WO2022205806A1 - 自润滑涡轮增压器球轴承的轴系结构 - Google Patents

自润滑涡轮增压器球轴承的轴系结构 Download PDF

Info

Publication number
WO2022205806A1
WO2022205806A1 PCT/CN2021/120116 CN2021120116W WO2022205806A1 WO 2022205806 A1 WO2022205806 A1 WO 2022205806A1 CN 2021120116 W CN2021120116 W CN 2021120116W WO 2022205806 A1 WO2022205806 A1 WO 2022205806A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
lubricating
ball bearing
oil
turbocharger
Prior art date
Application number
PCT/CN2021/120116
Other languages
English (en)
French (fr)
Inventor
周峥
封金虎
闫海东
曹刚
胡奇
凌泓
王星
周贵平
许洪
Original Assignee
湖南天雁机械有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南天雁机械有限责任公司 filed Critical 湖南天雁机械有限责任公司
Publication of WO2022205806A1 publication Critical patent/WO2022205806A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • F04D25/045Units comprising pumps and their driving means the pump being fluid-driven the pump wheel carrying the fluid driving means, e.g. turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/14Lubrication of pumps; Safety measures therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/0563Bearings cartridges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/06Lubrication
    • F04D29/063Lubrication specially adapted for elastic fluid pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention belongs to the technical field of shafting lubrication, and in particular relates to a shafting structure of a self-lubricating turbocharger ball bearing.
  • the bearing lubrication system of turbocharger technology products at home and abroad basically adopts external oil supply lubrication technology.
  • the turbocharger shafting system such as double floating bearing, semi-floating bearing and ball bearing uses engine lubrication to lubricate and dissipate heat to its shaft bearing.
  • the lubricating oil inlet of the turbocharger is connected with the main oil passage of the engine to form an oil inlet pipeline; the return oil of the turbocharger lubricating oil is connected with the engine oil pan to form an oil return pipeline.
  • turbocharger inlet and return oil pipelines are special parts, and the engine needs to be specially designed to require sealing, high pressure resistance, corrosion resistance, etc.; in the overall layout of the engine, there needs to be a space for installation to facilitate the installation of the turbocharger inlet and oil return pipes and Normal use.
  • the turbocharger bearing body adopts a cooling water channel structure to prevent the radiation and conduction of the high temperature exhaust gas from the engine to the inside of the bearing body, so as to ensure the required working temperature of the bearing.
  • the overall volume of the turbocharger is increased due to the arrangement of the cooling water channel in the bearing body of the turbocharger.
  • the turbocharger uses engine lubricating oil
  • the aging of the engine lubricating oil will contain metal particles of piston wear, micro-particle carbon residues of the engine, corrosion on the inner wall of the lubricating oil pipeline, etc. , sintering or failure of the sealing system, which will eventually cause a large amount of leakage of the turbocharger lubricating oil, which will seriously affect the safe use of the engine.
  • the leakage of engine oil from the turbocharger is the main failure mode of the turbocharger at this stage, and it is also the main technical problem of the turbocharger industry.
  • the purpose of the present invention is to overcome the above-mentioned deficiencies of the prior art, and to provide a shafting structure of a self-lubricating turbocharger ball bearing that does not require engine lubricating oil and can ensure the working reliability of the turbocharger shafting.
  • the technical scheme of the present invention is: a shafting structure of a self-lubricating turbocharger ball bearing, the turbocharger includes a bearing seat, a compressor volute, an oil sealing cover, a turbine box, a rotor shaft, an impeller and a back plate assembly , the back plate assembly includes a back plate matched with the compressor volute, the turbine box is connected to the compressor volute, the outer periphery of the bearing seat is embedded in the air inlet of the compressor volute, and the oil seal cover, the bearing seat and the compressor volute are three An oil storage cavity is formed between them, and the pressure in the oil storage cavity is balanced with the ambient pressure; the shafting structure includes a sleeve part arranged at the central axis of the bearing seat, the rotor shaft and the impeller are assembled and inserted into the sleeve part and are connected with the sleeve part.
  • a bearing seat cavity is formed between the inner walls, the rotor shaft is provided with a bearing assembly on the shaft section inserted
  • the bearing assembly includes a first ball bearing and a second ball bearing distributed at both ends of the sleeve portion, the first ball bearing is arranged close to the impeller, and the rotor shaft is sleeved with a first ball bearing and a second ball bearing for adjusting the first ball bearing and the second ball bearing.
  • the bearing outer ring spring of the second ball bearing clearance is provided with a stop in the sleeve part for the bearing outer ring spring to be installed, and the bearing outer ring spring is in contact with the second ball bearing outer ring.
  • a further technical solution of the present invention is that: the bearing seat cavity is also provided with a bearing outer ring sleeve at the outer ring of the second ball bearing, and the bearing outer ring sleeve and the outer ring of the second ball bearing are clearance-fitted.
  • a further technical solution of the present invention is that: the number of channels is two, which respectively supply lubricating oil for the first ball bearing and the second ball bearing.
  • a further technical solution of the present invention is that the channel is an oil pipe.
  • a further technical solution of the present invention is that: the oil sealing cover is provided with a gas-permeable oil filling nozzle.
  • a further technical solution of the present invention is: it also includes a heat shield assembly arranged between the back plate assembly and the turbine box, the heat shield assembly includes a heat shield covering the end face of the back plate, and a heat shield is sandwiched between the heat shield and the turbine box. There are thermal pads.
  • a further technical solution of the present invention is that a heat insulating pad is arranged between the back plate and the heat shield.
  • the present invention has the following beneficial effects:
  • FIG. 1 is a cross-sectional view of the turbocharger according to Embodiment 1.
  • FIG. 1 is a cross-sectional view of the turbocharger according to Embodiment 1.
  • the turbocharger with self-lubricating ball bearing shafting structure shown in FIG. 1 includes bearing seat 11, compressor volute 12, oil sealing cover 13, turbine case 14, rotor shaft 15, impeller 16 and back plate assembly , the compressor volute 12 and the turbine case 14 are connected as a whole by the clamp 17 , the outer periphery of the bearing seat 11 is riveted (or inlaid) at the air inlet of the compressor volute 12 , and the oil sealing cover 13 is sleeved on the end of the bearing seat 11 On the outer circumference, an oil storage chamber 2 is formed between the oil seal cover 13 , the bearing seat 11 and the compressor volute 12 , wherein the oil seal cover 13 and the compressor volute 12 contact surface, the oil seal cover 13 and the bearing seat 11.
  • the oil sealing cover 13 is provided with a breathable oil filling nozzle 3, through which lubricating oil can be injected into the oil storage chamber 2.
  • the oil nozzle 3 can ensure the balance between the pressure in the oil storage chamber 2 and the ambient pressure;
  • the shafting structure includes a sleeve part 111 arranged at the central axis of the bearing seat, and the rotor shaft 15 and the impeller 16 are assembled and inserted into the sleeve part 111.
  • a bearing seat cavity is formed between the inner walls of the sleeve part 111 , the end of the sleeve part 111 close to the oil sealing cover 13 is provided with an oil cavity plug 4 to form a closed end, and the sleeve part 111 is connected to the impeller at the other end of the bearing seat cavity.
  • 16 forms a labyrinth air passage matching structure, which can form an air passage between the sleeve part 111 and the impeller 16
  • the rotor shaft 15 is provided with a bearing assembly on the shaft section inserted into the sleeve part, the bearing seat cavity and the oil storage
  • the lubricating oil automatically enters the channel 5 and is sucked into the bearing seat cavity.
  • the channel 5 is preferably an oil pipe (or an oil core), and the oil pipe is sealed with the wall surface of the bearing seat to ensure the fast and smooth transportation of the lubricating oil in the oil storage chamber.
  • the micro-negative pressure environment of the bearing seat cavity is used to make the lubricating oil sucked into the bearing seat cavity for bearing lubrication when the turbocharger shafting structure is working, and the traditional use of engine lubricating oil for lubricating is abandoned.
  • This kind of self-sufficient lubricating oil shaft structure fully guarantees the working reliability of the turbocharger.
  • the bearing assembly includes a first ball bearing 61 and a second ball bearing 62 distributed at both ends of the sleeve portion 111 .
  • the first ball bearing 61 is arranged close to the impeller 16 , and the rotor shaft 15 is sleeved with a first ball bearing and a second ball bearing for adjusting the first ball bearing and the second ball bearing.
  • the bearing outer ring spring 63 with bearing clearance, the sleeve part 111 is provided with a stop for the bearing outer ring spring 63 to be installed, the bearing outer ring spring 63 is in contact with the outer ring of the second ball bearing 62, and the bearing seat cavity is in the second ball bearing.
  • the outer ring of the bearing 62 is also provided with a bearing outer ring sleeve 64, and the bearing outer ring sleeve 64 is in clearance fit with the outer ring of the second ball bearing 62.
  • a rubber outer ring sleeve damping ring 65 is embedded in the bearing seat cavity, and the outer ring sleeve damps The ring 65 is located on the outer circumference of the bearing outer ring sleeve 64, and the outer ring sleeve damping ring 65 can limit the bearing outer ring sleeve 64 through the rubber elastic force and absorb the bearing working vibration force transmitted by the bearing outer ring sleeve, so as to prevent the superposition of vibration excitation and ensure the overall reliable operation of the shafting structure. Stablize.
  • One end of the bearing outer ring spring 63 is positioned at the inner stop of the sleeve portion 111, and the other end pushes the outer ring of the second ball bearing 62, so that the first ball bearing 61, the second ball bearing 62, and the rotor shaft 15 move together to move the first ball bearing 61, the second ball bearing 62, and the rotor shaft 15 together.
  • the first ball bearing 61 and the second ball bearing 62 are pre-pressed to the assembly position, and the two bearings maintain a working state of zero clearance; the bearing balls generate heat during operation, and the volume will expand, but because the axial limit is spring elastic thrust, not conventional
  • a fitting clearance of 0.015mm (preferably 0.015mm) must be reserved between the inner and outer rings of the first ball bearing and the second ball bearing and the balls.
  • the bearing can overcome the elastic force and automatically adjust the clearance to zero. The interference causes the bearing to be stuck and reduces the working noise of the bearing.
  • the shafting structure is a double-bearing thrust-thrust structure.
  • the first ball bearing and the second ball bearing are connected shaft angular contact ball bearings (the ball body can be ceramic or other temperature-resistant and wear-resistant materials).
  • the ring is connected with the rotor shaft as a whole, the outer ring of the first ball bearing 61 is fixed in the bearing seat cavity for axial positioning, and the outer ring of the second ball bearing 62 drives the rotor shaft through the ball body under the action of the axial force and elasticity.
  • the component moves to the shafting assembly position in the direction of the impeller inlet, and the bearings at both ends perform bidirectional self-locking and limiting, which solves the bearing radial and axial bearing problems in the shafting structure, makes the shafting run stably and reliably, and the bearing clearance In any working state, it will automatically correct and return to zero, which can effectively reduce the running noise of the bearing.
  • the number of oil pipes is also set to two, one extends into the space formed between the oil cavity plug 4 and the second ball bearing 62, and the other extends into the close In the bearing seat cavity space of the first ball bearing, two oil pipes mainly supply lubricating oil for the first ball bearing and the second ball bearing respectively.
  • the back plate assembly includes a back plate 181 matched with the compressor volute 12. The center of the back plate is pressed into the back plate sleeve 182.
  • a heat shield assembly is also provided between the back plate assembly and the turbine case 14.
  • the heat shield assembly includes a cover back plate.
  • the heat shield 191 on the end face of the disc 181 is provided with a sealing sleeve 192 at the part where the rotor shaft 15 penetrates.
  • a heat insulating pad is also arranged between the heat shield and the turbine box.
  • the impeller is fixed on the rotor shaft through a spline nut, and rotates coaxially with the turbine to do work.
  • the thread direction of the spline nut is opposite to the working direction of the impeller.
  • the spline nut is tightened to compress the impeller on the shoulder surface of the rotor shaft.
  • the fixing method of the impeller can also be as follows: the inner wall of the spline nut is integrated with the rotor shaft by interference fit, and the convex spline on the end face of the spline nut is matched with the spline groove on the end face of the impeller.
  • the rotor shaft is driven by the exhaust gas energy of the engine to drive the coaxial impeller to rotate at a high speed, and the air pumped into the impeller generates a negative pressure band at its air inlet, which creates a pressure difference on the bearing seat cavity, causing the bearing seat cavity to siphon.
  • the air pressure at the end of the bearing housing cavity will be lower than atmospheric pressure, and the pressure at the end of the oil pipe located in the oil storage cavity is the same as the ambient air pressure.
  • the lubricating oil enters the bearing housing cavity under the action of negative pressure and pumping.
  • the high-speed rotation of the rotor shaft and bearing has a transpiration and atomization effect on the lubricating oil droplets.
  • the lubricating oil After the lubricating oil enters the bearing seat cavity from the oil pipe, it will become oil mist and fill the bearing seat cavity.
  • the oil mist can adhere to the first ball bearing, All parts of the second ball bearing lubricate the surface of the working parts, reduce the frictional resistance of the bearing, and transfer the heat generated by the bearing to the wall of the sleeve.
  • the outer wall of the sleeve is cooled by active air cooling.
  • the serialized bearing seat sleeve is arranged at the inlet of the impeller, and the low-temperature ambient air sucked by the impeller is used to cool the shaft structure.
  • the oil mist concentration requirement of the bearing seat cavity can be achieved by adjusting the matching clearance and structure between the bearing seat and the impeller nose.
  • the above-mentioned shafting structure simplifies the overall structure of the turbocharger and reduces the limitation of the bearing on the overall structure. At the same time, the shafting structure can effectively prevent the exhaust gas from the turbine end from blowing through the compressor end, and isolate the heat of the turbine from flowing to the compressor. Radiation transfer.
  • the present invention is not limited to the above-mentioned specific structures or connection methods, as long as the shafting structure has the same or similar ideas as the technical solution, it falls within the protection scope of the present invention.

Abstract

自润滑涡轮增压器球轴承的轴系结构,涡轮增压器包括轴承座(11)、压气机蜗壳(12)、封油盖(13)、涡轮箱(14)、转子轴(15)、叶轮(16)和背盘组件,背盘组件包括与压气机蜗壳(12)配合的背盘(181),涡轮箱(14)与压气机蜗壳(12)相接,轴承座(11)外周嵌入压气机蜗壳(12)进气口,封油盖(13)、轴承座(11)和压气机蜗壳(12)三者之间形成储油腔(2),其内压力与环境压力平衡;轴系结构包括设于轴承座(11)中心轴处的套筒部(111),转子轴(15)与叶轮(16)装配好插入套筒部(111)并与套筒部内壁之间形成轴承座腔体,转子轴(15)在插入套筒部(111)的轴段上设有轴承组件,轴承座腔体与储油腔(2)之间具有输送润滑油的通道(5)。设置储油腔及通道,利用轴承座腔体的微负压环境,润滑油沿通道自动输送,对轴系结构自润滑。

Description

自润滑涡轮增压器球轴承的轴系结构 技术领域
本发明属于轴系润滑技术领域,具体地,涉及一种自润滑涡轮增压器球轴承的轴系结构。
背景技术
目前国内外涡轮增压技术产品的轴承润滑系统基本采用的是外供油润滑技术,双浮动轴承、半浮动轴承和球轴承等涡轮增压器轴系运用发动机润滑对其轴系轴承润滑散热。涡轮增压器润滑油进口与发动机主油道联接形成进油管路;涡轮增压器润滑油回油与发动机油底壳联接形成回油管路。涡轮增压器进回油管路为专用零件,发动机需要专门设计要求密封、耐高压、耐腐蚀等;在发动机整体布置中需要留有空间安装位置,方便涡轮增压器进、回油管的安装及正常使用。
如涡轮端发动机废气超过800℃,涡轮增压器轴承体会采用冷却水道结构阻碍发动机废气高温向轴承体内部辐射、传导,保证轴承所需工作温度。涡轮增压器轴承体因冷却水道的布置造成增压器整体体积加大。另外,发动机结构布置中需增设给涡轮增压器专用进、回水水管路。
涡轮增压器因采用发动机润滑油,会因发动机润滑油老化含有活塞磨损金属颗粒、发动机微颗粒碳渣、润滑油管道内壁腐蚀物等造成涡轮增压器轴承拉花、异常磨损致使轴承卡滞、烧结或密封系统失效,最终造成涡轮增压器润滑油大量外泄,严重影响发动机安全使用。目前涡轮增压器泄漏发动机润滑油是现阶段涡轮增压器的主要故障模式,也是涡轮增压器行业的主要技术难题。
发明内容
本发明的目的是克服现有技术的上述不足,提供一种无需用到发动机润滑油且可确保涡轮增压器轴系工作可靠性的自润滑涡轮增压器球轴承的轴系结构。
本发明的技术方案是:一种自润滑涡轮增压器球轴承的轴系结构,涡轮增压器包括轴承座、压气机蜗壳、封油盖、涡轮箱、转子轴、叶轮和背盘组件,背盘组件包括与压气机蜗壳配合的背盘,涡轮箱与压气机蜗壳相接,轴承座外周嵌入压气机蜗壳进气口,封油盖、轴承座和压气机蜗壳三者之间形成一个储油腔,储油腔内压力与环境压力平衡;轴系结构包括包括设于轴承座中心轴处的套筒部,转子轴与叶轮装配好插入套筒部并与套筒部内壁之间形成轴承座腔体,转子轴在插入套筒部的轴段上设有轴承组件,轴承座腔体与储油腔之间具有可供润滑油输送的通道。
本发明进一步的技术方案是:轴承组件包括分布在套筒部两端的第一滚珠轴承和第二滚珠轴承,第一滚珠轴承靠近叶轮设置,转子轴上套设有用于调节第一滚珠轴承、第二滚珠轴承游隙的轴承外圈弹簧,套筒部内设有止口供轴承外圈弹簧安装,轴承外圈弹簧与第二滚珠轴承外圈抵接。
本发明更进一步的技术方案是:轴承座腔体在第二滚珠轴承外圈处还设有轴承外 圈套,轴承外圈套与第二滚珠轴承外圈间隙配合。
本发明更进一步的技术方案是:通道数量为两个,分别为第一滚珠轴承和第二滚珠轴承供应润滑油。
本发明再进一步的技术方案是:通道为油管。
本发明进一步的技术方案是:封油盖上设有透气型注油嘴。
本发明进一步的技术方案是:还包括设置在背盘组件和涡轮箱之间的隔热罩组件,隔热罩组件包括覆盖背盘端面的隔热罩,隔热罩与涡轮箱之间夹设有隔热垫。
本发明更进一步的技术方案是:背盘与隔热罩之间设置有隔热垫。
本发明与现有技术相比具有如下有益效果:
1)通过设置储油腔,同时在轴承座腔体和储油腔之间开设通道,利用轴承座腔体内形成的微负压环境,确保润滑油从通道处自动顺利输送,实现轴系结构的优良润滑效果,摒弃传统采用发动机润滑油来润滑的方案,规避了老化油对轴系结构产生磨损、卡阻、破坏等风险;
2)润滑油因负压被抽吸进入轴承座腔体后,在轴承、轴的高速旋转带动下会形成油雾,持续充满轴承座腔体,在对轴承充分润滑的同时还能发挥优良的散热作用;
3)套筒部内转子轴上为双轴承支撑结构,轴承外圈弹簧能提供合适的轴向预紧力,解决涡轮增压器轴系结构轴承径向和轴向承载的问题,使轴系结构运行更加平稳可靠。
以下结合附图和具体实施方式对本发明的详细结构作进一步描述。
附图说明
图1为实施例1所述的涡轮增压器的剖视图。
具体实施方式
实施例1
如图1所示的带自润滑球轴承轴系结构的涡轮增压器,包括轴承座11、压气机蜗壳12、封油盖13、涡轮箱14、转子轴15、叶轮16和背盘组件,压气机蜗壳12和涡轮箱14通过卡箍17联接成整体,轴承座11外周压铆(或镶嵌)在压气机蜗壳12进气口,封油盖13套设在轴承座11端部外周上,封油盖13、轴承座11和压气机蜗壳12三者之间形成一个储油腔2,其中封油盖13与压气机蜗壳12接触面处、封油盖13与轴承座11接触面处均安装O形密封圈以确保储油腔2的封闭效果,封油盖13上设有透气型注油嘴3,可通过该处向储油腔2注入润滑油,该透气型注油嘴3可保证储油腔2内压力与环境压力平衡;轴系结构包括设置在轴承座中心轴处的套筒部111,转子轴15与叶轮16装配好插入套筒部111后转子轴15与套筒部111内壁之间形成一轴承座腔体,套筒部111靠近封油盖13的端部设置油腔堵头4形成封闭端,套筒部111在轴承座腔体另一端处与叶轮16形成迷宫气路配合结构,该结构可使套筒部111和叶轮16之间形成一个气道,转子轴15在插入套筒部的轴段上设有轴承组件,轴承座腔体与储油腔2之间具有可供润滑油输送的通道5,叶轮16工作时在会在叶轮进口产生负压,该处气道会使轴承座腔体内产生微负压环境,进而使得储油腔2内润滑油自动进入通道5被吸入轴承座腔体中,该通道5优选为油管(也可为油芯),油管与轴承座的壁面密封连接,确保储油腔内润滑油快捷顺利输送。
通过自设储油腔,利用轴承座腔体的微负压环境使润滑油在涡轮增压器轴系结构工作时被抽吸至轴承座腔体内进行轴承润滑,摒弃传统采用发动机润滑油来润滑的方案,规避了老化油对轴系结构产生磨损、卡阻、破坏等风险,这种自给润滑油的轴系结构充分保证了涡轮增压器的工作可靠性。
轴承组件包括分布在套筒部111两端的第一滚珠轴承61和第二滚珠轴承62,第一滚珠轴承61靠近叶轮16设置,转子轴15上套设有用于调节第一滚珠轴承、第二滚珠轴承游隙的轴承外圈弹簧63,套筒部111内设有止口供轴承外圈弹簧63安装,轴承外圈弹簧63与第二滚珠轴承62外圈抵接,轴承座腔体在第二滚珠轴承62外圈处还设有轴承外圈套64,轴承外圈套64与第二滚珠轴承62外圈间隙配合,此外,轴承座腔体内还嵌设有橡胶材质的外圈套阻尼圈65,外圈套阻尼圈65位于轴承外圈套64外周,外圈套阻尼圈65可通过橡胶弹力对轴承外圈套64限位并吸收轴承外圈套传递的轴承工作激振力,防止振动激励叠加,确保轴系结构整体工作可靠稳定。
轴承外圈弹簧63一端定位在套筒部111内止口处,另一端推动第二滚珠轴承62外圈,使第一滚珠轴承61、第二滚珠轴承62、及转子轴15一起移动,把第一滚珠轴承61和第二滚珠轴承62预压到装配位置,两轴承保持零游隙工作状态;轴承滚珠工作时发热,体积会膨胀,但因轴向限位是弹簧弹力止推,而非常规技术状态的刚性定位中第一滚珠轴承、第二滚珠轴承的内外圈和滚珠之间须保留0.015mm(优选0.015mm)的配合间隙,此时轴承可克服弹力自动调整间隙为零状态,不会过盈造成轴承出现卡滞问题,同时降低轴承工作噪声。
本实施例中轴系结构为双轴承推力止推结构,第一滚珠轴承、第二滚珠轴承采用连轴式角接触滚珠球轴承(滚珠体可陶瓷或其它耐温耐磨材料),轴承的内圈与转子轴连接成一体,第一滚珠轴承61的外圈固定在轴承座腔内起轴向定位作用,第二滚珠轴承62的外圈在轴向力弹力的作用下通过滚珠体带动转子轴组件向叶轮进口方向移动到轴系装配位置,两端轴承进行双向自锁定位和限位,解决了轴系结构中轴承径向和轴向承载问题,使轴系运行平稳可靠,且轴承游隙在任何工作状态都会自动修正归零,可有效降低轴承的运转噪声。因轴承数量为两个,为实现对轴系结构的快速充分润滑,油管也设置为两个,一个伸入油腔堵头4与第二滚珠轴承62之间形成的空间,另一个伸入靠近第一滚珠轴承的轴承座腔体空间内,两根油管分别主要为第一滚珠轴承和第二滚珠轴承供应润滑油。
背盘组件包括与压气机蜗壳12配合的背盘181,背盘中心压入背盘套182,背盘组件与涡轮箱14之间还设置有隔热罩组件,隔热罩组件包括覆盖背盘181端面的隔热罩191,隔热罩191在转子轴15贯穿的部位设有密封套192,背盘181与隔热罩191之间设置隔热垫193,背盘套与隔热罩之间也布置有隔热垫,此外,隔热罩与涡轮箱之间也夹设有隔热垫。
叶轮通过花键螺母固定在转子轴上,与涡轮同轴旋转做功,花键螺母的螺纹旋向与叶轮工作方向相反,花键螺母旋紧把叶轮压紧在转子轴的轴肩面上。叶轮的固定方式也可为:将花键螺母内壁与转子轴过盈配合成一体,花键螺母端面凸花键与叶轮端面花键槽配合。
转子轴受发动机废气能的推动带动同轴叶轮高速旋转,叶轮泵入空气在其进气口处产生负压带,对轴承座腔体产生压差,使轴承座腔体发生虹吸现象,油管位于轴承座腔体内的端部的气压会低于大气压,而油管位于储油腔的端部压力与环境气压相同,此时润滑油在负压带泵吸的作用下进入轴承座腔体中,由于转子轴和轴承高速旋转对润滑油滴有蒸 腾雾化作用,润滑油从油管进入轴承座腔体后会变成油雾状充满轴承座腔体,油雾可以全周附着在第一滚珠轴承、第二滚珠轴承内部各处,对工作配合零件表面润滑,降低轴承工作摩擦阻力,同时把轴承工作产生的热量传递到套筒部壁面,套筒部外壁采用主动风冷散热的方式冷却,通过可系列化的轴承座套布置在叶轮进口处,利用叶轮吸入的低温环境空气给轴系结构降温,叶轮工作负荷越大,轴承产生的热量越多,同时流经套筒部的空气流量越大,带走的热量越多,冷却效果即越显著;通过套筒部处流动的空气带走热量,达到轴承所需的润滑、散热工作要求,且轴系结构散热不会造成进气空气的明显温升,不会造成压气机性能损失。轴承座腔体的油雾浓度需求可以通过调整轴承座与叶轮鼻头配合间隙及结构达到设计需求。
上述轴系结构简化了涡轮增压器的整体结构,减小了轴承对整体结构的限制,同时该轴系结构还可有效防止涡端废气向压气机端窜气,隔绝涡轮机的热量向压气机辐射传递。
本发明不局限于上述的具体结构或连接方式,只要是具有与本技术方案思路相同或相近的轴系结构就落在本发明的保护范围之内。

Claims (8)

  1. 一种自润滑涡轮增压器球轴承的轴系结构,其特征是:涡轮增压器包括轴承座(11)、压气机蜗壳(12)、封油盖(13)、涡轮箱(14)、转子轴(15)、叶轮(16)和背盘组件,背盘组件包括与压气机蜗壳(12)配合的背盘(181),涡轮箱(14)与压气机蜗壳(12)相接,轴承座(11)外周嵌入压气机蜗壳(12)进气口,封油盖(13)、轴承座(11)和压气机蜗壳(12)三者之间形成一个储油腔(2),储油腔内压力与环境压力平衡;轴系结构包括设于轴承座(11)中心轴处的套筒部(111),转子轴(15)与叶轮(16)装配好插入套筒部(111)并与套筒部内壁之间形成轴承座腔体,转子轴(15)在插入套筒部的轴段上设有轴承组件,轴承座腔体与储油腔(2)之间具有可供润滑油输送的通道(5)。
  2. 根据权利要求1所述的带自润滑轴系结构的涡轮增压器,其特征是:轴承组件包括分布在套筒部(111)两端的第一滚珠轴承(61)和第二滚珠轴承(62),第一滚珠轴承(61)靠近叶轮(16)设置,转子轴(15)上套设有用于调节第一滚珠轴承、第二滚珠轴承游隙的轴承外圈弹簧(63),套筒部(111)内设有止口供轴承外圈弹簧安装,轴承外圈弹簧(63)与第二滚珠轴承(62)外圈抵接。
  3. 根据权利要求2所述的带自润滑轴系结构的涡轮增压器,其特征是:轴承座腔体在第二滚珠轴承(62)外圈处还设有轴承外圈套(64),轴承外圈套与第二滚珠轴承外圈间隙配合。
  4. 根据权利要求2所述的带自润滑轴系结构的涡轮增压器,其特征是:通道(5)数量为两个,分别为第一滚珠轴承和第二滚珠轴承供应润滑油。
  5. 根据权利要求1或4所述的带自润滑轴系结构的涡轮增压器,其特征是:通道(5)为油管。
  6. 根据权利要求1所述的带自润滑轴系结构的涡轮增压器,其特征是:封油盖(13)上设有透气型注油嘴(3)。
  7. 根据权利要求1所述的带自润滑轴系结构的涡轮增压器,其特征是:还包括设置在背盘组件和涡轮箱之间的隔热罩组件,隔热罩组件包括覆盖背盘(181)端面的隔热罩(191),隔热罩(191)与涡轮箱(14)之间夹设有隔热垫。
  8. 根据权利要求7所述的带自润滑轴系结构的涡轮增压器,其特征是:背盘与隔热罩之间设置有隔热垫。
PCT/CN2021/120116 2021-04-02 2021-09-24 自润滑涡轮增压器球轴承的轴系结构 WO2022205806A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110359540.9A CN113027787A (zh) 2021-04-02 2021-04-02 自润滑涡轮增压器球轴承的轴系结构
CN202110359540.9 2021-04-02

Publications (1)

Publication Number Publication Date
WO2022205806A1 true WO2022205806A1 (zh) 2022-10-06

Family

ID=76454106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120116 WO2022205806A1 (zh) 2021-04-02 2021-09-24 自润滑涡轮增压器球轴承的轴系结构

Country Status (2)

Country Link
CN (1) CN113027787A (zh)
WO (1) WO2022205806A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113027787A (zh) * 2021-04-02 2021-06-25 湖南天雁机械有限责任公司 自润滑涡轮增压器球轴承的轴系结构
CN115163291A (zh) * 2022-06-27 2022-10-11 北京航空航天大学 一种空气涡轮增压系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179247A (en) * 1977-01-14 1979-12-18 Wrr Industries, Inc. Turbocharger having variable area turbine nozzles
US4370106A (en) * 1979-03-09 1983-01-25 Cummins Engine Company Bearing assembly for high speed shaft
GB2187797A (en) * 1987-03-10 1987-09-16 Household Mfg Inc Turbocharger
US20030223892A1 (en) * 2002-05-30 2003-12-04 Woollenweber William E. Compact turbocharger
CN2793332Y (zh) * 2005-02-17 2006-07-05 邓祥明 一种涡轮增压器
US20080267548A1 (en) * 2007-02-05 2008-10-30 Schaeffler Kg Bearing arrangement for the shaft of a turbo-charger
CN102128062A (zh) * 2010-12-31 2011-07-20 中国兵器工业集团第七○研究所 一种滚珠轴承涡轮增压器转子轴系机构
US20150056071A1 (en) * 2013-07-08 2015-02-26 William E. Woollenweber Bearing systems for turbochagers used on internal combustion engines
CN104454150A (zh) * 2014-12-04 2015-03-25 湖南天雁机械有限责任公司 涡轮增压器压气机端密封结构
CN204312395U (zh) * 2014-11-13 2015-05-06 湖南天雁机械有限责任公司 能降低轴向磨损的涡轮增压器
CN204312394U (zh) * 2014-11-13 2015-05-06 湖南天雁机械有限责任公司 带压气机斜流叶轮的涡轮增压器
CN113027787A (zh) * 2021-04-02 2021-06-25 湖南天雁机械有限责任公司 自润滑涡轮增压器球轴承的轴系结构

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179247A (en) * 1977-01-14 1979-12-18 Wrr Industries, Inc. Turbocharger having variable area turbine nozzles
US4370106A (en) * 1979-03-09 1983-01-25 Cummins Engine Company Bearing assembly for high speed shaft
GB2187797A (en) * 1987-03-10 1987-09-16 Household Mfg Inc Turbocharger
US20030223892A1 (en) * 2002-05-30 2003-12-04 Woollenweber William E. Compact turbocharger
CN2793332Y (zh) * 2005-02-17 2006-07-05 邓祥明 一种涡轮增压器
US20080267548A1 (en) * 2007-02-05 2008-10-30 Schaeffler Kg Bearing arrangement for the shaft of a turbo-charger
CN102128062A (zh) * 2010-12-31 2011-07-20 中国兵器工业集团第七○研究所 一种滚珠轴承涡轮增压器转子轴系机构
US20150056071A1 (en) * 2013-07-08 2015-02-26 William E. Woollenweber Bearing systems for turbochagers used on internal combustion engines
CN204312395U (zh) * 2014-11-13 2015-05-06 湖南天雁机械有限责任公司 能降低轴向磨损的涡轮增压器
CN204312394U (zh) * 2014-11-13 2015-05-06 湖南天雁机械有限责任公司 带压气机斜流叶轮的涡轮增压器
CN104454150A (zh) * 2014-12-04 2015-03-25 湖南天雁机械有限责任公司 涡轮增压器压气机端密封结构
CN113027787A (zh) * 2021-04-02 2021-06-25 湖南天雁机械有限责任公司 自润滑涡轮增压器球轴承的轴系结构

Also Published As

Publication number Publication date
CN113027787A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
WO2022205806A1 (zh) 自润滑涡轮增压器球轴承的轴系结构
CA2352021C (en) Turbocharger shaft dual phase seal
US6739845B2 (en) Compact turbocharger
US20080087018A1 (en) Bearing systems for high-speed rotating machinery
US9874217B2 (en) Turbomachine shaft sealing arrangement
JPS62182499A (ja) タ−ボポンプ密封装置
CN109612655A (zh) 一种轴间密封动态试验装置
TW201818007A (zh) 流體機械潤滑系統總成
CN215805273U (zh) 自润滑涡轮增压器球轴承的轴系结构
CN108005727B (zh) 一种适用于高温高背压干气密封结构的超高速涡轮机
CN111140510A (zh) 一种用于输送低温液体的自真空绝热泵
CN214247423U (zh) 透平和布雷顿循环系统
US20200378389A1 (en) Electric supercharger
CN218376590U (zh) 一种空气轴承涡轮增压器的轴承冷却装置
CN111306185A (zh) 一种轴流涡轮增压器半浮动径向轴承结构
CN212429011U (zh) 涡轮增压器的密封结构
CN115030784A (zh) 一种空气轴承涡轮增压器的轴承冷却装置
CN108005733A (zh) 一种适用于高温高压工质的超高速涡轮机
CN207945018U (zh) 一种微小型涡轮发动机轴套
CN219974581U (zh) 一种涡轮增压器的中间体
CN220415539U (zh) 一种发动机曲轴的密封结构
CN109441567A (zh) 动力涡轮机的输出轴系
TWI720860B (zh) 螺旋壓縮機之軸密封及回油機構
CN219888275U (zh) 单级悬臂中心支撑离心泵
CN114961868B (zh) 一种带芯部冷却结构的微小型涡喷发动机热端转子系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934443

Country of ref document: EP

Kind code of ref document: A1