WO2022206167A1 - 一种大冲程游梁式抽油机 - Google Patents

一种大冲程游梁式抽油机 Download PDF

Info

Publication number
WO2022206167A1
WO2022206167A1 PCT/CN2022/074870 CN2022074870W WO2022206167A1 WO 2022206167 A1 WO2022206167 A1 WO 2022206167A1 CN 2022074870 W CN2022074870 W CN 2022074870W WO 2022206167 A1 WO2022206167 A1 WO 2022206167A1
Authority
WO
WIPO (PCT)
Prior art keywords
pumping unit
stroke
bracket
base
beam pumping
Prior art date
Application number
PCT/CN2022/074870
Other languages
English (en)
French (fr)
Inventor
张聪
Original Assignee
德瑞石油装备(青岛)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德瑞石油装备(青岛)有限公司 filed Critical 德瑞石油装备(青岛)有限公司
Priority to CA3220841A priority Critical patent/CA3220841A1/en
Priority to US17/958,454 priority patent/US20230043079A1/en
Publication of WO2022206167A1 publication Critical patent/WO2022206167A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B47/00Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
    • F04B47/02Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps the driving mechanisms being situated at ground level
    • F04B47/022Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps the driving mechanisms being situated at ground level driving of the walking beam
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B47/00Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
    • F04B47/02Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps the driving mechanisms being situated at ground level
    • F04B47/026Pull rods, full rod component parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B47/00Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
    • F04B47/02Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps the driving mechanisms being situated at ground level
    • F04B47/028Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps the driving mechanisms being situated at ground level details of the walking beam

Definitions

  • the present disclosure relates to the technical field of pumping units, in particular to a large-stroke beam pumping unit.
  • the world's oil production equipment is mainly divided into beam pumping units and tower pumping units.
  • the beam pumping units are mainly used for small and medium strokes (240in. and below), and the tower type is used for long strokes (above 240in.). ). Therefore, there is no application of the beam type in the long-stroke pumping unit, and the tower type is mainly used.
  • the reliability of the beam pumping unit is 50% higher than that of the tower type, and the manufacturing cost of the beam pumping unit is 30% lower than that of the tower type. to fifty percent. Therefore, there is a need for a practical beam pumping unit to meet the working needs of a large stroke.
  • the purpose of the present disclosure is to provide a large-stroke beam pumping unit to solve the technical problems in the prior art.
  • a large-stroke beam pumping unit comprising a base (1) and a drive mechanism (2) fixedly installed at one end of the base (1), and a bracket mechanism (3) is provided at the other end of the base (1)
  • a travel beam (4) There is a travel beam (4), a donkey head (5) is installed at the front end of the travel beam (4), and a connecting rod (6) is connected to the drive mechanism (2) at the rear end of the travel beam (4).
  • the middle seat (7) is installed on the travel beam (4)
  • I is the distance from the center of rotation of the drive mechanism (2) to the projection of the middle seat (7) on the base (1)
  • P is the length of the connecting rod (6)
  • H is the distance from the middle seat (7) to the base (1)
  • G is the distance from the center of rotation of the drive mechanism (2) to the base (1)
  • the beam pumping unit adjusts the distance, length and turning radius through a trial-and-error method, and outputs the dynamic characteristic curve of the beam pumping unit through dynamic simulation calculation, and according to the dynamic characteristics
  • the feedback of the curve adjusts the distance, length and turning radius again until the dynamic characteristic curve is optimized.
  • the travel beam (4) is connected with the crank of the drive mechanism (2) through a connecting rod (6) to form a crank connecting rod structure
  • the travel beam (4) and the bracket mechanism (3) are adjusted by adjusting the The distance, length and turning radius form a large-stroke beam structure
  • the connecting rod (6) includes a bottom rod (601) hinged with the travel beam (4) respectively and a transmission hinged with the drive mechanism (2)
  • a rod (602) the transmission rod (602) is connected with the bottom rod (601) through a telescopic rod built into the transmission rod (602), and the telescopic rod and the bottom rod (601) are connected
  • the room is also hinged.
  • extension columns (9) are provided on both sides of the hinge, and the front bracket (301) and the rear bracket (302) are respectively sleeved on the extension columns (9) on both sides of the hinge , the front bracket (301) and the rear bracket (302) are movably installed on the base (1) along the long axis direction of the beam (4) to adjust the front bracket (301) and the rear bracket (302) Angle between brackets (302).
  • the vertical line of the middle seat (7) is set as the center line, the angle between the front support (301) and the center line is 0-10°, and the rear support (302) The angle between the centerline and the centerline is 0-16°.
  • connection between the middle seat (7) and the support mechanism (3) is connected by a stress arc patch (8).
  • the stress arc patch (8) extends in an arc shape to both ends along the long axis direction of the beam (4).
  • the stroke of the large-stroke beam pumping unit is more than 6.1 meters.
  • the driving mechanism includes an electric motor, the electric motor is connected with the reducer through a belt, and the reducer is connected with a connecting rod through a crankshaft.
  • the middle seat is slidably mounted on the beam (4); the top ends of the front bracket (301) and the rear bracket (302) are connected to each other by hinges; the front bracket (301) and the rear bracket The other ends of (302) are slidably mounted on both sides of the base (1).
  • the present disclosure achieves the purpose of not only accomplishing a large stroke but also reducing the weight and volume of the equipment by setting specific A ⁇ C size designs.
  • the present disclosure also reduces stress concentration by setting the stress arc patch and optimizing the asynchronous sliding of the bracket mechanism to adjust the angle between it and the connecting line between the hinge and the projection point, so as to apply the crank link mechanism to a large stroke beam pumping unit service.
  • FIG. 1 is a schematic structural diagram of an embodiment of the present disclosure
  • Fig. 2 is the structural principle diagram of the beam pumping unit of the present disclosure
  • FIG. 3 is a schematic structural diagram of a stress arc patch in the present disclosure
  • FIG. 4 is a schematic diagram of the included angle between the bracket mechanism and the center line in the present disclosure.
  • this specific embodiment provides a large-stroke beam pumping unit, comprising a base 1 and a drive mechanism 2 fixedly installed at one end of the base 1 , and a bracket mechanism is used at the other end of the base 1 3.
  • a travel beam 4 is provided to form a travel beam type structure
  • a donkey head 5 is installed at the front end of the travel beam 4
  • the rear end of the travel beam 4 is connected with the drive mechanism 2 through a connecting rod 6 to form a crank connection. rod structure.
  • a beam-type structure is formed by arranging a beam 4 at the other end of the base 1 through a bracket mechanism 3 , and a link 6 is connected to the drive mechanism 2 at the rear end of the beam 4 .
  • the connection forms a crank connecting rod structure, that is, the principle of the crank connecting rod mechanism (four connecting rod) is applied to the beam pumping unit with a large stroke (240in, that is, more than 6.1m) for the first time.
  • the driving mechanism includes an electric motor, the electric motor is connected with the reducer through a belt, and the reducer is connected with a connecting rod 6 through a crankshaft.
  • the beam pumping unit is mainly used for medium and small strokes (240in. and below), and the tower type is used for long strokes (above 240in.). Therefore, there is no application of the beam type in the long-stroke pumping unit, and the tower type is mainly used.
  • the stroke size of the beam pumping unit is mainly related to the A value and the H value.
  • the size of the pumping unit constructed according to the traditional size model will be very large based on the interaction between various parameters of the beam pumping unit, which not only brings difficulties in transportation, but also Due to the increased weight of the structure, the force requirements of various parts will be completely different from those of the small-stroke beam pumping unit in the past, which makes it difficult for the beam pumping unit to be used in an environment with a stroke above 240 inches.
  • the beam 4 is connected to the crank of the drive mechanism 2 through a connecting rod 6 to form a crank connecting rod structure, and the beam 4 and the bracket mechanism 3 are adjusted by adjusting the The distance, length and turning radius form a large-stroke beam structure, and the crank connecting rod structure, the stress arc patch 8 and the bracket mechanism 3 cooperate with the large-stroke beam structure.
  • the crank connecting rod mechanism is applied to the large-stroke beam pumping unit to improve its reliability and reduce the manufacturing cost. Specifically: the distance and length of the beam pumping unit are adjusted by trial and error. and turning radius, and output the dynamic characteristic curve of the beam pumping unit through dynamic simulation calculation, and adjust the distance, length and turning radius again according to the feedback of the dynamic characteristic curve until the dynamic characteristic curve reaches the maximum good.
  • A is the distance from the donkey head 5 to the middle seat 7;
  • I is the distance from the center of rotation of the drive mechanism 2 to the projection of the middle seat 7 on the base 1;
  • P is the length of the connecting rod 6
  • H is the distance between the middle seat 7 and the base 1;
  • G is the distance from the rotation center of the drive mechanism 2 to the base 1;
  • R is the turning radius of the drive mechanism 2 .
  • the stroke size of the beam pumping unit is mainly related to the A value and the H value. Material strength, or stress concentration occurs, resulting in cracking of structural parts), if the stress state is improved by changing other values, it will cause poor motion characteristics (low force transmission ratio and low efficiency). Therefore, the best match of each value in the figure can not only make the force transmission relatively high and stable, but also meet the sports performance (complete a large stroke), and also the structural strength can be satisfied and economical.
  • these requirements are contradictory, so the development of beam pumping units in the direction of long stroke has been limited.
  • each dimension value is optimized as follows:
  • the connecting rod 6 includes a bottom rod 601 hinged with the beam 4 and a transmission rod 602 hinged with the driving mechanism 2 , and the transmission rod 602 passes through the telescoping built in the transmission rod 602 .
  • the rod is connected with the bottom rod 601 , and the telescopic rod and the bottom rod 601 are also hinged.
  • the telescopic rod is a conventional telescopic structure, such as a double-sleeve rod telescopic structure, but it should be noted that the telescopic structure needs to be used with a locking structure, that is, the telescopic rod can be locked at any length when adjusting the length.
  • the crank connecting rod mechanism is applied to a large-stroke beam pumping unit according to the optimization of parameters.
  • a middle seat 7 is slidably installed on the beam 4 , and the connection between the middle seat 7 and the bracket mechanism 3 is connected by a stress arc patch 8 , and the bracket mechanism 3 is connected.
  • It includes a front bracket 301 and a rear bracket 302 whose top ends are connected by hinges. The other ends of the front bracket 301 and the rear bracket 302 are both slidably installed on both sides of the base 1 .
  • the stress arc patch 8 is used to connect the middle seat 7 and the bracket mechanism 3 to reduce the stress of the middle seat 7 and improve the fatigue strength.
  • the stress arc device 8 includes a bearing seat 801 connected with the bracket mechanism 3 and a patch body 802 connected with the middle seat 7;
  • the cross section of the bearing seat 801 is trapezoidal, and the bearing seat 801 and the patch body 802 are connected by an arc-shaped extension body 803, the bearing seat 801, the arc-shaped extension body 803 and the patch body 802 is an integrated structure.
  • the main reason is that the large-stroke beam pumping machine causes the A value to be very large, so the force state of the beam is poor, and stress concentration occurs, which greatly reduces the life of the structure.
  • This specific embodiment adopts a stress arc structure to release the stress concentration. Reduced from 310Mpa to 98Mpa.
  • extension columns 9 are provided on both sides of the hinge
  • the front bracket 301 and the rear bracket 302 are respectively sleeved on the extension columns 9 on both sides of the hinge
  • the front bracket 301 and the rear bracket 302 are respectively sleeved on the extension columns 9 on both sides of the hinge.
  • the rear bracket 302 is movably installed on the base 1 along the long axis direction of the beam 4 to adjust the included angle between the front bracket 301 and the rear bracket 302 .
  • the size range of the beam is mainly set to achieve a long stroke and reduce the overall mass of the equipment.
  • the mechanism is used in the service of large stroke beam pumping units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Transmission Devices (AREA)
  • Manipulator (AREA)

Abstract

一种大冲程游梁式抽油机,包括底座(1)和固定安装在所述底座(1)一端的驱动机构(2),在所述底座(1)另一端通过支架机构(3)设置有游梁(4)形成游梁式结构,在所述游梁(4)的前端安装有驴头(5),且在所述游梁(4)的后端通过连杆(6)与所述驱动机构(2)连接形成曲柄连杆(6)结构,所述游梁(4)上安装有中座(7),所述支架机构(3)包括顶端彼此连接的前支架(301)和后支架(302),所述前支架(301)和所述后支架(302)的另一端安装在所述底座(1)两侧;该抽油机通过调整部件尺寸和优化支架机构(3)来调整其与铰接件与投影点连线的夹角来降低应力集中,从而为将曲柄连杆(6)机构应用于大冲程的游梁式抽油机服务。

Description

一种大冲程游梁式抽油机 技术领域
本公开涉及抽油机技术领域,具体涉及一种大冲程游梁式抽油机。
背景技术
石油作为世界主要能源之一,随着汽车等制造工业的发展,对石油制品的需求量越来越大,因此对采油设备的需求也越来越高。但世界各地地质差异万千,因此对采油设备也提出了不同的性能要求。
目前世界采油设备主要分为游梁式抽油机和塔架式抽油机,游梁式抽油机主要应用于中小冲程(240in.及以下),塔架式应用于长冲程(240in.以上)。因此,长冲程的抽油机中没有游梁式的应用,主要都是采用塔架式。
但是在实际应用中发现,游梁式抽油机的可靠性比塔架式抽油机高百分之五十,且游梁式抽油机的制造成本比塔架式低百分之三十到百分之五十。因此需要一种具有实用化的游梁式抽油机来实现大冲程的工作需要。
发明内容
本公开的目的在于提供一种大冲程游梁式抽油机,以解决现有技术中的技术问题。
为解决上述技术问题,本公开具体提供下述技术方案:
一种大冲程游梁式抽油机,包括底座(1)和固定安装在所述底座(1)一端的驱动机构(2),在所述底座(1)另一端通过支架机构(3)设置有游梁(4),在所述游梁(4)的前端安装有驴头(5),且在所述游梁(4)的后端通过连杆(6)与所述驱动机构(2)连接,所述游梁(4)上安装有中座(7),所述支架机构(3)包括顶端连接的前支架(301)和后支架(302),所述前支架(301)和所述后支架(302)的另一端安装在所述底座(1)两侧;设定:A为所述驴头(5)至所述中座(7)的距离;C为所述中座(7)至所述游梁(4)后端的距离;所述A=5791~7395毫米,所述C=3050~3611毫米。
进一步地,设定:I为所述驱动机构(2)转动中心至所述中座(7)在 所述底座(1)上投影之间的距离;P为所述连杆(6)的长度;H为所述中座(7)至所述底座(1)之间的距离;G为所述驱动机构(2)转动中心至所述底座(1)之间的距离;R为所述驱动机构(2)的转动半径;所述I=3050~3569毫米,所述P=5759~7386毫米,所述H=8636~10838毫米,所述G=2819~3643毫米,所述R=1524~2047毫米。
进一步地,所述游梁式抽油机通过试凑法调整所述距离、长度和转动半径并通过动力学仿真计算输出所述游梁式抽油机的动态特征曲线,并依据所述动态特征曲线的反馈再次调整所述距离、长度和转动半径直至所述动态特征曲线达到最佳。
进一步地,所述游梁(4)通过连杆(6)与所述驱动机构(2)的曲柄连接形成曲柄连杆结构,所述游梁(4)和支架机构(3)通过调整所述距离、长度和转动半径形成大冲程的游梁结构,所述连杆(6)包括分别与所述游梁(4)铰接的底杆(601)和与所述驱动机构(2)铰接的传动杆(602),所述传动杆(602)通过内置在所述传动杆(602)内的伸缩杆与所述底杆(601)连接,且所述伸缩杆和所述底杆(601)之间也为铰接。
进一步地,所述铰接件两侧均设置有延伸柱(9),所述前支架(301)和所述后支架(302)分别套设在所述铰接件两侧的延伸柱(9)上,所述前支架(301)和所述后支架(302)在所述底座(1)上沿着游梁(4)的长轴方向活动安装以调整所述前支架(301)和所述后支架(302)之间的夹角。
进一步地,设定所述中座(7)的铅垂线为中心线,所述前支架(301)和所述中心线之间的夹角为0-10°,所述后支架(302)和所述中心线之间的夹角为0-16°。
进一步地,所述中座(7)和支架机构(3)的连接处通过应力弧贴片(8)连接。
进一步地,所述应力弧贴片(8)沿着所述游梁(4)的长轴方向向两端呈弧形延伸。
进一步地,该大冲程游梁式抽油机的冲程在6.1米以上。
进一步地,驱动机构包括电动机,电动机通过皮带与减速器连接,减速器通过曲柄轴连接有连杆。
进一步地,所述中座滑动安装在所述游梁(4)上;前支架(301)和后支架(302)的顶端彼此通过铰接件连接;所述前支架(301)和所述后支架(302)的另一端均滑动安装在所述底座(1)两侧。
本公开与现有技术相比具有如下有益效果:本公开通过设置具体A\C尺寸设计来实现既能够完成大冲程又能够减轻设备的重量、减小设备体积的目的。优选地,本公开还通过设置应力弧贴片以及优化支架机构的不同步滑动来调整其与铰接件与投影点连线的夹角来降低应力集中,从而为将曲柄连杆机构应用于大冲程的游梁式抽油机服务。
附图说明
为了更清楚地说明本公开的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
图1为本公开实施例的结构示意图;
图2为本公开游梁式抽油机结构原理图;
图3为本公开中应力弧贴片的结构示意图;
图4为本公开中支架机构和中心线夹角示意图。
图中的标号分别表示如下:
1-底座;2-驱动机构;3-支架机构;4-游梁;5-驴头;6-连杆;7-中座;8-应力弧贴片;9-延伸柱;301-前支架;302-后支架;601-底杆;602-传动杆。
本发明的较佳实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图1所示,本具体实施方式提供了一种大冲程游梁式抽油机,包括底座1和固定安装在所述底座1一端的驱动机构2,在所述底座1另一端通过支架机构3设置有游梁4形成游梁式结构,在所述游梁4的前端安装有驴头5,且在所述游梁4的后端通过连杆6与所述驱动机构2连接形成曲柄连杆结构。
在本实施方式中,通过在所述底座1另一端通过支架机构3设置有游梁4形成游梁式结构,并通过在所述游梁4的后端通过连杆6与所述驱动机构2连接形成曲柄连杆结构,即首次将曲柄连杆机构(四连杆)的原理在大冲程(240in,即6.1m以上)游梁式抽油机上应用。
其中,驱动机构包括电动机,电动机通过皮带与减速器连接,减速器通过曲柄轴连接有连杆6。
在现有技术中,游梁式抽油机主要应用于中小冲程(240in.及以下),塔架式应用于长冲程(240in.以上)。因此,长冲程的抽油机中没有游梁式的应用,主要都是采用塔架式。
其主要原因在于:游梁式抽油机冲程大小主要与A值和H值有关,冲程越大,A值和H值也越大,同样井口载荷的情况下,按照现有的设计教导,在冲程超过240in.以上时,基于游梁式抽油机的各个参数之间的相互影响按照传统的尺寸模型构建出来的抽油机尺寸会非常大,不仅带来了运输的困难,最主要的是因为结构重量增加,各个部位的受力需求会和过往小冲程的游梁式抽油机完全不同,造成游梁式抽油机难以适用冲程在240in.以上的环境下。
既能使的传力比较高且平稳,又能满足运动性能(完成大冲程),还要结构强度能满足且经济,然而由于曲柄连杆机构的特点,这些要求是相互矛盾的,一直限制了游梁式抽油机在长冲程方向的发展。
如图2所示,在本具体实施方式中,所述游梁4通过连杆6与所述驱动机构2的曲柄连接形成曲柄连杆结构,所述游梁4和支架机构3通过调整所述距离、长度和转动半径形成大冲程的游梁结构,所述曲柄连杆结构和所述 应力弧贴片8以及支架机构3配合大冲程的游梁结构。将曲柄连杆机构应用于大冲程的游梁式抽油机中,以提高其可靠性,并降低制造成本,具体地:所述游梁式抽油机通过试凑法调整所述距离、长度和转动半径并通过动力学仿真计算输出所述游梁式抽油机的动态特征曲线,并依据所述动态特征曲线的反馈再次调整所述距离、长度和转动半径直至所述动态特征曲线达到最佳。
具体而言,在本具体实施方式中的一种优选的实施方式下设定:
A为所述驴头5至所述中座7的距离;
C为所述中座7至所述游梁4后端的距离;
I为所述驱动机构2转动中心至所述中座7在所述底座1上投影之间的距离;
P为所述连杆6的长度;
H为所述中座7至所述底座1之间的距离;
G为所述驱动机构2转动中心至所述底座1之间的距离;
R为所述驱动机构2的转动半径。
游梁式抽油机冲程大小主要与A值和H值有关,冲程越大,A值和H值也越大,同样井口载荷的情况下,所有结构件受力就越不理想(受力大于材料强度,或出现应力集中,而造成结构件开裂),如若通过改变其他值改善受力状态,会造成运动特性很差(传力比很低,效率就很低)。因此图中的各个值的最佳匹配,既能使的传力比较高且平稳,又能满足运动性能(完成大冲程),还要结构强度能满足且经济,然而由于曲柄连杆机构的特点,这些要求是相互矛盾的,因此一直限制了游梁式抽油机在长冲程方向的发展。
在本实施方式中,各个尺寸值优化如下:
Figure PCTCN2022074870-appb-000001
在本实施方式中,为了使得连杆6能够适应支架机构3的长度以及角度变化,连杆6的长度可以根据实际需求适应性的发生变化。具体地:所述连杆6包括分别与所述游梁4铰接的底杆601和与所述驱动机构2铰接的传动 杆602,所述传动杆602通过内置在所述传动杆602内的伸缩杆与所述底杆601连接,且所述伸缩杆和所述底杆601之间也为铰接。其中,伸缩杆为常规的伸缩结构,如双套杆的伸缩结构,但是需要说明的是,该伸缩结构需要配合锁定结构使用,即伸缩杆在调整长度时可以在任意长度进行锁定。
在本具体实施方式中,依据参数的优化将曲柄连杆机构应用于大冲程的游梁式抽油机。进一步地,如图1和图3所示,所述游梁4上滑动安装有中座7,所述中座7和支架机构3的连接处通过应力弧贴片8连接,所述支架机构3包括顶端通过铰接件连接的前支架301和后支架302,所述前支架301和所述后支架302的另一端均滑动安装在所述底座1两侧。
采用应力弧贴片8连接中座7和支架机构3,降低中座7的受力,提高疲劳强度。具体地,所述应力弧装置8包括与支架机构3连接的轴承座801和与所述中座7连接的贴片体802;
所述轴承座801的剖面呈梯形,且所述轴承座801和所述贴片体802之间通过弧形延展体803连接,所述轴承座801、弧形延展体803和所述贴片体802为一体化结构。主要原因在于,大冲程游梁抽油机会造成A值很大,因此游梁受力状态差,出现应力集中,大大降低结构寿命,本具体实施方式采用应力弧结构,释放应力集中,根据实验证明:应力由310Mpa降低为98Mpa。
第二方面,所述铰接件两侧均设置有延伸柱9,所述前支架301和所述后支架302分别套设在所述铰接件两侧的延伸柱9上,所述前支架301和所述后支架302在所述底座1上沿着游梁4的长轴方向活动安装以调整所述前支架301和所述后支架302之间的夹角。设定所述中座7的铅垂线为中心线,优化支架前后腿角度,改善支架受力状态,提高可靠性,通过试凑法不断调整前后腿角度进行动力学和有限元分析,直到满足强度要求,其中,如图4所示,前支架301和中心线之间的夹角为10°,而后支架302和中心之间的夹角为16°。
综合上述,在本具体实施方式中主要是通过设置游梁尺寸范围来实现长 冲程以及减轻设备整体的质量。除此之外设置应力弧贴片8以及优化前支架301和后支架302的不同步滑动来调整其与铰接件和投影点连线中心线的夹角来降低应力集中,从而为将曲柄连杆机构应用于大冲程的游梁式抽油机服务。
以上实施例仅为本申请的示例性实施例,不用于限制本申请,本申请的保护范围由权利要求书限定。本领域技术人员可以在本申请的实质和保护范围内,对本申请做出各种修改或等同替换,这种修改或等同替换也应视为落在本申请的保护范围内。

Claims (11)

  1. 一种大冲程游梁式抽油机,包括底座(1)和固定安装在所述底座(1)一端的驱动机构(2),其特征在于,在所述底座(1)另一端通过支架机构(3)设置有游梁(4),在所述游梁(4)的前端安装有驴头(5),且在所述游梁(4)的后端通过连杆(6)与所述驱动机构(2)连接,所述游梁(4)上安装有中座(7),所述支架机构(3)包括顶端连接的前支架(301)和后支架(302),所述前支架(301)和所述后支架(302)的另一端安装在所述底座(1)两侧;
    设定:A为所述驴头(5)至所述中座(7)的距离;C为所述中座(7)至所述游梁(4)后端的距离;所述A=5791~7395毫米,所述C=3050~3611毫米。
  2. 根据权利要求1所述的一种大冲程游梁式抽油机,其特征在于,设定:
    I为所述驱动机构(2)转动中心至所述中座(7)在所述底座(1)上投影之间的距离;P为所述连杆(6)的长度;H为所述中座(7)至所述底座(1)之间的距离;G为所述驱动机构(2)转动中心至所述底座(1)之间的距离;R为所述驱动机构(2)的转动半径;
    所述I=3050~3569毫米,所述P=5759~7386毫米,所述H=8636~10838毫米,所述G=2819~3643毫米,所述R=1524~2047毫米。
  3. 根据权利要求2所述的一种大冲程游梁式抽油机,其特征在于,所述游梁式抽油机通过试凑法调整所述距离、长度和转动半径并通过动力学仿真计算输出所述游梁式抽油机的动态特征曲线,并依据所述动态特征曲线的反馈再次调整所述距离、长度和转动半径直至所述动态特征曲线达到最佳。
  4. 根据权利要求3所述的一种大冲程游梁式抽油机,其特征在于,所述游梁(4)通过连杆(6)与所述驱动机构(2)的曲柄连接形成曲柄连杆结构,所述游梁(4)和支架机构(3)通过调整所述距离、长度和转动半径形成大冲程的游梁结构,所述连杆(6)包括分别与所述游梁(4)铰接的底杆(601)和与所述驱动机构(2)铰接的传动杆(602),所述传动杆(602)通过内置在所述传动杆(602)内的伸缩杆与所述底杆(601)连接,且所述伸缩杆和 所述底杆(601)之间也为铰接。
  5. 根据权利要求1所述的一种大冲程游梁式抽油机,其特征在于,所述铰接件两侧均设置有延伸柱(9),所述前支架(301)和所述后支架(302)分别套设在所述铰接件两侧的延伸柱(9)上,所述前支架(301)和所述后支架(302)在所述底座(1)上沿着游梁(4)的长轴方向活动安装以调整所述前支架(301)和所述后支架(302)之间的夹角。
  6. 根据权利要求5所述的一种大冲程游梁式抽油机,其特征在于,设定所述中座(7)的铅垂线为中心线,所述前支架(301)和所述中心线之间的夹角为0-10°,所述后支架(302)和所述中心线之间的夹角为0-16°。
  7. 根据权利要求1-6中任一项所述的一种大冲程游梁式抽油机,其特征在于,所述中座(7)和支架机构(3)的连接处通过应力弧贴片(8)连接。
  8. 根据权利要求7所述的一种大冲程游梁式抽油机,其特征在于,所述应力弧贴片(8)沿着所述游梁(4)的长轴方向向两端呈弧形延伸。
  9. 根据权利要求1所述的一种大冲程游梁式抽油机,其特征在于,该大冲程游梁式抽油机的冲程在6.1米以上。
  10. 根据权利要求4所述的一种大冲程游梁式抽油机,其特征在于,驱动机构包括电动机,电动机通过皮带与减速器连接,减速器通过曲柄轴连接有连杆。
  11. 根据权利要求1-10中任一项所述的一种大冲程游梁式抽油机,其特征在于,所述中座滑动安装在所述游梁(4)上;前支架(301)和后支架(302)的顶端彼此通过铰接件连接;所述前支架(301)和所述后支架(302)的另一端均滑动安装在所述底座(1)两侧。
PCT/CN2022/074870 2021-03-31 2022-01-29 一种大冲程游梁式抽油机 WO2022206167A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3220841A CA3220841A1 (en) 2021-03-31 2022-01-29 Large stroke beam pumping unit
US17/958,454 US20230043079A1 (en) 2021-03-31 2022-10-03 Long stroke beam pumping unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202120653404.6U CN214035623U (zh) 2021-03-31 2021-03-31 一种大冲程游梁式抽油机
CN202120653404.6 2021-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/958,454 Continuation US20230043079A1 (en) 2021-03-31 2022-10-03 Long stroke beam pumping unit

Publications (1)

Publication Number Publication Date
WO2022206167A1 true WO2022206167A1 (zh) 2022-10-06

Family

ID=77348408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074870 WO2022206167A1 (zh) 2021-03-31 2022-01-29 一种大冲程游梁式抽油机

Country Status (4)

Country Link
US (1) US20230043079A1 (zh)
CN (1) CN214035623U (zh)
CA (1) CA3220841A1 (zh)
WO (1) WO2022206167A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214035623U (zh) * 2021-03-31 2021-08-24 德瑞石油装备(青岛)有限公司 一种大冲程游梁式抽油机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101305187A (zh) * 2005-10-13 2008-11-12 井泵技术有限公司 井下流体产量优化系统及方法
US20130030721A1 (en) * 2011-06-27 2013-01-31 Pumpwell Solutions Ltd. System and method for determination of polished rod position for reciprocating rod pumps
WO2015106327A1 (pt) * 2014-01-20 2015-07-23 Gurgel Omar Pereira Unidade de bombeio com contrapeso dinâmico para extração de petróleo
CN110566163A (zh) * 2019-09-17 2019-12-13 德瑞石油装备(青岛)有限公司 一种超大冲程和荷载的游梁式抽油机
CN110608014A (zh) * 2019-09-17 2019-12-24 德瑞石油装备(青岛)有限公司 一种超大冲程和荷载的游梁式抽油机
CN113027388A (zh) * 2021-03-31 2021-06-25 德瑞石油装备(青岛)有限公司 一种大冲程游梁式抽油机
CN214035623U (zh) * 2021-03-31 2021-08-24 德瑞石油装备(青岛)有限公司 一种大冲程游梁式抽油机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101305187A (zh) * 2005-10-13 2008-11-12 井泵技术有限公司 井下流体产量优化系统及方法
US20130030721A1 (en) * 2011-06-27 2013-01-31 Pumpwell Solutions Ltd. System and method for determination of polished rod position for reciprocating rod pumps
WO2015106327A1 (pt) * 2014-01-20 2015-07-23 Gurgel Omar Pereira Unidade de bombeio com contrapeso dinâmico para extração de petróleo
CN110566163A (zh) * 2019-09-17 2019-12-13 德瑞石油装备(青岛)有限公司 一种超大冲程和荷载的游梁式抽油机
CN110608014A (zh) * 2019-09-17 2019-12-24 德瑞石油装备(青岛)有限公司 一种超大冲程和荷载的游梁式抽油机
CN113027388A (zh) * 2021-03-31 2021-06-25 德瑞石油装备(青岛)有限公司 一种大冲程游梁式抽油机
CN214035623U (zh) * 2021-03-31 2021-08-24 德瑞石油装备(青岛)有限公司 一种大冲程游梁式抽油机

Also Published As

Publication number Publication date
CN214035623U (zh) 2021-08-24
US20230043079A1 (en) 2023-02-09
CA3220841A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
WO2022206167A1 (zh) 一种大冲程游梁式抽油机
US20180156318A1 (en) Non-beam Pumping Unit with a Motor Output Shaft Righting Device
CN203318079U (zh) 汽车弹性悬架刚性锁止装置
CN114261417B (zh) 气液复合连杆结构的变刚度扭杆及其设计方法
WO2017067090A1 (zh) 一种翻转折叠床的翻转装置
WO2022205538A1 (zh) 一种大冲程游梁式抽油机
CN100549434C (zh) 利用反平行四边形的空间伸缩机构
CN202624629U (zh) 一种摇臂式起落架
CN204236173U (zh) 一种链条同步车辆避震调节装置
WO2023142254A1 (zh) 一种游梁式抽油机及游梁式抽油机设计方法
CN210344184U (zh) 工业机器人的链条传动机构
CN2451855Y (zh) 恒力支吊架
CN2854205Y (zh) 一种曲柄连杆平衡机构
CN114031023A (zh) 一种机械驱动器系统
CN203939853U (zh) 车辆发动机曲柄连杆
CN208605543U (zh) 缓冲装置
CN208348681U (zh) 低净空恒力弹簧支吊架
CN220452611U (zh) 活节聚氨酯焊接头
CN103291249A (zh) 实现抽油机完全平衡的方法和装置
CN206055051U (zh) 一种阶梯式拉板的复合平面铰链直管压力平衡型膨胀节
CN103769447B (zh) 一种金属板材折弯机
CN2890412Y (zh) 油井泵吸装置
CN219975789U (zh) 一种自平衡膨胀节
CN204778716U (zh) 一种新型液压驱动式提升装置
CN110901954B (zh) 一种高刚度盘绕式伸展机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3220841

Country of ref document: CA

122 Ep: pct application non-entry in european phase

Ref document number: 22778355

Country of ref document: EP

Kind code of ref document: A1