side device.
  • the measurement time window information includes at least one of the following parameter information:
  • parameter J the parameter J represents the number of terminal measurement quantity instances included in a terminal measurement time window, and J ⁇ 1;
  • N i represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement quantity instance, and N i ⁇ 1;
  • the parameter K represents the number of second network side device measurement quantity instances included in a second network side device measurement time window, K ⁇ 1;
  • a parameter M i where the parameter M i represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, M i ⁇ 1.
  • the terminal measurement time window information includes a periodic or semi-persistent DL-PRS measurement time window length MTW UE ;
  • PD DL-PRS represents the period of DL-PRS
  • J P represents the number of terminal measurement quantity instances included in a terminal measurement time window, J P ⁇ 1;
  • N Pi represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the ith terminal measurement instance, and N Pi ⁇ 1.
  • the terminal measurement time window information includes an aperiodic DL-PRS measurement time window length MTW' UE ;
  • LH DL-PRS indicates the duration or the number of time slots occupied by an aperiodic DL-PRS resource set or DL-PRS measurement occasion;
  • JA represents the number of UE measurement quantity instances included in a terminal measurement time window, JA ⁇ 1 ;
  • N Ai represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, and N Ai ⁇ 1.
  • one aperiodic DL-PRS measurement occasion corresponds to one aperiodic DL-PRS resource set instance.
  • the measurement time window corresponding to the terminal measurement time window information includes at least two DL-PRS resource set instances located in different frequency layers.
  • the receiving the measurement time window information sent by the first network side device includes:
  • the receiving the measurement time window information sent by the first network side device includes:
  • the terminal autonomously configures the measurement time window information, including:
  • the first information configure the measurement window information of the aperiodic DL-PRS
  • the first information includes aperiodic DL-PRS resource information, aperiodic DL-PRS resource set information and/or aperiodic DL-PRS resource set instance information.
  • an aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource; and/or,
  • An instance of an aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource set, and when the number of the aperiodic DL-PRS resource sets is more than one, each of the aperiodic DL-PRS resource sets is the same Yes, each of the aperiodic DL-PRS resource sets is sent at different times.
  • whether the terminal can be configured with a measurement time window corresponding to the terminal measurement time window information, and measure the first positioning signal within the measurement time window is a terminal capability.
  • the embodiment of the present disclosure also provides an information processing method, which is applied to the second network side device, including:
  • the measurement time window information measure the second positioning signal within the corresponding measurement time window to obtain at least one measurement instance
  • the measurement time window information includes measurement time window information of the second network side device
  • the first network-side device is a positioning server or other network elements other than the positioning server that can determine terminal location information; the second network-side device is a base station or a transmission point TRP.
  • the sending the at least one measurement instance to the first network-side device includes:
  • the measurement report carries at least one measurement instance.
  • the receiving the measurement time window information sent by the first network side device includes:
  • the measurement time window information of different terminals is the same or different.
  • the time window information measured by the second network side device includes time window information of the sounding reference signal SRS-Pos measured by the network side device for positioning and/or other information used for positioning except the SRS-Pos.
  • Time window information of the uplink reference signal; the second positioning signal includes SRS-Pos and/or the other uplink reference signal used for positioning.
  • the sending the at least one measurement instance to the first network-side device includes:
  • the at least one measurement instance includes: a second network-side device measurement instance;
  • An example of the measurement quantity of the second network-side device includes: uplink relative time of arrival UL-RTOA, uplink reference signal received power UL-RSRP, and/or a time difference between sending and receiving of the second network-side device.
  • the measurement time window information includes the duration of the measurement time window; or,
  • the measurement time window information includes the duration and start time of the measurement time window; or,
  • the measurement time window information includes a start time and an end time of the measurement time window.
  • the measurement time window information includes UTC information; and/or,
  • the measurement time window information includes system radio frame number SFN information and time slot number Slot number information.
  • the measurement time window information includes a measurement time window index number
  • the measurement time window index number corresponds to a set of parameter information of the measurement time window
  • the parameter information includes the duration of the measurement time window; or, the duration and the start time; or, the start time and the end time.
  • the length of the measurement time window corresponding to the measurement time window information of the terminal is the same as the length of the measurement time window corresponding to the measurement time window information of the second network side device; or,
  • the measurement time window index number corresponding to the measurement time window information of the terminal is the same as the measurement time window index number corresponding to the measurement time window information of the second network side device.
  • the measurement time window information includes at least one of the following parameter information:
  • parameter J the parameter J represents the number of terminal measurement quantity instances included in a terminal measurement time window, and J ⁇ 1;
  • N i represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement quantity instance, and N i ⁇ 1;
  • the parameter K represents the number of second network side device measurement quantity instances included in a second network side device measurement time window, K ⁇ 1;
  • a parameter M i where the parameter M i represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, M i ⁇ 1.
  • the second network side device measurement time window information includes a periodic or semi-persistent SRS-Pos measurement time window length MTW TRP ;
  • PD SRS-Pos represents the period of SRS-Pos
  • K P represents the number of second network-side device measurement quantity instances included in a second network-side device measurement time window, and K P ⁇ 1;
  • M Pi represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, and M Pi ⁇ 1.
  • the measurement time window information of the second network side device includes an aperiodic SRS-Pos measurement time window length MTW′ TRP ;
  • LH SRS-Pos represents the duration or the number of time slots occupied by an aperiodic SRS-Pos resource set or SRS-Pos measurement occasion;
  • K A represents the number of second network-side device measurement quantity instances included in a second network-side device measurement time window, and K A ⁇ 1;
  • M Ai represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, and M Ai ⁇ 1.
  • the measurement time window corresponding to the measurement time window information of the second network side device includes at least two SRS-Pos resource set instances located in different uplink bandwidth parts UL BWP.
  • the receiving the measurement time window information sent by the first network side device includes:
  • the receiving the measurement time window information sent by the first network side device includes:
  • An embodiment of the present disclosure further provides a network side device, where the network side device is a first network side device, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the measurement time window information includes terminal measurement time window information and/or second network side device measurement time window information
  • the first network-side device is a positioning server or other network elements other than the positioning server that can determine terminal location information; the second network-side device is a base station or a transmission point TRP.
  • the operation further includes:
  • the measurement time window information is sent to the terminal and/or the second network side device through the transceiver.
  • the terminal measurement time window information includes time window information for the terminal to measure the downlink positioning reference signal DL-PRS and/or time window information for other downlink reference signals used for positioning except the DL-PRS; and /or,
  • the time window information measured by the second network side device includes time window information of the sounding reference signal SRS-Pos used for positioning by the second network side device and/or other uplink reference used for positioning except the SRS-Pos Time window information for the signal.
  • the receiving at least one measurement quantity instance fed back by the terminal and/or the second network side device according to the measurement time window information includes:
  • the obtaining the location information of the terminal according to the at least one measurement instance includes:
  • the location information of the terminal is obtained according to the at least one measurement instance and the timestamp corresponding to the measurement instance.
  • the at least one measurement instance includes: a terminal measurement instance and/or a second network-side device measurement instance;
  • An example of the terminal measurement quantity includes: downlink reference signal time difference DL-RSTD, downlink reference signal received power DL-RSRP, and/or terminal send and receive time difference; and/or,
  • An example of the measurement quantity of the second network side device includes: uplink relative time of arrival UL-RTOA, uplink reference signal received power UL-RSRP, and/or a time difference between sending and receiving of the second network side device.
  • the measurement time window information includes the duration of the measurement time window; or,
  • the measurement time window information includes the duration and start time of the measurement time window; or,
  • the measurement time window information includes a start time and an end time of the measurement time window.
  • the measurement time window information includes UTC information; and/or,
  • the measurement time window information includes system radio frame number SFN information and time slot number Slot number information.
  • the measurement time window information includes a measurement time window index number
  • the measurement time window index number corresponds to a set of parameter information of the measurement time window
  • the parameter information includes the duration of the measurement time window; or, the duration and the start time; or, the start time and the end time.
  • the length of the measurement time window corresponding to the measurement time window information of the terminal is the same as the length of the measurement time window corresponding to the measurement time window information of the second network side device; or,
  • the measurement time window index number corresponding to the terminal measurement time window information is the same as the measurement time window index number corresponding to the measurement time window information of the second network side device.
  • the measurement time window information includes at least one of the following parameter information:
  • parameter J the parameter J represents the number of terminal measurement quantity instances included in a terminal measurement time window, and J ⁇ 1;
  • N i represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement quantity instance, and N i ⁇ 1;
  • the parameter K represents the number of second network side device measurement quantity instances included in a second network side device measurement time window, K ⁇ 1;
  • a parameter M i where the parameter M i represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, M i ⁇ 1.
  • the terminal measurement time window information includes a periodic or semi-persistent DL-PRS measurement time window length MTW UE ;
  • PD DL-PRS represents the period of DL-PRS
  • J P represents the number of terminal measurement quantity instances included in a terminal measurement time window, J P ⁇ 1;
  • N Pi represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the ith terminal measurement instance, and N Pi ⁇ 1.
  • the second network side device measurement time window information includes a periodic or semi-persistent SRS-Pos measurement time window length MTW TRP ;
  • PD SRS-Pos represents the period of SRS-Pos
  • K P represents the number of second network-side device measurement quantity instances included in a second network-side device measurement time window, and K P ⁇ 1;
  • M Pi represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, and M Pi ⁇ 1.
  • the terminal measurement time window information includes an aperiodic DL-PRS measurement time window length MTW' UE ;
  • LH DL-PRS indicates the duration or the number of time slots occupied by an aperiodic DL-PRS resource set or DL-PRS measurement occasion;
  • JA represents the number of UE measurement quantity instances included in a terminal measurement time window, JA ⁇ 1 ;
  • N Ai represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, and N Ai ⁇ 1.
  • one aperiodic DL-PRS measurement occasion corresponds to one aperiodic DL-PRS resource set instance.
  • the measurement time window information of the second network side device includes an aperiodic SRS-Pos measurement time window length MTW′ TRP ;
  • LH SRS-Pos represents the duration or the number of time slots occupied by an aperiodic SRS-Pos resource set or SRS-Pos measurement occasion;
  • K A represents the number of second network-side device measurement quantity instances included in a second network-side device measurement time window, and K A ⁇ 1;
  • M Ai represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, and M Ai ⁇ 1.
  • the measurement time window corresponding to the terminal measurement time window information includes at least two DL-PRS resource set instances located in different frequency layers; and/or,
  • the measurement time window corresponding to the measurement time window information of the second network side device includes at least two SRS-Pos resource set instances located in different uplink bandwidth parts UL BWP.
  • sending the measurement time window information to the terminal includes:
  • the terminal According to the first request sent by the terminal, send the measurement time window information to the terminal through the transceiver; or,
  • the measurement time window information is sent to the terminal through the transceiver.
  • sending the measurement time window information to the second network side device includes:
  • the measurement time window information is sent to the second network side device through the transceiver.
  • the sending the measurement time window information to the terminal and/or the second network side device includes:
  • the operation further includes:
  • the measurement time window information of the terminal includes aperiodic DL-PRS measurement window information, before sending the measurement time window information to the terminal and/or the second network side device, according to the first information , configure the measurement window information of the aperiodic DL-PRS;
  • the first information includes aperiodic DL-PRS resource information, aperiodic DL-PRS resource set information and/or aperiodic DL-PRS resource set instance information.
  • an aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource; and/or,
  • An instance of an aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource set, and when the number of the aperiodic DL-PRS resource sets is more than one, each of the aperiodic DL-PRS resource sets is the same Yes, each of the aperiodic DL-PRS resource sets is sent at different times.
  • An embodiment of the present disclosure also provides a terminal, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the measurement time window information measure the first positioning signal within the corresponding measurement time window to obtain at least one measurement instance
  • the measurement time window information includes terminal measurement time window information
  • the first network-side device is a positioning server or other network elements other than the positioning server that can determine terminal location information.
  • the sending the at least one measurement instance to the first network-side device includes:
  • At least one measurement report is sent to the first network side device through the transceiver;
  • the measurement report carries at least one measurement instance.
  • the acquiring measurement time window information includes:
  • the measurement time window information is autonomously configured by the terminal.
  • the acquiring measurement time window information further includes:
  • the measurement time window information of different second network side devices is the same or different.
  • the terminal measurement time window information includes time window information for the terminal to measure the downlink positioning reference signal DL-PRS and/or time window information for other downlink reference signals used for positioning except the DL-PRS;
  • the first positioning signal includes DL-PRS and/or the other downlink reference signals used for positioning.
  • the sending the at least one measurement instance to the first network-side device includes:
  • the at least one measurement instance and the timestamp corresponding to the measurement instance are sent to the first network-side device through the transceiver.
  • the at least one measurement instance includes: a terminal measurement instance;
  • An example of the terminal measurement quantity includes: downlink reference signal time difference DL-RSTD, downlink reference signal received power DL-RSRP, and/or terminal transmission and reception time difference.
  • the measurement time window information includes the duration of the measurement time window; or,
  • the measurement time window information includes the duration and start time of the measurement time window; or,
  • the measurement time window information includes a start time and an end time of the measurement time window.
  • the measurement time window information includes UTC information; and/or,
  • the measurement time window information includes system radio frame number SFN information and time slot number Slot number information.
  • the measurement time window information includes a measurement time window index number
  • the measurement time window index number corresponds to a set of parameter information of the measurement time window
  • the length of the measurement time window corresponding to the measurement time window information of the terminal is the same as the length of the measurement time window corresponding to the measurement time window information of the second network side device; or,
  • the measurement time window index number corresponding to the terminal measurement time window information is the same as the measurement time window index number corresponding to the measurement time window information of the second network side device.
  • the measurement time window information includes at least one of the following parameter information:
  • parameter J the parameter J represents the number of terminal measurement quantity instances included in a terminal measurement time window, and J ⁇ 1;
  • N i represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement quantity instance, and N i ⁇ 1;
  • the parameter K represents the number of second network side device measurement quantity instances included in a second network side device measurement time window, K ⁇ 1;
  • a parameter M i where the parameter M i represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, M i ⁇ 1.
  • the terminal measurement time window information includes a periodic or semi-persistent DL-PRS measurement time window length MTW UE ;
  • PD DL-PRS represents the period of DL-PRS
  • J P represents the number of terminal measurement quantity instances included in a terminal measurement time window, J P ⁇ 1;
  • N Pi represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the ith terminal measurement instance, and N Pi ⁇ 1.
  • the terminal measurement time window information includes an aperiodic DL-PRS measurement time window length MTW' UE ;
  • LH DL-PRS indicates the duration or the number of time slots occupied by an aperiodic DL-PRS resource set or DL-PRS measurement occasion;
  • JA represents the number of UE measurement quantity instances included in a terminal measurement time window, JA ⁇ 1 ;
  • N Ai represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, and N Ai ⁇ 1.
  • one aperiodic DL-PRS measurement occasion corresponds to one aperiodic DL-PRS resource set instance.
  • the measurement time window corresponding to the terminal measurement time window information includes at least two DL-PRS resource set instances located in different frequency layers.
  • the receiving the measurement time window information sent by the first network side device includes:
  • the receiving the measurement time window information sent by the first network side device includes:
  • the measurement time window information sent by the first network side device through the Long Term Evolution Technology Positioning Protocol LPP signaling is received by the transceiver.
  • the terminal autonomously configures the measurement time window information, including:
  • the first information configure the measurement window information of the aperiodic DL-PRS
  • the first information includes aperiodic DL-PRS resource information, aperiodic DL-PRS resource set information and/or aperiodic DL-PRS resource set instance information.
  • an aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource; and/or,
  • An instance of an aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource set, and when the number of the aperiodic DL-PRS resource sets is more than one, each of the aperiodic DL-PRS resource sets is the same Yes, each of the aperiodic DL-PRS resource sets is sent at different times.
  • whether the terminal can be configured with a measurement time window corresponding to the terminal measurement time window information, and measure the first positioning signal within the measurement time window is a terminal capability.
  • An embodiment of the present disclosure further provides a network side device, where the network side device is a second network side device, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the measurement time window information measure the second positioning signal within the corresponding measurement time window to obtain at least one measurement instance
  • the measurement time window information includes measurement time window information of the second network side device
  • the first network side device is a positioning server or other network elements capable of determining terminal location information except the positioning server; the second network side device is a base station or a transmission point TRP.
  • the sending the at least one measurement instance to the first network-side device includes:
  • a measurement time window corresponding to the measurement time window information of the second network side device send at least one measurement report to the first network side device through the transceiver;
  • the measurement report carries at least one measurement instance.
  • the receiving the measurement time window information sent by the first network side device includes:
  • the measurement time window information of different terminals is the same or different.
  • the time window information measured by the second network side device includes time window information of the sounding reference signal SRS-Pos measured by the network side device for positioning and/or other information used for positioning except the SRS-Pos.
  • Time window information of the uplink reference signal; the second positioning signal includes SRS-Pos and/or the other uplink reference signal used for positioning.
  • the sending the at least one measurement instance to the first network-side device includes:
  • the at least one measurement instance and the timestamp corresponding to the measurement instance are sent to the first network-side device through the transceiver.
  • the at least one measurement instance includes: a second network-side device measurement instance;
  • An example of the measurement quantity of the second network-side device includes: uplink relative time of arrival UL-RTOA, uplink reference signal received power UL-RSRP, and/or a time difference between sending and receiving of the second network-side device.
  • the measurement time window information includes the duration of the measurement time window; or,
  • the measurement time window information includes the duration and start time of the measurement time window; or,
  • the measurement time window information includes a start time and an end time of the measurement time window.
  • the measurement time window information includes UTC information; and/or,
  • the measurement time window information includes system radio frame number SFN information and time slot number Slot number information.
  • the measurement time window information includes a measurement time window index number
  • the measurement time window index number corresponds to a set of parameter information of the measurement time window
  • the parameter information includes the duration of the measurement time window; or, the duration and the start time; or, the start time and the end time.
  • the length of the measurement time window corresponding to the measurement time window information of the terminal is the same as the length of the measurement time window corresponding to the measurement time window information of the second network side device; or,
  • the measurement time window index number corresponding to the terminal measurement time window information is the same as the measurement time window index number corresponding to the measurement time window information of the second network side device.
  • the measurement time window information includes at least one of the following parameter information:
  • parameter J the parameter J represents the number of terminal measurement quantity instances included in a terminal measurement time window, and J ⁇ 1;
  • N i represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement quantity instance, and N i ⁇ 1;
  • the parameter K represents the number of second network side device measurement quantity instances included in a second network side device measurement time window, K ⁇ 1;
  • a parameter M i where the parameter M i represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, M i ⁇ 1.
  • the second network side device measurement time window information includes a periodic or semi-persistent SRS-Pos measurement time window length MTW TRP ;
  • PD SRS-Pos represents the period of SRS-Pos
  • K P represents the number of second network-side device measurement quantity instances included in a second network-side device measurement time window, and K P ⁇ 1;
  • M Pi represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, and M Pi ⁇ 1.
  • the measurement time window information of the second network side device includes an aperiodic SRS-Pos measurement time window length MTW′ TRP ;
  • LH SRS-Pos represents the duration or the number of time slots occupied by an aperiodic SRS-Pos resource set or SRS-Pos measurement occasion;
  • K A represents the number of second network-side device measurement quantity instances included in a second network-side device measurement time window, and K A ⁇ 1;
  • M Ai represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, and M Ai ⁇ 1.
  • the measurement time window corresponding to the measurement time window information of the second network side device includes at least two SRS-Pos resource set instances located in different uplink bandwidth parts UL BWP.
  • the receiving the measurement time window information sent by the first network side device includes:
  • the receiving the measurement time window information sent by the first network side device includes:
  • the measurement time window information sent by the first network side device through the new air interface positioning protocol NRPPa signaling is received by the transceiver.
  • the embodiment of the present disclosure also provides an information processing apparatus, which is applied to the first network side device, including:
  • a first receiving unit configured to receive at least one measurement instance fed back by the terminal and/or the second network-side device according to the measurement time window information
  • a first determining unit configured to determine the location information of the terminal according to the at least one measurement instance
  • the measurement time window information includes terminal measurement time window information and/or second network side device measurement time window information
  • the first network-side device is a positioning server or other network elements other than the positioning server that can determine terminal location information; the second network-side device is a base station or a transmission point TRP.
  • a first sending unit configured to send the measurement time window information to the terminal and/or the second network side device.
  • the terminal measurement time window information includes time window information for the terminal to measure the downlink positioning reference signal DL-PRS and/or time window information for other downlink reference signals used for positioning except the DL-PRS; and /or,
  • the time window information measured by the second network side device includes time window information of the sounding reference signal SRS-Pos used for positioning by the second network side device and/or other uplink reference used for positioning except the SRS-Pos Time window information for the signal.
  • the receiving at least one measurement quantity instance fed back by the terminal and/or the second network side device according to the measurement time window information includes:
  • the obtaining the location information of the terminal according to the at least one measurement instance includes:
  • the location information of the terminal is obtained according to the at least one measurement instance and the timestamp corresponding to the measurement instance.
  • the at least one measurement instance includes: a terminal measurement instance and/or a second network-side device measurement instance;
  • An example of the terminal measurement quantity includes: downlink reference signal time difference DL-RSTD, downlink reference signal received power DL-RSRP, and/or terminal send and receive time difference; and/or,
  • An example of the measurement quantity of the second network side device includes: uplink relative time of arrival UL-RTOA, uplink reference signal received power UL-RSRP, and/or a time difference between sending and receiving of the second network side device.
  • the measurement time window information includes the duration of the measurement time window; or,
  • the measurement time window information includes the duration and start time of the measurement time window; or,
  • the measurement time window information includes a start time and an end time of the measurement time window.
  • the measurement time window information includes UTC information; and/or,
  • the measurement time window information includes system radio frame number SFN information and time slot number Slot number information.
  • the measurement time window information includes a measurement time window index number
  • the measurement time window index number corresponds to a set of parameter information of the measurement time window
  • the parameter information includes the duration of the measurement time window; or, the duration and the start time; or, the start time and the end time.
  • the length of the measurement time window corresponding to the measurement time window information of the terminal is the same as the length of the measurement time window corresponding to the measurement time window information of the second network side device; or,
  • the measurement time window index number corresponding to the terminal measurement time window information is the same as the measurement time window index number corresponding to the measurement time window information of the second network side device.
  • the measurement time window information includes at least one of the following parameter information:
  • parameter J the parameter J represents the number of terminal measurement quantity instances included in a terminal measurement time window, and J ⁇ 1;
  • the parameter N i represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement quantity instance, and N i ⁇ 1;
  • the parameter K represents the number of second network side device measurement quantity instances included in a second network side device measurement time window, K ⁇ 1;
  • a parameter M i where the parameter M i represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, M i ⁇ 1.
  • the terminal measurement time window information includes a periodic or semi-persistent DL-PRS measurement time window length MTW UE ;
  • PD DL-PRS represents the period of DL-PRS
  • J P represents the number of terminal measurement quantity instances included in a terminal measurement time window, J P ⁇ 1;
  • N Pi represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the ith terminal measurement instance, and N Pi ⁇ 1.
  • the second network side device measurement time window information includes a periodic or semi-persistent SRS-Pos measurement time window length MTW TRP ;
  • PD SRS-Pos represents the period of SRS-Pos
  • K P represents the number of second network-side device measurement quantity instances included in a second network-side device measurement time window, and K P ⁇ 1;
  • M Pi represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, and M Pi ⁇ 1.
  • the terminal measurement time window information includes an aperiodic DL-PRS measurement time window length MTW' UE ;
  • LH DL-PRS indicates the duration or the number of time slots occupied by an aperiodic DL-PRS resource set or DL-PRS measurement occasion;
  • JA represents the number of UE measurement quantity instances included in a terminal measurement time window, JA ⁇ 1 ;
  • N Ai represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, and N Ai ⁇ 1.
  • one aperiodic DL-PRS measurement occasion corresponds to one aperiodic DL-PRS resource set instance.
  • the measurement time window information of the second network side device includes an aperiodic SRS-Pos measurement time window length MTW′ TRP ;
  • LH SRS-Pos represents the duration or the number of time slots occupied by an aperiodic SRS-Pos resource set or SRS-Pos measurement occasion;
  • K A represents the number of second network-side device measurement quantity instances included in a second network-side device measurement time window, and K A ⁇ 1;
  • M Ai represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, and M Ai ⁇ 1.
  • the measurement time window corresponding to the terminal measurement time window information includes at least two DL-PRS resource set instances located in different frequency layers; and/or,
  • the measurement time window corresponding to the measurement time window information of the second network side device includes at least two SRS-Pos resource set instances located in different uplink bandwidth parts UL BWP.
  • sending the measurement time window information to the terminal includes:
  • the measurement time window information is sent to the terminal according to the capability information of the terminal.
  • sending the measurement time window information to the second network side device includes:
  • the measurement time window information is sent to the second network side device.
  • the sending the measurement time window information to the terminal and/or the second network side device includes:
  • the measurement time window information is sent to the second network side device through the New Radio Interface Positioning Protocol NRPPa signaling.
  • a first configuration unit configured to send the measurement time window to the terminal and/or the second network side device when the terminal measurement time window information includes aperiodic DL-PRS measurement window information Before the information, according to the first information, configure the measurement window information of the aperiodic DL-PRS;
  • the first information includes aperiodic DL-PRS resource information, aperiodic DL-PRS resource set information and/or aperiodic DL-PRS resource set instance information.
  • an aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource; and/or,
  • An instance of an aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource set, and when the number of the aperiodic DL-PRS resource sets is more than one, each of the aperiodic DL-PRS resource sets is the same Yes, each of the aperiodic DL-PRS resource sets is sent at different times.
  • Embodiments of the present disclosure also provide an information processing apparatus, applied to a terminal, including:
  • a first acquisition unit configured to acquire measurement time window information
  • a first processing unit configured to measure the first positioning signal in the corresponding measurement time window according to the measurement time window information, to obtain at least one measurement instance
  • a second sending unit configured to send the at least one measurement instance to the first network-side device
  • the measurement time window information includes terminal measurement time window information
  • the first network-side device is a positioning server or other network elements other than the positioning server that can determine terminal location information.
  • the sending the at least one measurement instance to the first network-side device includes:
  • the measurement report carries at least one measurement instance.
  • the acquiring measurement time window information includes:
  • the measurement time window information is autonomously configured by the terminal.
  • the acquiring measurement time window information further includes:
  • the measurement time window information of different second network side devices is the same or different.
  • the terminal measurement time window information includes time window information for the terminal to measure the downlink positioning reference signal DL-PRS and/or time window information for other downlink reference signals used for positioning except the DL-PRS;
  • the first positioning signal includes DL-PRS and/or the other downlink reference signals used for positioning.
  • the sending the at least one measurement instance to the first network-side device includes:
  • the at least one measurement instance includes: a terminal measurement instance;
  • An example of the terminal measurement quantity includes: downlink reference signal time difference DL-RSTD, downlink reference signal received power DL-RSRP, and/or terminal transmission and reception time difference.
  • the measurement time window information includes the duration of the measurement time window; or,
  • the measurement time window information includes the duration and start time of the measurement time window; or,
  • the measurement time window information includes a start time and an end time of the measurement time window.
  • the measurement time window information includes UTC information; and/or,
  • the measurement time window information includes system radio frame number SFN information and time slot number Slot number information.
  • the measurement time window information includes a measurement time window index number
  • the measurement time window index number corresponds to a set of parameter information of the measurement time window
  • the parameter information includes the duration of the measurement time window; or, the duration and the start time; or, the start time and the end time.
  • the length of the measurement time window corresponding to the measurement time window information of the terminal is the same as the length of the measurement time window corresponding to the measurement time window information of the second network side device; or,
  • the measurement time window index number corresponding to the terminal measurement time window information is the same as the measurement time window index number corresponding to the measurement time window information of the second network side device.
  • the measurement time window information includes at least one of the following parameter information:
  • parameter J the parameter J represents the number of terminal measurement quantity instances included in a terminal measurement time window, and J ⁇ 1;
  • the parameter N i represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement quantity instance, and N i ⁇ 1;
  • the parameter K represents the number of second network side device measurement quantity instances included in a second network side device measurement time window, K ⁇ 1;
  • a parameter M i where the parameter M i represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, M i ⁇ 1.
  • the terminal measurement time window information includes a periodic or semi-persistent DL-PRS measurement time window length MTW UE ;
  • PD DL-PRS represents the period of DL-PRS
  • J P represents the number of terminal measurement quantity instances included in a terminal measurement time window, J P ⁇ 1;
  • N Pi represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the ith terminal measurement instance, and N Pi ⁇ 1.
  • the terminal measurement time window information includes an aperiodic DL-PRS measurement time window length MTW' UE ;
  • LH DL-PRS indicates the duration or the number of time slots occupied by an aperiodic DL-PRS resource set or DL-PRS measurement occasion;
  • JA represents the number of UE measurement quantity instances included in a terminal measurement time window, JA ⁇ 1 ;
  • N Ai represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, and N Ai ⁇ 1.
  • one aperiodic DL-PRS measurement occasion corresponds to one aperiodic DL-PRS resource set instance.
  • the measurement time window corresponding to the terminal measurement time window information includes at least two DL-PRS resource set instances located in different frequency layers.
  • the receiving the measurement time window information sent by the first network side device includes:
  • the receiving the measurement time window information sent by the first network side device includes:
  • the terminal autonomously configures the measurement time window information, including:
  • the first information configure the measurement window information of the aperiodic DL-PRS
  • the first information includes aperiodic DL-PRS resource information, aperiodic DL-PRS resource set information and/or aperiodic DL-PRS resource set instance information.
  • an aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource; and/or,
  • An instance of an aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource set, and when the number of the aperiodic DL-PRS resource sets is more than one, each of the aperiodic DL-PRS resource sets is the same Yes, each of the aperiodic DL-PRS resource sets is sent at different times.
  • whether the terminal can be configured with a measurement time window corresponding to the terminal measurement time window information, and measure the first positioning signal within the measurement time window is a terminal capability.
  • Embodiments of the present disclosure also provide an information processing apparatus, which is applied to a second network side device, including:
  • a second receiving unit configured to receive measurement time window information sent by the first network-side device
  • a second processing unit configured to measure the second positioning signal within the corresponding measurement time window according to the measurement time window information, to obtain at least one measurement instance
  • a third sending unit configured to send the at least one measurement instance to the first network-side device
  • the measurement time window information includes measurement time window information of the second network side device
  • the first network-side device is a positioning server or other network elements other than the positioning server that can determine terminal location information; the second network-side device is a base station or a transmission point TRP.
  • the sending the at least one measurement instance to the first network-side device includes:
  • the measurement report carries at least one measurement instance.
  • the receiving the measurement time window information sent by the first network side device includes:
  • the measurement time window information of different terminals is the same or different.
  • the time window information measured by the second network side device includes time window information of the sounding reference signal SRS-Pos measured by the network side device for positioning and/or other information used for positioning except the SRS-Pos.
  • Time window information of the uplink reference signal; the second positioning signal includes SRS-Pos and/or the other uplink reference signal used for positioning.
  • the sending the at least one measurement instance to the first network-side device includes:
  • the at least one measurement instance includes: a second network-side device measurement instance;
  • An example of the measurement quantity of the second network-side device includes: uplink relative time of arrival UL-RTOA, uplink reference signal received power UL-RSRP, and/or a time difference between sending and receiving of the second network-side device.
  • the measurement time window information includes the duration of the measurement time window; or,
  • the measurement time window information includes the duration and start time of the measurement time window; or,
  • the measurement time window information includes a start time and an end time of the measurement time window.
  • the measurement time window information includes UTC information; and/or,
  • the measurement time window information includes system radio frame number SFN information and time slot number Slot number information.
  • the measurement time window information includes a measurement time window index number
  • the measurement time window index number corresponds to a set of parameter information of the measurement time window
  • the parameter information includes the duration of the measurement time window; or, the duration and the start time; or, the start time and the end time.
  • the length of the measurement time window corresponding to the measurement time window information of the terminal is the same as the length of the measurement time window corresponding to the measurement time window information of the second network side device; or,
  • the measurement time window index number corresponding to the terminal measurement time window information is the same as the measurement time window index number corresponding to the measurement time window information of the second network side device.
  • the measurement time window information includes at least one of the following parameter information:
  • parameter J the parameter J represents the number of terminal measurement quantity instances included in a terminal measurement time window, and J ⁇ 1;
  • the parameter N i represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement quantity instance, and N i ⁇ 1;
  • the parameter K represents the number of second network side device measurement quantity instances included in a second network side device measurement time window, K ⁇ 1;
  • a parameter M i where the parameter M i represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, M i ⁇ 1.
  • the second network side device measurement time window information includes a periodic or semi-persistent SRS-Pos measurement time window length MTW TRP ;
  • PD SRS-Pos represents the period of SRS-Pos
  • K P represents the number of second network-side device measurement quantity instances included in a second network-side device measurement time window, and K P ⁇ 1;
  • M Pi represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, and M Pi ⁇ 1.
  • the measurement time window information of the second network side device includes an aperiodic SRS-Pos measurement time window length MTW′ TRP ;
  • LH SRS-Pos represents the duration or the number of time slots occupied by an aperiodic SRS-Pos resource set or SRS-Pos measurement occasion;
  • K A represents the number of second network-side device measurement quantity instances included in a second network-side device measurement time window, and K A ⁇ 1;
  • M Ai represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement instance, and M Ai ⁇ 1.
  • the measurement time window corresponding to the measurement time window information of the second network side device includes at least two SRS-Pos resource set instances located in different uplink bandwidth parts UL BWP.
  • the receiving the measurement time window information sent by the first network side device includes:
  • the receiving the measurement time window information sent by the first network side device includes:
  • Embodiments of the present disclosure further provide a processor-readable storage medium, where a computer program is stored in the processor-readable storage medium, and the computer program is used to cause the processor to execute the information on the first network side device side. processing method; or,
  • the computer program is used to cause the processor to execute the above-mentioned terminal-side information processing method; or,
  • the computer program is used to cause the processor to execute the above-mentioned information processing method on the device side of the second network.
  • the information processing method receives at least one measurement instance fed back by the terminal and/or the second network side device according to the measurement time window information; and determines the location information of the terminal according to the at least one measurement instance;
  • the measurement time window information includes terminal measurement time window information and/or measurement time window information of the second network side device;
  • the first network side device is a positioning server or other devices other than the positioning server capable of determining the location of the terminal
  • the second network side device is a base station or a transmission point TRP; it can support the implementation of the terminal and the second network side device to measure the measurement quantity within a suitable measurement time window to obtain a time-matched measurement quantity instance , so that the first network side device can more accurately estimate the sending and receiving timing error when determining the terminal position based on this, or eliminate the influence of the sending and receiving timing error, and avoid the influence of the time-varying sending and receiving timing error on the calculation accuracy of the terminal position, thereby improving
  • the positioning accuracy of the system is improved, and the problem of poor
  • FIG. 1 is a schematic diagram of an architecture of a wireless communication system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart 1 of an information processing method according to an embodiment of the present disclosure
  • FIG. 3 is a second schematic flowchart of an information processing method according to an embodiment of the present disclosure.
  • FIG. 4 is a third schematic flowchart of an information processing method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a UE measurement time window configuration according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a measurement time window parameter of a periodic DL-PRS according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of measurement time window parameters of aperiodic DL-PRS according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram 1 of a network side device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 10 is a second schematic structural diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram 1 of an information processing apparatus according to an embodiment of the disclosure.
  • FIG. 12 is a second schematic structural diagram of an information processing apparatus according to an embodiment of the disclosure.
  • FIG. 13 is a third schematic structural diagram of an information processing apparatus according to an embodiment of the disclosure.
  • the term "and/or" describes the association relationship of associated objects, and indicates that there can be three kinds of relationships. For example, A and/or B can indicate that A exists alone, A and B exist at the same time, and B exists alone these three situations.
  • the character “/” generally indicates that the associated objects are an "or" relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet Wireless service general packet radio service, GPRS
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • LTE-A long term evolution advanced
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G New Radio New Radio, NR
  • FIG. 1 shows a block diagram of a wireless communication system to which an embodiment of the present disclosure can be applied.
  • the wireless communication system includes a terminal and a network side device.
  • the terminal involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the name of the terminal may be different.
  • the terminal may be called user equipment (User Equipment, UE).
  • a wireless terminal may communicate with one or more core networks (Core Network, CN) via a Radio Access Network (RAN), and the wireless terminal may be a mobile terminal, such as a mobile phone (or referred to as a "cellular" phone) and computers with mobile terminals, which may be portable, pocket-sized, hand-held, computer built-in or vehicle mounted mobile devices, for example, which exchange language and/or data with the wireless access network.
  • a mobile terminal such as a mobile phone (or referred to as a "cellular" phone) and computers with mobile terminals, which may be portable, pocket-sized, hand-held, computer built-in or vehicle mounted mobile devices, for example, which exchange language and/or data with the wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistants
  • a wireless terminal may also be referred to as a system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point, A remote terminal device (remote terminal), an access terminal device (access terminal), a user terminal device (user terminal), a user agent (user agent), and a user device (user device) are not limited in the embodiments of the present disclosure.
  • the network side device involved in the embodiments of the present disclosure may be a base station, and the base station may include a plurality of cells providing services for the terminal.
  • the base station may also be called an access point, or may be a device in an access network that communicates with a wireless terminal through one or more sectors on an air interface, or other names.
  • the network-side device can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the wireless terminal and the rest of the access network, where the rest of the access network may include the Internet. Protocol (IP) communication network.
  • IP Internet Protocol
  • the network side equipment can also coordinate the attribute management of the air interface.
  • the network side device involved in the embodiment of the present disclosure may be a network device (Base Transceiver Station, a Global System for Mobile Communications, GSM) or a Code Division Multiple Access (Code Division Multiple Access, CDMA).
  • BTS can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network in a long term evolution (LTE) system Equipment (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in 5G network architecture (next generation system), or Home evolved Node B (HeNB), relay node (relay node) ), a home base station (femto), a pico base station (pico), etc., which are not limited in the embodiments of the present disclosure.
  • the network-side device may include a centralized unit (centralized unit, CU) node and a distributed unit (distributed unit, DU) node, and the centralized unit and the distributed unit may
  • One or more antennas can be used between the network side device and the terminal to perform multiple input multiple output (Multi Input Multi Output, MIMO) transmission, and the MIMO transmission can be single user MIMO (Single User MIMO, SU-MIMO) or multi-user MIMO (Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be two-dimensional MIMO (2 Dimension MIMO, 2D-MIMO), three-dimensional MIMO (3 Dimension MIMO, 3D-MIMO), full-dimensional MIMO (Full Dimension MIMO, FD-MIMO) Or massive MIMO (massive-MIMO), it can also be diversity transmission, precoding transmission or beamforming transmission, etc.
  • the embodiments of the present disclosure provide an information processing method, apparatus, terminal, and network-side device, so as to solve the problem of poor accuracy of positioning-related information processing solutions in the related art.
  • the method, device, terminal and network side equipment are conceived based on the same application. Since the principles of the method, device, terminal and network side equipment for solving problems are similar, the implementation of the method, device, terminal and network side equipment can refer to each other. The repetition will not be repeated.
  • the information processing method provided by the embodiment of the present disclosure, applied to the first network side device, as shown in FIG. 2 includes:
  • Step 21 Receive at least one measurement instance fed back by the terminal and/or the second network side device according to the measurement time window information.
  • the measurement quantity instances fed back by the terminal and the second network side device are matched in time.
  • Step 22 Determine the location information of the terminal according to the at least one measurement instance; wherein, the measurement time window information includes terminal measurement time window information and/or second network side device measurement time window information; the first measurement time window information includes: A network-side device is a positioning server or other network elements other than the positioning server that can determine terminal location information; the second network-side device is a base station or a transmission point TRP.
  • the information processing method receives at least one measurement instance fed back by the terminal and/or the second network side device according to the measurement time window information; and determines the location of the terminal according to the at least one measurement instance information; wherein, the measurement time window information includes terminal measurement time window information and/or second network side device measurement time window information; the first network side device is a positioning server or other devices other than the positioning server that can determine The network element of the terminal location information; the second network side device is a base station or a transmission point TRP; it can support the realization that the terminal and the second network side device measure the measurement quantity within a suitable (that is, matching) measurement time window to obtain A measurement instance whose time is relatively matched, so that the first network-side device can more accurately estimate the sending and receiving timing error when determining the terminal position based on this (that is, according to the measuring instance), or eliminate the influence of the sending and receiving timing error, avoiding the time The influence of the timing error of sending and receiving on the calculation accuracy of the terminal position is changed, thereby improving
  • the information processing method further includes: sending the measurement time window information to the terminal and/or the second network side device .
  • the terminal measurement time window information includes time window information for the terminal to measure a downlink positioning reference signal DL-PRS and/or time window information for other downlink reference signals used for positioning except the DL-PRS and/or, the time window information measured by the second network side device includes the time window information of the sounding reference signal SRS-Pos measured by the second network side device for positioning and/or other uses other than the SRS-Pos. Time window information of the uplink reference signal for positioning.
  • the receiving at least one measurement quantity instance fed back by the terminal and/or the second network-side device according to the measurement time window information includes: receiving the terminal and/or the second network-side device according to the measurement time at least one measurement instance fed back by the window information and a timestamp corresponding to the measurement instance; the obtaining the location information of the terminal according to the at least one measurement instance includes: according to the at least one measurement instance and The time stamp corresponding to the measurement instance is used to obtain the location information of the terminal.
  • the at least one measurement instance includes: a terminal measurement instance and/or a second network-side device measurement instance; wherein the terminal measurement instance includes: Downlink Reference Signal Time Difference (Downlink Reference Signal Time) Difference, DL-RSTD), downlink reference signal received power (Downlink Reference Signal Received Power, DL-RSRP), and/or terminal sending and receiving time difference; and/or, the second network-side device measurement example includes: uplink relative arrival Time (Uplink Time Difference Of Arrival, UL-RTOA), Uplink Reference Signal Received Power (Uplink Reference Signal Received Power, UL-RSRP, and/or the second network side device sending and receiving time difference.
  • the terminal measurement instance includes: Downlink Reference Signal Time Difference (Downlink Reference Signal Time) Difference, DL-RSTD), downlink reference signal received power (Downlink Reference Signal Received Power, DL-RSRP), and/or terminal sending and receiving time difference
  • the second network-side device measurement example includes: uplink relative arrival Time (Uplink Time Difference Of Arrival, UL-RTOA), Uplink Reference
  • the measurement time window information includes the duration of the measurement time window; or, the measurement time window information includes the duration and start time of the measurement time window; or, the measurement time window information includes the start of the measurement time window start time and end time.
  • the measurement time window information includes Universal Time Coordinated (UTC) information; and/or the measurement time window information includes system frame number (SFN) information and time Slot number information.
  • UTC Universal Time Coordinated
  • SFN system frame number
  • the measurement time window information includes a measurement time window index number; wherein, the measurement time window index number corresponds to a set of parameter information of the measurement time window; the parameter information includes the measurement time The duration of the window; or, the duration and start time; or, the start time and end time.
  • the length of the measurement time window corresponding to the measurement time window information of the terminal is the same as the length of the measurement time window corresponding to the measurement time window information of the second network side device; or, the index of the measurement time window corresponding to the measurement time window information of the terminal The number is the same as the measurement time window index number corresponding to the measurement time window information of the second network side device.
  • the terminal and the second network-side device measure the measurement quantity within a matching time, and feed back an instance of the measurement quantity that is matched in time.
  • the measurement time window information includes at least one of the following parameter information: parameter J, where the parameter J represents the number of terminal measurement quantity instances included in a terminal measurement time window, J ⁇ 1; parameter N i , the parameter N i represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, N i ⁇ 1; parameter K, the parameter K represents a second network The number of second network-side device measurement instances included in the side device measurement time window, K ⁇ 1; parameter M i , where the parameter Mi represents the SRS configured for the i -th second network-side device measurement instance - Number of Pos resource set instances or SRS-Pos measurement occasions, M i ⁇ 1.
  • the terminal measurement time window information includes a periodic or semi-persistent DL-PRS measurement time window length MTW UE ; wherein, PD DL-PRS represents the period of DL-PRS; J P represents the number of terminal measurement instances included in a terminal measurement time window, J P ⁇ 1; N Pi represents the configured DL for the i-th terminal measurement instance - Number of PRS resource set instances or DL-PRS measurement occasions, N Pi ⁇ 1.
  • the semi-persistent DL-PRS also has a period, and uses the same period value set as the periodic DL-PRS.
  • the measurement time window information of the second network side device includes a periodic or semi-persistent SRS-Pos measurement time window length MTW TRP ; wherein, PD SRS-Pos represents the period of SRS-Pos; K P represents the number of second network-side device measurement instances included in a second network-side device measurement time window, K P ⁇ 1; M Pi represents the i-th 2 The number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured by the network-side device measurement instance, M Pi ⁇ 1.
  • the semi-persistent SRS-Pos also has a period, and uses the same period value set as the periodic SRS-Pos.
  • the terminal measurement time window information includes the aperiodic DL-PRS measurement time window length MTW′ UE ; wherein, LH DL-PRS represents the duration or the number of time slots occupied by an aperiodic DL-PRS resource set or DL-PRS measurement opportunity; J A represents the number of UE measurement instances included in a terminal measurement time window, J A ⁇ 1; N Ai represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, and N Ai ⁇ 1.
  • one aperiodic DL-PRS measurement occasion corresponds to one aperiodic DL-PRS resource set instance.
  • the measurement time window information of the second network side device includes the aperiodic SRS-Pos measurement time window length MTW′ TRP ; wherein, LH SRS-Pos represents the duration or number of time slots occupied by an aperiodic SRS-Pos resource set or SRS - Pos measurement occasion; KA represents the second network side device measurement included in a second network side device measurement time window The number of quantity instances, K A ⁇ 1; M Ai represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement quantity instance, M Ai ⁇ 1.
  • the measurement time window corresponding to the terminal measurement time window information includes at least two instances of DL-PRS resource sets located in different frequency layers; and/or, the measurement time window corresponding to the measurement time window information of the second network side device Contains at least two SRS-Pos resource set instances located in different uplink bandwidth parts (Uplink Bandwidth Part, UL BWP).
  • Uplink Bandwidth Part, UL BWP Uplink Bandwidth Part
  • sending the measurement time window information to the terminal includes: directly sending the measurement time window information to the terminal; or, sending the measurement time window information to the terminal according to a first request sent by the terminal the measurement time window information; or, according to the capability information of the terminal, send the measurement time window information to the terminal.
  • sending the measurement time window information to the second network side device includes: directly sending the measurement time window information to the second network side device; or, according to the second network side device The second request sent by the device sends the measurement time window information to the second network-side device.
  • the sending the measurement time window information to the terminal and/or the second network side device includes: sending the measurement time window information to The terminal sends the measurement time window information; and/or sends the measurement time window information to the second network side device through New Radio Positioning Protocol A (NRPPa) signaling.
  • NRPPa New Radio Positioning Protocol A
  • the measurement time window information of the terminal includes aperiodic DL-PRS measurement window information
  • the measurement time window information of the terminal before sending the measurement time window information to the terminal and/or the second network side device, further Including: configuring the measurement window information of the aperiodic DL-PRS according to the first information; wherein, the first information includes aperiodic DL-PRS resource information, aperiodic DL-PRS resource set information and/or aperiodic DL-PRS resource information.
  • Periodic DL-PRS resource set instance information is aperiodic DL-PRS resource set instance information.
  • one aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource; and/or, an instance of an aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource set, and
  • the aperiodic DL-PRS resource sets are the same, and the aperiodic DL-PRS resource sets are sent at different times.
  • An embodiment of the present disclosure also provides an information processing method, which is applied to a terminal, as shown in FIG. 3 , including:
  • Step 31 Acquire measurement time window information.
  • the acquisition of the measurement time window information may be the terminal self-configured measurement time window information or the received measurement time window information.
  • Step 32 According to the measurement time window information, measure the first positioning signal within the corresponding measurement time window to obtain at least one measurement instance.
  • Step 33 Send the at least one measurement instance to the first network-side device; wherein, the measurement time window information includes terminal measurement time window information; the first network-side device is a positioning server or other than the positioning server. other network elements that can determine the location information of the terminal.
  • the measurement time window information may further include the time window information of the second network side device, and the second positioning signal (for example, SRS-Pos) is sent accordingly.
  • the second positioning signal for example, SRS-Pos
  • the information processing method provided by the embodiment of the present disclosure obtains measurement time window information; measures the first positioning signal within the corresponding measurement time window according to the measurement time window information, and obtains at least one measurement instance; A measurement instance is sent to the first network-side device; wherein, the measurement time window information includes terminal measurement time window information; the first network-side device is a positioning server or other devices other than the positioning server that can determine the terminal position A network element of information; it can support the measurement of the measurement quantity by the terminal and the second network side device within a suitable (that is, matching) measurement time window to obtain an instance of the measurement quantity that matches the time, so that the first network side device can be According to this (that is, according to the measurement instance), when the terminal position is determined, the timing error of sending and receiving can be estimated more accurately, or the influence of the timing error of sending and receiving can be eliminated, and the influence of the timing error of time-varying sending and receiving on the calculation accuracy of the terminal position can be avoided, thereby improving the System positioning accuracy; it solves the problem of poor accuracy of positioning-related
  • the sending the at least one measurement instance to the first network-side device includes: sending at least one measurement report to the first network-side device within a measurement time window corresponding to the terminal measurement time window information A network side device; wherein, the measurement report carries at least one measurement instance.
  • the acquiring the measurement time window information includes: receiving the measurement time window information sent by the first network side device; or configuring the measurement time window information by the terminal autonomously.
  • the acquiring measurement time window information further includes: acquiring measurement time window information of different second network side devices; wherein the measurement time window information of different second network side devices is the same or different.
  • the terminal measurement time window information includes time window information for the terminal to measure a downlink positioning reference signal DL-PRS and/or time window information for other downlink reference signals used for positioning except the DL-PRS ; the first positioning signal includes DL-PRS and/or the other downlink reference signals used for positioning.
  • the sending the at least one measurement instance to the first network-side device includes: sending the at least one measurement instance and a timestamp corresponding to the measurement instance to the first network-side device.
  • the at least one measurement instance includes: a terminal measurement instance; wherein the terminal measurement instance includes: downlink reference signal time difference DL-RSTD, downlink reference signal received power DL-RSRP, and/or Terminal sending and receiving time difference.
  • the measurement time window information includes the duration of the measurement time window; or, the measurement time window information includes the duration and start time of the measurement time window; or, the measurement time window information includes the start of the measurement time window start time and end time.
  • the measurement time window information includes UTC information; and/or the measurement time window information includes system radio frame number (SFN) information and slot number (Slot number) information.
  • SFN system radio frame number
  • Slot number slot number
  • the measurement time window information includes a measurement time window index number; wherein, the measurement time window index number corresponds to a set of parameter information of the measurement time window; the parameter information includes the measurement time The duration of the window; or, the duration and start time; or, the start time and end time.
  • the length of the measurement time window corresponding to the measurement time window information of the terminal is the same as the length of the measurement time window corresponding to the measurement time window information of the second network side device; or, the index number of the measurement time window corresponding to the measurement time window information of the terminal is the same as The measurement time window index numbers corresponding to the measurement time window information of the second network side device are the same.
  • the measurement time window information includes at least one of the following parameter information: parameter J, where the parameter J represents the number of terminal measurement quantity instances included in a terminal measurement time window, J ⁇ 1; parameter N i , the parameter N i represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, N i ⁇ 1; parameter K, the parameter K represents a second network The number of second network-side device measurement instances included in the side device measurement time window, K ⁇ 1; parameter M i , where the parameter Mi represents the SRS configured for the i -th second network-side device measurement instance - Number of Pos resource set instances or SRS-Pos measurement occasions, M i ⁇ 1.
  • the terminal measurement time window information includes a periodic or semi-persistent DL-PRS measurement time window length MTW UE ; wherein, PD DL-PRS represents the period of DL-PRS; J P represents the number of terminal measurement instances included in a terminal measurement time window, J P ⁇ 1; N Pi represents the configured DL for the i-th terminal measurement instance - Number of PRS resource set instances or DL-PRS measurement occasions, N Pi ⁇ 1.
  • the semi-persistent DL-PRS also has a period, and uses the same period value set as the periodic DL-PRS.
  • the terminal measurement time window information includes the aperiodic DL-PRS measurement time window length MTW′ UE ; wherein, LH DL-PRS represents the duration or the number of time slots occupied by an aperiodic DL-PRS resource set or DL-PRS measurement opportunity; J A represents the number of UE measurement instances included in a terminal measurement time window, J A ⁇ 1; N Ai represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, and N Ai ⁇ 1.
  • one aperiodic DL-PRS measurement occasion corresponds to one aperiodic DL-PRS resource set instance.
  • the measurement time window corresponding to the terminal measurement time window information includes at least two instances of DL-PRS resource sets located in different frequency layers.
  • the receiving the measurement time window information sent by the first network side device includes: receiving the measurement time window information directly sent by the first network side device; or, sending a first request to the first network side device; receiving the first network side device Measurement time window information sent by a network-side device according to the first request; or, sending capability information of the terminal to the first network-side device; receiving measurement time sent by the first network-side device according to the capability information window information.
  • the receiving the measurement time window information sent by the first network side device includes: receiving the measurement time window information sent by the first network side device through Long Term Evolution Technology Positioning Protocol LPP signaling.
  • the autonomously configuring the measurement time window information by the terminal includes: configuring the non-periodic DL-PRS according to the first information.
  • one aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource; and/or, an instance of an aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource set, and
  • the aperiodic DL-PRS resource sets are the same, and the aperiodic DL-PRS resource sets are sent at different times.
  • whether the terminal can be configured with a measurement time window corresponding to the terminal measurement time window information, and can measure the first positioning signal within the measurement time window is a terminal capability.
  • An embodiment of the present disclosure further provides an information processing method, which is applied to a second network side device, as shown in FIG. 4 , including:
  • Step 41 Receive measurement time window information sent by the first network side device
  • Step 42 According to the measurement time window information, measure the second positioning signal in the corresponding measurement time window to obtain at least one measurement instance;
  • Step 43 Send the at least one measurement instance to the first network-side device; wherein, the measurement time window information includes measurement time window information of the second network-side device; the first network-side device is a positioning server Or other network elements other than the positioning server that can determine the location information of the terminal; the second network side device is a base station or a transmission point TRP.
  • the measurement time window information includes measurement time window information of the second network-side device
  • the first network-side device is a positioning server Or other network elements other than the positioning server that can determine the location information of the terminal
  • the second network side device is a base station or a transmission point TRP.
  • the measurement time window information may further include terminal time window information, and the first positioning signal (eg, DL-PRS) is sent according to this.
  • the first positioning signal eg, DL-PRS
  • the information processing method receives the measurement time window information sent by the first network side device; and according to the measurement time window information, measures the second positioning signal in the corresponding measurement time window, and obtains at least one measurement sending the at least one measurement instance to the first network-side device;
  • the measurement time window information includes measurement time window information of the second network-side device;
  • the first network-side device is a positioning server Or other network elements other than the positioning server that can determine the location information of the terminal;
  • the second network side device is a base station or a transmission point TRP; it can support the realization of the terminal and the second network side device in a suitable (ie matching)
  • the measurement is measured within the measurement time window to obtain a measurement instance whose time is relatively matched, so that the first network-side device can more accurately estimate the sending and receiving timing error when determining the location of the terminal based on this (that is, according to the measurement instance), Or eliminate the influence of transceiver timing errors, avoid the influence of time-varying transceiver timing errors on the accuracy of
  • the sending the at least one measurement instance to the first network-side device includes: sending at least one measurement report to the second network-side device within a measurement time window corresponding to the measurement time window information of the second network-side device.
  • the receiving the measurement time window information sent by the first network side device includes: receiving measurement time window information of different terminals sent by the first network side device; wherein the measurement time window information of different terminals is the same or different.
  • the time window information measured by the second network-side device includes time window information of the sounding reference signal SRS-Pos measured by the network-side device for positioning and/or other information other than the SRS-Pos used for positioning.
  • Time window information of the uplink reference signal for positioning; the second positioning signal includes SRS-Pos and/or the other uplink reference signal used for positioning.
  • the sending the at least one measurement instance to the first network side device includes: sending the at least one measurement instance and a timestamp corresponding to the measurement instance to the first network side equipment.
  • the at least one measurement instance includes: a second network-side device measurement instance; wherein the second network-side device measurement instance includes: uplink relative time of arrival UL-RTOA, uplink reference signal reception The power UL-RSRP and/or the time difference between the transmission and reception of the second network side device.
  • the measurement time window information includes the duration of the measurement time window; or, the measurement time window information includes the duration and start time of the measurement time window; or, the measurement time window information includes the start of the measurement time window start time and end time.
  • the measurement time window information includes UTC information; and/or the measurement time window information includes system radio frame number SFN information and time slot number Slot number information.
  • the measurement time window information includes a measurement time window index number; wherein, the measurement time window index number corresponds to a set of parameter information of the measurement time window; the parameter information includes the measurement time The duration of the window; or, the duration and start time; or, the start time and end time.
  • the length of the measurement time window corresponding to the measurement time window information of the terminal is the same as the length of the measurement time window corresponding to the measurement time window information of the second network side device; or, the index number of the measurement time window corresponding to the measurement time window information of the terminal is the same as the The measurement time window index numbers corresponding to the measurement time window information of the second network side device are the same.
  • the measurement time window information includes at least one of the following parameter information: parameter J, where the parameter J represents the number of terminal measurement quantity instances included in a terminal measurement time window, J ⁇ 1; parameter N i , the parameter N i represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, N i ⁇ 1; parameter K, the parameter K represents a second network The number of second network-side device measurement instances included in the side device measurement time window, K ⁇ 1; parameter M i , where the parameter Mi represents the SRS configured for the i -th second network-side device measurement instance - Number of Pos resource set instances or SRS-Pos measurement occasions, M i ⁇ 1.
  • the measurement time window information of the second network side device includes a periodic or semi-persistent SRS-Pos measurement time window length MTW TRP ; wherein, PD SRS-Pos represents the period of SRS-Pos; K P represents the number of second network-side device measurement instances included in a second network-side device measurement time window, K P ⁇ 1; M Pi represents the i-th 2 The number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured by the network-side device measurement instance, M Pi ⁇ 1.
  • the semi-persistent SRS-Pos also has a period, and uses the same period value set as the periodic SRS-Pos.
  • the measurement time window information of the second network side device includes the aperiodic SRS-Pos measurement time window length MTW′ TRP ; wherein, LH SRS-Pos represents the duration or number of time slots occupied by an aperiodic SRS-Pos resource set or SRS - Pos measurement occasion; KA represents the second network side device measurement included in a second network side device measurement time window The number of quantity instances, K A ⁇ 1; M Ai represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement quantity instance, M Ai ⁇ 1.
  • the measurement time window corresponding to the measurement time window information of the second network side device includes at least two SRS-Pos resource set instances located in different uplink bandwidth parts UL BWP.
  • the receiving the measurement time window information sent by the first network side device includes: receiving the measurement time window information directly sent by the first network side device; or, sending a second request to the first network side device; Receive the measurement time window information sent by the first network side device according to the second request.
  • the receiving the measurement time window information sent by the first network side device includes: receiving the measurement time window information sent by the first network side device through the new air interface positioning protocol NRPPa signaling.
  • the terminal may determine the location information of the terminal according to the above at least one measurement instance.
  • the relevant content of the measurement time window information reference may be made to the above, which will not be repeated here.
  • the first network side device takes LMF as an example
  • the second network side device takes TRP as an example
  • the first positioning signal takes DL-PRS as an example
  • the second positioning signal is taken as an example.
  • the signal takes SRS-Pos as an example.
  • embodiments of the present disclosure provide an information processing method, and specifically relate to a method for configuring measurement time window information.
  • the measurement time window information can be configured and sent by the LMF or the UE; the TRP feeds back the measurement instance to the LMF or the UE according to the measurement time window information; the LMF or the UE completes the UE positioning according to the measurement instance; In this case, the UE also needs to feed back the measurement instance according to the measurement time window information; when the UE completes the UE positioning, the UE itself obtains the measurement instance according to the measurement time window information, and completes the UE positioning accordingly.
  • the UE or TRP measures the DL-PRS or SRS-Pos within the measurement time window, and obtains at least one measurement instance (that is, a measurement result), and the UE or TRP reports the measurement
  • the UE or the LMF completes the UE positioning process according to the reported measurement instance.
  • This program mainly involves the following parts:
  • the measurement time window includes the UE measurement time window and the TRP measurement time window.
  • the UE measurement time window refers to the time window during which the UE measures the DL-PRS, and within the time window, the UE obtains at least one UE measurement quantity instance by measuring the DL-PRS.
  • the TRP measurement time window refers to the time window during which the TRP measures the SRS-Pos, and within the time window, the TRP obtains at least one instance of the TRP measurement quantity by measuring the SRS-Pos.
  • the UE or TRP does not measure DL-PRS or SRS-Pos within the time outside the measurement time window.
  • the UE or the TRP When reporting the measurement instance, the UE or the TRP simultaneously reports the timestamp corresponding to the measurement instance.
  • Examples of UE measurement quantities include DL-RSTD, DL-RSRP, UE sending and receiving time difference, etc.;
  • TRP measurement quantities include UL-RTOA, UL-RSRP, gNB sending and receiving time difference, and the like.
  • the way of configuring the measurement time window includes at least one of the following:
  • Mode 1 only the duration of the measurement time window is configured; the information corresponding to the measurement time window includes the duration of the measurement time window;
  • Mode 2 the start time of the measurement time window and the duration of the measurement time window are configured at the same time; the information corresponding to the measurement time window includes the duration and start time of the measurement time window;
  • Mode 3 The start time of the measurement time window and the end time of the measurement time window are configured at the same time.
  • the information corresponding to the measurement time window includes a start time and an end time of the measurement time window.
  • the configuration mode of the moment in the configuration of the measurement time window includes at least one of the following:
  • Mode 1 configure in the form of Coordinated Universal Time (UTC); correspondingly, the measurement time window information includes Coordinated Universal Time UTC information;
  • Mode 2 Configure in the form of a system radio frame number (SFN) and a slot number (Slot number).
  • the information corresponding to the measurement time window includes system radio frame number SFN information and time slot number Slot number information.
  • the parameter combination of a measurement time window is determined by the measurement time index number, including parameters such as its duration.
  • Corresponding to the measurement time window information includes a measurement time window index number; wherein, the measurement time window index number corresponds to a set of parameter information of the measurement time window; the parameter information includes the duration of the measurement time window. ; or, duration and start time; or, start time and end time.
  • DL-PRS The length of the UE measurement time window MTW UE is:
  • PD DL-PRS is the period of DL-PRS
  • J P is the number of UE measurement instances included in a UE measurement time window, and J P ⁇ 1;
  • N Pi is the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th UE measurement instance, and N Pi ⁇ 1.
  • SRS-Pos The length of the TRP measurement time window MTW TRP is:
  • PD SRS-Pos is the period of SRS-Pos
  • K P is the number of TRP measurement instances included in a TRP measurement time window, and K P ⁇ 1;
  • M Pi is the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the ith TRP measurement instance, M Pi ⁇ 1.
  • UE measurement time window length MTW′ UE is:
  • LH DL-PRS is the duration or number of time slots occupied by an aperiodic DL-PRS resource set or DL-PRS measurement occasion;
  • J A is the number of UE measurement quantity instances included in a UE measurement time window, and J A ⁇ 1;
  • N Ai is the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th UE measurement instance, and N Ai ⁇ 1.
  • TRP measurement time window length MTW′ TRP is:
  • LH SRS-Pos is the duration or number of time slots occupied by an aperiodic SRS-Pos resource set or SRS-Pos measurement occasion;
  • K A is the number of TRP measurement instances included in a TRP measurement time window, and K A ⁇ 1;
  • M Ai is the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the ith TRP measurement instance, and M Ai ⁇ 1.
  • the length of the UE measurement time window used to measure DL-PRS should be the same as the length of the TRP measurement time window used to measure SRS-Pos; or the UE measurement time window and the TRP measurement time window have the same index number.
  • the length of the measurement time window corresponding to the measurement time window information of the terminal is the same as the length of the measurement time window corresponding to the measurement time window information of the second network side device; or, the measurement time window index corresponding to the measurement time window information of the terminal The number is the same as the measurement time window index number corresponding to the measurement time window information of the second network side device.
  • One UE measurement time window may contain multiple instances of DL-PRS resource sets located in different frequency layers.
  • One TRP measurement time window may contain multiple SRS-Pos resource set instances located in different UL BWPs.
  • Whether the UE can be configured with a UE measurement time window and measure the DL-PRS within the measurement time window is a UE capability.
  • the terminal can be configured with a measurement time window corresponding to the terminal measurement time window information, and measuring the first positioning signal within the measurement time window, is a terminal capability.
  • the configuration mode of the UE measurement time window includes at least one of the following:
  • Mode 1 LMF directly configures the UE measurement time window:
  • Mode 2 according to the request of the UE, the LMF configures the UE measurement time window; corresponding to the first request sent by the terminal, the measurement time window information is sent to the terminal;
  • Mode 3 The UE reports the UE capability (value ranges of parameters J, K, N, and M). For the above parameter ranges that the UE can support, the LMF configures the UE measurement time window. Corresponding to sending the measurement time window information to the terminal according to the capability information of the terminal.
  • Method 1 LMF directly configures the TRP measurement time window:
  • Mode 2 According to the request of the TRP, the LMF configures the TRP measurement time window.
  • the measurement time window information is sent to the second network side device corresponding to the second request sent by the second network side device.
  • the LMF can be configured to the UE through LPP signaling.
  • LMF can be configured to TRP through NRPPa signaling.
  • Aperiodic DL-PRS is configured in the manner of aperiodic DL-PRS resource, aperiodic DL-PRS resource set, and aperiodic DL-PRS resource set instance (corresponding to the above-mentioned configuration of the aperiodic DL-PRS resource set according to the first information DL-PRS measurement window information):
  • An aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource
  • An instance of an aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource set, when more than one (that is, when the number of the aperiodic DL-PRS resource sets is more than one), multiple The aperiodic DL-PRS resource sets are sent repeatedly (corresponding to each of the aperiodic DL-PRS resource sets being the same, and each of the aperiodic DL-PRS resource sets being sent at different times).
  • An aperiodic DL-PRS measurement occasion refers to an instance of an aperiodic DL-PRS resource set.
  • One aperiodic DL-PRS measurement occasion corresponds to one aperiodic DL-PRS resource set instance.
  • the TRP mentioned above may also be a gNB.
  • the solution of this example involves: according to the configured measurement time window information, the UE or TRP measures DL-PRS or SRS-Pos within the measurement time window to obtain at least one measurement instance, and the UE or TRP reports the measurement instance.
  • this example provides a method for configuring the measurement time window.
  • the characteristic of the measurement time window is that the UE or TRP can only complete the measurement process of DL-PRS and SRS-Pos within the specified measurement time window. By introducing the measurement time window, the measurement behavior of the UE or TRP is limited.
  • a possible configuration scheme is to configure the same measurement time window for the UE and the TRP in the Multi-RTT positioning method, so that each The measurement time ranges of the measurement quantities are the same, the time stamps of these measurement quantities are also within a short time interval, and the sending and receiving timing errors of these measurement quantities are also similar, which better ensures that the LMF or UE can pass the
  • the differential method eliminates the influence of the timing error of transmission and reception, and avoids the influence of the timing error of time-varying transmission and reception on the calculation accuracy of the terminal position, thereby improving the positioning accuracy of the system.
  • the measurement time window includes a UE measurement time window and a TRP measurement time window.
  • the UE measurement time window refers to the time window during which the UE measures the DL-PRS, and within the time window, the UE obtains at least one UE measurement quantity instance by measuring the DL-PRS.
  • the TRP measurement time window refers to the time window during which the TRP measures the SRS-Pos, and within the time window, the TRP obtains at least one instance of the TRP measurement quantity by measuring the SRS-Pos.
  • the UE or TRP does not measure DL-PRS or SRS-Pos outside the measurement time window. Moreover, when reporting the measurement instance, the UE or the TRP simultaneously reports the timestamp corresponding to the measurement instance.
  • Examples of UE measurement quantities described above include DL-RSTD, DL-RSRP, UE sending and receiving time difference, etc.; TRP measurement quantities include UL-RTOA, UL-RSRP, gNB sending and receiving time difference, and the like.
  • the measurement time window of the UE is shown as a dashed rectangle in the figure.
  • a represents the measurement instance #1
  • b represents the measurement instance #2
  • c represents the measurement instance.
  • #3 indicates measurement report #1
  • e indicates measurement report #2.
  • the UE in the figure is configured with one DL-PRS resource set instance or DL-PRS measurement opportunity in one DL-PRS cycle.
  • R1 to R5 represent each DL-PRS PRS resource set instance or DL-PRS measurement occasion.
  • the measurement time window may exclude some measurement opportunities, such as R2.
  • the UE reports one measurement instance in the first measurement report (ie, measurement report #1), which is the measurement instance #1, and the UE reports two measurements in the second measurement report (ie, measurement report #2).
  • the measurement instances are measurement instance #2 and measurement instance 3, respectively.
  • Each of these three measurement instances has its own time stamp.
  • the measurement instance #1 is obtained using R1 measurement, and its time stamp is T1;
  • measurement instance #2 is obtained using R3 to R4, and its time stamp is T2;
  • measurement instance #3 is obtained using R5, and its time stamp is T2.
  • Timestamp is T3. In this way, when the UE reports the three measurement instances in two measurement reports, it not only has timestamp information, but also the timestamp can correspond to a small range according to the configuration of the measurement time window, which facilitates various measurements.
  • Timestamp matching between quantities Since the sending and receiving timing errors are time-varying, the same or similar measurement quantities in time will have the same or similar sending and receiving timing errors. In this way, the time stamp matching based on the measurement time window becomes particularly important. This matching has It is beneficial to estimate or eliminate the timing error of sending and receiving when the UE or LMF performs positioning calculation.
  • the UE or TRP can be configured with an appropriate measurement time window, so that the measurement time range of each measurement quantity is limited, which facilitates timestamp matching between various measurement quantities, so that the LMF or UE
  • the UE or TRP can be configured with an appropriate measurement time window, so that the measurement time range of each measurement quantity is limited, which facilitates timestamp matching between various measurement quantities, so that the LMF or UE
  • the solution of this example involves: according to the configured measurement time window information, the UE or TRP measures DL-PRS or SRS-Pos within the measurement time window to obtain at least one measurement instance, and the UE or TRP reports the measurement instance.
  • the measurement time window configuration method includes at least one of the following:
  • Mode 1 Only the duration of the measurement time window is configured
  • Mode 2 The start time of the measurement time window and the duration of the measurement time window are configured at the same time.
  • Mode 3 The start time of the measurement time window and the end time of the measurement time window are configured at the same time.
  • the configuration of the time in the configuration of the measurement time window includes at least one of the following:
  • Mode 1 Configure in the form of Coordinated Universal Time (UTC);
  • Mode 2 Configure in the form of a system radio frame number (SFN) and a slot number (Slot number).
  • SFN system radio frame number
  • Slot number slot number
  • the parameter combination of a measurement time window is determined by the measurement time index number.
  • the start time of the measurement time window can be the default UE or TRP expects DL-PRS or SRS-Pos time of arrival.
  • the moment can be indicated by parameters DL (downlink)-PRS (positioning reference signal)-expectedRSTD (expected reference signal time difference) and DL-PRS-expectedRSTD-uncertainty (uncertainty).
  • the measurement time window and the reference time of the measurement time window can be configured in different ways, so that the UE or the TRP can determine the specific time position of the measurement time window according to the above configuration, and use the measurement time window to determine the specific time position of the measurement time window.
  • the measurement of DL-PRS or SRS-Pos can be completed within the same time period, so that the LMF or UE can more accurately estimate the timing error of sending and receiving when calculating the terminal position, or eliminate the influence of the timing error of sending and receiving, and avoid the time-varying sending and receiving timing error on the position of the terminal. Calculate the impact of accuracy, thereby improving the system positioning accuracy.
  • Example 3 (measurement time window parameters of periodic or semi-persistent DL-PRS and SRS-Pos):
  • the solution of this example involves: according to the configured measurement time window information, the UE or TRP measures DL-PRS or SRS-Pos within the measurement time window to obtain at least one measurement instance, and the UE or TRP reports the measurement instance.
  • DL-PRS The length of the UE measurement time window MTW UE is:
  • PD DL-PRS is the period of DL-PRS
  • J P is the number of UE measurement instances included in a UE measurement time window, and J P ⁇ 1;
  • N Pi is the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th UE measurement instance, and N Pi ⁇ 1.
  • SRS-Pos The length of the TRP measurement time window MTW TRP is:
  • PD SRS-Pos is the period of SRS-Pos
  • K P is the number of TRP measurement instances included in a TRP measurement time window, and K P ⁇ 1;
  • M Pi is the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the ith TRP measurement instance, M Pi ⁇ 1.
  • f represents measurement instance #2
  • g represents measurement instance #3
  • h represents measurement report #2.
  • the UE in the figure is configured with one DL-PRS resource set instance or DL-PRS measurement opportunity in one DL-PRS cycle.
  • R1 to R5 represent each DL-PRS PRS resource set instance or DL-PRS measurement occasion.
  • the measurement time window may exclude some measurement opportunities, such as R2 and R5.
  • measurement report #2 includes two measurement quantity instances (ie measurement quantity instance #2 and measurement quantity instance #3), and measurement quantity instance #2 is configured with 2 DL-PRS resources Set instance or DL-PRS measurement occasion (corresponding to R2 and R3), and measurement instance #3 is configured with 1 DL-PRS resource set instance or DL-PRS measurement occasion (corresponding to R4), so UE measurement time window #2
  • the length of is 3 DL-PRS cycles.
  • the UE or TRP can be configured with an appropriate measurement time window, thereby limiting the measurement time range of each periodic or semi-persistent measurement, which facilitates the comparison of various periodic or semi-persistent measurements. time-stamp matching, so that the LMF or UE can more accurately estimate the sending and receiving timing error when calculating the terminal position, or eliminate the influence of the sending and receiving timing error, and avoid the influence of the time-varying sending and receiving timing error on the calculation accuracy of the terminal position, thereby improving the system positioning accuracy.
  • Example 4 (measurement time window parameters of aperiodic DL-PRS and SRS-Pos):
  • the solution of this example involves: according to the configured measurement time window information, the UE or TRP measures DL-PRS or SRS-Pos within the measurement time window to obtain at least one measurement instance, and the UE or TRP reports the measurement instance.
  • UE measurement time window length MTW' UE is:
  • LH DL-PRS is the duration or number of time slots occupied by an aperiodic DL-PRS resource set or DL-PRS measurement occasion;
  • J A is the number of UE measurement quantity instances included in a UE measurement time window, and J A ⁇ 1;
  • N Ai is the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th UE measurement instance, and N Ai ⁇ 1.
  • TRP measurement time window length MTW′ TRP is:
  • LH SRS-Pos is the duration or number of time slots occupied by an aperiodic SRS-Pos resource set or SRS-Pos measurement occasion;
  • K A is the number of TRP measurement instances included in a TRP measurement time window, and K A ⁇ 1;
  • M Ai is the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the ith TRP measurement instance, and M Ai ⁇ 1.
  • i represents measurement instance #2
  • j represents measurement instance #3
  • k represents measurement report #2.
  • R1 to R5 respectively represent five DL-PRS resource set instances or DL-PRS measurement occasions.
  • measurement report #2 includes two measurement instances, and measurement instance #2 is configured with two DL-PRS resource set instances or DL-PRS measurement occasions (corresponding to R2 and R3)
  • measurement instance #3 is configured with one DL-PRS resource set instance or DL-PRS measurement occasion (corresponding to R4), assuming that the duration of each DL-PRS resource set instance or DL-PRS measurement occasion is 1ms, then The length of UE measurement time window #2 is 3ms.
  • the UE or TRP can be configured with an appropriate measurement time window, so that the measurement time range of each aperiodic measurement quantity is limited, which facilitates timestamp matching between various aperiodic measurement quantities. This enables the LMF or the UE to more accurately estimate the transceiver timing error when calculating the terminal location, or eliminate the influence of the transceiver timing error, thereby avoiding the influence of the time-varying transceiver timing error on the terminal location calculation accuracy, thereby improving the system positioning accuracy.
  • Example 5 (configuration method and signaling of measurement time window):
  • the solution of this example involves: according to the configured measurement time window information, the UE or TRP measures DL-PRS or SRS-Pos within the measurement time window to obtain at least one measurement instance, and the UE or TRP reports the measurement instance.
  • the configuration mode of the UE measurement time window includes at least one of the following three possible modes:
  • Option 1 LMF directly configures the UE measurement time window:
  • Scheme 2 According to the request of the UE, the LMF configures the UE measurement time window
  • Scheme 3 The UE reports the UE capabilities (value ranges of parameters J, K, N, and M). For the above parameter ranges that the UE can support, the LMF configures the UE measurement time window.
  • the configuration method of the TRP measurement time window includes at least one of the following two possible methods:
  • Option 1 LMF directly configures the TRP measurement time window:
  • Scheme 2 According to the request of the TRP, the LMF configures the TRP measurement time window.
  • the LMF can be configured to the UE through LPP signaling.
  • LMF can be configured to TRP through NRPPa signaling.
  • the UE or TRP can be configured with an appropriate measurement time window, so that the measurement time range of each measurement quantity is limited, which facilitates timestamp matching between various measurement quantities, so that the LMF or UE
  • the UE or TRP can be configured with an appropriate measurement time window, so that the measurement time range of each measurement quantity is limited, which facilitates timestamp matching between various measurement quantities, so that the LMF or UE
  • Example 6 (configuration scheme of aperiodic DL-PRS):
  • aperiodic DL-PRS is configured in the manner of aperiodic DL-PRS resource, aperiodic DL-PRS resource set, and aperiodic DL-PRS resource set instance; wherein:
  • An aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource
  • An instance of a DL-PRS resource set includes at least one DL-PRS resource set, and when there is more than one, multiple aperiodic DL-PRS resource sets are sent repeatedly.
  • an aperiodic DL-PRS measurement occasion refers to an instance of an aperiodic DL-PRS resource set.
  • the aperiodic DL-PRS can be configured by using resources, resource sets, and resource set instances, so that the measurement time window of the aperiodic DL-PRS can be configured through this configuration method, and then This enables the LMF or the UE to more accurately estimate the timing error of sending and receiving when calculating the position of the terminal, or eliminate the influence of the timing error of sending and receiving.
  • the embodiment of the present disclosure provides a method for configuring a measurement time window.
  • this solution configures a suitable measurement time window (which can also be understood as a matching measurement time window, to the UE or TRP) by configuring the UE or the TRP.
  • the same time window, or the difference between the two time windows is within the threshold range), so that the measurement time range of each measurement quantity is limited, which facilitates timestamp matching between various measurement quantities, so that the LMF or UE can
  • the timing error of sending and receiving can be estimated more accurately, or the influence of the timing error of sending and receiving can be eliminated, so as to avoid the influence of the timing error of time-varying sending and receiving on the calculation accuracy of the terminal position, thereby improving the positioning accuracy of the system.
  • An embodiment of the present disclosure further provides a network-side device, where the network-side device is a first network-side device, as shown in FIG. 8 , including a memory 81, a transceiver 82, and a processor 83:
  • the memory 81 is used to store computer programs; the transceiver 82 is used to send and receive data under the control of the processor 83; the processor 83 is used to read the computer program in the memory 81 and perform the following operations:
  • the measurement time window information includes terminal measurement time window information and/or second network side device measurement time window information
  • the first network-side device is a positioning server or other network elements other than the positioning server that can determine terminal location information; the second network-side device is a base station or a transmission point TRP.
  • the network-side device receives at least one measurement instance fed back by the terminal and/or the second network-side device according to the measurement time window information; and determines the location of the terminal according to the at least one measurement instance information; wherein, the measurement time window information includes terminal measurement time window information and/or second network side device measurement time window information; the first network side device is a positioning server or other devices other than the positioning server that can determine The network element of the terminal location information; the second network side device is a base station or a transmission point TRP; it can support the realization that the terminal and the second network side device measure the measurement quantity within a suitable (that is, matching) measurement time window to obtain A measurement instance whose time is relatively matched, so that the first network-side device can more accurately estimate the sending and receiving timing error when determining the terminal position based on this (that is, according to the measuring instance), or eliminate the influence of the sending and receiving timing error, avoiding the time The influence of the timing error of sending and receiving on the calculation accuracy of the terminal position is changed,
  • the transceiver 82 is used to receive and transmit data under the control of the processor 83 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically, one or more processors represented by the processor 83 and various circuits of the memory represented by the memory 81 are linked together.
  • the bus architecture can also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 82 may be a number of elements, including a transmitter and a receiver, that provide means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 83 is responsible for managing the bus architecture and general processing, and the memory 81 may store data used by the processor 83 in performing operations.
  • the processor 83 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the processor is configured to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by invoking the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the operation further includes: sending the measurement time window information to the terminal and/or the second network side device through the transceiver.
  • the terminal measurement time window information includes time window information for the terminal to measure the downlink positioning reference signal DL-PRS and/or time window information for other downlink reference signals used for positioning except the DL-PRS; and/or , the time window information measured by the second network side device includes time window information of the sounding reference signal SRS-Pos measured by the second network side device for positioning and/or other uplink signals used for positioning except the SRS-Pos Time window information for the reference signal.
  • the receiving at least one measurement quantity instance fed back by the terminal and/or the second network side device according to the measurement time window information includes: receiving, by the transceiver, the terminal and/or the first measurement quantity instance.
  • the second network side device feeds back at least one measurement instance and the timestamp corresponding to the measurement instance according to the measurement time window information; and obtaining the location information of the terminal according to the at least one measurement instance, including: The location information of the terminal is obtained according to the at least one measurement instance and the timestamp corresponding to the measurement instance.
  • the at least one measurement instance includes: a terminal measurement instance and/or a second network-side device measurement instance; wherein the terminal measurement instance includes: downlink reference signal time difference DL-RSTD, downlink reference signal time difference DL-RSTD, downlink Reference signal received power DL-RSRP, and/or terminal sending and receiving time difference; and/or, examples of the second network side device measurement quantities include: uplink relative time of arrival UL-RTOA, uplink reference signal received power UL-RSRP, and/or Or the sending and receiving time of the second network side device is different.
  • the measurement time window information includes the duration of the measurement time window; or, the measurement time window information includes the duration and start time of the measurement time window; or, the measurement time window information includes the start of the measurement time window start time and end time.
  • the measurement time window information includes UTC information; and/or the measurement time window information includes system radio frame number SFN information and time slot number Slot number information.
  • the measurement time window information includes a measurement time window index number; wherein, the measurement time window index number corresponds to a set of parameter information of the measurement time window; the parameter information includes the measurement time The duration of the window; or, the duration and start time; or, the start time and end time.
  • the length of the measurement time window corresponding to the measurement time window information of the terminal is the same as the length of the measurement time window corresponding to the measurement time window information of the second network side device; or, the index of the measurement time window corresponding to the measurement time window information of the terminal The number is the same as the measurement time window index number corresponding to the measurement time window information of the second network side device.
  • the measurement time window information includes at least one of the following parameter information: parameter J, where the parameter J represents the number of terminal measurement quantity instances included in a terminal measurement time window, J ⁇ 1; parameter N i , the parameter N i represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, N i ⁇ 1; parameter K, the parameter K represents a second network The number of second network-side device measurement instances included in the side device measurement time window, K ⁇ 1; parameter M i , where the parameter Mi represents the SRS configured for the i -th second network-side device measurement instance - Number of Pos resource set instances or SRS-Pos measurement occasions, M i ⁇ 1.
  • the terminal measurement time window information includes a periodic or semi-persistent DL-PRS measurement time window length MTW UE ; wherein, PD DL-PRS represents the period of DL-PRS; J P represents the number of terminal measurement instances included in a terminal measurement time window, J P ⁇ 1; N Pi represents the configured DL for the i-th terminal measurement instance - Number of PRS resource set instances or DL-PRS measurement occasions, N Pi ⁇ 1.
  • the measurement time window information of the second network side device includes a periodic or semi-persistent SRS-Pos measurement time window length MTW TRP ; wherein, PD SRS-Pos represents the period of SRS-Pos; K P represents the number of second network-side device measurement instances included in a second network-side device measurement time window, K P ⁇ 1; M Pi represents the i-th 2 The number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured by the network-side device measurement instance, M Pi ⁇ 1.
  • the terminal measurement time window information includes the aperiodic DL-PRS measurement time window length MTW′ UE ; wherein, LH DL-PRS represents the duration or the number of time slots occupied by an aperiodic DL-PRS resource set or DL-PRS measurement opportunity; J A represents the number of UE measurement instances included in a terminal measurement time window, J A ⁇ 1; N Ai represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, and N Ai ⁇ 1.
  • one aperiodic DL-PRS measurement occasion corresponds to one aperiodic DL-PRS resource set instance.
  • the measurement time window information of the second network side device includes the aperiodic SRS-Pos measurement time window length MTW′ TRP ; wherein, LH SRS-Pos represents the duration or number of time slots occupied by an aperiodic SRS-Pos resource set or SRS - Pos measurement occasion; KA represents the second network side device measurement included in a second network side device measurement time window The number of quantity instances, K A ⁇ 1; M Ai represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement quantity instance, M Ai ⁇ 1.
  • the measurement time window corresponding to the terminal measurement time window information includes at least two instances of DL-PRS resource sets located in different frequency layers; and/or, the measurement time window corresponding to the measurement time window information of the second network side device Contains at least two SRS-Pos resource set instances located in different uplink bandwidth parts UL BWP.
  • sending the measurement time window information to the terminal includes: directly sending the measurement time window information to the terminal through the transceiver; or, according to a first request sent by the terminal, The measurement time window information is sent to the terminal through the transceiver; or, according to the capability information of the terminal, the measurement time window information is sent to the terminal through the transceiver.
  • sending the measurement time window information to the second network side device includes: directly sending the measurement time window information to the second network side device through the transceiver; or, according to the second network side device The second request sent by the side device sends the measurement time window information to the second network side device through the transceiver.
  • the sending the measurement time window information to the terminal and/or the second network side device includes: using the transceiver to send the measurement time window information to the terminal through Long Term Evolution Technology Positioning Protocol LPP signaling the measurement time window information; and/or, using the transceiver to send the measurement time window information to the second network side device through NRPPa signaling.
  • the operation further includes: in the case that the measurement time window information of the terminal includes aperiodic DL-PRS measurement window information, sending the measurement to the terminal and/or the second network side device Before the time window information, configure the measurement window information of the aperiodic DL-PRS according to the first information; wherein, the first information includes aperiodic DL-PRS resource information, aperiodic DL-PRS resource set information and /or aperiodic DL-PRS resource set instance information.
  • one aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource; and/or, an instance of an aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource set, and in the aperiodic DL-PRS resource set
  • the number of DL-PRS resource sets is more than one, each of the aperiodic DL-PRS resource sets is the same, and each of the aperiodic DL-PRS resource sets is sent at different times.
  • the above-mentioned network-side device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned first network-side device-side information processing method embodiment, and can achieve the same technical effect.
  • the same parts and beneficial effects in this embodiment as those in the method embodiment will not be described again in detail.
  • An embodiment of the present disclosure further provides a terminal, as shown in FIG. 9 , including a memory 91, a transceiver 92, and a processor 93:
  • the memory 91 is used to store computer programs; the transceiver 92 is used to send and receive data under the control of the processor 93; the processor 93 is used to read the computer program in the memory 91 and perform the following operations:
  • the measurement time window information measure the first positioning signal within the corresponding measurement time window to obtain at least one measurement instance
  • the measurement time window information includes terminal measurement time window information
  • the first network-side device is a positioning server or other network elements other than the positioning server that can determine terminal location information.
  • the terminal obtained by the embodiment of the present disclosure obtains the measurement time window information; according to the measurement time window information, measures the first positioning signal in the corresponding measurement time window, and obtains at least one measurement quantity instance;
  • the measurement time window information includes terminal measurement time window information;
  • the first network side device is a positioning server or other devices other than the positioning server that can determine the terminal position information A network element; capable of supporting the realization that the terminal and the second network side device measure the measurement quantity within a suitable (that is, matching) measurement time window to obtain an instance of the measurement quantity that matches the time, so that the first network side device can measure the measurement quantity accordingly.
  • the timing error of sending and receiving can be estimated more accurately, or the influence of the timing error of sending and receiving can be eliminated, and the influence of the timing error of time-varying sending and receiving on the calculation accuracy of the terminal position can be avoided, thereby improving the system positioning Accuracy; it solves the problem of poor accuracy of information processing solutions related to positioning in the related art.
  • the transceiver 92 is used to receive and transmit data under the control of the processor 93 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 93 and various circuits of memory represented by memory 91 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 92 may be a number of elements, including transmitters and receivers, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like Transmission medium.
  • the user interface 94 may also be an interface capable of externally connecting the required equipment, and the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 93 is responsible for managing the bus architecture and general processing, and the memory 91 may store data used by the processor 93 in performing operations.
  • the processor 93 can be a CPU (central processor), an ASIC (Application Specific Integrated Circuit, an application-specific integrated circuit), an FPGA (Field-Programmable Gate Array, a field programmable gate array) or a CPLD (Complex Programmable Logic Device) , complex programmable logic devices), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • complex programmable logic devices complex programmable logic devices
  • the processor is configured to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by invoking the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the sending the at least one measurement instance to the first network-side device includes: in a measurement time window corresponding to the terminal measurement time window information, sending at least one measurement instance through the transceiver The measurement report is sent to the first network side device; wherein, the measurement report carries at least one measurement quantity instance.
  • the acquiring the measurement time window information includes: receiving, by the transceiver, the measurement time window information sent by the first network side device; or, independently configuring the measurement time window information by the terminal.
  • the acquiring measurement time window information further includes: acquiring measurement time window information of different second network side devices; wherein the measurement time window information of different second network side devices is the same or different.
  • the terminal measurement time window information includes time window information for the terminal to measure a downlink positioning reference signal DL-PRS and/or time window information for other downlink reference signals used for positioning except the DL-PRS ; the first positioning signal includes DL-PRS and/or the other downlink reference signals used for positioning.
  • the sending the at least one measurement instance to the first network-side device includes: sending the at least one measurement instance and a timestamp corresponding to the measurement instance to the first network through the transceiver side device.
  • the at least one measurement instance includes: a terminal measurement instance; wherein the terminal measurement instance includes: downlink reference signal time difference DL-RSTD, downlink reference signal received power DL-RSRP, and/or Terminal sending and receiving time difference.
  • the measurement time window information includes the duration of the measurement time window; or, the measurement time window information includes the duration and start time of the measurement time window; or, the measurement time window information includes the start of the measurement time window start time and end time.
  • the measurement time window information includes UTC information; and/or the measurement time window information includes system radio frame number SFN information and time slot number Slot number information.
  • the measurement time window information includes a measurement time window index number; wherein, the measurement time window index number corresponds to a set of parameter information of the measurement time window; the parameter information includes the measurement time The duration of the window; or, the duration and start time; or, the start time and end time.
  • the length of the measurement time window corresponding to the measurement time window information of the terminal is the same as the length of the measurement time window corresponding to the measurement time window information of the second network side device; or, the index number of the measurement time window corresponding to the measurement time window information of the terminal is the same as The measurement time window index numbers corresponding to the measurement time window information of the second network side device are the same.
  • the measurement time window information includes at least one of the following parameter information: parameter J, where the parameter J represents the number of terminal measurement quantity instances included in a terminal measurement time window, J ⁇ 1; parameter N i , the parameter N i represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, N i ⁇ 1; parameter K, the parameter K represents a second network The number of second network-side device measurement instances included in the side device measurement time window, K ⁇ 1; parameter M i , where the parameter Mi represents the SRS configured for the i -th second network-side device measurement instance - Number of Pos resource set instances or SRS-Pos measurement occasions, M i ⁇ 1.
  • the terminal measurement time window information includes a periodic or semi-persistent DL-PRS measurement time window length MTW UE ; wherein, PD DL-PRS represents the period of DL-PRS; J P represents the number of terminal measurement instances included in a terminal measurement time window, J P ⁇ 1; N Pi represents the configured DL for the i-th terminal measurement instance - Number of PRS resource set instances or DL-PRS measurement occasions, N Pi ⁇ 1.
  • the terminal measurement time window information includes the aperiodic DL-PRS measurement time window length MTW′ UE ; wherein, LH DL-PRS represents the duration or the number of time slots occupied by an aperiodic DL-PRS resource set or DL-PRS measurement opportunity; J A represents the number of UE measurement instances included in a terminal measurement time window, J A ⁇ 1; N Ai represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, and N Ai ⁇ 1.
  • one aperiodic DL-PRS measurement occasion corresponds to one aperiodic DL-PRS resource set instance.
  • the measurement time window corresponding to the terminal measurement time window information includes at least two instances of DL-PRS resource sets located in different frequency layers.
  • the receiving the measurement time window information sent by the first network side device includes: receiving the measurement time window information directly sent by the first network side device through the transceiver; or, sending the first network side through the transceiver
  • the device sends a first request; receives the measurement time window information sent by the first network side device according to the first request; or sends the capability information of the terminal to the first network side device through the transceiver; The measurement time window information sent by the first network side device according to the capability information.
  • the receiving the measurement time window information sent by the first network side device includes: receiving, by the transceiver, the measurement time window information sent by the first network side device through Long Term Evolution Positioning Protocol LPP signaling.
  • the autonomously configuring the measurement time window information by the terminal includes: according to the first information, Configuring the measurement window information of the aperiodic DL-PRS; wherein the first information includes aperiodic DL-PRS resource information, aperiodic DL-PRS resource set information and/or aperiodic DL-PRS resource set instances information.
  • one aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource; and/or, an instance of an aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource set, and in the aperiodic DL-PRS resource set
  • the number of DL-PRS resource sets is more than one, each of the aperiodic DL-PRS resource sets is the same, and each of the aperiodic DL-PRS resource sets is sent at different times.
  • whether the terminal can be configured with a measurement time window corresponding to the terminal measurement time window information, and can measure the first positioning signal within the measurement time window is a terminal capability.
  • the above-mentioned terminal provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned embodiments of the information processing method on the terminal side, and can achieve the same technical effect.
  • the same parts and beneficial effects as those in the method embodiment will be described in detail.
  • An embodiment of the present disclosure further provides a network-side device, where the network-side device is a second network-side device, as shown in FIG. 10 , including a memory 101 , a transceiver 102 , and a processor 103 :
  • the memory 101 is used to store computer programs; the transceiver 102 is used to send and receive data under the control of the processor 103; the processor 103 is used to read the computer program in the memory 101 and perform the following operations:
  • the measurement time window information measure the second positioning signal within the corresponding measurement time window to obtain at least one measurement instance
  • the measurement time window information includes measurement time window information of the second network side device
  • the first network-side device is a positioning server or other network elements other than the positioning server that can determine terminal location information; the second network-side device is a base station or a transmission point TRP.
  • the network-side device receives the measurement time window information sent by the first network-side device; and according to the measurement time window information, measures the second positioning signal in the corresponding measurement time window, and obtains at least one measurement sending the at least one measurement instance to the first network-side device;
  • the measurement time window information includes measurement time window information of the second network-side device;
  • the first network-side device is a positioning server Or other network elements other than the positioning server that can determine the location information of the terminal;
  • the second network side device is a base station or a transmission point TRP; it can support the realization of the terminal and the second network side device in a suitable (ie matching)
  • the measurement is measured within the measurement time window to obtain a measurement instance whose time is relatively matched, so that the first network-side device can more accurately estimate the sending and receiving timing error when determining the location of the terminal based on this (that is, according to the measurement instance), Or eliminate the influence of transceiver timing errors, avoid the influence of time-varying transceiver timing errors on the
  • the transceiver 102 is used to receive and transmit data under the control of the processor 103 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically, one or more processors represented by processor 103 and various circuits of memory represented by memory 101 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 102 may be multiple elements, ie, including transmitters and receivers, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 103 is responsible for managing the bus architecture and general processing, and the memory 101 may store data used by the processor 103 in performing operations.
  • the processor 103 can be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the processor can also use a multi-core architecture.
  • the processor is configured to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by invoking the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the sending the at least one measurement instance to the first network-side device includes: within a measurement time window corresponding to the measurement time window information of the second network-side device, using the The transceiver sends at least one measurement report to the first network side device; wherein, the measurement report carries at least one measurement quantity instance.
  • the receiving measurement time window information sent by the first network side device includes: receiving, by the transceiver, measurement time window information of different terminals sent by the first network side device; wherein, the measurement time window information of different terminals is The time window information is the same or different.
  • the time window information measured by the second network side device includes time window information of the sounding reference signal SRS-Pos measured by the network side device for positioning and/or other uplink reference used for positioning except the SRS-Pos Time window information of the signal; the second positioning signal includes SRS-Pos and/or the other uplink reference signals used for positioning.
  • the sending the at least one measurement instance to the first network-side device includes: sending the at least one measurement instance and the time corresponding to the measurement instance through the transceiver.
  • the stamp is sent to the first network side device.
  • the at least one measurement instance includes: a second network-side device measurement instance; wherein the second network-side device measurement instance includes: uplink relative time of arrival UL-RTOA, uplink reference signal reception The power UL-RSRP and/or the time difference between the transmission and reception of the second network side device.
  • the measurement time window information includes the duration of the measurement time window; or, the measurement time window information includes the duration and start time of the measurement time window; or, the measurement time window information includes the start of the measurement time window start time and end time.
  • the measurement time window information includes UTC information; and/or the measurement time window information includes system radio frame number SFN information and time slot number Slot number information.
  • the measurement time window information includes a measurement time window index number; wherein, the measurement time window index number corresponds to a set of parameter information of the measurement time window; the parameter information includes the measurement time The duration of the window; or, the duration and start time; or, the start time and end time.
  • the length of the measurement time window corresponding to the measurement time window information of the terminal is the same as the length of the measurement time window corresponding to the measurement time window information of the second network side device; or, the index number of the measurement time window corresponding to the measurement time window information of the terminal is the same as the The measurement time window index numbers corresponding to the measurement time window information of the second network side device are the same.
  • the measurement time window information includes at least one of the following parameter information: parameter J, where the parameter J represents the number of terminal measurement quantity instances included in a terminal measurement time window, J ⁇ 1; parameter N i , the parameter N i represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, N i ⁇ 1; parameter K, the parameter K represents a second network The number of second network-side device measurement instances included in the side device measurement time window, K ⁇ 1; parameter M i , where the parameter Mi represents the SRS configured for the i -th second network-side device measurement instance - Number of Pos resource set instances or SRS-Pos measurement occasions, M i ⁇ 1.
  • the measurement time window information of the second network side device includes a periodic or semi-persistent SRS-Pos measurement time window length MTW TRP ; wherein, PD SRS-Pos represents the period of SRS-Pos; K P represents the number of second network-side device measurement instances included in a second network-side device measurement time window, K P ⁇ 1; M Pi represents the i-th 2 The number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured by the network-side device measurement instance, M Pi ⁇ 1.
  • the measurement time window information of the second network side device includes the aperiodic SRS-Pos measurement time window length MTW′ TRP ; wherein, LH SRS-Pos represents the duration or number of time slots occupied by an aperiodic SRS-Pos resource set or SRS - Pos measurement occasion; KA represents the second network side device measurement included in a second network side device measurement time window The number of quantity instances, K A ⁇ 1; M Ai represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement quantity instance, M Ai ⁇ 1.
  • the measurement time window corresponding to the measurement time window information of the second network side device includes at least two SRS-Pos resource set instances located in different uplink bandwidth parts UL BWP.
  • the receiving the measurement time window information sent by the first network side device includes: receiving, by the transceiver, the measurement time window information directly sent by the first network side device;
  • the first network-side device sends a second request; and receives measurement time window information sent by the first network-side device according to the second request.
  • the receiving the measurement time window information sent by the first network side device includes: receiving, by the transceiver, the measurement time window information sent by the first network side device through the new air interface positioning protocol NRPPa signaling.
  • the above-mentioned network-side device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned second network-side device-side information processing method embodiments, and can achieve the same technical effect, and here The same parts and beneficial effects in this embodiment as those in the method embodiment will not be described again in detail.
  • An embodiment of the present disclosure further provides an information processing apparatus, which is applied to the first network side device, as shown in FIG. 11 , including:
  • a first receiving unit 111 configured to receive at least one measurement quantity instance fed back by the terminal and/or the second network side device according to the measurement time window information
  • a first determining unit 112 configured to determine the location information of the terminal according to the at least one measurement instance
  • the measurement time window information includes terminal measurement time window information and/or second network side device measurement time window information
  • the first network-side device is a positioning server or other network elements other than the positioning server that can determine terminal location information; the second network-side device is a base station or a transmission point TRP.
  • the information processing apparatus receives at least one measurement instance fed back by the terminal and/or the second network side device according to the measurement time window information; and determines the location of the terminal according to the at least one measurement instance information; wherein, the measurement time window information includes terminal measurement time window information and/or second network side device measurement time window information; the first network side device is a positioning server or other devices other than the positioning server that can determine The network element of the terminal location information; the second network side device is a base station or a transmission point TRP; it can support the realization that the terminal and the second network side device measure the measurement quantity within a suitable (that is, matching) measurement time window to obtain A measurement instance whose time is relatively matched, so that the first network-side device can more accurately estimate the sending and receiving timing error when determining the terminal position based on this (that is, according to the measuring instance), or eliminate the influence of the sending and receiving timing error, avoiding the time The influence of the timing error of sending and receiving on the calculation accuracy of the terminal position is changed, thereby improving
  • the information processing apparatus further includes: a first sending unit, configured to send the measurement time window information to the terminal and/or the second network side device.
  • the terminal measurement time window information includes time window information for the terminal to measure the downlink positioning reference signal DL-PRS and/or time window information for other downlink reference signals used for positioning except the DL-PRS; and/or , the time window information measured by the second network side device includes time window information of the sounding reference signal SRS-Pos measured by the second network side device for positioning and/or other uplink signals used for positioning except the SRS-Pos Time window information for the reference signal.
  • the receiving at least one measurement quantity instance fed back by the terminal and/or the second network-side device according to the measurement time window information includes: receiving the terminal and/or the second network-side device according to the measurement time at least one measurement instance fed back by the window information and a timestamp corresponding to the measurement instance; the obtaining the location information of the terminal according to the at least one measurement instance includes: according to the at least one measurement instance and The time stamp corresponding to the measurement instance is used to obtain the location information of the terminal.
  • the at least one measurement instance includes: a terminal measurement instance and/or a second network-side device measurement instance; wherein the terminal measurement instance includes: downlink reference signal time difference DL-RSTD, downlink reference signal time difference DL-RSTD, downlink Reference signal received power DL-RSRP, and/or terminal sending and receiving time difference; and/or, examples of the second network side device measurement quantities include: uplink relative time of arrival UL-RTOA, uplink reference signal received power UL-RSRP, and/or Or the sending and receiving time of the second network side device is different.
  • the measurement time window information includes the duration of the measurement time window; or, the measurement time window information includes the duration and start time of the measurement time window; or, the measurement time window information includes the start of the measurement time window start time and end time.
  • the measurement time window information includes UTC information; and/or the measurement time window information includes system radio frame number SFN information and time slot number Slot number information.
  • the measurement time window information includes a measurement time window index number; wherein, the measurement time window index number corresponds to a set of parameter information of the measurement time window; the parameter information includes the measurement time The duration of the window; or, the duration and start time; or, the start time and end time.
  • the length of the measurement time window corresponding to the measurement time window information of the terminal is the same as the length of the measurement time window corresponding to the measurement time window information of the second network side device; or, the index of the measurement time window corresponding to the measurement time window information of the terminal The number is the same as the measurement time window index number corresponding to the measurement time window information of the second network side device.
  • the measurement time window information includes at least one of the following parameter information: parameter J, where the parameter J represents the number of terminal measurement quantity instances included in a terminal measurement time window, J ⁇ 1; parameter N i , the parameter N i represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, N i ⁇ 1; parameter K, the parameter K represents a second network The number of second network-side device measurement instances included in the side device measurement time window, K ⁇ 1; parameter M i , where the parameter Mi represents the SRS configured for the i -th second network-side device measurement instance - Number of Pos resource set instances or SRS-Pos measurement occasions, M i ⁇ 1.
  • the terminal measurement time window information includes a periodic or semi-persistent DL-PRS measurement time window length MTW UE ; wherein, PD DL-PRS represents the period of DL-PRS; J P represents the number of terminal measurement instances included in a terminal measurement time window, J P ⁇ 1; N Pi represents the configured DL for the i-th terminal measurement instance - Number of PRS resource set instances or DL-PRS measurement occasions, N Pi ⁇ 1.
  • the measurement time window information of the second network side device includes a periodic or semi-persistent SRS-Pos measurement time window length MTW TRP ; wherein, PD SRS-Pos represents the period of SRS-Pos; K P represents the number of second network-side device measurement instances included in a second network-side device measurement time window, K P ⁇ 1; M Pi represents the i-th 2 The number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured by the network-side device measurement instance, M Pi ⁇ 1.
  • the terminal measurement time window information includes the aperiodic DL-PRS measurement time window length MTW′ UE ; wherein, LH DL-PRS represents the duration or the number of time slots occupied by an aperiodic DL-PRS resource set or DL-PRS measurement opportunity; J A represents the number of UE measurement instances included in a terminal measurement time window, J A ⁇ 1; N Ai represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, and N Ai ⁇ 1.
  • one aperiodic DL-PRS measurement occasion corresponds to one aperiodic DL-PRS resource set instance.
  • the measurement time window information of the second network side device includes the aperiodic SRS-Pos measurement time window length MTW′ TRP ; wherein, LH SRS-Pos represents the duration or number of time slots occupied by an aperiodic SRS-Pos resource set or SRS - Pos measurement occasion; KA represents the second network side device measurement included in a second network side device measurement time window The number of quantity instances, K A ⁇ 1; M Ai represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement quantity instance, M Ai ⁇ 1.
  • the measurement time window corresponding to the terminal measurement time window information includes at least two instances of DL-PRS resource sets located in different frequency layers; and/or, the measurement time window corresponding to the measurement time window information of the second network side device Contains at least two SRS-Pos resource set instances located in different uplink bandwidth parts UL BWP.
  • sending the measurement time window information to the terminal includes: directly sending the measurement time window information to the terminal; or, sending the measurement time window information to the terminal according to a first request sent by the terminal the measurement time window information; or, according to the capability information of the terminal, send the measurement time window information to the terminal.
  • sending the measurement time window information to the second network side device includes: directly sending the measurement time window information to the second network side device; or, according to the first information sent by the second network side device.
  • the second request is to send the measurement time window information to the second network side device.
  • the sending the measurement time window information to the terminal and/or the second network side device includes: sending the measurement time window to the terminal through Long Term Evolution Positioning Protocol LPP signaling information; and/or, send the measurement time window information to the second network side device through a new air interface positioning protocol NRPPa signaling.
  • the information processing apparatus further includes: a first configuration unit, configured to send the information to the terminal and the terminal when the measurement time window information of the terminal includes aperiodic DL-PRS measurement window information. /or before sending the measurement time window information, the second network side device configures the measurement window information of the aperiodic DL-PRS according to the first information; wherein the first information includes aperiodic DL-PRS resources information, aperiodic DL-PRS resource set information and/or aperiodic DL-PRS resource set instance information.
  • one aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource; and/or, an instance of an aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource set, and in the aperiodic DL-PRS resource set
  • the number of DL-PRS resource sets is more than one, each of the aperiodic DL-PRS resource sets is the same, and each of the aperiodic DL-PRS resource sets is sent at different times.
  • the above-mentioned information processing apparatus provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned first network-side device-side information processing method embodiments, and can achieve the same technical effect.
  • the same parts and beneficial effects in this embodiment as those in the method embodiment will not be described again in detail.
  • An embodiment of the present disclosure further provides an information processing apparatus, which is applied to a terminal, as shown in FIG. 12 , including:
  • a first obtaining unit 121 configured to obtain measurement time window information
  • a first processing unit 122 configured to measure the first positioning signal within the corresponding measurement time window according to the measurement time window information, to obtain at least one measurement instance
  • a second sending unit 123 configured to send the at least one measurement instance to the first network-side device
  • the measurement time window information includes terminal measurement time window information
  • the first network-side device is a positioning server or other network elements other than the positioning server that can determine terminal location information.
  • the information processing apparatus obtains the measurement time window information; measures the first positioning signal within the corresponding measurement time window according to the measurement time window information, and obtains at least one measurement quantity instance; A measurement instance is sent to the first network-side device; wherein, the measurement time window information includes terminal measurement time window information; the first network-side device is a positioning server or other devices other than the positioning server that can determine the terminal position A network element of information; it can support the measurement of the measurement quantity by the terminal and the second network side device within a suitable (that is, matching) measurement time window to obtain an instance of the measurement quantity that matches the time, so that the first network side device can be According to this (that is, according to the measurement instance), when the terminal position is determined, the timing error of sending and receiving can be estimated more accurately, or the influence of the timing error of sending and receiving can be eliminated, and the influence of the timing error of time-varying sending and receiving on the calculation accuracy of the terminal position can be avoided, thereby improving the System positioning accuracy; it solves the problem of poor accuracy of positioning-
  • the sending the at least one measurement instance to the first network-side device includes: sending at least one measurement report to the first network-side device within a measurement time window corresponding to the terminal measurement time window information A network side device; wherein, the measurement report carries at least one measurement instance.
  • the acquiring the measurement time window information includes: receiving the measurement time window information sent by the first network side device; or configuring the measurement time window information by the terminal autonomously.
  • the acquiring measurement time window information further includes: acquiring measurement time window information of different second network side devices; wherein the measurement time window information of different second network side devices is the same or different.
  • the terminal measurement time window information includes the time window information of the terminal measuring the downlink positioning reference signal DL-PRS and/or the time window information of other downlink reference signals used for positioning except the DL-PRS;
  • a positioning signal includes DL-PRS and/or the other downlink reference signals used for positioning.
  • the sending the at least one measurement instance to the first network side device includes: sending the at least one measurement instance and a timestamp corresponding to the measurement instance to the first network side equipment.
  • the at least one measurement instance includes: a terminal measurement instance; wherein the terminal measurement instance includes: downlink reference signal time difference DL-RSTD, downlink reference signal received power DL-RSRP, and/or Terminal sending and receiving time difference.
  • the measurement time window information includes the duration of the measurement time window; or, the measurement time window information includes the duration and start time of the measurement time window; or, the measurement time window information includes the start of the measurement time window start time and end time.
  • the measurement time window information includes UTC information; and/or the measurement time window information includes system radio frame number SFN information and time slot number Slot number information.
  • the measurement time window information includes a measurement time window index number; wherein, the measurement time window index number corresponds to a set of parameter information of the measurement time window; the parameter information includes the measurement time The duration of the window; or, the duration and start time; or, the start time and end time.
  • the length of the measurement time window corresponding to the measurement time window information of the terminal is the same as the length of the measurement time window corresponding to the measurement time window information of the second network side device; or, the index number of the measurement time window corresponding to the measurement time window information of the terminal is the same as The measurement time window index numbers corresponding to the measurement time window information of the second network side device are the same.
  • the measurement time window information includes at least one of the following parameter information: parameter J, where the parameter J represents the number of terminal measurement quantity instances included in a terminal measurement time window, J ⁇ 1; parameter N i , the parameter N i represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, N i ⁇ 1; parameter K, the parameter K represents a second network The number of second network-side device measurement instances included in the side device measurement time window, K ⁇ 1; parameter M i , where the parameter Mi represents the SRS configured for the i -th second network-side device measurement instance - Number of Pos resource set instances or SRS-Pos measurement occasions, M i ⁇ 1.
  • the terminal measurement time window information includes a periodic or semi-persistent DL-PRS measurement time window length MTW UE ; wherein, PD DL-PRS represents the period of DL-PRS; J P represents the number of terminal measurement instances included in a terminal measurement time window, J P ⁇ 1; N Pi represents the configured DL for the i-th terminal measurement instance - Number of PRS resource set instances or DL-PRS measurement occasions, N Pi ⁇ 1.
  • the terminal measurement time window information includes the aperiodic DL-PRS measurement time window length MTW′ UE ; wherein, LH DL-PRS represents the duration or the number of time slots occupied by an aperiodic DL-PRS resource set or DL-PRS measurement opportunity; J A represents the number of UE measurement instances included in a terminal measurement time window, J A ⁇ 1; N Ai represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, and N Ai ⁇ 1.
  • one aperiodic DL-PRS measurement occasion corresponds to one aperiodic DL-PRS resource set instance.
  • the measurement time window corresponding to the terminal measurement time window information includes at least two instances of DL-PRS resource sets located in different frequency layers.
  • the receiving the measurement time window information sent by the first network side device includes: receiving the measurement time window information directly sent by the first network side device; or, sending a first request to the first network side device; receiving the first network side device Measurement time window information sent by a network-side device according to the first request; or, sending capability information of the terminal to the first network-side device; receiving measurement time sent by the first network-side device according to the capability information window information.
  • the receiving the measurement time window information sent by the first network side device includes: receiving the measurement time window information sent by the first network side device through Long Term Evolution Technology Positioning Protocol LPP signaling.
  • the autonomously configuring the measurement time window information by the terminal includes: according to the first information, Configuring the measurement window information of the aperiodic DL-PRS; wherein the first information includes aperiodic DL-PRS resource information, aperiodic DL-PRS resource set information and/or aperiodic DL-PRS resource set instances information.
  • one aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource; and/or, an instance of an aperiodic DL-PRS resource set includes at least one aperiodic DL-PRS resource set, and in the aperiodic DL-PRS resource set
  • the number of DL-PRS resource sets is more than one, each of the aperiodic DL-PRS resource sets is the same, and each of the aperiodic DL-PRS resource sets is sent at different times.
  • whether the terminal can be configured with a measurement time window corresponding to the terminal measurement time window information, and can measure the first positioning signal within the measurement time window is a terminal capability.
  • the above-mentioned information processing apparatus provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned terminal-side information processing method embodiments, and can achieve the same technical effect, and this implementation is not repeated here.
  • the same parts and beneficial effects as the method embodiment will be described in detail.
  • An embodiment of the present disclosure further provides an information processing apparatus, which is applied to a second network side device, as shown in FIG. 13 , including:
  • the second receiving unit 131 is configured to receive the measurement time window information sent by the first network side device
  • the second processing unit 132 is configured to measure the second positioning signal within the corresponding measurement time window according to the measurement time window information to obtain at least one measurement instance;
  • a third sending unit 133 configured to send the at least one measurement instance to the first network-side device
  • the measurement time window information includes measurement time window information of the second network side device
  • the first network-side device is a positioning server or other network elements other than the positioning server that can determine terminal location information; the second network-side device is a base station or a transmission point TRP.
  • the information processing apparatus receives the measurement time window information sent by the first network side device; and according to the measurement time window information, measures the second positioning signal in the corresponding measurement time window, and obtains at least one measurement sending the at least one measurement instance to the first network-side device;
  • the measurement time window information includes measurement time window information of the second network-side device;
  • the first network-side device is a positioning server Or other network elements other than the positioning server that can determine the location information of the terminal;
  • the second network side device is a base station or a transmission point TRP; it can support the realization of the terminal and the second network side device in a suitable (ie matching)
  • the measurement is measured within the measurement time window to obtain a measurement instance whose time is relatively matched, so that the first network-side device can more accurately estimate the sending and receiving timing error when determining the location of the terminal based on this (that is, according to the measurement instance), Or eliminate the influence of transceiver timing errors, avoid the influence of time-varying transceiver timing errors on the accuracy of
  • the sending the at least one measurement instance to the first network-side device includes: within a measurement time window corresponding to the measurement time window information of the second network-side device, sending at least one measurement instance A measurement report is sent to the first network side device; wherein, the measurement report carries at least one measurement quantity instance.
  • the receiving the measurement time window information sent by the first network side device includes: receiving measurement time window information of different terminals sent by the first network side device; wherein the measurement time window information of different terminals is the same or different.
  • the time window information measured by the second network side device includes time window information of the sounding reference signal SRS-Pos measured by the network side device for positioning and/or other uplink reference used for positioning except the SRS-Pos Time window information of the signal; the second positioning signal includes SRS-Pos and/or the other uplink reference signals used for positioning.
  • the sending the at least one measurement instance to the first network-side device includes: sending the at least one measurement instance and a timestamp corresponding to the measurement instance to the first network-side device.
  • the first network side device includes: sending the at least one measurement instance and a timestamp corresponding to the measurement instance to the first network-side device.
  • the at least one measurement instance includes: a second network-side device measurement instance; wherein the second network-side device measurement instance includes: uplink relative time of arrival UL-RTOA, uplink reference signal reception The power UL-RSRP and/or the time difference between the transmission and reception of the second network side device.
  • the measurement time window information includes the duration of the measurement time window; or, the measurement time window information includes the duration and start time of the measurement time window; or, the measurement time window information includes the start of the measurement time window start time and end time.
  • the measurement time window information includes UTC information; and/or the measurement time window information includes system radio frame number SFN information and time slot number Slot number information.
  • the measurement time window information includes a measurement time window index number; wherein, the measurement time window index number corresponds to a set of parameter information of the measurement time window; the parameter information includes the measurement time The duration of the window; or, the duration and start time; or, the start time and end time.
  • the length of the measurement time window corresponding to the measurement time window information of the terminal is the same as the length of the measurement time window corresponding to the measurement time window information of the second network side device; or, the index number of the measurement time window corresponding to the measurement time window information of the terminal is the same as the The measurement time window index numbers corresponding to the measurement time window information of the second network side device are the same.
  • the measurement time window information includes at least one of the following parameter information: parameter J, where the parameter J represents the number of terminal measurement quantity instances included in a terminal measurement time window, J ⁇ 1; parameter N i , the parameter N i represents the number of DL-PRS resource set instances or DL-PRS measurement occasions configured for the i-th terminal measurement instance, N i ⁇ 1; parameter K, the parameter K represents a second network The number of second network-side device measurement instances included in the side device measurement time window, K ⁇ 1; parameter M i , where the parameter Mi represents the SRS configured for the i -th second network-side device measurement instance - Number of Pos resource set instances or SRS-Pos measurement occasions, M i ⁇ 1.
  • the measurement time window information of the second network side device includes a periodic or semi-persistent SRS-Pos measurement time window length MTW TRP ; wherein, PD SRS-Pos represents the period of SRS-Pos; K P represents the number of second network-side device measurement instances included in a second network-side device measurement time window, K P ⁇ 1; M Pi represents the i-th 2 The number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured by the network-side device measurement instance, M Pi ⁇ 1.
  • the measurement time window information of the second network side device includes the aperiodic SRS-Pos measurement time window length MTW′ TRP ; wherein, LH SRS-Pos represents the duration or number of time slots occupied by an aperiodic SRS-Pos resource set or SRS - Pos measurement occasion; KA represents the second network side device measurement included in a second network side device measurement time window The number of quantity instances, K A ⁇ 1; M Ai represents the number of SRS-Pos resource set instances or SRS-Pos measurement occasions configured for the i-th second network-side device measurement quantity instance, M Ai ⁇ 1.
  • the measurement time window corresponding to the measurement time window information of the second network side device includes at least two SRS-Pos resource set instances located in different uplink bandwidth parts UL BWP.
  • the receiving the measurement time window information sent by the first network side device includes: receiving the measurement time window information directly sent by the first network side device; or, sending a second request to the first network side device; Receive the measurement time window information sent by the first network side device according to the second request.
  • the receiving the measurement time window information sent by the first network side device includes: receiving the measurement time window information sent by the first network side device through the new air interface positioning protocol NRPPa signaling.
  • the above-mentioned information processing apparatus provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned second network-side device-side information processing method embodiments, and can achieve the same technical effect.
  • the same parts and beneficial effects in this embodiment as those in the method embodiment will not be described again in detail.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solutions of the present disclosure can be embodied in the form of software products in essence, or the parts that contribute to related technologies, or all or part of the technical solutions, and the computer software products are stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • Embodiments of the present disclosure further provide a processor-readable storage medium, where a computer program is stored in the processor-readable storage medium, and the computer program is used to cause the processor to execute the information on the first network side device side. processing method; or,
  • the computer program is used to cause the processor to execute the above-mentioned terminal-side information processing method; or,
  • the computer program is used to cause the processor to execute the above-mentioned information processing method on the device side of the second network.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by a processor, including, but not limited to, magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (eg, CD, DVD, BD, HVD, etc.), and semiconductor memory (eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)), etc.
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage eg, CD, DVD, BD, HVD, etc.
  • semiconductor memory eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)
  • the above-mentioned implementation embodiments of the information processing method on the first network-side device side, the terminal side, or the above-mentioned second network-side device side are all applicable to the embodiments of the processor-readable storage medium, and the same can also be achieved. technical effect.
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means including the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.
  • modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in hardware.
  • a certain module may be a separately established processing element, or it may be integrated into a certain chip of the above-mentioned device to be implemented.
  • it may also be stored in the memory of the above-mentioned device in the form of program code, and processed by one of the above-mentioned devices.
  • the element calls and executes the functions of the above-determined modules.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated together, and can also be implemented independently.
  • the processing element described here may be an integrated circuit with signal processing capability.
  • each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • each module, unit, sub-unit or sub-module may be one or more integrated circuits configured to implement the above methods, such as: one or more Application Specific Integrated Circuit (ASIC), or, one or Multiple microprocessors (digital signal processors, DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processors
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU) or other processors that can call program codes.
  • CPU central processing unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种信息处理方法、装置、终端及网络侧设备,其中,信息处理方法包括:接收终端和/或第二网络侧设备根据测量时间窗信息反馈的至少一个测量量实例;根据所述至少一个测量量实例,确定所述终端的位置信息;其中,所述测量时间窗信息包括终端测量时间窗信息和/或第二网络侧设备测量时间窗信息;所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP。

Description

一种信息处理方法、装置、终端及网络侧设备
相关申请的交叉引用
本公开主张在2021年04月01日在中国提交的中国专利申请号No.202110358440.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种信息处理方法、装置、终端及网络侧设备。
背景技术
在相关技术的定位方法中,多个往返时间(Multi Round Trip Time,Multi-RTT)定位方法是一种重要的定位方法,Multi-RTT定位方法的工作原理是:终端(User Equipment,UE)将获取的UE收发时间差上报给定位管理功能单元(Location Management Function,LMF),各收发点(Transmit Receive Point,TRP),即传输点,也将获取的第五代移动通信(5th-Generation,5G)基站(gNB)收发时间差提供给LMF,由LMF利用UE收发时间差和gNB收发时间差,得到UE与各TRP之间的距离。然后再加上其他已知信息(例如TRP的地理坐标),计算出UE的位置。
如上所述,对于Multi-RTT定位方法,为了完成UE收发时间差或gNB收发差的测量,需要TRP发送下行定位参考信号(Downlink Positioning Reference Signals,DL-PRS)以及UE发送用于定位的探测参考信号(Sounding Reference Signal for Positioning,SRS-Pos),然后UE或gNB基于DL-PRS以及SRS-Pos,才能完成相关测量量的测量。目前,在计算UE收发时间差或gNB收发时间差等定位时间测量量时,是假设是在天线连接器(Antenna Connector)位置进行时间测量,但是,实际上信号的时间测量位置是在基带单元,所以就会存在时间测量误差,该误差对于信号发送与信号接收都存在,被称为是收发定时误差。所述收发定时误差的存在,会导致包括UE收发时间差与gNB收发时间差在内的所有基于时间的定位测量量的测量结果不准确, 从而影响了最终的定位精度。并且,这种收发定时误差是时变的,也就是说不同时间的测量量,具有不同的收发定时误差。
但是,在相关技术中,UE测量DL-PRS和gNB测量SRS-Pos的时间点可能相差很远,从而导致两个测量量具有差异很大的收发定时误差,不利于后续LMF或UE在计算终端位置时估计或消除收发定时误差,影响了最终UE定位精度。
由上可知,相关技术中针对定位相关的信息处理方案存在精度差等问题。
发明内容
本公开的目的在于提供一种信息处理方法、装置、终端及网络侧设备,以解决相关技术中针对定位相关的信息处理方案精度差的问题。
为了解决上述技术问题,本公开实施例提供一种信息处理方法,应用于第一网络侧设备,可选的,包括:
接收终端和/或第二网络侧设备根据测量时间窗信息反馈的至少一个测量量实例;
根据所述至少一个测量量实例,确定所述终端的位置信息;
其中,所述测量时间窗信息包括终端测量时间窗信息和/或第二网络侧设备测量时间窗信息;
所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP。
可选的,还包括:
向所述终端和/或第二网络侧设备发送所述测量时间窗信息。
可选的,所述终端测量时间窗信息包括终端测量下行定位参考信号DL-PRS的时间窗口信息和/或除所述DL-PRS外的其他用于定位的下行参考信号的时间窗口信息;和/或,
所述第二网络侧设备测量时间窗信息包括第二网络侧设备测量用于定位的探测参考信号SRS-Pos的时间窗口信息和/或除所述SRS-Pos外的其他用于定位的上行参考信号的时间窗口信息。
可选的,所述接收所述终端和/或第二网络侧设备根据所述测量时间窗信 息反馈的至少一个测量量实例,包括:
接收所述终端和/或第二网络侧设备根据所述测量时间窗信息反馈的至少一个测量量实例和所述测量量实例对应的时间戳;
所述根据所述至少一个测量量实例,得到所述终端的位置信息,包括:
根据所述至少一个测量量实例和所述测量量实例对应的时间戳,得到所述终端的位置信息。
可选的,所述至少一个测量量实例包括:终端测量量实例和/或第二网络侧设备测量量实例;
其中,所述终端测量量实例包括:下行参考信号时间差DL-RSTD、下行参考信号接收功率DL-RSRP、和/或终端收发时间差;和/或,
所述第二网络侧设备测量量实例包括:上行相对到达时间UL-RTOA、上行参考信号接收功率UL-RSRP、和/或第二网络侧设备收发时间差。
可选的,所述测量时间窗信息包括测量时间窗的持续时长;或者,
所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,
所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
可选的,所述测量时间窗信息包括世界协调时间UTC信息;和/或,
所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number信息。
可选的,所述测量时间窗信息包括测量时间窗索引号;
其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;
所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
可选的,所述终端测量时间窗信息对应的测量时间窗长度与所述第二网络侧设备测量时间窗信息对应的测量时间窗长度相同;或者,
所述终端测量时间窗信息对应的测量时间窗索引号与所述第二网络侧设备测量时间窗信息对应的测量时间窗索引号相同。
可选的,所述测量时间窗信息包括以下至少一个参数信息:
参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;
参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N i≥1;
参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;
参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
可选的,所述终端测量时间窗信息包括周期性或半持续的DL-PRS的测量时间窗长度MTW UE
其中,
Figure PCTCN2022078262-appb-000001
PD DL-PRS表示DL-PRS的周期;
J P表示一个终端测量时间窗内所包含的终端测量量实例的数量,J P≥1;
N Pi表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Pi≥1。
可选的,所述第二网络侧设备测量时间窗信息包括周期性或半持续的SRS-Pos的测量时间窗长度MTW TRP
其中,
Figure PCTCN2022078262-appb-000002
PD SRS-Pos表示SRS-Pos的周期;
K P表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K P≥1;
M Pi表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Pi≥1。
可选的,所述终端测量时间窗信息包括非周期性的DL-PRS的测量时间窗长度MTW′ UE
其中,
Figure PCTCN2022078262-appb-000003
LH DL-PRS表示一个非周期DL-PRS资源集或DL-PRS测量时机所占用的时长或时隙数量;
J A表示一个终端测量时间窗内所包含的UE测量量实例的数量,J A≥1;
N Ai表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Ai≥1。
可选的,一个非周期DL-PRS测量时机对应一个非周期DL-PRS资源集实例。
可选的,所述第二网络侧设备测量时间窗信息包括非周期性的SRS-Pos的测量时间窗长度MTW′ TRP
其中,
Figure PCTCN2022078262-appb-000004
LH SRS-Pos表示一个非周期SRS-Pos资源集或SRS-Pos测量时机所占用的时长或时隙数量;
K A表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K A≥1;
M Ai表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Ai≥1。
可选的,所述终端测量时间窗信息对应的测量时间窗包含位于不同频率层的至少两个DL-PRS资源集实例;和/或,
所述第二网络侧设备测量时间窗信息对应的测量时间窗包含位于不同上行带宽部分UL BWP的至少两个SRS-Pos资源集实例。
可选的,向所述终端发送所述测量时间窗信息,包括:
直接向所述终端发送所述测量时间窗信息;或者,
根据所述终端发送的第一请求,向所述终端发送所述测量时间窗信息;或者,
根据所述终端的能力信息,向所述终端发送所述测量时间窗信息。
可选的,向所述第二网络侧设备发送所述测量时间窗信息,包括:
直接向所述第二网络侧设备发送所述测量时间窗信息;或者,
根据所述第二网络侧设备发送的第二请求,向所述第二网络侧设备发送所述测量时间窗信息。
可选的,所述向所述终端和/或第二网络侧设备发送所述测量时间窗信息,包括:
通过长期演进技术定位协议LPP信令,向所述终端发送所述测量时间窗信息;和/或,
通过新空口定位协议NRPPa信令,向所述第二网络侧设备发送所述测量 时间窗信息。
可选的,在所述终端测量时间窗信息包括非周期性的DL-PRS的测量窗信息的情况下,在向所述终端和/或第二网络侧设备发送所述测量时间窗信息之前,还包括:
根据第一信息,配置所述非周期性的DL-PRS的测量窗信息;
其中,所述第一信息包括非周期DL-PRS资源信息、非周期DL-PRS资源集信息和/或非周期DL-PRS资源集实例信息。
可选的,一个非周期DL-PRS资源集包括至少一个非周期DL-PRS资源;和/或,
一个非周期DL-PRS资源集实例包括至少一个非周期DL-PRS资源集,且在所述非周期DL-PRS资源集的数量多于一个时,各所述非周期DL-PRS资源集是相同的,各所述非周期DL-PRS资源集是在不同的时间发送的。
本公开实施例还提供了一种信息处理方法,应用于终端,包括:
获取测量时间窗信息;
根据所述测量时间窗信息,在对应的测量时间窗内测量第一定位信号,得到至少一个测量量实例;
将所述至少一个测量量实例发送给第一网络侧设备;
其中,所述测量时间窗信息包括终端测量时间窗信息;
所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元。
可选的,所述将所述至少一个测量量实例发送给第一网络侧设备,包括:
在所述终端测量时间窗信息对应的一个测量时间窗内,发送至少一个测量报告给第一网络侧设备;
其中,所述测量报告中至少携带一个测量量实例。
可选的,所述获取测量时间窗信息,包括:
接收第一网络侧设备发送的测量时间窗信息;或者,
由所述终端自主配置测量时间窗信息。
可选的,所述获取测量时间窗信息,还包括:
获取不同第二网络侧设备的测量时间窗信息;
其中,不同第二网络侧设备的测量时间窗信息相同或不同。
可选的,所述终端测量时间窗信息包括终端测量下行定位参考信号DL-PRS的时间窗口信息和/或除所述DL-PRS外的其他用于定位的下行参考信号的时间窗口信息;所述第一定位信号包括DL-PRS和/或所述其他用于定位的下行参考信号。
可选的,所述将所述至少一个测量量实例发送给第一网络侧设备,包括:
将所述至少一个测量量实例和所述测量量实例对应的时间戳发送给第一网络侧设备。
可选的,所述至少一个测量量实例包括:终端测量量实例;
其中,所述终端测量量实例包括:下行参考信号时间差DL-RSTD、下行参考信号接收功率DL-RSRP、和/或终端收发时间差。
可选的,所述测量时间窗信息包括测量时间窗的持续时长;或者,
所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,
所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
可选的,所述测量时间窗信息包括世界协调时间UTC信息;和/或,
所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number信息。
可选的,所述测量时间窗信息包括测量时间窗索引号;
其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;
所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
可选的,所述终端测量时间窗信息对应的测量时间窗长度与第二网络侧设备测量时间窗信息对应的测量时间窗长度相同;或者,
所述终端测量时间窗信息对应的测量时间窗索引号与第二网络侧设备测量时间窗信息对应的测量时间窗索引号相同。
可选的,所述测量时间窗信息包括以下至少一个参数信息:
参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;
参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源 集实例或者DL-PRS测量时机的数量,N i≥1;
参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;
参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
可选的,所述终端测量时间窗信息包括周期性或半持续的DL-PRS的测量时间窗长度MTW UE
其中,
Figure PCTCN2022078262-appb-000005
PD DL-PRS表示DL-PRS的周期;
J P表示一个终端测量时间窗内所包含的终端测量量实例的数量,J P≥1;
N Pi表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Pi≥1。
可选的,所述终端测量时间窗信息包括非周期性的DL-PRS的测量时间窗长度MTW′ UE
其中,
Figure PCTCN2022078262-appb-000006
LH DL-PRS表示一个非周期DL-PRS资源集或DL-PRS测量时机所占用的时长或时隙数量;
J A表示一个终端测量时间窗内所包含的UE测量量实例的数量,J A≥1;
N Ai表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Ai≥1。
可选的,一个非周期DL-PRS测量时机对应一个非周期DL-PRS资源集实例。
可选的,所述终端测量时间窗信息对应的测量时间窗包含位于不同频率层的至少两个DL-PRS资源集实例。
可选的,所述接收第一网络侧设备发送的测量时间窗信息,包括:
接收第一网络侧设备直接发送的测量时间窗信息;或者,
向第一网络侧设备发送第一请求;接收所述第一网络侧设备根据所述第一请求发送的测量时间窗信息;或者,
向第一网络侧设备发送所述终端的能力信息;接收所述第一网络侧设备 根据所述能力信息发送的测量时间窗信息。
可选的,所述接收第一网络侧设备发送的测量时间窗信息,包括:
接收第一网络侧设备通过长期演进技术定位协议LPP信令发送的测量时间窗信息。
可选的,在所述终端测量时间窗信息包括非周期性的DL-PRS的测量窗信息的情况下,所述由所述终端自主配置测量时间窗信息,包括:
根据第一信息,配置所述非周期性的DL-PRS的测量窗信息;
其中,所述第一信息包括非周期DL-PRS资源信息、非周期DL-PRS资源集信息和/或非周期DL-PRS资源集实例信息。
可选的,一个非周期DL-PRS资源集包括至少一个非周期DL-PRS资源;和/或,
一个非周期DL-PRS资源集实例包括至少一个非周期DL-PRS资源集,且在所述非周期DL-PRS资源集的数量多于一个时,各所述非周期DL-PRS资源集是相同的,各所述非周期DL-PRS资源集是在不同的时间发送的。
可选的,所述终端能否被配置所述终端测量时间窗信息对应的测量时间窗,并在所述测量时间窗内测量第一定位信号,是一种终端能力。
本公开实施例还提供了一种信息处理方法,应用于第二网络侧设备,包括:
接收第一网络侧设备发送的测量时间窗信息;
根据所述测量时间窗信息,在对应的测量时间窗内测量第二定位信号,得到至少一个测量量实例;
将所述至少一个测量量实例发送给所述第一网络侧设备;
其中,所述测量时间窗信息包括第二网络侧设备测量时间窗信息;
所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP。
可选的,所述将所述至少一个测量量实例发送给所述第一网络侧设备,包括:
在所述第二网络侧设备测量时间窗信息对应的一个测量时间窗内,发送至少一个测量报告给第一网络侧设备;
其中,所述测量报告中至少携带一个测量量实例。
可选的,所述接收第一网络侧设备发送的测量时间窗信息,包括:
接收第一网络侧设备发送的不同终端的测量时间窗信息;
其中,不同终端的测量时间窗信息相同或不同。
可选的,所述第二网络侧设备测量时间窗信息包括网络侧设备测量用于定位的探测参考信号SRS-Pos的时间窗口信息和/或除所述SRS-Pos外的其他用于定位的上行参考信号的时间窗口信息;所述第二定位信号包括SRS-Pos和/或所述其他用于定位的上行参考信号。
可选的,所述将所述至少一个测量量实例发送给所述第一网络侧设备,包括:
将所述至少一个测量量实例和所述测量量实例对应的时间戳发送给所述第一网络侧设备。
可选的,所述至少一个测量量实例包括:第二网络侧设备测量量实例;
其中,所述第二网络侧设备测量量实例包括:上行相对到达时间UL-RTOA、上行参考信号接收功率UL-RSRP、和/或第二网络侧设备收发时间差。
可选的,所述测量时间窗信息包括测量时间窗的持续时长;或者,
所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,
所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
可选的,所述测量时间窗信息包括世界协调时间UTC信息;和/或,
所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number信息。
可选的,所述测量时间窗信息包括测量时间窗索引号;
其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;
所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
可选的,终端测量时间窗信息对应的测量时间窗长度与所述第二网络侧设备测量时间窗信息对应的测量时间窗长度相同;或者,
终端测量时间窗信息对应的测量时间窗索引号与所述第二网络侧设备测 量时间窗信息对应的测量时间窗索引号相同。
可选的,所述测量时间窗信息包括以下至少一个参数信息:
参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;
参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N i≥1;
参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;
参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
可选的,所述第二网络侧设备测量时间窗信息包括周期性或半持续的SRS-Pos的测量时间窗长度MTW TRP
其中,
Figure PCTCN2022078262-appb-000007
PD SRS-Pos表示SRS-Pos的周期;
K P表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K P≥1;
M Pi表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Pi≥1。
可选的,所述第二网络侧设备测量时间窗信息包括非周期性的SRS-Pos的测量时间窗长度MTW′ TRP
其中,
Figure PCTCN2022078262-appb-000008
LH SRS-Pos表示一个非周期SRS-Pos资源集或SRS-Pos测量时机所占用的时长或时隙数量;
K A表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K A≥1;
M Ai表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Ai≥1。
可选的,所述第二网络侧设备测量时间窗信息对应的测量时间窗包含位于不同上行带宽部分UL BWP的至少两个SRS-Pos资源集实例。
可选的,所述接收第一网络侧设备发送的测量时间窗信息,包括:
接收第一网络侧设备直接发送的测量时间窗信息;或者,
向第一网络侧设备发送第二请求;接收所述第一网络侧设备根据所述第二请求发送的测量时间窗信息。
可选的,所述接收第一网络侧设备发送的测量时间窗信息,包括:
接收第一网络侧设备通过新空口定位协议NRPPa信令发送的测量时间窗信息。
本公开实施例还提供了一种网络侧设备,所述网络侧设备为第一网络侧设备,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
通过所述收发机接收终端和/或第二网络侧设备根据测量时间窗信息反馈的至少一个测量量实例;
根据所述至少一个测量量实例,确定所述终端的位置信息;
其中,所述测量时间窗信息包括终端测量时间窗信息和/或第二网络侧设备测量时间窗信息;
所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP。
可选的,所述操作还包括:
通过所述收发机向所述终端和/或第二网络侧设备发送所述测量时间窗信息。
可选的,所述终端测量时间窗信息包括终端测量下行定位参考信号DL-PRS的时间窗口信息和/或除所述DL-PRS外的其他用于定位的下行参考信号的时间窗口信息;和/或,
所述第二网络侧设备测量时间窗信息包括第二网络侧设备测量用于定位的探测参考信号SRS-Pos的时间窗口信息和/或除所述SRS-Pos外的其他用于定位的上行参考信号的时间窗口信息。
可选的,所述接收所述终端和/或第二网络侧设备根据所述测量时间窗信息反馈的至少一个测量量实例,包括:
通过所述收发机接收所述终端和/或第二网络侧设备根据所述测量时间窗信息反馈的至少一个测量量实例和所述测量量实例对应的时间戳;
所述根据所述至少一个测量量实例,得到所述终端的位置信息,包括:
根据所述至少一个测量量实例和所述测量量实例对应的时间戳,得到所述终端的位置信息。
可选的,所述至少一个测量量实例包括:终端测量量实例和/或第二网络侧设备测量量实例;
其中,所述终端测量量实例包括:下行参考信号时间差DL-RSTD、下行参考信号接收功率DL-RSRP、和/或终端收发时间差;和/或,
所述第二网络侧设备测量量实例包括:上行相对到达时间UL-RTOA、上行参考信号接收功率UL-RSRP、和/或第二网络侧设备收发时间差。
可选的,所述测量时间窗信息包括测量时间窗的持续时长;或者,
所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,
所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
可选的,所述测量时间窗信息包括世界协调时间UTC信息;和/或,
所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number信息。
可选的,所述测量时间窗信息包括测量时间窗索引号;
其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;
所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
可选的,所述终端测量时间窗信息对应的测量时间窗长度与所述第二网络侧设备测量时间窗信息对应的测量时间窗长度相同;或者,
所述终端测量时间窗信息对应的测量时间窗索引号与所述第二网络侧设备测量时间窗信息对应的测量时间窗索引号相同。
可选的,所述测量时间窗信息包括以下至少一个参数信息:
参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;
参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源 集实例或者DL-PRS测量时机的数量,N i≥1;
参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;
参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
可选的,所述终端测量时间窗信息包括周期性或半持续的DL-PRS的测量时间窗长度MTW UE
其中,
Figure PCTCN2022078262-appb-000009
PD DL-PRS表示DL-PRS的周期;
J P表示一个终端测量时间窗内所包含的终端测量量实例的数量,J P≥1;
N Pi表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Pi≥1。
可选的,所述第二网络侧设备测量时间窗信息包括周期性或半持续的SRS-Pos的测量时间窗长度MTW TRP
其中,
Figure PCTCN2022078262-appb-000010
PD SRS-Pos表示SRS-Pos的周期;
K P表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K P≥1;
M Pi表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Pi≥1。
可选的,所述终端测量时间窗信息包括非周期性的DL-PRS的测量时间窗长度MTW′ UE
其中,
Figure PCTCN2022078262-appb-000011
LH DL-PRS表示一个非周期DL-PRS资源集或DL-PRS测量时机所占用的时长或时隙数量;
J A表示一个终端测量时间窗内所包含的UE测量量实例的数量,J A≥1;
N Ai表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Ai≥1。
可选的,一个非周期DL-PRS测量时机对应一个非周期DL-PRS资源集 实例。
可选的,所述第二网络侧设备测量时间窗信息包括非周期性的SRS-Pos的测量时间窗长度MTW′ TRP
其中,
Figure PCTCN2022078262-appb-000012
LH SRS-Pos表示一个非周期SRS-Pos资源集或SRS-Pos测量时机所占用的时长或时隙数量;
K A表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K A≥1;
M Ai表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Ai≥1。
可选的,所述终端测量时间窗信息对应的测量时间窗包含位于不同频率层的至少两个DL-PRS资源集实例;和/或,
所述第二网络侧设备测量时间窗信息对应的测量时间窗包含位于不同上行带宽部分UL BWP的至少两个SRS-Pos资源集实例。
可选的,向所述终端发送所述测量时间窗信息,包括:
通过所述收发机直接向所述终端发送所述测量时间窗信息;或者,
根据所述终端发送的第一请求,通过所述收发机向所述终端发送所述测量时间窗信息;或者,
根据所述终端的能力信息,通过所述收发机向所述终端发送所述测量时间窗信息。
可选的,向所述第二网络侧设备发送所述测量时间窗信息,包括:
通过所述收发机直接向所述第二网络侧设备发送所述测量时间窗信息;或者,
根据所述第二网络侧设备发送的第二请求,通过所述收发机向所述第二网络侧设备发送所述测量时间窗信息。
可选的,所述向所述终端和/或第二网络侧设备发送所述测量时间窗信息,包括:
利用所述收发机通过长期演进技术定位协议LPP信令,向所述终端发送所述测量时间窗信息;和/或,
利用所述收发机通过新空口定位协议NRPPa信令,向所述第二网络侧设备发送所述测量时间窗信息。
可选的,所述操作还包括:
在所述终端测量时间窗信息包括非周期性的DL-PRS的测量窗信息的情况下,在向所述终端和/或第二网络侧设备发送所述测量时间窗信息之前,根据第一信息,配置所述非周期性的DL-PRS的测量窗信息;
其中,所述第一信息包括非周期DL-PRS资源信息、非周期DL-PRS资源集信息和/或非周期DL-PRS资源集实例信息。
可选的,一个非周期DL-PRS资源集包括至少一个非周期DL-PRS资源;和/或,
一个非周期DL-PRS资源集实例包括至少一个非周期DL-PRS资源集,且在所述非周期DL-PRS资源集的数量多于一个时,各所述非周期DL-PRS资源集是相同的,各所述非周期DL-PRS资源集是在不同的时间发送的。
本公开实施例还提供了一种终端,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
获取测量时间窗信息;
根据所述测量时间窗信息,在对应的测量时间窗内测量第一定位信号,得到至少一个测量量实例;
通过所述收发机将所述至少一个测量量实例发送给第一网络侧设备;
其中,所述测量时间窗信息包括终端测量时间窗信息;
所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元。
可选的,所述将所述至少一个测量量实例发送给第一网络侧设备,包括:
在所述终端测量时间窗信息对应的一个测量时间窗内,通过所述收发机发送至少一个测量报告给第一网络侧设备;
其中,所述测量报告中至少携带一个测量量实例。
可选的,所述获取测量时间窗信息,包括:
通过所述收发机接收第一网络侧设备发送的测量时间窗信息;或者,
由所述终端自主配置测量时间窗信息。
可选的,所述获取测量时间窗信息,还包括:
获取不同第二网络侧设备的测量时间窗信息;
其中,不同第二网络侧设备的测量时间窗信息相同或不同。
可选的,所述终端测量时间窗信息包括终端测量下行定位参考信号DL-PRS的时间窗口信息和/或除所述DL-PRS外的其他用于定位的下行参考信号的时间窗口信息;所述第一定位信号包括DL-PRS和/或所述其他用于定位的下行参考信号。
可选的,所述将所述至少一个测量量实例发送给第一网络侧设备,包括:
通过所述收发机将所述至少一个测量量实例和所述测量量实例对应的时间戳发送给第一网络侧设备。
可选的,所述至少一个测量量实例包括:终端测量量实例;
其中,所述终端测量量实例包括:下行参考信号时间差DL-RSTD、下行参考信号接收功率DL-RSRP、和/或终端收发时间差。
可选的,所述测量时间窗信息包括测量时间窗的持续时长;或者,
所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,
所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
可选的,所述测量时间窗信息包括世界协调时间UTC信息;和/或,
所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number信息。
可选的,所述测量时间窗信息包括测量时间窗索引号;
其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;
所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
可选的,所述终端测量时间窗信息对应的测量时间窗长度与第二网络侧设备测量时间窗信息对应的测量时间窗长度相同;或者,
所述终端测量时间窗信息对应的测量时间窗索引号与第二网络侧设备测量时间窗信息对应的测量时间窗索引号相同。
可选的,所述测量时间窗信息包括以下至少一个参数信息:
参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;
参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N i≥1;
参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;
参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
可选的,所述终端测量时间窗信息包括周期性或半持续的DL-PRS的测量时间窗长度MTW UE
其中,
Figure PCTCN2022078262-appb-000013
PD DL-PRS表示DL-PRS的周期;
J P表示一个终端测量时间窗内所包含的终端测量量实例的数量,J P≥1;
N Pi表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Pi≥1。
可选的,所述终端测量时间窗信息包括非周期性的DL-PRS的测量时间窗长度MTW′ UE
其中,
Figure PCTCN2022078262-appb-000014
LH DL-PRS表示一个非周期DL-PRS资源集或DL-PRS测量时机所占用的时长或时隙数量;
J A表示一个终端测量时间窗内所包含的UE测量量实例的数量,J A≥1;
N Ai表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Ai≥1。
可选的,一个非周期DL-PRS测量时机对应一个非周期DL-PRS资源集实例。
可选的,所述终端测量时间窗信息对应的测量时间窗包含位于不同频率层的至少两个DL-PRS资源集实例。
可选的,所述接收第一网络侧设备发送的测量时间窗信息,包括:
通过所述收发机接收第一网络侧设备直接发送的测量时间窗信息;或者,
通过所述收发机向第一网络侧设备发送第一请求;接收所述第一网络侧设备根据所述第一请求发送的测量时间窗信息;或者,
通过所述收发机向第一网络侧设备发送所述终端的能力信息;接收所述第一网络侧设备根据所述能力信息发送的测量时间窗信息。
可选的,所述接收第一网络侧设备发送的测量时间窗信息,包括:
通过所述收发机接收第一网络侧设备通过长期演进技术定位协议LPP信令发送的测量时间窗信息。
可选的,在所述终端测量时间窗信息包括非周期性的DL-PRS的测量窗信息的情况下,所述由所述终端自主配置测量时间窗信息,包括:
根据第一信息,配置所述非周期性的DL-PRS的测量窗信息;
其中,所述第一信息包括非周期DL-PRS资源信息、非周期DL-PRS资源集信息和/或非周期DL-PRS资源集实例信息。
可选的,一个非周期DL-PRS资源集包括至少一个非周期DL-PRS资源;和/或,
一个非周期DL-PRS资源集实例包括至少一个非周期DL-PRS资源集,且在所述非周期DL-PRS资源集的数量多于一个时,各所述非周期DL-PRS资源集是相同的,各所述非周期DL-PRS资源集是在不同的时间发送的。
可选的,所述终端能否被配置所述终端测量时间窗信息对应的测量时间窗,并在所述测量时间窗内测量第一定位信号,是一种终端能力。
本公开实施例还提供了一种网络侧设备,所述网络侧设备为第二网络侧设备,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
通过所述收发机接收第一网络侧设备发送的测量时间窗信息;
根据所述测量时间窗信息,在对应的测量时间窗内测量第二定位信号,得到至少一个测量量实例;
通过所述收发机将所述至少一个测量量实例发送给所述第一网络侧设备;
其中,所述测量时间窗信息包括第二网络侧设备测量时间窗信息;
所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够 确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP。
可选的,所述将所述至少一个测量量实例发送给所述第一网络侧设备,包括:
在所述第二网络侧设备测量时间窗信息对应的一个测量时间窗内,通过所述收发机发送至少一个测量报告给第一网络侧设备;
其中,所述测量报告中至少携带一个测量量实例。
可选的,所述接收第一网络侧设备发送的测量时间窗信息,包括:
通过所述收发机接收第一网络侧设备发送的不同终端的测量时间窗信息;
其中,不同终端的测量时间窗信息相同或不同。
可选的,所述第二网络侧设备测量时间窗信息包括网络侧设备测量用于定位的探测参考信号SRS-Pos的时间窗口信息和/或除所述SRS-Pos外的其他用于定位的上行参考信号的时间窗口信息;所述第二定位信号包括SRS-Pos和/或所述其他用于定位的上行参考信号。
可选的,所述将所述至少一个测量量实例发送给所述第一网络侧设备,包括:
通过所述收发机将所述至少一个测量量实例和所述测量量实例对应的时间戳发送给所述第一网络侧设备。
可选的,所述至少一个测量量实例包括:第二网络侧设备测量量实例;
其中,所述第二网络侧设备测量量实例包括:上行相对到达时间UL-RTOA、上行参考信号接收功率UL-RSRP、和/或第二网络侧设备收发时间差。
可选的,所述测量时间窗信息包括测量时间窗的持续时长;或者,
所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,
所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
可选的,所述测量时间窗信息包括世界协调时间UTC信息;和/或,
所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number信息。
可选的,所述测量时间窗信息包括测量时间窗索引号;
其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;
所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
可选的,终端测量时间窗信息对应的测量时间窗长度与所述第二网络侧设备测量时间窗信息对应的测量时间窗长度相同;或者,
终端测量时间窗信息对应的测量时间窗索引号与所述第二网络侧设备测量时间窗信息对应的测量时间窗索引号相同。
可选的,所述测量时间窗信息包括以下至少一个参数信息:
参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;
参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N i≥1;
参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;
参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
可选的,所述第二网络侧设备测量时间窗信息包括周期性或半持续的SRS-Pos的测量时间窗长度MTW TRP
其中,
Figure PCTCN2022078262-appb-000015
PD SRS-Pos表示SRS-Pos的周期;
K P表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K P≥1;
M Pi表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Pi≥1。
可选的,所述第二网络侧设备测量时间窗信息包括非周期性的SRS-Pos的测量时间窗长度MTW′ TRP
其中,
Figure PCTCN2022078262-appb-000016
LH SRS-Pos表示一个非周期SRS-Pos资源集或SRS-Pos测量时机所占用的时长或时隙数量;
K A表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测 量量实例的数量,K A≥1;
M Ai表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Ai≥1。
可选的,所述第二网络侧设备测量时间窗信息对应的测量时间窗包含位于不同上行带宽部分UL BWP的至少两个SRS-Pos资源集实例。
可选的,所述接收第一网络侧设备发送的测量时间窗信息,包括:
通过所述收发机接收第一网络侧设备直接发送的测量时间窗信息;或者,
通过所述收发机向第一网络侧设备发送第二请求;接收所述第一网络侧设备根据所述第二请求发送的测量时间窗信息。
可选的,所述接收第一网络侧设备发送的测量时间窗信息,包括:
通过所述收发机接收第一网络侧设备通过新空口定位协议NRPPa信令发送的测量时间窗信息。
本公开实施例还提供了一种信息处理装置,应用于第一网络侧设备,包括:
第一接收单元,用于接收终端和/或第二网络侧设备根据测量时间窗信息反馈的至少一个测量量实例;
第一确定单元,用于根据所述至少一个测量量实例,确定所述终端的位置信息;
其中,所述测量时间窗信息包括终端测量时间窗信息和/或第二网络侧设备测量时间窗信息;
所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP。
可选的,还包括:
第一发送单元,用于向所述终端和/或第二网络侧设备发送所述测量时间窗信息。
可选的,所述终端测量时间窗信息包括终端测量下行定位参考信号DL-PRS的时间窗口信息和/或除所述DL-PRS外的其他用于定位的下行参考信号的时间窗口信息;和/或,
所述第二网络侧设备测量时间窗信息包括第二网络侧设备测量用于定位 的探测参考信号SRS-Pos的时间窗口信息和/或除所述SRS-Pos外的其他用于定位的上行参考信号的时间窗口信息。
可选的,所述接收所述终端和/或第二网络侧设备根据所述测量时间窗信息反馈的至少一个测量量实例,包括:
接收所述终端和/或第二网络侧设备根据所述测量时间窗信息反馈的至少一个测量量实例和所述测量量实例对应的时间戳;
所述根据所述至少一个测量量实例,得到所述终端的位置信息,包括:
根据所述至少一个测量量实例和所述测量量实例对应的时间戳,得到所述终端的位置信息。
可选的,所述至少一个测量量实例包括:终端测量量实例和/或第二网络侧设备测量量实例;
其中,所述终端测量量实例包括:下行参考信号时间差DL-RSTD、下行参考信号接收功率DL-RSRP、和/或终端收发时间差;和/或,
所述第二网络侧设备测量量实例包括:上行相对到达时间UL-RTOA、上行参考信号接收功率UL-RSRP、和/或第二网络侧设备收发时间差。
可选的,所述测量时间窗信息包括测量时间窗的持续时长;或者,
所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,
所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
可选的,所述测量时间窗信息包括世界协调时间UTC信息;和/或,
所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number信息。
可选的,所述测量时间窗信息包括测量时间窗索引号;
其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;
所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
可选的,所述终端测量时间窗信息对应的测量时间窗长度与所述第二网络侧设备测量时间窗信息对应的测量时间窗长度相同;或者,
所述终端测量时间窗信息对应的测量时间窗索引号与所述第二网络侧设备测量时间窗信息对应的测量时间窗索引号相同。
可选的,所述测量时间窗信息包括以下至少一个参数信息:
参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;
参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N i≥1;
参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;
参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
可选的,所述终端测量时间窗信息包括周期性或半持续的DL-PRS的测量时间窗长度MTW UE
其中,
Figure PCTCN2022078262-appb-000017
PD DL-PRS表示DL-PRS的周期;
J P表示一个终端测量时间窗内所包含的终端测量量实例的数量,J P≥1;
N Pi表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Pi≥1。
可选的,所述第二网络侧设备测量时间窗信息包括周期性或半持续的SRS-Pos的测量时间窗长度MTW TRP
其中,
Figure PCTCN2022078262-appb-000018
PD SRS-Pos表示SRS-Pos的周期;
K P表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K P≥1;
M Pi表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Pi≥1。
可选的,所述终端测量时间窗信息包括非周期性的DL-PRS的测量时间窗长度MTW′ UE
其中,
Figure PCTCN2022078262-appb-000019
LH DL-PRS表示一个非周期DL-PRS资源集或DL-PRS测量时机所占用的时长或时隙数量;
J A表示一个终端测量时间窗内所包含的UE测量量实例的数量,J A≥1;
N Ai表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Ai≥1。
可选的,一个非周期DL-PRS测量时机对应一个非周期DL-PRS资源集实例。
可选的,所述第二网络侧设备测量时间窗信息包括非周期性的SRS-Pos的测量时间窗长度MTW′ TRP
其中,
Figure PCTCN2022078262-appb-000020
LH SRS-Pos表示一个非周期SRS-Pos资源集或SRS-Pos测量时机所占用的时长或时隙数量;
K A表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K A≥1;
M Ai表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Ai≥1。
可选的,所述终端测量时间窗信息对应的测量时间窗包含位于不同频率层的至少两个DL-PRS资源集实例;和/或,
所述第二网络侧设备测量时间窗信息对应的测量时间窗包含位于不同上行带宽部分UL BWP的至少两个SRS-Pos资源集实例。
可选的,向所述终端发送所述测量时间窗信息,包括:
直接向所述终端发送所述测量时间窗信息;或者,
根据所述终端发送的第一请求,向所述终端发送所述测量时间窗信息;或者,
根据所述终端的能力信息,向所述终端发送所述测量时间窗信息。
可选的,向所述第二网络侧设备发送所述测量时间窗信息,包括:
直接向所述第二网络侧设备发送所述测量时间窗信息;或者,
根据所述第二网络侧设备发送的第二请求,向所述第二网络侧设备发送所述测量时间窗信息。
可选的,所述向所述终端和/或第二网络侧设备发送所述测量时间窗信息,包括:
通过长期演进技术定位协议LPP信令,向所述终端发送所述测量时间窗信息;和/或,
通过新空口定位协议NRPPa信令,向所述第二网络侧设备发送所述测量时间窗信息。
可选的,还包括:
第一配置单元,用于在所述终端测量时间窗信息包括非周期性的DL-PRS的测量窗信息的情况下,在向所述终端和/或第二网络侧设备发送所述测量时间窗信息之前,根据第一信息,配置所述非周期性的DL-PRS的测量窗信息;
其中,所述第一信息包括非周期DL-PRS资源信息、非周期DL-PRS资源集信息和/或非周期DL-PRS资源集实例信息。
可选的,一个非周期DL-PRS资源集包括至少一个非周期DL-PRS资源;和/或,
一个非周期DL-PRS资源集实例包括至少一个非周期DL-PRS资源集,且在所述非周期DL-PRS资源集的数量多于一个时,各所述非周期DL-PRS资源集是相同的,各所述非周期DL-PRS资源集是在不同的时间发送的。
本公开实施例还提供了一种信息处理装置,应用于终端,包括:
第一获取单元,用于获取测量时间窗信息;
第一处理单元,用于根据所述测量时间窗信息,在对应的测量时间窗内测量第一定位信号,得到至少一个测量量实例;
第二发送单元,用于将所述至少一个测量量实例发送给第一网络侧设备;
其中,所述测量时间窗信息包括终端测量时间窗信息;
所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元。
可选的,所述将所述至少一个测量量实例发送给第一网络侧设备,包括:
在所述终端测量时间窗信息对应的一个测量时间窗内,发送至少一个测量报告给第一网络侧设备;
其中,所述测量报告中至少携带一个测量量实例。
可选的,所述获取测量时间窗信息,包括:
接收第一网络侧设备发送的测量时间窗信息;或者,
由所述终端自主配置测量时间窗信息。
可选的,所述获取测量时间窗信息,还包括:
获取不同第二网络侧设备的测量时间窗信息;
其中,不同第二网络侧设备的测量时间窗信息相同或不同。
可选的,所述终端测量时间窗信息包括终端测量下行定位参考信号DL-PRS的时间窗口信息和/或除所述DL-PRS外的其他用于定位的下行参考信号的时间窗口信息;所述第一定位信号包括DL-PRS和/或所述其他用于定位的下行参考信号。
可选的,所述将所述至少一个测量量实例发送给第一网络侧设备,包括:
将所述至少一个测量量实例和所述测量量实例对应的时间戳发送给第一网络侧设备。
可选的,所述至少一个测量量实例包括:终端测量量实例;
其中,所述终端测量量实例包括:下行参考信号时间差DL-RSTD、下行参考信号接收功率DL-RSRP、和/或终端收发时间差。
可选的,所述测量时间窗信息包括测量时间窗的持续时长;或者,
所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,
所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
可选的,所述测量时间窗信息包括世界协调时间UTC信息;和/或,
所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number信息。
可选的,所述测量时间窗信息包括测量时间窗索引号;
其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;
所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
可选的,所述终端测量时间窗信息对应的测量时间窗长度与第二网络侧设备测量时间窗信息对应的测量时间窗长度相同;或者,
所述终端测量时间窗信息对应的测量时间窗索引号与第二网络侧设备测量时间窗信息对应的测量时间窗索引号相同。
可选的,所述测量时间窗信息包括以下至少一个参数信息:
参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;
参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N i≥1;
参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;
参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
可选的,所述终端测量时间窗信息包括周期性或半持续的DL-PRS的测量时间窗长度MTW UE
其中,
Figure PCTCN2022078262-appb-000021
PD DL-PRS表示DL-PRS的周期;
J P表示一个终端测量时间窗内所包含的终端测量量实例的数量,J P≥1;
N Pi表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Pi≥1。
可选的,所述终端测量时间窗信息包括非周期性的DL-PRS的测量时间窗长度MTW′ UE
其中,
Figure PCTCN2022078262-appb-000022
LH DL-PRS表示一个非周期DL-PRS资源集或DL-PRS测量时机所占用的时长或时隙数量;
J A表示一个终端测量时间窗内所包含的UE测量量实例的数量,J A≥1;
N Ai表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Ai≥1。
可选的,一个非周期DL-PRS测量时机对应一个非周期DL-PRS资源集实例。
可选的,所述终端测量时间窗信息对应的测量时间窗包含位于不同频率层的至少两个DL-PRS资源集实例。
可选的,所述接收第一网络侧设备发送的测量时间窗信息,包括:
接收第一网络侧设备直接发送的测量时间窗信息;或者,
向第一网络侧设备发送第一请求;接收所述第一网络侧设备根据所述第一请求发送的测量时间窗信息;或者,
向第一网络侧设备发送所述终端的能力信息;接收所述第一网络侧设备根据所述能力信息发送的测量时间窗信息。
可选的,所述接收第一网络侧设备发送的测量时间窗信息,包括:
接收第一网络侧设备通过长期演进技术定位协议LPP信令发送的测量时间窗信息。
可选的,在所述终端测量时间窗信息包括非周期性的DL-PRS的测量窗信息的情况下,所述由所述终端自主配置测量时间窗信息,包括:
根据第一信息,配置所述非周期性的DL-PRS的测量窗信息;
其中,所述第一信息包括非周期DL-PRS资源信息、非周期DL-PRS资源集信息和/或非周期DL-PRS资源集实例信息。
可选的,一个非周期DL-PRS资源集包括至少一个非周期DL-PRS资源;和/或,
一个非周期DL-PRS资源集实例包括至少一个非周期DL-PRS资源集,且在所述非周期DL-PRS资源集的数量多于一个时,各所述非周期DL-PRS资源集是相同的,各所述非周期DL-PRS资源集是在不同的时间发送的。
可选的,所述终端能否被配置所述终端测量时间窗信息对应的测量时间窗,并在所述测量时间窗内测量第一定位信号,是一种终端能力。
本公开实施例还提供了一种信息处理装置,应用于第二网络侧设备,包括:
第二接收单元,用于接收第一网络侧设备发送的测量时间窗信息;
第二处理单元,用于根据所述测量时间窗信息,在对应的测量时间窗内测量第二定位信号,得到至少一个测量量实例;
第三发送单元,用于将所述至少一个测量量实例发送给所述第一网络侧设备;
其中,所述测量时间窗信息包括第二网络侧设备测量时间窗信息;
所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP。
可选的,所述将所述至少一个测量量实例发送给所述第一网络侧设备,包括:
在所述第二网络侧设备测量时间窗信息对应的一个测量时间窗内,发送至少一个测量报告给第一网络侧设备;
其中,所述测量报告中至少携带一个测量量实例。
可选的,所述接收第一网络侧设备发送的测量时间窗信息,包括:
接收第一网络侧设备发送的不同终端的测量时间窗信息;
其中,不同终端的测量时间窗信息相同或不同。
可选的,所述第二网络侧设备测量时间窗信息包括网络侧设备测量用于定位的探测参考信号SRS-Pos的时间窗口信息和/或除所述SRS-Pos外的其他用于定位的上行参考信号的时间窗口信息;所述第二定位信号包括SRS-Pos和/或所述其他用于定位的上行参考信号。
可选的,所述将所述至少一个测量量实例发送给所述第一网络侧设备,包括:
将所述至少一个测量量实例和所述测量量实例对应的时间戳发送给所述第一网络侧设备。
可选的,所述至少一个测量量实例包括:第二网络侧设备测量量实例;
其中,所述第二网络侧设备测量量实例包括:上行相对到达时间UL-RTOA、上行参考信号接收功率UL-RSRP、和/或第二网络侧设备收发时间差。
可选的,所述测量时间窗信息包括测量时间窗的持续时长;或者,
所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,
所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
可选的,所述测量时间窗信息包括世界协调时间UTC信息;和/或,
所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number信息。
可选的,所述测量时间窗信息包括测量时间窗索引号;
其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;
所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始 时刻;或者,起始时刻和结束时刻。
可选的,终端测量时间窗信息对应的测量时间窗长度与所述第二网络侧设备测量时间窗信息对应的测量时间窗长度相同;或者,
终端测量时间窗信息对应的测量时间窗索引号与所述第二网络侧设备测量时间窗信息对应的测量时间窗索引号相同。
可选的,所述测量时间窗信息包括以下至少一个参数信息:
参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;
参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N i≥1;
参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;
参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
可选的,所述第二网络侧设备测量时间窗信息包括周期性或半持续的SRS-Pos的测量时间窗长度MTW TRP
其中,
Figure PCTCN2022078262-appb-000023
PD SRS-Pos表示SRS-Pos的周期;
K P表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K P≥1;
M Pi表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Pi≥1。
可选的,所述第二网络侧设备测量时间窗信息包括非周期性的SRS-Pos的测量时间窗长度MTW′ TRP
其中,
Figure PCTCN2022078262-appb-000024
LH SRS-Pos表示一个非周期SRS-Pos资源集或SRS-Pos测量时机所占用的时长或时隙数量;
K A表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K A≥1;
M Ai表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Ai≥1。
可选的,所述第二网络侧设备测量时间窗信息对应的测量时间窗包含位于不同上行带宽部分UL BWP的至少两个SRS-Pos资源集实例。
可选的,所述接收第一网络侧设备发送的测量时间窗信息,包括:
接收第一网络侧设备直接发送的测量时间窗信息;或者,
向第一网络侧设备发送第二请求;接收所述第一网络侧设备根据所述第二请求发送的测量时间窗信息。
可选的,所述接收第一网络侧设备发送的测量时间窗信息,包括:
接收第一网络侧设备通过新空口定位协议NRPPa信令发送的测量时间窗信息。
本公开实施例还提供了一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述第一网络侧设备侧的信息处理方法;或者,
所述计算机程序用于使所述处理器执行上述终端侧的信息处理方法;或者,
所述计算机程序用于使所述处理器执行上述第二网络侧设备侧的信息处理方法。
本公开的上述技术方案的有益效果如下:
上述方案中,所述信息处理方法通过接收终端和/或第二网络侧设备根据测量时间窗信息反馈的至少一个测量量实例;根据所述至少一个测量量实例,确定所述终端的位置信息;其中,所述测量时间窗信息包括终端测量时间窗信息和/或第二网络侧设备测量时间窗信息;所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP;能够支撑实现终端和第二网络侧设备在合适的测量时间窗内对测量量进行测量以得到时间较为匹配的测量量实例,从而使得第一网络侧设备在据此确定终端位置时可以更加准确地估计收发定时误差,或者消除收发定时误差的影响,避免了时变收发定时误差对终端位置计算准确度的影响,从而提升了系统定位精度;很好的解决了相关技术中 针对定位相关的信息处理方案精度差的问题。
附图说明
图1为本公开实施例的无线通信系统架构示意图;
图2为本公开实施例的信息处理方法流程示意图一;
图3为本公开实施例的信息处理方法流程示意图二;
图4为本公开实施例的信息处理方法流程示意图三;
图5为本公开实施例的UE测量时间窗配置示意图;
图6为本公开实施例的周期性DL-PRS的测量时间窗参数示意图;
图7为本公开实施例的非周期性DL-PRS的测量时间窗参数示意图;
图8为本公开实施例的网络侧设备结构示意图一;
图9为本公开实施例的终端结构示意图;
图10为本公开实施例的网络侧设备结构示意图二;
图11为本公开实施例的信息处理装置结构示意图一;
图12为本公开实施例的信息处理装置结构示意图二;
图13为本公开实施例的信息处理装置结构示意图三。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
在此说明,本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile  communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端和网络侧设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
图1示出本公开实施例可应用的一种无线通信系统的框图。无线通信系统包括终端和网络侧设备。
本公开实施例涉及的终端,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端的名称可能也不相同,例如在5G系统中,终端可以称为用户设备(User Equipment,UE)。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络侧设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备,或者其它名称。网络侧设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络侧设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络侧设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络侧设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络侧设备与终端之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是二维MIMO(2 Dimension MIMO,2D-MIMO)、三维MIMO(3 Dimension MIMO,3D-MIMO)、全维MIMO(Full Dimension MIMO,FD-MIMO)或大规模MIMO(massive-MIMO),也可以是分集传输或预编码传输或波束赋形传输等。
基于以上,本公开实施例提供了一种信息处理方法、装置、终端及网络侧设备,用以解决相关技术中针对定位相关的信息处理方案精度差的问题。其中,方法、装置、终端及网络侧设备是基于同一申请构思的,由于方法、装置、终端及网络侧设备解决问题的原理相似,因此方法、装置、终端及网 络侧设备的实施可以相互参见,重复之处不再赘述。
本公开实施例提供的信息处理方法,应用于第一网络侧设备,如图2所示,包括:
步骤21:接收终端和/或第二网络侧设备根据测量时间窗信息反馈的至少一个测量量实例。
终端和第二网络侧设备反馈的测量量实例在时间上是匹配的。
步骤22:根据所述至少一个测量量实例,确定所述终端的位置信息;其中,所述测量时间窗信息包括终端测量时间窗信息和/或第二网络侧设备测量时间窗信息;所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP。
本公开实施例提供的所述信息处理方法通过接收终端和/或第二网络侧设备根据测量时间窗信息反馈的至少一个测量量实例;根据所述至少一个测量量实例,确定所述终端的位置信息;其中,所述测量时间窗信息包括终端测量时间窗信息和/或第二网络侧设备测量时间窗信息;所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP;能够支撑实现终端和第二网络侧设备在合适(即相匹配)的测量时间窗内对测量量进行测量以得到时间较为匹配的测量量实例,从而使得第一网络侧设备在据此(即根据该测量量实例)确定终端位置时可以更加准确地估计收发定时误差,或者消除收发定时误差的影响,避免了时变收发定时误差对终端位置计算准确度的影响,从而提升了系统定位精度;很好的解决了相关技术中针对定位相关的信息处理方案精度差的问题。
针对由第一网络侧设备配置测量时间窗信息的情况,本公开实施例中,所述的信息处理方法,还包括:向所述终端和/或第二网络侧设备发送所述测量时间窗信息。
本公开实施例中,所述终端测量时间窗信息包括终端测量下行定位参考信号DL-PRS的时间窗口信息和/或除所述DL-PRS外的其他用于定位的下行参考信号的时间窗口信息;和/或,所述第二网络侧设备测量时间窗信息包括 第二网络侧设备测量用于定位的探测参考信号SRS-Pos的时间窗口信息和/或除所述SRS-Pos外的其他用于定位的上行参考信号的时间窗口信息。
其中,所述接收所述终端和/或第二网络侧设备根据所述测量时间窗信息反馈的至少一个测量量实例,包括:接收所述终端和/或第二网络侧设备根据所述测量时间窗信息反馈的至少一个测量量实例和所述测量量实例对应的时间戳;所述根据所述至少一个测量量实例,得到所述终端的位置信息,包括:根据所述至少一个测量量实例和所述测量量实例对应的时间戳,得到所述终端的位置信息。
这样可以更好的保证测量量实例在时间上的相匹配。
本公开实施例中,所述至少一个测量量实例包括:终端测量量实例和/或第二网络侧设备测量量实例;其中,所述终端测量量实例包括:下行参考信号时间差(Downlink Reference Signal Time Difference,DL-RSTD)、下行参考信号接收功率(Downlink Reference Signal Received Power,DL-RSRP)、和/或终端收发时间差;和/或,所述第二网络侧设备测量量实例包括:上行相对到达时间(Uplink Time Difference Of Arrival,UL-RTOA)、上行参考信号接收功率(Uplink Reference Signal Received Power,UL-RSRP、和/或第二网络侧设备收发时间差。
其中,所述测量时间窗信息包括测量时间窗的持续时长;或者,所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
本公开实施例中,所述测量时间窗信息包括世界协调时间(Universal Time Coordinated,UTC)信息;和/或,所述测量时间窗信息包括系统无线帧号(System frame number,SFN)信息和时隙号(Slot number)信息。
本公开实施例中,所述测量时间窗信息包括测量时间窗索引号;其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
其中,所述终端测量时间窗信息对应的测量时间窗长度与所述第二网络侧设备测量时间窗信息对应的测量时间窗长度相同;或者,所述终端测量时 间窗信息对应的测量时间窗索引号与所述第二网络侧设备测量时间窗信息对应的测量时间窗索引号相同。
这样可以进一步保证终端与第二网络侧设备在相匹配的时间内对测量量进行测量,并反馈在时间上相匹配的测量量实例。
本公开实施例中,所述测量时间窗信息包括以下至少一个参数信息:参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N i≥1;参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
本公开实施例中,所述终端测量时间窗信息包括周期性或半持续的DL-PRS的测量时间窗长度MTW UE;其中,
Figure PCTCN2022078262-appb-000025
PD DL-PRS表示DL-PRS的周期;J P表示一个终端测量时间窗内所包含的终端测量量实例的数量,J P≥1;N Pi表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Pi≥1。
具体的,半持续DL-PRS也有周期,并且与周期性DL-PRS使用相同的周期值集合。
本公开实施例中,所述第二网络侧设备测量时间窗信息包括周期性或半持续的SRS-Pos的测量时间窗长度MTW TRP;其中,
Figure PCTCN2022078262-appb-000026
Figure PCTCN2022078262-appb-000027
PD SRS-Pos表示SRS-Pos的周期;K P表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K P≥1;M Pi表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Pi≥1。
具体的,半持续SRS-Pos也有周期,并且与周期性SRS-Pos使用相同的周期值集合。
本公开实施例中,所述终端测量时间窗信息包括非周期性的DL-PRS的测量时间窗长度MTW′ UE;其中,
Figure PCTCN2022078262-appb-000028
LH DL-PRS表示一个非周期DL-PRS资源集或DL-PRS测量时机所占用的时长或时隙数量; J A表示一个终端测量时间窗内所包含的UE测量量实例的数量,J A≥1;N Ai表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Ai≥1。
其中,一个非周期DL-PRS测量时机对应一个非周期DL-PRS资源集实例。
本公开实施例中,所述第二网络侧设备测量时间窗信息包括非周期性的SRS-Pos的测量时间窗长度MTW′ TRP;其中,
Figure PCTCN2022078262-appb-000029
Figure PCTCN2022078262-appb-000030
LH SRS-Pos表示一个非周期SRS-Pos资源集或SRS-Pos测量时机所占用的时长或时隙数量;K A表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K A≥1;M Ai表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Ai≥1。
其中,所述终端测量时间窗信息对应的测量时间窗包含位于不同频率层的至少两个DL-PRS资源集实例;和/或,所述第二网络侧设备测量时间窗信息对应的测量时间窗包含位于不同上行带宽部分(Uplink Bandwidth Part,UL BWP)的至少两个SRS-Pos资源集实例。
本公开实施例中,向所述终端发送所述测量时间窗信息,包括:直接向所述终端发送所述测量时间窗信息;或者,根据所述终端发送的第一请求,向所述终端发送所述测量时间窗信息;或者,根据所述终端的能力信息,向所述终端发送所述测量时间窗信息。
本公开实施例中,向所述第二网络侧设备发送所述测量时间窗信息,包括:直接向所述第二网络侧设备发送所述测量时间窗信息;或者,根据所述第二网络侧设备发送的第二请求,向所述第二网络侧设备发送所述测量时间窗信息。
本公开实施例中,所述向所述终端和/或第二网络侧设备发送所述测量时间窗信息,包括:通过长期演进技术定位协议((Long Term Evolution Positioning Protocol,LPP)信令,向所述终端发送所述测量时间窗信息;和/或,通过新空口定位协议(New Radio Positioning Protocol A,NRPPa)信令,向所述第二网络侧设备发送所述测量时间窗信息。
进一步的,在所述终端测量时间窗信息包括非周期性的DL-PRS的测量窗信息的情况下,在向所述终端和/或第二网络侧设备发送所述测量时间窗信息之前,还包括:根据第一信息,配置所述非周期性的DL-PRS的测量窗信息;其中,所述第一信息包括非周期DL-PRS资源信息、非周期DL-PRS资源集信息和/或非周期DL-PRS资源集实例信息。
本公开实施例中,一个非周期DL-PRS资源集包括至少一个非周期DL-PRS资源;和/或,一个非周期DL-PRS资源集实例包括至少一个非周期DL-PRS资源集,且在所述非周期DL-PRS资源集的数量多于一个时,各所述非周期DL-PRS资源集是相同的,各所述非周期DL-PRS资源集是在不同的时间发送的。
本公开实施例还提供了一种信息处理方法,应用于终端,如图3所示,包括:
步骤31:获取测量时间窗信息。
关于获取测量时间窗信息可以是终端自配置测量时间窗信息或者接收测量时间窗信息。
步骤32:根据所述测量时间窗信息,在对应的测量时间窗内测量第一定位信号,得到至少一个测量量实例。
步骤33:将所述至少一个测量量实例发送给第一网络侧设备;其中,所述测量时间窗信息包括终端测量时间窗信息;所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元。
本公开实施例中,测量时间窗信息还可以包括第二网络侧设备时间窗信息,并据此进行第二定位信号(比如SRS-Pos)的发送。
本公开实施例提供的所述信息处理方法通过获取测量时间窗信息;根据所述测量时间窗信息,在对应的测量时间窗内测量第一定位信号,得到至少一个测量量实例;将所述至少一个测量量实例发送给第一网络侧设备;其中,所述测量时间窗信息包括终端测量时间窗信息;所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;能够支撑实现终端和第二网络侧设备在合适(即相匹配)的测量时间窗内对测量量进行测量以得到时间较为匹配的测量量实例,从而使得第一网络侧设备在 据此(即根据该测量量实例)确定终端位置时可以更加准确地估计收发定时误差,或者消除收发定时误差的影响,避免了时变收发定时误差对终端位置计算准确度的影响,从而提升了系统定位精度;很好的解决了相关技术中针对定位相关的信息处理方案精度差的问题。
本公开实施例中,所述将所述至少一个测量量实例发送给第一网络侧设备,包括:在所述终端测量时间窗信息对应的一个测量时间窗内,发送至少一个测量报告给第一网络侧设备;其中,所述测量报告中至少携带一个测量量实例。
其中,所述获取测量时间窗信息,包括:接收第一网络侧设备发送的测量时间窗信息;或者,由所述终端自主配置测量时间窗信息。
进一步的,所述获取测量时间窗信息,还包括:获取不同第二网络侧设备的测量时间窗信息;其中,不同第二网络侧设备的测量时间窗信息相同或不同。
本公开实施例中,所述终端测量时间窗信息包括终端测量下行定位参考信号DL-PRS的时间窗口信息和/或除所述DL-PRS外的其他用于定位的下行参考信号的时间窗口信息;所述第一定位信号包括DL-PRS和/或所述其他用于定位的下行参考信号。
其中,所述将所述至少一个测量量实例发送给第一网络侧设备,包括:将所述至少一个测量量实例和所述测量量实例对应的时间戳发送给第一网络侧设备。
这样可以更好的保证测量量实例在时间上的相匹配。
本公开实施例中,所述至少一个测量量实例包括:终端测量量实例;其中,所述终端测量量实例包括:下行参考信号时间差DL-RSTD、下行参考信号接收功率DL-RSRP、和/或终端收发时间差。
其中,所述测量时间窗信息包括测量时间窗的持续时长;或者,所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
本公开实施例中,所述测量时间窗信息包括世界协调时间UTC信息;和/或,所述测量时间窗信息包括系统无线帧号(SFN)信息和时隙号(Slot number) 信息。
本公开实施例中,所述测量时间窗信息包括测量时间窗索引号;其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
其中,所述终端测量时间窗信息对应的测量时间窗长度与第二网络侧设备测量时间窗信息对应的测量时间窗长度相同;或者,所述终端测量时间窗信息对应的测量时间窗索引号与第二网络侧设备测量时间窗信息对应的测量时间窗索引号相同。
本公开实施例中,所述测量时间窗信息包括以下至少一个参数信息:参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N i≥1;参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
本公开实施例中,所述终端测量时间窗信息包括周期性或半持续的DL-PRS的测量时间窗长度MTW UE;其中,
Figure PCTCN2022078262-appb-000031
PD DL-PRS表示DL-PRS的周期;J P表示一个终端测量时间窗内所包含的终端测量量实例的数量,J P≥1;N Pi表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Pi≥1。
具体的,半持续DL-PRS也有周期,并且与周期性DL-PRS使用相同的周期值集合。
本公开实施例中,所述终端测量时间窗信息包括非周期性的DL-PRS的测量时间窗长度MTW′ UE;其中,
Figure PCTCN2022078262-appb-000032
LH DL-PRS表示一个非周期DL-PRS资源集或DL-PRS测量时机所占用的时长或时隙数量;J A表示一个终端测量时间窗内所包含的UE测量量实例的数量,J A≥1;N Ai表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Ai≥1。
其中,一个非周期DL-PRS测量时机对应一个非周期DL-PRS资源集实例。
本公开实施例中,所述终端测量时间窗信息对应的测量时间窗包含位于不同频率层的至少两个DL-PRS资源集实例。
其中,所述接收第一网络侧设备发送的测量时间窗信息,包括:接收第一网络侧设备直接发送的测量时间窗信息;或者,向第一网络侧设备发送第一请求;接收所述第一网络侧设备根据所述第一请求发送的测量时间窗信息;或者,向第一网络侧设备发送所述终端的能力信息;接收所述第一网络侧设备根据所述能力信息发送的测量时间窗信息。
本公开实施例中,所述接收第一网络侧设备发送的测量时间窗信息,包括:接收第一网络侧设备通过长期演进技术定位协议LPP信令发送的测量时间窗信息。
其中,在所述终端测量时间窗信息包括非周期性的DL-PRS的测量窗信息的情况下,所述由所述终端自主配置测量时间窗信息,包括:根据第一信息,配置所述非周期性的DL-PRS的测量窗信息;其中,所述第一信息包括非周期DL-PRS资源信息、非周期DL-PRS资源集信息和/或非周期DL-PRS资源集实例信息。
本公开实施例中,一个非周期DL-PRS资源集包括至少一个非周期DL-PRS资源;和/或,一个非周期DL-PRS资源集实例包括至少一个非周期DL-PRS资源集,且在所述非周期DL-PRS资源集的数量多于一个时,各所述非周期DL-PRS资源集是相同的,各所述非周期DL-PRS资源集是在不同的时间发送的。
其中,所述终端能否被配置所述终端测量时间窗信息对应的测量时间窗,并在所述测量时间窗内测量第一定位信号,是一种终端能力。
本公开实施例还提供了一种信息处理方法,应用于第二网络侧设备,如图4所示,包括:
步骤41:接收第一网络侧设备发送的测量时间窗信息;
步骤42:根据所述测量时间窗信息,在对应的测量时间窗内测量第二定位信号,得到至少一个测量量实例;
步骤43:将所述至少一个测量量实例发送给所述第一网络侧设备;其中,所述测量时间窗信息包括第二网络侧设备测量时间窗信息;所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP。
本公开实施例中,测量时间窗信息还可以包括终端时间窗信息,并据此进行第一定位信号(比如DL-PRS)的发送。
本公开实施例提供的所述信息处理方法通过接收第一网络侧设备发送的测量时间窗信息;根据所述测量时间窗信息,在对应的测量时间窗内测量第二定位信号,得到至少一个测量量实例;将所述至少一个测量量实例发送给所述第一网络侧设备;其中,所述测量时间窗信息包括第二网络侧设备测量时间窗信息;所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP;能够支撑实现终端和第二网络侧设备在合适(即相匹配)的测量时间窗内对测量量进行测量以得到时间较为匹配的测量量实例,从而使得第一网络侧设备在据此(即根据该测量量实例)确定终端位置时可以更加准确地估计收发定时误差,或者消除收发定时误差的影响,避免了时变收发定时误差对终端位置计算准确度的影响,从而提升了系统定位精度;很好的解决了相关技术中针对定位相关的信息处理方案精度差的问题。
其中,所述将所述至少一个测量量实例发送给所述第一网络侧设备,包括:在所述第二网络侧设备测量时间窗信息对应的一个测量时间窗内,发送至少一个测量报告给第一网络侧设备;其中,所述测量报告中至少携带一个测量量实例。
本公开实施例中,所述接收第一网络侧设备发送的测量时间窗信息,包括:接收第一网络侧设备发送的不同终端的测量时间窗信息;其中,不同终端的测量时间窗信息相同或不同。
本公开实施例中,所述第二网络侧设备测量时间窗信息包括网络侧设备测量用于定位的探测参考信号SRS-Pos的时间窗口信息和/或除所述SRS-Pos外的其他用于定位的上行参考信号的时间窗口信息;所述第二定位信号包括SRS-Pos和/或所述其他用于定位的上行参考信号。
其中,所述将所述至少一个测量量实例发送给所述第一网络侧设备,包括:将所述至少一个测量量实例和所述测量量实例对应的时间戳发送给所述第一网络侧设备。
这样可以更好的保证测量量实例在时间上的相匹配。
本公开实施例中,所述至少一个测量量实例包括:第二网络侧设备测量量实例;其中,所述第二网络侧设备测量量实例包括:上行相对到达时间UL-RTOA、上行参考信号接收功率UL-RSRP、和/或第二网络侧设备收发时间差。
其中,所述测量时间窗信息包括测量时间窗的持续时长;或者,所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
本公开实施例中,所述测量时间窗信息包括世界协调时间UTC信息;和/或,所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number信息。
本公开实施例中,所述测量时间窗信息包括测量时间窗索引号;其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
其中,终端测量时间窗信息对应的测量时间窗长度与所述第二网络侧设备测量时间窗信息对应的测量时间窗长度相同;或者,终端测量时间窗信息对应的测量时间窗索引号与所述第二网络侧设备测量时间窗信息对应的测量时间窗索引号相同。
本公开实施例中,所述测量时间窗信息包括以下至少一个参数信息:参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N i≥1;参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
本公开实施例中,所述第二网络侧设备测量时间窗信息包括周期性或半持续的SRS-Pos的测量时间窗长度MTW TRP;其中,
Figure PCTCN2022078262-appb-000033
Figure PCTCN2022078262-appb-000034
PD SRS-Pos表示SRS-Pos的周期;K P表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K P≥1;M Pi表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Pi≥1。
具体的,半持续SRS-Pos也有周期,并且与周期性SRS-Pos使用相同的周期值集合。
本公开实施例中,所述第二网络侧设备测量时间窗信息包括非周期性的SRS-Pos的测量时间窗长度MTW′ TRP;其中,
Figure PCTCN2022078262-appb-000035
Figure PCTCN2022078262-appb-000036
LH SRS-Pos表示一个非周期SRS-Pos资源集或SRS-Pos测量时机所占用的时长或时隙数量;K A表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K A≥1;M Ai表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Ai≥1。
其中,所述第二网络侧设备测量时间窗信息对应的测量时间窗包含位于不同上行带宽部分UL BWP的至少两个SRS-Pos资源集实例。
本公开实施例中,所述接收第一网络侧设备发送的测量时间窗信息,包括:接收第一网络侧设备直接发送的测量时间窗信息;或者,向第一网络侧设备发送第二请求;接收所述第一网络侧设备根据所述第二请求发送的测量时间窗信息。
其中,所述接收第一网络侧设备发送的测量时间窗信息,包括:接收第一网络侧设备通过新空口定位协议NRPPa信令发送的测量时间窗信息。
在此说明,本公开实施例中,可以是终端根据上述至少一个测量量实例确定所述终端的位置信息,关于测量时间窗信息的相关内容,可以参见以上,在此不再赘述。
下面对本公开实施例提供的所述信息处理方法进行进一步说明,第一网络侧设备以LMF为例,第二网络侧设备以TRP为例,第一定位信号以DL-PRS为例,第二定位信号以SRS-Pos为例。
针对上述技术问题,本公开实施例提供了一种信息处理方法,具体涉及一种测量时间窗信息的配置方法。其中,可以是由LMF或者UE配置测量时间窗信息并发送;TRP根据测量时间窗信息向LMF或UE反馈测量量实例;由LMF或UE根据测量量实例完成UE定位;在由LMF完成UE定位的情况下还需要UE根据测量时间窗信息反馈测量量实例;在由UE完成UE定位的情况下,UE自己根据测量时间窗信息得到测量量实例,并据此完成UE定位。
也可理解为:根据配置的测量时间窗信息,UE或TRP在测量时间窗内测量DL-PRS或SRS-Pos,获得至少一个测量量实例(即测量结果),UE或TRP上报所述测量量实例,UE或LMF依据上报的测量量实例,完成UE定位流程。本方案提供了一种能够解决上述技术问题的手段;本方案还可实现UE上报单侧测量结果的目的。
本方案主要涉及以下几部分:
部分一,测量时间窗的配置;
(1)测量时间窗包括有UE测量时间窗以及TRP测量时间窗。
(2)UE测量时间窗是指UE测量DL-PRS的时间窗口,在该时间窗口内,UE通过测量DL-PRS,获得至少一个UE测量量实例。
(3)TRP测量时间窗是指TRP测量SRS-Pos的时间窗口,在该时间窗口内,TRP通过测量SRS-Pos,获得至少一个TRP测量量实例。
(4)UE或TRP不在测量时间窗之外的时间内测量DL-PRS或SRS-Pos。
(5)UE或TRP在上报测量量实例时,同时上报该测量量实例所对应的时间戳。
(6)UE测量量实例包括有DL-RSTD、DL-RSRP、UE收发时间差等;
(7)TRP测量量实例包括有UL-RTOA、UL-RSRP、gNB收发时间差等。
部分二,测量时间窗的参数;
(8)测量时间窗配置的方式包括以下至少一种:
方式1:仅配置了测量时间窗的持续时长;对应于所述测量时间窗信息包括测量时间窗的持续时长;
方式2:同时配置了测量时间窗的起始时刻以及测量时间窗的持续时长;对应于所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;
方式3:同时配置了测量时间窗的起始时刻以及测量时间窗的结束时刻。对应于所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
(9)测量时间窗的配置中时刻的配置方式包括以下至少一种:
方式1:以世界协调时间(UTC)的形式进行配置;对应于,所述测量时间窗信息包括世界协调时间UTC信息;
方式2:以系统无线帧号(SFN)以及时隙号(Slot number)的形式进行配置。对应于所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number信息。
(10)新引入测量时间窗索引号:
通过测量时间索引号来确定一种测量时间窗的各项参数组合,包括其持续时长等参数。对应于所述测量时间窗信息包括测量时间窗索引号;其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
(11)对于周期性或半持续DL-PRS和SRS-Pos:
1)DL-PRS:UE测量时间窗的长度MTW UE为:
Figure PCTCN2022078262-appb-000037
PD DL-PRS是DL-PRS的周期;
J P是一个UE测量时间窗内所包含的UE测量量实例的数量,J P≥1;
N Pi是第i个UE测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Pi≥1。
2)SRS-Pos:TRP测量时间窗的长度MTW TRP为:
Figure PCTCN2022078262-appb-000038
PD SRS-Pos是SRS-Pos的周期;
K P是一个TRP测量时间窗内所包含的TRP测量量实例的数量,K P≥1;
M Pi是第i个TRP测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Pi≥1。
(12)对于非周期性DL-PRS和SRS-Pos:
1)DL-PRS:UE测量时间窗的长度MTW′ UE为:
Figure PCTCN2022078262-appb-000039
LH DL-PRS是一个非周期DL-PRS资源集或DL-PRS测量时机所占用的时长或时隙数量;
J A是一个UE测量时间窗内所包含的UE测量量实例的数量,J A≥1;
N Ai是第i个UE测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Ai≥1。
2)SRS-Pos:TRP测量时间窗的长度MTW′ TRP为:
Figure PCTCN2022078262-appb-000040
LH SRS-Pos是一个非周期SRS-Pos资源集或SRS-Pos测量时机所占用的时长或时隙数量;
K A是一个TRP测量时间窗内所包含的TRP测量量实例的数量,K A≥1;
M Ai是第i个TRP测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Ai≥1。
(13)对于Multi-RTT定位方案,用来测量DL-PRS的UE测量时间窗的长度应与用来测量SRS-Pos的TRP测量时间窗的长度相同;或者UE测量时间窗和TRP测量时间窗的索引号相同。对应于所述终端测量时间窗信息对应的测量时间窗长度与所述第二网络侧设备测量时间窗信息对应的测量时间窗长度相同;或者,所述终端测量时间窗信息对应的测量时间窗索引号与所述第二网络侧设备测量时间窗信息对应的测量时间窗索引号相同。
(14)一个UE测量时间窗可以包含位于不同频率层的多个DL-PRS资源集实例。
(15)一个TRP测量时间窗可以包含位于不同UL BWP的多个SRS-Pos资源集实例。
(16)UE是否能够被配置UE测量时间窗,并在测量时间窗内测量DL-PRS,是一种UE能力。对应于所述终端能否被配置所述终端测量时间窗信息对应的测量时间窗,并在所述测量时间窗内测量第一定位信号,是一种终端能力。
部分三,测量时间窗的配置方式和信令;
(17)UE测量时间窗的配置方式包括以下至少一种:
方式1:LMF直接配置UE测量时间窗:
方式2:根据UE的请求,LMF配置UE测量时间窗;对应于根据所述终端发送的第一请求,向所述终端发送所述测量时间窗信息;
方式3:UE上报UE能力(各项参数J、K、N、M的取值范围),针对UE所能支持上述参数范围,LMF配置UE测量时间窗。对应于根据所述终端的能力信息,向所述终端发送所述测量时间窗信息。
(18)TRP测量时间窗的配置方式:
方式1:LMF直接配置TRP测量时间窗:
方式2:根据TRP的请求,LMF配置TRP测量时间窗。对应于根据所述第二网络侧设备发送的第二请求,向所述第二网络侧设备发送所述测量时间窗信息。
(19)UE测量时间窗和TRP测量时间窗的配置信令:
1)对于UE测量时间窗:
LMF可通过LPP信令配置给UE。
2)对于TRP测量时间窗:
LMF可通过NRPPa信令配置给TRP。
部分四,非周期DL-PRS的配置方案;
(20)非周期DL-PRS采用非周期DL-PRS资源、非周期DL-PRS资源集、非周期DL-PRS资源集实例的方式进行配置(对应于上述根据第一信息,配置所述非周期性的DL-PRS的测量窗信息):
1)一个非周期DL-PRS资源集中包括有至少一个非周期DL-PRS资源;
2)一个非周期DL-PRS资源集实例中包括有至少一个非周期DL-PRS资源集,当多于一个时(即所述非周期DL-PRS资源集的数量多于一个时),多个非周期DL-PRS资源集是重复发送的(对应于各所述非周期DL-PRS资源集是相同的,且各所述非周期DL-PRS资源集是在不同的时间发送的)。
(21)一个非周期DL-PRS测量时机就是指一个非周期DL-PRS资源集实例。对应于一个非周期DL-PRS测量时机对应一个非周期DL-PRS资源集实例。
(22)以上涉及的TRP,也可以是gNB。
下面对本公开实施例提供的方案进行举例说明。
举例1(测量时间窗的配置):
本举例的方案涉及:根据配置的测量时间窗信息,UE或TRP在测量时间窗内测量DL-PRS或SRS-Pos,获得至少一个测量量实例,UE或TRP上报所述测量量实例。
具体的,本举例给出了一种测量时间窗的配置方法,测量时间窗的特点在于UE或TRP只能在规定的测量时间窗内完成DL-PRS与SRS-Pos的测量过程,实际上是通过引入测量时间窗,限制了UE或TRP的测量行为,一种可能的配置方案就是在Multi-RTT定位方法中,给UE和TRP配置相同的测量时间窗,从而Multi-RTT定位方法中每个测量量的测量时间范围是相同的,这些测量量的时间戳也是位于一个短的时间区间内,这些测量量的收发定时误差也是相近的,更好的确保使得LMF或UE在计算终端位置时通过差分的方式消除收发定时误差的影响,避免了时变收发定时误差对终端位置计算准确度的影响,从而提升了系统定位精度。
其中,测量时间窗包括有UE测量时间窗以及TRP测量时间窗。
UE测量时间窗是指UE测量DL-PRS的时间窗口,在该时间窗口内,UE通过测量DL-PRS,获得至少一个UE测量量实例。
TRP测量时间窗是指TRP测量SRS-Pos的时间窗口,在该时间窗口内,TRP通过测量SRS-Pos,获得至少一个TRP测量量实例。
UE或TRP不在测量时间窗之外的时间内测量DL-PRS或SRS-Pos。并且,UE或TRP在上报测量量实例时,同时上报该测量量实例所对应的时间戳。
以上所述中的UE测量量实例包括有DL-RSTD、DL-RSRP、UE收发时间差等;TRP测量量实例包括有UL-RTOA、UL-RSRP、gNB收发时间差等。
以DL-RSTD为例,如图5所示,UE的测量时间窗如图中虚线矩形框所示,图中a表示测量量实例#1,b表示测量量实例#2,c表示测量量实例#3,d表示测量报告#1,e表示测量报告#2。图中的UE在一个DL-PRS周期中被配置了1个DL-PRS资源集实例或DL-PRS测量时机,如图中R1~R5就分别代表了5个DL-PRS周期中的各个DL-PRS资源集实例或DL-PRS测量时机。测量时间窗可以不包含部分测量机会,如R2。UE在第1个测量报告(即测量报告#1)中上报了1个测量量实例,即为测量量实例#1,UE在第2个测量 报告(即测量报告#2)中上报了2个测量量实例,分别是测量量实例#2和测量量实例3。这三个测量实例都分别有自己的时间戳(time stamp)。而测量量实例#1是使用R1测量获得的,其时间戳是T1;测量量实例#2是使用R3~R4获得的,其时间戳是T2;测量量实例#3是使用R5获得的,其时间戳是T3。这样,UE在2个测量报告中上报这3个测量量实例时,不但具有时间戳信息,而且时间戳可以根据测量时间窗的配置,时间戳可以对应到很小的范围,从而方便各种测量量之间进行时间戳匹配。由于收发定时误差是时变的,所以在时间上相同或相近的测量量会具有相同或相近的收发定时误差,这样,基于测量时间窗的时间戳匹配就变得尤为重要了,这种匹配有利于UE或LMF在进行定位解算时收发定时误差的估计或者消除。
采用本举例中的方法,可以通过向UE或TRP配置合适的测量时间窗,从而针对每个测量量的测量时间范围进行了限制,方便各种测量量之间进行时间戳匹配,使得LMF或UE在计算终端位置时可以更加准确地估计收发定时误差,或者消除收发定时误差的影响,避免了时变收发定时误差对终端位置计算准确度的影响,从而提升了系统定位精度。
举例2(测量时间窗的参数):
本举例的方案涉及:根据配置的测量时间窗信息,UE或TRP在测量时间窗内测量DL-PRS或SRS-Pos,获得至少一个测量量实例,UE或TRP上报所述测量量实例。
1.测量时间窗配置的方式包括以下至少一种:
方式1:仅配置了测量时间窗的持续时长;
方式2:同时配置了测量时间窗的起始时刻以及测量时间窗的持续时长。
方式3:同时配置了测量时间窗的起始时刻以及测量时间窗的结束时刻。
2.测量时间窗的配置中时刻的配置方式包括以下至少一种:
方式1:以世界协调时间(UTC)的形式进行配置;
方式2:以系统无线帧号(SFN)以及时隙号(Slot number)的形式进行配置。
3.新引入测量时间窗索引号:
通过测量时间索引号来确定一种测量时间窗的各项参数组合,包括其持 续时长等参数。
需要指出的是,对于测量时间窗配置的方式中的方式1,如果仅仅配置了测量时间窗的持续时长,那么测量时间窗的起始时刻可以默认为UE或TRP期望DL-PRS或SRS-Pos到达的时刻。对于DL-PRS而言,该时刻时可由参数DL(下行)-PRS(定位参考信号)-expectedRSTD(期望参考信号时间差)和DL-PRS-expectedRSTD-uncertainty(不确定度)进行指示。
采用本举例中的方法,可以采用不同的方式配置测量时间窗,以及测量时间窗的参考时间,从而使得UE或TRP可以根据以上的配置,确定测量时间窗的具体时间位置,并在测量时间窗内完成DL-PRS或SRS-Pos的测量,进而可以使得LMF或UE在计算终端位置时可以更加准确地估计收发定时误差,或者消除收发定时误差的影响,避免了时变收发定时误差对终端位置计算准确度的影响,从而提升了系统定位精度。
举例3(周期性或半持续DL-PRS和SRS-Pos的测量时间窗参数):
本举例的方案涉及:根据配置的测量时间窗信息,UE或TRP在测量时间窗内测量DL-PRS或SRS-Pos,获得至少一个测量量实例,UE或TRP上报所述测量量实例。
其中,对于周期性或半持续DL-PRS和SRS-Pos:
1.DL-PRS:UE测量时间窗的长度MTW UE为:
Figure PCTCN2022078262-appb-000041
PD DL-PRS是DL-PRS的周期;
J P是一个UE测量时间窗内所包含的UE测量量实例的数量,J P≥1;
N Pi是第i个UE测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Pi≥1。
2.SRS-Pos:TRP测量时间窗的长度MTW TRP为:
Figure PCTCN2022078262-appb-000042
PD SRS-Pos是SRS-Pos的周期;
K P是一个TRP测量时间窗内所包含的TRP测量量实例的数量,K P≥1;
M Pi是第i个TRP测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Pi≥1。
如图6所示,图中f表示测量量实例#2,g表示测量量实例#3,h表示测 量报告#2。图中的UE在一个DL-PRS周期中被配置了1个DL-PRS资源集实例或DL-PRS测量时机,如图中R1~R5就分别代表了5个DL-PRS周期中的各个DL-PRS资源集实例或DL-PRS测量时机。测量时间窗可以不包含部分测量机会,如R2和R5。在UE测量时间窗#2中,测量报告#2中包括有两个测量量实例(即测量量实例#2和测量量实例#3),测量量实例#2被配置了2个DL-PRS资源集实例或DL-PRS测量时机(对应R2和R3),而测量量实例#3被配置了1个DL-PRS资源集实例或DL-PRS测量时机(对应R4),这样UE测量时间窗#2的长度就是3个DL-PRS的周期。
采用本举例中的方法,可以通过向UE或TRP配置合适的测量时间窗,从而针对每个周期性或半持续测量量的测量时间范围进行了限制,方便各种周期性或半持续测量量之间进行时间戳匹配,使得LMF或UE在计算终端位置时可以更加准确地估计收发定时误差,或者消除收发定时误差的影响,避免了时变收发定时误差对终端位置计算准确度的影响,从而提升了系统定位精度。
举例4(非周期性DL-PRS和SRS-Pos的测量时间窗参数):
本举例的方案涉及:根据配置的测量时间窗信息,UE或TRP在测量时间窗内测量DL-PRS或SRS-Pos,获得至少一个测量量实例,UE或TRP上报所述测量量实例。
其中,对于非周期性DL-PRS和SRS-Pos:
1.DL-PRS:UE测量时间窗的长度MTW′ UE为:
Figure PCTCN2022078262-appb-000043
LH DL-PRS是一个非周期DL-PRS资源集或DL-PRS测量时机所占用的时长或时隙数量;
J A是一个UE测量时间窗内所包含的UE测量量实例的数量,J A≥1;
N Ai是第i个UE测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Ai≥1。
2.SRS-Pos:TRP测量时间窗的长度MTW′ TRP为:
Figure PCTCN2022078262-appb-000044
LH SRS-Pos是一个非周期SRS-Pos资源集或SRS-Pos测量时机所占用的时 长或时隙数量;
K A是一个TRP测量时间窗内所包含的TRP测量量实例的数量,K A≥1;
M Ai是第i个TRP测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Ai≥1。
如图7所示,图中i表示测量量实例#2,j表示测量量实例#3,k表示测量报告#2。R1~R5分别代表了5个DL-PRS资源集实例或DL-PRS测量时机。在UE测量时间窗#2中,测量报告#2中包括有两个测量量实例,测量量实例#2被配置了2个DL-PRS资源集实例或DL-PRS测量时机(对应R2和R3),而测量量实例#3被配置了1个DL-PRS资源集实例或DL-PRS测量时机(对应R4),假设每个DL-PRS资源集实例或DL-PRS测量时机的时长为1ms,那么UE测量时间窗#2的长度就是3ms。
采用本举例中的方法,可以通过向UE或TRP配置合适的测量时间窗,从而针对每个非周期测量量的测量时间范围进行了限制,方便各种非周期测量量之间进行时间戳匹配,使得LMF或UE在计算终端位置时可以更加准确地估计收发定时误差,或者消除收发定时误差的影响,避免了时变收发定时误差对终端位置计算准确度的影响,从而提升了系统定位精度。
举例5(测量时间窗的配置方式和信令):
本举例的方案涉及:根据配置的测量时间窗信息,UE或TRP在测量时间窗内测量DL-PRS或SRS-Pos,获得至少一个测量量实例,UE或TRP上报所述测量量实例。
其中,1.UE测量时间窗的配置方式包括有如下3种可能的方式中的至少一种:
方案1:LMF直接配置UE测量时间窗:
方案2:根据UE的请求,LMF配置UE测量时间窗;
方案3:UE上报UE能力(各项参数J、K、N、M的取值范围),针对UE所能支持上述参数范围,LMF配置UE测量时间窗。
2.TRP测量时间窗的配置方式包括有如下2种可能的方式中的至少一种:
方案1:LMF直接配置TRP测量时间窗:
方案2:根据TRP的请求,LMF配置TRP测量时间窗。
3.UE测量时间窗和TRP测量时间窗的配置信令:
1)对于UE测量时间窗:
LMF可通过LPP信令配置给UE。
)对于TRP测量时间窗:
LMF可通过NRPPa信令配置给TRP。
采用本举例中的方法,可以通过向UE或TRP配置合适的测量时间窗,从而针对每个测量量的测量时间范围进行了限制,方便各种测量量之间进行时间戳匹配,使得LMF或UE在计算终端位置时可以更加准确地估计收发定时误差,或者消除收发定时误差的影响,避免了时变收发定时误差对终端位置计算准确度的影响,从而提升了系统定位精度。
举例6(非周期DL-PRS的配置方案):
本举例的方案涉及:非周期DL-PRS采用非周期DL-PRS资源、非周期DL-PRS资源集、非周期DL-PRS资源集实例的方式进行配置;其中:
1)一个非周期DL-PRS资源集中包括有至少一个非周期DL-PRS资源;
2)一个DL-PRS资源集实例中包括有至少一个DL-PRS资源集,当多于一个时,多个非周期DL-PRS资源集是重复发送的。
另外,一个非周期DL-PRS测量时机就是指一个非周期DL-PRS资源集实例。
采用本举例中的方法,可以使用资源、资源集、资源集实例的方式对非周期DL-PRS进行配置,从而可以通过这种配置方式来对非周期DL-PRS的测量时间窗进行配置,进而可以使得LMF或UE在计算终端位置时可以更加准确地估计收发定时误差,或者消除收发定时误差的影响。
由上可知,本公开实施例提供了一种测量时间窗的配置方法,相对于相关技术,本方案以通过向UE或TRP配置合适的测量时间窗(也可理解为相匹配的测量时间窗,比如相同的时间窗,或者两者的时间窗相差在阈值范围内),从而针对每个测量量的测量时间范围进行了限制,方便各种测量量之间进行时间戳匹配,使得LMF或UE在计算终端位置时可以更加准确地估计收发定时误差,或者消除收发定时误差的影响,避免了时变收发定时误差对终端位置计算准确度的影响,从而提升了系统定位精度。
本公开实施例还提供了一种网络侧设备,所述网络侧设备为第一网络侧设备,如图8所示,包括存储器81,收发机82,处理器83:
存储器81,用于存储计算机程序;收发机82,用于在所述处理器83的控制下收发数据;处理器83,用于读取所述存储器81中的计算机程序并执行以下操作:
通过所述收发机82接收终端和/或第二网络侧设备根据测量时间窗信息反馈的至少一个测量量实例;
根据所述至少一个测量量实例,确定所述终端的位置信息;
其中,所述测量时间窗信息包括终端测量时间窗信息和/或第二网络侧设备测量时间窗信息;
所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP。
本公开实施例提供的所述网络侧设备通过接收终端和/或第二网络侧设备根据测量时间窗信息反馈的至少一个测量量实例;根据所述至少一个测量量实例,确定所述终端的位置信息;其中,所述测量时间窗信息包括终端测量时间窗信息和/或第二网络侧设备测量时间窗信息;所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP;能够支撑实现终端和第二网络侧设备在合适(即相匹配)的测量时间窗内对测量量进行测量以得到时间较为匹配的测量量实例,从而使得第一网络侧设备在据此(即根据该测量量实例)确定终端位置时可以更加准确地估计收发定时误差,或者消除收发定时误差的影响,避免了时变收发定时误差对终端位置计算准确度的影响,从而提升了系统定位精度;很好的解决了相关技术中针对定位相关的信息处理方案精度差的问题。
具体的,收发机82,用于在处理器83的控制下接收和发送数据。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器83代表的一个或多个处理器和存储器81代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再 对其进行进一步描述。总线接口提供接口。收发机82可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器83负责管理总线架构和通常的处理,存储器81可以存储处理器83在执行操作时所使用的数据。
处理器83可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
进一步的,所述操作还包括:通过所述收发机向所述终端和/或第二网络侧设备发送所述测量时间窗信息。
其中,所述终端测量时间窗信息包括终端测量下行定位参考信号DL-PRS的时间窗口信息和/或除所述DL-PRS外的其他用于定位的下行参考信号的时间窗口信息;和/或,所述第二网络侧设备测量时间窗信息包括第二网络侧设备测量用于定位的探测参考信号SRS-Pos的时间窗口信息和/或除所述SRS-Pos外的其他用于定位的上行参考信号的时间窗口信息。
本公开实施例中,所述接收所述终端和/或第二网络侧设备根据所述测量时间窗信息反馈的至少一个测量量实例,包括:通过所述收发机接收所述终端和/或第二网络侧设备根据所述测量时间窗信息反馈的至少一个测量量实例和所述测量量实例对应的时间戳;所述根据所述至少一个测量量实例,得到所述终端的位置信息,包括:根据所述至少一个测量量实例和所述测量量实例对应的时间戳,得到所述终端的位置信息。
本公开实施例中,所述至少一个测量量实例包括:终端测量量实例和/或第二网络侧设备测量量实例;其中,所述终端测量量实例包括:下行参考信号时间差DL-RSTD、下行参考信号接收功率DL-RSRP、和/或终端收发时间差;和/或,所述第二网络侧设备测量量实例包括:上行相对到达时间 UL-RTOA、上行参考信号接收功率UL-RSRP、和/或第二网络侧设备收发时间差。
其中,所述测量时间窗信息包括测量时间窗的持续时长;或者,所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
本公开实施例中,所述测量时间窗信息包括世界协调时间UTC信息;和/或,所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number信息。
本公开实施例中,所述测量时间窗信息包括测量时间窗索引号;其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
其中,所述终端测量时间窗信息对应的测量时间窗长度与所述第二网络侧设备测量时间窗信息对应的测量时间窗长度相同;或者,所述终端测量时间窗信息对应的测量时间窗索引号与所述第二网络侧设备测量时间窗信息对应的测量时间窗索引号相同。
本公开实施例中,所述测量时间窗信息包括以下至少一个参数信息:参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N i≥1;参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
本公开实施例中,所述终端测量时间窗信息包括周期性或半持续的DL-PRS的测量时间窗长度MTW UE;其中,
Figure PCTCN2022078262-appb-000045
PD DL-PRS表示DL-PRS的周期;J P表示一个终端测量时间窗内所包含的终端测量量实例的数量,J P≥1;N Pi表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Pi≥1。
本公开实施例中,所述第二网络侧设备测量时间窗信息包括周期性或半 持续的SRS-Pos的测量时间窗长度MTW TRP;其中,
Figure PCTCN2022078262-appb-000046
Figure PCTCN2022078262-appb-000047
PD SRS-Pos表示SRS-Pos的周期;K P表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K P≥1;M Pi表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Pi≥1。
本公开实施例中,所述终端测量时间窗信息包括非周期性的DL-PRS的测量时间窗长度MTW′ UE;其中,
Figure PCTCN2022078262-appb-000048
LH DL-PRS表示一个非周期DL-PRS资源集或DL-PRS测量时机所占用的时长或时隙数量;J A表示一个终端测量时间窗内所包含的UE测量量实例的数量,J A≥1;N Ai表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Ai≥1。
其中,一个非周期DL-PRS测量时机对应一个非周期DL-PRS资源集实例。
本公开实施例中,所述第二网络侧设备测量时间窗信息包括非周期性的SRS-Pos的测量时间窗长度MTW′ TRP;其中,
Figure PCTCN2022078262-appb-000049
Figure PCTCN2022078262-appb-000050
LH SRS-Pos表示一个非周期SRS-Pos资源集或SRS-Pos测量时机所占用的时长或时隙数量;K A表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K A≥1;M Ai表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Ai≥1。
其中,所述终端测量时间窗信息对应的测量时间窗包含位于不同频率层的至少两个DL-PRS资源集实例;和/或,所述第二网络侧设备测量时间窗信息对应的测量时间窗包含位于不同上行带宽部分UL BWP的至少两个SRS-Pos资源集实例。
本公开实施例中,向所述终端发送所述测量时间窗信息,包括:通过所述收发机直接向所述终端发送所述测量时间窗信息;或者,根据所述终端发送的第一请求,通过所述收发机向所述终端发送所述测量时间窗信息;或者,根据所述终端的能力信息,通过所述收发机向所述终端发送所述测量时间窗信息。
其中,向所述第二网络侧设备发送所述测量时间窗信息,包括:通过所述收发机直接向所述第二网络侧设备发送所述测量时间窗信息;或者,根据所述第二网络侧设备发送的第二请求,通过所述收发机向所述第二网络侧设备发送所述测量时间窗信息。
本公开实施例中,所述向所述终端和/或第二网络侧设备发送所述测量时间窗信息,包括:利用所述收发机通过长期演进技术定位协议LPP信令,向所述终端发送所述测量时间窗信息;和/或,利用所述收发机通过新空口定位协议NRPPa信令,向所述第二网络侧设备发送所述测量时间窗信息。
进一步的,所述操作还包括:在所述终端测量时间窗信息包括非周期性的DL-PRS的测量窗信息的情况下,在向所述终端和/或第二网络侧设备发送所述测量时间窗信息之前,根据第一信息,配置所述非周期性的DL-PRS的测量窗信息;其中,所述第一信息包括非周期DL-PRS资源信息、非周期DL-PRS资源集信息和/或非周期DL-PRS资源集实例信息。
其中,一个非周期DL-PRS资源集包括至少一个非周期DL-PRS资源;和/或,一个非周期DL-PRS资源集实例包括至少一个非周期DL-PRS资源集,且在所述非周期DL-PRS资源集的数量多于一个时,各所述非周期DL-PRS资源集是相同的,各所述非周期DL-PRS资源集是在不同的时间发送的。
在此需要说明的是,本公开实施例提供的上述网络侧设备,能够实现上述第一网络侧设备侧的信息处理方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例还提供了一种终端,如图9所示,包括存储器91,收发机92,处理器93:
存储器91,用于存储计算机程序;收发机92,用于在所述处理器93的控制下收发数据;处理器93,用于读取所述存储器91中的计算机程序并执行以下操作:
获取测量时间窗信息;
根据所述测量时间窗信息,在对应的测量时间窗内测量第一定位信号,得到至少一个测量量实例;
通过所述收发机92将所述至少一个测量量实例发送给第一网络侧设备;
其中,所述测量时间窗信息包括终端测量时间窗信息;
所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元。
本公开实施例提供的所述终端通过获取测量时间窗信息;根据所述测量时间窗信息,在对应的测量时间窗内测量第一定位信号,得到至少一个测量量实例;将所述至少一个测量量实例发送给第一网络侧设备;其中,所述测量时间窗信息包括终端测量时间窗信息;所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;能够支撑实现终端和第二网络侧设备在合适(即相匹配)的测量时间窗内对测量量进行测量以得到时间较为匹配的测量量实例,从而使得第一网络侧设备在据此(即根据该测量量实例)确定终端位置时可以更加准确地估计收发定时误差,或者消除收发定时误差的影响,避免了时变收发定时误差对终端位置计算准确度的影响,从而提升了系统定位精度;很好的解决了相关技术中针对定位相关的信息处理方案精度差的问题。
具体的,收发机92,用于在处理器93的控制下接收和发送数据。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器93代表的一个或多个处理器和存储器91代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机92可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口94还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器93负责管理总线架构和通常的处理,存储器91可以存储处理器93在执行操作时所使用的数据。
可选的,处理器93可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array, 现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
本公开实施例中,所述将所述至少一个测量量实例发送给第一网络侧设备,包括:在所述终端测量时间窗信息对应的一个测量时间窗内,通过所述收发机发送至少一个测量报告给第一网络侧设备;其中,所述测量报告中至少携带一个测量量实例。
其中,所述获取测量时间窗信息,包括:通过所述收发机接收第一网络侧设备发送的测量时间窗信息;或者,由所述终端自主配置测量时间窗信息。
进一步的,所述获取测量时间窗信息,还包括:获取不同第二网络侧设备的测量时间窗信息;其中,不同第二网络侧设备的测量时间窗信息相同或不同。
本公开实施例中,所述终端测量时间窗信息包括终端测量下行定位参考信号DL-PRS的时间窗口信息和/或除所述DL-PRS外的其他用于定位的下行参考信号的时间窗口信息;所述第一定位信号包括DL-PRS和/或所述其他用于定位的下行参考信号。
其中,所述将所述至少一个测量量实例发送给第一网络侧设备,包括:通过所述收发机将所述至少一个测量量实例和所述测量量实例对应的时间戳发送给第一网络侧设备。
本公开实施例中,所述至少一个测量量实例包括:终端测量量实例;其中,所述终端测量量实例包括:下行参考信号时间差DL-RSTD、下行参考信号接收功率DL-RSRP、和/或终端收发时间差。
其中,所述测量时间窗信息包括测量时间窗的持续时长;或者,所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
本公开实施例中,所述测量时间窗信息包括世界协调时间UTC信息;和/或,所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number 信息。
本公开实施例中,所述测量时间窗信息包括测量时间窗索引号;其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
其中,所述终端测量时间窗信息对应的测量时间窗长度与第二网络侧设备测量时间窗信息对应的测量时间窗长度相同;或者,所述终端测量时间窗信息对应的测量时间窗索引号与第二网络侧设备测量时间窗信息对应的测量时间窗索引号相同。
本公开实施例中,所述测量时间窗信息包括以下至少一个参数信息:参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N i≥1;参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
本公开实施例中,所述终端测量时间窗信息包括周期性或半持续的DL-PRS的测量时间窗长度MTW UE;其中,
Figure PCTCN2022078262-appb-000051
PD DL-PRS表示DL-PRS的周期;J P表示一个终端测量时间窗内所包含的终端测量量实例的数量,J P≥1;N Pi表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Pi≥1。
本公开实施例中,所述终端测量时间窗信息包括非周期性的DL-PRS的测量时间窗长度MTW′ UE;其中,
Figure PCTCN2022078262-appb-000052
LH DL-PRS表示一个非周期DL-PRS资源集或DL-PRS测量时机所占用的时长或时隙数量;J A表示一个终端测量时间窗内所包含的UE测量量实例的数量,J A≥1;N Ai表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Ai≥1。
其中,一个非周期DL-PRS测量时机对应一个非周期DL-PRS资源集实例。
本公开实施例中,所述终端测量时间窗信息对应的测量时间窗包含位于不同频率层的至少两个DL-PRS资源集实例。
其中,所述接收第一网络侧设备发送的测量时间窗信息,包括:通过所述收发机接收第一网络侧设备直接发送的测量时间窗信息;或者,通过所述收发机向第一网络侧设备发送第一请求;接收所述第一网络侧设备根据所述第一请求发送的测量时间窗信息;或者,通过所述收发机向第一网络侧设备发送所述终端的能力信息;接收所述第一网络侧设备根据所述能力信息发送的测量时间窗信息。
本公开实施例中,所述接收第一网络侧设备发送的测量时间窗信息,包括:通过所述收发机接收第一网络侧设备通过长期演进技术定位协议LPP信令发送的测量时间窗信息。
本公开实施例中,在所述终端测量时间窗信息包括非周期性的DL-PRS的测量窗信息的情况下,所述由所述终端自主配置测量时间窗信息,包括:根据第一信息,配置所述非周期性的DL-PRS的测量窗信息;其中,所述第一信息包括非周期DL-PRS资源信息、非周期DL-PRS资源集信息和/或非周期DL-PRS资源集实例信息。
其中,一个非周期DL-PRS资源集包括至少一个非周期DL-PRS资源;和/或,一个非周期DL-PRS资源集实例包括至少一个非周期DL-PRS资源集,且在所述非周期DL-PRS资源集的数量多于一个时,各所述非周期DL-PRS资源集是相同的,各所述非周期DL-PRS资源集是在不同的时间发送的。
本公开实施例中,所述终端能否被配置所述终端测量时间窗信息对应的测量时间窗,并在所述测量时间窗内测量第一定位信号,是一种终端能力。
在此需要说明的是,本公开实施例提供的上述终端,能够实现上述终端侧的信息处理方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例还提供了一种网络侧设备,所述网络侧设备为第二网络侧设备,如图10所示,包括存储器101,收发机102,处理器103:
存储器101,用于存储计算机程序;收发机102,用于在所述处理器103 的控制下收发数据;处理器103,用于读取所述存储器101中的计算机程序并执行以下操作:
通过所述收发机102接收第一网络侧设备发送的测量时间窗信息;
根据所述测量时间窗信息,在对应的测量时间窗内测量第二定位信号,得到至少一个测量量实例;
通过所述收发机102将所述至少一个测量量实例发送给所述第一网络侧设备;
其中,所述测量时间窗信息包括第二网络侧设备测量时间窗信息;
所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP。
本公开实施例提供的所述网络侧设备通过接收第一网络侧设备发送的测量时间窗信息;根据所述测量时间窗信息,在对应的测量时间窗内测量第二定位信号,得到至少一个测量量实例;将所述至少一个测量量实例发送给所述第一网络侧设备;其中,所述测量时间窗信息包括第二网络侧设备测量时间窗信息;所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP;能够支撑实现终端和第二网络侧设备在合适(即相匹配)的测量时间窗内对测量量进行测量以得到时间较为匹配的测量量实例,从而使得第一网络侧设备在据此(即根据该测量量实例)确定终端位置时可以更加准确地估计收发定时误差,或者消除收发定时误差的影响,避免了时变收发定时误差对终端位置计算准确度的影响,从而提升了系统定位精度;很好的解决了相关技术中针对定位相关的信息处理方案精度差的问题。
具体的,收发机102,用于在处理器103的控制下接收和发送数据。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器103代表的一个或多个处理器和存储器101代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机102可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元, 这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器103负责管理总线架构和通常的处理,存储器101可以存储处理器103在执行操作时所使用的数据。
处理器103可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
本公开实施例中,所述将所述至少一个测量量实例发送给所述第一网络侧设备,包括:在所述第二网络侧设备测量时间窗信息对应的一个测量时间窗内,通过所述收发机发送至少一个测量报告给第一网络侧设备;其中,所述测量报告中至少携带一个测量量实例。
本公开实施例中,所述接收第一网络侧设备发送的测量时间窗信息,包括:通过所述收发机接收第一网络侧设备发送的不同终端的测量时间窗信息;其中,不同终端的测量时间窗信息相同或不同。
其中,所述第二网络侧设备测量时间窗信息包括网络侧设备测量用于定位的探测参考信号SRS-Pos的时间窗口信息和/或除所述SRS-Pos外的其他用于定位的上行参考信号的时间窗口信息;所述第二定位信号包括SRS-Pos和/或所述其他用于定位的上行参考信号。
本公开实施例中,所述将所述至少一个测量量实例发送给所述第一网络侧设备,包括:通过所述收发机将所述至少一个测量量实例和所述测量量实例对应的时间戳发送给所述第一网络侧设备。
本公开实施例中,所述至少一个测量量实例包括:第二网络侧设备测量量实例;其中,所述第二网络侧设备测量量实例包括:上行相对到达时间UL-RTOA、上行参考信号接收功率UL-RSRP、和/或第二网络侧设备收发时间差。
其中,所述测量时间窗信息包括测量时间窗的持续时长;或者,所述测 量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
本公开实施例中,所述测量时间窗信息包括世界协调时间UTC信息;和/或,所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number信息。
本公开实施例中,所述测量时间窗信息包括测量时间窗索引号;其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
其中,终端测量时间窗信息对应的测量时间窗长度与所述第二网络侧设备测量时间窗信息对应的测量时间窗长度相同;或者,终端测量时间窗信息对应的测量时间窗索引号与所述第二网络侧设备测量时间窗信息对应的测量时间窗索引号相同。
本公开实施例中,所述测量时间窗信息包括以下至少一个参数信息:参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N i≥1;参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
本公开实施例中,所述第二网络侧设备测量时间窗信息包括周期性或半持续的SRS-Pos的测量时间窗长度MTW TRP;其中,
Figure PCTCN2022078262-appb-000053
Figure PCTCN2022078262-appb-000054
PD SRS-Pos表示SRS-Pos的周期;K P表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K P≥1;M Pi表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Pi≥1。
本公开实施例中,所述第二网络侧设备测量时间窗信息包括非周期性的SRS-Pos的测量时间窗长度MTW′ TRP;其中,
Figure PCTCN2022078262-appb-000055
Figure PCTCN2022078262-appb-000056
LH SRS-Pos表示一个非周期SRS-Pos资源集或SRS-Pos测量时机所 占用的时长或时隙数量;K A表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K A≥1;M Ai表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Ai≥1。
其中,所述第二网络侧设备测量时间窗信息对应的测量时间窗包含位于不同上行带宽部分UL BWP的至少两个SRS-Pos资源集实例。
本公开实施例中,所述接收第一网络侧设备发送的测量时间窗信息,包括:通过所述收发机接收第一网络侧设备直接发送的测量时间窗信息;或者,通过所述收发机向第一网络侧设备发送第二请求;接收所述第一网络侧设备根据所述第二请求发送的测量时间窗信息。
其中,所述接收第一网络侧设备发送的测量时间窗信息,包括:通过所述收发机接收第一网络侧设备通过新空口定位协议NRPPa信令发送的测量时间窗信息。
在此需要说明的是,本公开实施例提供的上述网络侧设备,能够实现上述第二网络侧设备侧的信息处理方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例还提供了一种信息处理装置,应用于第一网络侧设备,如图11所示,包括:
第一接收单元111,用于接收终端和/或第二网络侧设备根据测量时间窗信息反馈的至少一个测量量实例;
第一确定单元112,用于根据所述至少一个测量量实例,确定所述终端的位置信息;
其中,所述测量时间窗信息包括终端测量时间窗信息和/或第二网络侧设备测量时间窗信息;
所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP。
本公开实施例提供的所述信息处理装置通过接收终端和/或第二网络侧设备根据测量时间窗信息反馈的至少一个测量量实例;根据所述至少一个测 量量实例,确定所述终端的位置信息;其中,所述测量时间窗信息包括终端测量时间窗信息和/或第二网络侧设备测量时间窗信息;所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP;能够支撑实现终端和第二网络侧设备在合适(即相匹配)的测量时间窗内对测量量进行测量以得到时间较为匹配的测量量实例,从而使得第一网络侧设备在据此(即根据该测量量实例)确定终端位置时可以更加准确地估计收发定时误差,或者消除收发定时误差的影响,避免了时变收发定时误差对终端位置计算准确度的影响,从而提升了系统定位精度;很好的解决了相关技术中针对定位相关的信息处理方案精度差的问题。
本公开实施例中,所述的信息处理装置,还包括:第一发送单元,用于向所述终端和/或第二网络侧设备发送所述测量时间窗信息。
其中,所述终端测量时间窗信息包括终端测量下行定位参考信号DL-PRS的时间窗口信息和/或除所述DL-PRS外的其他用于定位的下行参考信号的时间窗口信息;和/或,所述第二网络侧设备测量时间窗信息包括第二网络侧设备测量用于定位的探测参考信号SRS-Pos的时间窗口信息和/或除所述SRS-Pos外的其他用于定位的上行参考信号的时间窗口信息。
其中,所述接收所述终端和/或第二网络侧设备根据所述测量时间窗信息反馈的至少一个测量量实例,包括:接收所述终端和/或第二网络侧设备根据所述测量时间窗信息反馈的至少一个测量量实例和所述测量量实例对应的时间戳;所述根据所述至少一个测量量实例,得到所述终端的位置信息,包括:根据所述至少一个测量量实例和所述测量量实例对应的时间戳,得到所述终端的位置信息。
本公开实施例中,所述至少一个测量量实例包括:终端测量量实例和/或第二网络侧设备测量量实例;其中,所述终端测量量实例包括:下行参考信号时间差DL-RSTD、下行参考信号接收功率DL-RSRP、和/或终端收发时间差;和/或,所述第二网络侧设备测量量实例包括:上行相对到达时间UL-RTOA、上行参考信号接收功率UL-RSRP、和/或第二网络侧设备收发时间差。
其中,所述测量时间窗信息包括测量时间窗的持续时长;或者,所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
本公开实施例中,所述测量时间窗信息包括世界协调时间UTC信息;和/或,所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number信息。
本公开实施例中,所述测量时间窗信息包括测量时间窗索引号;其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
其中,所述终端测量时间窗信息对应的测量时间窗长度与所述第二网络侧设备测量时间窗信息对应的测量时间窗长度相同;或者,所述终端测量时间窗信息对应的测量时间窗索引号与所述第二网络侧设备测量时间窗信息对应的测量时间窗索引号相同。
本公开实施例中,所述测量时间窗信息包括以下至少一个参数信息:参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N i≥1;参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
本公开实施例中,所述终端测量时间窗信息包括周期性或半持续的DL-PRS的测量时间窗长度MTW UE;其中,
Figure PCTCN2022078262-appb-000057
PD DL-PRS表示DL-PRS的周期;J P表示一个终端测量时间窗内所包含的终端测量量实例的数量,J P≥1;N Pi表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Pi≥1。
本公开实施例中,所述第二网络侧设备测量时间窗信息包括周期性或半持续的SRS-Pos的测量时间窗长度MTW TRP;其中,
Figure PCTCN2022078262-appb-000058
Figure PCTCN2022078262-appb-000059
PD SRS-Pos表示SRS-Pos的周期;K P表示一个第二网络侧设备测量 时间窗内所包含的第二网络侧设备测量量实例的数量,K P≥1;M Pi表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Pi≥1。
本公开实施例中,所述终端测量时间窗信息包括非周期性的DL-PRS的测量时间窗长度MTW′ UE;其中,
Figure PCTCN2022078262-appb-000060
LH DL-PRS表示一个非周期DL-PRS资源集或DL-PRS测量时机所占用的时长或时隙数量;J A表示一个终端测量时间窗内所包含的UE测量量实例的数量,J A≥1;N Ai表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Ai≥1。
其中,一个非周期DL-PRS测量时机对应一个非周期DL-PRS资源集实例。
本公开实施例中,所述第二网络侧设备测量时间窗信息包括非周期性的SRS-Pos的测量时间窗长度MTW′ TRP;其中,
Figure PCTCN2022078262-appb-000061
Figure PCTCN2022078262-appb-000062
LH SRS-Pos表示一个非周期SRS-Pos资源集或SRS-Pos测量时机所占用的时长或时隙数量;K A表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K A≥1;M Ai表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Ai≥1。
其中,所述终端测量时间窗信息对应的测量时间窗包含位于不同频率层的至少两个DL-PRS资源集实例;和/或,所述第二网络侧设备测量时间窗信息对应的测量时间窗包含位于不同上行带宽部分UL BWP的至少两个SRS-Pos资源集实例。
本公开实施例中,向所述终端发送所述测量时间窗信息,包括:直接向所述终端发送所述测量时间窗信息;或者,根据所述终端发送的第一请求,向所述终端发送所述测量时间窗信息;或者,根据所述终端的能力信息,向所述终端发送所述测量时间窗信息。
其中,向所述第二网络侧设备发送所述测量时间窗信息,包括:直接向所述第二网络侧设备发送所述测量时间窗信息;或者,根据所述第二网络侧设备发送的第二请求,向所述第二网络侧设备发送所述测量时间窗信息。
本公开实施例中,所述向所述终端和/或第二网络侧设备发送所述测量时间窗信息,包括:通过长期演进技术定位协议LPP信令,向所述终端发送所述测量时间窗信息;和/或,通过新空口定位协议NRPPa信令,向所述第二网络侧设备发送所述测量时间窗信息。
进一步的,所述的信息处理装置,还包括:第一配置单元,用于在所述终端测量时间窗信息包括非周期性的DL-PRS的测量窗信息的情况下,在向所述终端和/或第二网络侧设备发送所述测量时间窗信息之前,根据第一信息,配置所述非周期性的DL-PRS的测量窗信息;其中,所述第一信息包括非周期DL-PRS资源信息、非周期DL-PRS资源集信息和/或非周期DL-PRS资源集实例信息。
其中,一个非周期DL-PRS资源集包括至少一个非周期DL-PRS资源;和/或,一个非周期DL-PRS资源集实例包括至少一个非周期DL-PRS资源集,且在所述非周期DL-PRS资源集的数量多于一个时,各所述非周期DL-PRS资源集是相同的,各所述非周期DL-PRS资源集是在不同的时间发送的。
在此需要说明的是,本公开实施例提供的上述信息处理装置,能够实现上述第一网络侧设备侧的信息处理方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例还提供了一种信息处理装置,应用于终端,如图12所示,包括:
第一获取单元121,用于获取测量时间窗信息;
第一处理单元122,用于根据所述测量时间窗信息,在对应的测量时间窗内测量第一定位信号,得到至少一个测量量实例;
第二发送单元123,用于将所述至少一个测量量实例发送给第一网络侧设备;
其中,所述测量时间窗信息包括终端测量时间窗信息;
所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元。
本公开实施例提供的所述信息处理装置通过获取测量时间窗信息;根据 所述测量时间窗信息,在对应的测量时间窗内测量第一定位信号,得到至少一个测量量实例;将所述至少一个测量量实例发送给第一网络侧设备;其中,所述测量时间窗信息包括终端测量时间窗信息;所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;能够支撑实现终端和第二网络侧设备在合适(即相匹配)的测量时间窗内对测量量进行测量以得到时间较为匹配的测量量实例,从而使得第一网络侧设备在据此(即根据该测量量实例)确定终端位置时可以更加准确地估计收发定时误差,或者消除收发定时误差的影响,避免了时变收发定时误差对终端位置计算准确度的影响,从而提升了系统定位精度;很好的解决了相关技术中针对定位相关的信息处理方案精度差的问题。
本公开实施例中,所述将所述至少一个测量量实例发送给第一网络侧设备,包括:在所述终端测量时间窗信息对应的一个测量时间窗内,发送至少一个测量报告给第一网络侧设备;其中,所述测量报告中至少携带一个测量量实例。
其中,所述获取测量时间窗信息,包括:接收第一网络侧设备发送的测量时间窗信息;或者,由所述终端自主配置测量时间窗信息。
进一步的,所述获取测量时间窗信息,还包括:获取不同第二网络侧设备的测量时间窗信息;其中,不同第二网络侧设备的测量时间窗信息相同或不同。
其中,所述终端测量时间窗信息包括终端测量下行定位参考信号DL-PRS的时间窗口信息和/或除所述DL-PRS外的其他用于定位的下行参考信号的时间窗口信息;所述第一定位信号包括DL-PRS和/或所述其他用于定位的下行参考信号。
本公开实施例中,所述将所述至少一个测量量实例发送给第一网络侧设备,包括:将所述至少一个测量量实例和所述测量量实例对应的时间戳发送给第一网络侧设备。
本公开实施例中,所述至少一个测量量实例包括:终端测量量实例;其中,所述终端测量量实例包括:下行参考信号时间差DL-RSTD、下行参考信号接收功率DL-RSRP、和/或终端收发时间差。
其中,所述测量时间窗信息包括测量时间窗的持续时长;或者,所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
本公开实施例中,所述测量时间窗信息包括世界协调时间UTC信息;和/或,所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number信息。
本公开实施例中,所述测量时间窗信息包括测量时间窗索引号;其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
其中,所述终端测量时间窗信息对应的测量时间窗长度与第二网络侧设备测量时间窗信息对应的测量时间窗长度相同;或者,所述终端测量时间窗信息对应的测量时间窗索引号与第二网络侧设备测量时间窗信息对应的测量时间窗索引号相同。
本公开实施例中,所述测量时间窗信息包括以下至少一个参数信息:参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N i≥1;参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
本公开实施例中,所述终端测量时间窗信息包括周期性或半持续的DL-PRS的测量时间窗长度MTW UE;其中,
Figure PCTCN2022078262-appb-000063
PD DL-PRS表示DL-PRS的周期;J P表示一个终端测量时间窗内所包含的终端测量量实例的数量,J P≥1;N Pi表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Pi≥1。
本公开实施例中,所述终端测量时间窗信息包括非周期性的DL-PRS的测量时间窗长度MTW′ UE;其中,
Figure PCTCN2022078262-appb-000064
LH DL-PRS表示一个非周期DL-PRS资源集或DL-PRS测量时机所占用的时长或时隙数量; J A表示一个终端测量时间窗内所包含的UE测量量实例的数量,J A≥1;N Ai表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Ai≥1。
其中,一个非周期DL-PRS测量时机对应一个非周期DL-PRS资源集实例。
本公开实施例中,所述终端测量时间窗信息对应的测量时间窗包含位于不同频率层的至少两个DL-PRS资源集实例。
其中,所述接收第一网络侧设备发送的测量时间窗信息,包括:接收第一网络侧设备直接发送的测量时间窗信息;或者,向第一网络侧设备发送第一请求;接收所述第一网络侧设备根据所述第一请求发送的测量时间窗信息;或者,向第一网络侧设备发送所述终端的能力信息;接收所述第一网络侧设备根据所述能力信息发送的测量时间窗信息。
本公开实施例中,所述接收第一网络侧设备发送的测量时间窗信息,包括:接收第一网络侧设备通过长期演进技术定位协议LPP信令发送的测量时间窗信息。
本公开实施例中,在所述终端测量时间窗信息包括非周期性的DL-PRS的测量窗信息的情况下,所述由所述终端自主配置测量时间窗信息,包括:根据第一信息,配置所述非周期性的DL-PRS的测量窗信息;其中,所述第一信息包括非周期DL-PRS资源信息、非周期DL-PRS资源集信息和/或非周期DL-PRS资源集实例信息。
其中,一个非周期DL-PRS资源集包括至少一个非周期DL-PRS资源;和/或,一个非周期DL-PRS资源集实例包括至少一个非周期DL-PRS资源集,且在所述非周期DL-PRS资源集的数量多于一个时,各所述非周期DL-PRS资源集是相同的,各所述非周期DL-PRS资源集是在不同的时间发送的。
本公开实施例中,所述终端能否被配置所述终端测量时间窗信息对应的测量时间窗,并在所述测量时间窗内测量第一定位信号,是一种终端能力。
在此需要说明的是,本公开实施例提供的上述信息处理装置,能够实现上述终端侧的信息处理方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进 行具体赘述。
本公开实施例还提供了一种信息处理装置,应用于第二网络侧设备,如图13所示,包括:
第二接收单元131,用于接收第一网络侧设备发送的测量时间窗信息;
第二处理单元132,用于根据所述测量时间窗信息,在对应的测量时间窗内测量第二定位信号,得到至少一个测量量实例;
第三发送单元133,用于将所述至少一个测量量实例发送给所述第一网络侧设备;
其中,所述测量时间窗信息包括第二网络侧设备测量时间窗信息;
所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP。
本公开实施例提供的所述信息处理装置通过接收第一网络侧设备发送的测量时间窗信息;根据所述测量时间窗信息,在对应的测量时间窗内测量第二定位信号,得到至少一个测量量实例;将所述至少一个测量量实例发送给所述第一网络侧设备;其中,所述测量时间窗信息包括第二网络侧设备测量时间窗信息;所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP;能够支撑实现终端和第二网络侧设备在合适(即相匹配)的测量时间窗内对测量量进行测量以得到时间较为匹配的测量量实例,从而使得第一网络侧设备在据此(即根据该测量量实例)确定终端位置时可以更加准确地估计收发定时误差,或者消除收发定时误差的影响,避免了时变收发定时误差对终端位置计算准确度的影响,从而提升了系统定位精度;很好的解决了相关技术中针对定位相关的信息处理方案精度差的问题。
本公开实施例中,所述将所述至少一个测量量实例发送给所述第一网络侧设备,包括:在所述第二网络侧设备测量时间窗信息对应的一个测量时间窗内,发送至少一个测量报告给第一网络侧设备;其中,所述测量报告中至少携带一个测量量实例。
本公开实施例中,所述接收第一网络侧设备发送的测量时间窗信息,包括:接收第一网络侧设备发送的不同终端的测量时间窗信息;其中,不同终 端的测量时间窗信息相同或不同。
其中,所述第二网络侧设备测量时间窗信息包括网络侧设备测量用于定位的探测参考信号SRS-Pos的时间窗口信息和/或除所述SRS-Pos外的其他用于定位的上行参考信号的时间窗口信息;所述第二定位信号包括SRS-Pos和/或所述其他用于定位的上行参考信号。
本公开实施例中,所述将所述至少一个测量量实例发送给所述第一网络侧设备,包括:将所述至少一个测量量实例和所述测量量实例对应的时间戳发送给所述第一网络侧设备。
本公开实施例中,所述至少一个测量量实例包括:第二网络侧设备测量量实例;其中,所述第二网络侧设备测量量实例包括:上行相对到达时间UL-RTOA、上行参考信号接收功率UL-RSRP、和/或第二网络侧设备收发时间差。
其中,所述测量时间窗信息包括测量时间窗的持续时长;或者,所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
本公开实施例中,所述测量时间窗信息包括世界协调时间UTC信息;和/或,所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number信息。
本公开实施例中,所述测量时间窗信息包括测量时间窗索引号;其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
其中,终端测量时间窗信息对应的测量时间窗长度与所述第二网络侧设备测量时间窗信息对应的测量时间窗长度相同;或者,终端测量时间窗信息对应的测量时间窗索引号与所述第二网络侧设备测量时间窗信息对应的测量时间窗索引号相同。
本公开实施例中,所述测量时间窗信息包括以下至少一个参数信息:参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资 源集实例或者DL-PRS测量时机的数量,N i≥1;参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
本公开实施例中,所述第二网络侧设备测量时间窗信息包括周期性或半持续的SRS-Pos的测量时间窗长度MTW TRP;其中,
Figure PCTCN2022078262-appb-000065
Figure PCTCN2022078262-appb-000066
PD SRS-Pos表示SRS-Pos的周期;K P表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K P≥1;M Pi表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Pi≥1。
本公开实施例中,所述第二网络侧设备测量时间窗信息包括非周期性的SRS-Pos的测量时间窗长度MTW′ TRP;其中,
Figure PCTCN2022078262-appb-000067
Figure PCTCN2022078262-appb-000068
LH SRS-Pos表示一个非周期SRS-Pos资源集或SRS-Pos测量时机所占用的时长或时隙数量;K A表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K A≥1;M Ai表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Ai≥1。
其中,所述第二网络侧设备测量时间窗信息对应的测量时间窗包含位于不同上行带宽部分UL BWP的至少两个SRS-Pos资源集实例。
本公开实施例中,所述接收第一网络侧设备发送的测量时间窗信息,包括:接收第一网络侧设备直接发送的测量时间窗信息;或者,向第一网络侧设备发送第二请求;接收所述第一网络侧设备根据所述第二请求发送的测量时间窗信息。
其中,所述接收第一网络侧设备发送的测量时间窗信息,包括:接收第一网络侧设备通过新空口定位协议NRPPa信令发送的测量时间窗信息。
在此需要说明的是,本公开实施例提供的上述信息处理装置,能够实现上述第二网络侧设备侧的信息处理方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本公开实施例还提供了一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述第一网络侧设备侧的信息处理方法;或者,
所述计算机程序用于使所述处理器执行上述终端侧的信息处理方法;或者,
所述计算机程序用于使所述处理器执行上述第二网络侧设备侧的信息处理方法。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
其中,上述第一网络侧设备侧、终端侧或上述第二网络侧设备侧的信息处理方法的所述实现实施例均适用于该处理器可读存储介质的实施例中,也能达到相同的技术效果。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,某个模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成 在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (52)

  1. 一种信息处理方法,应用于第一网络侧设备,包括:
    接收终端和/或第二网络侧设备根据测量时间窗信息反馈的至少一个测量量实例;
    根据所述至少一个测量量实例,确定所述终端的位置信息;
    其中,所述测量时间窗信息包括终端测量时间窗信息和/或第二网络侧设备测量时间窗信息;
    所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP。
  2. 根据权利要求1所述的信息处理方法,还包括:
    向所述终端和/或第二网络侧设备发送所述测量时间窗信息。
  3. 根据权利要求1所述的信息处理方法,其中,所述终端测量时间窗信息包括终端测量下行定位参考信号DL-PRS的时间窗口信息和/或除所述DL-PRS外的其他用于定位的下行参考信号的时间窗口信息;和/或,
    所述第二网络侧设备测量时间窗信息包括第二网络侧设备测量用于定位的探测参考信号SRS-Pos的时间窗口信息和/或除所述SRS-Pos外的其他用于定位的上行参考信号的时间窗口信息。
  4. 根据权利要求1所述的信息处理方法,其中,所述接收所述终端和/或第二网络侧设备根据所述测量时间窗信息反馈的至少一个测量量实例,包括:
    接收所述终端和/或第二网络侧设备根据所述测量时间窗信息反馈的至少一个测量量实例和所述测量量实例对应的时间戳;
    所述根据所述至少一个测量量实例,得到所述终端的位置信息,包括:
    根据所述至少一个测量量实例和所述测量量实例对应的时间戳,得到所述终端的位置信息。
  5. 根据权利要求1所述的信息处理方法,其中,所述至少一个测量量实例包括:终端测量量实例和/或第二网络侧设备测量量实例;
    其中,所述终端测量量实例包括:下行参考信号时间差DL-RSTD、下行 参考信号接收功率DL-RSRP、和/或终端收发时间差;和/或,
    所述第二网络侧设备测量量实例包括:上行相对到达时间UL-RTOA、上行参考信号接收功率UL-RSRP、和/或第二网络侧设备收发时间差。
  6. 根据权利要求1所述的信息处理方法,其中,所述测量时间窗信息包括测量时间窗的持续时长;或者,
    所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,
    所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
  7. 根据权利要求1所述的信息处理方法,其中,所述测量时间窗信息包括世界协调时间UTC信息;和/或,
    所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number信息。
  8. 根据权利要求1所述的信息处理方法,其中,所述测量时间窗信息包括测量时间窗索引号;
    其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;
    所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
  9. 根据权利要求1所述的信息处理方法,其中,所述测量时间窗信息包括以下至少一个参数信息:
    参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;
    参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N i≥1;
    参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;
    参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
  10. 根据权利要求1或3或9所述的信息处理方法,其中,所述终端测量时间窗信息包括周期性或半持续的DL-PRS的测量时间窗长度MTW UE
    其中,
    Figure PCTCN2022078262-appb-100001
    PD DL-PRS表示DL-PRS的周期;
    J P表示一个终端测量时间窗内所包含的终端测量量实例的数量,J P≥1;
    N Pi表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Pi≥1。
  11. 根据权利要求1或3或9所述的信息处理方法,其中,所述第二网络侧设备测量时间窗信息包括周期性或半持续的SRS-Pos的测量时间窗长度MTW TRP
    其中,
    Figure PCTCN2022078262-appb-100002
    PD SRS-Pos表示SRS-Pos的周期;
    K P表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K P≥1;
    M Pi表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Pi≥1。
  12. 根据权利要求1或3或9所述的信息处理方法,其中,所述终端测量时间窗信息包括非周期性的DL-PRS的测量时间窗长度MTW′ UE
    其中,
    Figure PCTCN2022078262-appb-100003
    LH DL-PRS表示一个非周期DL-PRS资源集或DL-PRS测量时机所占用的时长或时隙数量;
    J A表示一个终端测量时间窗内所包含的UE测量量实例的数量,J A≥1;
    N Ai表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Ai≥1。
  13. 根据权利要求1或3或9所述的信息处理方法,其中,所述第二网络侧设备测量时间窗信息包括非周期性的SRS-Pos的测量时间窗长度MTW′ TRP
    其中,
    Figure PCTCN2022078262-appb-100004
    LH SRS-Pos表示一个非周期SRS-Pos资源集或SRS-Pos测量时机所占用的时长或时隙数量;
    K A表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K A≥1;
    M Ai表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Ai≥1。
  14. 根据权利要求1或3所述的信息处理方法,其中,所述终端测量时间窗信息对应的测量时间窗包含位于不同频率层的至少两个DL-PRS资源集实例;和/或,
    所述第二网络侧设备测量时间窗信息对应的测量时间窗包含位于不同上行带宽部分UL BWP的至少两个SRS-Pos资源集实例。
  15. 根据权利要求2所述的信息处理方法,其中,在所述终端测量时间窗信息包括非周期性的DL-PRS的测量窗信息的情况下,在向所述终端和/或第二网络侧设备发送所述测量时间窗信息之前,还包括:
    根据第一信息,配置所述非周期性的DL-PRS的测量窗信息;
    其中,所述第一信息包括非周期DL-PRS资源信息、非周期DL-PRS资源集信息和/或非周期DL-PRS资源集实例信息。
  16. 根据权利要求15所述的信息处理方法,其中,一个非周期DL-PRS资源集包括至少一个非周期DL-PRS资源;和/或,
    一个非周期DL-PRS资源集实例包括至少一个非周期DL-PRS资源集,且在所述非周期DL-PRS资源集的数量多于一个时,各所述非周期DL-PRS资源集是相同的,各所述非周期DL-PRS资源集是在不同的时间发送的。
  17. 一种信息处理方法,应用于终端,包括:
    获取测量时间窗信息;
    根据所述测量时间窗信息,在对应的测量时间窗内测量第一定位信号,得到至少一个测量量实例;
    将所述至少一个测量量实例发送给第一网络侧设备;
    其中,所述测量时间窗信息包括终端测量时间窗信息;
    所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元。
  18. 根据权利要求17所述的信息处理方法,其中,所述将所述至少一个测量量实例发送给第一网络侧设备,包括:
    在所述终端测量时间窗信息对应的一个测量时间窗内,发送至少一个测 量报告给第一网络侧设备;
    其中,所述测量报告中至少携带一个测量量实例。
  19. 根据权利要求17所述的信息处理方法,其中,所述获取测量时间窗信息,包括:
    接收第一网络侧设备发送的测量时间窗信息;或者,
    由所述终端自主配置测量时间窗信息。
  20. 根据权利要求19所述的信息处理方法,其中,所述获取测量时间窗信息,还包括:
    获取不同第二网络侧设备的测量时间窗信息;
    其中,不同第二网络侧设备的测量时间窗信息相同或不同。
  21. 根据权利要求17所述的信息处理方法,其中,所述终端测量时间窗信息包括终端测量下行定位参考信号DL-PRS的时间窗口信息和/或除所述DL-PRS外的其他用于定位的下行参考信号的时间窗口信息;所述第一定位信号包括DL-PRS和/或所述其他用于定位的下行参考信号。
  22. 根据权利要求17所述的信息处理方法,其中,所述将所述至少一个测量量实例发送给第一网络侧设备,包括:
    将所述至少一个测量量实例和所述测量量实例对应的时间戳发送给第一网络侧设备。
  23. 根据权利要求17所述的信息处理方法,其中,所述至少一个测量量实例包括:终端测量量实例;
    其中,所述终端测量量实例包括:下行参考信号时间差DL-RSTD、下行参考信号接收功率DL-RSRP、和/或终端收发时间差。
  24. 根据权利要求17所述的信息处理方法,其中,所述测量时间窗信息包括测量时间窗的持续时长;或者,
    所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,
    所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
  25. 根据权利要求17所述的信息处理方法,其中,所述测量时间窗信息包括世界协调时间UTC信息;和/或,
    所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number 信息。
  26. 根据权利要求17所述的信息处理方法,其中,所述测量时间窗信息包括测量时间窗索引号;
    其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;
    所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
  27. 根据权利要求17所述的信息处理方法,其中,所述测量时间窗信息包括以下至少一个参数信息:
    参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;
    参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N i≥1;
    参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;
    参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
  28. 根据权利要求17或21或27所述的信息处理方法,其中,所述终端测量时间窗信息包括周期性或半持续的DL-PRS的测量时间窗长度MTW UE
    其中,
    Figure PCTCN2022078262-appb-100005
    PD DL-PRS表示DL-PRS的周期;
    J P表示一个终端测量时间窗内所包含的终端测量量实例的数量,J P≥1;
    N Pi表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Pi≥1。
  29. 根据权利要求17或21或27所述的信息处理方法,其中,所述终端测量时间窗信息包括非周期性的DL-PRS的测量时间窗长度MTW′ UE
    其中,
    Figure PCTCN2022078262-appb-100006
    LH DL-PRS表示一个非周期DL-PRS资源集或DL-PRS测量时机所占用的时长或时隙数量;
    J A表示一个终端测量时间窗内所包含的UE测量量实例的数量,J A≥1;
    N Ai表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N Ai≥1。
  30. 根据权利要求17或21所述的信息处理方法,其中,所述终端测量时间窗信息对应的测量时间窗包含位于不同频率层的至少两个DL-PRS资源集实例。
  31. 根据权利要求19所述的信息处理方法,其中,在所述终端测量时间窗信息包括非周期性的DL-PRS的测量窗信息的情况下,所述由所述终端自主配置测量时间窗信息,包括:
    根据第一信息,配置所述非周期性的DL-PRS的测量窗信息;
    其中,所述第一信息包括非周期DL-PRS资源信息、非周期DL-PRS资源集信息和/或非周期DL-PRS资源集实例信息。
  32. 根据权利要求31所述的信息处理方法,其中,一个非周期DL-PRS资源集包括至少一个非周期DL-PRS资源;和/或,
    一个非周期DL-PRS资源集实例包括至少一个非周期DL-PRS资源集,且在所述非周期DL-PRS资源集的数量多于一个时,各所述非周期DL-PRS资源集是相同的,各所述非周期DL-PRS资源集是在不同的时间发送的。
  33. 一种信息处理方法,应用于第二网络侧设备,包括:
    接收第一网络侧设备发送的测量时间窗信息;
    根据所述测量时间窗信息,在对应的测量时间窗内测量第二定位信号,得到至少一个测量量实例;
    将所述至少一个测量量实例发送给所述第一网络侧设备;
    其中,所述测量时间窗信息包括第二网络侧设备测量时间窗信息;
    所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP。
  34. 根据权利要求33所述的信息处理方法,其中,所述将所述至少一个测量量实例发送给所述第一网络侧设备,包括:
    在所述第二网络侧设备测量时间窗信息对应的一个测量时间窗内,发送至少一个测量报告给第一网络侧设备;
    其中,所述测量报告中至少携带一个测量量实例。
  35. 根据权利要求33所述的信息处理方法,其中,所述接收第一网络侧设备发送的测量时间窗信息,包括:
    接收第一网络侧设备发送的不同终端的测量时间窗信息;
    其中,不同终端的测量时间窗信息相同或不同。
  36. 根据权利要求33所述的信息处理方法,其中,所述第二网络侧设备测量时间窗信息包括网络侧设备测量用于定位的探测参考信号SRS-Pos的时间窗口信息和/或除所述SRS-Pos外的其他用于定位的上行参考信号的时间窗口信息;所述第二定位信号包括SRS-Pos和/或所述其他用于定位的上行参考信号。
  37. 根据权利要求33所述的信息处理方法,其中,所述将所述至少一个测量量实例发送给所述第一网络侧设备,包括:
    将所述至少一个测量量实例和所述测量量实例对应的时间戳发送给所述第一网络侧设备。
  38. 根据权利要求33所述的信息处理方法,其中,所述至少一个测量量实例包括:第二网络侧设备测量量实例;
    其中,所述第二网络侧设备测量量实例包括:上行相对到达时间UL-RTOA、上行参考信号接收功率UL-RSRP、和/或第二网络侧设备收发时间差。
  39. 根据权利要求33所述的信息处理方法,其中,所述测量时间窗信息包括测量时间窗的持续时长;或者,
    所述测量时间窗信息包括测量时间窗的持续时长和起始时刻;或者,
    所述测量时间窗信息包括测量时间窗的起始时刻和结束时刻。
  40. 根据权利要求33所述的信息处理方法,其中,所述测量时间窗信息包括世界协调时间UTC信息;和/或,
    所述测量时间窗信息包括系统无线帧号SFN信息和时隙号Slot number信息。
  41. 根据权利要求33所述的信息处理方法,其中,所述测量时间窗信息包括测量时间窗索引号;
    其中,所述测量时间窗索引号与所述测量时间窗的一套参数信息对应;
    所述参数信息包括所述测量时间窗的持续时长;或者,持续时长和起始时刻;或者,起始时刻和结束时刻。
  42. 根据权利要求33所述的信息处理方法,其中,所述测量时间窗信息包括以下至少一个参数信息:
    参数J,所述参数J表示一个终端测量时间窗内所包含的终端测量量实例的数量,J≥1;
    参数N i,所述参数N i表示第i个终端测量量实例所被配置的DL-PRS资源集实例或者DL-PRS测量时机的数量,N i≥1;
    参数K,所述参数K表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K≥1;
    参数M i,所述参数M i表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M i≥1。
  43. 根据权利要求33或36或42所述的信息处理方法,其中,所述第二网络侧设备测量时间窗信息包括周期性或半持续的SRS-Pos的测量时间窗长度MTW TRP
    其中,
    Figure PCTCN2022078262-appb-100007
    PD SRS-Pos表示SRS-Pos的周期;
    K P表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K P≥1;
    M Pi表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Pi≥1。
  44. 根据权利要求33或36或42所述的信息处理方法,其中,所述第二网络侧设备测量时间窗信息包括非周期性的SRS-Pos的测量时间窗长度MTW′ TRP
    其中,
    Figure PCTCN2022078262-appb-100008
    LH SRS-Pos表示一个非周期SRS-Pos资源集或SRS-Pos测量时机所占用的时长或时隙数量;
    K A表示一个第二网络侧设备测量时间窗内所包含的第二网络侧设备测量量实例的数量,K A≥1;
    M Ai表示第i个第二网络侧设备测量量实例所被配置的SRS-Pos资源集实例或者SRS-Pos测量时机的数量,M Ai≥1。
  45. 根据权利要求33或36所述的信息处理方法,其中,所述第二网络侧设备测量时间窗信息对应的测量时间窗包含位于不同上行带宽部分ULBWP的至少两个SRS-Pos资源集实例。
  46. 一种网络侧设备,所述网络侧设备为第一网络侧设备,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    通过所述收发机接收终端和/或第二网络侧设备根据测量时间窗信息反馈的至少一个测量量实例;
    根据所述至少一个测量量实例,确定所述终端的位置信息;
    其中,所述测量时间窗信息包括终端测量时间窗信息和/或第二网络侧设备测量时间窗信息;
    所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP。
  47. 一种终端,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    获取测量时间窗信息;
    根据所述测量时间窗信息,在对应的测量时间窗内测量第一定位信号,得到至少一个测量量实例;
    通过所述收发机将所述至少一个测量量实例发送给第一网络侧设备;
    其中,所述测量时间窗信息包括终端测量时间窗信息;
    所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元。
  48. 一种网络侧设备,所述网络侧设备为第二网络侧设备,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收 发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    通过所述收发机接收第一网络侧设备发送的测量时间窗信息;
    根据所述测量时间窗信息,在对应的测量时间窗内测量第二定位信号,得到至少一个测量量实例;
    通过所述收发机将所述至少一个测量量实例发送给所述第一网络侧设备;
    其中,所述测量时间窗信息包括第二网络侧设备测量时间窗信息;
    所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP。
  49. 一种信息处理装置,应用于第一网络侧设备,包括:
    第一接收单元,用于接收终端和/或第二网络侧设备根据测量时间窗信息反馈的至少一个测量量实例;
    第一确定单元,用于根据所述至少一个测量量实例,确定所述终端的位置信息;
    其中,所述测量时间窗信息包括终端测量时间窗信息和/或第二网络侧设备测量时间窗信息;
    所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP。
  50. 一种信息处理装置,应用于终端,包括:
    第一获取单元,用于获取测量时间窗信息;
    第一处理单元,用于根据所述测量时间窗信息,在对应的测量时间窗内测量第一定位信号,得到至少一个测量量实例;
    第二发送单元,用于将所述至少一个测量量实例发送给第一网络侧设备;
    其中,所述测量时间窗信息包括终端测量时间窗信息;
    所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元。
  51. 一种信息处理装置,应用于第二网络侧设备,包括:
    第二接收单元,用于接收第一网络侧设备发送的测量时间窗信息;
    第二处理单元,用于根据所述测量时间窗信息,在对应的测量时间窗内测量第二定位信号,得到至少一个测量量实例;
    第三发送单元,用于将所述至少一个测量量实例发送给所述第一网络侧设备;
    其中,所述测量时间窗信息包括第二网络侧设备测量时间窗信息;
    所述第一网络侧设备为定位服务器或者除所述定位服务器外的其他能够确定终端位置信息的网元;所述第二网络侧设备为基站或者传输点TRP。
  52. 一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至16任一项所述的信息处理方法;或者,
    所述计算机程序用于使所述处理器执行权利要求17至32任一项所述的信息处理方法;或者,
    所述计算机程序用于使所述处理器执行权利要求33至45任一项所述的信息处理方法。
PCT/CN2022/078262 2021-04-01 2022-02-28 一种信息处理方法、装置、终端及网络侧设备 WO2022206249A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/552,846 US20240172173A1 (en) 2021-04-01 2022-02-28 Information processing method, apparatus, terminal and network-side device
EP22778434.5A EP4319204A1 (en) 2021-04-01 2022-02-28 Information processing method and apparatus, and terminal and network-side device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110358440.4A CN115243188A (zh) 2021-04-01 2021-04-01 一种信息处理方法、装置、终端及网络侧设备
CN202110358440.4 2021-04-01

Publications (1)

Publication Number Publication Date
WO2022206249A1 true WO2022206249A1 (zh) 2022-10-06

Family

ID=83457900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078262 WO2022206249A1 (zh) 2021-04-01 2022-02-28 一种信息处理方法、装置、终端及网络侧设备

Country Status (4)

Country Link
US (1) US20240172173A1 (zh)
EP (1) EP4319204A1 (zh)
CN (1) CN115243188A (zh)
WO (1) WO2022206249A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141771A1 (en) * 2012-03-22 2013-09-26 Telefonaktiebolaget L M Ericsson (Publ) Enhancing uplink positioning
CN111586831A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信号传输方法与装置
WO2020191646A1 (en) * 2019-03-27 2020-10-01 Nokia Shanghai Bell Co., Ltd. Wireless positioning measurement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10098088B1 (en) * 2017-12-13 2018-10-09 Qualcomm Incorporated System and method for selecting a transceiver for performing a positioning reference signal measurement
US11451428B2 (en) * 2019-01-11 2022-09-20 Qualcomm Incorporated Configurable reference signal time difference measurement (RSTD) search window
CN111954147B (zh) * 2019-04-30 2021-10-29 大唐移动通信设备有限公司 信号传输、信号测量上报、定位方法及装置
CN112187423B (zh) * 2019-07-04 2021-12-10 大唐移动通信设备有限公司 信号传输方法及装置
US20220353696A1 (en) * 2019-07-05 2022-11-03 Telefonaktiebolaget Lm Ericsson (Publ) Positioning Signal Search Window Configuration in a Wireless Communication System

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141771A1 (en) * 2012-03-22 2013-09-26 Telefonaktiebolaget L M Ericsson (Publ) Enhancing uplink positioning
CN111586831A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信号传输方法与装置
WO2020191646A1 (en) * 2019-03-27 2020-10-01 Nokia Shanghai Bell Co., Ltd. Wireless positioning measurement

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on accuracy improvements by mitigating UE Rx/Tx and/or gNB Rx/Tx timing delays", 3GPP DRAFT; R1-2102635, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177281 *
MODERATOR (CATT): "FL Summary #5 for accuracy improvements by mitigating UE Rx/Tx and/or gNB Rx/Tx timing delays", 3GPP DRAFT; R1-2102204, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-meeting; 20210125 - 20210205, 8 February 2021 (2021-02-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051977766 *

Also Published As

Publication number Publication date
US20240172173A1 (en) 2024-05-23
EP4319204A1 (en) 2024-02-07
CN115243188A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2020164334A1 (zh) 信号传输的方法与装置
US20210351825A1 (en) Channel state information transmission method and apparatus
WO2022143092A1 (zh) 定位方法、设备及计算机可读存储介质
WO2018127193A1 (zh) 信道状态信息反馈方法、用户设备及基站
WO2022143091A1 (zh) 定位方法、设备及计算机可读存储介质
WO2021098048A1 (zh) 一种信息上报方法及装置
US20230362867A1 (en) Measurement method and apparatus for positioning, and storage medium
US20220053500A1 (en) Communication method and device
WO2023051203A1 (zh) 波束测量方法、测量配置方法、装置、终端及网络设备
WO2022078115A1 (zh) 功率确定方法、装置、终端及网络侧设备
WO2022089442A1 (zh) 一种定位方法、装置、终端及设备
WO2022151859A1 (zh) 一种信息处理方法、装置、终端及网络侧设备
WO2022206249A1 (zh) 一种信息处理方法、装置、终端及网络侧设备
WO2022188485A1 (zh) 相对定位授权方法、装置、终端及目标设备
WO2023050883A1 (zh) 信息处理方法、装置、位置管理功能服务器及通信设备
WO2021046820A1 (zh) 一种测量上报方法及装置
WO2023011001A1 (zh) 定时误差关联信息的发送方法及装置
WO2024027642A1 (zh) 一种信息传输方法、装置及设备
WO2022206361A1 (zh) 定位方法、装置及可读存储介质
WO2022100547A1 (zh) 信息确定、配置方法及装置
WO2023207744A1 (zh) 资源调度方法、设备、装置及存储介质
WO2022151897A1 (zh) 信息指示方法、装置、终端设备、网络设备及存储介质
TWI846627B (zh) 信號傳輸、信號測量上報、定位方法及裝置、電腦存儲介質
CN114390544B (zh) 信息获取方法、定位方法及设备
WO2024037513A1 (zh) 定位测量时间戳的上报、定位信息获取方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778434

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18552846

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022778434

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022778434

Country of ref document: EP

Effective date: 20231102