WO2022205626A1 - 一种摄像机和摄像机组件 - Google Patents

一种摄像机和摄像机组件 Download PDF

Info

Publication number
WO2022205626A1
WO2022205626A1 PCT/CN2021/100535 CN2021100535W WO2022205626A1 WO 2022205626 A1 WO2022205626 A1 WO 2022205626A1 CN 2021100535 W CN2021100535 W CN 2021100535W WO 2022205626 A1 WO2022205626 A1 WO 2022205626A1
Authority
WO
WIPO (PCT)
Prior art keywords
bracket
image sensor
output shaft
motor assembly
assembly
Prior art date
Application number
PCT/CN2021/100535
Other languages
English (en)
French (fr)
Inventor
关宏杰
叶展
颜财盛
Original Assignee
杭州海康威视数字技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110339355.3A external-priority patent/CN113099084B/zh
Priority claimed from CN202120648507.3U external-priority patent/CN215300753U/zh
Application filed by 杭州海康威视数字技术股份有限公司 filed Critical 杭州海康威视数字技术股份有限公司
Publication of WO2022205626A1 publication Critical patent/WO2022205626A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the present disclosure relates to the field of camera equipment, and in particular, to a camera and a camera assembly.
  • the plane of the sensor is perpendicular to the optical axis, and the direction of the sensor cannot be adjusted, so that subjects at different depths of field cannot be clearly imaged in one frame of image. Therefore, it is necessary to propose a device for adjusting the orientation of the sensor assembly to solve the above existing technical problems.
  • an object of the present disclosure is to provide a camera and a camera assembly, which can transmit the movement output of the motor assembly to an image sensor located on a different side thereof, thereby realizing the movement of the image sensor.
  • an embodiment of the present disclosure provides a video camera including: a motor assembly, an image sensor assembly, and a second bracket, wherein:
  • One surface of the image sensor assembly is provided with an image sensor, and the other surface of the image sensor assembly opposite to the one surface has a longitudinal arm extending in a first direction, wherein the first direction is perpendicular to the image sensor the other surface of the component;
  • the second bracket is defined adjacent to the other surface of the image sensor assembly
  • the motor assembly is fixedly connected with the second bracket, and has an output shaft extending along a third direction, the motor assembly drives the output shaft to move along the first direction, wherein the third direction is vertical in said first direction;
  • the longitudinal support arm receives the output shaft, so that under the action of the driving force of the output shaft, the longitudinal support arm can drive the image sensor assembly to move in the first direction along the first direction .
  • the motor assembly and the second bracket are fixed as a whole
  • the image sensor assembly is provided with a longitudinal support arm for connecting with the motor assembly
  • the motor assembly is connected to the longitudinal support arm through the output shaft. connections to form connections to the image sensor assembly.
  • the longitudinal support arm can drive the image sensor to move synchronously therewith.
  • an embodiment of the present disclosure provides a video camera including: a motor assembly, an image sensor board, a first bracket and a second bracket, wherein:
  • the image sensor board has a first surface and a second surface disposed opposite to each other, and the first surface is provided with an image sensor;
  • the first bracket is adjacent to the second surface, and a pair of side edges of the first bracket have protruding shafts extending along the third direction,
  • the edge of the second bracket has a sliding groove extending along a first direction, the sliding groove is connected with the protruding shaft, wherein the first direction is perpendicular to the third direction;
  • the motor assembly is fixedly connected with the second bracket, and is used for generating a driving force for driving the first bracket to move along the first direction; under the action of the driving force, the image sensor board moves along with the The first bracket moves, and the rotating shaft of the movement is defined by the protruding shaft and the sliding groove.
  • the present disclosure also provides a camera assembly, including: a motor assembly, a first bracket, a second bracket, and an image sensor, wherein:
  • the image sensor is supported by the first bracket
  • the two sides of the first bracket are respectively provided with a protruding shaft extending in a third direction, the protruding shaft defines a first axis, and a third axis connected to the two sides in the first bracket is provided.
  • Horizontal chutes are arranged at the side intervals;
  • An edge of the second bracket corresponding to the third side edge of the first bracket is fastened with the motor assembly, and the second bracket corresponds to the two side edges of the first bracket.
  • Corresponding side edges are respectively provided with sliding grooves extending along a first direction perpendicular to the third direction;
  • Both sides of the motor assembly are provided with output shafts;
  • the horizontal sliding groove is configured to receive the output shaft, the sliding groove is configured to receive the protruding shaft, and when the motor assembly works, the output shaft is configured to be opposite to the second
  • the carriage moves in a first direction to enable movement of the first carriage relative to the second carriage about the first axis.
  • the motor assembly and the second bracket are fixed as a whole, and the first bracket is used as a transmission connector, which uses two opposite surfaces to respectively provide connection with the image sensor board and the image sensor board.
  • the connection structure of the second bracket can transmit the movement output of the motor assembly to the image sensor board located on a different side, so as to realize the movement of the image sensor board.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a video camera of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a motor assembly in the camera of the present disclosure.
  • 3a and 3b are cross-sectional views of the motor assembly of FIG. 2 .
  • 4a and 4b are state diagrams of the second embodiment of the video camera of the present disclosure.
  • FIG 5 is an exploded view of a second embodiment of the camera of the present disclosure.
  • the embodiment of the present disclosure provides a camera, which uses an image sensor assembly 5 to provide a connection structure between the second bracket 2 and the motor assembly 1 respectively, and can transmit the movement output of the motor assembly 1 to the image sensor 6 located on a different side, so as to realize Movement of the image sensor 6 .
  • FIG. 1 is a schematic structural diagram of a camera of the present disclosure. As shown in FIG. 1 , the present disclosure provides a camera including: a motor assembly 1 , an image sensor assembly 5 and a second bracket 2 , wherein:
  • One surface of the image sensor assembly 5 is provided with the image sensor 6, and the edge of the opposite other surface of the image sensor assembly 5 has a longitudinal arm 31 extending perpendicular to the first direction Y of the other surface;
  • the second bracket 2 is disposed adjacent to another surface of the image sensor assembly 5;
  • the motor assembly 1 is fixedly connected with the second bracket 2, and has an output shaft 11 extending along a third direction Z perpendicular to the first direction Y, and the motor assembly 1 drives the output shaft 11 to move along the first direction Y;
  • the output shaft 11 is connected with the longitudinal support arm 31 , and the output shaft 11 drives the image sensor assembly 5 to move along the first direction Y through the longitudinal support arm 31 , so that the position of the image sensor 6 moves in the first direction Y. That is, the longitudinal support arm 31 receives the output shaft 11 , so that the longitudinal support arm 31 can drive the image sensor assembly 5 to move in the first direction Y along the first direction Y under the action of the driving force of the output shaft 11 .
  • the motor assembly 1 and the second bracket 2 are fixed as a whole
  • the image sensor assembly 5 is provided with a longitudinal support arm 31 for connecting with the motor assembly 1, and the motor assembly 1 is connected to the longitudinal support arm 31 through the output shaft 11.
  • the connection is formed in the image sensor unit 5 by connection. Then, when the output shaft 11 of the motor assembly 1 moves along the first direction Y, the image sensor assembly 5 can be driven to move synchronously by the longitudinal support arm 31 .
  • connection mode of the output shaft 11 and the longitudinal support arm 31 different adjustment modes of the image sensor assembly 5 can be realized.
  • the output shaft 11 is fixedly connected to the longitudinal support arm 31 and has no freedom of movement relative to the longitudinal support arm 31 in the direction perpendicular to the first direction Y, the output shaft 11, the longitudinal support arm 31, and the image A stable triangular structure is formed between the connection points of the sensor assembly 5 and the second bracket 2.
  • the relative position of the output shaft 11 and the housing of the motor assembly 1 changes, which can drive the image
  • the sensor assembly 5 then moves relative to the motor assembly 1 (and the second bracket 2 integrally connected with it), and the moving direction of the image sensor assembly 5 is the same as the moving direction of the output shaft 11, which is along the first Movement in direction Y.
  • the first direction Y is the same as the optical axis direction of the image sensor 6 , therefore, the movement of the output shaft 11 along the first direction Y can realize adjustment along the optical axis direction of the image sensor 6 , for example, can be used to adjust depth of field, etc.
  • the second bracket 2 and the image sensor assembly 5 are movably connected, and the connection mode can be selected according to the movement mode of the image sensor assembly 5 .
  • a pair of side edges of the image sensor assembly 5 have protruding shafts 33 extending along the third direction Z
  • a pair of edges of the second bracket 2 have sliding grooves 22 extending along the first direction Y
  • the protruding shaft 33 is arranged in the sliding groove 22 and has a degree of freedom to move along the sliding groove 22
  • the second bracket 2 is connected to the protruding shaft 33 through the sliding groove 22 . Then, when the image sensor assembly 5 is adjusted to move linearly along the first direction Y, the protruding shaft 33 moves synchronously along the sliding groove 22 , and the sliding groove 22 further has the function of providing guidance for the protruding shaft 33 .
  • the second bracket 2 further includes a first side wall 21 extending along the first direction Y, the motor assembly 1 is fixedly connected with the first side wall 21 , and the first side wall 21 is adjacent to the longitudinal support arm 31 . Also, the position of the first side wall 21 is spaced apart from the edge where the sliding groove 22 is located.
  • the first side wall 21 connects the second bracket 2 with the motor assembly 1 as a whole.
  • a fixed triangular structure is formed between the output shaft 11, the longitudinal support arm 31, and the connection point between the image sensor assembly 5 and the second bracket 2,
  • the movement of the output shaft 11 of the motor assembly 1 can make the image sensor assembly 5 and the second bracket 2 move relative to each other.
  • the first side wall 21 is used to support the motor assembly 1, so that when the second bracket 2 is fixed and fixed, the image sensor assembly 5 is connected to the second bracket under the action of the driving force formed by the motor assembly 1 and the output shaft 11. 2 is capable of relative motion.
  • a support spring 7 is further included between the second bracket 2 and the other surface of the image sensor assembly 5 .
  • the support spring 7 is used to maintain the relative position between the second bracket 2 and the image sensor assembly 5 and can be used for shock absorption of the image sensor 6 .
  • the number of the support springs 7 may be single, or may be multiple evenly spaced.
  • FIG. 2 is a schematic structural diagram of the motor assembly 1 in the video camera of the present disclosure.
  • 3a and 3b are cross-sectional views of the motor assembly 1 in FIG. 2 .
  • the motor assembly 1 includes a drive motor 12 for driving the output shaft 11 to move, a gear set 13 meshing with the rotating shaft of the drive motor 12 , and a rack integrally connected with the output shaft 11 14 , wherein the rack 14 meshes with the gear set 13 to convert the rotation of the gear set 13 into the linear movement of the output shaft 11 . Further, the motor assembly 1 further includes a photoelectric switch 15 for feeding back the movement position signal of the output shaft 11 .
  • the present disclosure provides a camera, including: a motor assembly 1 , an image sensor assembly 5 and a second bracket 2 , wherein,
  • One surface of the image sensor assembly 5 is provided with the image sensor 6, the edge of the other surface of the image sensor assembly 5 has a longitudinal arm 31 extending in a first direction Y perpendicular to the other surface, and the longitudinal arm 31 has a longitudinal arm 31 extending along a first direction Y perpendicular to the other surface.
  • the horizontal chute 32 extending from one direction Y to the second direction X, the output shaft 11 has a degree of freedom to move along the horizontal chute 32;
  • the second bracket 2 is disposed on the other surface of the image sensor assembly 5 , a pair of sides of the image sensor assembly 5 has a convex shaft 33 extending along the third direction Z, and the convex shaft 33 forms a convex shaft 33 extending along the third direction Z axis, the second bracket 2 is connected with the image sensor assembly 5 through the protruding shaft 33;
  • the motor assembly 1 is fixedly connected with the second bracket 2, and has an output shaft 11 extending along a third direction Z perpendicular to the first direction Y, and the motor assembly 1 drives the output shaft 11 to move along the first direction Y;
  • the output shaft 11 is arranged in the horizontal chute 32 , and the output shaft 11 drives the image sensor assembly 5 to move synchronously along the first direction Y through the horizontal chute 32 , thereby driving the second bracket 2 to rotate around the axis of the raised shaft 33 .
  • the motor assembly 1 and the second bracket 2 are fixed as a whole
  • the image sensor assembly 5 is provided with a longitudinal support arm 31 for connecting with the motor assembly 1
  • the motor assembly 1 is connected to the longitudinal support arm 31 through the output shaft 11.
  • the protruding shaft 33 constitutes a pivot point of the image sensor assembly 5 , and there is a distance between the drive connection point and the pivot point. Then, when the output shaft 11 of the motor assembly 1 moves along the first direction Y, the drive connection point of the image sensor assembly 5 can be driven to move synchronously by the longitudinal support arm 31.
  • the image sensor assembly 5 can be driven to rotate with the axis formed by the protruding shaft 33 as the central axis.
  • the positions of the motor assembly 1 and the second bracket 2 are fixed, for example, they are fixed to the casing or other components of the camera, the movement of the image sensor assembly 5 relative to the motor assembly 1 or the second bracket 2 can be realized, so as to realize the movement of the image sensor assembly 5 relative to the motor assembly 1 or the second bracket 2 6.
  • the output shaft 11 is fixedly connected with the longitudinal support arm 31, and the output shaft 11 has a vertical direction relative to the longitudinal support arm 31 in the direction perpendicular to the first direction Y by setting the horizontal chute 32 extending perpendicular to the first direction Y.
  • the output shaft 11, the longitudinal support arm 31, and the connection point between the image sensor assembly 5 and the second bracket 2 can form a fan-shaped structure, then when the output shaft 11 moves along the first direction Y, the output The relative position of the shaft 11 and the housing of the motor assembly 1 changes, and the output shaft 11 abuts against the groove wall of the horizontal chute 32, which can drive the image sensor assembly 5 through the longitudinal support arm 31 and the horizontal chute 32 to drive the image sensor assembly 5 and the horizontal chute 32.
  • connection point of the second bracket 2 is the center, and the distance between the connection point of the image sensor assembly 5 and the second bracket 2 to the output shaft 11 is the radius (the length is variable) to rotate, so as to realize the angle adjustment of the image sensor 6, For example, it can be used to adjust the depth of field of subjects located in different positions, etc.
  • the protruding shaft 33 abuts the end of the sliding groove 22 , and the rotating fulcrum of the image sensor assembly 5 is formed by the protruding shaft 33 and the end of the sliding groove 22 .
  • the output shaft 11 moves along the first direction Y, the image sensor assembly 5 can be driven to rotate with the convex shaft 33 as the center and the distance between the convex shaft 33 and the output shaft 11 as the radius.
  • the embodiment shown in FIG. 1 has a unidirectional adjustment range for the angle of the image sensor 6, that is, based on the 0° position (horizontal position) of the image sensor 6, only Adjustment in a single direction can be achieved, and when the convex axis 33 is set to pass through the center of the image sensor 6, the angle adjustment range of the image sensor 6 in the embodiment shown in FIG. °Position (horizontal position) can be adjusted in positive and negative directions. For example, an adjustment of ⁇ 5° can be achieved.
  • the protruding shaft 33 is disposed in the middle of a pair of sides, and corresponds to the center of the image sensor 6 . That is, the convex axis 33 is collinear with the center of the image sensor 6 .
  • the image sensor assembly 5 can be driven to take the convex shaft 33 as the center, and the distance between the convex shaft 33 and the output shaft 11 The distance is the radius of rotation.
  • the distance between the output shaft 11 and the raised shaft 33 is relatively short, so the output shaft 11 is located at one end adjacent to the raised shaft 33 in the horizontal chute 32, and the raised shaft 33 abuts the end of the sliding slot 22 , and the edge of the image sensor assembly 5 with the longitudinal support arm 31 is farther away from the second bracket 2 or the motor assembly 1 than the opposite side edge.
  • the second bracket 2 and the image sensor assembly 5 are movably connected, and the connection mode can be selected according to the movement mode of the image sensor assembly 5 .
  • a pair of side edges of the image sensor assembly 5 have protruding shafts 33 extending along the third direction Z
  • a pair of edges of the second bracket 2 have sliding grooves 22 extending along the first direction Y
  • the protruding shaft 33 is arranged in the sliding groove 22 and has a degree of freedom to move along the sliding groove 22
  • the second bracket 2 is hinged with the protruding shaft 33 through the sliding groove 22 .
  • a support spring 7 is further included between the second bracket 2 and the other surface of the image sensor assembly 5 .
  • the support spring 7 is used to maintain the relative position between the second bracket 2 and the image sensor assembly 5 and can be used for shock absorption of the image sensor 6 .
  • the number of the support springs 7 may be single, or may be multiple evenly spaced.
  • the support spring 7 can make the protruding shaft 33 abut against the end of the sliding slot 22 , thereby fixing the rotation center of the image sensor assembly 5 .
  • the function of the support spring 7 is to keep the extending direction of the image sensor assembly 5 perpendicular to the first direction Y, That is, the parallel relationship between the image sensor assembly 5 and the second bracket 2 is maintained.
  • the function of the support spring 7 is to maintain the position of the fulcrum, that is, to keep the protruding shaft 33 in the position of the fulcrum. position in the sliding slot 22.
  • FIG. 5 is an exploded view of a second embodiment of the camera of the present disclosure.
  • the present disclosure provides a camera including: a motor assembly 1 , an image sensor assembly 5 and a second bracket 2 , wherein,
  • One surface of the image sensor assembly 5 is provided with the image sensor 6, the edge of the other surface of the image sensor assembly 5 has a longitudinal arm 31 extending in a first direction Y perpendicular to the other surface, and the longitudinal arm 31 has a longitudinal arm 31 extending along a first direction Y perpendicular to the other surface.
  • the horizontal chute 32 extending from one direction Y to the second direction X, the output shaft 11 has a degree of freedom to move along the horizontal chute 32;
  • the second bracket 2 is disposed on the other surface of the image sensor assembly 5, a pair of side edges of the image sensor assembly 5 has a protruding shaft 33 extending along the third direction Z, and the second bracket 2 is hinged with the protruding shaft 33;
  • the motor assembly 1 is fixedly connected with the second bracket 2, and has an output shaft 11 extending along a third direction Z perpendicular to the first direction Y, and the motor assembly 1 drives the output shaft 11 to move along the first direction Y;
  • the output shaft 11 is arranged in the horizontal chute 32 , and the output shaft 11 drives the image sensor assembly 5 to move synchronously along the first direction Y through the horizontal chute 32 , thereby driving the second bracket 2 to rotate around the axis of the raised shaft 33 .
  • the image sensor assembly 5 includes an image sensor board 4 and a first bracket 3, and the image sensor board 4 and the first bracket 3 are parallel to each other.
  • the image sensor board 4 has a first surface and a second surface opposite to each other, wherein the image sensor 6 is arranged on the first surface, and the first bracket 3 is arranged on the second surface; the first bracket 3 has a third surface and a second surface opposite to each other. Four surfaces, the third surface faces the second surface, and the longitudinal arms 31 are disposed on the fourth surface.
  • the first bracket 3 further includes a pair of lugs 35 extending from a pair of sides thereof toward the image sensor board 4 respectively, and the lug shafts 33 are disposed on the outer surfaces of the lugs 35 .
  • the motor assembly 1 and the second bracket 2 are fixed as a whole
  • the image sensor board 4 and the first bracket 3 are fixed as a whole parallel to each other
  • the first bracket 3 is provided with a longitudinal support for connecting with the motor assembly 1 .
  • the arm 31 , the motor assembly 1 is connected to the first bracket 3 through the connection of the output shaft 11 and the longitudinal support arm 31 . Then, when the output shaft 11 of the motor assembly 1 moves along the first direction Y, the image sensor board 4 and the first bracket 3 can be driven to move synchronously along with the longitudinal support arm 31 .
  • the output shaft 11 is fixedly connected with the longitudinal support arm 31, and the output shaft 11 has a vertical direction relative to the longitudinal support arm 31 in the direction perpendicular to the first direction Y by setting the horizontal chute 32 extending perpendicular to the first direction Y.
  • a fan-shaped structure can be formed between the output shaft 11, the longitudinal support arm 31, and the connection point between the first bracket 3 and the second bracket 2, then when the output shaft 11 moves along the first direction Y, the output The relative position of the shaft 11 and the housing of the motor assembly 1 is changed, and the output shaft 11 abuts against the groove wall of the horizontal chute 32, and can drive the first bracket 3 through the longitudinal support arm 31 and the horizontal chute 32 to use the protruding shaft 33 as a
  • the center is rotated with the distance between the convex shaft 33 and the output shaft 11 as the radius (the length is variable), so as to realize the angle adjustment of the image sensor 6, for example, it can be used to adjust the depth of field of the photographed objects at different positions.
  • the protruding shaft 33 is in contact with the end of the sliding groove 22, and when the output shaft 11 moves along the first direction Y, it can drive the first bracket 3 and the image sensor
  • the plates 4 are rotated together with the raised shaft 33 as the center and the distance between the raised shaft 33 and the output shaft 11 as the radius.
  • the angle adjustment range for the image sensor 6 in this embodiment is unidirectional, that is, only a single directional adjustment can be achieved based on the 0° position (horizontal position) of the image sensor 6 .
  • the angle adjustment range of the image sensor 6 in the embodiment shown in FIG. 5 is bidirectional, that is, based on the 0° position of the image sensor 6 ( Horizontal position) can be adjusted in positive and negative directions. For example, an adjustment of ⁇ 5° can be achieved.
  • the protruding shaft 33 is disposed in the middle of a pair of sides, and corresponds to the center of the image sensor 6 .
  • the first bracket 3 further includes a pair of lugs 35 extending from a pair of sides thereof toward the image sensor board 4 respectively, and the lug shafts 33 are disposed on the outer surfaces of the lugs 35 .
  • the lugs 35 extend from a pair of sides of the first bracket 3 toward the image sensor board 4, and can extend to a position on the same plane as the image sensor 6 disposed on the first surface of the image sensor board 4, so that the The extending direction of the provided protruding shaft 33 passes through the center of the image sensor 6 , so as to achieve the purpose of adjusting the inclination of the image sensor 6 in two directions.
  • a side of the first bracket 3 facing the image sensor board 4 has protruding studs 34 , and the first bracket 3 and the image sensor board 4 are fixedly connected by bolts matched with the studs 34 .
  • the studs 34 are located at the four end corners of the first bracket 3 to ensure the positional relationship of the first bracket 3 and the image sensor board 4 arranged in parallel.
  • the first bracket 3 is used as a structural member to provide a connection structure with the second bracket 2 and the motor assembly 1 at the same time, and the fixed connection with the direction of the image sensor board 4 is realized through the studs 34 used for fixed connection. , the working accuracy of the image sensor 6 will not be affected due to too many connection structures provided on the image sensor board 4 , and the position and angle of the image sensor 6 can be adjusted through a simple structure.
  • the embodiment of the present disclosure also provides another camera, which utilizes two opposite surfaces of the first bracket 3 to provide connection structures with the image sensor board 4 and the second bracket 2, respectively, and can transmit the movement output of the motor assembly 1 to the camera located thereon.
  • Image sensor boards 4 on different sides, thereby realizing the movement of the image sensor boards 4 .
  • FIG. 1 is a schematic structural diagram of a camera of the present disclosure. As shown in FIG. 1 , the present disclosure provides a camera including: a motor assembly 1 , an image sensor board 4 , a first bracket 3 and a second bracket 2 , wherein:
  • the image sensor board 4 has a first surface and a second surface arranged oppositely, and the image sensor 6 is arranged on the first surface;
  • the first bracket 3 is fixed to the second surface of the image sensor board 4, wherein a pair of sides of the first bracket 3 has a protruding shaft 33 extending along the third direction Z;
  • a pair of edges of the second bracket 2 have sliding grooves 22 extending along the first direction Y, wherein the first direction Y is perpendicular to the third direction Z, the second bracket 2 is hinged with the protrusion shaft 33 through the sliding groove 22, and the protrusion
  • the shaft 33 has a degree of freedom to move along the sliding groove 22;
  • the motor assembly 1 is fixedly connected to the second bracket 2 and is drivingly connected to the first bracket 3 .
  • the motor assembly 1 drives the first bracket 3 to move along the first direction Y, thereby driving the image sensor board 4 to move.
  • the motor assembly 1 and the second bracket 2 are fixed as a whole, and the first bracket 3 is used as a transmission connector, which utilizes two opposite surfaces to respectively provide a connection structure with the image sensor board 4 and the second bracket 2,
  • the movement output of the motor assembly 1 can be transmitted to the image sensor board 4 located on a different side from it, thereby realizing the movement of the image sensor board 4 .
  • different movement modes of the image sensor board 4 can be realized.
  • the motor assembly 1 has an output shaft 11 extending along the third direction Z, and the motor assembly 1 drives the output shaft 11 to move along the first direction Y.
  • a side surface of the first bracket 3 away from the second surface is provided with a longitudinal support arm 31 for forming a drive connection with the motor assembly 1, and the motor assembly 1 is formed on the first support arm 31 through the connection of the output shaft 11 and the longitudinal support arm 31. Connection of bracket 3. Then, when the output shaft 11 of the motor assembly 1 moves along the first direction Y, the longitudinal support arm 31 can drive the first bracket 3 to move synchronously therewith.
  • the first bracket 3 can be moved relative to the motor assembly 1 or the second bracket 2, so as to realize the detection of the image sensor. 6. Position or angle adjustment.
  • connection mode of the output shaft 11 and the longitudinal support arm 31 different adjustment modes of the image sensor assembly 5 can be realized.
  • the output shaft 11 is fixedly connected to the longitudinal support arm 31 and has no freedom of movement relative to the longitudinal support arm 31 in the direction perpendicular to the first direction Y, the output shaft 11, the longitudinal support arm 31, and the first A stable triangular structure is formed between the connection point of the first bracket 3 and the second bracket 2—the protruding shaft 33.
  • the first bracket 3 and the image sensor board 4 hinged therewith can be driven to move relative to the motor assembly 1 (and the second bracket 2 integrally connected with it), and the first bracket 3 and its hinged
  • the moving direction of the image sensor board 4 is the same as the moving direction of the output shaft 11 .
  • the first direction Y is the same as the optical axis direction of the image sensor 6 , therefore, the movement of the output shaft 11 along the first direction Y can realize adjustment along the optical axis direction of the image sensor 6 , for example, can be used to adjust depth of field, etc.
  • the second bracket 2 and the first bracket 3 are movably connected, and the connection mode can be selected according to the movement mode of the image sensor board 4 .
  • a pair of side edges of the first bracket 3 have protruding shafts 33 extending along the third direction Z
  • a pair of edges of the second bracket 2 have sliding grooves 22 extending along the first direction Y
  • the protruding shaft 33 is arranged in the sliding groove 22 and has a degree of freedom to move along the sliding groove 22
  • the second bracket 2 is hinged with the protruding shaft 33 through the sliding groove 22 . Then, when the image sensor board 4 is adjusted to move linearly along the first direction Y, the protruding shaft 33 moves synchronously along the sliding groove 22 , and the sliding groove 22 further has the function of providing guidance for the protruding shaft 33 .
  • the second bracket 2 further includes a first side wall 21 extending along the first direction Y, the motor assembly 1 is fixedly connected with the first side wall 21 , and the first side wall 21 is adjacent to the longitudinal support arm 31 . Also, the position of the first side wall 21 is spaced apart from the edge where the sliding groove 22 is located.
  • FIG. 2 is a schematic structural diagram of the motor assembly 1 in the video camera of the present disclosure.
  • 3a and 3b are cross-sectional views of the motor assembly 1 in FIG. 2 .
  • the relevant content of the motor assembly 1 has been described in detail above, and will not be repeated here.
  • an embodiment of the present disclosure provides a camera, including: a motor assembly 1 , an image sensor board 4 , a first bracket 3 and a second bracket 2 , wherein,
  • the image sensor board 4 has a first surface and a second surface arranged oppositely, and the image sensor 6 is arranged on the first surface;
  • the first bracket 3 is fixed to the second surface of the image sensor board 4, wherein a pair of sides of the first bracket 3 has a protruding shaft 33 extending along the third direction Z;
  • a pair of edges of the second bracket 2 have sliding grooves 22 extending along the first direction Y, wherein the first direction Y is perpendicular to the third direction Z, the second bracket 2 is hinged with the protrusion shaft 33 through the sliding groove 22, and the protrusion
  • the shaft 33 has a degree of freedom to move along the sliding groove 22;
  • the motor assembly 1 is fixedly connected to the second bracket 2 and is drivingly connected to the first bracket 3 .
  • the motor assembly 1 drives the first bracket 3 to move along the first direction Y, thereby driving the image sensor board 4 to move.
  • the edge of the second bracket 2 has a sliding groove 22 extending along the first direction Y, and the sliding groove 22 is connected with the protruding shaft 33, wherein the first direction Y is perpendicular to the third direction (Z);
  • the motor assembly 1 is fixedly connected with the second bracket 2 to generate a driving force for driving the first bracket 3 to move along the first direction Y; under the action of the driving force, the image sensor board 4 moves with the first bracket 3,
  • the rotational axis of movement is defined by the protruding shaft 33 and the sliding groove 22 .
  • the motor assembly 1 has an output shaft 11 extending along the third direction Z, and the motor assembly 1 drives the output shaft 11 to move along the first direction Y.
  • a side surface of the first bracket 3 away from the second surface is provided with a longitudinal support arm 31 for forming a drive connection with the motor assembly 1, and the motor assembly 1 is formed on the first support arm 31 through the connection of the output shaft 11 and the longitudinal support arm 31. Connection of bracket 3.
  • the longitudinal support arm 31 has a horizontal chute 32 extending along the second direction X perpendicular to the first direction Y, and the output shaft 11 has a degree of freedom to move along the horizontal chute 32; the output shaft 11 is arranged in the horizontal chute 32, The output shaft 11 drives the image sensor assembly 5 to move synchronously along the first direction Y through the horizontal chute 32 , thereby driving the second bracket 2 to rotate around the protruding shaft 33 .
  • the motor assembly 1 and the second bracket 2 are fixed as a whole
  • the first bracket 3 is provided with a longitudinal support arm 31 for connecting with the motor assembly 1
  • the motor assembly 1 is connected to the longitudinal support arm 31 through the output shaft 11. connected to form a drive connection with the first bracket 3 . Then, when the output shaft 11 of the motor assembly 1 moves along the first direction Y, the image sensor board 4 can be driven to move synchronously by the longitudinal support arm 31 .
  • the output shaft 11 is fixedly connected with the longitudinal support arm 31, and the output shaft 11 has a vertical direction relative to the longitudinal support arm 31 in the direction perpendicular to the first direction Y by setting the horizontal chute 32 extending perpendicular to the first direction Y.
  • the output shaft 11, the longitudinal support arm 31, and the connection point between the first bracket 3 and the second bracket 2 - the convex shaft 33 can form a fan-shaped structure, then when the output shaft 11 along the first bracket 33 can form a fan-shaped structure.
  • the relative position of the output shaft 11 and the housing of the motor assembly 1 changes, and the output shaft 11 abuts against the groove wall of the horizontal chute 32 , and can drive the first bracket 3 through the longitudinal support arm 31 and the horizontal chute 32 Taking the connection point of the first bracket 3 and the second bracket 2 as the center, and taking the distance between the connection point of the first bracket 3 and the second bracket 2 to the output shaft 11 as the radius (the length is variable), the rotation of the image is realized.
  • the angle adjustment of the sensor 6 for example, can be used to adjust the depth of field of photographed objects located at different positions.
  • the protruding shaft 33 abuts against the end of the sliding slot 22 , and the edge of the first bracket 3 with the longitudinal arms 31 is closer to the second bracket 2 or the motor assembly 1 than the opposite side edge.
  • the angle of the first bracket 3 and the image sensor board 4 hinged therewith relative to the second bracket 2 or the motor assembly 1 can follow the output shaft 11 along the first Adjusted for movement in direction Y.
  • the second bracket 2 and the first bracket 3 are movably connected, and the connection mode can be selected according to the movement mode of the image sensor board 4 .
  • a pair of side edges of the first bracket 3 have protruding shafts 33 extending along the third direction Z
  • a pair of edges of the second bracket 2 have sliding grooves 22 extending along the first direction Y
  • the protruding shaft 33 is arranged in the sliding groove 22 and has a degree of freedom to move along the sliding groove 22
  • the second bracket 2 is hinged with the protruding shaft 33 through the sliding groove 22 .
  • a support spring 7 is further included between the second bracket 2 and the first bracket 3 .
  • the support spring 7 is used to maintain the relative position between the second bracket 2 and the image sensor assembly 5 and can be used for shock absorption of the image sensor 6 .
  • the number of the support springs 7 may be single, or may be multiple evenly spaced.
  • the support spring 7 can make the protruding shaft 33 abut against the end of the sliding slot 22 , thereby fixing the rotation center of the image sensor assembly 5 .
  • a plurality of support springs 7 are further included between the second bracket 2 and the first bracket 3 , and the plurality of support springs 7 are respectively disposed in the second direction X perpendicular to the first direction Y on both sides of the raised shaft 33 .
  • the telescopic length of the support spring 7 is related to the position of the output shaft 11 .
  • the expansion and contraction amounts of the support springs 7 respectively provided on both sides of the protruding shaft 33 are different.
  • the first bracket 3 further includes a pair of lugs 35 extending from a pair of sides thereof toward the image sensor board 4 respectively, and the lug shafts 33 are disposed on the outer surfaces of the lugs 35 .
  • a side of the first bracket 3 facing the image sensor board 4 has protruding studs 34 , and the first bracket 3 and the image sensor board 4 are fixedly connected by bolts matched with the studs 34 .
  • the studs 34 are located at the four end corners of the first bracket 3 to ensure the positional relationship of the first bracket 3 and the image sensor board 4 arranged in parallel.
  • the present disclosure also provides a camera assembly, comprising: a motor assembly 1, a first bracket 3 and a second bracket 2, and an image sensor 6, wherein:
  • the image sensor 6 is supported by the first bracket 3;
  • Two sides of the first bracket 3 are respectively provided with a protruding shaft 33 extending along the third direction Z, the protruding shaft 33 defines a first axis, and the first bracket 3 is connected to the two sides.
  • a horizontal chute 32 is provided at intervals on the third side edge connected to the edge;
  • An edge of the second bracket 2 corresponding to the third side of the first bracket 3 is fastened with the motor assembly 1 .
  • the two side edges corresponding to the two side edges are respectively provided with sliding grooves 22 extending along the first direction Y perpendicular to the third direction;
  • Both sides of the motor assembly 1 are provided with output shafts 11;
  • the horizontal sliding groove 32 is configured to receive the output shaft 11
  • the sliding groove 22 is configured to receive the protruding shaft 33
  • the output shaft 11 is configured when the motor assembly 1 is working
  • the first bracket 3 can move relative to the second bracket 2 about the first axis.
  • the motor assembly 1 and the second bracket 2 are fixed as a whole, and the first bracket 3 is used as a transmission connector, which utilizes two opposite surfaces to respectively provide a connection structure with the image sensor board 4 and the second bracket 2,
  • the movement output of the motor assembly 1 can be transmitted to the image sensor board 4 located on a different side from it, thereby realizing the movement of the image sensor board 4 .
  • different movement modes of the image sensor board 4 can be realized.

Abstract

本公开的实施例提供了一种摄像机和摄像机组件,其中一种摄像机包括:电机组件、图像传感器组件和第二支架,图像传感器组件的一个表面设置图像传感器,图像传感器组件中与一个表面相对的另一表面具有第一方向延伸的纵向支臂,其中第一方向垂直与图像传感器组件的另一表面;第二支架被限定邻近图像传感器组件的另一表面;电机组件与第二支架固定连接,且具有沿着第三方向延伸的输出轴,电机组件驱动输出轴沿着第一方向移动,其中第三方向垂直于第一方向;纵向支臂接纳输出轴,以使在输出轴的驱动力作用下纵向支臂能够沿着第一方向带动图像传感器组件在第一方向上运动。

Description

一种摄像机和摄像机组件
本申请要求于2021年03月30日提交中国专利局、申请号为202120648507.3发明名称为“一种摄像机”的中国专利申请和2021年03月30日提交中国专利局、申请号为202110339355.3发明名称为“一种摄像机和摄像机组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及摄像设备领域,特别涉及一种摄像机和摄像机组件。
背景技术
在市面上的摄像机中,其传感器的平面与光轴垂直,传感器的方向无法调节,进而位于不同景深的拍摄对象无法在一帧图像中清晰成像。因此,有必要提出一种用于调整传感器组件方向的装置,以解决以上存在的技术问题。
发明内容
有鉴于此,本公开的目的在于提供一种摄像机和摄像机组件,能够将电机组件的移动输出传递至与其位于不同侧的图像传感器,从而实现图像传感器的运动。
第一方面,本公开的一个实施例提供一种摄像机,包括:电机组件、图像传感器组件和第二支架,其中:
所述图像传感器组件的一个表面设置图像传感器,所述图像传感器组件中与所述一个表面相对的另一表面具有第一方向延伸的纵向支臂,其中所述第一方向垂直与所述图像传感器组件的另一表面;
所述第二支架被限定邻近所述图像传感器组件的所述另一表面;
所述电机组件与所述第二支架固定连接,且具有沿着第三方向延伸的输出轴,所述电机组件驱动所述输出轴沿着所述第一方向移动,其中所述第三方向垂直于所述第一方向;
所述纵向支臂接纳所述输出轴,以使在所述输出轴的驱动力作用下所述纵向支臂能够沿着所述第一方向带动所述图像传感器组件在所述第一方向上运动。
由以上技术方案可知,上述第一方面的实施例中,电机组件和第二支架固定为一体,图像传感器组件设置用于与电机组件形成连接的纵向支臂,电机组件通过输出轴与纵向支臂的连接而形成于图像传感器组件的连接。则电机组件的输出轴沿着第一方向Y移动时,可通过纵向支臂而带动图像传感器随之同步移动。当电机组件和第二支架的位置固定时,例如固定至摄像机的壳体或其他部件,则可实现图像传感器组件相对于电机组件或者第二支架的移动,从而实现对图像传感器的位置或角度的调整。
第二方面,本公开的一个实施例提供一种摄像机,包括:电机组件、图像传感器板、第一支架和第二支架,其中:
所述图像传感器板具有相对设置的第一表面和第二表面,所述第一表面设置图像传感器;
所述第一支架邻接所述第二表面,所述第一支架的一对侧边具有沿第三方向延伸的凸起轴,
所述第二支架的边缘具有沿第一方向延伸的滑动槽,所述滑动槽与所述凸起轴连接,其中所述第一方向与所述第三方向垂直;
所述电机组件与所述第二支架固定连接,用于生成驱动所述第一支架沿着所述第一方向运动的驱动力;在所述驱动力的作用下,所述图像传感器板随着所述第一支架发生运动,所述运动的转动轴由所述凸起轴与所述滑动槽限定。
第三方面,本公开还提供一种摄像机组件,包括:电机组件、第一支架、第二支架和图像传感器,其中:
所述图像传感器由所述第一支架支撑;
所述第一支架的两个侧边各设置有沿第三方向延伸的凸起轴,所述凸起轴限定第一轴线,所述第一支架中与所述两个侧边相连的第三侧边间隔设置有水平滑槽;
所述第二支架中与所述第一支架的第三侧边相对应的一边缘紧固设置有所述电机组件,所述第二支架中与所述第一支架的所述两个侧边相对应的两侧边缘各设置有沿与所述第三方向垂直的第一方向延伸的滑动槽;
所述电机组件的两侧设置有输出轴;
其中,所述水平滑槽被构成为接纳所述输出轴,所述滑动槽被构成为接纳所述凸起轴,在所述电机组件工作时,所述输出轴被构成为相对所述第二支架在第一方向运动,以使所述第一支架能够相对所述第二支架关于所述第一轴线运动。
由以上技术方案可知,上述第二和第三方面的实施例中,电机组件和第二支架固定为一体,第一支架作为传动连接件,其利用相对的两个表面分别提供与图像传感器板和第二支架的连接结构,能够将电机组件的移动输出传递至与其位于不同侧的图像传感器板,从而实现图像传感器板的运动。其中,通过设置第二支架与第一支架的传动连接方式,可实现图像传感器板的不同的运动方式。
附图说明
以下附图仅对本公开做示意性说明和解释,并不限定本公开的范围。
图1是本公开的摄像机的第一实施例的结构示意图。
图2是本公开的摄像机中的电机组件的结构示意图。
图3a和图3b是图2中的电机组件的剖视图。
图4a和图4b是本公开的摄像机的第二实施例的状态示意图。
图5是本公开的摄像机的第二实施例的爆炸图。
图中各标号的说明如下:
1—电机组件,11—输出轴、12—驱动电机、13—齿轮组、14—齿条、15—光电开关;
2—第二支架,21—第一侧壁、22—滑动槽;
3—第一支架,31—纵向支臂、32—水平滑槽、33—凸起轴、34—螺柱、35—凸耳;
4—图像传感器板;5—图像传感器组件;6—图像传感器;7—支撑弹簧。
具体实施方式
为了对实用新型的技术特征、目的和效果有更加清楚的理解,现对照附图说明本公开的具体实施方式,在各图中相同的标号表示相同的部分。
在本文中,“示意性”表示“充当实例、例子或说明”,不应将在本文中被描述为“示意性”的任何图示、实施方式解释为一种更优选的或更具优点 的技术方案。
为使图面简洁,各图中的只示意性地表示出了与本公开相关部分,而并不代表其作为产品的实际结构。另外,以使图面简洁便于理解,在有些图中具有相同结构或功能的部件,仅示意性地绘示了其中的一个,或仅标出了其中的一个。
本公开实施例提供一种摄像机,其利用图像传感器组件5分别提供第二支架2和电机组件1的连接结构,能够将电机组件1的移动输出传递至与其位于不同侧的图像传感器6,从而实现图像传感器6的运动。
图1是本公开一种摄像机的结构示意图。如图1所示,本公开提供一种摄像机,包括:电机组件1、图像传感器组件5和第二支架2,其中:
图像传感器组件5的一个表面设置图像传感器6,图像传感器组件5的相对的另一表面的边缘具有垂直于另一表面的第一方向Y延伸的纵向支臂31;
第二支架2设置为邻近图像传感器组件5的另一表面;
电机组件1与第二支架2固定连接,且具有沿着垂直于第一方向Y的第三方向Z延伸的输出轴11,电机组件1驱动输出轴11沿着第一方向Y移动;
输出轴11与纵向支臂31连接,输出轴11通过纵向支臂31沿第一方向Y带动图像传感器组件5运动,以使图像传感器6的位置在第一方向Y上运动。即纵向支臂31接纳输出轴11,以使在输出轴11的驱动力作用下纵向支臂31能够沿着所述第一方向Y带动图像传感器组件5在第一方向Y上运动。
在本实施例中,电机组件1和第二支架2固定为一体,图像传感器组件5设置用于与电机组件1形成连接的纵向支臂31,电机组件1通过输出轴11与纵向支臂31的连接而形成于图像传感器组件5的连接。则电机组件1的输出轴11沿着第一方向Y移动时,可通过纵向支臂31而带动图像传感器组件5随之同步移动。当电机组件1和第二支架2的位置固定时,例如固定至摄像机的壳体或其他部件,则可实现图像传感器组件5相对于电机组件1或者第二支架2的移动,从而实现对图像传感器6的位置或角度的调整。
其中,通过设置输出轴11与纵向支臂31的连接方式,可以实现对图像传感器组件5的不同的调整方式。例如,当输出轴11与纵向支臂31固定连接,且相对于纵向支臂31在垂直于第一方向Y的方向上不具有移动的自由度 时,输出轴11、纵向支臂31、以及图像传感器组件5和第二支架2的连接点之间构成稳定的三角形结构,当输出轴11沿着第一方向Y移动时,输出轴11与电机组件1的壳体的相对位置改变,可带动图像传感器组件5随之一起产生相对于电机组件1(和与其连接为一体的第二支架2)的移动,并且,图像传感器组件5的移动方向与输出轴11的移动方向相同,是沿着第一方向Y的运动。如图1中可见,第一方向Y与图像传感器6的光轴方向相同,因此,输出轴11的沿第一方向Y的移动可实现沿图像传感器6的光轴方向的调整,例如可用于调整景深等。
在本公开的一些实施例中,第二支架2与图像传感器组件5之间为活动连接,可根据图像传感器组件5的运动方式选择连接方式。在本公开的一些实施例中,图像传感器组件5的一对侧边具有沿第三方向Z延伸的凸起轴33,第二支架2的一对边缘具有沿第一方向Y延伸的滑动槽22,凸起轴33设置在滑动槽22中,且具有沿滑动槽22移动的自由度,第二支架2通过滑动槽22与凸起轴33相接。则当图像传感器组件5的调节方式为沿着第一方向Y直线移动时,凸起轴33同步地沿滑动槽22移动,滑动槽22进一步具有为凸起轴33提供导向的作用。
其中,第二支架2进一步包括沿着第一方向Y延伸的第一侧壁21,电机组件1与第一侧壁21固定连接,第一侧壁21邻近纵向支臂31。并且,第一侧壁21的位置与滑动槽22所在的边缘相间隔。
第一侧壁21将第二支架2与电机组件1连接为一体,当输出轴11、纵向支臂31、以及图像传感器组件5和第二支架2的连接点之间构成固定的三角形结构时,电机组件1的输出轴11的移动可使图像传感器组件5与第二支架2可产生相对运动。其中,第一侧壁21用于支撑电机组件1,以使在第二支架2被限定固定不动时,图像传感器组件5在电机组件1和输出轴11构成的驱动力作用下与第二支架2能够发生相对运动。
在本公开的一些实施例中,第二支架2与图像传感器组件5的另一表面之间进一步包括支撑弹簧7。支撑弹簧7用于保持第二支架2和图像传感器组件5之间的相对位置,且可用于图像传感器6的减震。支撑弹簧7的数量可以为单个,也可为均匀间隔分布的多个。
图2是本公开的摄像机中的电机组件1的结构示意图。图3a和图3b是图2中的电机组件1的剖视图。
其中,如图2至图3b所示,电机组件1包括用于驱动输出轴11移动的驱动电机12、与驱动电机12的转轴啮合的齿轮组13、以及与输出轴11连接为一体的齿条14,其中,齿条14与齿轮组13啮合,以将齿轮组13的旋转转化为输出轴11的直线移动。进一步地,电机组件1进一步包括光电开关15,以用于反馈输出轴11的移动位置信号。
在如图1所示的一个实施例中,本公开提供一种摄像机,包括:电机组件1、图像传感器组件5和第二支架2,其中,
图像传感器组件5的一个表面设置图像传感器6,图像传感器组件5的另一表面的边缘具有沿垂直于另一表面的第一方向Y延伸的纵向支臂31,纵向支臂31具有沿垂直于第一方向Y的第二方向X延伸的水平滑槽32,输出轴11具有沿着水平滑槽32移动的自由度;
第二支架2设置于图像传感器组件5的另一表面,图像传感器组件5的一对侧边具有沿第三方向Z延伸的凸起轴33,凸起轴33形成沿着第三方向Z延伸的轴线,第二支架2通过凸起轴33与图像传感器组件5相接;
电机组件1与第二支架2固定连接,且具有沿着垂直于第一方向Y的第三方向Z延伸的输出轴11,电机组件1驱动输出轴11沿着第一方向Y移动;
输出轴11设置于水平滑槽32中,输出轴11通过水平滑槽32沿着第一方向Y带动图像传感器组件5同步移动,从而带动第二支架2以凸起轴33的轴线为中心转动。
在本实施例中,电机组件1和第二支架2固定为一体,图像传感器组件5设置用于与电机组件1形成连接的纵向支臂31,电机组件1通过输出轴11与纵向支臂31的连接而形成于图像传感器组件5的驱动连接,凸起轴33构成图像传感器组件5的转动支点,且该驱动连接点与转动支点之间具有间距。则电机组件1的输出轴11沿着第一方向Y移动时,可通过纵向支臂31而带动图像传感器组件5的驱动连接点随之同步移动,由于该驱动连接点位于转动支点的一侧,则可带动图像传感器组件5以凸起轴33形成的轴线为中心轴转动。当电机组件1和第二支架2的位置固定时,例如固定至摄像机的壳体 或其他部件,则可实现图像传感器组件5相对于电机组件1或者第二支架2的移动,从而实现对图像传感器6的位置或角度的调整。
其中,输出轴11与纵向支臂31固定连接,且通过设置垂直于第一方向Y延伸的水平滑槽32而使得输出轴11相对于纵向支臂31在垂直于第一方向Y的方向上具有移动的自由度时,输出轴11、纵向支臂31、以及图像传感器组件5和第二支架2的连接点之间可形成扇形结构,则当输出轴11沿着第一方向Y移动时,输出轴11与电机组件1的壳体的相对位置改变,且输出轴11抵靠水平滑槽32的槽壁,可通过纵向支臂31和水平滑槽32带动图像传感器组件5以图像传感器组件5和第二支架2的连接点为中心,以图像传感器组件5和第二支架2的连接点至输出轴11之间的距离为半径(长度可变)转动,从而实现对图像传感器6的角度调整,例如可用于调整位于不同位置的拍摄对象的景深等。
而当图像传感器组件5的调节方式为转动调节时,则凸起轴33与滑动槽22的端部抵接,通过凸起轴33与滑动槽22的端部构成图像传感器组件5的转动支点。当输出轴11沿着第一方向Y移动时,可带动图像传感器组件5以凸起轴33为中心,以凸起轴33与输出轴11之间的距离为半径转动。
当凸起轴33设置为位于图像传感器6的范围以外时,图1所示的实施例对于图像传感器6的角度调整范围为单方向的,即基于图像传感器6的0°位置(水平位置)仅可以实现单一方向的调整,而当凸起轴33设置为通过图像传感器6的中心时,则图1所示的实施例图像传感器6的角度调整范围为双方向的,即基于图像传感器6的0°位置(水平位置)可以进行正、负方向的调整。例如,可实现±5°的调整。
因此,在本公开的一些实施例中,如图1所示,凸起轴33设置于一对侧边的中间位置,且对应于图像传感器6的中心。即凸起轴33与图像传感器6的中心共线。
具体地,如图4a和图4b所示,当输出轴11沿着第一方向Y移动时,可带动图像传感器组件5以凸起轴33为中心,以凸起轴33与输出轴11之间的距离为半径转动。其中,如图4a所示,当输出轴11位于低点时,其与凸起轴33的距离较短,因此输出轴11在水平滑槽32中位于邻近凸起轴33的一端, 凸起轴33与滑动槽22的端部抵接,图像传感器组件5的具有纵向支臂31的边缘比相对的一侧边缘更加远离第二支架2或者电机组件1。而当输出轴11沿着第一方向Y向上移动至高点时,如图4b所示,其与凸起轴33的距离变长,因此输出轴11在水平滑槽32中位于远离凸起轴33的一端,凸起轴33与滑动槽22的端部抵接,图像传感器组件5的具有纵向支臂31的边缘比相对的一侧边缘更加邻近第二支架2或者电机组件1。当第二支架2或者电机组件1的位置相对固定时,则图像传感器组件5相对于第二支架2或者电机组件1的角度可随着输出轴11沿着第一方向Y的移动而调整。
第二支架2与图像传感器组件5之间为活动连接,可根据图像传感器组件5的运动方式选择连接方式。在本公开的一些实施例中,图像传感器组件5的一对侧边具有沿第三方向Z延伸的凸起轴33,第二支架2的一对边缘具有沿第一方向Y延伸的滑动槽22,凸起轴33设置在滑动槽22中,且具有沿滑动槽22移动的自由度,第二支架2通过滑动槽22与凸起轴33铰接。
在本公开的一些实施例中,第二支架2与图像传感器组件5的另一表面之间进一步包括支撑弹簧7。支撑弹簧7用于保持第二支架2和图像传感器组件5之间的相对位置,且可用于图像传感器6的减震。支撑弹簧7的数量可以为单个,也可为均匀间隔分布的多个。其中,支撑弹簧7可使得凸起轴33与滑动槽22的端部抵接,从而固定图像传感器组件5的旋转中心。
当第二支架2与图像传感器组件5之间的相对运动方式为沿着第一方向Y的平移时,支撑弹簧7的作用在于将图像传感器组件5的延伸方向保持为垂直于第一方向Y,即保持图像传感器组件5与第二支架2之间的平行关系。
当第二支架2与图像传感器组件5之间的相对运动方式为以凸起轴33与滑动槽22构成的支点转动时,支撑弹簧7的作用在于保持支点的位置,即保持凸起轴33在滑动槽22中的位置。
图5是本公开的摄像机的第二实施例的爆炸图。如图5所示,本公开提供一种摄像机,包括:电机组件1、图像传感器组件5和第二支架2,其中,
图像传感器组件5的一个表面设置图像传感器6,图像传感器组件5的另一表面的边缘具有沿垂直于另一表面的第一方向Y延伸的纵向支臂31,纵向 支臂31具有沿垂直于第一方向Y的第二方向X延伸的水平滑槽32,输出轴11具有沿着水平滑槽32移动的自由度;
第二支架2设置于图像传感器组件5的另一表面,图像传感器组件5的一对侧边具有沿第三方向Z延伸的凸起轴33,第二支架2与凸起轴33铰接;
电机组件1与第二支架2固定连接,且具有沿着垂直于第一方向Y的第三方向Z延伸的输出轴11,电机组件1驱动输出轴11沿着第一方向Y移动;
输出轴11设置于水平滑槽32中,输出轴11通过水平滑槽32沿着第一方向Y带动图像传感器组件5同步移动,从而带动第二支架2以凸起轴33的轴线为中心转动。
其中,图像传感器组件5包括图像传感器板4和第一支架3,图像传感器板4和第一支架3相互平行。
图像传感器板4具有彼此相对的第一表面和第二表面,其中,图像传感器6设置于第一表面,第一支架3设置于第二表面;第一支架3具有彼此相对的第三表面和第四表面,第三表面面向第二表面,纵向支臂31设置于第四表面。
在本公开的一些实施例中,第一支架3进一步包括分别自其一对侧边朝向图像传感器板4延伸的一对凸耳35,凸起轴33设置于凸耳35的外表面。
在本实施例中,电机组件1和第二支架2固定为一体,图像传感器板4和第一支架3相互平行地固定为一体,第一支架3设置用于与电机组件1形成连接的纵向支臂31,电机组件1通过输出轴11与纵向支臂31的连接而形成于第一支架3的连接。则电机组件1的输出轴11沿着第一方向Y移动时,可通过纵向支臂31而带动图像传感器板4和第一支架3随之同步移动。当电机组件1和第二支架2的位置固定时,例如固定至摄像机的壳体或其他部件,则可实现图像传感器板4和第一支架3相对于电机组件1或者第二支架2的移动,从而实现对图像传感器6的位置或角度的调整。
其中,输出轴11与纵向支臂31固定连接,且通过设置垂直于第一方向Y延伸的水平滑槽32而使得输出轴11相对于纵向支臂31在垂直于第一方向Y的方向上具有移动的自由度时,输出轴11、纵向支臂31、以及第一支架3和第二支架2的连接点之间可形成扇形结构,则当输出轴11沿着第一方向Y移 动时,输出轴11与电机组件1的壳体的相对位置改变,且输出轴11抵靠水平滑槽32的槽壁,可通过纵向支臂31和水平滑槽32带动第一支架3以凸起轴33为中心,以凸起轴33至输出轴11之间的距离为半径(长度可变)转动,从而实现对图像传感器6的角度调整,例如可用于调整位于不同位置的拍摄对象的景深等。
当图像传感器组件5的调节方式为转动调节时,则凸起轴33与滑动槽22的端部抵接,当输出轴11沿着第一方向Y移动时,可带动第一支架3和图像传感器板4一起以凸起轴33为中心,以凸起轴33与输出轴11之间的距离为半径转动。
当凸起轴33设置为位于图像传感器6的范围以外时,则本实施例对于图像传感器6的角度调整范围为单方向的,即基于图像传感器6的0°位置(水平位置)仅可以实现单一方向的调整,而当凸起轴33设置为通过图像传感器6的中心时,则图5所示的实施例图像传感器6的角度调整范围为双方向的,即基于图像传感器6的0°位置(水平位置)可以进行正、负方向的调整。例如,可实现±5°的调整。
因此,在本公开的一些实施例中,如图1所示,凸起轴33设置于一对侧边的中间位置,且对应于图像传感器6的中心。具体地,第一支架3进一步包括分别自其一对侧边朝向图像传感器板4延伸的一对凸耳35,凸起轴33设置于凸耳35的外表面。
凸耳35自第一支架3的一对侧边朝向图像传感器板4延伸,其能够延伸至与设置在图像传感器板4的第一表面上的图像传感器6位于同一平面的位置,以使其上设置的凸起轴33的延伸方向通过图像传感器6的中心,从而达到双方向调节图像传感器6的倾角的目的。
在一个实施例中,第一支架3朝向图像传感器板4的一侧具有外凸的螺柱34,第一支架3和图像传感器板4通过与螺柱34配合的螺栓固定连接。螺柱34位于第一支架3的四个端角,以保证第一支架3和图像传感器板4的平行设置的位置关系。
在本实施例中,第一支架3作为结构件同时提供与第二支架2、电机组件1的连接结构,且通过用于固定连接的螺柱34而实现与图像传感器板4方向 一致的固定连接,既不会由于在图像传感器板4上设置过多的连接结构而影响图像传感器6的工作精度,又通过简单的结构实现了对图像传感器6的位置和角度的调节。
本公开实施例还提供另一种摄像机,其利用第一支架3相对的两个表面分别提供与图像传感器板4和第二支架2的连接结构,能够将电机组件1的移动输出传递至与其位于不同侧的图像传感器板4,从而实现图像传感器板4的运动。
图1是本公开摄像机的结构示意图。如图1所示,本公开提供一种摄像机,包括:电机组件1、图像传感器板4、第一支架3和第二支架2,其中:
图像传感器板4具有相对设置的第一表面和第二表面,第一表面设置图像传感器6;
第一支架3固定至图像传感器板4的第二表面,其中,第一支架3的一对侧边具有沿第三方向Z延伸的凸起轴33;
第二支架2的一对边缘具有沿第一方向Y延伸的滑动槽22,其中,第一方向Y垂直于第三方向Z,第二支架2通过滑动槽22与凸起轴33铰接,凸起轴33具有沿滑动槽22移动的自由度;
电机组件1与第二支架2固定连接,且与第一支架3传动连接,电机组件1带动第一支架3沿着第一方向Y运动,从而带动图像传感器板4运动。
在本实施例中,电机组件1和第二支架2固定为一体,第一支架3作为传动连接件,其利用相对的两个表面分别提供与图像传感器板4和第二支架2的连接结构,能够将电机组件1的移动输出传递至与其位于不同侧的图像传感器板4,从而实现图像传感器板4的运动。其中,通过设置第二支架2与第一支架3的传动连接方式,可实现图像传感器板4的不同的运动方式。
在图1所示的第一实施例中,电机组件1具有沿着第三方向Z延伸的输出轴11,电机组件1驱动输出轴11沿着第一方向Y移动。其中,第一支架3的背离第二表面的一侧表面设置用于与电机组件1形成传动连接的纵向支臂31,电机组件1通过输出轴11与纵向支臂31的连接而形成于第一支架3的连接。则电机组件1的输出轴11沿着第一方向Y移动时,可通过纵向支臂31而带动第一支架3随之同步移动。当电机组件1和第二支架2的位置固定 时,例如固定至摄像机的壳体或其他部件,则可实现第一支架3相对于电机组件1或者第二支架2的移动,从而实现对图像传感器6的位置或角度的调整。
其中,通过设置输出轴11与纵向支臂31的连接方式,可以实现对图像传感器组件5的不同的调整方式。例如,当输出轴11与纵向支臂31固定连接,且相对于纵向支臂31在垂直于第一方向Y的方向上不具有移动的自由度时,输出轴11、纵向支臂31、以及第一支架3和第二支架2的连接点——凸起轴33之间构成稳定的三角形结构,当输出轴11沿着第一方向Y移动时,输出轴11与电机组件1的壳体的相对位置改变,可带动第一支架3以及与其铰接的图像传感器板4随之一起产生相对于电机组件1(和与其连接为一体的第二支架2)的移动,并且,第一支架3以及与其铰接的图像传感器板4的移动方向与输出轴11的移动方向相同。如图1中可见,第一方向Y与图像传感器6的光轴方向相同,因此,输出轴11的沿第一方向Y的移动可实现沿图像传感器6的光轴方向的调整,例如可用于调整景深等。
在本公开的一些实施例中,第二支架2与第一支架3之间为活动连接,可根据图像传感器板4的运动方式选择连接方式。在本公开的一些实施例中,第一支架3的一对侧边具有沿第三方向Z延伸的凸起轴33,第二支架2的一对边缘具有沿第一方向Y延伸的滑动槽22,凸起轴33设置在滑动槽22中,且具有沿滑动槽22移动的自由度,第二支架2通过滑动槽22与凸起轴33铰接。则当图像传感器板4的调节方式为沿第一方向Y直线移动时,凸起轴33同步地沿滑动槽22移动,滑动槽22进一步具有为凸起轴33提供导向的作用。
其中,第二支架2进一步包括沿着第一方向Y延伸的第一侧壁21,电机组件1与第一侧壁21固定连接,第一侧壁21邻近纵向支臂31。并且,第一侧壁21的位置与滑动槽22所在的边缘相间隔。
图2是本公开的摄像机中的电机组件1的结构示意图。图3a和图3b是图2中的电机组件1的剖视图。其中,电机组件1的相关内容已在上文中进行了详细说明,在此不再赘述。
如图5所示,本公开实施例提供一种摄像机,包括:电机组件1、图像传感器板4、第一支架3和第二支架2,其中,
图像传感器板4具有相对设置的第一表面和第二表面,第一表面设置图像传感器6;
第一支架3固定至图像传感器板4的第二表面,其中,第一支架3的一对侧边具有沿第三方向Z延伸的凸起轴33;
第二支架2的一对边缘具有沿第一方向Y延伸的滑动槽22,其中,第一方向Y垂直于第三方向Z,第二支架2通过滑动槽22与凸起轴33铰接,凸起轴33具有沿滑动槽22移动的自由度;
电机组件1与第二支架2固定连接,且与第一支架3传动连接,电机组件1带动第一支架3沿着第一方向Y运动,从而带动图像传感器板4运动。
换言之,第二支架2的边缘具有沿第一方向Y延伸的滑动槽22,滑动槽22与凸起轴33连接,其中第一方向Y与第三方向(Z)垂直;
电机组件1与第二支架2固定连接,用于生成驱动第一支架3沿着第一方向Y运动的驱动力;在驱动力的作用下,图像传感器板4随着第一支架3发生运动,运动的转动轴由凸起轴33与滑动槽22限定。
电机组件1具有沿着第三方向Z延伸的输出轴11,电机组件1驱动输出轴11沿着第一方向Y移动。其中,第一支架3的背离第二表面的一侧表面设置用于与电机组件1形成传动连接的纵向支臂31,电机组件1通过输出轴11与纵向支臂31的连接而形成于第一支架3的连接。纵向支臂31具有沿垂直于第一方向Y的第二方向X延伸的水平滑槽32,输出轴11具有沿着水平滑槽32移动的自由度;输出轴11设置于水平滑槽32中,输出轴11通过水平滑槽32沿着第一方向Y带动图像传感器组件5同步移动,从而带动第二支架2以凸起轴33为中心转动。
在本实施例中,电机组件1和第二支架2固定为一体,第一支架3设置用于与电机组件1形成连接的纵向支臂31,电机组件1通过输出轴11与纵向支臂31的连接而形成与第一支架3的传动连接。则电机组件1的输出轴11沿着第一方向Y移动时,可通过纵向支臂31而带动图像传感器板4随之同步移动。当电机组件1和第二支架2的位置固定时,例如固定至摄像机的壳体或其他部件,则可实现图像传感器板4相对于电机组件1或者第二支架2的移动,从而实现对图像传感器6的位置或角度的调整。
其中,输出轴11与纵向支臂31固定连接,且通过设置垂直于第一方向Y延伸的水平滑槽32而使得输出轴11相对于纵向支臂31在垂直于第一方向Y的方向上具有移动的自由度时,输出轴11、纵向支臂31、以及第一支架3和第二支架2的连接点——凸起轴33之间可形成扇形结构,则当输出轴11沿着第一方向Y移动时,输出轴11与电机组件1的壳体的相对位置改变,且输出轴11抵靠水平滑槽32的槽壁,可通过纵向支臂31和水平滑槽32带动第一支架3以第一支架3和第二支架2的连接点为中心,以第一支架3和第二支架2的连接点至输出轴11之间的距离为半径(长度可变)转动,从而实现对图像传感器6的角度调整,例如可用于调整位于不同位置的拍摄对象的景深等。
在本公开的一些实施例中,为了基于图像传感器6的0°位置(水平位置)实现正、负方向的双向调整,如图1所示,凸起轴33设置于一对侧边的中间位置,且对应于图像传感器6的中心。
具体地,如图4a和图4b所示,当输出轴11沿着第一方向Y移动时,可带动第一支架3以及与其铰接的图像传感器板4以凸起轴33为中心,以凸起轴33与输出轴11之间的距离为半径转动。其中,如图4a所示,当输出轴11位于低点时,其与凸起轴33的距离较短,因此输出轴11在水平滑槽32中位于邻近凸起轴33的一端,凸起轴33与滑动槽22的端部抵接,第一支架3的具有纵向支臂31的边缘比相对的一侧边缘更加远离第二支架2或者电机组件1。而当输出轴11沿着第一方向Y向上移动至高点时,如图4b所示,其与凸起轴33的距离变长,因此输出轴11在水平滑槽32中位于远离凸起轴33的一端,凸起轴33与滑动槽22的端部抵接,第一支架3的具有纵向支臂31的边缘比相对的一侧边缘更加邻近第二支架2或者电机组件1。当第二支架2或者电机组件1的位置相对固定时,则第一支架3以及与其铰接的图像传感器板4相对于第二支架2或者电机组件1的角度可随着输出轴11沿着第一方向Y的移动而调整。
第二支架2与第一支架3之间为活动连接,可根据图像传感器板4的运动方式选择连接方式。在本公开的一些实施例中,第一支架3的一对侧边具有沿第三方向Z延伸的凸起轴33,第二支架2的一对边缘具有沿第一方向Y 延伸的滑动槽22,凸起轴33设置在滑动槽22中,且具有沿滑动槽22移动的自由度,第二支架2通过滑动槽22与凸起轴33铰接。
在本公开的一些实施例中,第二支架2与第一支架3之间进一步包括支撑弹簧7。支撑弹簧7用于保持第二支架2和图像传感器组件5之间的相对位置,且可用于图像传感器6的减震。支撑弹簧7的数量可以为单个,也可为均匀间隔分布的多个。其中,支撑弹簧7可使得凸起轴33与滑动槽22的端部抵接,从而固定图像传感器组件5的旋转中心。
在本公开的一些实施例中,第二支架2与第一支架3之间进一步包括多个支撑弹簧7,且该多个支撑弹簧7在垂直于第一方向Y的第二方向X上分别设置在凸起轴33的两侧。支撑弹簧7的伸缩长度关联于输出轴11的位置。分别设置在凸起轴33的两侧的支撑弹簧7的伸缩量是不同的。
在本公开的一些实施例中,第一支架3进一步包括分别自其一对侧边朝向图像传感器板4延伸的一对凸耳35,凸起轴33设置于凸耳35的外表面。
在一个实施例中,第一支架3朝向图像传感器板4的一侧具有外凸的螺柱34,第一支架3和图像传感器板4通过与螺柱34配合的螺栓固定连接。螺柱34位于第一支架3的四个端角,以保证第一支架3和图像传感器板4的平行设置的位置关系。
需要说明的是,本实施例中凸耳35以及螺柱34所起到的作用已在上文中进行了详细说明,在此不再赘述。
本公开还提供一种摄像机组件,包括:电机组件1、第一支架3和第二支架2,图像传感器6,其中:
所述图像传感器6由所述第一支架3支撑;
所述第一支架3的两个侧边各设置有沿第三方向Z延伸的凸起轴33,所述凸起轴33限定第一轴线,所述第一支架3中与所述两个侧边相连的第三侧边间隔设置有水平滑槽32;
所述第二支架2中与所述第一支架3的第三侧边相对应的一边缘紧固设置有所述电机组件1,所述第二支架2中与所述第一支架3的所述两个侧边相对应的两侧边缘各设置有沿与所述第三方向垂直的第一方向Y延伸的滑动槽22;
所述电机组件1的两侧设置有输出轴11;
其中,所述水平滑槽32被构成为接纳所述输出轴11,所述滑动槽22被构成为接纳所述凸起轴33,在所述电机组件1工作时,所述输出轴11被构成为相对所述第二支架2在第一方向Y运动,以使所述第一支架3能够相对所述第二支架2关于所述第一轴线运动。
本公开实施例中,电机组件1和第二支架2固定为一体,第一支架3作为传动连接件,其利用相对的两个表面分别提供与图像传感器板4和第二支架2的连接结构,能够将电机组件1的移动输出传递至与其位于不同侧的图像传感器板4,从而实现图像传感器板4的运动。其中,通过设置第二支架2与第一支架3的传动连接方式,可实现图像传感器板4的不同的运动方式。
在本文中,“一个”并不表示将本公开相关部分的数量限制为“仅此一个”,并且“一个”不表示排除本公开相关部分的数量“多于一个”的情形。
除非另有说明,本文中的数值范围不仅包括其两个端点内的整个范围,也包括含于其中的若干子范围。
上文所列出的一系列的详细说明仅仅是针对本公开的可行性实施方式的具体说明,而并非用以限制本公开的保护范围,凡未脱离本公开技艺精神所作的等效实施方案或变更,如特征的组合、分割或重复,均应包含在本公开的保护范围之内。

Claims (17)

  1. 一种摄像机,其中,包括:电机组件(1)、图像传感器组件(5)和第二支架(2),其中:
    所述图像传感器组件(5)的一个表面设置图像传感器(6),所述图像传感器组件(5)中与所述一个表面相对的另一表面具有第一方向(Y)延伸的纵向支臂(31),其中所述第一方向垂直与所述图像传感器组件(5)的另一表面;
    所述第二支架(2)被限定邻近所述图像传感器组件(5)的所述另一表面;
    所述电机组件(1)与所述第二支架(2)固定连接,且具有沿着第三方向(Z)延伸的输出轴(11),所述电机组件(1)驱动所述输出轴(11)沿着所述第一方向(Y)移动,其中所述第三方向垂直于所述第一方向(Y);
    所述纵向支臂(31)接纳所述输出轴(11),以使在所述输出轴(11)的驱动力作用下所述纵向支臂(31)能够沿着所述第一方向(Y)带动所述图像传感器组件(5)在所述第一方向(Y)上运动。
  2. 根据权利要求1所述的摄像机,其中,所述第二支架(2)进一步包括沿着所述第一方向(Y)延伸的第一侧壁(21),所述第一侧壁(21)用于支撑所述电机组件(1),以使在所述第二支架(2)被限定固定不动时,所述图像传感器组件(5)在所述电机组件(1)和所述输出轴(11)构成的驱动力作用下与所述第二支架(2)能够发生相对运动。
  3. 根据权利要求1所述的摄像机,其中,所述纵向支臂(31)具有沿第二方向(X)延伸的水平滑槽(32),所述输出轴(11)被接纳于所述水平滑槽(32)中,其中所述第二方向垂直于所述第一方向(Y)。
  4. 根据权利要求1所述的摄像机,其中,所述第二支架(2)设置有沿着所述第一方向(Y)的滑动槽(22),所述图像传感器组件(5)的一对侧边具有沿所述第三方向(Z)延伸的凸起轴(33),所述滑动槽(22)接纳所述凸起轴(33);
    其中,在所述输出轴(11)沿着所述第一方向(Y)移动时,所述滑动槽(22)与所述凸起轴(33)限定使所述图像传感器组件(5)转动的支点。
  5. 根据权利要求4所述的摄像机,其中,所述凸起轴(33)与所述图像传感器(6)的中心共线。
  6. 根据权利要求4所述的摄像机,其中,所述第二支架(2)与所述图像传感器组件(5)的另一表面之间进一步包括支撑弹簧(7),
    所述支撑弹簧(7)支撑于所述第二支架(2)和图像传感器组件(5)之间,以在所述图像传感器组件(5)以所述滑动槽(22)与所述凸起轴(33)构成的支点转动时,保持所述凸起轴(33)在所述滑动槽(22)中的位置。
  7. 根据权利要求4至6任一项所述的摄像机,其中,所述图像传感器组件(5)包括图像传感器板(4)和第一支架(3),所述图像传感器板(4)和第一支架(3)相互平行,所述图像传感器设置于所述图像传感器板(4),所述纵向支臂(31)设置于所述第一支架(3),所述图像传感器板(4)与所述第一支架(3)紧固连接,以使所述电机组件(1)的输出轴(11)带动所述纵向支臂(31)沿第一方向(Y)运动时,由所述第一支架(3)带动所述图像传感器板(4)运动。
  8. 根据权利要求7所述的摄像机,其中,所述图像传感器板(4)具有彼此相对的第一表面和第二表面,其中,所述图像传感器(6)设置于所述第一表面,所述第一支架(3)设置于所述第二表面;
    所述第一支架(3)具有彼此相对的第三表面和第四表面,所述第三表面面向所述第二表面,所述纵向支臂(31)设置于所述第四表面。
  9. 根据权利要求8所述的摄像机,其中,所述第一支架(3)进一步包括分别自其一对侧边朝向所述图像传感器板(4)延伸的一对凸耳(35),所述凸起轴(33)设置于所述凸耳(35)的外表面。
  10. 根据权利要求7所述的摄像机,其中,所述第一支架(3)朝向图像传感器板(4)的一侧具有外凸的螺柱(34),所述第一支架(3)和图像传感器板(4)通过与所述螺柱(34)配合的螺栓固定连接。
  11. 一种摄像机,其中,包括:电机组件(1)、图像传感器板(4)、第一支架(3)和第二支架(2),其中:
    所述图像传感器板(4)具有相对设置的第一表面和第二表面,所述第一表面设置图像传感器(6);
    所述第一支架(3)邻接所述第二表面,所述第一支架(3)的一对侧边具有沿第三方向(Z)延伸的凸起轴(33),
    所述第二支架(2)的边缘具有沿第一方向(Y)延伸的滑动槽(22),所述滑动槽(22)与所述凸起轴(33)连接,其中所述第一方向(Y)与所述第三方向(Z)垂直;
    所述电机组件(1)与所述第二支架(2)固定连接,用于生成驱动所述第一支架(3)沿着所述第一方向(Y)运动的驱动力;在所述驱动力的作用下,所述图像传感器板(4)随着所述第一支架(3)发生运动,所述运动的转动轴由所述凸起轴(33)与所述滑动槽(22)限定。
  12. 根据权利要求11所述的摄像机,其中,所述凸起轴(33)设置于所述一对侧边的中间位置,且对应于所述图像传感器(6)的中心。
  13. 根据权利要求11所述的摄像机,其中,所述第一支架(3)朝向图像传感器板(4)的一侧具有外凸的螺柱(34),所述第一支架(3)和图像传感器板(4)通过与所述螺柱(34)配合的螺栓固定连接。
  14. 根据权利要求11所述的摄像机,其中,所述电机组件(1)具有沿着第三方向(Z)延伸的输出轴(11),所述电机组件(1)驱动所述输出轴(11)沿着所述第一方向(Y)移动;
    所述第一支架(3)的背离所述第二表面的表面具有沿着所述第一方向(Y)延伸的纵向支臂(31),所述纵向支臂(31)设置于不同于所述一对侧边的一个侧边;
    所述输出轴(11)与所述纵向支臂(31)传动连接。
  15. 根据权利要求14所述的摄像机,其中,所述纵向支臂(31)具有沿垂直于所述第一方向(Y)的第二方向(X)延伸的水平滑槽(32),所述输出轴(11)具有沿着所述水平滑槽(32)移动的自由度;
    所述输出轴(11)沿着所述第一方向(Y)移动时,带动所述第二支架(2)以所述运动支点为中心转动。
  16. 根据权利要求14所述的摄像机,其中,所述第二支架(2)进一步包括沿着所述第一方向(Y)延伸的第一侧壁(21),所述电机组件(1)与所述第一侧壁(21)固定连接,所述第一侧壁(21)邻近所述纵向支臂(31)。
  17. 一种摄像机组件,其中,包括:电机组件(1)、第一支架(3)和第二支架(2),图像传感器(6),其中:
    所述图像传感器(6)由所述第一支架(3)支撑;
    所述第一支架(3)的两个侧边各设置有沿第三方向(Z)延伸的凸起轴(33),所述凸起轴(33)限定第一轴线,所述第一支架(3)中与所述两个侧边相连的第三侧边间隔设置有水平滑槽(32);
    所述第二支架(2)中与所述第一支架(3)的第三侧边相对应的一边缘紧固设置有所述电机组件(1),所述第二支架(2)中与所述第一支架(3)的所述两个侧边相对应的两侧边缘各设置有沿与所述第三方向垂直的第一方向(Y)延伸的滑动槽(22);
    所述电机组件(1)的两侧设置有输出轴(11);
    其中,所述水平滑槽(32)被构成为接纳所述输出轴(11),所述滑动槽(22)被构成为接纳所述凸起轴(33),在所述电机组件(1)工作时,所述输出轴(11)被构成为相对所述第二支架(2)在第一方向(Y)运动,以使所述第一支架(3)能够相对所述第二支架(2)关于所述第一轴线运动。
PCT/CN2021/100535 2021-03-30 2021-06-17 一种摄像机和摄像机组件 WO2022205626A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110339355.3 2021-03-30
CN202110339355.3A CN113099084B (zh) 2021-03-30 2021-03-30 一种摄像机和摄像机组件
CN202120648507.3 2021-03-30
CN202120648507.3U CN215300753U (zh) 2021-03-30 2021-03-30 一种摄像机

Publications (1)

Publication Number Publication Date
WO2022205626A1 true WO2022205626A1 (zh) 2022-10-06

Family

ID=83457750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100535 WO2022205626A1 (zh) 2021-03-30 2021-06-17 一种摄像机和摄像机组件

Country Status (1)

Country Link
WO (1) WO2022205626A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2746422Y (zh) * 2004-09-30 2005-12-14 华为技术有限公司 摄像机竖直转动机构
CN104423014A (zh) * 2013-08-22 2015-03-18 晶睿通讯股份有限公司 摄像装置及其焦距调整座
JP2019126032A (ja) * 2018-01-12 2019-07-25 川田テクノロジーズ株式会社 点検対象面点検用カメラ安定装置およびそれを具える点検対象面点検システム
CN112135019A (zh) * 2020-09-08 2020-12-25 杭州海康威视数字技术股份有限公司 拍摄设备
CN113099084A (zh) * 2021-03-30 2021-07-09 杭州海康威视数字技术股份有限公司 一种摄像机和摄像机组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2746422Y (zh) * 2004-09-30 2005-12-14 华为技术有限公司 摄像机竖直转动机构
CN104423014A (zh) * 2013-08-22 2015-03-18 晶睿通讯股份有限公司 摄像装置及其焦距调整座
JP2019126032A (ja) * 2018-01-12 2019-07-25 川田テクノロジーズ株式会社 点検対象面点検用カメラ安定装置およびそれを具える点検対象面点検システム
CN112135019A (zh) * 2020-09-08 2020-12-25 杭州海康威视数字技术股份有限公司 拍摄设备
CN113099084A (zh) * 2021-03-30 2021-07-09 杭州海康威视数字技术股份有限公司 一种摄像机和摄像机组件

Similar Documents

Publication Publication Date Title
JP5204316B2 (ja) パンチルト装置
US7999921B2 (en) Geodesic measuring instrument with a piezo drive
CN104280976A (zh) 可切换光路径的光学防震机构
CN108803008B (zh) 一种位移放大机构、光纤扫描装置及投影仪
JP2009044856A (ja) 圧電モータおよびカメラ装置
CN112492175B (zh) 摄像模组
EP3779262A1 (en) Differential gear drive apparatus, stabilizing mechanism, pan-tilt apparatus, and photography device
CN207867190U (zh) 一种具有多自由度的电路板及防抖微型致动器
WO2020164550A1 (zh) 镜头模组及摄像机
CN108681024A (zh) 一种动靶面调焦机构及其靶面倾斜量与视轴跳动检测方法
CN105319705A (zh) 一种双光楔扫描装置和光电探测设备
WO2022205626A1 (zh) 一种摄像机和摄像机组件
CN113489905B (zh) 摄像模组、电子设备和电子设备的控制方法
CN113099084B (zh) 一种摄像机和摄像机组件
US20190165697A1 (en) Vibration type motor, lens apparatus, and electronic apparatus
CN211450158U (zh) 角度调节机构及投影仪
CN209739351U (zh) 一种旋转式两镜头倾斜摄影云台
CN215300753U (zh) 一种摄像机
JP2009169417A (ja) 全方向性カメラシステム
CN209299526U (zh) 一种耳机装配机对位检测装置
JP2013024867A (ja) 光電センサ並びに物体検出及び距離測定方法
KR101273420B1 (ko) 비행체 추적 고속 3d 영상의 촬영장치
CN210433427U (zh) 扫地机的摄像装置
CN211653276U (zh) 一种用于剪切散斑的全自动剪切矢量调节机构
KR101385063B1 (ko) Cctv용 카메라 회전장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934275

Country of ref document: EP

Kind code of ref document: A1