WO2022206188A1 - 一种电池及用电设备 - Google Patents

一种电池及用电设备 Download PDF

Info

Publication number
WO2022206188A1
WO2022206188A1 PCT/CN2022/076043 CN2022076043W WO2022206188A1 WO 2022206188 A1 WO2022206188 A1 WO 2022206188A1 CN 2022076043 W CN2022076043 W CN 2022076043W WO 2022206188 A1 WO2022206188 A1 WO 2022206188A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
flow channel
heat exchange
inlet
battery module
Prior art date
Application number
PCT/CN2022/076043
Other languages
English (en)
French (fr)
Inventor
王伟
洪家荣
侯跃攀
钱木
王鹏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020227035684A priority Critical patent/KR20220154204A/ko
Priority to JP2022558483A priority patent/JP2023523137A/ja
Priority to EP22772773.2A priority patent/EP4113703A1/en
Publication of WO2022206188A1 publication Critical patent/WO2022206188A1/zh
Priority to US18/126,503 priority patent/US20230231224A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of battery energy, in particular to a battery and electrical equipment.
  • a thermal management component is usually set to perform cooling or heating processing on the battery, so as to ensure that the battery operates within a predetermined temperature range and prevent the temperature of the battery from being too high or too low.
  • embodiments of the present invention provide a battery and an electrical device, which can respectively perform temperature management on battery cells in different regions.
  • a battery including a first battery module, a second battery module, and a thermal management component.
  • the first battery module includes a plurality of first battery cells
  • the second battery module includes a plurality of second battery cells
  • the plurality of second battery cells are located in the plurality of first battery cells the periphery.
  • the thermal management component includes a first flow channel for accommodating a fluid to adjust the temperature of the plurality of first battery cells, and a second flow channel for accommodating a fluid for providing a temperature adjustment to the plurality of first battery cells.
  • the plurality of second battery cells regulate temperature.
  • the thermal management component further includes a first inlet and a second inlet, the first inlet is used for inputting fluid into the first flow channel, the second inlet is used for inputting fluid into the second flow channel, and the The first inlet and the second inlet are isolated from each other.
  • the thermal management component further includes a first outlet for outputting the fluid in the first flow channel and a second outlet for outputting the second flow fluid in the canal. Wherein, the first outlet and the second outlet communicate with each other.
  • the first flow channel and the second flow channel are isolated from each other.
  • the battery further includes a first inlet conduit for connecting with the first inlet to input fluid into the first flow passage, and a second inlet conduit, the second inlet conduit An inlet conduit is used to connect with the second inlet to feed fluid into the second flow channel.
  • the battery further includes a first switch and a second switch.
  • the first switch is arranged on the first inlet pipe, and the first switch is used to control the connection between the first inlet pipe and the first flow channel.
  • the second switch is arranged on the second inlet pipe, and the second switch is used to control the connection between the second inlet pipe and the second flow channel.
  • the battery further includes a first temperature sensor, a second temperature sensor, and a controller.
  • the first temperature sensor is used to detect the temperature of at least one of the first battery cells
  • the second temperature sensor is used to detect the temperature of at least one of the second battery cells.
  • the controller is for electrical connection with the first temperature sensor, the second temperature sensor, the first switch, and the second switch, and the controller is configured to be based on the first temperature sensor and the second switch. The temperature detected by the second temperature sensor controls the on-off of the first switch and the second switch respectively.
  • the thermal management component includes a heat exchange plate for exchanging heat with the first battery module and the second battery module, and the interior of the heat exchange plate is provided with the first flow channel and the second flow channel.
  • the heat exchange plate includes an upper heat exchange plate and a lower heat exchange plate
  • the upper heat exchange plate is used for heat exchange with the first battery module and the second battery module
  • the The lower heat exchange plate is arranged on a side of the upper heat exchange plate away from the first battery module and the second battery module.
  • the first flow channel and the second flow channel are formed between the heat exchange upper plate and the heat exchange lower plate for fluid to flow therein.
  • the heat exchange plate and the first battery module are connected by a thermally conductive structural adhesive, and/or the heat exchange plate and the second battery module are connected by a thermally conductive structural adhesive.
  • the first flow channel is arranged in a curved shape, and/or the second flow channel is arranged in a U-shape.
  • an electrical device including the battery described in any one of the above, and the battery is used to provide electrical energy.
  • the battery in the embodiment of the present invention includes a plurality of first battery cells and a plurality of second battery cells disposed on the periphery of the plurality of first battery cells
  • the thermal management component includes a first flow channel.
  • the first flow channel and the second flow channel can respectively form two independent flow channels.
  • a flow channel so that the first flow channel adjusts the temperature for the plurality of first battery cells, and the second flow channel adjusts the temperature for the plurality of second battery cells, so as to realize battery cells in different regions temperature control to avoid excessive temperature difference between battery cells and improve the energy utilization rate of the thermal management system.
  • FIG. 1 is a schematic structural diagram of a battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a battery module of the battery shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of a battery module of a battery according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a thermal management component of the battery shown in FIG. 1;
  • FIG. 5 is an exploded schematic view of the battery shown in FIG. 1;
  • FIG. 6 is a schematic structural diagram of a thermal management component of a battery according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a thermal management component of a battery according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an inlet pipe and a pipe switch of the thermal management component shown in FIG. 6;
  • FIG. 9 is a schematic structural diagram of a thermal management component of a battery according to another embodiment of the present invention.
  • Figure 10 is a schematic structural diagram of the inlet pipe and pipe switch of the thermal management component shown in Figure 8;
  • FIG. 11 is a functional block diagram of a battery according to another embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a battery according to another embodiment of the present invention.
  • the inventors of the present invention found that when the battery is working, due to the arrangement of the battery cells, the temperature of the battery cells near the edge area is generally lower. Transfer to the edge, the battery cells in the middle area dissipate slowly due to heat accumulation, so a large temperature difference will be formed between the battery cells in the edge area and the battery cells in the middle area. Therefore, it is necessary to perform temperature management on the battery cells in different regions to ensure the performance of the battery.
  • an embodiment of the present invention provides a battery 100 , which includes a battery module 10 and a thermal management component 20 .
  • the battery module 10 is disposed on the thermal management component 20 , and the thermal management component 20 is used to adjust the temperature of the battery module 10 .
  • the temperature adjustment here can refer to heating up or cooling down.
  • the battery module 10 includes a first battery module 11 and a second battery module 12
  • the first battery module 11 includes a plurality of first battery cells 110
  • the plurality of first battery cells 110 are sequentially Stacked arrangement.
  • the second battery module 12 includes a plurality of second battery cells 120 , and the plurality of second battery cells 120 are disposed on the outer periphery of the plurality of first battery cells 110 . Wherein, when the battery 100 is working, the temperature of the first battery cell 110 is higher than the temperature of the second battery cell 120 .
  • the plurality of second battery cells 120 include at least one row of battery cells located at the first side edge A1 of the battery module 10 , at least one row of battery cells located at the second side edge A2 of the battery module 10 , and at least one row of battery cells located at the second side edge A2 of the battery module 10 . At least one row of battery cells on the third side edge A3, a plurality of second battery cells 120 are arranged to form a U shape. Wherein, the first side edge A1 and the second side edge A2 are two opposite edges. As shown in FIG. 2 , the first battery module 11 and the second battery module 12 are separated by a dashed frame X1 for schematic illustration.
  • the first battery module 11 includes a plurality of first battery cells 110 located in the dashed frame X1.
  • the second battery module 12 includes a plurality of second battery cells 120 located outside the dashed frame X1.
  • the plurality of second battery cells 120 may further include at least one row of battery cells located at the fourth side edge A4 of the battery module 10 , and the plurality of second battery cells 120 are arranged to form "mouth" shape.
  • the fourth side edge A4 and the third side edge A3 are oppositely arranged edges.
  • the first battery module 11 and the second battery module 12 are separated by a dashed frame X2 for schematic illustration.
  • the first battery module 11 includes a plurality of first battery cells 110 located in the dashed frame X2.
  • the second battery module 12 includes a plurality of second battery cells 120 located outside the dashed frame X2.
  • the plurality of second battery cells may also only include at least one row of battery cells located at the first side edge of the battery module 10 and at least one row of battery cells located at the second side edge of the battery module 10 body, or other battery cells in low temperature regions, which are not limited here.
  • the thermal management component 20 includes a first flow channel 201 and a second flow channel 202 .
  • the first flow channel 201 is provided in a curved shape, the position of the first flow channel 201 corresponds to the position of the first battery module 11 , and the first flow channel 201 is used for accommodating fluid to adjust the temperature of the plurality of first battery cells 110 .
  • the second flow channel 202 is arranged in a U shape, the second flow channel 202 is arranged on the outer periphery of the first flow channel 201 , the position of the second flow channel 202 corresponds to the position of the second battery module 12 , and the second flow channel 202 is used for accommodating the fluid to adjust the temperature of the plurality of second battery cells 120 .
  • the fluid contained in the first flow channel 201 and the second flow channel 202 may be water, gas, a mixture of water and ethylene glycol, etc., and may circulate in a circulating flow. It can be understood that, in some other embodiments, the shape of the second flow channel 202 can be set according to actual needs, such as being set to a "mouth" shape, an L shape, etc., and the shape of the second flow channel 202 needs to be consistent with the second battery module.
  • the shape of the second battery module 12 corresponds to the heat exchange requirement of the second battery module 12 .
  • the second flow channel 202 can cover each of the second battery cells 120 to increase the heat exchange efficiency.
  • the thermal management component 20 also includes a first inlet 203 and a second inlet 204 that are isolated from each other.
  • the first inlet 203 communicates with one end of the first flow channel 201 , and the first inlet 203 is used to input fluid into the first flow channel 201 .
  • the second inlet 204 communicates with one end of the second flow channel 202 , and the second inlet 204 is used to input fluid into the second flow channel 202 .
  • the thermal management component 20 also includes a first outlet 205 and a second outlet 206 .
  • the first outlet 205 communicates with the other end of the first flow channel 201 , and the fluid can be input into the first flow channel 201 through the first inlet 203 and output from the first outlet 205 .
  • the second outlet 206 communicates with the other end of the second flow channel 202 , and the fluid can be input into the second flow channel 202 through the second inlet 204 and output from the second outlet 206 .
  • the thermal management component 20 includes a heat exchange plate 21 , and the first flow channel 201 and the second flow channel 202 are respectively disposed inside the heat exchange plate 21 .
  • the battery module 10 is disposed on the heat exchange plate 21 , and the heat exchange plate 21 is used for heat exchange with the first battery module 11 and the second battery module 12 .
  • the heat exchange plate 21 and the first battery module 11 or the second battery module 12 can be connected by a thermally conductive structural adhesive (not shown), so that the heat exchange plate 21 and the battery module 10 are connected and fixed, and the thermally conductive structural adhesive can be used.
  • the gap between the heat exchange plate 21 and the battery module 10 is filled to enhance the heat exchange effect of the heat exchange plate 21 .
  • the heat exchange plate 21 includes a heat exchange upper plate 210 and a heat exchange lower plate 212, one side of the heat exchange upper plate 210 is connected to the heat exchange lower plate 212, and the other side of the heat exchange upper plate 210 is connected to the first battery module 11 and the second battery module 12.
  • the first flow channel 201 and the second flow channel 202 are formed between the upper heat exchange plate 210 and the lower heat exchange plate 212 .
  • the material of the upper heat exchange plate 210 and the lower heat exchange plate 212 may be metal aluminum or other aluminum alloys, and the upper heat exchange plate 210 and the lower heat exchange plate 212 may be fixed by brazing or other welding methods.
  • a first groove 201a and a second groove 202a are provided on the side of the lower heat exchange plate 212 facing the upper heat exchange plate 210, and the upper heat exchange plate 210 covers the lower heat exchange plate 212 to close the first groove 202a and the second groove 202a.
  • the grooves 202a are formed, thereby forming the first flow channel 201 and the second flow channel 202.
  • first groove and the second groove can also be provided on the upper heat exchange plate, and the lower heat exchange plate covers the upper heat exchange plate to form the first flow channel and the second flow channel , or, the heat exchange upper plate and the heat exchange lower plate are respectively set with the first groove and the second groove corresponding to the positions, and the heat exchange upper plate and the heat exchange lower plate are assembled to form the first flow channel and the second flow channel. be limited.
  • the upper heat exchange plate 210 is provided with a first inlet 203 and a second inlet 204 , and the first inlet 203 and the second inlet 204 respectively pass through the upper heat exchange plate 210 .
  • the first inlet 203 communicates the first flow channel 201 with the outside
  • the second inlet 204 communicates the second flow channel 202 with the outside.
  • the upper heat exchange plate 210 is further provided with a first outlet 205 and a second outlet 206 , and the first outlet 205 and the second outlet 206 respectively pass through the upper heat exchange plate 210 .
  • the first outlet 205 communicates the first flow channel 201 with the outside
  • the second outlet 206 communicates the second flow channel 202 with the outside.
  • the first outlet 205 and the second outlet 206 are not communicated with each other, so that the first flow channel 201 and the second flow channel 202 are isolated from each other.
  • the first outlet 205 and the second outlet 206 may also communicate with each other, and the fluids in the first flow channel 201 and the second flow channel 202 are discharged through the total outlet.
  • the second outlet 206 can be used as a total outlet, and the first outlet 205 of the first flow channel 201 is communicated with the second flow channel 202. After the fluid enters the first flow channel 201 from the first inlet 203, it enters the second flow channel through the first outlet 205.
  • the channel 202 is then discharged from the second outlet 206; alternatively, the first outlet 205 can be used as a total outlet (not shown), the second outlet 206 of the second flow channel 202 is communicated with the first flow channel 201, and the fluid is input from the second inlet 204 After the second flow channel 202, it is input into the first flow channel 201 through the second outlet 206 and then discharged from the first outlet 205; alternatively, the first flow channel 201 and the second flow channel 202 are respectively communicated with the total outlet, which is not limited here.
  • the thermal management component 20 further includes an inlet pipe, which is installed on the heat exchange upper plate 210 , and the inlet pipe includes a first inlet pipe 220 and a second inlet pipe 222 .
  • One end of the first inlet pipe 220 is connected to the first inlet 203 to input fluid into the first flow channel 201 .
  • the second inlet conduit 222 is connected to the second inlet 204 to input fluid into the second flow channel 202 .
  • the first inlet pipe 220 and the second inlet pipe 222 are isolated from each other, and the first inlet pipe 220 and the second inlet pipe 222 are respectively connected to an external heat exchanger (not shown), which is used for exchanging fluids. heat treatment.
  • the material of the first inlet pipe 220 and the second inlet pipe 222 can be metal alloy or nylon, etc., respectively, so as to ensure the sealing performance of the pipes.
  • the thermal management component 20 further includes a pipe switch, and the pipe switch is arranged on the inlet pipe.
  • the pipe switches include a first switch 230 and a second switch 232 .
  • the first switch 230 is provided in the first inlet pipe 220 , and the first switch 230 is used to control the connection between the first inlet pipe 220 and the first flow channel 201 .
  • the second switch 232 is provided in the second inlet pipe 222, and the second switch 232 is used to control the connection between the second inlet pipe 222 and the second flow channel 202.
  • the pipeline switch can adopt a quick connector, which is arranged between the first inlet pipeline 220 and the first inlet 203, and between the second inlet pipeline 222 and the second inlet 204; alternatively, the pipeline switch can also adopt A control valve is provided between the first inlet pipe 220 and the heat exchanger, and between the second inlet pipe 222 and the heat exchanger.
  • the first inlet pipe 220 and the second inlet pipe 222 are connected by a main inlet pipe 224, the main inlet pipe 224 is connected to an external heat exchanger, and the fluid flows from the main inlet pipe Conduit 224 feeds into first inlet conduit 220 and second inlet conduit 222, respectively.
  • the first switch 230 is arranged between the first inlet pipe 220 and the general inlet pipe 224, and the first switch 230 controls the on-off between the first inlet pipe 220 and the general inlet pipe 224, thereby controlling the connection between the first flow channel 201 and the second inlet pipe 224.
  • An on-off between inlet pipes 220 is arranged between the first inlet pipe 220 and the general inlet pipe 224, and the first switch 230 controls the on-off between the first inlet pipe 220 and the general inlet pipe 224, thereby controlling the connection between the first flow channel 201 and the second inlet pipe 224.
  • An on-off between inlet pipes 220 is arranged between the first inlet
  • the second switch 232 is arranged between the second inlet pipe 222 and the main inlet pipe 224 , and the second inlet pipe 222 controls the connection between the second inlet pipe 222 and the main inlet pipe 224 , thereby controlling the connection between the second flow passage 202 and the main inlet pipe 224 . On and off between the two inlet pipes 222 .
  • the thermal management component 20 further includes a temperature sensor and a controller 25, and the controller 25 is electrically connected to the temperature sensor and the pipe switch, respectively.
  • the temperature sensor is provided in the battery module 10 , and the temperature sensor is used to detect the temperature change of the battery module 10 and is connected to the controller 25 in communication.
  • the controller 25 controls the heat exchanger to cool the fluid, and turns on the pipe switch to allow the fluid to enter the first flow channel 201 or The second flow channel 202, so that the fluid cools the first battery module 11 or the second battery module 12;
  • the controller 25 Control the heat exchanger to heat the fluid, and turn on the pipe switch so that the fluid enters the first flow channel 201 or the second flow channel 202, so that the fluid heats the first battery module 11 or the second battery module 12, so that the heat
  • the management unit 20 implements an automated temperature management function for the battery module 10 .
  • the temperature sensors include a first temperature sensor 240 and a second temperature sensor 242 .
  • the first temperature sensor 240 is provided in the first battery module 11 , the first temperature sensor 240 is connected to the at least one first battery cell 110 , and the first temperature sensor 240 is used to detect the temperature of the at least one first battery cell 110 .
  • the second temperature sensor 242 is provided in the second battery module 12, the second temperature sensor 242 is connected to the at least one second battery cell 120, and the second temperature sensor is used to detect the temperature of the at least one second battery cell 120.
  • the controller 25 is electrically connected to the first temperature sensor 240 and the first switch 230 respectively, and the controller 25 controls the on-off of the first switch 230 according to the temperature detected by the first temperature sensor 240 .
  • the controller 25 is also electrically connected to the second temperature sensor 242 and the second switch 232 respectively, and the controller 25 controls the on-off of the second switch 232 according to the temperature detected by the second temperature sensor 242 . It can be understood that, in some embodiments, there may also be two controllers, and the two controllers are respectively used to control the first switch 230 and the second switch 232 .
  • the battery 100 further includes a casing 30 , and the casing 30 is disposed outside the battery module 10 and the thermal management component 20 .
  • the housing 30 includes a box body 31 and a cover body 32 , and the cover body 32 is connected to the box body 31 .
  • the box body 31 is provided with a receiving space.
  • the battery module 10 and the thermal management component 20 are both disposed in the receiving space.
  • the cover body 32 is disposed on the box body 31 to close the receiving space.
  • the box body 31 and the cover body 32 can also be made of thermally conductive materials, respectively, so as to further transfer the heat of the battery module 10 or the thermal management component 20 to the outside.
  • the heat generated by the battery module 10 will be conducted to the thermal management component 20. Affected by the arrangement of the battery cells, the plurality of first battery cells 110 in the middle area will accumulate heat due to heat accumulation. As a result, the heat dissipation is slow, and the temperature of the plurality of second battery cells 120 in the edge region is generally low.
  • the first flow channel 201 can be opened to cool the first battery module 11, so as to reduce the internal temperature difference of the battery and realize effective regulation of the temperature difference of the battery; when the battery is working at low temperature, the second flow channel 202 can be opened to heat the second battery module 11.
  • the battery module 12 rapidly increases the temperature of the battery cells at the outer edge, thereby ensuring optimal energy utilization. It can be understood that the first flow channel 201 and the second flow channel 202 can also be opened at the same time to cool or heat the first battery module 11 and the second battery module 12 at the same time to ensure the temperature uniformity of the battery module 10 .
  • Another embodiment of the present invention provides an electrical device, including the battery 100 of any of the foregoing embodiments, and the battery 100 is used to provide electrical energy.
  • the electrical equipment may be a vehicle, a ship, an aircraft, an energy storage device, a low-hand-held power tool, etc. that use batteries.

Abstract

提供一种电池及用电设备,涉及电池能源技术领域。电池(100)包括第一电池模块(11)、第二电池模块(12)以及热管理部件(20)。第一电池模块(11)包括多个第一电池单体(110),第二电池模块(12)包括多个第二电池单体(120),多个第二电池单体(120)位于多个第一电池单体(110)的外周。热管理部件(20)包括第一流道(201)和第二流道(202),向第一流道(201)输入流体的第一进口(203)以及向第二流道(202)输入流体的第二进口(204),第一流道(201)和第二流道(202)可分别形成两条可独立流动的流道,以使得第一流道(201)为多个第一电池单体(110)调节温度,第二流道(202)为多个第二电池单体(120)调节温度,从而实现不同区域的电池单体的温度控制,避免各电池单体之间温差过大,同时提高热管理系统的能量利用率。

Description

一种电池及用电设备
相关申请的交叉引用
本申请要求享有于2021年04月01日提交的名称为“一种电池及用电设备”的中国专利申请202110357856.4的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池能源技术领域,特别是涉及一种电池及用电设备。
背景技术
随着新能源技术的发展,电池的能量密度越来越高,其应用的范围也越来越广泛。而电池对温度极敏感,当温度过低或过高时,会降低电池的充放电能力以及使用寿命。为了控制电池温度,通常会设置热管理组件对电池进行降温处理或者升温处理,从而保证电池在预定的温度范围内工作,避免电池的温度过高或者过低。
发明内容
为了解决上述技术问题,本发明实施例提供一种电池及用电设备,可以分别对不同区域的电池单体进行温度管理。
本发明实施例解决其技术问题采用以下技术方案:
提供一种电池,包括第一电池模块、第二电池模块以及热管理部件。所述第一电池模块包括多个第一电池单体,所述第二电池模块包括多个第二电池单体,且所述多个第二电池单体位于所述多个第一电池单体的外周。所述热管理部件包括第一流道和第二流道,所述第一流道用于容纳 流体以给所述多个第一电池单体调节温度,所述第二流道用于容纳流体以给所述多个第二电池单体调节温度。所述热管理部件还包括第一进口和第二进口,所述第一进口用于向所述第一流道输入流体,所述第二进口用于向所述第二流道输入流体,且所述第一进口与所述第二进口相互隔离。
在一些实施例中,所述热管理部件还包括第一出口和第二出口,所述第一出口用于输出所述第一流道内的流体,所述第二出口用于输出所述第二流道内的流体。其中,所述第一出口与所述第二出口相互连通。
在一些实施例中,所述第一流道与所述第二流道相互隔离。
在一些实施例中,所述电池还包括第一进口管道和第二进口管道,所述第一进口管道用于与所述第一进口连接以将流体输入所述第一流道内,所述第二进口管道用于与所述第二进口连接以将流体输入所述第二流道内。
在一些实施例中,所述电池还包括第一开关和第二开关。所述第一开关设置于所述第一进口管道,所述第一开关用于控制所述第一进口管道与所述第一流道之间的通断。所述第二开关设置于所述第二进口管道,所述第二开关用于控制所述第二进口管道与所述第二流道之间的通断。
在一些实施例中,所述电池还包括第一温度传感器、第二温度传感器以及控制器。所述第一温度传感器用于检测至少一个所述第一电池单体的温度,所述第二温度传感器用于检测至少一个所述第二电池单体的温度。所述控制器用于与所述第一温度传感器、所述第二温度传感器、所述第一开关以及所述第二开关电连接,所述控制器被配置为根据所述第一温度传感器和所述第二温度传感器检测到的温度分别控制所述第一开关和第二开关的通断。
在一些实施例中,所述热管理部件包括换热板,所述换热板用于与所述第一电池模块和所述第二电池模块进行热交换,所述换热板的内部设 有所述第一流道和所述第二流道。
在一些实施例中,所述换热板包括换热上板和换热下板,所述换热上板用于与所述第一电池模块和所述第二电池模块进行热交换,所述换热下板布置在所述换热上板远离所述第一电池模块和所述第二电池模块的一侧。其中,所述第一流道和所述第二流道形成在所述换热上板和所述换热下板之间以供流体在其中流动。
在一些实施例中,所述换热板与所述第一电池模块之间通过导热结构胶连接,和/或,所述换热板与所述第二电池模块之间通过导热结构胶连接。
在一些实施例中,所述第一流道呈弯曲状设置,和/或,所述第二流道呈U形设置。
第二方面,提供一种用电设备,包括上述任一项所述的电池,所述电池用于提供电能。
与现有技术相比较,本发明实施例中的电池包括多个第一电池单体和设于多个第一电池单体外周的多个第二电池单体,热管理部件包括为第一流道、第二流道、向所述第一流道输入流体的第一进口以及向第二流道输入流体的第二进口,所述第一流道和第二流道可分别形成两条可独立流动的流道,以使得所述第一流道为所述多个第一电池单体调节温度,所述第二流道为所述多个第二电池单体调节温度,从而实现不同区域的电池单体的温度控制,避免各电池单体之间温差过大,同时提高热管理系统的能量利用率。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表 示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明其中一实施例提供的一种电池的结构示意图;
图2为图1所示的电池的电池模块的结构示意图;
图3为本发明另一实施例提供的电池的电池模块的结构示意图;
图4为图1所示的电池的热管理部件的结构示意图;
图5为图1所示的电池的分解示意图;
图6为本发明另一实施例提供的一种电池的热管理部件的结构示意图;
图7为本发明另一实施例提供的一种电池的热管理部件的结构示意图;
图8为图6所示的热管理部件的进口管道和管道开关结构示意图;
图9为本发明另一实施例提供的一种电池的热管理部件的结构示意图;
图10为图8所示的热管理部件的进口管道和管道开关结构示意图;
图11为本发明另一实施例提供的一种电池的功能模块图;
图12为本发明另一实施例提供的一种电池的结构示意图。
在附图中,附图并未按照实际的比例绘制。
其中,附图标记说明如下:
100、电池
10、电池模块
11、第一电池模块
110、第一电池单体
12、第二电池模块
120、第二电池单体
20、热管理部件
201、第一流道
202、第二流道
203、第一进口
204、第二进口
205、第一出口
206、第二出口
21、换热板
210、换热上板
212、换热下板
201a、第一凹槽
202a、第二凹槽
220、第一进口管道
222、第二进口管道
224、总进口管道
230、第一开关
232、第二开关
240、第一温度传感器
242、第二温度传感器
25、控制器
30、外壳
31、箱体
32、盖体。
具体实施方式
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本发明的发明人在实现本发明的过程中发现:电池工作时,受电池单体排布的影响,靠近边缘区域的电池单体普遍温度较低,同时,由于电池的传热是由电池中心向边缘传递,中间区域的电池单体由于热积累导致散热较慢,因此,边缘区域的电池单体和中间区域的电池单体之间会形成较大的温度差。因此,需要分别对不同区域的电池单体进行温度管理,以保证电池的性能。
请参阅图1,本发明其中一实施例提供一种电池100,包括电池模块10和热管理部件20,电池模块10设于热管理部件20上,热管理部件20用于为电池模块10调节温度,这里的调节温度可以指升温或降温。
请一并参阅图1和图2,电池模块10包括第一电池模块11和第二电池模块12,第一电池模块11包括多个第一电池单体110,多个第一电池单体110依次堆叠排列。第二电池模块12包括多个第二电池单体120,多个第二电池单体120设于多个第一电池单体110的外周。其中,电池100工作时,第一电池单体110的温度高于第二电池单体120的温度。
多个第二电池单体120包括位于电池模块10的第一侧边缘A1的至 少一排电池单体、位于电池模块10的第二侧边缘A2的至少一排电池单体以及位于电池模块10的第三侧边缘A3的至少一列电池单体,多个第二电池单体120排列形成U形。其中,第一侧边缘A1与第二侧边缘A2为相对设置的两边缘。如图2所示,第一电池模块11和第二电池模块12之间通过虚线框架X1分隔以进行示意说明,第一电池模块11包括位于虚线框架X1内的多个第一电池单体110,第二电池模块12包括位于虚线框架X1外的多个第二电池单体120。
请参阅图3,在一些其他实施例中,多个第二电池单体120还可以包括位于电池模块10的第四侧边缘A4的至少一列电池单体,多个第二电池单体120排列形成“口”字形。其中,第四侧边缘A4与第三侧边缘A3为相对设置的两边缘。如图3所示,第一电池模块11和第二电池模块12之间通过虚线框架X2分隔以进行示意说明,第一电池模块11包括位于虚线框架X2内的多个第一电池单体110,第二电池模块12包括位于虚线框架X2外的多个第二电池单体120。
在一些其他实施例中,多个第二电池单体也可仅包括位于电池模块10的第一侧边缘的至少一排电池单体和位于电池模块10的第二侧边缘的至少一排电池单体,又或者,其他低温区域的电池单体,在此不予限定。
请一并参阅图2和图4,热管理部件20包括第一流道201和第二流道202。第一流道201呈弯曲状设置,第一流道201的位置与第一电池模块11的位置相对应,第一流道201用于容纳流体以给多个第一电池单体110调节温度。第二流道202呈U形设置,第二流道202设于第一流道201外周,第二流道202的位置与第二电池模块12的位置相对应,第二流道202用于容纳流体以给多个第二电池单体120调节温度。第一流道201和第二流道202中容纳的流体可以是水、气体、水和乙二醇的混合液等,且可以循环流动。可以理解的是,在一些其他实施例中,第二流道202的形状可以根据实际需求设置,比如设置为“口”字形、L形等,第二流道202的形状需与第二电池模块12的形状相对应,以满足第二电池模块12的换热需求。较优地,第二流道202可以覆盖每个第二电池单体120,以增加换热效率。
热管理部件20还包括相互隔离的第一进口203和第二进口204。第一进口203与第一流道201的一端连通,第一进口203用于向第一流道201输入流体。第二进口204与第二流道202的一端连通,第二进口204用于向第二流道202输入流体。
热管理部件20还包括第一出口205和第二出口206。第一出口205与第一流道201的另一端连通,流体可通过第一进口203输入第一流道201并从第一出口205输出。第二出口206与第二流道202的另一端连通,流体可通过第二进口204输入第二流道202并从第二出口206输出。
请一并参阅图4和图5,热管理部件20包括换热板21,第一流道201和第二流道202分别设于换热板21内部。电池模块10设于换热板21上,换热板21用于与第一电池模块11和第二电池模块12进行热交换。换热板21与第一电池模块11或第二电池模块12之间可通过导热结构胶(图未示)连接,以使得换热板21与电池模块10之间连接固定,且导热结构胶可填充换热板21与电池模块10之间的缝隙,以加强换热板21的换热效果。
换热板21包括换热上板210和换热下板212,换热上板210的一面与换热下板212连接,换热上板210的另一面连接第一电池模块11和第二电池模块12。第一流道201和第二流道202形成于换热上板210和换热下板212之间。其中,换热上板210和换热下板212的材质可采用金属铝或其他铝合金,换热上板210和换热下板212可通过钎焊或其他焊接方式固定。
换热下板212朝向换热上板210的一面设有第一凹槽201a和第二凹槽202a,换热上板210覆盖于换热下板212,以封闭第一凹槽202a和第二凹槽202a,从而形成第一流道201和第二流道202。可以理解的是,在一些其他实施例中,第一凹槽和第二凹槽也可设于换热上板,换热下板覆盖于换热上板以形成第一流道和第二流道,或者,换热上板和换热下板分别设置位置对应的第一凹槽和第二凹槽,换热上板和换热下板拼合形成第一流道和第二流道,在此不予限定。
换热上板210上设有第一进口203和第二进口204,第一进口203 和第二进口204分别贯通换热上板210。第一进口203将第一流道201与外部连通,第二进口204将第二流道202与外部连通。
换热上板210上还设有第一出口205和第二出口206,第一出口205和第二出口206分别贯通换热上板210。第一出口205将第一流道201与外部连通,第二出口206将第二流道202与外部连通。其中,第一出口205与第二出口206互不连通,以使得第一流道201和第二流道202相互隔离。
请参阅图6,在一些实施例中,第一出口205和第二出口206也可以相互连通,第一流道201与第二流道202内的流体通过总出口排出。比如,第二出口206可以作为总出口,第一流道201的第一出口205与第二流道202连通,流体从第一进口203输入第一流道201后,通过第一出口205输入第二流道202再从第二出口206排出;或者,第一出口205可以作为总出口(图未示),第二流道202的第二出口206与第一流道201连通,流体从第二进口204输入第二流道202后,通过第二出口206输入第一流道201再从第一出口205排出;又或者,第一流道201与第二流道202分别与总出口连通,在此不予限定。
请一并参阅图5、图7和图8,进一步地,热管理部件20还包括进口管道,进口管道安装于换热上板210,进口管道包括第一进口管道220和第二进口管道222。第一进口管道220的一端与第一进口203连接,以将流体输入第一流道201内。第二进口管道222与第二进口204连接,以将流体输入第二流道202内。其中,第一进口管道220和第二进口管道222相互隔离,第一进口管道220和第二进口管道222分别与外部的换热器(图未示)连接,该换热器用于为流体进行换热处理。其中,第一进口管道220和第二进口管道222的材质分别可以金属合金或尼龙等,以保证管道密封性。
进一步地,热管理部件20还包括管道开关,管道开关设于进口管道上。管道开关包括第一开关230和第二开关232。第一开关230设于第一进口管道220,第一开关230用于控制第一进口管道220和第一流道201之间的通断。第二开关232设于第二进口管道222,第二开关232用 于控制第二进口管道222与第二流道202之间的通断。其中,管道开关可采用快速接头,该快速接头设于第一进口管道220和第一进口203之间,以及设于第二进口管道222和第二进口204之间;或者,管道开关也可采用控制阀,该控制阀设于第一进口管道220和换热器之间,以及设于第二进口管道222和换热器之间。
请一并参阅图9和图10,在一些实施例中,第一进口管道220和第二进口管道222通过总进口管道224连接,总进口管道224与外部的换热器连接,流体从总进口管道224分别输入第一进口管道220和第二进口管道222。其中,第一开关230设于第一进口管道220和总进口管道224之间,第一开关230控制第一进口管道220和总进口管道224之间的通断,从而控制第一流道201与第一进口管道220之间的通断。第二开关232设于第二进口管道222和总进口管道224之间,第二进口管道222控制第二进口管道222和总进口管道224之间的通断,从而控制第二流道202与第二进口管道222之间的通断。
请参阅图11,进一步地,热管理部件20还包括温度传感器和控制器25,控制器25分别与温度传感器、管道开关电连接。温度传感器设于电池模块10,温度传感器用于检测电池模块10的温度变化并与控制器25通信连接。当温度传感器检测到第一电池模块11或第二电池模块12的的温度高于预定温度时,控制器25控制换热器对流体进行制冷,并打开管道开关以使得流体输入第一流道201或第二流道202,以使得流体对第一电池模块11或第二电池模块12进行冷却;当温度传感器检测到第一电池模块11或第二电池模块12的温度低于预定温度时,控制器25控制换热器对流体进行加热,并打开管道开关以使得流体输入第一流道201或第二流道202,以使得流体对第一电池模块11或第二电池模块12进行加热,从而使得热管理部件20对电池模块10实现自动化的温度管理功能。
温度传感器包括第一温度传感器240和第二温度传感器242。第一温度传感器240设于第一电池模块11,第一温度传感器240与至少一个第一电池单体110连接,第一温度传感器240用于检测至少一个第一电池单体110的温度。第二温度传感器242设于第二电池模块12,第二温度传感 器242与至少一个第二电池单体120连接,第二温度传感器用于检测至少一个第二电池单体120的温度。
控制器25分别与第一温度传感器240、第一开关230电连接,控制器25根据第一温度传感器240检测到的温度控制第一开关230的通断。控制器25还分别与第二温度传感器242、第二开关232电连接,控制器25根据第二温度传感器242检测到的温度控制第二开关232的通断。可以理解的是,在一些实施例中,控制器也可以为两个,两个控制器分别用于控制第一开关230和第二开关232。
请参阅图12,在一些实施例中,电池100还包括外壳30,外壳30设于电池模块10和热管理部件20的外部。外壳30包括箱体31和盖体32,盖体32连接于箱体31。箱体31内设有收容空间,电池模块10和热管理部件20均设于收容空间内,盖体32设于箱体31上以封闭收容空间。其中,所述箱体31和所述盖体32也可分别采用导热材料制成,以进一步将电池模块10或热管理部件20的热量传递至外部。
请一并参阅上述附图,电池100工作时,电池模块10产生的热量将传导至热管理部件20,受电池单体排布的影响,中间区域的多个第一电池单体110由于热积累导致散热较慢,边缘区域的多个第二电池单体120普遍温度较低。当高温工作时,可开启第一流道201以冷却第一电池模块11,以降低电池内部温差,实现电池温度差的有效调控;当电池低温工作时,可开启第二流道202以加热第二电池模块12,快速提升外边缘电池单体的温度,从而保证能量利用最优化。可以理解的是,第一流道201和第二流道202也可以同时开启,以同时对第一电池模块11和第二电池模块12进行冷却或加热,以保证电池模块10的温度均匀性。
本发明另一实施例提供一种用电设备,包括上述任一实施例的电池100,电池100用于提供电能。其中,用电设备可以为车辆、轮船、飞行器、储能设备、低手持电动工具等使用电池的设备。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发 明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (11)

  1. 一种电池,包括:
    第一电池模块,包括多个第一电池单体;
    第二电池模块,包括多个第二电池单体,且所述多个第二电池单体位于所述多个第一电池单体的外周;以及
    热管理部件,包括第一流道和第二流道,所述第一流道用于容纳流体以给所述多个第一电池单体调节温度,所述第二流道用于容纳流体以给所述多个第二电池单体调节温度;
    其中,所述热管理部件还包括第一进口和第二进口,所述第一进口用于向所述第一流道输入流体,所述第二进口用于向所述第二流道输入流体,且所述第一进口与所述第二进口相互隔离。
  2. 根据权利要求1所述的电池,其中,所述热管理部件还包括:
    第一出口,用于输出所述第一流道内的流体;
    第二出口,用于输出所述第二流道内的流体;
    其中,所述第一出口与所述第二出口相互连通。
  3. 根据权利要求1或2所述的电池,其中,所述第一流道与所述第二流道相互隔离。
  4. 根据权利要求1-3任一项所述的电池,其中,所述电池还包括:
    第一进口管道,用于与所述第一进口连接以将流体输入所述第一流道内;
    第二进口管道,用于与所述第二进口连接以将流体输入所述第二流道 内。
  5. 根据权利要求4所述的电池,其中,所述电池还包括:
    第一开关,设置于所述第一进口管道,所述第一开关用于控制所述第一进口管道与所述第一流道之间的通断;
    第二开关,设置于所述第二进口管道,所述第二开关用于控制所述第二进口管道与所述第二流道之间的通断。
  6. 根据权利要求5所述的电池,其中,所述电池还包括:
    第一温度传感器,用于检测至少一个所述第一电池单体的温度;
    第二温度传感器,用于检测至少一个所述第二电池单体的温度;
    控制器,用于与所述第一温度传感器、所述第二温度传感器、所述第一开关以及所述第二开关电连接,所述控制器被配置为根据所述第一温度传感器和所述第二温度传感器检测到的温度分别控制所述第一开关和第二开关的通断。
  7. 根据权利要求1-6任一项所述的电池,其中,所述热管理部件包括换热板,所述换热板用于与所述第一电池模块和所述第二电池模块进行热交换;
    所述换热板的内部设有所述第一流道和所述第二流道。
  8. 根据权利要求7所述的电池,其中,所述换热板包括:
    换热上板,所述换热上板用于与所述第一电池模块和所述第二电池模块进行热交换;
    换热下板,所述换热下板布置在所述换热上板远离所述第一电池模块 和所述第二电池模块的一侧;
    其中,所述第一流道和所述第二流道形成在所述换热上板和所述换热下板之间以供流体在其中流动。
  9. 根据权利要求7所述的电池,其中,所述换热板与所述第一电池模块之间通过导热结构胶连接;和/或
    所述换热板与所述第二电池模块之间通过导热结构胶连接。
  10. 根据权利要求1-9任一项所述的电池,其中,所述第一流道呈弯曲状设置;和/或
    所述第二流道呈U形设置。
  11. 一种用电设备,包括:
    如权利要求1-10任一项所述的电池,所述电池用于提供电能。
PCT/CN2022/076043 2021-04-01 2022-02-11 一种电池及用电设备 WO2022206188A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227035684A KR20220154204A (ko) 2021-04-01 2022-02-11 배터리 및 전기기기
JP2022558483A JP2023523137A (ja) 2021-04-01 2022-02-11 電池及び電力消費機器
EP22772773.2A EP4113703A1 (en) 2021-04-01 2022-02-11 Battery and electrical device
US18/126,503 US20230231224A1 (en) 2021-04-01 2023-03-27 Battery and electric device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110357856.4 2021-04-01
CN202110357856.4A CN115189075B (zh) 2021-04-01 2021-04-01 一种电池及用电设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/126,503 Continuation US20230231224A1 (en) 2021-04-01 2023-03-27 Battery and electric device

Publications (1)

Publication Number Publication Date
WO2022206188A1 true WO2022206188A1 (zh) 2022-10-06

Family

ID=83455560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076043 WO2022206188A1 (zh) 2021-04-01 2022-02-11 一种电池及用电设备

Country Status (6)

Country Link
US (1) US20230231224A1 (zh)
EP (1) EP4113703A1 (zh)
JP (1) JP2023523137A (zh)
KR (1) KR20220154204A (zh)
CN (1) CN115189075B (zh)
WO (1) WO2022206188A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106004337A (zh) * 2016-07-04 2016-10-12 浙江大学 一种电动汽车智能整车热管理系统及其方法
CN109830625A (zh) * 2019-01-22 2019-05-31 重庆交通大学 圆柱形电池热管理系统
FR3100608A1 (fr) * 2019-09-10 2021-03-12 Valeo Systemes Thermiques Système de gestion thermique pour composant électrique
CN212848578U (zh) * 2020-08-11 2021-03-30 辽宁忠旺铝合金精深加工有限公司 一种电动汽车液冷电池包

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101688483B1 (ko) * 2011-09-01 2016-12-21 삼성에스디아이 주식회사 배터리 팩
US8835039B2 (en) * 2011-10-21 2014-09-16 Avl Powertrain Engineering, Inc. Battery cooling plate and cooling system
US9550406B2 (en) * 2015-03-16 2017-01-24 Thunder Power Hong Kong Ltd. Thermal dissipation system of an electric vehicle
KR102378425B1 (ko) * 2017-06-07 2022-03-24 삼성에스디아이 주식회사 배터리 팩
JP2020149818A (ja) * 2019-03-12 2020-09-17 パナソニックIpマネジメント株式会社 電池モジュールの冷却装置
CN112151910B (zh) * 2020-09-27 2022-02-18 中国第一汽车股份有限公司 一种液冷电池系统及液冷电池系统的控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106004337A (zh) * 2016-07-04 2016-10-12 浙江大学 一种电动汽车智能整车热管理系统及其方法
CN109830625A (zh) * 2019-01-22 2019-05-31 重庆交通大学 圆柱形电池热管理系统
FR3100608A1 (fr) * 2019-09-10 2021-03-12 Valeo Systemes Thermiques Système de gestion thermique pour composant électrique
CN212848578U (zh) * 2020-08-11 2021-03-30 辽宁忠旺铝合金精深加工有限公司 一种电动汽车液冷电池包

Also Published As

Publication number Publication date
CN115189075A (zh) 2022-10-14
CN115189075B (zh) 2023-11-03
US20230231224A1 (en) 2023-07-20
EP4113703A1 (en) 2023-01-04
KR20220154204A (ko) 2022-11-21
JP2023523137A (ja) 2023-06-02

Similar Documents

Publication Publication Date Title
JP7027641B2 (ja) 電池セルの表面を冷却するための不均一流路を備えたクーリングジャケット及びそれを含むバッテリーモジュール
CN215771271U (zh) 电池包及车辆
CN108520930A (zh) 一种具有流道和热管的电池箱智能电池包热管理系统
JP2004296217A (ja) 電池パック
CN206098610U (zh) 电池热量管理系统及电动车辆
CN108075081A (zh) 电池组、电池包及具有该电池包的车辆
CN101728596A (zh) 一种电池组和包括该电池组的电池包
WO2022206188A1 (zh) 一种电池及用电设备
CN201349040Y (zh) 一种电池组和包括该电池组的电池包
KR102349646B1 (ko) 리튬 이차 전지 모듈, 이를 포함하는 리튬 이차 전지 팩, 및 리튬 이차 전지 모듈의 제어 방법
JP5765518B2 (ja) 燃料電池システム
CN115714217A (zh) 一种基于正极集流体传热的叠片式动力电池热管理系统
JP4555601B2 (ja) 燃料電池の冷却装置
KR20220105841A (ko) 배터리팩 냉각장치
CN113497247A (zh) 一种高响应水平的氢燃料电池系统
JPS58142769A (ja) 燃料電池
KR101917155B1 (ko) 간접방식 맞춤형 고효율 열교환기 및 그 제조방법
CN220439732U (zh) 液冷板、电池模组及电池包
CN217788529U (zh) 用于电池的调温装置、电池壳体和电池包
CN219066941U (zh) 电池冷却装置、新能源车
CN218005040U (zh) 用于电池的调温装置、电池壳体和电池包
CN116799372B (zh) 液冷装置、液冷装置控制方法及储能系统
CN220086172U (zh) 温度调节部件和电池包
CN219106298U (zh) 电池包
JP4564247B2 (ja) 燃料電池発電装置および圧力調整方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022558483

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227035684

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022772773

Country of ref document: EP

Effective date: 20220927

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22772773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE