WO2022205786A1 - 交流故障中高压直流首次换相失败的控制方法及装置 - Google Patents

交流故障中高压直流首次换相失败的控制方法及装置 Download PDF

Info

Publication number
WO2022205786A1
WO2022205786A1 PCT/CN2021/118052 CN2021118052W WO2022205786A1 WO 2022205786 A1 WO2022205786 A1 WO 2022205786A1 CN 2021118052 W CN2021118052 W CN 2021118052W WO 2022205786 A1 WO2022205786 A1 WO 2022205786A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
commutation
fault
formula
voltage
Prior art date
Application number
PCT/CN2021/118052
Other languages
English (en)
French (fr)
Inventor
傅闯
郑睿娜
汪娟娟
文兆新
李欢
魏伟
Original Assignee
南方电网科学研究院有限责任公司
中国南方电网有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方电网科学研究院有限责任公司, 中国南方电网有限责任公司 filed Critical 南方电网科学研究院有限责任公司
Priority to EP21934423.1A priority Critical patent/EP4318843A1/en
Priority to US18/552,666 priority patent/US20240162714A1/en
Publication of WO2022205786A1 publication Critical patent/WO2022205786A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention relates to the field of electric power technology, and in particular to a control method, device and equipment for the first commutation failure of high-voltage direct current in an alternating current fault.
  • the amplitude of the voltage at the converter bus will drop sharply, the phase will jump, and the turn-off angle of the converter valve will decrease sharply in a short period of time.
  • the purpose of the control of the shut-off angle of the converter valve is to maintain the shut-off angle not less than its reference value, so as to ensure the normal shut-off of the converter valve.
  • the current turn-off angle regulator commonly used in DC engineering has a slow response speed under transient conditions and has a large control error, which makes the inverter more prone to commutation failure when an AC fault occurs.
  • the embodiments of the present invention provide a control method, device and equipment for the first commutation failure of HVDC in an AC fault, which are used to solve the technical problem of the commutation failure of a converter under an AC fault in an existing HVDC power transmission system.
  • a control method for the first commutation failure of high-voltage direct current in an AC fault, applied to a high-voltage direct current transmission system comprising the following steps:
  • the trigger angle command of the cut-off angle is used as the output upper limit value of the HVDC transmission system controller, so as to realize adjustment or correction of the trigger angle of the HVDC transmission system.
  • the steps of obtaining the three-phase voltage of the commutation bus of the HVDC transmission system, and calculating and obtaining the zero-sequence component amplitude and the ⁇ component amplitude of the three-phase voltage of the commutator bus according to the three-phase voltage include:
  • the three-phase voltages are the A-phase voltage u A , the B-phase voltage u B and the C-phase voltage u C ;
  • the zero-sequence component formula and Clark transform formula are used to calculate the A-phase voltage u A , the B-phase voltage u B and the C-phase voltage u C to obtain the zero-sequence components u 0 , ⁇ of the three-phase voltage of the commutation bus component u ⁇ and ⁇ component u ⁇ ;
  • ); the commutation voltage formula is The minimum hold function formula is U′ L MAX_HOLD(
  • control method for the first commutation failure of the HVDC in the AC fault further includes: keeping the absolute values of the zero-sequence component and the pre- ⁇ component amplitudes for 12ms, calculating the zero-sequence component amplitudes U 0 and ⁇ Component magnitude U L '.
  • the control method for the first commutation failure of the HVDC in the AC fault further includes: setting the turn-off angle of the HVDC transmission system, the short-circuit reactance per unit value of the converter, the per unit value of the DC current, the commutation time and The impedance coefficient, the zero-sequence component amplitude and the ⁇ component amplitude are calculated using the single-phase trigger angle calculation formula and the three-phase trigger angle calculation formula, respectively, to obtain the first trigger angle command ⁇ sig and the three-phase trigger angle under the single-phase fault.
  • the second trigger angle command ⁇ thr under fault, the single-phase trigger angle calculation formula is:
  • the three-phase firing angle calculation formula is:
  • k is the impedance system of the HVDC transmission system
  • ⁇ ref is the turn-off angle setting value
  • X T * is the per unit value of the short-circuit reactance of the converter
  • I d * is the per unit value of the DC current
  • U 0 * is zero is the per-unit value of the sequence component amplitude U 0
  • U L ′ is the ⁇ component amplitude
  • T is the commutation time of the converter valve in the converter of the HVDC transmission system.
  • the present invention also provides a control device for the first commutation failure of high-voltage direct current in an AC fault, comprising a first acquisition calculation module, a second acquisition calculation module, a comparison selection module and a control module;
  • the first acquisition and calculation module is configured to acquire the three-phase voltage of the commutation bus of the HVDC transmission system, and calculate and obtain the zero-sequence component amplitude and the ⁇ component amplitude of the three-phase voltage of the commutator bus according to the three-phase voltage;
  • the second acquisition and calculation module is used to acquire the set value of the turn-off angle of the HVDC transmission system, the per-unit value of the short-circuit reactance of the converter, the per-unit value of the direct current current, the commutation time and the impedance coefficient, and according to the zero sequence
  • the component amplitude and the ⁇ component amplitude respectively calculate the first trigger angle command under the single-phase fault and the second trigger angle command under the three-phase fault;
  • the comparison and selection module is configured to select a minimum value from the first firing angle command and the second firing angle command as the off-angle firing angle command of the converter valve in the converter;
  • the control module is configured to use the cut-off angle trigger angle command as the output upper limit value of the HVDC system controller, so as to adjust or correct the trigger angle of the HVDC transmission system.
  • the first acquisition and calculation module includes a data acquisition sub-module, a first calculation sub-module, a second calculation sub-module and a third calculation sub-module;
  • the data acquisition sub-module is used to acquire the three-phase voltage of the commutation bus of the HVDC transmission system, where the three-phase voltages are the A-phase voltage u A , the B-phase voltage u B and the C-phase voltage u C ;
  • the first calculation sub-module is used to calculate the A-phase voltage u A , the B-phase voltage u B and the C-phase voltage u C by adopting the zero-sequence component formula and the Clark transformation formula to obtain the commutation bus three. zero sequence component u 0 , ⁇ component u ⁇ and ⁇ component u ⁇ of phase voltage;
  • the second calculation sub-module is used to calculate the zero-sequence component amplitude U 0 by adopting the maximum holding function formula for the zero-sequence component;
  • the third calculation sub-module is configured to calculate the pre- ⁇ component amplitude UL by using the commutation voltage formula for the ⁇ component and the ⁇ component, and use a minimum value holding function for the pre- ⁇ component amplitude UL
  • the formula calculates to obtain the ⁇ component amplitude U L ';
  • ); the commutation voltage formula is The minimum hold function formula is U′ L MAX_HOLD(
  • the second acquisition and calculation module is further used to set the cut-off angle of the HVDC transmission system, the short-circuit reactance per unit value of the converter, the per unit value of the DC current, the commutation time and the impedance coefficient, the zero
  • the sequence component amplitude and the ⁇ component amplitude are respectively calculated by the single-phase trigger angle calculation formula and the three-phase trigger angle calculation formula to obtain the first trigger angle command ⁇ sig under the single-phase fault and the second trigger under the three-phase fault.
  • angle command ⁇ thr the single-phase trigger angle calculation formula is:
  • the three-phase firing angle calculation formula is:
  • k is the impedance system of the HVDC transmission system
  • ⁇ ref is the turn-off angle setting value
  • X T * is the per unit value of the short-circuit reactance of the converter
  • I d * is the per unit value of the DC current
  • U 0 * is zero is the per-unit value of the sequence component amplitude U 0
  • U L ′ is the ⁇ component amplitude
  • T is the commutation time of the converter valve in the converter of the HVDC transmission system.
  • the present invention also provides a computer-readable storage medium, which is used for storing computer instructions, which, when running on the computer, enables the computer to execute the above-mentioned control method for the first commutation failure of HVDC in an AC fault .
  • the invention also provides a control device for the first commutation failure of high-voltage direct current in an alternating current fault, including a processor and a memory;
  • the memory for storing program codes and transmitting the program codes to the processor
  • the processor is configured to execute the above-mentioned control method for the first commutation failure of the high-voltage direct current in the alternating current fault according to the instructions in the program code.
  • the embodiment of the present invention has the following advantages: the control method, device and equipment for the first commutation failure of HVDC in the AC fault, by using the acquired three-phase voltage at the commutation bus of the HVDC transmission system, And calculate its corresponding zero-sequence component amplitude and ⁇ component amplitude; secondly, according to the zero-sequence component amplitude and ⁇ component amplitude, calculate the first trigger angle command and The second trigger angle command compares the first trigger angle command with the second trigger angle command, selects the smaller value as the off-angle trigger angle command of the converter valve in the converter, and uses the off-angle trigger angle as the trigger angle command.
  • the command is used as the upper limit of the output command of the original turn-off angle controller of the HVDC transmission system, so as to quickly correct the trigger angle command of the turn-off angle of the converter valve of the HVDC transmission system.
  • the control method for the first commutation failure of HVDC in the AC fault of the present invention has a fast response speed to the trigger angle command of the inverter side under the AC fault, and can effectively reduce the occurrence of the converter under the AC fault.
  • the probability of the first commutation failure solves the technical problem of the commutation failure of the converter under the AC fault in the existing HVDC transmission system.
  • FIG. 1 is a flow chart of the steps of the control method for the first commutation failure of HVDC in an AC fault according to an embodiment of the present invention.
  • FIG. 2 is a frame diagram of a control method for the first commutation failure of HVDC in an AC fault according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the principle wiring of a 6-pulse converter of the control method for the first commutation failure of HVDC in an AC fault according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the DC voltage, current, power and turn-off angle waveforms of the transmission system before and after the improvement of the control method for the first commutation failure of the HVDC in the AC fault according to the embodiment of the present invention under the single-phase fault.
  • FIG. 5 is a schematic diagram of the DC voltage, current, power and turn-off angle waveforms of the system before and after the three-phase fault of the control method for the first commutation failure of the high-voltage DC in the AC fault according to the embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the trigger angle command waveforms on the inverter side of the power transmission system before and after the improvement of the control method for the first commutation failure of the HVDC in the AC fault according to the embodiment of the present invention under the single-phase fault.
  • FIG. 7 is a schematic diagram showing the comparison of the commutation failure immunity performance of the system before and after the improvement in the three-phase fault of the control method for the first commutation failure of the HVDC in the AC fault according to the embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing the comparison of the commutation failure immunity performance of the system before and after the improvement of the control method for the first commutation failure of the HVDC in the AC fault according to the embodiment of the present invention under the single-phase fault.
  • FIG. 9 is a frame diagram of a control device for the first commutation failure of HVDC in an AC fault according to an embodiment of the present invention.
  • the embodiments of the present application provide a control method, device, and equipment for the first commutation failure of HVDC in an AC fault, which is applied to a HVDC transmission system and is used to solve the problem of the converter in the existing HVDC transmission system under an AC fault. A technical problem with commutation failure occurred.
  • FIG. 1 is a flowchart of the steps of the control method for the first commutation failure of HVDC in an AC fault according to an embodiment of the present invention
  • FIG. 2 is a flowchart of the control method for the first commutation failure of HVDC in an AC fault according to the embodiment of the present invention. Frames.
  • an embodiment of the present invention provides a control method for the first commutation failure of HVDC in an AC fault, which is applied to a HVDC transmission system and includes the following steps:
  • the trigger angle command of the cut-off angle is used as the upper limit value of the output of the controller of the HVDC transmission system, so as to realize the adjustment or correction of the trigger angle of the HVDC transmission system.
  • the control method for the first commutation failure of HVDC in the AC fault is mainly to first obtain the three-phase voltage of the commutation bus of the HVDC transmission system, and analyze the zero-sequence component amplitude and ⁇ from the three-phase voltage. component amplitude, and then obtain the set value of the turn-off angle in the HVDC transmission system, the short-circuit reactance per unit value of the converter, the per unit value of the DC current, the commutation time and the impedance coefficient.
  • the first trigger angle command and the second trigger angle command are obtained by calculation under the fault and the three-phase fault, the first trigger angle command and the second trigger angle command are compared, and the smaller value is selected as the inverter valve in the converter.
  • the cut-off angle trigger angle command, and the cut-off angle trigger angle command is used as the upper limit of the output command of the original cut-off angle controller of the HVDC transmission system. command to make quick corrections.
  • the invention provides a control method for the first commutation failure of HVDC in an AC fault by calculating the corresponding zero-sequence component amplitude and ⁇ component amplitude according to the acquired three-phase voltage at the commutation bus of the HVDC power transmission system ; Secondly, according to the amplitude of the zero-sequence component and the amplitude of the ⁇ component, the first trigger angle command and the second trigger angle command of the turn-off angle control under the single-phase fault and the three-phase fault are calculated, and the first trigger angle command and the second trigger angle command are calculated.
  • the firing angle commands are compared, and the smaller value is selected as the firing angle command of the closing angle of the converter valve in the converter, and the firing angle command of the turning off angle is used as the output command of the original turn-off angle controller of the HVDC transmission system.
  • the upper limit value of the HVDC transmission system can be quickly corrected for the trigger angle command of the closing angle of the converter valve in the HVDC transmission system.
  • the control method for the first commutation failure of HVDC in the AC fault of the present invention has a fast response speed to the trigger angle command of the inverter side under the AC fault, and can effectively reduce the occurrence of the converter under the AC fault.
  • the probability of the first commutation failure solves the technical problem of the commutation failure of the converter under the AC fault in the existing HVDC transmission system.
  • step S10 the three-phase voltage of the commutation bus of the HVDC transmission system is obtained, and the zero-sequence component amplitude and the ⁇ component amplitude of the three-phase voltage of the commutator bus are calculated according to the three-phase voltage.
  • the steps include:
  • the three-phase voltages are the A-phase voltage u A , the B-phase voltage u B and the C-phase voltage u C ;
  • the zero-sequence component formula and Clark transform formula are used to calculate the A-phase voltage u A , the B-phase voltage u B and the C-phase voltage u C to obtain the zero-sequence component u 0 , the ⁇ component u ⁇ and the ⁇ component of the three-phase voltage of the commutator bus u ⁇ ;
  • the commutation voltage formula is used for the ⁇ component and the ⁇ component to obtain the pre- ⁇ component amplitude UL , and the pre- ⁇ component amplitude UL is calculated using the minimum holding function formula to obtain the ⁇ component amplitude UL '.
  • the Clark transformation formula is:
  • ); the commutation voltage formula is The minimum hold function formula is U′ L MAX_HOLD(
  • the holding time is 12ms.
  • control method for the first commutation failure of the HVDC in the AC fault further includes: setting the turn-off angle of the HVDC transmission system, the short-circuit reactance per unit value of the converter, and the per unit DC current per unit value.
  • value, commutation time and impedance coefficient, zero-sequence component amplitude and ⁇ component amplitude are calculated using the single-phase trigger angle calculation formula and the three-phase trigger angle calculation formula, respectively, to obtain the first trigger angle command ⁇ sig and The second trigger angle command ⁇ thr under three-phase fault, the single-phase trigger angle calculation formula is:
  • the three-phase firing angle calculation formula is:
  • k is the impedance system of the HVDC transmission system
  • ⁇ ref is the turn-off angle setting value
  • X T * is the per unit value of the short-circuit reactance of the converter
  • I d * is the per unit value of the DC current
  • U 0 * is zero is the per-unit value of the sequence component amplitude U 0
  • U L ′ is the ⁇ component amplitude
  • T is the commutation time of the converter valve in the converter of the HVDC transmission system.
  • the per unit value of U 0 * zero-sequence component amplitude U 0 refers to the ratio of the zero-sequence component amplitude U 0 to the phase voltage of the commutation bus of the HVDC transmission system.
  • a 12-pulse converter is used as an example to illustrate the converter in the HVDC transmission system.
  • the wiring method of the HVDC transmission system adopts YNy0 and YNd1, and the grounding short-circuit fault of phase A is used as the HVDC
  • the case of a single-phase fault in the transmission system shows that in the HVDC transmission system with YNy0 connection mode, the expression (1) of the amplitude of each commutation voltage on the y-side of the HVDC transmission system can be calculated by the symmetrical component method:
  • Z 1 , Z 2 , and Z 0 are the positive-sequence impedance, negative-sequence impedance, and zero-sequence impedance of the HVDC transmission system, respectively, Z f is the fault transition impedance, and U ACy is the commutation voltage of the two-phase AC in the YNy0 connection mode.
  • U BAy is the amplitude of the commutation voltage of the two-phase BA in the YNy0 connection mode
  • U CBy is the amplitude of the commutation voltage of the two-phase CB in the YNy0 connection mode
  • j is the imaginary unit
  • U ACd is the YNd1 connection mode
  • U BAd is the amplitude of the two-phase commutation voltage of the YNd1 connection mode BA
  • U CBd is the amplitude of the two-phase commutation voltage of the YNd1 connection mode CB.
  • the positive sequence impedance and negative sequence impedance in HVDC transmission system are equal. According to the above expressions (1) and (2), set the expression (3):
  • the identity transformation is performed on the expression (3) twice to obtain the expression (5), which is:
  • phase offset expression (11) corresponding to U BAy , U BAd and U CBd is:
  • ⁇ BAy is the phase offset of the two phases BA in the YNy0 connection mode
  • ⁇ BAd is the phase offset of the BA two phases in the YNd1 connection mode
  • ⁇ CBd is the phase offset of the CB two phases in the YNd1 connection mode.
  • FIG. 3 is a schematic diagram of the principle wiring of a 6-pulse converter of the control method for the first commutation failure of HVDC in an AC fault according to an embodiment of the present invention.
  • the conduction sequence of each valve is set as VT 1y ⁇ VT 2y ⁇ VT 3y ⁇ VT 4y ⁇ VT 5y ⁇ VT 6y .
  • the KVL equation of the corresponding commutation loop is shown in equation (12):
  • L T is the commutation inductance
  • i b , i a are the currents passing through the B-phase and A-phase windings of the converter transformer respectively
  • u BAy u By – u Ay
  • u BAy is the commutation voltage corresponding to VT 3y .
  • ⁇ iy is the trigger angle of the converter valve VT iy
  • ⁇ (i-2)y is the turn-off angle of the converter valve VT (i-2)y
  • Table 1 shows the amplitude of the commutation voltage corresponding to each commutator valve
  • the firing angle demand ⁇ ⁇ .iy of each converter valve can be obtained under the set value of the shut-off angle:
  • ⁇ ref is the setting value of the turn-off angle.
  • T is the commutation time of the converter valve.
  • the commutation time of the converter valve is about 1.4ms (corresponding to an electrical angle of 24°). Considering that the commutation angle may increase during the fault, T is taken as 2ms here.
  • the amplitude of each commutation voltage drops, and the phase may also jump. Since the phase-locked loop needs a certain time to lock the phase of each commutation voltage, the phase error caused by the phase jump will cause the actual firing angle of the converter valve to deviate from the command value.
  • the firing angle command solution formula (15) of each converter valve should be:
  • Df jx is the phase offset of the commutation voltage corresponding to each converter valve.
  • the amplitude drop and phase offset of u CBd are always smaller than those of u BAd , that is, the commutation voltage corresponding to the commutation voltage u CBd
  • the risk of commutation failure of the flow valve is not the greatest, so only the relationship between the commutation voltages u BAy , u BAd and the firing angle command is considered next.
  • X T * is the per-unit value of the short-circuit reactance of the converter, and the formula (15) is updated to obtain the formula (16) as:
  • I d * is the per-unit value of DC current, which is 1.0pu in steady state; is the per-unit value of the commutation voltage, and in steady state is Substituting the amplitude and phase offset of the commutation voltages u BAy and u BAd into the single-phase firing angle calculation formula (17), the firing angle commands of the corresponding converter valves can be obtained, which are as follows:
  • the setting value ⁇ ref of the turn-off angle is generally between 15° and 18°, and the percentage of commutation reactance is generally between 15% and 18%.
  • ⁇ ref 17°
  • the value of ⁇ 3y.ord is always smaller than ⁇ 3d.ord , so the converter valve that is most prone to commutation failure is VT3y, that is, ⁇ 3y.ord should be selected as the final firing angle command ⁇ sig under single-phase fault.
  • FIG. 4 is a schematic diagram of the DC voltage, current, power and turn-off angle waveforms of the transmission system before and after the improvement under single-phase faults according to the control method for the first commutation failure of HVDC in an AC fault according to an embodiment of the present invention
  • FIG. 5 is an implementation of the present invention.
  • the control method for the first commutation failure of HVDC in the AC fault described in the example is a schematic diagram of the DC voltage, current, power and turn-off angle waveforms of the system before and after the improvement under the three-phase fault.
  • the control method for the first commutation failure of HVDC is a schematic diagram of the trigger angle command waveform on the inverter side of the transmission system before and after improvement under single-phase faults.
  • FIG. 8 is the control method for the first commutation failure of the HVDC in the AC fault according to the embodiment of the present invention.
  • the commutation failure immunity performance of the system before and after the improvement under the single-phase fault Compare schematics.
  • the cut-off angle trigger angle command is used as the upper limit value of the output of the HVDC transmission system controller, so as to adjust or correct the trigger angle of the HVDC transmission system and effectively reduce the AC transmission.
  • the probability of the first commutation failure under the fault also restrains the commutation failure of the HVDC transmission system.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 9 is a frame diagram of a control device for the first commutation failure of HVDC in an AC fault according to an embodiment of the present invention.
  • an embodiment of the present invention further provides a control device for the first commutation failure of HVDC in an AC fault, applied to a HVDC transmission system, including a first acquisition and calculation module 10, a second acquisition and calculation module 20, comparing the selection module 30 and the control module 40;
  • the first acquisition and calculation module 10 is configured to acquire the three-phase voltage of the commutation bus of the HVDC transmission system, and calculate the zero-sequence component amplitude and the ⁇ component amplitude of the three-phase voltage of the commutator bus according to the three-phase voltage;
  • the second acquisition and calculation module 20 is used to acquire the set value of the turn-off angle of the HVDC transmission system, the per-unit value of the short-circuit reactance of the converter, the per-unit value of the DC current, the commutation time and the impedance coefficient, and the amplitude value of the zero-sequence component according to the and ⁇ component amplitude to calculate the first trigger angle command under single-phase fault and the second trigger angle command under three-phase fault respectively;
  • the comparison and selection module 30 is used for selecting the minimum value from the first firing angle command and the second firing angle command as the off-angle firing angle command of the converter valve in the converter;
  • the control module 40 is used for adjusting or correcting the firing angle of the HVDC transmission system by using the switch-off angle trigger angle command as the upper limit value of the output of the HVDC system controller.
  • the first acquisition and calculation module 10 includes a data acquisition sub-module, a first calculation sub-module, a second calculation sub-module and a third calculation sub-module;
  • the data acquisition sub-module is used to acquire the three-phase voltage of the commutation bus of the HVDC transmission system, and the three-phase voltages are the A-phase voltage u A , the B-phase voltage u B and the C-phase voltage u C ;
  • the first calculation submodule is used to calculate the A-phase voltage u A , the B-phase voltage u B and the C-phase voltage u C using the zero-sequence component formula and the Clark transformation formula to obtain the zero -sequence component u of the three-phase voltage of the commutation bus. , ⁇ component u ⁇ and ⁇ component u ⁇ ;
  • the second calculation sub-module is used to calculate the zero-sequence component amplitude U 0 by adopting the maximum value holding function formula for the zero-sequence component;
  • the third calculation submodule is used to calculate the pre- ⁇ component amplitude U L by using the commutation voltage formula for the ⁇ component and the ⁇ component, and calculate the ⁇ component amplitude U L by using the minimum holding function formula for the pre- ⁇ component amplitude U L L ';
  • ); the commutation voltage formula is The minimum hold function formula is U′ L MAX_HOLD(
  • the second acquisition and calculation module 20 is also used for setting the cut-off angle of the HVDC transmission system, the short-circuit reactance per unit value of the converter, the per unit value of the DC current, the commutation time and the impedance coefficient , the zero-sequence component amplitude and the ⁇ component amplitude are calculated by the single-phase trigger angle calculation formula and the three-phase trigger angle calculation formula, respectively, to obtain the first trigger angle command ⁇ sig under the single-phase fault and the second trigger under the three-phase fault.
  • Angle command ⁇ thr the calculation formula of single-phase firing angle is:
  • the three-phase firing angle calculation formula is:
  • k is the impedance system of the HVDC transmission system
  • ⁇ ref is the turn-off angle setting value
  • X T * is the per unit value of the short-circuit reactance of the converter
  • I d * is the per unit value of the DC current
  • U 0 * is zero is the per-unit value of the sequence component amplitude U 0
  • U L ′ is the ⁇ component amplitude
  • T is the commutation time of the converter valve in the converter of the HVDC transmission system.
  • modules in the apparatus in the second embodiment correspond to the steps in the method in the first embodiment.
  • the steps in the method in the first embodiment have been described in detail in the first embodiment.
  • the contents of the module are described in detail.
  • Embodiments of the present invention provide a computer-readable storage medium, where the computer storage medium is used to store computer instructions, which, when running on a computer, enable the computer to execute the above-mentioned control method for the first commutation failure of HVDC in an AC fault.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the embodiment of the present invention provides a control device for the first commutation failure of high-voltage direct current in an alternating current fault, including a processor and a memory;
  • a memory for storing program code and transmitting the program code to the processor
  • the processor is configured to execute the above-mentioned control method for the first commutation failure of the high-voltage direct current in the alternating current fault according to the instructions in the program code.
  • the processor is configured to execute, according to the instructions in the program code, the steps in the above-mentioned embodiment of the method for controlling the first commutation failure of high-voltage direct current in an AC fault.
  • the processor executes the computer program, the functions of each module/unit in the above-mentioned system/device embodiments are implemented.
  • a computer program may be divided into one or more modules/units, and the one or more modules/units are stored in a memory and executed by a processor to complete the present application.
  • One or more modules/units may be a series of computer program instruction segments capable of performing specific functions, and the instruction segments are used to describe the execution process of the computer program in the terminal device.
  • the terminal device may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server.
  • the terminal device may include, but is not limited to, a processor and a memory. Those skilled in the art can understand that it does not constitute a limitation on the terminal device, and may include more or less components than the one shown, or combine some components, or different components, for example, the terminal device may also include input and output devices, Network access equipment, bus, etc.
  • the so-called processor can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), off-the-shelf processors. Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory may be an internal storage unit of the terminal device, such as a hard disk or memory of the terminal device.
  • the memory can also be an external storage device of the terminal device, such as a plug-in hard disk equipped on the terminal device, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card (Flash Card), etc.
  • the memory may also include both an internal storage unit of the terminal device and an external storage device.
  • the memory is used to store computer programs and other programs and data required by the terminal device.
  • the memory may also be used to temporarily store data that has been or will be output.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solution of the present invention is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or CD and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

一种交流故障中高压直流首次换相失败的控制方法、装置及设备,通过根据获取的高压直流输电系统换流母线处的三相电压,计算其相应的零序分量幅值和αβ分量幅值;其次根据零序分量幅值和αβ分量幅值计算出单相故障下和三相故障下关断角控制的第一触发角指令和第二触发角指令,对第一触发角指令和第二触发角指令作比较,选取较小值的作为换流器中换流阀的关断角触发角指令,并将该关断角触发角指令作为高压直流输电系统原定关断角控制器输出指令的上限值,从而对高压直流输电系统换流阀关断角的触发角指令进行快速修正,实现在交流故障下逆变侧的触发角指令具有很快的响应速度,能够有效降低交流故障下换流器发生首次换相失败的概率。

Description

交流故障中高压直流首次换相失败的控制方法及装置 技术领域
本发明涉及电力技术领域,尤其涉及一种交流故障中高压直流首次换相失败的控制方法、装置及设备。
背景技术
当高压直流输电系统中逆变侧交流系统发生故障时,换流母线处电压的幅值骤降,相位发生跳变,换流阀的关断角将在短时间内急剧减小。而换流阀关断角控制的目的在于维持关断角不小于其参考值,以保证换流阀的正常关断。然而,目前直流工程中常用的关断角调节器在暂态下响应速度较慢,且存在较大的控制误差,这使得逆变器在交流故障发生时较容易发生换相失败。
因此,有必要对目前的定关断角控制器进行改进,从而增加交流故障下各换流阀的换相裕度,降低交流故障下逆变器发生换相失败的概率,是本领域技术人员亟待解决的问题。
发明内容
本发明实施例提供了一种交流故障中高压直流首次换相失败的控制方法、装置及设备,用于解决现有高压直流输电系统在交流故障下换流器发生换相失败的技术问题。
为了实现上述目的,本发明实施例提供如下技术方案:
一种交流故障中高压直流首次换相失败的控制方法,应用于高压直流输电系统上,包括以下步骤:
获取高压直流输电系统换流母线的三相电压,根据所述三相电压计算得到换流母线三相电压的零序分量幅值和αβ分量幅值;
获取高压直流输电系统的关断角整定值、换流器的短路电抗标幺值、直流电流标幺值、换相时间和阻抗系数,以及根据所述零序分量幅值和所述αβ分量幅值分别计算单相故障下的第一触发角指令和三相故障下的第二触发角指令;
从所述第一触发角指令和所述第二触发角指令中选取最小值作为换流器中换流阀的关断角触发角指令;
采用所述关断角触发角指令作为高压直流输电系统控制器输出上限值,实现对高压直流输电系统的触发角进行调整或修正。
优选地,获取高压直流输电系统换流母线的三相电压,根据所述三相电压计算得到换流母线三相电压的零序分量幅值和αβ分量幅值的步骤包括:
获取高压直流输电系统换流母线的三相电压,所述三相电压分别为A相电压u A、B相电压u B和C相电压u C
对所述A相电压u A、所述B相电压u B和所述C相电压u C采用零序分量公式和Clark变换公式计算, 得到换流母线三相电压的零序分量u 0、α分量u α和β分量u β
对所述零序分量采用最大值保持函数公式计算得到零序分量幅值U 0
对所述α分量和所述β分量采用换相电压公式计算得到预αβ分量幅值U L,对所述预αβ分量幅值U L采用最小值保持函数公式计算得到αβ分量幅值U L'。
优选地,所述零序分量公式为u 0=((u A+u B+u C)/3);所述Clark变换公式为:
Figure PCTCN2021118052-appb-000001
所述最大值保持函数公式为U 0=MAX_HOLD(|u 0|);所述换相电压公式为
Figure PCTCN2021118052-appb-000002
所述最小值保持函数公式为U′ L=MAX_HOLD(|U L|)。
优选地,该交流故障中高压直流首次换相失败的控制方法还包括:对所述零序分量和所述预αβ分量幅值的绝对值均保持12ms,计算零序分量幅值U 0和αβ分量幅值U L'。
优选地,该交流故障中高压直流首次换相失败的控制方法还包括:对高压直流输电系统的关断角整定值、换流器的短路电抗标幺值、直流电流标幺值、换相时间和阻抗系数、所述零序分量幅值和所述αβ分量幅值分别采用单相触发角计算公式和三相触发角计算公式计算,得到单相故障下的第一触发角指令α sig和三相故障下的第二触发角指令α thr,所述单相触发角计算公式为:
Figure PCTCN2021118052-appb-000003
所述三相触发角计算公式为:
Figure PCTCN2021118052-appb-000004
式中,k为高压直流输电系统的阻抗系统,γ ref为关断角整定值,X T *为换流器的短路电抗标幺值,I d *为直流电流标幺值,U 0 *为零序分量幅值U 0的标幺值,U L'为αβ分量幅值,T为高压直流输电系统换流器中换流阀的换相时间。
本发明还提供一种交流故障中高压直流首次换相失败的控制装置,包括第一获取计算模块、第二获取计算模块、比较选择模块和控制模块;
所述第一获取计算模块,用于获取高压直流输电系统换流母线的三相电压,根据所述三相电压计算得到换流母线三相电压的零序分量幅值和αβ分量幅值;
所述第二获取计算模块,用于获取高压直流输电系统的关断角整定值、换流器的短路电抗标幺值、直流电流标幺值、换相时间和阻抗系数,以及根据所述零序分量幅值和所述αβ分量幅值分别计算单相故障下的第一触发角指令和三相故障下的第二触发角指令;
所述比较选择模块,用于从所述第一触发角指令和所述第二触发角指令中选取最小值作为换流器中换流阀的关断角触发角指令;
所述控制模块,用于采用所述关断角触发角指令作为高压直流输电系统控制器输出上限值,实现对高压直流输电系统的触发角进行调整或修正。
优选地,所述第一获取计算模块包括数据获取子模块、第一计算子模块、第二计算子模块和第三计算子模块;
所述数据获取子模块,用于获取高压直流输电系统换流母线的三相电压,所述三相电压分别为A相电压u A、B相电压u B和C相电压u C
所述第一计算子模块,用于对所述A相电压u A、所述B相电压u B和所述C相电压u C采用零序分量公式和Clark变换公式计算,得到换流母线三相电压的零序分量u 0、α分量u α和β分量u β
所述第二计算子模块,用于对所述零序分量采用最大值保持函数公式计算得到零序分量幅值U 0
所述第三计算子模块,用于对所述α分量和所述β分量采用换相电压公式计算得到预αβ分量幅值U L,对所述预αβ分量幅值U L采用最小值保持函数公式计算得到αβ分量幅值U L';
其中,所述零序分量公式为u 0=((u A+u B+u C)/3);所述Clark变换公式为:
Figure PCTCN2021118052-appb-000005
所述最大值保持函数公式为U 0=MAX_HOLD(|u 0|);所述换相电压公式为
Figure PCTCN2021118052-appb-000006
所述最小值保持函数公式为U′ L=MAX_HOLD(|U L|)。
优选地,所述第二获取计算模块还用于对高压直流输电系统的关断角整定值、换流器的短路电抗标幺值、直流电流标幺值、换相时间和阻抗系数、所述零序分量幅值和所述αβ分量幅值分别采用单相触发角计算公式和三相触发角计算公式计算,得到单相故障下的第一触发角指令α sig和三相故障下的第二触发角指令α thr,所述单相触发角计算公式为:
Figure PCTCN2021118052-appb-000007
所述三相触发角计算公式为:
Figure PCTCN2021118052-appb-000008
式中,k为高压直流输电系统的阻抗系统,γ ref为关断角整定值,X T *为换流器的短路电抗标幺值,I d *为直流电流标幺值,U 0 *为零序分量幅值U 0的标幺值,U L'为αβ分量幅值,T为高压直流输电系统换流器中换流阀的换相时间。
本发明还提供一种计算机可读存储介质,所述计算机存储介质用于存储计算机指令,当其在计算机 上运行时,使得计算机执行上述所述的交流故障中高压直流首次换相失败的控制方法。
本发明还提供一种交流故障中高压直流首次换相失败的控制设备,包括处理器以及存储器;
所述存储器,用于存储程序代码,并将所述程序代码传输给所述处理器;
所述处理器,用于根据所述程序代码中的指令执行上述所述的交流故障中高压直流首次换相失败的控制方法。
从以上技术方案可以看出,本发明实施例具有以下优点:该交流故障中高压直流首次换相失败的控制方法、装置及设备通过根据获取的高压直流输电系统换流母线处的三相电压,并计算其相应的零序分量幅值和αβ分量幅值;其次根据零序分量幅值和αβ分量幅值计算出单相故障下和三相故障下关断角控制的第一触发角指令和第二触发角指令,对第一触发角指令和第二触发角指令作比较,选取较小值的作为换流器中换流阀的关断角触发角指令,并将该关断角触发角指令作为高压直流输电系统原定关断角控制器输出指令的上限值,从而对高压直流输电系统换流阀关断角的触发角指令进行快速修正。与现有技术相比,本发明的交流故障中高压直流首次换相失败的控制方法在交流故障下逆变侧的触发角指令具有很快的响应速度,能够有效降低交流故障下换流器发生首次换相失败的概率,解决了现有高压直流输电系统在交流故障下换流器发生换相失败的技术问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例所述的交流故障中高压直流首次换相失败的控制方法的步骤流程图。
图2为本发明实施例所述的交流故障中高压直流首次换相失败的控制方法的框架图。
图3为本发明实施例所述的交流故障中高压直流首次换相失败的控制方法的6脉动换流器原理接线示意图。
图4为本发明实施例所述的交流故障中高压直流首次换相失败的控制方法单相故障下改进前后输电系统的直流电压、电流、功率和关断角波形示意图。
图5为本发明实施例所述的交流故障中高压直流首次换相失败的控制方法三相故障下改进前后系统的直流电压、电流、功率和关断角波形示意图。
图6为本发明实施例所述的交流故障中高压直流首次换相失败的控制方法单相故障下改进前后输电系统逆变侧的触发角指令波形示意图。
图7为本发明实施例所述的交流故障中高压直流首次换相失败的控制方法三相故障下改进前后系统的换相失败免疫性能比较示意图。
图8为本发明实施例所述的交流故障中高压直流首次换相失败的控制方法单相故障下改进前后系 统的换相失败免疫性能比较示意图。
图9为本发明实施例所述的交流故障中高压直流首次换相失败的控制装置的框架图。
具体实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本申请实施例提供了一种交流故障中高压直流首次换相失败的控制方法、装置及设备,应用于高压直流输电系统上,用于解决了现有高压直流输电系统在交流故障下换流器发生换相失败的技术问题。
实施例一:
图1为本发明实施例所述的交流故障中高压直流首次换相失败的控制方法的步骤流程图,图2为本发明实施例所述的交流故障中高压直流首次换相失败的控制方法的框架图。
如图1和图2所示,本发明实施例提供了一种交流故障中高压直流首次换相失败的控制方法,应用于高压直流输电系统上,包括以下步骤:
S10.获取高压直流输电系统换流母线的三相电压,根据三相电压计算得到换流母线三相电压的零序分量幅值和αβ分量幅值;
S20.获取高压直流输电系统的关断角整定值、换流器的短路电抗标幺值、直流电流标幺值、换相时间和阻抗系数,以及根据零序分量幅值和αβ分量幅值分别计算单相故障下的第一触发角指令和三相故障下的第二触发角指令;
S30.从第一触发角指令和第二触发角指令中选取最小值作为换流器中换流阀的关断角触发角指令;
S40.采用关断角触发角指令作为高压直流输电系统控制器输出上限值,实现对高压直流输电系统的触发角进行调整或修正。
在本发明实施例中,该交流故障中高压直流首次换相失败的控制方法主要是先获取高压直流输电系统换流母线的三相电压,从三相电压中分析出零序分量幅值和αβ分量幅值,之后再获取高压直流输电系统中的关断角整定值、换流器的短路电抗标幺值、直流电流标幺值、换相时间和阻抗系数,对高压直流输电系统的在单相故障下和三相故障下计算得到第一触发角指令和第二触发角指令,对第一触发角指令和第二触发角指令作比较,选取较小值的作为换流器中换流阀的关断角触发角指令,并将该关断角触发角指令作为高压直流输电系统原定关断角控制器输出指令的上限值,从而对高压直流输电系统换流阀关断角的触发角指令进行快速修正。
本发明提供的一种交流故障中高压直流首次换相失败的控制方法通过根据获取的高压直流输电系统换流母线处的三相电压,并计算其相应的零序分量幅值和αβ分量幅值;其次根据零序分量幅值和 αβ分量幅值计算出单相故障下和三相故障下关断角控制的第一触发角指令和第二触发角指令,对第一触发角指令和第二触发角指令作比较,选取较小值的作为换流器中换流阀的关断角触发角指令,并将该关断角触发角指令作为高压直流输电系统原定关断角控制器输出指令的上限值,从而对高压直流输电系统换流阀关断角的触发角指令进行快速修正。与现有技术相比,本发明的交流故障中高压直流首次换相失败的控制方法在交流故障下逆变侧的触发角指令具有很快的响应速度,能够有效降低交流故障下换流器发生首次换相失败的概率,解决了现有高压直流输电系统在交流故障下换流器发生换相失败的技术问题。
在本发明的一个实施例中,在步骤S10中,获取高压直流输电系统换流母线的三相电压,根据三相电压计算得到换流母线三相电压的零序分量幅值和αβ分量幅值的步骤包括:
获取高压直流输电系统换流母线的三相电压,三相电压分别为A相电压u A、B相电压u B和C相电压u C
对A相电压u A、B相电压u B和C相电压u C采用零序分量公式和Clark变换公式计算,得到换流母线三相电压的零序分量u 0、α分量u α和β分量u β
对零序分量采用最大值保持函数公式计算得到零序分量幅值U 0
对α分量和β分量采用换相电压公式计算得到预αβ分量幅值U L,对预αβ分量幅值U L采用最小值保持函数公式计算得到αβ分量幅值U L'。
在本发明实施例中,零序分量公式为u0=((uA+uB+uC)/3);Clark变换公式为:
Figure PCTCN2021118052-appb-000009
最大值保持函数公式为U 0=MAX_HOLD(|u 0|);换相电压公式为
Figure PCTCN2021118052-appb-000010
最小值保持函数公式为U′ L=MAX_HOLD(|U L|)。
需要说明的是,在采用最大值保持函数公式和最小值保持函数公式计算零序分量幅值U 0和αβ分量幅值U L'过程中需要保持的时间为12ms。
在本发明的一个实施例中,该交流故障中高压直流首次换相失败的控制方法还包括:对高压直流输电系统的关断角整定值、换流器的短路电抗标幺值、直流电流标幺值、换相时间和阻抗系数、零序分量幅值和αβ分量幅值分别采用单相触发角计算公式和三相触发角计算公式计算,得到单相故障下的第一触发角指令α sig和三相故障下的第二触发角指令α thr,单相触发角计算公式为:
Figure PCTCN2021118052-appb-000011
三相触发角计算公式为:
Figure PCTCN2021118052-appb-000012
式中,k为高压直流输电系统的阻抗系统,γ ref为关断角整定值,X T *为换流器的短路电抗标幺值,I d *为直流电流标幺值,U 0 *为零序分量幅值U 0的标幺值,U L'为αβ分量幅值,T为高压直流输电系统换流器中换流阀的换相时间。
需要说明的是,U 0 *零序分量幅值U 0的标幺值是指零序分量幅值U 0与高压直流输电系统换流母线相电压的比值。
在本实施例中,高压直流输电系统中的换流器以12脉波换流器作为案例进行说明,该高压直流输电系统的接线方式采用YNy0和YNd1,以A相发生接地短路故障作为高压直流输电系统发生单相故障的案例说明,在YNy0接线方式的高压直流输电系统中,高压直流输电系统的y侧各换相电压的幅值的表达式(1)可由对称分量法计算得到:
Figure PCTCN2021118052-appb-000013
在YNd1接线方式的高压直流输电系统中,高压直流输电系统的d侧各换相电压的幅值的表达式(2)为:
Figure PCTCN2021118052-appb-000014
式中,Z 1、Z 2、Z 0分别为高压直流输电系统的正序阻抗、负序阻抗、零序阻抗,Z f为故障过渡阻抗,U ACy为YNy0接线方式AC两相的换相电压的幅值,U BAy为YNy0接线方式BA两相的换相电压的幅值,U CBy为YNy0接线方式CB两相的换相电压的幅值,j为虚数单位,U ACd为YNd1接线方式AC两相的换相电压的幅值,U BAd为YNd1接线方式BA两相的换相电压的幅值,U CBd为YNd1接线方式CB两相的换相电压的幅值。一般而言,高压直流输电系统中的正序阻抗与负序阻抗相等。根据上述表达式(1)和(2),设置表达式(3):
Figure PCTCN2021118052-appb-000015
式中,x为实部,y为虚部。
由于高压直流输电系统中的正序阻抗、负序阻抗、零序阻抗基本上呈感性性质,而故障接地阻抗多为阻感性质,因此令Z 0+3Z f=a+jb,2Z 1=jc,其中a、b、c均大于0,代入表达式(3)中农,可以得到x和y的取值范围以下满足的约束关系(4):
Figure PCTCN2021118052-appb-000016
结合表达式(1)、(2)和(4)得到,在所有换相电压中,U ACy和U ACd跌落量以及相位偏移量(超前方向)均不是最严重的,而U CBy和相位均保持在故障前不变,因此它们对应的换流阀相对不容易发生换相失败。对于换相电压的幅值U BAy、U BAd和U CBd,它们的幅值跌落以及相位偏移量大小关系则由故障的阻感类型以及严重程度而决定。因此,在分析单相故障中,只需要考虑换相电压的幅值中U BAy、U BAd和U CBd的幅值跌落以及相位偏移关系。
在本实施例中,对表达式(3)进行两次恒等变换,得到表达式(5),即为:
Figure PCTCN2021118052-appb-000017
Figure PCTCN2021118052-appb-000018
根据上述表达式(5),设置表达式(6):
Figure PCTCN2021118052-appb-000019
Figure PCTCN2021118052-appb-000020
将表达式(6)代入表达式(5)中,得到表达式(7):(1-x) 2+y 2=u 2,(1+x) 2+y 2=(u-v) 2。基于表达式(7)的基础上求解计算得到x和y,即为:
Figure PCTCN2021118052-appb-000021
Figure PCTCN2021118052-appb-000022
基于表达式(3)的基础上将得到的x和y代入表达式(1)和(2)得到换相电压的幅值中U BAy、U BAd和U CBd均与u、v的表达式,得到u=2U -,v=2(U ++U -),其中,U +、U -分别为换流母线三相电压的正序分量和负序分量。在表达式(1)和(2)中,若令Z 0+3Z f=a+jb,2Z 1=jc,则表达式(6)更新为表达式(8),即为:
Figure PCTCN2021118052-appb-000023
根据表达式(8),当过渡阻抗为纯感性(a=0)时,U ++U -达到最小值1;当且仅当b=0,a 2=8c 2时,U ++U -达到最大值1.15。因此,将U ++U -近似为1。而在高压直流输电线系统中,换流母线处的故障多为感性故障,当发生电感性故障时,U ++U -为1;当阻感性故障时,U ++U -达到最大值时偏离1的程度仍然较小,故这样带来的计算误差较小。将U ++U -近似为1时,在阻感性质下,将各换相电压的幅值以及相位偏移量代入触发角计算公式时,计算结果均偏向保守,计算得到的触发角对避免换相失败不会造成不利的影响。
在本发明实施例中,将U ++U -近似为1后,由表达式(8)可知v=2。再根据Clark变换公式,换流母线处电压负序分量和零序分量幅值之间的关系表达式(9)为:
Figure PCTCN2021118052-appb-000024
由v=2和表达式(9)更新U BAy、U BAd和U CBd的表达式,即为表达式(10):
Figure PCTCN2021118052-appb-000025
Figure PCTCN2021118052-appb-000026
Figure PCTCN2021118052-appb-000027
同理,与U BAy、U BAd和U CBd对应的相位偏移量表达式(11)为:
Figure PCTCN2021118052-appb-000028
Δφ BAd=0
Figure PCTCN2021118052-appb-000029
式中,Δφ BAy为YNy0接线方式BA两相的相位偏移量,Δφ BAd为YNd1接线方式BA两相的相位偏移量,Δφ CBd为YNd1接线方式CB两相的相位偏移量。
由上述可知,高压直流输电系统在A相单相故障下发生换相失败风险最大所对应的换相电压的幅值U BAy
图3为本发明实施例所述的交流故障中高压直流首次换相失败的控制方法的6脉动换流器原理接线示意图。
如图3所示,在本发明实施例中,以YNd1接线方式所对应6脉动换流器为例,设各阀的导通顺序为VT 1y→VT 2y→VT 3y→VT 4y→VT 5y→VT 6y。以VT 1y向VT 3y换相的过程为例,相应换相回路的KVL方程如式(12)所示:
Figure PCTCN2021118052-appb-000030
式中,L T为换相电感,i b、i a分别为通过换流变压器B相和A相绕组的电流;u BAy=u By–u Ay,u BAy为VT 3y对应的换相电压。设阀3的触发时刻和换相结束时刻分别为t a和t a+m,在区间(t a,t a+m)内对u BAy积分后可得表达式(13):
Figure PCTCN2021118052-appb-000031
换相开始和换相结束时,有i b(t α)=i a(t α+μ)=0,将其代入表达式(13),并假设u BAy为标准正弦波,则表达式(13)可整理为表达式(14):U BAy(cosα 3y+cosγ 1y)=X T[i a(t α)+i b(t α+μ)],式中,U BAy为换相电压u BAy的幅值,α 3y为VT 3y的触发角,γ 1y为VT 1y的关断角,X T为换相电抗。从表达式(14)得到各换流阀的触发角与关断角之间的关系为:
Figure PCTCN2021118052-appb-000032
式中,α iy为换流阀VT iy的触发角,γ (i-2)y为换流阀VT (i-2)y的关断角,U iy为VT iy(i=1,2,3,4,5,6)对应换相电压的幅值(阀侧有名值),它们与各线电压的关系如表1所示。
表1为各换流阀对应的换相电压的幅值
Figure PCTCN2021118052-appb-000033
从表1可以得到,在高压直流输电系统中同一换流桥上下臂的换相电压反相,因此y侧和d侧仅需考虑6个换相电压的幅值和相位偏移情况。
由各换流阀的触发角与关断角之间的关系可以得到在关断角整定值下各换流阀触发角需求量α γ.iy
Figure PCTCN2021118052-appb-000034
式中:γ ref为关断角整定值。由上述求解α γ.iy可以得到,各换流阀的触发角需求量与换相开始时刻的直流电流i d(t α)以及换相结束时刻的直流电流i d(t α+μ)都有关系。然而,在实际触发之前,换流器 触发控制系统还没有发出下一个换流阀的触发脉冲,因此换相过程尚未开始,换相结束时刻的直流电流也无法得知。为了计及换相期间直流电流的影响,并考虑到换相持续时间通常较短,假定直流电流在换相期间按照换相开始时刻的电流变化率进行变化。将i d(t α)简写为I d,求解α γ.iy的公式更新为:
Figure PCTCN2021118052-appb-000035
式中,T为换流阀的换相时间。在正常工况下,换流阀的换相时间大约在1.4ms(对应至电角度为24°)左右,考虑到故障期间换相角可能增大,此处将T取为2ms。在高压直流输电系统的单相故障发生后,各换相电压的幅值跌落,且相位也可能会发生跳变。由于锁相环需要一定的时间才能锁定各换相电压的相位,该相位跳变带来的相位误差会使得换流阀的实际触发角偏离指令值。考虑到相位跳变带来的实际触发角偏移,各换流阀的触发角指令求解公式(15)应为:
Figure PCTCN2021118052-appb-000036
式中,j=1,3,5表示阀号,x=y、d表示变压器阀侧的联结方式,Df jx为各换流阀对应换相电压的相位偏移量。在等相位间隔触发方式下,最终仅有一个触发角指令送入触发控制系统生成触发脉冲。因此,为了保证各个换流阀都具有足够的换相裕度,仅需考虑最容易发生换相失败的换流阀,即最终的触发角指令应为6个触发角指令中的最小值。在所有换相电压中u ACy和u ACd的幅值跌落量以及相位超前量均不是最大的,且u CBy的幅值和相位均保持在故障前不变,故相应阀的触发角指令均不是最小(发生换相失败的风险不是最大),不需进行考虑。此外,由于U ++U -被近似为1,结合换流阀的触发角指令求解公式不难分析得出,进行该近似后,得到的各换流阀触发角指令均比原先的略微偏小,而在相同故障下较小的触发角指令会使得换流阀的关断角略大,因此对避免换相失败不会造成不利的影响。根据表达式(11),在换相电压u BAy、u BAd和u CBd中,u CBd的幅值跌落量和相位偏移量总比u BAd的要小,即换相电压u CBd对应的换流阀发生换相失败的风险不是最大,故接下来仅考虑换相电压u BAy、u BAd与触发角指令的关系。
在本发明实施例中,X T*为换流器的短路电抗标幺值,更新公式(15),得到公式(16)为:
Figure PCTCN2021118052-appb-000037
式中,I d *为直流电流标幺值,稳态下为1.0p.u.;
Figure PCTCN2021118052-appb-000038
为换相电压标幺值,稳态下为
Figure PCTCN2021118052-appb-000039
将换相电压u BAy、u BAd的幅值与相位偏移量代入单相触发角计算公式(17)中,可以得到相应换流阀的触发角指令,它们分别如下:
Figure PCTCN2021118052-appb-000040
在高压直流工程中,关断角的整定值γ ref一般在15°-18°之间,换相电抗百分数一般在15%-18%之间。此处以γ ref=17°为例,将α 3y.ord与α 3d.ord的大小关系进行比较,可以看出,在逆变状态(触发角指令大于90°)下,α 3y.ord的值总是小于α 3d.ord,因此最容易发生换相失败的换流阀为VT3y,即应该选取α 3y.ord为单相故障下最终的触发角指令α sig
在本发明实施例中,若在高压直流输电系统中换流母线处发生三相短路故障,以换相电压u ACy为例,故障发生后其幅值
Figure PCTCN2021118052-appb-000041
和相角可用公式(18)表示,记为:
Figure PCTCN2021118052-appb-000042
式中:
Figure PCTCN2021118052-appb-000043
为故障前的换流母线电压幅值;θ 0
Figure PCTCN2021118052-appb-000044
的相角;Z eq为故障前的交流系统等值阻抗;m=|Z eq/Z f|;
Figure PCTCN2021118052-appb-000045
其中
Figure PCTCN2021118052-appb-000046
Figure PCTCN2021118052-appb-000047
分别为Z eq和Z f的幅角。由公式(18)可以得知,故障期间换相电压的幅值与相位偏移程度均与故障接地阻抗Z f有关。若仍然认为j eq=90°,则当Z f为阻感性质时,故障发生后换相电压的相位变化量Dq<0,即故障下
Figure PCTCN2021118052-appb-000048
的相位滞后于故障前;特别地,当Z f为纯感性时,故障期间交流母线电压的相位与故障前相等。此外,故障程度越严重,则换相电压的幅值跌落程度以及相位偏移程度越大。因此,对于高压直流输电系统的三相故障,当发生阻感性故障导致各换相电压的相位滞后时,各换流阀的实际触发角将小于触发角指令,关断角不会受此影响而进一步减小,即当Z f为纯感性故障阻抗,在这种情况下,换相电压相位偏移量为0。此时,和三相触发角计算公式为:
Figure PCTCN2021118052-appb-000049
图4为本发明实施例所述的交流故障中高压直流首次换相失败的控制方法单相故障下改进前后输电系统的直流电压、电流、功率和关断角波形示意图,图5为本发明实施例所述的交流故障中高压直流首次换相失败的控制方法三相故障下改进前后系统的直流电压、电流、功率和关断角波形示意图,图6为本发明实施例所述的交流故障中高压直流首次换相失败的控制方法单相故障下改进前后输电系统逆变侧的触发角指令波形示意图,图7为本发明实施例所述的交流故障中高压直流首次换相失败的控制方 法三相故障下改进前后系统的换相失败免疫性能比较示意图,图8为本发明实施例所述的交流故障中高压直流首次换相失败的控制方法单相故障下改进前后系统的换相失败免疫性能比较示意图。
如图4至图8所示,在本发明实施例中关断角触发角指令作为高压直流输电系统控制器输出上限值,实现对高压直流输电系统的触发角进行调整或修正,有效降低交流故障下发生首次换相失败的概率,也抑制了高压直流输电系统换相失败。
实施例二:
图9为本发明实施例所述的交流故障中高压直流首次换相失败的控制装置的框架图。
如图9所示,本发明实施例还提供一种交流故障中高压直流首次换相失败的控制装置,应用于高压直流输电系统上,包括第一获取计算模块10、第二获取计算模块20、比较选择模块30和控制模块40;
第一获取计算模块10,用于获取高压直流输电系统换流母线的三相电压,根据三相电压计算得到换流母线三相电压的零序分量幅值和αβ分量幅值;
第二获取计算模块20,用于获取高压直流输电系统的关断角整定值、换流器的短路电抗标幺值、直流电流标幺值、换相时间和阻抗系数,以及根据零序分量幅值和αβ分量幅值分别计算单相故障下的第一触发角指令和三相故障下的第二触发角指令;
比较选择模块30,用于从第一触发角指令和第二触发角指令中选取最小值作为换流器中换流阀的关断角触发角指令;
控制模块40,用于采用关断角触发角指令作为高压直流输电系统控制器输出上限值,实现对高压直流输电系统的触发角进行调整或修正。
在本发明实施例中,第一获取计算模块10包括数据获取子模块、第一计算子模块、第二计算子模块和第三计算子模块;
数据获取子模块,用于获取高压直流输电系统换流母线的三相电压,三相电压分别为A相电压u A、B相电压u B和C相电压u C
第一计算子模块,用于对A相电压u A、B相电压u B和C相电压u C采用零序分量公式和Clark变换公式计算,得到换流母线三相电压的零序分量u 0、α分量u α和β分量u β
第二计算子模块,用于对零序分量采用最大值保持函数公式计算得到零序分量幅值U 0
第三计算子模块,用于对α分量和β分量采用换相电压公式计算得到预αβ分量幅值U L,对预αβ分量幅值U L采用最小值保持函数公式计算得到αβ分量幅值U L';
其中,零序分量公式为u 0=((u A+u B+u C)/3);Clark变换公式为:
Figure PCTCN2021118052-appb-000050
最大值保持函数公式为U 0=MAX_HOLD(|u 0|);换相电压公式为
Figure PCTCN2021118052-appb-000051
最小值保持函 数公式为U′ L=MAX_HOLD(|U L|)。
在本发明的实施例中,第二获取计算模块20还用于对高压直流输电系统的关断角整定值、换流器的短路电抗标幺值、直流电流标幺值、换相时间和阻抗系数、零序分量幅值和αβ分量幅值分别采用单相触发角计算公式和三相触发角计算公式计算,得到单相故障下的第一触发角指令α sig和三相故障下的第二触发角指令α thr,单相触发角计算公式为:
Figure PCTCN2021118052-appb-000052
三相触发角计算公式为:
Figure PCTCN2021118052-appb-000053
式中,k为高压直流输电系统的阻抗系统,γ ref为关断角整定值,X T *为换流器的短路电抗标幺值,I d *为直流电流标幺值,U 0 *为零序分量幅值U 0的标幺值,U L'为αβ分量幅值,T为高压直流输电系统换流器中换流阀的换相时间。
需要说明的是,实施例二装置中的模块对应于实施例一方法中的步骤,实施例一方法中的步骤已在实施例一中详细阐述了,在此实施例二中不再对装置中的模块内容进行详细阐述。
实施例三:
本发明实施例提供了一种计算机可读存储介质,计算机存储介质用于存储计算机指令,当其在计算机上运行时,使得计算机执行上述的交流故障中高压直流首次换相失败的控制方法。
实施例四:
本发明实施例提供了一种交流故障中高压直流首次换相失败的控制设备,包括处理器以及存储器;
存储器,用于存储程序代码,并将程序代码传输给处理器;
处理器,用于根据程序代码中的指令执行上述的交流故障中高压直流首次换相失败的控制方法。
需要说明的是,处理器用于根据所程序代码中的指令执行上述的一种交流故障中高压直流首次换相失败的控制方法实施例中的步骤。或者,处理器执行计算机程序时实现上述各系统/装置实施例中各模块/单元的功能。
示例性的,计算机程序可以被分割成一个或多个模块/单元,一个或者多个模块/单元被存储在存储器中,并由处理器执行,以完成本申请。一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序在终端设备中的执行过程。
终端设备可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。终端设备可包括,但不仅限于,处理器、存储器。本领域技术人员可以理解,并不构成对终端设备的限定,可以包括比图示 更多或更少的部件,或者组合某些部件,或者不同的部件,例如终端设备还可以包括输入输出设备、网络接入设备、总线等。
所称处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器可以是终端设备的内部存储单元,例如终端设备的硬盘或内存。存储器也可以是终端设备的外部存储设备,例如终端设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器还可以既包括终端设备的内部存储单元也包括外部存储设备。存储器用于存储计算机程序以及终端设备所需的其他程序和数据。存储器还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM, Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种交流故障中高压直流首次换相失败的控制方法,应用于高压直流输电系统上,其特征在于,包括以下步骤:
    获取高压直流输电系统换流母线的三相电压,根据所述三相电压计算得到换流母线三相电压的零序分量幅值和αβ分量幅值;
    获取高压直流输电系统的关断角整定值、换流器的短路电抗标幺值、直流电流标幺值、换相时间和阻抗系数,以及根据所述零序分量幅值和所述αβ分量幅值分别计算单相故障下的第一触发角指令和三相故障下的第二触发角指令;
    从所述第一触发角指令和所述第二触发角指令中选取最小值作为换流器中换流阀的关断角触发角指令;
    采用所述关断角触发角指令作为高压直流输电系统控制器输出上限值,实现对高压直流输电系统的触发角进行调整或修正。
  2. 根据权利要求1所述的交流故障中高压直流首次换相失败的控制方法,其特征在于,获取高压直流输电系统换流母线的三相电压,根据所述三相电压计算得到换流母线三相电压的零序分量幅值和αβ分量幅值的步骤包括:
    获取高压直流输电系统换流母线的三相电压,所述三相电压分别为A相电压u A、B相电压u B和C相电压u C
    对所述A相电压u A、所述B相电压u B和所述C相电压u C采用零序分量公式和Clark变换公式计算,得到换流母线三相电压的零序分量u 0、α分量u α和β分量u β
    对所述零序分量采用最大值保持函数公式计算得到零序分量幅值U 0
    对所述α分量和所述β分量采用换相电压公式计算得到预αβ分量幅值U L,对所述预αβ分量幅值U L采用最小值保持函数公式计算得到αβ分量幅值U L'。
  3. 根据权利要求2所述的交流故障中高压直流首次换相失败的控制方法,其特征在于,所述零序分量公式为u 0=((u A+u B+u C)/3);所述Clark变换公式为:
    Figure PCTCN2021118052-appb-100001
    所述最大值保持函数公式为U 0=MAX_HOLD(|u 0|);所述换相电压公式为
    Figure PCTCN2021118052-appb-100002
    所述最小值保持函数公式为U′ L=MAX_HOLD(|U L|)。
  4. 根据权利要求2所述的交流故障中高压直流首次换相失败的控制方法,其特征在于,还包括:对所述零序分量和所述预αβ分量幅值的绝对值均保持12ms,计算零序分量幅值U 0和αβ分量幅值U L'。
  5. 根据权利要求1所述的交流故障中高压直流首次换相失败的控制方法,其特征在于,还包括:对高压直流输电系统的关断角整定值、换流器的短路电抗标幺值、直流电流标幺值、换相时间和阻抗系数、所述零序分量幅值和所述αβ分量幅值分别采用单相触发角计算公式和三相触发角计算公式计算,得到单相故障下的第一触发角指令α sig和三相故障下的第二触发角指令α thr,所述单相触发角计算公式为:
    Figure PCTCN2021118052-appb-100003
    所述三相触发角计算公式为:
    Figure PCTCN2021118052-appb-100004
    式中,k为高压直流输电系统的阻抗系统,γ ref为关断角整定值,X T *为换流器的短路电抗标幺值,I d *为直流电流标幺值,U 0 *为零序分量幅值U 0的标幺值,U L'为αβ分量幅值,T为高压直流输电系统换流器中换流阀的换相时间。
  6. 一种交流故障中高压直流首次换相失败的控制装置,应用于高压直流输电系统上,其特征在于,包括第一获取计算模块、第二获取计算模块、比较选择模块和控制模块;
    所述第一获取计算模块,用于获取高压直流输电系统换流母线的三相电压,根据所述三相电压计算得到换流母线三相电压的零序分量幅值和αβ分量幅值;
    所述第二获取计算模块,用于获取高压直流输电系统的关断角整定值、换流器的短路电抗标幺值、直流电流标幺值、换相时间和阻抗系数,以及根据所述零序分量幅值和所述αβ分量幅值分别计算单相故障下的第一触发角指令和三相故障下的第二触发角指令;
    所述比较选择模块,用于从所述第一触发角指令和所述第二触发角指令中选取最小值作为换流器中换流阀的关断角触发角指令;
    所述控制模块,用于采用所述关断角触发角指令作为高压直流输电系统控制器输出上限值,实现对高压直流输电系统的触发角进行调整或修正。
  7. 根据权利要求6所述的交流故障中高压直流首次换相失败的控制装置,其特征在于,所述第一获取计算模块包括数据获取子模块、第一计算子模块、第二计算子模块和第三计算子模块;
    所述数据获取子模块,用于获取高压直流输电系统换流母线的三相电压,所述三相电压分别为A相电压u A、B相电压u B和C相电压u C
    所述第一计算子模块,用于对所述A相电压u A、所述B相电压u B和所述C相电压u C采用零序分量公式和Clark变换公式计算,得到换流母线三相电压的零序分量u 0、α分量u α和β分量u β
    所述第二计算子模块,用于对所述零序分量采用最大值保持函数公式计算得到零序分量幅值U 0
    所述第三计算子模块,用于对所述α分量和所述β分量采用换相电压公式计算得到预αβ分量幅值U L,对所述预αβ分量幅值UL采用最小值保持函数公式计算得到αβ分量幅值U L';
    其中,所述零序分量公式为u 0=((u A+u B+u C)/3);所述Clark变换公式为:
    Figure PCTCN2021118052-appb-100005
    所述最大值保持函数公式为U 0=MAX_HOLD(|u 0|);所述换相电压公式为
    Figure PCTCN2021118052-appb-100006
    所述最小值保持函数公式为U′ L=MAX_HOLD(|U L|)。
  8. 根据权利要求6所述的交流故障中高压直流首次换相失败的控制装置,其特征在于,所述第二获取计算模块还用于对高压直流输电系统的关断角整定值、换流器的短路电抗标幺值、直流电流标幺值、换相时间和阻抗系数、所述零序分量幅值和所述αβ分量幅值分别采用单相触发角计算公式和三相触发角计算公式计算,得到单相故障下的第一触发角指令α sig和三相故障下的第二触发角指令α thr,所述单相触发角计算公式为;
    Figure PCTCN2021118052-appb-100007
    所述三相触发角计算公式为:
    Figure PCTCN2021118052-appb-100008
    式中,k为高压直流输电系统的阻抗系统,γ ref为关断角整定值,X T *为换流器的短路电抗标幺值,I d *为直流电流标幺值,U 0 *为零序分量幅值U 0的标幺值,U L'为αβ分量幅值,T为高压直流输电系统换流器中换流阀的换相时间。
  9. 一种计算机可读存储介质,其特征在于,所述计算机存储介质用于存储计算机指令,当其在计算机上运行时,使得计算机执行如权利要求1-5任意一项所述的交流故障中高压直流首次换相失败的控制方法。
  10. 一种交流故障中高压直流首次换相失败的控制设备,其特征在于,包括处理器以及存储器;
    所述存储器,用于存储程序代码,并将所述程序代码传输给所述处理器;
    所述处理器,用于根据所述程序代码中的指令执行如权利要求1-5任意一项所述的交流故障中高压直流首次换相失败的控制方法。
PCT/CN2021/118052 2021-03-31 2021-09-13 交流故障中高压直流首次换相失败的控制方法及装置 WO2022205786A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21934423.1A EP4318843A1 (en) 2021-03-31 2021-09-13 Control method and apparatus for high-voltage, direct current first commutation failure in alternating-current fault
US18/552,666 US20240162714A1 (en) 2021-03-31 2021-09-13 Control method and apparatus for high-voltage, direct current first commutation failure in alternating-current fault

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110352380.5 2021-03-31
CN202110352380.5A CN112993994B (zh) 2021-03-31 2021-03-31 交流故障中高压直流首次换相失败的控制方法及装置

Publications (1)

Publication Number Publication Date
WO2022205786A1 true WO2022205786A1 (zh) 2022-10-06

Family

ID=76339171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118052 WO2022205786A1 (zh) 2021-03-31 2021-09-13 交流故障中高压直流首次换相失败的控制方法及装置

Country Status (4)

Country Link
US (1) US20240162714A1 (zh)
EP (1) EP4318843A1 (zh)
CN (1) CN112993994B (zh)
WO (1) WO2022205786A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993994B (zh) * 2021-03-31 2022-07-08 南方电网科学研究院有限责任公司 交流故障中高压直流首次换相失败的控制方法及装置
CN113644678B (zh) * 2021-06-25 2023-08-04 湖南大学 高压直流输电系统触发角指令计算方法及系统
CN113708401B (zh) * 2021-08-24 2024-07-30 国网河南省电力公司电力科学研究院 基于联络通道电流检测的多馈入直流换相失败预防控制方法和系统
CN113433426B (zh) * 2021-08-30 2021-12-31 国网江西省电力有限公司电力科学研究院 直流输电系统的换流母线临界故障位置计算方法及装置
CN113933619B (zh) * 2021-09-10 2024-01-12 南方电网科学研究院有限责任公司 一种换相失败检测方法及装置
CN114256864B (zh) * 2021-12-13 2023-10-13 湖南大学 高压直流输电系统中svcc的定时间控制方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080315809A1 (en) * 2007-06-20 2008-12-25 Jtekt Corporation Motor controller and electric power steering apparatus
JP2016025720A (ja) * 2014-07-18 2016-02-08 東芝三菱電機産業システム株式会社 インバータシステム
CN106887859A (zh) * 2017-03-29 2017-06-23 南方电网科学研究院有限责任公司 一种抑制高压直流输电换相失败的控制优化方法和装置
CN110441658A (zh) * 2019-08-27 2019-11-12 国网新疆电力有限公司经济技术研究院 一种考虑直流电流变化的高压直流换相失败判别方法
CN110571839A (zh) * 2019-08-05 2019-12-13 华南理工大学 一种基于换相电压相位检测的高压直流故障恢复方法
CN111541261A (zh) * 2020-05-11 2020-08-14 国网河北省电力有限公司经济技术研究院 非线性动态电流偏差控制方法、装置及终端设备
CN112993994A (zh) * 2021-03-31 2021-06-18 南方电网科学研究院有限责任公司 交流故障中高压直流首次换相失败的控制方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2295506B (en) * 1994-11-24 1999-02-10 Gec Alsthom Ltd HVDC convertor control
CN102931673B (zh) * 2012-10-30 2014-08-13 浙江大学 一种抑制交流故障切除后直流输电系统换相失败的控制器及控制方法
CN103078311B (zh) * 2013-01-10 2014-12-31 河海大学 一种抑制换相失败的直流电流预测整定方法
CN103701145B (zh) * 2014-01-02 2015-07-08 浙江大学 一种基于混杂式mmc的混合型直流输电系统
CN103760447B (zh) * 2014-01-26 2016-04-20 华北电力大学 一种用于高压直流输电的交流故障检测方法
CN108808718B (zh) * 2018-06-26 2021-07-30 华南理工大学 交流故障时高压直流输电系统直流电流运行范围确定方法
CN108808719B (zh) * 2018-06-26 2021-09-24 华南理工大学 预测型定关断角控制方法
CN112234641B (zh) * 2020-09-21 2022-12-23 清华大学 一种直流换相失败阻断与预防控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080315809A1 (en) * 2007-06-20 2008-12-25 Jtekt Corporation Motor controller and electric power steering apparatus
JP2016025720A (ja) * 2014-07-18 2016-02-08 東芝三菱電機産業システム株式会社 インバータシステム
CN106887859A (zh) * 2017-03-29 2017-06-23 南方电网科学研究院有限责任公司 一种抑制高压直流输电换相失败的控制优化方法和装置
CN110571839A (zh) * 2019-08-05 2019-12-13 华南理工大学 一种基于换相电压相位检测的高压直流故障恢复方法
CN110441658A (zh) * 2019-08-27 2019-11-12 国网新疆电力有限公司经济技术研究院 一种考虑直流电流变化的高压直流换相失败判别方法
CN111541261A (zh) * 2020-05-11 2020-08-14 国网河北省电力有限公司经济技术研究院 非线性动态电流偏差控制方法、装置及终端设备
CN112993994A (zh) * 2021-03-31 2021-06-18 南方电网科学研究院有限责任公司 交流故障中高压直流首次换相失败的控制方法及装置

Also Published As

Publication number Publication date
CN112993994A (zh) 2021-06-18
CN112993994B (zh) 2022-07-08
US20240162714A1 (en) 2024-05-16
EP4318843A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
WO2022205786A1 (zh) 交流故障中高压直流首次换相失败的控制方法及装置
WO2022262191A1 (zh) 混合型mmc的直流故障清除控制方法、装置及存储介质
CN108808718B (zh) 交流故障时高压直流输电系统直流电流运行范围确定方法
WO2023087946A1 (zh) 换流器的换相控制方法、装置、电子设备及可读存储介质
CN110112753B (zh) 一种星形连接级联statcom相间直流电压均衡控制方法
CN110441658B (zh) 一种考虑直流电流变化的高压直流换相失败判别方法
WO2024027088A1 (zh) 考虑换相裕度的多馈入系统换相失败预测协调控制方法
CN112952824B (zh) 交流故障快速检测的高压直流换相失败控制方法及装置
CN115954866A (zh) 两级式构网型光伏逆变器的低电压穿越控制方法及装置
CN111650422B (zh) 高压直流系统的同步触发方法、系统及存储介质
CN113098045B (zh) 一种适用于uhvdc换相失败故障恢复的优化控制方法
CN109742934B (zh) 一种基于双调制波的功率器件开路故障容错控制方法
CN108808717B (zh) 基于单相锁相的高压直流触发相位控制方法
CN110460082B (zh) 一种多馈入高压直流系统换相失败风险判别方法及系统
CN113131506B (zh) 抑制lcc-hvdc系统后续换相失败的定关断角控制方法及稳定器
CN113595127B (zh) 一种抑制直流后续换相失败的电流偏差控制优化方法
CN112909987A (zh) 抑制hvdc系统换相失败的控制方法、装置及设备
CN110058128B (zh) 柔直系统稳态运行范围检测方法、系统、设备及存储介质
CN113572187B (zh) 基于虚拟电容的高压直流连续换相失败抑制方法
CN112865048B (zh) 交直流混联输电系统保护方法、装置及终端设备
Song et al. Mechanism Analysis and Prevention Methods of Commutation Failure in LCC-HVDC Transmission System
CN114024458B (zh) 电容电压均衡控制方法及换流器
CN117639053A (zh) 一种基于全控器件的抑制换流阀换相失败控制方法及装置
CN115102215A (zh) 一种hvdc系统的控制方法、装置、存储介质和电子设备
CN116526538A (zh) 直流输电系统的控制方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934423

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18552666

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021934423

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021934423

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE