WO2022205577A1 - 一种目标处置方法和系统 - Google Patents

一种目标处置方法和系统 Download PDF

Info

Publication number
WO2022205577A1
WO2022205577A1 PCT/CN2021/093553 CN2021093553W WO2022205577A1 WO 2022205577 A1 WO2022205577 A1 WO 2022205577A1 CN 2021093553 W CN2021093553 W CN 2021093553W WO 2022205577 A1 WO2022205577 A1 WO 2022205577A1
Authority
WO
WIPO (PCT)
Prior art keywords
target object
treatment
target
plan
isocenter
Prior art date
Application number
PCT/CN2021/093553
Other languages
English (en)
French (fr)
Inventor
章真
胡伟刚
于蕾
王佳舟
赵俊
王益锋
周婧劼
章卫
顾肖
张一戈
Original Assignee
复旦大学附属肿瘤医院
上海联影医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 复旦大学附属肿瘤医院, 上海联影医疗科技股份有限公司 filed Critical 复旦大学附属肿瘤医院
Priority to CN202180001254.3A priority Critical patent/CN113438960B/zh
Priority to EP21934228.4A priority patent/EP4295900A1/en
Priority to US17/305,051 priority patent/US20220314025A1/en
Publication of WO2022205577A1 publication Critical patent/WO2022205577A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1039Treatment planning systems using functional images, e.g. PET or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source

Definitions

  • the present specification relates to the field of medical technology, and in particular, to a target treatment method and system.
  • Radiotherapy is widely used in cancer treatment.
  • a doctor Before a patient receives radiotherapy, a doctor will formulate and improve a radiotherapy treatment plan according to the patient's condition, so that the doctor can perform radiotherapy on the patient according to the treatment plan.
  • the patient waits for several days and the structure of the patient's tumor or other diseased tissue (eg, the tissue surrounding the tumor) may change. For example, tumors may grow, deform, or shrink.
  • the update of the treatment plan and the repeated visits of the patient to the hospital for re-examination, etc. errors in the final radiotherapy results will occur, and the patient's receiving radiotherapy cycle will be too long to delay the disease. Therefore, it is necessary to develop a target disposal method and system.
  • One of the embodiments of the present specification provides a target treatment method.
  • the method includes: in response to the target object being fixed to the positioning device, imaging the target object with an imaging device; acquiring a plan image of the target object; generating region-of-interest information according to the plan image; The region of interest information generates a treatment plan, wherein the treatment plan includes a plan isocenter on the plan image; and according to the treatment plan, the treatment device is used to treat the target part of the target object; wherein, During the period from when the target object is fixed to the positioning device to the end of the treatment, the target object is always fixed to the positioning device.
  • One of the embodiments of the present specification provides a target treatment system, the system includes: a positioning device for positioning a target object and capable of positioning the target object to an imaging device and a treatment device; an imaging device for positioning the target object imaging a target object; a treatment device for treating a target portion of the target object based on the treatment plan; and a control unit for generating region-of-interest information based on the plan image acquired by the imaging device; acquiring An isocenter is planned, and the treatment plan is developed based on the planned isocenter and the region of interest information.
  • One of the embodiments of this specification provides a computer-readable storage medium, where the storage medium stores computer instructions for target processing, and after the computer reads the computer instructions for target processing in the storage medium, the computer executes the above technical solutions. method.
  • FIG. 1 is a schematic diagram of an application scenario of a target treatment system according to some embodiments of the present specification
  • FIG. 2 is a flowchart of an exemplary process of a target treatment method according to some embodiments of the present specification
  • FIG. 3 is a flowchart of an exemplary process for real-time verification of a treatment plan according to some embodiments of the present specification
  • FIG. 4 is an exemplary block diagram of a target treatment system according to some embodiments of the present specification.
  • FIG. 5 is another exemplary block diagram of a target treatment system according to some embodiments of the present specification.
  • FIG. 6 is a schematic diagram of a scribing operation on a target site by a scribing device according to some embodiments of the present specification
  • FIG. 7 is a schematic diagram of a positioning device according to some embodiments of the present specification.
  • system means for distinguishing different components, elements, parts, parts or assemblies at different levels.
  • device means for converting components, elements, parts, parts or assemblies to different levels.
  • FIG. 1 is a schematic diagram of an application scenario of a target treatment system according to some embodiments of the present specification.
  • the workflow of performing radiotherapy on the target object 120 may be performed by the target treatment system 100 , and the target treatment system 100 may include a positioning device 110 , an imaging device 130 , and a control component 140 . , processing device 160 and network 170 . In some application scenarios, only some of them may be included.
  • the target treatment system 100 may be an image-guided radiation therapy system having both an imaging function and a radiation therapy function, and the imaging function and the radiation therapy function of the system share the positioning device 110 .
  • the imaging device 130 and the treatment device 160 may be integrated medical devices, such as the radiation therapy device disclosed in Chinese Patent Application Publication No. CN106924888A.
  • the imaging device 130 and the treatment device 160 may be a non-integrated radiotherapy device (eg, an imaging device and a treatment device that are independent of each other), which is not limited in the present invention.
  • the patient is fixed on the positioning device 110, imaged in the imaging device 130, and then treated in the treatment device 160, and the doctor conducts inspection and control through one or more control components 140, different control components 140.
  • the devices can be connected through the network 170.
  • a patient eg, a cancer patient
  • a doctor sets a treatment plan 150 for radiotherapy to the target object 120 through one or more control components 140, and then based on the treatment plan 150
  • the patient receives radiation therapy in a radiation therapy facility.
  • the imaging device can perform a first level security inspection of the cargo, such as X-ray, and the disposal device 160 can perform further processing on the cargo, such as explosives detection.
  • the imaging device may scan the living body and the treatment device 160 samples.
  • the treatment device 160 may be a surgical robot when performing interventional treatment on a patient.
  • the positioning device 110 may be used to position the target object 120 in the imaging device 130 and/or the treatment device 160 described above.
  • locating device 110 may be any device used to locate target object 120 .
  • the positioning device 110 may be a treatment couch with a positioning effect.
  • the positioning device 110 may also be a solid positioning component, such as a vacuum pad, mask, or the like.
  • the positioning device 110 may fix the posture of the target object 120 so that the relative positions of the fixed body parts of the target object 120 remain unchanged.
  • the fixed target object 120 is in a posture such as lying down, bending the knees, or the like.
  • the target object 120 can be kept in the same fixed state by the positioning device 110 until one or more subsequent treatments are completed in stages, so that subsequent treatments can be performed. More details about the positioning device 110 can be found in FIG. 7 and its related description.
  • Imaging device 130 may be used to image target object 120 to generate data related to target object 120 .
  • scanning produces an image associated with target object 120 .
  • a target area image of a target site (eg, tumor, diseased site) of the target object 120 e.g., the target area includes the area of the target part and the area that the target part may invade.
  • the imaging device 130 may be a medical imaging device (for example, a CT (Computed Tomography) imaging device, an MRI (Magnetic Resonance Imaging) imaging device, a CBCT (Cone Beam Computer Tomography, cone Beam projection computer reconstruction tomography equipment), DR (Digital Radiography, digital radiography equipment), PET (Positron Emission Computed Tomography, Positron Emission Computed Tomography) imaging equipment, SPECT (Single-Photon Emission Computed Tomography) , single photon emission computed tomography) imaging equipment, PET/CT imaging equipment, PET/MR imaging equipment, ultrasound equipment or ECT (Emission Computed Tomography, emission computed tomography imaging equipment, etc.).
  • CT Computer Tomography
  • CBCT Cone Beam Computer Tomography, cone Beam projection computer reconstruction tomography equipment
  • DR Digital Radiography, digital radiography equipment
  • PET Positron Emission Computed Tomography
  • SPECT Single-Photon Emission Computed Tomography
  • the control component 140 may be configured to generate region of interest information according to the image data acquired by the imaging device 130 ; obtain plan isocenter information, and formulate a treatment plan based on the plan isocenter information and the region of interest information.
  • the control part 140 may be connected in communication with the imaging device 130 and the treatment device 160, respectively.
  • Treatment plan 150 may be used to indicate how treatment (eg, radiation therapy) is to be performed on target subject 120 .
  • treatment plan 150 may be used to indicate how one or more beams of radiation therapy are to be delivered to a region of interest of target subject 120 .
  • the treatment plan 150 may also provide the total dose required for radiation therapy (eg, 0.1 Gy, 10 Gy, 50 Gy, 100 Gy, etc.) and the distribution of the total dose in the region of interest.
  • the treatment plan 150 may contain an organ used to identify at risk of the target subject 120, the external contours of the organ, etc., or any combination thereof, prior to the initiation of the radiotherapy procedure.
  • the treatment plan 150 may also provide a set of radiation therapy-related operating parameters that may describe how the radiation therapy device delivers the radiation field of treatment fractions.
  • the set of operating parameters may include machine radiation parameters and geometric parameters.
  • Machine radiation parameters may include dose rate (ie, MUs/min) of the radiation source, duration of radiation, and modal type (eg, photon, electron, etc.) information of the radiation source, etc., or any combination thereof.
  • the geometric parameters can include the angle of a gantry at a certain time, the rotation speed of the gantry at a certain time, the angle of the collimator at a certain time, the rotation speed of the collimator at a certain time, and the blade setting parameters of the multi-leaf collimator ( For example, parameter values of the individual blades of the collimator, etc.), the position and/or angle of the treatment device 160, etc., or any combination thereof.
  • the treatment device 160 may be used to treat the target subject 120 , eg, to perform radiotherapy on the target subject 120 .
  • the treatment device 160 may be a radiation therapy device.
  • LINAC Linear Electron Accelerator
  • the treatment device 160 may include a treatment head, a gantry, a collimator, and the like.
  • the treatment head can include a radiation source that can emit a beam of radiation toward the target object 120 .
  • Radiation beams may include particle beams (eg, neutron beams, proton beams, heavy ion beams, electron beams, etc.), photon beams (eg, X-rays, gamma rays, etc.), etc., or a combination thereof.
  • particle beams eg, neutron beams, proton beams, heavy ion beams, electron beams, etc.
  • photon beams eg, X-rays, gamma rays, etc.
  • the network 170 may be used for information transmission between different devices, and may also be used for information transmission with the outside.
  • the network may connect some or all of the devices mentioned. Networking can be implemented in various feasible ways.
  • the target treatment system 100 may further include a processor 191, and the processor 191 may be configured to perform at least one of the following operations: reconstructing a planning image based on the imaging data of the target object, formulating a planning image based on the planning image the treatment plan, verifying the treatment plan.
  • the processor 191 may be a component installed independently, or may be a component integrally installed on the imaging device 130 , the control component 140 , and the treatment device 160 . More details on the target treatment system 100 can be found in FIGS. 4, 5 and their associated descriptions.
  • FIG. 2 is an exemplary flowchart of a target treatment method according to some embodiments of the present specification.
  • the process 200 may be implemented by one or more devices or apparatuses of the target treatment system 100 shown in FIG. 1 .
  • the process 200 may include the following steps:
  • Step 210 in response to the target object being fixed to the positioning device, image the target object with an imaging device.
  • Target subject 120 may be a subject (eg, a patient) undergoing treatment.
  • the doctor may guide the target object 120 fixed on the positioning device 110 to position the target object 120 according to the lesion position of the target object 120 .
  • the isocenter also referred to as the machine isocenter of the treatment device 160.
  • the target object 120 can be fixed by using the positioning device 110 (for example, a vacuum pad or a mask, etc.), and the target object 120 can be kept in a fixed state by the positioning device 110 until the subsequent treatment is completed, so that the subsequent treatment can be performed.
  • the isocenter of the treatment device 160 refers to the rotation isocenter of the treatment head of the treatment device 160 , that is, the isocenter of the treatment of the treatment device 160 .
  • positioning the target object 120 please refer to the following description.
  • the target object 120 may be secured to the positioning device 110 in a variety of ways.
  • the target object 120 may be secured to the positioning device 110 under the guidance of a physician.
  • the doctor can instruct the target object 120 to place the target object 120 at the standard position of the positioning device 110 according to the standard positioning, and then fix the target object 120 through the fixing function of the positioning device 110, so that the target object 120 can be accurately positioned relative to the positioning device 110 It is convenient for the target object 120 to receive subsequent detection and radiation operations related to radiation therapy.
  • the positioning device 110 can be a vacuum pad. After the target object 120 is lying on the vacuum pad, the doctor can instruct the target object 120 to assume a normal posture, and perform a vacuuming operation on the vacuum pad to make the target object 120 in the current posture Implement fixed.
  • the target object 120 may be fixed to the positioning device 110 by means of an intelligent guidance device.
  • the intelligent guidance device may be used to guide the target object 120 to determine the position and/or posture where it is fixed.
  • the intelligent guidance device can guide the target object 120 to determine the corresponding positioning device 110 through voice prompts and/or screen display, and prompt the target object 120 to place on the positioning device 110 in a standard posture (eg, lying down).
  • the intelligent guidance device may include an imaging device (for example, a camera) for real-time acquisition of the patient's current position information and/or posture, the intelligent guidance device or the real-time position and/or the control component 140 or the processor 191 will acquire.
  • the posture is compared to standard positioning instructions and the comparison is presented to the patient so that the patient can make adjustments based on the positioning results.
  • the doctor can also fix the target object 120 on the positioning device 120 by means of remote guidance.
  • a doctor can obtain a real-time video image of the target object 120 through an imaging device (eg, a camera), and instruct the target object 120 to be fixed on the positioning device 110 by means of voice interaction.
  • an imaging device eg, a camera
  • the doctor or the intelligent guidance device may also prompt the target object 120 placed in the positioning device 110 to adjust the posture. After confirming that the posture of the target object 120 is adjusted correctly, the target object 120 is fixed to the positioning device in the above-mentioned manner. 110.
  • the intelligent guiding device may be connected with other devices (eg, CT scanning device, treatment device 160 , etc.), and guide the target object 120 to be fixed to the positioning device 110 according to the patient information of the target object 120 .
  • the intelligent guiding device may obtain from the control part 140 that the part to be scanned of the target object 120 is the lower leg, and the intelligent guiding device may instruct the target object 120 to be fixed to the positioning device 110 in a bent knee posture.
  • target object 120 may be determined to be affixed to positioning device 110 in a number of ways.
  • the doctor may detect and determine that the target object 120 is fixed to the positioning device 110 through an imaging device (eg, a camera).
  • the camera can acquire an image that includes both the positioning device 110 and the target object 120 in the same space, and the doctor or the control component 140 can identify the target object 120 after being fixed on the positioning device 110 according to the image (or combined with image recognition technology). Whether the position is correct, the degree of fixation is stable, etc., if the obtained recognition result is correct, it can be determined that the target object 120 is fixed to the positioning device 110 .
  • the doctor can make timely adjustments to the target object 120's fixed position, method, and tightness of the fixation. Adjustment.
  • input information after the target object 120 is fixed may be received by the intelligent guidance device, and it is determined that the target object 120 is fixed to the positioning device 110 .
  • the intelligent guidance device can receive the fixed position information of the target object 120 (for example, the relative position between the target object 120 and the positioning device 110, the relative position between the positioning device 110 and the imaging device 130), the target object 120 is After fixing, input information such as whether it is stable or not, and the above input information is processed, and a determination result of whether the target object 120 is fixed to the positioning device 110 is output.
  • the determination result may be "Yes” or "No”. If the determination result is "Yes”, it can be determined that the target object 120 is fixed to the positioning device 110 . If the determination result is "No", the intelligent guidance device may prompt the target object 120, for example, prompting the relative position error between the target object 120 and the positioning device 110, prompting the target object 120 to place the positioning device 110 in an irregular posture Wait.
  • the target object 120 can be imaged by the imaging device 130 .
  • a doctor may use the imaging device 130 to image the target object 120 by means of a medical scan.
  • step 220 For more details about the imaging device 130 , please refer to FIG. 1 and FIG. 4 and related descriptions, and for more details about acquiring the image data of the target object 120 by the imaging device 130 , please refer to the related description of step 220 .
  • Step 220 acquiring the planned image of the target object.
  • Planning images refer to image data used in making radiation therapy plans.
  • the planning images may include, but are not limited to, CT, MRI, CBCT, DR, PET, SPECT, PET/CT, PET/MR, ultrasound, or ECT data of medical images commonly used in the art.
  • a planning image of the target object 120 may be acquired by the imaging device 130 .
  • the target object 120 can be moved to the scanning area of the imaging device 130 for scanning, so as to obtain a planned image of the target object 120 .
  • Step 230 generating region of interest information according to the planning image.
  • the region of interest can be a tissue, organ or any other medical region of interest.
  • the region of interest may be a lesion (eg, tumor) site in a CT scan image or segmented image of the target object 120 , or a target volume corresponding to the location of the lesion and/or an organ-at-risk region surrounding the target volume.
  • the planning image acquired in step 220 may be input to the target treatment system 100, and the target treatment system 100 may automatically generate region of interest information according to the planning image.
  • the target treatment system 100 can identify the target part information of the target object 120 according to the planning image, and segment the planning image according to the target part information to obtain the region of interest information.
  • the target site information may be lesion information or other information such as medical record information, disease type information, etc., which may be information directly input by a doctor, or may be automatically calculated from image data by an automatic delineation algorithm such as a neural network algorithm.
  • the target treatment system 100 may also generate information about the organ at risk for reference or use in subsequent steps.
  • the region of interest may also be manually delineated by a physician.
  • the target treatment system 100 may prompt the region of interest information for an operator (eg, a doctor, a physicist) to confirm or confirm after modification.
  • the target treatment system 100 may further prompt the information of the organ at risk for the operator's reference.
  • the relevant operation of the target treatment system 100 prompting the ROI information may be performed after obtaining the ROI information, so that the operator can modify and/or confirm the ROI information automatically segmented by the target treatment system 100. It should be understood that the prompting here is not limited to the manner of being displayed on the display screen, and it may also be other prompting manners, such as realizing the prompting by means of sound, light, voice and the like.
  • the target treatment system 100 may automatically generate a planned isocenter.
  • the automatically generated plan isocenter point may deviate from the plan isocenter point determined by the doctor (for example, the placement isocenter point formed in the stage of placing the target object 120 ), at this time, the doctor can prompt according to the target treatment system 100.
  • the planned isocenter point combined with the planned image, fine-tune the positioning of the target object 120 (eg, by adjusting the position of the bed board of the treatment couch), and modify, update and/or confirm the planned isocenter point.
  • the user may confirm whether to perform the one-stop workflow, and receive information for the user to confirm the workflow. For example, the user can confirm to enter the one-stop workflow, and in response to the user's confirmation, the system can automatically generate area of interest information.
  • the one-stop workflow may also include workflows for positioning, imaging, treating, repositioning, and so on, of the target object 120 .
  • Step 240 generating a treatment plan according to the region of interest information.
  • the treatment plan 150 refers to a plan for the relevant treatment of the target object 120 .
  • the treatment plan 150 may include a plan isocenter on the plan image.
  • a plan isocenter is a point defined in the plan image that represents a point at the machine isocenter of the treatment facility 160 when the target object 120 is treated.
  • the planned isocenter is an important characteristic parameter in radiotherapy. Before the radiotherapy is performed, the target object 120 needs to be positioned so that it coincides with the isocenter of the treatment device 160 .
  • the treatment plan 150 may also include parameters related to the operation of the treatment device 160 .
  • the number of ray shots, individual ray angle data, dose value and/or dose distribution data, multi-leaf grating blade position data, gantry angle data, gantry rotation direction data, collimator angle data, collimator rotation direction data At least one of data, bed value data, etc.
  • the system can automatically generate the planned isocenters from the planning images. For example, after the system automatically generates the region of interest information according to the plan image, the system may further automatically generate the plan isocenter point according to the region of interest information.
  • the system may also obtain the planned isocenter by receiving input from the user.
  • the user can directly operate on the plan image to determine the position of the plan isocenter and input it to the system, and the system receives the user's input to obtain the plan isocenter.
  • the treatment plan 150 may be developed online based on the region of interest information while the target object 120 is fixed to the positioning device 110 . For example, after the CT scan of the target object 120 is performed, the target object 120 is kept fixed on the positioning device 110 , and at the same time, the treatment plan 150 is formulated by the control unit 140 .
  • a related device may process the plan image of target object 120 through a machine learning model to generate treatment plan 150 .
  • a planned image of the target object 120 can be input into a machine learning model, and the output of the machine learning model can be a model containing parameters related to the treatment device 160 (eg, the number of radiation shots, individual ray angle data, dose values and/or doses)
  • the relevant device may also obtain historical data of the treatment plan 150 from external sources (eg, electronic medical records, medical databases) through the network 170 , and directly access the historical data of the treatment plan 150 according to the historical data of the treatment plan 150 .
  • a treatment plan 150 is generated. There are various methods of generating the treatment plan 150 in the art, which are not limited in the present invention.
  • the treatment plan 150 may be a treatment plan for one of the treatment fractions, or may be a treatment plan for the entire radiotherapy procedure.
  • the set-up point information may also determine one or more set-up points according to the position where the target object 120 is initially set-up and marked on the planning image.
  • the system may generate placement point information on the planning image, the placement point information representing the placement isocenter of the target object 120 .
  • the system may create several setting points according to the setting of the target object 120, and obtain setting point information of the several setting points. For example, the system may create three set-up points, namely set-up points A, B, and C, which are located on the left, right and upper sides of the isocenter of the treatment device 160, respectively, so that the set-up points Point C passes through the line connecting the placement point A and the placement point B to make a vertical line, and the obtained intersection point is the placement isocenter point.
  • the target object 120 may be positioned so that the positioning isocenter coincides with the treatment isocenter of the treatment device 160 .
  • a marker capable of radiographic imaging can be pasted on the body surface of the target object 120 to represent the position of the isocenter of the position, so the marker will be displayed on the planning image, and the marker can be The marker displayed on the plan image serves as the set-up point.
  • the plan isocenter can be used to ensure that the position of the target object 120 corresponding to the plan isocenter is located at the machine isocenter of the treatment device 160 when the treatment plan 150 is executed, so that the treatment device 160 can follow the treatment plan 150
  • the target object 120 is treated with precise radiotherapy. Therefore, by determining whether the placement isocenter coincides with the planned isocenter, it can be effectively determined whether the position of the target object 120 is deviated before treatment. If the placement isocenter and the planned isocenter are determined If they overlap, it means that the position of the target object 120 is correct.
  • the target object 120 can be returned to the initial position through the positioning device 110 so that the planned isocenter of the target object 120 can be located at the position of the treatment device 160 , etc. center point.
  • the coincidence of the placement isocenter point and the plan isocenter point may mean that the coordinate position deviation of the two is less than a preset threshold. That is, if the positional deviation of the two is greater than the preset threshold, it means that the two do not overlap.
  • the size of the preset threshold can be set according to actual needs. For example, for target regions of different target parts, the size of the preset threshold may be different.
  • the preset threshold value may be a certain value range, such as 0.1-0.5 mm.
  • the preset threshold value may be one or more reference values, such as 0.1 mm, 0.2 mm, and the like.
  • the positioning is moved according to the offset between the placement isocenter and the planned isocenter and/or the treatment device, so that the relative position of the positioning device and the treatment device satisfies the treatment plan.
  • the bed shift value may be determined according to the offset between the set up isocenter and the planned isocenter, and in subsequent steps, the positioning device 110 or related components (eg, the bed shift value) may be controlled according to the bed shift value.
  • the plan isocenter can be moved to align with the isocenter of the treatment device 160 so that the relative position of the positioning device 110 and the treatment device 160 satisfies the treatment plan.
  • the placement isocenter is generated when the patient is initially In the positioning stage, the position is generally estimated according to the physiological structure of the target object 120 . Therefore, the planning isocenter can more accurately locate the target site at the machine isocenter of the treatment device 160 than the positioning isocenter.
  • the positioning device 110 may be automatically moved based on the planned isocenter so that the relative position of the positioning device 110 and the treatment device 160 satisfies the treatment plan.
  • the bed-moving value may be determined first according to the offset between the set-up isocenter and the planned isocenter, and the bed-moving value may be sent to the mobile device 180, or the movement may be determined directly according to the bed-moving value
  • the movement value of the device 180 is used to drive the positioning device 110 or related components (for example, the bed board of the treatment couch) to move through the moving device 180, so as to realize the coincidence of the planned isocenter of the target object 120 with the isocenter of the treatment device 160 . More details on the mobile device 180 can be found in FIG. 5 and its related description.
  • an alignment mark is formed on the target part of the target object 120 based on the alignment device 190 .
  • the alignment mark may be a mark formed on the target site by the light emitted by the alignment device 190 , and the alignment mark is used to guide the target object 120 to reset.
  • Lines can be made on the body surface of the target object 120 to record the alignment marks formed by the alignment device 190 for subsequent repositioning.
  • the alignment device 190 can be a laser light with a fixed irradiation angle, for example, there are at least two laser lights, the light irradiated by the laser lights can generate light marks on the body surface of the target object 120 and the different laser lights The light converges at the isocenter of the treatment device 160, and the operator manually resets the scribing operation according to the ray marking, or controls other mechanical devices (eg, robotic arms) to automatically reset the scribing operation, which is used to assist in determining the target of the target object 120.
  • mechanical devices eg, robotic arms
  • the operation related to resetting the target object 120 may be performed at any time after obtaining the planned isocenter, either before or after treatment.
  • the target object 120 may also be guided through the treatment device 160 to reset.
  • the first image data related to the target object 120 may be acquired by the treatment device 160 .
  • the first image data may include a region of interest related to the target part.
  • the patient's position can also be verified under image guidance before performing radiotherapy.
  • the treatment device 160 may acquire a first image of the target object 120 using CBCT, orthographic X-ray imaging, or 2D X-ray imaging data, the first image data can be a 2D or 3D image and can display a region of interest of the target part.
  • the first image data may be used for registration with a plan image corresponding to the treatment plan 150 of the target object 120 to verify the location of the target part of the target object 120 .
  • the above image guidance includes but is not limited to EPID, CT, MRI, CBCT, DR, PET, SPECT, PET/CT, PET/MR, ultrasound or ECT images.
  • EPID EPID
  • CT computed tomography
  • MRI magnetic resonance
  • CBCT magnetic resonance
  • DR PET
  • SPECT PET/CT
  • PET/MR ultrasound or ECT images.
  • those skilled in the art can also select other verification methods to verify the position of the patient according to the prior art.
  • Step 250 use the treatment device 160 to treat the target part of the target object 120 .
  • the treatment plan 150 may be created based on the target site information of the target object 120 in combination with the region of interest information.
  • the optimal beam intensity distribution of each field can be calculated according to the prescribed dose of the target area and the dose limit of the organ at risk, so that the dose distribution actually formed in the target object 120 is close to the prescribed dose.
  • the treatment device 160 may treat the target part of the target object 120 according to the number of radiation shots, the angle data of each ray, the dose value and/or the dose distribution data, etc., to the target object 120 in the treatment plan 150 to achieve accurate Treatment.
  • the treatment plan 150 may be automatically created and optimized automatically.
  • the physician may optimize or update the initial treatment plan through optimization techniques.
  • relevant parameters of the initial treatment plan may be optimized by flux map optimization (FMO) techniques, direct subfield optimization (DAO) techniques, etc., or any combination thereof.
  • the physician may perform a validation operation on the optimized initial treatment plan.
  • the confirmation operation may be to confirm whether the optimization result of the initial treatment plan meets the expected requirements, such as the expected value of the radiation dose level. If the optimization result does not meet the requirements, the optimization can be continued. If the optimization results meet the requirements , the doctor can confirm that the optimized initial treatment plan is the final treatment plan 150 . Doctors can also modify the optimized initial treatment plan and then continue to optimize to obtain more satisfactory optimization results.
  • the target object 120 is affixed to the locating device 110 at all times during the period from when the target object 120 is affixed to the locating device 110 to the end of the procedure.
  • the system can keep the target object 120 fixed on the positioning device 110 by generating a prompt to notify the operator (eg, a doctor) or the target object 120 in a prompt manner.
  • a prompt to notify the operator (eg, a doctor) or the target object 120 in a prompt manner.
  • the period from when the target object 120 is fixed to the positioning device 110 to the end of the first treatment fraction may be 10 min to 30 min. In some embodiments, the period from when the target object 120 is fixed to the positioning device 110 to the end of the first treatment fraction does not exceed 30 minutes.
  • a continuous and integrated radiotherapy process can be implemented for the target object 120, so that the efficiency of determining the treatment plan 150 and the entire radiotherapy process can be improved, and the entire radiotherapy process can be efficiently completed at one time.
  • the process of positioning to the treatment saves unnecessary multiple patient positioning processes, and ensures the consistency of the patient positioning and the position of the treatment, and improves the accuracy of the treatment. For the operator, it simplifies the workflow, avoids repeated operations, and reduces the error factor; for the patient, it reduces the waiting time and the number of visits to the hospital.
  • a detector of the treatment device 160 may be used to receive the measured dose distribution.
  • the treatment device 160 may be provided with an electronic portal imaging system (EPID), which is referred to as a detector here, which is disposed on the frame of the treatment device 160 opposite to the treatment head of the treatment device 160 , And they are located on the upper and lower sides of the target object 120 respectively, so it can receive the radiation beam emitted by the treatment head to receive the measured dose distribution.
  • EPID electronic portal imaging system
  • the treatment plan 150 may be verified in real time based on the measured dose distribution and the treatment plan 150 . More details on real-time verification of the treatment plan 150 can be found in FIG. 3 and its associated description.
  • Figure 3 is a flow diagram of an exemplary process for real-time verification of a treatment plan according to some embodiments of the present specification.
  • At least a portion of the process 300 may be implemented by one or more devices or apparatuses of the target treatment system 100 shown in FIG. 1 .
  • the process 300 may include the following steps:
  • Step 310 determining a reference dose distribution received by the detector based on the planning image and the treatment plan.
  • the system may determine the reference dose distribution received by the detector based on the user-confirmed treatment plan 150 and the plan image.
  • the tissue structure information of the target object 120 may be obtained according to the planning image
  • the parameters of the radiation beam may be obtained according to the treatment plan 150
  • the information of the radiation beam passing through the target object 120 may be obtained by performing a simulation calculation using the tissue structure information and the radiation beam parameters.
  • the reference dose distribution received by the detector under each irradiation angle can be simulated by combining with the energy response of the detector.
  • Step 320 verifying the treatment plan 150 in real time based on the measured dose distribution and the reference dose distribution.
  • the measured dose distribution received by the detector may be compared with the value of the reference dose distribution, thereby enabling real-time verification of the treatment plan 150. For example, if the deviation between the measured dose distribution and the reference dose distribution exceeds a preset range, the user is prompted to stop the treatment device 160 for inspection.
  • the system can also verify the location of the target object 120 in real time through the detector.
  • the detector may acquire an EPID image
  • the system may verify the location of the target object 120 in real time by comparing the location of the region of interest in the EPID image with the location of the region of interest in the planning image. For example, if the positional deviation between the planned isocenter of the target object 120 and the machine isocenter of the treatment device 160 exceeds the threshold, it means that the position of the target object 120 is wrong, and the target object 120 can be adjusted.
  • FIG. 4 is an exemplary block diagram of a target treatment system according to some embodiments of the present specification.
  • the target treatment system 100 may include a positioning device 110 , an imaging device 130 , a treatment device 160 and a control unit 140 .
  • the positioning device 110 can be used to locate the target object 120 and can locate the target object to the imaging device 130 and the treatment device 160 .
  • the positioning device 110 may immobilize a target part (eg, head, limbs) or the whole body of the target subject 120 .
  • the positioning device 110 may be a treatment couch with a positioning function.
  • the positioning device 110 may also be a component of the treatment couch, for example, a fixing rod, a fixing plate, a fixing frame, etc., which are detachably mounted on the treatment couch.
  • the positioning device 110 may also be an associated fixed component, such as a vacuum pad, mask, styrofoam, thermoplastic film, and the like.
  • the positioning device 110 may also be customized for the target object 120 .
  • the positioning device 110 can position the target object 120 to the imaging device 150 and the treatment device 160 . That is, the positioning device 110 can position the target part of the target object 120 at the isocenter of the imaging device 150 for scanning, or the isocenter of the treatment device 160 for treatment.
  • FIG. 7 More details about the positioning device 110 can be found in FIG. 7 and its related description.
  • Imaging device 130 may be used to image target object 120 .
  • imaging device 130 may include CT, MRI, CBCT, DR, PET, SPECT, PET/CT, PET/MR, ultrasound, or ECT.
  • CT computed tomography
  • CBCT CBCT
  • DR PET
  • SPECT PET/CT
  • PET/MR PET/MR
  • ultrasound ultrasound
  • ECT ECT
  • Treatment device 160 may be used to treat target site 120 based on treatment plan 150 .
  • the treatment device 160 may include a LINAC (Linear Electron Accelerator) device, a heavy ion therapy machine, a neutron therapy machine, a proton therapy machine, or a gamma knife.
  • LINAC Linear Electron Accelerator
  • the treatment device 160 may utilize different energies and/or different types of rays generated by various types of accelerators to treat the target site of the target object 120 .
  • the processing device 160 may be a device with different functions. Specifically, in radiotherapy, the treatment device 160 may be a gamma knife and a linear accelerator; in cargo inspection, the treatment device 160 may be an explosive imaging device; in biopsy, the treatment device 160 may be a sampling device, and in interventional During the type of treatment, the treatment device 160 may be a surgical robot.
  • imaging device 130 may be disposed coplanar with treatment device 160 such that the isocenter of imaging device 130 coincides with the isocenter of treatment device 160 . Based on this, before and/or when the target object 120 receives radiotherapy, the planned isocenter of the target site can be coincident with the isocenter of the imaging device 130 and the isocenter of the treatment device 160 at the same time, reducing the risk of the target object 120 being at the same time. Movement between the imaging device 130 and the treatment device 160 to ensure the accuracy of imaging and/or treatment of the target object 120 .
  • the control part 140 can be used to generate the region of interest information according to the plan image acquired by the imaging device 130 ; obtain the plan isocenter point, and formulate the treatment plan 150 based on the plan isocenter point and the region of interest information.
  • the positioning device 110 , the imaging device 130 , the treatment device 160 , and the control component 140 in the above target treatment system 100 may be respectively used to implement a part of the steps of the above target treatment method, and the specific function of each device/component may be With reference to the above-mentioned respective corresponding steps implemented when the target treatment method is executed, the description will not be repeated here.
  • those skilled in the art can reasonably set each device/component, such as the positioning device 110 , the imaging device 130 , the treatment device 160 , and the control component 140 in the target treatment system 100 according to the prior art, which is not limited in the present invention. Explanation is not given.
  • Figure 5 is another exemplary block diagram of a target treatment system according to some embodiments of the present specification.
  • the target treatment system 100 may further include a mobile device 180, which may be used to automatically move the positioning device 110 and/or the treatment device 160 based on the planned isocenter, so that the positioning device 110 and the treatment device are connected to each other.
  • the relative position of 160 satisfies treatment plan 150 .
  • mobile device 180 may be at least a portion of stationary device 110 .
  • the mobile device 180 may be a treatment couch with a mobile function. The position of the bed base of the treatment couch is moved to meet the treatment plan 150 by the drive assembly of the treatment couch.
  • the movement device 180 may be a mechanical device with automatic movement capabilities.
  • the mobile device 180 may also be a drive assembly with an automatic drive function.
  • drive wheels, drive chains, etc. integrated on the positioning device 110 .
  • the moving device 180 may move the positioning device 110 according to the bed-moving values determined by the planned isocenter and the set-up isocenter, so that the planned isocenter may be moved to the isocenter with the treatment device 160 . alignment.
  • the target treatment system 100 may further include an alignment device 190, and the alignment device 190 may be used to: form alignment marks on the target site of the target object 120, and the alignment marks may be used to guide the target object 120 to reposition .
  • the alignment device 190 may be a laser light. For more details on the alignment device 190 guiding the target object 120 to reset, reference may be made to FIG. 2 and its related description.
  • a processor 191 is further included, and the processor 191 can be configured to perform at least one of the following operations: reconstructing a planning image based on the imaging data of the target object 120 , formulating a treatment plan 150 based on the planning image, performing treatment Plan 150 for verification.
  • the above operations are usually performed by the imaging device 130, the control component 140, and the treatment device 160, respectively, while the processor 191 can realize the integrated execution of the operations of each device/component in the target treatment system 100, so as to realize the target treatment system 100.
  • Object 120 executes an integrated radiotherapy workflow.
  • the processor 191 may be a component installed independently, or may be a component integrally installed on the imaging device 130 , the control component 140 , and the treatment device 160 . In some embodiments, reconstructing a plan image, formulating a treatment plan, and validating the treatment plan may be accomplished with only one processor 191 .
  • FIG. 6 is a schematic diagram illustrating a scribing operation on a target site by a scribing device according to some embodiments of the present specification.
  • the target treatment system 100 may further include a scribing device, and the scribing device may perform a scribing operation on the target part of the target object 120 based on the above-mentioned treatment plan 150 to obtain at least one scribing mark 620 .
  • the scribing device may include a robotic arm 610 , and the robotic arm 610 may contact the body surface of the target object 120 through its own motions such as telescoping, moving, and rotating, and based on the treatment plan 150 , the robotic arm 610 may The target part of the object 120 is scribed to obtain at least one scribe mark 620 .
  • the robotic arm 610 may hold a marker pen for performing a scribing operation, and the robotic arm 610 may receive information such as the region of interest information in the treatment plan 150, the center point of the plan, etc., and determine the robotic arm 610 based on the above information.
  • the scribing device may be manually operated to perform the scribing operation.
  • an alignment device 190 eg, a laser light with a fixed illumination angle
  • at least two laser lights can be installed on the scribing device, and the light irradiated by the laser lights can generate light marks on the body surface of the target object 120 and the lights of different laser lights converge at the isocenter of the treatment device 160, The operator can control the robotic arm 610 to perform a scribing operation according to the light mark, and scribing a line on the body surface of the target object 120 to assist in determining the position of the target object 120 .
  • the target treatment system 100 may further include an automatic scribing tool.
  • the automatic scribing tool generally refers to a software tool that controls the scribing device to perform the scribing operation, and can be installed in the control part 140 . Specifically, the automatic scribing tool can be used to send an instruction to the scribing device to make the scribing device perform a scribing operation.
  • the scribe marking 620 may be generated by a scribing operation, which may be performed automatically by the scribing device based on the treatment plan described above.
  • the automatic scribing tool may determine an operation instruction according to the treatment plan, and the operation instruction may instruct the movement path of the robotic arm 610 of the scribing device, and the robotic arm 610 scribes the target site based on the operation instruction.
  • the operation instruction may be manually determined by the user, for example, the user draws a line on the target site according to the light where the laser light is irradiated.
  • the operation instruction may be automatically determined by the system, and after the system determines the operation instruction, it is input to the automatic scribing tool, and further controls the scribing device to scribble the target site.
  • the operation instruction may also be determined in other manners, and the specific manner may be determined according to the actual situation.
  • the scribing operation can be performed during the treatment planning stage, or before or after the first treatment.
  • FIG. 7 is a schematic diagram of a positioning device according to some embodiments of the present specification.
  • the positioning device 110 of the target treatment system 100 includes a housing 110-1, and a filling material 110-2 in a region defined by the housing 110-1.
  • the positioning device 110 may comprise a vacuum pad.
  • the vacuum pad may include a housing 110-1, a filling material 110-2 within a defined area of the housing 110-1.
  • the housing 110-1 may be made of a soft and flexible material, such as a gas impermeable material, a thermoplastic material, or a heat resistant material.
  • the housing 110-1 may include a valve connectable to a vacuum source (eg, a vacuum compressor or vacuum pump).
  • a valve (not shown in Figure 7) may be mounted on the upper surface of the housing 110-1. This valve can be used to inflate and deflate the vacuum pad.
  • a partial vacuum can be created by using a vacuum pump to draw air from the vacuum pad through a valve.
  • a vacuum pad may be placed on the bed of the treatment couch on which the target subject 120 is positioned so that the vacuum pad matches the body contour of the target subject. By vacuuming the vacuum pad, the vacuum pad can keep the shape to record the position information of the target object. During subsequent treatment fractions, the target object can be reset by the vacuum pad with positioning information.
  • filler material 110-2 may be contained within the area defined by housing 110-1.
  • filler material 110-2 may be filled in a region inside housing 110-1.
  • the filler material 110-2 may include foam particles, sponge, cotton, etc., or a combination thereof.
  • Foam particles may include one or more polymeric materials such as resins, fibers, rubber, and the like.
  • Resins may include phenol formaldehyde, urea formaldehyde, melamine formaldehyde, epoxy resin, polyurethane, polyimide, polymethyl methacrylate (PMMA), acrylonitrile butadiene styrene (ABS), polyamide, polylactic acid (PLA) , Polybenzimidazole (PBI), Polycarbonate (PC), Polyethersulfone (PES), Polyetheretherketone (PEEK), Polyethylene (PE), Polyphenylene Ether (PPO), Polyphenylene Sulfide (PPS) ), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), etc.
  • the sponge may include natural cellulose, foamed resin, and the like.
  • the foamed resin may include polyether, polyester, polyvinyl alcohol, and the like.
  • the positioning device 110 may comprise a thermoplastic pad.
  • the thermoplastic mat may refer to a mat that can be deformed under the action of heat.
  • the thermoplastic pad may include a shell of thermoplastic material.
  • the thermoplastic pad may include a shell, a filler material contained within an area defined by the shell.
  • the filler material of the thermoplastic pad may comprise a thermoplastic material.
  • the thermoplastic mat can deform under the action of heat.
  • the positioning information of the target object 120 is recorded through the deformation of the thermoplastic pad.
  • the positioning device 110 may be picked up in the warehouse 810 by an operator (eg, doctor, technician) executing the treatment plan 150 and placed on a treatment couch to perform subsequent operations in the treatment plan 150 .
  • an operator eg, doctor, technician
  • the positioning device 110 can also be picked up by the automatic pick-up device 720 in the warehouse, placed on the treatment couch, and then performed related operations in the subsequent treatment plan 150 .
  • the automatic picking device 720 can determine the position of the positioning device 110 in the warehouse 710 according to the information of the target object 120 and the corresponding disposal plan 150 , and automatically pick up the corresponding position in the warehouse 710 based on the determined position information of the positioning device 110 The positioning device 110.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

本说明书实施例公开了一种目标处置方法和系统,所述方法包括:响应于目标对象被固定于定位装置,利用成像设备对目标对象进行成像;获取目标对象的计划图像;根据计划图像生成感兴趣区域信息;根据感兴趣区域信息生成处置计划,其中,处置计划包括计划图像上的计划等中心点;以及根据处置计划,利用处置设备对目标对象的目标部位进行处置;其中,在目标对象被固定于定位装置开始至处置结束期间,目标对象始终被固定于定位装置。

Description

一种目标处置方法和系统
交叉引用
本申请要求2021年4月2日递交的申请号为202110362014.8的中国申请的优先权,其所有内容通过引用的方式包含于此。
技术领域
本说明书涉及医疗技术领域,特别涉及一种目标处置方法和系统。
背景技术
放疗在癌症治疗中被广泛使用,在患者接受放疗前,医生会针对患者的患病情况制定并完善放疗的处置计划,使得医生可以根据处置计划对患者进行放疗。然而,在制定和完善处置计划的过程中,患者需要经历数日的等待,患者的肿瘤或其他患病组织(例如,肿瘤周围的组织)的结构可能会发生改变。例如,肿瘤可能会生长,变形或收缩。由此,会出现因处置计划更新、患者多次往返医院复查等情况,导致最终放疗的结果产生误差、患者接受放疗的周期过长延误病情等。因此,有必要开发一种目标处置方法和系统。
发明内容
本说明书实施例之一提供一种目标处置方法。所述方法包括:响应于目标对象被固定于定位装置,利用成像设备对所述目标对象进行成像;获取所述目标对象的计划图像;根据所述计划图像生成感兴趣区域信息;根据所述感兴趣区域信息生成处置计划,其中,所述处置计划包括所述计划图像上的计划等中心点;以及根据所述处置计划,利用所述处置设备对所述目标对象的目标部位进行处置;其中,在所述目标对象被固定于所述定位装置开始至处置结束期间,所述目标对象始终被固定于所述定位装置。
本说明书实施例之一提供一种目标处置系统,所述系统包括:定位装置, 用于定位目标对象,且能将所述目标对象定位至成像设备和处置设备;成像设备,用于对所述目标对象进行成像;处置设备,用于基于所述处置计划对所述目标对象的目标部位进行处置;以及控制部件,用于根据所述成像设备所获取的计划图像,生成感兴趣区域信息;获取计划等中心点,并基于所述计划等中心点和所述感兴趣区域信息制定所述处置计划。
本说明书实施例之一提供一种计算机可读存储介质,所述存储介质存储目标处置的计算机指令,当计算机读取存储介质中的目标处置的计算机指令后,所述计算机执行上述技术方案所述方法。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的目标处置系统的应用场景示意图;
图2是根据本说明书一些实施例所示的目标处置方法的示例性过程的流程图;
图3是根据本说明书一些实施例所示的对处置计划进行实时验证的示例性过程的流程图;
图4是根据本说明书一些实施例所示的目标处置系统的示例性模块图;
图5是根据本说明书一些实施例所示的目标处置系统的另一示例性模块图;
图6是根据本说明书一些实施例所示的通过划线设备对目标部位进行划线操作的示意图;
图7是根据本说明书一些实施例所示的定位装置的示意图。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中 所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
图1是根据本说明书一些实施例所示的目标处置系统的应用场景示意图。
如图1所示,在一些实施例的应用场景中,对于目标对象120进行放疗的工作流可以由该目标处置系统100执行,目标处置系统100可以包括定位装置110、成像设备130、控制部件140、处置设备160和网络170。在一些应用场景中可以只包括其中的一部分。在一些实施例中,目标处置系统100可以是同时具备成像功能和放射治疗功能的图像引导放射治疗系统,且该系统的成像功能和放射治疗功能共用定位装置110。在一些实施例中,成像设备130和处置设备160可以是集成一体化的医疗设备,例如公开号为CN106924888A的中国专利申请所公开的放射治疗设备。在一些实施例中,成像设备130和处置设备160可以为非集成一体化的放射治疗设备(例如,相互独立的成像设备和处置设备),本发明对此不进行限定。
在一些应用场景中,患者被固定在定位装置110上,在成像设备130中进行成像,然后在处置设备160中被治疗,医生通过一个或多个控制部件140进行检查和控制,不同的控制部件140、设备之间可以通过网络170连接。例如,患者(例如癌症患者)被固定在治疗床上,在CT设备中被扫描,医生通过一个或多个控制部件140来设置对目标对象120进行放疗的处置计划150,然后基于所述处置计划150患者在放疗设备中接受放疗。
在一些应用场景中,也可以对其他目标对象进行检测和处置,由对应的人员操作终端进行相关操作。例如对元器件、机械部件进行检测和处置。在一些实施例中,成像设备可以对货物进行第一级安全检查,例如X光透视,处置设备160可以对货物进行进一步的处理,例如爆炸物检测。在一些实施例中,成像设备可以对活体进行扫描,处置设备160进行取样。在一些实施例中,在对患者进行介入式治疗时,处置设备160可以为手术机器人。
定位装置110可以用于将目标对象120定位于上述成像设备130和/或处置设备160中。在一些实施例中,定位装置110可以是用于将目标对象120进行定位的任何装置。例如,定位装置110可以是具有定位效果的治疗床。定位装置110也可以是固体定位部件,例如真空垫、面罩等。在一些实施例中,定位装置110可以对目标对象120的姿势进行固定,以使被固定的目标对象120的各身体部位之间的相对位置不变。例如,固定目标对象120处于平躺、屈膝等姿势。目标对象120直至后续一个或多个治疗分次完成前,可以通过定位装置110始终被保持相同的固定状态,以便后续治疗的执行。关于定位装置110的更多细节可以参见图7及其相关描述。
成像设备130可以用于对目标对象120进行成像,产生与目标对象120相关的数据。例如,扫描产生与目标对象120相关的图像。例如,目标对象120的目标部位(例如,肿瘤、患病部位)的靶区图像。其中,靶区包括目标部位的区域以及目标部位可能侵及的区域。在一些实施例中,成像设备130可以是医学成像设备(例如,CT(Computed Tomography,计算机断层扫描)成像设备、 MRI(Magnetic Resonance Imaging,磁共振成像)成像设备、CBCT(Cone Beam Computer Tomography,锥形束投照计算机重组断层影像设备)、DR(Digital Radiography,数字化放射摄影设备)、PET(Positron Emission Computed Tomography,正电子发射型计算机断层显像)成像设备、、SPECT(Single-Photon Emission Computed Tomography,单光子发射型计算机断层显像)成像设备、PET/CT成像设备、PET/MR成像设备、超声设备或ECT(Emission Computed Tomography,发射型计算机断层显像)成像设备等)。
控制部件140可以用于根据所述成像设备130所获取的图像数据,生成感兴趣区域信息;获取计划等中心信息,并基于所述计划等中心信息和所述感兴趣区域信息制定治疗计划。控制部件140可以分别与成像设备130和处置设备160通信连接。
处置计划150可以用于指示如何对目标对象120执行处置(例如放疗)。例如,处置计划150可以用于指示放疗的一个或多个射束如何实施至目标对象120的感兴趣区域。在一些实施例中,处置计划150还可以提供放疗所需的总剂量(例如,0.1Gy、10Gy、50Gy、100Gy等)以及感兴趣区域中的总剂量分布。在一些实施例中,处置计划150可以包含放疗过程开始前用于识别目标对象120处于风险中的器官以及该器官的外部轮廓等,或其任意组合。
处置计划150还可以提供与放疗相关的工作参数集,其可以描述放疗装置如何实施治疗分次的辐射场。工作参数集可以包括机器辐射参数和几何参数。机器辐射参数可以包括辐射源的剂量率(即,MUs/min)、辐射持续时间以及辐射源的模态类型(例如,光子,电子等)信息等,或其任意组合。几何参数可以包括某一时间机架的角度、某一时间机架的旋转速度、某一时间准直器的角度、某一时间准直器的旋转速度、多叶准直器的叶片设置参数(例如,准直器的各个叶片的参数值等)、处置设备160的位置和/或角度等,或其任意组合。
处置设备160可以用于处置目标对象120,例如对目标对象120执行放疗。在一些实施例中,处置设备160可以是放疗设备。例如,LINAC(医用电子直 线加速器)装置、重离子治疗机、中子治疗机、质子治疗机或gamma刀。在一些实施例中,处置设备160可以包括治疗头、机架和准直器等。治疗头可以包括放射源,该放射源可向目标对象120发射放射光束。放射光束可以包括粒子束(例如,中子束、质子束、重离子束、电子束等)、光子束(例如,X射线、γ射线等)等,或者其组合。
网络170可以用于不同设备间的信息传输,也可以与外部进行信息传输。网络可以连接所述及的部分或全部设备。网络可以通过各种可行的方式实现。
在一些实施例中,目标处置系统100还可以包括处理器191,处理器191可以用于执行以下操作中的至少一项:基于所述目标对象的成像数据重建计划图像、基于所述计划图像制定所述处置计划、对所述处置计划进行验证。在一些实施例中,处理器191可以是独立安装的部件,也可以是集成安装在成像设备130、控制部件140、处置设备160上的部件。关于目标处置系统100的更多细节可以参见图4、图5及其相关描述。
图2是根据本说明书一些实施例所示的目标处置方法的示例性流程图。
在一些实施例中,流程200中至少一部分可以通过图1所示的目标处置系统100的一个或者多个设备或装置实现。该流程200可以包括以下步骤:
步骤210,响应于目标对象被固定于定位装置,利用成像设备对所述目标对象进行成像。
目标对象120可以是接受治疗的对象(例如,患者)。在一些应用场景中,医生可根据目标对象120的病灶位置,引导固定于定位装置110上的目标对象120进行摆位,摆位的目的在于使目标对象120的病灶位置接近或位于处置设备160的等中心点(也称为处置设备160的机器等中心点)。进一步的,可以利用定位装置110(例如,真空垫或面罩等)对目标对象120进行固定,目标对象120直至后续治疗完成前,可以通过定位装置110始终被保持固定状态,以便后续治疗的执行。其中,处置设备160的等中心点是指处置设备160的治疗头的旋转等中心点,即处置设备160的治疗等中心点。具体的,对目标对象 120进行摆位的更多细节详见后文描述。
目标对象120可以通过多种方式被固定于定位装置110。在一些实施例中,目标对象120可以在医生的指导下被固定于定位装置110上。例如,医生可以根据标准摆位指导目标对象120置于定位装置110的规范位置上,再通过定位装置110的固定功能对目标对象120进行固定,以使目标对象120相对于定位装置110实现准确定位的效果,便于目标对象120接受后续与放疗相关的检测、放射操作等。例如,定位装置110可以为真空垫,目标对象120平躺在真空垫后,医生可以指导目标对象120摆出规范的姿势,并通过对真空垫执行抽真空的操作以使目标对象120以当前姿势实现固定。
在一些实施例中,目标对象120可以通过智能引导设备被固定于定位装置110。在一些实施例中,智能引导设备可以用于引导目标对象120确定自身被固定的位置和/或姿势等。例如,智能引导设备可以通过语音提示和/或画面展示的方式引导目标对象120确定对应的定位装置110,并提示目标对象120以规范姿势(例如,平躺)置于定位装置110上。所述智能引导设备可以包括影像设备(例如,摄像头),用于实时采集患者当前的位置信息和/或姿势,所述智能引导设备或控制部件140或处理器191将采集的实时位置和/或姿势与标准摆位指导进行比较并向患者展示比较结果,使得患者可以根据摆位结果进行调整。
在一些实施例中,医生还可以通过远程指导的方式将目标对象120固定于定位装置120上。例如,医生可以通过影像设备(例如,摄像头)获取目标对象120的实时视频画面,并通过语音交互的方式指导目标对象120固定于定位装置110。
在一些实施例中,医生或智能引导设备还可以提示置于定位装置110的目标对象120进行姿势调整,在确认目标对象120的姿势调整正确后,再将目标对象120通过上述方式固定于定位装置110。
在一些实施例中,智能引导设备可以与其他设备(例如,CT扫描设备、处置设备160等)连接,并根据目标对象120的病患信息,指导目标对象120 被固定于定位装置110。例如,智能引导设备可以从控制部件140处获取目标对象120的待扫描部位为小腿,则智能引导设备可以指导目标对象120以屈膝姿态固定于定位装置110。
在一些实施例中,可以通过多种方式确定目标对象120被固定于定位装置110。在一些实施例中,医生可以通过影像设备(例如,摄像头)检测并确定目标对象120被固定于定位装置110。例如,摄像头可以获取位于同一空间中同时包含定位装置110和目标对象120的图像,医生或控制部件140可以根据该图像(或结合图像识别技术)识别出目标对象120被固定于定位装置110后的位置是否正确、固定程度是否稳定等,若得到的识别结果无问题,则可以确定目标对象120被固定于定位装置110。若得到的识别结果出现问题,例如识别出目标对象120被固定的位置不正确、被固定的程度不稳定,则医生可以对目标对象120的固定位置、固定方式、固定的松紧程度等做出及时调整。
在一些实施例中,可以通过智能引导设备接收目标对象120固定后的输入信息,确定目标对象120被固定于定位装置110。例如,智能引导设备可以接收目标对象120被固定后的位置信息(例如,目标对象120与定位装置110之间的相对位置,定位装置110与成像设备130之间的相对位置)、目标对象120被固定后是否稳定等输入信息,并对上述输入信息进行处理,输出目标对象120是否被固定于定位装置110的确定结果。例如,确定结果可以为“是”或“否”。若确定结果为“是”,则可以确定目标对象120被固定于定位装置110。若确定结果为“否”,则智能引导设备可以对目标对象120进行提示,例如提示目标对象120与定位装置110之间的相对位置错误、提示目标对象120置于定位装置110上的姿势不规范等。
在一些实施例中,目标对象120被固定于定位装置110后,可以利用成像设备130对所述目标对象120进行成像。例如,医生可以利用成像设备130对目标对象120通过医学扫描的方式进行成像。
关于成像设备130的更多细节可以参见图1和图4及其相关描述,关于 通过成像设备130获取目标对象120的图像数据的更多细节可以参见步骤220的相关描述。
步骤220,获取所述目标对象的计划图像。
计划图像是指在制定放疗计划时用到的图像数据。在一些实施例中,计划图像可以包括但不限于CT、MRI、CBCT、DR、PET、SPECT、PET/CT、PET/MR、超声或ECT等本领域常用的医学影像的数据。
在一些实施例中,可以通过成像设备130获取目标对象120的计划图像。例如,可以通过移动定位装置110,将目标对象120移动至成像设备130的扫描区域进行扫描,以获取目标对象120的计划图像。
步骤230,根据所述计划图像生成感兴趣区域信息。
感兴趣区域可以是组织、器官或任何其他医学感兴趣区域。例如,感兴趣区域可以是目标对象120的CT扫描图像或分割图像中的病灶(例如,肿瘤)部位,或是与病灶位置对应的靶区和/或靶区周围的危及器官区域。
在一些实施例中,可以将步骤220中获取的计划图像输入至目标处置系统100,目标处置系统100可以根据计划图像自动生成感兴趣区域信息。在一些实施例中,目标处置系统100可以根据计划图象识别出目标对象120的目标部位信息,并根据该目标部位信息对计划图像进行分割,以得到所述感兴趣区域信息。其中,目标部位信息可以为病灶信息或其它如病历信息、病种信息等,其可以是医生直接输入的信息,也可以是通过神经网络算法等自动勾画算法根据图像数据自动计算得到。更进一步的,在生成感兴趣区域信息的同时,目标处置系统100也可以生成危及器官的信息,以供后续步骤参考或使用。
在一些实施例中,感兴趣区域还可以是由医生手动勾画的。
在一些实施例中,在得到所述感兴趣区域信息后,目标处置系统100可以提示所述感兴趣区域信息,以供操作者(例如,医生、物理师)确认或修改后确认。在一些实施例中,目标处置系统100还可以进一步提示危及器官的信息,以供操作者参考。在一些实施例中,目标处置系统100提示感兴趣区域信 息的相关操作可以在得到感兴趣区域信息后执行,以便操作者对目标处置系统100自动分割的感兴趣区域信息进行修改和/或确认。需理解,这里的提示,并非限定为在显示屏上显示的方式,其还可以是其它的提示方式,如通过声、光、语音等方式实现提示。
在一些实施例中,目标处置系统100可以自动生成计划等中心点。所述自动生成的计划等中心点可能与医生判断的计划等中心点(例如在对目标对象120进行摆位阶段形成的摆位等中心点)有偏差,此时医生可以根据目标处置系统100提示的计划等中心点,结合计划图像,对目标对象120的摆位进行微调(如通过调整治疗床的床板的位置来实现),并对计划等中心点进行修改、更新和/或确认。
在一些实施例中,获取目标对象120的计划图像之后,可以由用户确认是否进行一站式工作流,接收用户确认工作流的信息。例如,用户可以确认进入一站式工作流,则响应于用户的确认,系统可以自动生成感兴趣区域信息。
在一些实施例中,一站式工作流还可以包括对目标对象120进行摆位、成像、处置、复位等工作流程。
步骤240,根据所述感兴趣区域信息生成处置计划。
处置计划150是指对目标对象120进行相关处置的计划。在一些实施例中,处置计划150可以包括计划图像上的计划等中心点。计划等中心点是在计划图像中定义的点,其表示在对目标对象120进行处置时位于处置设备160的机器等中心的点。计划等中心点为放射治疗中的重要特征参数,在放疗执行前需要对目标对象120进行摆位,使其与处置设备160的等中心点重合。在一些实施例中,处置计划150还可以包括与处置设备160操作相关的参数。例如,射线投放的数目、各射线角度数据、剂量值和/或剂量分布数据、多叶光栅叶片位置数据、机架角度数据、机架旋转方向数据、准直器角度数据、准直器旋转方向数据、床值数据等中的至少一项。
在一些实施例中,系统可以根据计划图像自动生成计划等中心点。例如, 系统在根据计划图像自动生成感兴趣区域信息后,可以进一步根据该感兴趣区域信息自动生成计划等中心点。
在一些实施例中,系统还可以通过接收用户的输入来获取计划等中心点。例如,用户可以在计划图像上直接操作确定计划等中心点的位置并输入系统,系统接收用户的输入从而获取计划等中心点。
在一些实施例中,在目标对象120被固定于定位装置110的期间,可以根据感兴趣区域信息在线制定处置计划150。例如,在对目标对象120进行CT扫描之后,目标对象120保持固定于定位装置110上,同时,利用控制部件140进行处置计划150的制定。
在一些实施例中,相关设备(例如,控制部件140)可以通过机器学习模型对目标对象120的计划图像进行处理,生成处置计划150。例如,可以将目标对象120的计划图像输入至机器学习模型,机器学习模型的输出可以是包含处置设备160相关参数(例如,例如,射线投放的数目、各射线角度数据、剂量值和/或剂量分布数据、多叶光栅叶片位置数据、机架角度数据、机架旋转方向数据、准直器角度数据、准直器旋转方向数据、床值数据等中的至少一项)的处置计划150。
在一些实施例中,相关设备(例如,控制部件140)还可以通过网络170从外部源(例如,电子病历、医疗数据库)获取处置计划150的历史数据,并根据该处置计划150的历史数据直接生成处置计划150。在本领域中有多种生成处置计划150的方法,本发明中不进行限定。
由于目标对象120的整个放疗流程可能包括多个治疗分次,处置计划150可以是针对其中一个治疗分次的处理计划,也可以是针对整个放疗流程的处理计划。在一些实施例中,摆位点信息还可以根据对目标对象120进行初次摆位的位置确定一个或多个摆位点并标记在计划图像上。
在一些实施例中,系统可以在所述计划图像上生成摆位点信息,所述摆位点信息代表所述目标对象120的摆位等中心点。在一些实施例中,系统可以 根据目标对象120的摆位,创建若干个摆位点,得到该若干个摆位点的摆位点信息。例如,系统可以创建三个摆位点,分别为摆位点A、B、C,摆位点A、B、C分别位于处置设备160的等中心点的左右两侧和上侧,使得摆位点C经过摆位点A和摆位点B的连线作垂线,得到的交点即为摆位等中心点。在摆位阶段,可以对目标对象120进行摆位,使得该摆位等中心点与处置设备160的治疗等中心点重合。
在一些实施例中,可以对目标对象120进行摆位后在其体表粘贴可以进行辐射成像的标记物以代表所述摆位等中心点的位置,因此计划图像上会显示标记物,可以将所述计划图像上显示的标记物作为所述摆位点。
在一些实施例中,可以基于所述摆位点信息确定所述摆位等中心点与所述计划等中心点是否重合。
由于计划等中心点可以用于在执行处置计划150时,保证目标对象120的与所述计划等中心点对应的位置位于处置设备160的机器等中心点,以实现处置设备160能够按照处置计划150对目标对象120进行精准地放疗处置。因此,通过确定摆位等中心点与计划等中心点是否重合,可以有效地判断出在治疗前对目标对象120进行摆位的位置是否出现偏差,若确定摆位等中心点与计划等中心点重合,则表示对目标对象120进行摆位的位置正确,在治疗时可以通过定位装置110将目标对象120回到初次摆位的位置使得目标对象120的计划等中心点能够位于处置设备160的等中心点。
摆位等中心点与计划等中心点重合可以是指两者的坐标位置偏差小于预设阈值。也即,若两者的位置偏差大于预设阈值,则表示两者不重合。在一些实施例中,预设阈值的大小可以根据实际需求设定。例如,对于不同目标部位的靶区,预设阈值的大小可能不同。例如,预设阈值可以为一定的数值范围,例如0.1~0.5mm。又例如,预设阈值可以为一个或多个参考值,例如0.1mm、0.2mm等。
在一些实施例中,若所述摆位等中心点与所述计划等中心点不重合,则 根据所述摆位等中心点与所述计划等中心点之间的偏移,移动所述定位装置和/或所述处置设备,以使所述定位装置与所述处置设备的相对位置满足所述处置计划。
在一些实施例中,可以根据摆位等中心点与计划等中心点之间的偏移确定移床值,后续步骤中可根据该移床值控制定位装置110或相关部件(例如,治疗床的床板)进行移动,从而可将计划等中心点移至与处置设备160的等中心点对准,以使定位装置110与处置设备160的相对位置满足所述处置计划。
由于计划等中心点是在计划图像中进行定义的,而且,在计划图像中可以看到目标对象120的内部解剖结构,摆位等中心点是在患者进行初次摆位时产生的,在初次摆位阶段一般根据目标对象120的生理结构进行估计位置,因此计划等中心点相较于摆位等中心点能够更准确地使目标部位位于处置设备160的机器等中心点。
在一些实施例中,可以基于所述计划等中心点,自动移动所述定位装置110,以使所述定位装置110与所述处置设备160的相对位置满足所述处置计划。在一些实施例中,可以先根据摆位等中心点与计划等中心点之间的偏移确定移床值,并将该移床值发送给移动装置180,或者直接根据该移床值确定移动装置180的移动值,以通过移动装置180驱动定位装置110或相关部件(例如,治疗床的床板)等移动的方式,实现将目标对象120的计划等中心点与处置设备160的等中心点重合。关于移动装置180的更多细节可以参见图5及其相关描述。
在一些实施例中,在所述定位装置110与所述处置设备160的相对位置满足所述处置计划后,基于对准设备190在所述目标对象120的所述目标部位形成对准标记。其中,对准标记可以是由对准设备190发出的光线形成在目标部位的标记,所述对准标记用于引导所述目标对象120进行复位。
在一些应用场景中,由于放疗的治疗过程常需要分成多个治疗分次执行,为了便于在第二次和/或之后再次执行时能方便地使处置设备160对准目标对象120的目标部位,可于目标对象120的体表进行划线以记录所述对准设备190形 成的对准标记用于之后的复位。
在一些实施例中,对准设备190可以为具有固定照射角度的激光灯,例如有至少两个激光灯,激光灯照射出的光线可以在目标对象120的体表产生光线标记并且不同激光灯的光线交汇于处置设备160的等中心点,操作者根据光线标记进行手动复位划线操作,或者控制其它机械设备(例如,机械臂)进行自动复位划线操作,用于辅助确定目标对象120的目标部位(例如,病灶位置),并在后续对目标对象120执行第二次和/或以上放疗时,只需在摆位阶段将划线与激光线重合即可。需要说明的是,对目标对象120进行复位的相关操作,可以是在得到计划等中心点后的任一时刻执行,既可以是在治疗前,也可以是在治疗后执行。
在一些实施例中,还可以通过处置设备160引导目标对象120进行复位。
在一些实施例中,可以通过处置设备160获取与目标对象120相关的第一图像数据。其中,第一图像数据可以包括与目标部位相关的感兴趣区域。
在一些应用场景中,为了提高治疗的准确性,在执行放射治疗前,还可以在影像引导下对患者的位置进行验证。在一些实施例中,在将目标对象120的目标部位移动至处置设备160的等中心点后,处置设备160可采用CBCT、正交X光成像或2D X光成像获取目标对象120的第一图像数据,第一图像数据可以为2D或3D图像并且能够显示目标部位的感兴趣区域。可以利用该第一图像数据与目标对象120的处置计划150对应的计划图像进行配准,以对目标对象120目标部位的位置进行验证。当然上述的影像引导包括但不限于EPID、CT、MRI、CBCT、DR、PET、SPECT、PET/CT、PET/MR、超声或ECT影像。当然本领域技术人员也可根据现有技术选择其其它的验证方式对患者的位置进行验证。
步骤250,根据所述处置计划150,利用所述处置设备160对所述目标对象120的目标部位进行处置。在一些实施例中,处置计划150可以根据目标对象120的目标部位信息,结合感兴趣区域信息创建。例如,可以根据靶区的处 方剂量、危及器官的剂量限制,计算出每个射野的最佳射束强度分布,使得实际在目标对象120体内形成的剂量分布与处方剂量接近。又例如,处置设备160可以根据处置计划150中对目标对象120放射的射线投放的数目、各射线角度数据、剂量值和/或剂量分布数据等,对目标对象120的目标部位进行处置,实现准确的治疗。
在一些实施例中,可以自动创建处置计划150,并自动进行优化。在一些实施例中,医生可以通过优化技术对初始处置计划进行优化或更新。在一些实施例中,可以通过通量图优化(FMO)技术、直接子野优化(DAO)技术等,或其任何组合来优化初始处置计划的相关参数。在一些实施例中,医生可以对优化后的初始处置计划进行确认操作。在一些实施例中,确认操作可以是确认对初始处置计划的优化结果是否达到期望要求,例如放射剂量水平的期望值,若该优化结果未达到要求,则可以继续进行优化,若该优化结果达到要求,则医生可以确认优化后的初始处置计划为最终的处置计划150。医生也可以对优化后的初始处置计划进行修改然后继续进行优化以得到更满意的优化结果。
在一些实施例中,在目标对象120被固定于定位装置110开始至处置结束期间,目标对象120始终被固定于定位装置110。在一些实施例中,系统可以通过产生提示,以提示的方式告知操作者(例如医生)或目标对象120,实现将目标对象120保持固定于定位装置110上。关于将目标对象120固定于定位装置110的更多细节可以参见步骤210的相关描述。
在一些应用场景中,从目标对象120被固定于定位装置110开始至首个治疗分次结束的期间可以为10min~30min。在一些实施例中,从所述目标对象120被固定于所述定位装置110开始至所述首个治疗分次结束的期间不超过30min。基于对目标对象120执行用时短暂的放疗工作流,可以对目标对象120实现连续的、一体化的放疗流程,从而能够提升确定处置计划150和整个放疗流程的效率,可以高效地一次性地完成从定位到治疗的过程,节省了不必要的多次患者摆位过程,且保证患者定位与治疗的体位一致性,提高了治疗的精度。 对于操作者,则简化了工作流程,避免了重复操作,减少了误差因素;对于患者来说,减少了等待的时间,减少了去医院的次数。
在一些实施例中,在处置设备160对所述目标对象120的目标部位进行处置时,可以利用所述处置设备160的探测器接收实测剂量分布。在一些实施例中,在处置设备160上可以设置有电子射野影像系统(EPID),在此简称探测器,其和处置设备160的治疗头相对设置于所述处置设备160的机架上,且分别位于目标对象120的上下两侧,因此其可以接收治疗头发出的辐射束以接收实测剂量分布。
在一些实施例中,可以根据所述实测剂量分布和所述处置计划150对所述处置计划150进行实时验证。关于对处置计划150进行实时验证的更多细节可以参见图3及其相关描述。
图3是是根据本说明书一些实施例所示的对处置计划进行实时验证的示例性过程的流程图。
在一些实施例中,流程300中至少一部分可以通过图1所示的目标处置系统100的一个或者多个设备或装置实现。该流程300可以包括以下步骤:
步骤310,基于所述计划图像和所述处置计划确定所述探测器接收到的参考剂量分布。
在一些实施例中,系统可以根据用户确认后的处置计划150和计划图像确定探测器接收到的参考剂量分布。例如,可以根据计划图像得到目标对象120的组织结构信息,根据处置计划150得到辐射束的参数,利用所述组织结构信息和所述辐射束参数进行模拟计算得到穿过目标对象120的辐射束信息,结合探测器的能量响应可以模拟得到各照射角度下所述探测器接收到的参考剂量分布。
步骤320,基于所述实测剂量分布与所述参考剂量分布对所述处置计划150进行实时验证。在一些实施例中,在处置设备160对目标对象120进行处置的过程中,可以比较探测器接收到的实测剂量分布与该参考剂量分布的值,从 而能够对处置计划150进行实时验证。例如,若实测剂量分布与参考剂量分布偏差超出预设范围,则提示用户可以对处置设备160停机检查。
在一些实施例中,系统还可以通过探测器对目标对象120的位置进行实时验证。例如,探测器可以获取EPID图像,系统可以通过比较EPID图像中感兴趣区域的位置与计划图像中感兴趣区域的位置,对目标对象120的位置进行实时验证。例如,若目标对象120的计划等中心点与处置设备160的机器等中心点的位置偏差超出阈值,则表示目标对象120的位置出现错误,可以对目标对象120进行摆位调整。
图4是根据本说明书一些实施例所示的目标处置系统的示例性模块图。
如图4所示,所述目标处置系统100可以包括定位装置110、成像设备130、处置设备160和控制部件140。
定位装置110可以用于定位目标对象120,且能将所述目标对象定位至成像设备130和处置设备160。在一些实施例中,定位装置110可以固定目标对象120的目标部位(例如头部、四肢)或全身。在一些实施例中,定位装置110可以是具有定位功能的治疗床。在一些实施例中,定位装置110还可以是治疗床上的组件,例如,可拆卸安装在治疗床上的固定杆、固定板、固定架等。在一些实施例中,定位装置110也可以是相关固定部件,例如,真空垫、面罩、发泡胶、热塑膜等。在一些实施例中,定位装置110还可以针对目标对象120进行定制。
在一些实施例中,定位装置110能将所述目标对象120定位至成像设备150和处置设备160。也即,定位装置110能够将目标对象120的目标部位定位于成像设备150的等中心点进行扫描,或处置设备160的等中心点进行处置。
关于定位装置110的更多细节可以参见图7及其相关描述。
成像设备130可以用于对目标对象120进行成像。在一些实施例中,成像设备130可以包括CT、MRI、CBCT、DR、PET、SPECT、PET/CT、PET/MR、超声或ECT。关于成像设备130对目标对象120进行成像的更多细节可以参见 图2及其相关描述。
处置设备160可以用于基于处置计划150对目标部位120进行处置。在一些实施例中,处置设备160可以包括LINAC(医用电子直线加速器)装置、重离子治疗机、中子治疗机、质子治疗机或gamma刀。
在一些实施例中,处置设备160可以利用各类加速器所产生不同能量和/或不同类型的射线,对目标对象120的目标部位进行处置。在不同的应用场景中,处置设备160可以为具有不同功能的设备。具体地,在放射治疗中,处置设备160可以是伽马刀和直线加速器;在货物检查中,处置设备160可以是爆炸物成像设备;在活体扫描中,处置设备160可以是取样设备,在介入式治疗时,所述处置设备160可以为手术机器人。
在一些实施例中,成像设备130可以与处置设备160共面设置,以使成像设备130的等中心点与处置设备160的等中心点重合。基于此,可以使得目标对象120接受放疗前和/或放疗时,其目标部位的计划等中心点能够同时与成像设备130的等中心点、处置设备160的等中心点重合,减少目标对象120在成像设备130和处置设备160之间的移动,以保证对目标对象120进行成像和/或处置的准确性。
控制部件140可以用于根据成像设备130所获取的计划图像,生成感兴趣区域信息;获取计划等中心点,并基于计划等中心点和感兴趣区域信息制定处置计划150。
需要说明的是,上述目标处置系统100中的定位装置110、成像设备130、处置设备160、控制部件140可以分别用于实现上述目标处置方法的一部分步骤,其每个设备/部件的具体功能可参考上述关于目标处置方法被执行时实现的各个对应的步骤,这里不再重复说明。此外,本领域技术人员可根据现有技术对目标处置系统100中的定位装置110、成像设备130、处置设备160、控制部件140等各个设备/部件进行合理的设置,本发明对此不限也不作展开说明。
图5是根据本说明书一些实施例所示的目标处置系统的另一示例性模块 图。
在一些实施例中,目标处置系统100还可以包括移动装置180,移动装置180可以用于:基于计划等中心点,自动移动定位装置110和/或处置设备160,以使定位装置110与处置设备160的相对位置满足处置计划150。
在一些实施例中,移动装置180可以是固定装置110的至少一部分。例如,移动装置180可以是具有移动功能的治疗床。通过治疗床的驱动组件移动所述治疗床的床板的位置以满足处置计划150。
在一些实施例中,移动装置180可以是具有自动移动功能的机械设备。例如,智能机械推车。在一些实施例中,移动装置180也可以为具有自动驱动功能的驱动组件。例如,集成在定位装置110上的驱动轮、驱动链条等。
在一些实施例中,移动装置180可以根据计划等中心点与摆位等中心点确定的移床值对定位装置110进行移动,从而可将计划等中心点移至与处置设备160的等中心点对准。
在一些实施例中,目标处置系统100还可以包括对准设备190,对准设备190可以用于:在目标对象120的目标部位形成对准标记,对准标记可以用于引导目标对象120进行复位。在一些实施例中,对准设备190可以为激光灯。关于对准设备190引导目标对象120进行复位的更多细节可以参见图2及其相关描述。
在一些实施例中,还包括处理器191,处理器191可以用于执行以下操作中的至少一项:基于目标对象120的成像数据重建计划图像、基于所述计划图像制定处置计划150、对处置计划150进行验证。传统方式中,上述操作通常是由成像设备130、控制部件140、处置设备160分别执行的,而处理器191可以实现将目标处置系统100中各设备/部件的操作一体化执行,以实现对目标对象120执行一体化的放疗工作流。在一些实施例中,处理器191可以是独立安装的部件,也可以是集成安装在成像设备130、控制部件140、处置设备160上的部件。在一些实施例中,可以仅通过一台处理器191即可以实现重建计划图像、 制定处置计划以及对处置计划进行验证多个操作。
图6是根据本说明书一些实施例所示的通过划线设备对目标部位进行划线操作的示意图。
在一些实施例中,目标处置系统100还可以包括划线设备,划线设备可以基于上述处置计划150,对目标对象120的目标部位进行划线操作,得到至少一个划线标记620。
如图6所示,划线设备可以包括机械臂610,机械臂610可以通过自身的伸缩、移动、转动等运动方式接触目标对象120的身体表面,并基于处置计划150,机械臂610可以对目标对象120的目标部位进行划线操作,得到至少一个划线标记620。例如,机械臂610上可以夹持有用于执行划线操作的记号笔,机械臂610可以接收处置计划150中的感兴趣区域信息、计划等中心点等信息,并基于上述信息确定机械臂610需要移动和/或伸缩的数值,以带动夹持的记号笔对目标对象120的目标部位进行划线操作,得到划线标记620,该划线标记620的中心位于处置设备160的机器等中心点,使得目标对象120再次回到定位装置110上时,可以依据该划线标记620实现复位。
在一些实施例中,划线设备可以由人工操作来执行划线操作。在一些实施例中,还可以在划线设备上安装对准设备190(例如,具有固定照射角度的激光灯)。具体的,可以在划线设备上安装至少两个激光灯,其激光灯照射出的光线可以在目标对象120的体表产生光线标记并且不同激光灯的光线交汇于处置设备160的等中心点,操作者可以根据光线标记控制机械臂610执行划线操作,在目标对象120的体表划线,用于辅助确定目标对象120的位置。
在一些实施例中,目标处置系统100还可以进一步包括自动划线工具。自动划线工具通常是指控制划线设备执行划线操作的软件工具,可以安装在控制部件140。具体地,自动划线工具可以用于给所述划线设备发送指令,以使所述划线设备进行划线操作。
在一些实施例中,划线标记620可以通过划线操作产生,划线操作可以 由划线设备基于上述处置计划自动执行。具体地,自动划线工具可以根据处置计划确定操作指令,操作指令可以指示划线设备的机械臂610的移动路径,机械臂610基于操作指令在目标部位划线。
在一些实施例中,操作指令可以由用户人工确定,例如用户根据激光灯照射处的光线在目标部位划线。
在一些实施例中,操作指令可以由系统自动确定,系统确定操作指令后输入到自动划线工具,进一步控制划线设备在目标部位划线。
在一些实施例中,操作指令还可以通过其他方式确定,具体方式可以根据实际情况确定。
在一些实施例中,划线操作可以在处置计划制定阶段执行,也可以在第一次处置之前或之后执行。
图7是根据本说明书一些实施例所示的定位装置的示意图。
如图7所示,目标处置系统100的定位装置110包括壳体110-1、在壳体110-1确定区域内的填充材料110-2。
在一些实施例中,定位装置110可以包括真空垫。在一些实施例中,真空垫可以包括壳体110-1、在壳体110-1确定区域内的填充材料110-2。在一些实施例中,壳体110-1可以由柔软且柔性的材料制成,例如不透气的材料、热塑性材料或耐热材料。在一些实施例中,壳体110-1可包括可连接至真空源(例如,真空压缩机或真空泵)的阀。阀(图7中未示出)可以安装在壳体110-1的上表面上。该阀可用于使真空垫充气和放气。例如,可以通过使用真空泵通过阀从真空垫中抽出空气来产生部分真空。真空垫可以放置在治疗床的床板上,所述目标对象120位于所述真空垫上,因此真空垫和目标对象的身体轮廓匹配。通过对真空垫进行抽真空的操作使得真空垫可以保持该形状以记录目标对象的摆位信息。在之后的治疗分次时,通过该带有摆位信息的真空垫可以使目标对象复位。
在一些实施例中,填充材料110-2可以被包含在由壳体110-1限定的区域 内。例如,填充材料110-2可以被填充在壳体110-1内部的区域中。填充材料110-2可以包括泡沫颗粒、海绵、棉等,或其组合。泡沫颗粒可包括一种或多种聚合物材料,例如树脂、纤维、橡胶等。树脂可以包括酚醛、脲醛、三聚氰胺甲醛、环氧树脂、聚氨酯、聚酰亚胺、聚甲基丙烯酸甲酯(PMMA)、丙烯腈丁二烯苯乙烯(ABS)、聚酰胺、聚乳酸(PLA)、聚苯并咪唑(PBI)、聚碳酸酯(PC)、聚醚砜(PES)、聚醚醚酮(PEEK)、聚乙烯(PE)、聚苯醚(PPO)、聚苯硫醚(PPS)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)等。海绵可以包括天然纤维素、泡沫树脂等。泡沫树脂可以包括聚醚、聚酯、聚乙烯醇等。在自然状态下(即未执行抽真空操作的情况下),所述填充材料110-2可以在壳体110-1内自由移动;在对所述真空垫(或壳体110-1)执行抽真空操作后,所述填充材料110-2的移动被限制使得壳体110-1形成的形状与目标对象120的轮廓一致。
在一些实施例中,定位装置110可以包括热塑性垫。所述热塑性垫可以是指一种在热的作用下可以发生形变的垫子。所述热塑性垫可以包括有热塑性材料的壳体。又例如,所述热塑性垫可以包括壳体、包含在由壳体确定的区域内的填充材料。所述热塑性垫的所述填充材料可以包括热塑性材料。所述热塑性垫在热的作用下可以发生变形。通过所述热塑性垫的形变记录目标对象120的摆位信息。
在一些实施例中,定位装置110可以由执行处置计划150的操作者(例如,医生、技师)在仓库810中拿取,放置到治疗床上,以执行后续处置计划150中的相关操作。
在一些实施例中,定位装置110还可以由自动拾取装置720在仓库中拿取,放置于治疗床后执行后续处置计划150中的相关操作。具体地,自动拾取装置720可以根据目标对象120的信息以及相应的处置计划150,确定定位装置110在仓库710中的位置,基于确定的定位装置110的位置信息,在仓库710中自动拿取相应的定位装置110。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上” 来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本说明书引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的申请历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲突的地方,以本说明书的描述、定义和/或术语的使用为准。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (20)

  1. 一种目标处置方法,包括:
    响应于目标对象被固定于定位装置,利用成像设备对所述目标对象进行成像;
    获取所述目标对象的计划图像;
    根据所述计划图像生成感兴趣区域信息;
    根据所述感兴趣区域信息生成处置计划,其中,所述处置计划包括所述计划图像上的计划等中心点;以及
    根据所述处置计划,利用所述处置设备对所述目标对象的目标部位进行处置;其中,在所述目标对象被固定于所述定位装置开始至处置结束期间,所述目标对象始终被固定于所述定位装置。
  2. 根据权利要求1所述的方法,进一步包括:
    在所述计划图像上生成摆位点信息,所述摆位点信息代表所述目标对象的摆位等中心点;以及
    基于所述摆位点信息确定所述摆位等中心点与所述计划等中心点是否重合。
  3. 根据权利要求2所述的方法,进一步包括:
    若所述摆位等中心点与所述计划等中心点不重合,则根据所述摆位等中心点与所述计划等中心点之间的偏移,移动所述定位装置和/或所述处置设备,以使所述定位装置与所述处置设备的相对位置满足所述处置计划。
  4. 根据权利要求1所述的方法,进一步包括:
    基于所述计划等中心点,自动移动所述定位装置,以使所述定位装置与所述处置设备的相对位置满足所述处置计划。
  5. 根据权利要求1所述的方法,进一步包括:
    在处置设备对所述目标对象的目标部位进行处置时,利用所述处置设备的 探测器接收实测剂量分布;以及
    根据所述实测剂量分布和所述处置计划对所述处置计划进行实时验证。
  6. 根据权利要求5所述的方法,所述根据所述实测剂量分布和所述处置计划对所述处置计划进行实时验证,包括:
    基于所述计划图像和所述处置计划确定所述探测器接收到的参考剂量分布;以及
    基于所述实测剂量分布与所述参考剂量分布对所述处置计划进行实时验证。
  7. 根据权利要求4所述的方法,进一步包括:
    在所述定位装置与所述处置设备的相对位置满足所述处置计划后,基于对准设备在所述目标对象的所述目标部位形成对准标记,其中,所述对准标记用于引导所述目标对象进行复位。
  8. 根据权利要求7所述的方法,进一步包括:
    通过所述处置设备获取与所述目标对象相关的第一图像数据,所述第一图像数据包括与所述目标部位相关的感兴趣区域;以及
    基于对所述第一图像数据与所述计划图像的比较结果,对所述目标对象进行复位。
  9. 根据权利要求1所述的方法,进一步包括:
    在得到所述感兴趣区域信息后,提示所述感兴趣区域信息,以供操作者确认或修改后确认。
  10. 根据权利要求1所述的方法,进一步包括:
    接收用户确认工作流的信息,自动生成感兴趣区域信息。
  11. 根据权利要求1所述的方法,从所述目标对象被固定于所述定位装置开始至首个治疗分次结束的期间不超过30min。
  12. 根据权利要求1所述的方法,所述根据所述感兴趣区域信息生成处置计划包括:
    在所述目标对象被固定于所述定位装置的期间,根据所述感兴趣区域信息在线制定所述处置计划。
  13. 一种目标处置系统,包括:
    定位装置,用于定位目标对象,且能将所述目标对象定位至成像设备和处置设备;
    成像设备,用于对所述目标对象进行成像;
    处置设备,用于基于处置计划对所述目标对象的目标部位进行处置;以及
    控制部件,用于根据所述成像设备所获取的计划图像,生成靶区信息,获取计划等中心点,并基于所述计划等中心点和所述靶区信息制定所述处置计划。
  14. 根据权利要求13所述的系统,所述成像设备包括CT、MRI、CBCT、DR、PET、SPECT、PET/CT、PET/MR、超声或ECT,所述处置设备包括LINAC、重离子治疗机、中子治疗机、质子治疗机或gamma刀。
  15. 根据权利要求13所述的系统,所述成像设备与所述处置设备共面设置,以使所述成像设备的等中心点与所述处置设备的等中心点重合。
  16. 根据权利要求13所述的系统,所述系统还包括移动装置,所述移动装置用于:
    基于所述计划等中心点,自动移动所述定位装置,以使所述定位装置与所述处置设备的相对位置满足所述处置计划。
  17. 根据权利要求13所述的系统,所述系统还包括对准设备,所述对准设备用于:
    在所述目标对象的所述目标部位形成对准标记,所述对准标记用于引导所述目标对象进行复位。
  18. 根据权利要求13所述的系统,所述系统还包括处理器,所述处理器用于执行以下操作中的至少一项:基于所述目标对象的成像数据重建计划图像、基于所述计划图像制定所述处置计划、对所述处置计划进行验证。
  19. 根据权利要求13所述的系统,所述定位装置包括壳体,以及在壳体限定的区域内的填充材料。
  20. 一种计算机可读存储介质,所述存储介质存储目标处置的计算机指令,当计算机读取存储介质中的目标处置的计算机指令后,计算机执行如下目标处置方法:
    响应于目标对象被固定于定位装置,利用成像设备对所述目标对象进行成像;
    获取所述目标对象的计划图像;
    根据所述计划图像自动生成感兴趣区域信息;
    根据所述感兴趣区域信息自动生成处置计划,其中,所述处置计划包括所述计划图像上的计划等中心点;以及
    根据所述处置计划,利用所述处置设备对所述目标对象的目标部位进行处置;其中,在所述目标对象被固定于所述定位装置开始至处置结束期间,所述目标对象始终被固定于所述定位装置。
PCT/CN2021/093553 2021-04-02 2021-05-13 一种目标处置方法和系统 WO2022205577A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180001254.3A CN113438960B (zh) 2021-04-02 2021-05-13 一种目标处置方法和系统
EP21934228.4A EP4295900A1 (en) 2021-04-02 2021-05-13 Target disposal method and system
US17/305,051 US20220314025A1 (en) 2021-04-02 2021-06-29 Methods and systems for treating an object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110362014.8 2021-04-02
CN202110362014.8A CN115177870A (zh) 2021-04-02 2021-04-02 可读存储介质及图像引导放射治疗系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/305,051 Continuation US20220314025A1 (en) 2021-04-02 2021-06-29 Methods and systems for treating an object

Publications (1)

Publication Number Publication Date
WO2022205577A1 true WO2022205577A1 (zh) 2022-10-06

Family

ID=83457746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093553 WO2022205577A1 (zh) 2021-04-02 2021-05-13 一种目标处置方法和系统

Country Status (2)

Country Link
CN (1) CN115177870A (zh)
WO (1) WO2022205577A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102824693A (zh) * 2012-08-02 2012-12-19 李宝生 在线治疗前放疗计划验证系统及方法
CN104548372A (zh) * 2015-01-07 2015-04-29 上海联影医疗科技有限公司 放射治疗计划、剂量确定、质量保证的方法及装置
CN106924888A (zh) 2015-12-31 2017-07-07 上海联影医疗科技有限公司 一种放射治疗设备
CN108852400A (zh) * 2018-07-02 2018-11-23 沈阳东软医疗系统有限公司 一种实现治疗中心位置验证的方法及装置
CN110292723A (zh) * 2019-06-25 2019-10-01 上海联影医疗科技有限公司 剂量引导摆位装置、剂量监控装置、放疗系统及介质
US20200375560A1 (en) * 2017-01-06 2020-12-03 Accuray Incorporated Using a rotating 2d x-ray imager as an imaging device to perform target tracking during radiation treatment delivery
CN112316318A (zh) * 2020-11-06 2021-02-05 中国科学院近代物理研究所 一种图像引导放射治疗的摆位引导系统和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102824693A (zh) * 2012-08-02 2012-12-19 李宝生 在线治疗前放疗计划验证系统及方法
CN104548372A (zh) * 2015-01-07 2015-04-29 上海联影医疗科技有限公司 放射治疗计划、剂量确定、质量保证的方法及装置
CN106924888A (zh) 2015-12-31 2017-07-07 上海联影医疗科技有限公司 一种放射治疗设备
US20200375560A1 (en) * 2017-01-06 2020-12-03 Accuray Incorporated Using a rotating 2d x-ray imager as an imaging device to perform target tracking during radiation treatment delivery
CN108852400A (zh) * 2018-07-02 2018-11-23 沈阳东软医疗系统有限公司 一种实现治疗中心位置验证的方法及装置
CN110292723A (zh) * 2019-06-25 2019-10-01 上海联影医疗科技有限公司 剂量引导摆位装置、剂量监控装置、放疗系统及介质
CN112316318A (zh) * 2020-11-06 2021-02-05 中国科学院近代物理研究所 一种图像引导放射治疗的摆位引导系统和方法

Also Published As

Publication number Publication date
CN115177870A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
JP6208535B2 (ja) 放射線治療装置およびシステムおよび方法
EP0465590B1 (en) Patient alignment procedure and system for radiation treatment
CN101015723B (zh) 机器人放射治疗系统
JP5060476B2 (ja) 放射線療法を受けている患者の呼吸位相を検出するシステムおよび方法
US7869562B2 (en) Automatic patient positioning system
US7656998B2 (en) Unified quality assurance for a radiation treatment delivery system
US7356120B2 (en) Integrated quality assurance for in image guided radiation treatment delivery system
US20070140413A1 (en) Respiration phantom for quality assurance
CN101267858A (zh) 根据生物学模型修改放射疗法治疗计划的方法和系统
CN101268474A (zh) 用于估算实施剂量的方法和系统
JP2009507524A (ja) 変形マップに制約を課す方法およびそれを実装するためのシステム
JP2009502255A (ja) 治療プランのデリバリにおける品質保証基準を評価するための方法およびシステム
CN2910255Y (zh) 机器人放射治疗系统
JP2009514559A (ja) 線量体積ヒストグラムを用いて輪郭構造を生成するシステムおよび方法
JPH07185023A (ja) 病変位置検証のための方法と器械
JPH119708A (ja) 放射線治療システム
US20150343237A1 (en) Method and position determination system for determining a position of a target region of a patient to be irradiated in an irradiation device
JP6095112B2 (ja) 放射線治療システム
JP2017192549A (ja) 治療計画装置及び治療計画方法
WO2022205577A1 (zh) 一种目标处置方法和系统
JP5401240B2 (ja) 放射線治療システム
CN113438960B (zh) 一种目标处置方法和系统
CN103705262B (zh) 用于近距离治疗的导航设备和用于操作该导航设备的方法
US20230226377A1 (en) Patient positioning for radiotherapy treatment
Ziegler 4D dose calculation as a basis of adaptive treatment schemes in radiation therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934228

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021934228

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021934228

Country of ref document: EP

Effective date: 20230922

NENP Non-entry into the national phase

Ref country code: DE