WO2022205516A1 - 适用自然水体的深海采矿系统自航拖曳模拟器及模拟方法 - Google Patents

适用自然水体的深海采矿系统自航拖曳模拟器及模拟方法 Download PDF

Info

Publication number
WO2022205516A1
WO2022205516A1 PCT/CN2021/087621 CN2021087621W WO2022205516A1 WO 2022205516 A1 WO2022205516 A1 WO 2022205516A1 CN 2021087621 W CN2021087621 W CN 2021087621W WO 2022205516 A1 WO2022205516 A1 WO 2022205516A1
Authority
WO
WIPO (PCT)
Prior art keywords
simulator
floating body
mining
towing
self
Prior art date
Application number
PCT/CN2021/087621
Other languages
English (en)
French (fr)
Inventor
肖林京
王宇
张玉龙
李彦欣
宋庆辉
刘强
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Priority to US17/781,812 priority Critical patent/US11739637B2/en
Publication of WO2022205516A1 publication Critical patent/WO2022205516A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C50/00Obtaining minerals from underwater, not otherwise provided for
    • E21C50/02Obtaining minerals from underwater, not otherwise provided for dependent on the ship movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/56Towing or pushing equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/56Towing or pushing equipment
    • B63B21/66Equipment specially adapted for towing underwater objects or vessels, e.g. fairings for tow-cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B2035/006Unmanned surface vessels, e.g. remotely controlled
    • B63B2035/007Unmanned surface vessels, e.g. remotely controlled autonomously operating

Definitions

  • the invention belongs to the technical field of deep-sea mining system experiment devices, and particularly relates to a deep-sea mining system self-propelled towing simulator and a simulation method suitable for natural water bodies.
  • Deep-sea mining is the work of continuously and efficiently collecting and transporting deep-sea polymetallic nodules to surface mining vessels under the influence of complex marine environmental factors. Because the mining environment is mostly ocean bottom deposits with a water depth of 4,000 to 6,000 meters, the deep-sea mining system has a mining subsystem with complex and long pipelines. In addition, the operation process includes deployment, towing navigation, obstacle avoidance navigation, steering navigation, and continuous complex mining paths. Planning navigation, recycling and other processes. At present, the test and experiment of the small scale model of the deep sea mining system are often carried out in large dynamic test pools with wave and wind generation functions. Tests and experiments with smaller scale models are carried out in a circulating water tank.
  • the present invention provides a deep-sea mining system self-propelled towing simulator and a simulation method suitable for natural water bodies.
  • the simulator can be used for experiments in open natural water bodies.
  • remote wireless control it has self-propelled capabilities, which can simulate the movement of mining ships in 6 degrees of freedom under various sea conditions, as well as real-time acquisition of deep sea Parameters such as dynamic characteristics and spatial configuration of the mining lift subsystem. This enables more comprehensive and accurate testing and experimentation of deep-sea mining systems.
  • the present invention provides a self-propelled towing simulator and a simulation method for a deep-sea mining system suitable for natural water bodies.
  • the remote wireless control has its own self-propelled ability, which can simulate the movement of the mining ship with 6 degrees of freedom under various sea conditions.
  • a self-propelled towing simulator for deep-sea mining systems suitable for natural water bodies includes a floating body unit, a work surface, a propulsion system, a wave height measurement system, a hydroacoustic positioning system, a flow velocity measurement system, a radio communication system, a GPS positioning system, and a gyro attitude.
  • a control system a six-degree-of-freedom bench, a central control cabinet, a hard pipe model for an experimental lift and a quick-release battery box, the floating body unit is fixedly connected to the work surface through a beam structure, the central control cabinet and the quick-release battery box
  • the propulsion system is arranged at the rear of the simulator, and the wave height measurement system, hydroacoustic positioning system and flow velocity measurement system are all arranged on the lower table surface of the work table, and the middle of the work table is set.
  • the upper part of the working tower is suspended and fixed with a six-degree-of-freedom platform
  • the lower part of the six-degree-of-freedom platform is suspended and fixed with a gyro attitude control System
  • the center of the center of gravity projection hole, the center of gravity of the gyro attitude control system and the center of gravity of the six-degree-of-freedom platform are all coincident with the vertical projection of the overall center of gravity of the simulator, and the gyro attitude control system and the six-degree-of-freedom platform
  • Collaborative linkage can simulate the motion state of mining ship sway, surge, yaw, roll, pitch, and heave with a total of six degrees of freedom.
  • the radio communication system and GPS positioning system are fixed on both sides of the top of the working tower.
  • the top of the communication system is equipped with a super wide-angle vision system, and the experimental lifting ore hard pipe model is connected with the center of gravity projection hole or connected with the bottom of the gyro attitude control system through the center of gravity projection hole.
  • the floating body unit is composed of a first floating body material and a second floating body material, the first floating body material and the second floating body material are arranged on the left and right sides of the simulator, and the first floating body material and the second floating body material are arranged on the left and right sides of the simulator.
  • the materials are all of the hollow cavity structure and the inner filling is gravel or stone, a first filling valve is arranged at the bottom of the first floating body material, and a second filling valve is arranged at the bottom of the second floating body material.
  • the beam structure includes a first beam, a second beam and a third beam, and the first floating body material and the second floating body material are fixedly connected by means of the first beam, the second beam and the third beam, and the tops of the three beams are all connected with the work. Fixed connection to the countertop.
  • the propulsion system includes a main propulsion system, a first side propulsion system and a second side propulsion system, the main propulsion system is arranged at the rear end of the work surface, the first side propulsion system is arranged at the rear end of the second floating body material, and the second side propulsion system is arranged at the rear end of the second floating body material.
  • the side thrust system is arranged at the rear end of the first floating body material, and the main thrust system, the first side thrust system and the second side thrust system can independently control the thrust angle and the rotational speed of the propeller.
  • the bottom of the quick-release battery box is provided with a plurality of universal buckles, which can be fixedly buckled with a plurality of positions on the upper table of the work table.
  • the six-degree-of-freedom platform is composed of an upper table, a universal joint, a telescopic cylinder and a lower table, the upper table is fixedly connected to the working tower through bolts, the number of the telescopic cylinders is six, and the two ends of the telescopic cylinder are It is respectively connected with the upper and lower table surfaces through universal joints.
  • the gyro attitude control system is composed of a dy turntable, a gyro shell, an inspection cover, a dx rotating shaft and an expansion connection port, the dy turntable is fixedly connected to the lower table through bolts, and the gyro shell is provided with an inspection cover, an inner cavity device There is a large-mass gyro body that can rotate at high speed.
  • the dy turntable rotates relative to the main body of the six-degree-of-freedom motion attitude control system.
  • the gyro shell can rotate along the dx axis.
  • the experimental mining hard pipe model is connected to the center of gravity projection hole of the worktable through a lock universal joint or directly connected to the expansion connection port through the center of gravity projection hole through a lock universal joint.
  • a simulation method for a self-propelled towing simulator of a deep-sea mining system suitable for natural water bodies comprises the following steps:
  • Step 1 Determine the required buoyancy of the simulator according to the scale ratio, mass and self-buoyancy parameters of the experimental model to be tested, and then determine the mass of the filler required in the cavity of the floating body unit;
  • Step 2 Install the quick-release battery box to the center of the rear end of the work surface
  • Step 3 Lower the simulator to the water surface through the wharf or mother ship, turn on the main power switch located on the panel of the central control cabinet, carry out all-round self-inspection, test the machine with empty vehicle and collect data as the experimental control sample data and zero point punctuation For reference, confirm that the status of the simulator is normal;
  • Step 4 lower the experimental model to be tested to the water surface through the wharf or mother ship, and connect the part of the experimental ore hard pipe model of the experimental model to be tested to the center of gravity projection hole part of the lower part of the working table through a universal joint with a lock;
  • Step 5 Detect the posture of the simulator, if there is a deflection, adjust the posture of the overall simulator by adjusting the front, rear, left and right positions of the quick-release battery box on the upper table of the work table;
  • Step 6 According to the requirements of the working conditions of the experiment, program setting is performed remotely through the console, and the simulation function of each working condition of the simulator can be used independently and arbitrarily;
  • Step 7 The simulator will exchange data with the remote console through the radio communication system after preliminary processing of the acquired data through the central control cabinet;
  • Step 8 The experimenter verifies in real time whether the data collected by each sensor of the simulator is valid and normal, so as to control the progress of the experiment and adjust the experiment plan;
  • Step 9 After the experiment, the simulator is recovered through the dock or mother ship, cleaned and maintained, and properly placed for next use.
  • working condition simulation function of the simulator in the step 6 includes the following working condition simulation function:
  • the simulator simulates the six-degree-of-freedom motions of the mining ship including sway, surge, yaw, roll, pitch and heave through the coordinated linkage of the gyro attitude control system and the six-degree-of-freedom gantry state, the attitude intervention of the simulator can be either positive or negative, and it is suitable for uncontrollable natural waters. Use this function to reduce the swing or increase the swing and increase the swing to get close to the experimental conditions;
  • the main propulsion system, the first side propulsion system and the second side thrust system on the simulator can independently control the propulsion angle and propeller rotation speed.
  • the simulator can simulate uniform towing and uniform speed change. Towing, variable acceleration towing, and various complex mining path planning navigation and various radius steering navigation conditions;
  • the main propulsion system, the first side propulsion system and the second side thrust system carried by the simulator can independently control the propulsion angle and the propeller speed. Simulate the towing conditions of various path planning of mining ships;
  • Exciting vibration, the gyro attitude control system and six-degree-of-freedom bench mounted on the simulator can apply high-frequency vibration to the simulator, which is transmitted to the experimental mining hard pipe model through the main structure of the simulator or through the gyro through the gimbal with lock.
  • the extended connection port at the lower part of the attitude control system is directly connected to generate excitation vibration more directly, which is used to observe the dynamic response characteristics of the mine-lifting pipeline system;
  • the locking universal joint has two orthogonal horizontal axes, which can provide free rotation with two degrees of freedom, and the locking universal joint connects the top of the mining hard pipe with the simulator in a hinged manner , which can independently limit the rotation of any one of the two horizontal axes and then connect to the simulator or limit the rotation of both horizontal axes and finally change the connection form to a fixed connection to connect with the simulator.
  • the simulator can carry out simulation experiments in open natural water bodies, which makes up for the inability of deep sea mining systems to perform complex towing navigation, obstacle avoidance navigation, There are technical gaps in experimental projects such as large-radius steering navigation, continuous complex mining path planning navigation, etc.
  • the simulator Through remote wireless control, it has its own self-propelled ability, and does not have to wait for the appropriate sea conditions.
  • the simulator itself can be used to simulate mining ships at all levels of sea conditions.
  • the motion situation of the 6 degrees of freedom under the control system, as well as the real-time acquisition of parameters such as the dynamic characteristics and spatial configuration of the deep-sea mining lifting subsystem provides a variety of methods including floating material filling, quick-release battery box displacement, etc.
  • the sway, surge, yaw, roll, pitch and heave of the mining ship are simulated through the cooperative linkage of the gyro attitude control system and the six-degree-of-freedom platform.
  • the posture intervention of the simulator can be either positive or negative, so as to be suitable for uncontrollable natural waters, use this function to reduce the swing or increase the swing and increase the swing to meet the experimental requirements.
  • Fig. 1 the axonometric schematic diagram of the simulator structure of the present invention
  • Fig. 2 the bottom view schematic diagram of the structure of the simulator of the present invention
  • Fig. 3 is a schematic axonometric view of the structure of the gyro attitude control system and the six-degree-of-freedom platform of the present invention.
  • the experimental simulator of the present invention is arranged by the first floating body material 11 and the second floating body material 12 on the left and right sides, and the middle is fixedly connected by three beams, the first beam 21, the second beam 22, and the third beam 23.
  • the tops of the three beams are It is fixedly connected to the work surface 3.
  • the purpose of arranging two floating body materials on the left and right is to improve the overall stability of the simulator, thereby improving the overall attitude controllability of the simulator, overcoming the uncontrollable disturbance of natural water bodies, and leaving a large amount of space in the middle for arranging and installing hard ore lifting pipes and other test equipment, to leave working space for the later recovery and deployment of mining hard pipes.
  • the center of the worktable 3 includes a center of gravity projection hole 31 , and the worktable 3 includes a work tower 32 fixed on both sides of the center of gravity projection hole 31 .
  • a gyro attitude control system 7 is suspended and fixed at the lower part of the gantry 8, the center 31 of the center of gravity projection hole, the center of gravity 7 of the gyro attitude control system, and the center of gravity of the six-degree-of-freedom platform 8 all coincide with the vertical projection of the overall center of gravity of the simulator .
  • the mass of the gyro attitude control system 7 is the largest and most concentrated, and the purpose of adopting the suspension type of fixing method is to make its position closer to the overall center of gravity of the simulator.
  • the gyro attitude control system 7 is equipped with a large mass gyro body that can rotate at high speed, and can use the conservation of angular momentum and the fixed axis of the gyro to intervene in the overall attitude of the simulator.
  • the gyro attitude control system 7 can move arbitrarily with six degrees of freedom within a certain range in space.
  • the main propulsion system 43 is arranged at the rear 3 ends of the work surface, the first side propulsion system 41 is arranged at the rear end of the second floating body material 12 , the second side thrust system 42 is arranged at the rear end of the first floating body material 11 ,
  • the main propulsion system 43 , the first side propulsion system 41 , and the second side propulsion system 42 can all independently control the propulsion angle and the rotational speed of the propeller, and can generate propulsion force in all directions. In turn, various forms of motion such as simulator in-situ steering can be realized.
  • the first floating body material 11 is a hollow cavity structure with a first filling valve 111 at the bottom
  • the second floating body material 12 is also a hollow cavity structure with a second filling valve 121 at the bottom.
  • This design is to change the overall buoyancy and mass of the simulator.
  • a channel can be established by filling the valve, and materials such as gravel or gravel can be filled into the hollow cavity structure of the floating body material, thereby changing the overall draft, inertia, and center of gravity of the simulator.
  • a radio communication system 61 and a GPS positioning system 62 are fixed on both sides of the top of the working tower 32 , and a super wide-angle vision system 13 is arranged at the top of the radio communication system 61 .
  • the simulator adopts the unmanned operation mode, and the remote control operation is carried out on the mother ship or dock through the console through wireless communication.
  • the position information of the simulator itself needs to be acquired in real time through GPS, and the position information, the real-time data stream of the experimental sensor, and the navigation visual image information are all transmitted through the radio. Interact with the console.
  • the radio communication system 61 is located at the highest part of the simulator, so a super wide-angle visual system 13 is arranged to facilitate visual observation of the navigation environment around the simulator and the operation of various equipment of the simulator itself.
  • the front end of the work surface 3 is arranged with a central control cabinet 9, a wave height measurement system 51, an underwater acoustic positioning system 52, and a flow rate measurement system 53.
  • the rear end of the work surface 3 is arranged with a quick-release battery box 14.
  • the bottom of the quick-release battery box 14 has many A universal buckle can be fixedly buckled with the upper table top of the work table 3 at multiple positions.
  • the wave height measurement system 51 is equipped with a wave height meter as the core component to monitor the wave height of the water surface in real time;
  • the core component of the flow rate measurement system 53 is equipped with a flow meter to measure the real-time water flow speed;
  • the hydroacoustic positioning system 52 is equipped with hydroacoustic positioning system technology, It is used to obtain real-time location information of various underwater experimental components such as the underwater lifting hard pipe, pump set, central silo, ore lifting hose, and ore collector, and then calculate the spatial configuration of all underwater components.
  • the wave height measurement system 51, the hydroacoustic positioning system 52, and the flow velocity measurement system 53 are all arranged at the front end of the working table 3, in order to be at the front end of the direction of the incoming flow, so as to avoid the experimental hard pipe model 10 and the first side propulsion system 41.
  • the second side thrust system 42, the main propulsion system 43, the first floating body material 11, the second floating body material 12 and other structures affect the water flow to ensure the accuracy of the data collected by the sensor.
  • the bottom of the quick-release battery box 14 has a plurality of universal buckles, which can be fixedly buckled with the upper surface of the work surface 3 at multiple positions.
  • the mass of the quick-release battery box 14 is used to adjust the position of the center of gravity of the entire experimental simulator for quick trimming, and it is convenient to replace the battery of the simulator immediately and replenish electric energy.
  • the dy turntable 71 and the lower table 84 are connected and fixed by bolts, the gyro casing 72 is provided with an inspection cover 73, and the inner cavity has a gyro body.
  • the dy turntable 71 also rotates relative to the main body of the six-degree-of-freedom motion gyro attitude control system 7 , and the gyro housing 72 can rotate along the dx axis 74 .
  • the six-degree-of-freedom platform 8 connects and fixes the upper platform 81 and the working tower 32 through bolts.
  • the six-degree-of-freedom platform 8 includes six identical telescopic cylinders 83, and the two ends of the telescopic cylinders 83 are connected to the upper table through a universal joint 82 respectively.
  • the mesa 81 and the lower mesa 84 are connected.
  • the strokes of the six telescopic cylinders 83 are changed simultaneously according to a certain logic, so that the gyro attitude control system 7 can be driven by the lower table 84 in a certain space.
  • the arbitrary six-degree-of-freedom motion of the simulator can be intervened in the overall posture of the simulator. Since the real experimental sea condition mining ship is more sensitive to the yaw and roll, the dy turntable 71 and the dx shaft 74 in the gyro attitude control system 7 can provide continuous large-angle rotation with two degrees of freedom, which further increases the need for the simulator. The ability to intervene in overall posture.
  • the experimental mining hard pipe model 10 is connected to the center of gravity projection hole 31 of the worktable 3 through the universal joint 15 with a lock, and can also pass through the projection hole 31 of the center of gravity, and pass through the lower part of the gyro attitude control system 7 through the universal joint 15 with a lock.
  • the expansion port 75 is directly connected.
  • the locking universal joint 15 can connect the top of the mining hard pipe with the simulator in a hinged manner, and it can also independently restrict any one of the two axes, or restrict the connection form to a fixed connection.
  • the experimental lifting hard pipe model 10 is connected to the center of gravity projection hole 31 of the work table 3 through the universal joint 15 with a lock.
  • the natural water flow acts on the simulator in real time, and the simulator passes through the gyro attitude control system 7 and 6.
  • the coordinated linkage of the degree of freedom platform 8 controls the overall posture to meet the requirements of the experimental conditions, and then transmits the influence to the experimental object through the working table 3; if the experiment is carried out under extreme conditions, the experimental hard pipe model 10 can also pass through the center of gravity
  • the projection hole 31 is directly connected to the expansion connection port 75 at the lower part of the gyro attitude control system 7 through the universal joint 15 with a lock.
  • the coordinated linkage of the gyro attitude control system 7 and the six-degree-of-freedom platform 8 directly acts on the mining hard pipe, which weakens the influence of waves on the simulator, and in the experimental situation, the influence of the mining ship on different sea conditions is weakened. .
  • the specific experimental simulation method of the self-propelled towing simulator of the deep-sea mining system suitable for natural water bodies is as follows:
  • Step 1 Determine the required buoyancy of the simulator according to the scale ratio, mass, self-buoyancy and other parameters of the experimental model to be tested, and then determine the mass of the filler required in the cavity of the first floating body material 11 and the second floating body material 12 . Adjust the filling in the cavity through the first filling valve 111 and the second filling valve 121, but ensure that the two sides are equal, and the filling can be solid bulk materials such as gravel or stone;
  • Step 2 Install the quick-release battery box 14 to the center position of the rear end of the work surface 3;
  • Step 3 Lower the simulator to the water surface through the wharf or the mother ship, turn on the main power switch located on the 9th panel of the central control cabinet, carry out all-round self-inspection, test the machine with empty car and collect data as the experimental control sample data and zero point punctuation For reference, confirm that the status of the simulator is normal;
  • Step 4 The experimental model to be tested is lowered to the water surface through the wharf or the mother ship, and the 10 experimental hard pipe model parts of the experimental model to be tested are connected to the center of gravity projection hole 31 part of the lower part of the working table 3 through the universal joint 15 with a lock ;
  • Step 5 Detect the posture of the simulator, if it is deflected, the position of the front, rear, left and right on the upper table surface of the work table 3 can be changed through a plurality of universal buckles at the bottom of the quick-release battery box 14, and the overall simulator posture can be balanced; During the process, if the console receives a low-power reminder of the simulator, replace the spare quick-release battery box 14;
  • Step 6 According to the requirements of the working conditions of the experiment, program setting is performed remotely through the console, and the simulation functions of each working condition of the simulator can be used independently and independently:
  • Working condition simulation function 1 Attitude simulation.
  • the gyro attitude control system 7 and the six-degree-of-freedom gantry 8 carried by the simulator are mainly used to control the overall attitude of the simulator, so that the simulator can simulate the combined effect of waves and currents of the mining ship required by the experimental conditions.
  • Six-degree-of-freedom motion that is, through the coordinated linkage of the gyro attitude control system 7 and the six-degree-of-freedom platform 8 to simulate the mining vessel sway, surge, yaw, roll, pitch, and heave, a total of six degrees of freedom
  • the posture intervention of the simulator can be either positive or negative, so as to be suitable for uncontrollable natural waters, use this function to reduce the swing or increase the swing and increase the swing to get close to the experimental conditions;
  • Working condition simulation function 2 towing sailing.
  • the main propulsion system 43, the first side propulsion system 41, and the second side propulsion system 42 carried by the simulator can independently control the propulsion angle and the propeller speed.
  • Working condition simulation function 3 Steering tow.
  • the main propulsion system 43, the first side propulsion system 41, and the second side propulsion system 42 carried by the simulator can independently control the propulsion angle and the propeller speed. Simulate the towing conditions of various path planning of mining ships;
  • Working condition simulation function 4 excitation vibration.
  • the gyro attitude control system 7 and the six-degree-of-freedom platform 8 mounted on the simulator can apply high-frequency vibration to the simulator, which can be transmitted to the experimental mining hard pipe model 10 through the main structure of the simulator.
  • the segment 15 is directly connected through the expansion connection port 75 at the lower part of the gyro attitude control system 7 , so as to generate excitation vibration more directly. It is used to observe the dynamic response characteristics of the mine-lifting pipeline system;
  • the locking universal joint has two orthogonal horizontal axes, which can provide free rotation with two degrees of freedom. After the rotation of any one of the horizontal axes is connected to the simulator or the rotation of both horizontal axes is restricted, the connection form is finally changed to a fixed connection to the simulator;
  • Step 7 The GPS positioning system carried by the simulator is used to obtain the position information of the simulator in real time; the wave height measurement system 51 is used to monitor the water surface wave height in real time; the underwater acoustic positioning system 52 is used to obtain the underwater experimental model Zhongyang Mine in real time. Location information of various underwater experimental components such as hard pipes, pump sets, central mine bins, ore hoses, and mining machines; the flow rate measurement system 53 is used to measure the real-time water flow speed, and the super wide-angle vision system 13 will record data in real time. As well as various sensors such as tension and pressure sensors, strain sensors, vibration sensors, inertial navigation systems, acceleration sensors, etc. set up with the experimental model, the above-mentioned data streams will be preliminarily processed by the central control cabinet 9 and will interact with the remote console through the radio communication system 61. data;
  • Step 8 The experimenter verifies in real time whether the data collected by each sensor of the simulator is valid and normal, so as to control the progress of the experiment and adjust the experiment plan;
  • Step 9 After the experiment, recover the simulator through the dock or the mother ship. Clean and maintain properly for next use.

Abstract

一种适用于自然水体的扬矿系统自航式拖曳模拟器及模拟方法,模拟器搭载陀螺姿态控制系统(7)与六自由度台架(8)用于对模拟器整体姿态进行控制,使模拟器模拟出实验工况所要求的采矿船受波流联合作用而产生的横荡、纵荡、艏摇、横摇、纵摇、垂荡六个自由度的运动状态,对模拟器的姿态干预既可是正向的亦可是负向的,以适用于自然水域不可控性,进行减摇减摆或增摇增摆来贴近实验要求工况;可在开阔的自然水体中进行实验,通过远程无线控制,其自身具有自航能力,以及实时采集深海采矿扬矿子系统的动态特性和空间构型等参数,进而可开展更全面且准确的深海采矿系统测试与实验。

Description

适用自然水体的深海采矿系统自航拖曳模拟器及模拟方法 技术领域
本发明属于深海采矿系统实验装置技术领域,具体涉及一种适用自然水体的深海采矿系统自航拖曳模拟器及模拟方法。
背景技术
深海采矿是在复杂海洋环境因素影响下将深海多金属结核连续、高效地采集并输送到海面采矿船上的工作。因开采环境多为4000~6000米水深的大洋底矿床,所以深海采矿系统拥有复杂长管线的扬矿子系统,加之作业过程包含布放、拖曳航行、避障航行、转向航行、连续复杂开采路径规划航行、回收等流程,目前深海采矿系统小缩尺比模型的测试与实验常选择在具有造浪、造风功能的大型动态测试水池中进行,如若需要增加造流功能,则只能在大型循环水槽中进行更小缩尺比模型的测试与实验。因此,由于缩尺比较小带来的失准,以及实验场所尺寸限制无法满足多方向的航行条件一直以来较为困扰。所以,能进行更符合实际作业条件的大缩尺比试验模型高雷诺数流体动力的试验装置成为了迫切的需求,因此,本发明提供适用自然水体的深海采矿系统自航拖曳模拟器及模拟方法,该模拟器可在开阔的自然水体中进行实验,通过远程无线控制,其自身具有自航能力,可以实现模拟采矿船在各级海况情况下的6个自由度的运动情况,以及实时采集深海采矿扬矿子系统的动态特性和空间构型等参数。进而可开展更全面且准确的深海采矿系统测试与实验。
技术解决方案
为了更全面并准确的模拟深海采矿系统的测试与实验,本发明提供一种适用自然水体的深海采矿系统自航拖曳模拟器及模拟方法,该模拟器可在开阔的自然水体中进行实验,通过远程无线控制,其自身具有自航能力,可以实现模拟采矿船在各级海况情况下的6个自由度的运动情况,设计合理,克服了现有技术的不足,具有良好的效果。
适用自然水体的深海采矿系统自航拖曳模拟器,所述模拟器包括浮体单元、工作台面、推进系统、波高测定系统、水声定位系统、流速测定系统、无线电通讯系统、GPS定位系统、陀螺姿态控制系统、六自由度台架、中央控制柜、实验扬矿硬管模型和快拆式电池箱,所述浮体单元通过横梁结构与工作台面固定连接,所述中央控制柜和快拆式电池箱分设于工作台面上台面的前后端,所述推进系统设置在所述模拟器尾部,所述波高测定系统、水声定位系统和流速测定系统均布置在工作台面的下台面上,工作台面中部设有重心投影孔,工作台面上设有固定于重心投影孔两侧部的工作塔架,工作塔架上部悬吊固定有六自由度台架,六自由度台架下部悬吊固定有陀螺姿态控制系统,所述重心投影孔的圆心、陀螺姿态控制系统的重心和六自由度台架的重心均与所述模拟器整体重心的竖直投影相重合,陀螺姿态控制系统与六自由度台架的协同联动能够模拟出采矿船横荡、纵荡、艏摇、横摇、纵摇、垂荡共六个自由度的运动状态,工作塔架顶部两侧固定有无线电通讯系统与GPS定位系统,无线电通讯系统顶端布置有超大广角视觉系统,实验扬矿硬管模型与重心投影孔相连接或穿过重心投影孔与陀螺姿态控制系统底部相连接。
进一步地,所述浮体单元由第一浮体材料和第二浮体材料组成,所述第一浮体材料和第二浮体材料分所述模拟器左右两侧布置,所述第一浮体材料和第二浮体材料均为中空腔体结构内部填充物为砂砾或石子,第一浮体材料底部设置有第一填充阀门,第二浮体材料底部设置有第二填充阀门。
进一步地,所述横梁结构包括第一横梁、第二横梁和第三横梁,第一浮体材料和第二浮体材料依靠第一横梁、第二横梁和第三横梁固定连接,三根横梁顶部均与工作台面固定连接。
进一步地,所述推进系统包括主推进系统、第一侧推进系统和第二侧推进系统,主推进系统布置在工作台面后端,第一侧推进系统布置在第二浮体材料后端,第二侧推系统布置在第一浮体材料后端,所述主推进系统、第一侧推进系统和第二侧推系统均可独立控制推进角度和螺旋桨转速。
进一步地,所述快拆式电池箱底部设有多个通用卡扣,能够与工作台面的上台面多个位置固定扣接。
进一步地,所述六自由度台架由上台面、万向节、伸缩缸和下台面组成,所述上台面通过螺栓与工作塔架固定连接,所述伸缩缸为六个,伸缩缸两端通过万向节分别与上、下台面相连接。
进一步地,所述陀螺姿态控制系统由dy转台、陀螺壳体、检修盖、dx转轴和扩展连接口组成,dy转台通过螺栓与下台面固定连接,陀螺壳体上设置有检修盖、内腔装有可高速旋转的大质量陀螺体,dy转台相对于六自由度运动姿态控制系统主体转动,陀螺壳体可沿dx转轴转动,所述扩展连接口设置在陀螺姿态控制系统下端部。
进一步地,实验扬矿硬管模型通过带锁万向节与工作台面的重心投影孔相连接或穿过重心投影孔、通过带锁万向节与扩展连接口直接连接。
一种适用自然水体的深海采矿系统自航拖曳模拟器的模拟方法,所述模拟方法包括以下步骤:
步骤1:根据待测实验模型的缩尺比、质量和自身浮力参数确定所述模拟器所需浮力,进而确定浮体单元腔内所需填充物的质量;
步骤2:将快拆式电池箱安装至工作台面后端居中位置;
步骤3:通过码头或母船将所述模拟器下放至水面,接通位于中央控制柜面板上的总电源开关,进行全方面自检,空车试机并采集数据作为实验对照样本数据与零点标点参考,确认模拟器状态一切正常;
步骤4:将待测实验模型通过码头或母船下放至水面,将待测实验模型的实验扬矿硬管模型部位通过带锁万向节连接至工作台面下部的重心投影孔部位;
步骤5:检测所述模拟器姿态,若发生偏斜,可通过调整快拆式电池箱在工作台面的上台面的前后左右位置,进行整体模拟器姿态配平;
步骤6:根据实验的工况要求,通过控制台远程进行程序设定,可任意独立搭配所述模拟器各工况模拟功能的使用;
步骤7:所述模拟器将获取的各数据通过中央控制柜初步处理后将通过无线电通讯系统与远程控制台交互数据;
步骤8:实验人员实时核验模拟器各传感器所采集的数据是否有效且正常,用以控制实验进度,调整实验方案;
步骤9:实验结束后,通过码头或母船回收所述模拟器并清洁维护妥善安置待下次使用。
进一步地,所述步骤6中模拟器的工况模拟功能包括以下工况模拟功能:
姿态模拟,所述模拟器通过陀螺姿态控制系统与六自由度台架的协同联动来模拟出采矿船的横荡、纵荡、艏摇、横摇、纵摇和垂荡六个自由度的运动状态,对模拟器的姿态干预既可是正向的亦可是负向的,适用于自然水域不可控,利用本功能进行减摇减摆或增摇增摆来贴近实验要求工况;
拖曳航行,模拟器所搭载的主推进系统、第一侧推进系统和第二侧推系统均可独立控制推进角度和螺旋桨转速,通过改变螺旋桨转速,使得模拟器可模拟出匀速拖航、匀变速拖航、变加速拖航、以及各类复杂开采路径规划航行及各类半径转向航行工况;
转向拖航,模拟器所搭载的主推进系统、第一侧推进系统、第二侧推系统均可独立控制推进角度和螺旋桨转速,通过改变推进角度和螺旋桨转速,实现各种形式的曲线运动,模拟出采矿船各类路径规划的拖航工况;
激励震动,模拟器所搭载的陀螺姿态控制系统与六自由度台架可以对模拟器施加高频的震动,通过模拟器主体结构传递至实验扬矿硬管模型或通过带锁万向节通过陀螺姿态控制系统的下部的扩展连接口直接连接,更为直接的产生激励震动,用来观测扬矿管线系统的动态响应特性;
铰接固接切换,所述带锁万向节存在两个正交的水平轴,可提供两个自由度的自由转动,带锁万向节将扬矿硬管顶端以铰接的形式与模拟器连接,可独立限制两个水平轴中的任意一个轴的转动后与模拟器连接或两个水平轴的转动都限制后最终将连接形式变为固接的方式与模拟器连接。
有益效果
所述模拟器可在开阔的自然水体中进行模拟实验,弥补了深海采矿系统因拥有复杂长管线的扬矿子系统而无法在一定尺寸的实验室水体中进行复杂的拖曳航行、避障航行、大半径转向航行、连续复杂开采路径规划航行等试验项目的技术空白,通过远程无线控制,其自身具有自航能力,不必等候海况时宜,可通过模拟器自身功能实现模拟采矿船在各级海况情况下的6个自由度的运动情况,以及实时采集深海采矿扬矿子系统的动态特性和空间构型等参数,提供了包括浮体材料填充、快拆式电池箱移位等多种方式实现快速配平,无需额外添加配重块之繁琐,节约大量时间。即具体通过主体结构设计提高稳定性的前提下,通过陀螺姿态控制系统与六自由度台架的协同联动来模拟出采矿船横荡、纵荡、艏摇、横摇、纵摇、垂荡共六个自由度的运动状态,对模拟器的姿态干预既可是正向的亦可是负向的,以适用于自然水域不可控,利用本功能进行减摇减摆或增摇增摆来贴近实验要求工况;通过三个独立的推进系统,可模拟出匀速拖航、运变速拖航、变加速拖航以及各类复杂开采路径规划航行及各类半径转向航行等工况;本发明设计合理,克服了现有技术的不足,可节省高额的租船海试成本,无需等候试验船排期与季节气候海况时宜等更为便捷自由地开展更全面且准确的深海采矿系统测试与实验,具有良好的效果,大大提高实验效率。
附图说明
图1、本发明所述模拟器结构轴测示意图;
图2、本发明所述模拟器的结构仰视示意图;
图3、本发明陀螺姿态控制系统与六自由度台架的结构轴测示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
本发明的实验模拟器由第一浮体材料11与第二浮体材料12分左右两侧布置,中间依靠第一横梁21、第二横梁22、第三横梁23共三根横梁固定连接,三根横梁顶部均与工作台面3固定连接。
分左右布置两浮体材料旨在可提高模拟器的整体稳定性,进而提高模拟器的整体姿态可控性,克服自然水体不可控扰动,且可以留出中部大量空间用于布置安装扬矿硬管等试验设备,为后期回收与布放扬矿硬管留出作业空间。
工作台面3中部包含有重心投影孔31,工作台面3包含有固定于重心投影孔31两侧部的工作塔架32,工作塔架32上部悬吊固定有六自由度台架8,六自由度台架8下部悬吊固定有陀螺姿态控制系统7,重心投影孔的圆心31、陀螺姿态控制系统的重心7、六自由度台架8的重心,均与模拟器整体重心的竖直投影相重合。
此设计均为了进一步提高模拟器整体姿态的控制能力。在模拟器各系统中,陀螺姿态控制系统7的质量最为大且集中,其固定方式采取悬吊式目的也是为了使其位置更加靠近模拟器的整体重心。第一,陀螺姿态控制系统7其内部装有可高速旋转的大质量陀螺体,可利用角动量守恒与陀螺的定轴性对模拟器的整体姿态进行干预。第二,加上六自由度台架8的辅助,使得陀螺姿态控制系统7可在空间中一定范围内六自由度任意运动,其原理即通过改变具有较大质量和定轴性的陀螺姿态控制系统7的空间位置,对模拟器的整体姿态进行干预,最终通过陀螺姿态控制系统7和六自由度台架8来弥补实验进行中自然水域实时海况的不可控性,使其达到实验相关要求。
主推进系统43布置在工作台面后3端,第一侧推进系统41布置在第二浮体材料12后端,第二侧推系统42布置在第一浮体材料11后端,
此设计是为了提高模拟器整体的航行灵活性,为满足实验条件中复杂的拖航形式、加速形式、转向形式。主推进系统43、第一侧推进系统41、第二侧推系统42均可独立控制推进角度和螺旋桨转速,可产生向各个方向产生推进力。进而实现模拟器原地转向等各种运动形式。
第一浮体材料11为中空腔体结构,其底部设置有第一填充阀门111,第二浮体材料12同为中空腔体结构,其底部设置有第二填充阀门121。
此设计是为了改变模拟器整体的浮力和质量,可通过填充阀门建立通道,将砂砾或石子等材料填充至浮体材料的中空腔体结构中,进而改变模拟器整体的吃水深度、惯性、重心等特性,以兼容各种缩尺比的实验模型搭载模拟器。
工作塔架32顶部两侧固定有无线电通讯系统61与GPS定位系统62,无线电通讯系统61顶端布置有超大广角视觉系统13。
模拟器采用无人作业模式,通过无线通讯在母船或码头通过控制台进行遥控作业,模拟器自身位置信息需要通过GPS实时获取,且位置信息、实验传感器实时数据流、航行视觉图像信息均通过无线电与控制台交互。无线电通讯系统61位于模拟器最高处,因此布置有超大广角视觉系统13,以便于对模拟器四周航行环境与模拟器自身各设备运转情况进行图像视觉观察。
工作台面3前端布置有中央控制柜9、波高测定系统51、水声定位系统52、流速测定系统53,工作台面3后端布置有快拆式电池箱14,快拆式电池箱14底部有多个通用卡扣,可以与工作台面3的上台面多个位置固定扣接。
波高测定系统51用于搭载核心部件为波高仪,实时监测水面波高情况;流速测定系统53核心部件为搭载流速计用于测量实时水流速度;水声定位系统52所搭载依靠水声定位系统技术,用于实现实时获取水下扬矿硬管、泵组、中央矿仓、扬矿软管、集矿机等各个水下实验部件的位置信息,进而计算出水下所有部件的空间构型情况。波高测定系统51、水声定位系统52、流速测定系统53均布置工作台面3前端,目的是为了处于来流方向的最前端,以免后面受到实验扬矿硬管模型10、第一侧推进系统41、第二侧推系统42、主推进系统43、第一浮体材料11、第二浮体材料12等结构对水流的影响,保证传感器采集的数据准确。
快拆式电池箱14底部有多个通用卡扣,可以与工作台面3的上台面多个位置固定扣接。利用快拆式电池箱14自身质量调配整个实验模拟器的重心位置以快速配平,且方便即时为模拟器更换电池补充电能。
陀螺姿态控制系统7,通过螺栓将dy转台71与下台面84相连接固定,陀螺壳体72上设置有检修盖73,内腔有陀螺体。dy转台71也相对于六自由度运动陀螺姿态控制系统7主体转动,陀螺壳体72可沿dx转轴74转动。
六自由度台架8通过螺栓将上台面81与工作塔架32相连接固定,六自由度台架8包含六个相同的伸缩缸83,伸缩缸83两端分别通过一个万向节82与上台面81和下台面84相连接。
在上台面81通过工作塔架32与模拟器主体结构固定的前提下,此时按照一定逻辑同时改变六个伸缩缸83的行程,可实现通过下台面84带动陀螺姿态控制系统7在一定空间内的任意六自由度运动,进而实现对模拟器的整体姿态进行干预。由于真实实验海况采矿船对艏摇与横摇比较敏感,所以陀螺姿态控制系统7中的dy转台71和dx转轴74可提供两个自由度的连续大角度旋转,进一步加大了对模拟器的整体姿态进行干预能力。
实验扬矿硬管模型10通过带锁万向节15与工作台面3的重心投影孔31相连接,亦可穿过重心投影孔31,通过带锁万向节15通过陀螺姿态控制系统7的下部的扩展连接口75直接连接。
带锁万向节15可将扬矿硬管顶端以铰接的形式与模拟器连接,其也可独立限制两个轴中的任意一个轴,亦或都限制将连接形式变为固接。常规实验时,实验扬矿硬管模型10通过带锁万向节15与工作台面3的重心投影孔31相连接,此时自然水流实时作用于模拟器,模拟器通过陀螺姿态控制系统7、六自由度台架8的协同联动对整体姿态进行控制以达到实验条件要求,然后通过工作台面3将影响传递给实验对象;若进行极端条件实验时,实验扬矿硬管模型10亦可穿过重心投影孔31,通过带锁万向节15通过陀螺姿态控制系统7的下部的扩展连接口75直接连接。此时通过陀螺姿态控制系统7、六自由度台架8的协同联动直接作用于扬矿硬管,弱化了波浪对模拟器影响,在实验情境中即弱化了采矿船受不同海况带来的影响。
适用自然水体的深海采矿系统自航拖曳模拟器具体实验模拟方法为:
步骤一:根据待测实验模型的缩尺比、质量、自身浮力等参数来确定模拟器所需浮力,进而确定第一浮体材料11与第二浮体材料12腔内所需填充物的质量。通过第一填充阀门111与第二填充阀门121调整腔内填充物,但要保证两侧等量,填充物可以是砂砾或石子等固体散料;
步骤二:将快拆式电池箱14安装至工作台面3后端居中位置;
步骤三:通过码头或者是母船将模拟器下放至水面,接通位于中央控制柜9面板上的总电源开关,进行全方面自检,空车试机并采集数据作为实验对照样本数据与零点标点参考,确认模拟器状态一切正常;
步骤四:将待测实验模型通过码头或者是母船下放至水面,将待测实验模型的10实验扬矿硬管模型部位通过带锁万向节15连接至工作台面3下部的重心投影孔31部位;
步骤五:检测模拟器姿态,若发生偏斜,可通过快拆式电池箱14底部的多个通用卡扣改变其在工作台面3的上台面的前后左右位置,进行整体模拟器姿态配平;实验过程中控制台若收到模拟器电量低提示,则更换备用的快拆式电池箱14即可;
步骤六:根据实验的工况要求,通过控制台远程进行程序设定,可任意独立搭配模拟器各工况模拟功能的使用:
工况模拟功能1:姿态模拟。模拟器所搭载的陀螺姿态控制系统7与六自由度台架8主要用于对模拟器整体姿态进行控制,使得模拟器能够模拟出实验工况所要求的采矿船受波流联合作用而产生的六自由度运动,即具体通过陀螺姿态控制系统7与六自由度台架8的协同联动来模拟出采矿船横荡、纵荡、艏摇、横摇、纵摇、垂荡共六个自由度的运动状态,对模拟器的姿态干预既可是正向的亦可是负向的,以适用于自然水域不可控,利用本功能进行减摇减摆或增摇增摆来贴近实验要求工况;
工况模拟功能2:拖曳航行。模拟器所搭载的主推进系统43、第一侧推进系统41、第二侧推系统42均可独立控制推进角度和螺旋桨转速,通过改变螺旋桨转速,可以使得模拟器可模拟出匀速拖航,运变速拖航,变加速拖航,以及各类复杂开采路径规划航行及各类半径转向航行工况;
工况模拟功能3:转向拖航。模拟器所搭载的主推进系统43、第一侧推进系统41、第二侧推系统42均可独立控制推进角度和螺旋桨转速,通过改变推进角度和螺旋桨转速,实现各种形式的曲线运动,可以模拟出采矿船各类路径规划的拖航工况;
工况模拟功能4:激励震动。模拟器所搭载的陀螺姿态控制系统7与六自由度台架8可以对模拟器施加高频的震动,可以通过模拟器主体结构传递至实验扬矿硬管模型10,亦可通过带锁万向节15通过陀螺姿态控制系统7的下部的扩展连接口75直接连接,更为直接的产生激励震动。用来观测扬矿管线系统的动态响应特性;
工况模拟功能5、铰接固接切换。所述带锁万向节存在两个正交的水平轴,可提供两个自由度的自由转动,带锁万向节将扬矿硬管顶端以铰接的形式与模拟器连接,可独立限制两个水平轴中的任意一个轴的转动后与模拟器连接或两个水平轴的转动都限制后最终将连接形式变为固接的方式与模拟器连接;
步骤七:模拟器所搭载的GPS定位系统用以实时获取模拟器的自身位置信息;波高测定系统51用以实时监测水面波高情况;水声定位系统52用以实时获取水下实验模型中扬矿硬管、泵组、中央矿仓、扬矿软管、集矿机等各个水下实验部件的位置信息;流速测定系53统用以测量实时水流速度,超大广角视觉系统13会实时记录数据,以及随实验模型设置的拉压力传感器、应变传感器,震动传感器,惯性导航系统,加速度传感器等各类传感器,上述各数据流通过中央控制柜9初步处理后将通过无线电通讯系统61与远程控制台交互数据;
步骤八:实验人员实时核验模拟器各传感器所采集的数据是否有效且正常,用以控制实验进度,调整实验方案;
步骤九:实验结束后,通过码头或者是母船回收模拟器。清洁维护妥善安置待下次使用。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (10)

  1. 适用自然水体的深海采矿系统自航拖曳模拟器,其特征在于,所述模拟器包括浮体单元、工作台面、推进系统、波高测定系统、水声定位系统、流速测定系统、无线电通讯系统、GPS定位系统、陀螺姿态控制系统、六自由度台架、中央控制柜、实验扬矿硬管模型和快拆式电池箱,所述浮体单元通过横梁结构与工作台面固定连接,所述中央控制柜和快拆式电池箱分设于工作台面上台面的前后端,所述推进系统设置在所述模拟器尾部,所述波高测定系统、水声定位系统和流速测定系统均布置在工作台面的下台面上,工作台面中部设有重心投影孔,工作台面上设有固定于重心投影孔两侧部的工作塔架,工作塔架上部悬吊固定有六自由度台架,六自由度台架下部悬吊固定有陀螺姿态控制系统,所述重心投影孔的圆心、陀螺姿态控制系统的重心和六自由度台架的重心均与所述模拟器整体重心的竖直投影相重合,陀螺姿态控制系统与六自由度台架的协同联动能够模拟出采矿船横荡、纵荡、艏摇、横摇、纵摇、垂荡共六个自由度的运动状态,工作塔架顶部两侧固定有无线电通讯系统与GPS定位系统,无线电通讯系统顶端布置有超大广角视觉系统,实验扬矿硬管模型与重心投影孔相连接或穿过重心投影孔与陀螺姿态控制系统底部相连接。
  2. 根据权利要求1所述的适用自然水体的深海采矿系统自航拖曳模拟器,其特征在于,所述浮体单元由第一浮体材料和第二浮体材料组成,所述第一浮体材料和第二浮体材料分所述模拟器左右两侧布置,所述第一浮体材料和第二浮体材料均为中空腔体结构内部填充物为砂砾或石子,第一浮体材料底部设置有第一填充阀门,第二浮体材料底部设置有第二填充阀门。
  3. 根据权利要求2所述的适用自然水体的深海采矿系统自航拖曳模拟器,其特征在于,所述横梁结构包括第一横梁、第二横梁和第三横梁,第一浮体材料和第二浮体材料依靠第一横梁、第二横梁和第三横梁固定连接,三根横梁顶部均与工作台面固定连接。
  4. 根据权利要求2所述的适用自然水体的深海采矿系统自航拖曳模拟器,其特征在于,所述推进系统包括主推进系统、第一侧推进系统和第二侧推进系统,主推进系统布置在工作台面后端,第一侧推进系统布置在第二浮体材料后端,第二侧推系统布置在第一浮体材料后端,所述主推进系统、第一侧推进系统和第二侧推系统均可独立控制推进角度和螺旋桨转速。
  5. 根据权利要求1所述的适用自然水体的深海采矿系统自航拖曳模拟器,其特征在于,所述快拆式电池箱底部设有多个通用卡扣,能够与工作台面的上台面多个位置固定扣接。
  6. 根据权利要求1所述的适用自然水体的深海采矿系统自航拖曳模拟器,其特征在于,所述六自由度台架由上台面、万向节、伸缩缸和下台面组成,所述上台面通过螺栓与工作塔架固定连接,所述伸缩缸为六个,伸缩缸两端通过万向节分别与上、下台面相连接。
  7. 根据权利要求6所述的适用自然水体的深海采矿系统自航拖曳模拟器,其特征在于,所述陀螺姿态控制系统由dy转台、陀螺壳体、检修盖、dx转轴和扩展连接口组成,dy转台通过螺栓与下台面固定连接,陀螺壳体上设置有检修盖、内腔装有可高速旋转的大质量陀螺体,dy转台相对于六自由度运动姿态控制系统主体转动,陀螺壳体可沿dx转轴转动,所述扩展连接口设置在陀螺姿态控制系统下端部。
  8. 根据权利要求7所述的适用自然水体的深海采矿系统自航拖曳模拟器,其特征在于,实验扬矿硬管模型通过带锁万向节与工作台面的重心投影孔相连接或穿过重心投影孔、通过带锁万向节与扩展连接口直接连接。
  9. 采用权利要求1-8之一所述的适用自然水体的深海采矿系统自航拖曳模拟器的模拟方法,其特征在于,所述模拟方法包括以下步骤:
    步骤1:根据待测实验模型的缩尺比、质量和自身浮力参数确定所述模拟器所需浮力,进而确定浮体单元腔内所需填充物的质量;
    步骤2:将快拆式电池箱安装至工作台面后端居中位置;
    步骤3:通过码头或母船将所述模拟器下放至水面,接通位于中央控制柜面板上的总电源开关,进行全方面自检,空车试机并采集数据作为实验对照样本数据与零点标点参考,确认模拟器状态一切正常;
    步骤4:将待测实验模型通过码头或母船下放至水面,将待测实验模型的实验扬矿硬管模型部位通过带锁万向节连接至工作台面下部的重心投影孔部位;
    步骤5:检测所述模拟器姿态,若发生偏斜,可通过调整快拆式电池箱在工作台面的上台面的前后左右位置,进行整体模拟器姿态配平;
    步骤6:根据实验的工况要求,通过控制台远程进行程序设定,可任意独立搭配所述模拟器各工况模拟功能的使用;
    步骤7:所述模拟器将获取的各数据通过中央控制柜初步处理后将通过无线电通讯系统与远程控制台交互数据;
    步骤8:实验人员实时核验模拟器各传感器所采集的数据是否有效且正常,用以控制实验进度,调整实验方案;
    步骤9:实验结束后,通过码头或母船回收所述模拟器并清洁维护妥善安置待下次使用。
  10. 根据权利要求9所述的适用自然水体的深海采矿系统自航拖曳模拟器的模拟方法,其特征在于,所述步骤6中模拟器的工况模拟功能包括以下工况模拟功能:
    姿态模拟,所述模拟器通过陀螺姿态控制系统与六自由度台架的协同联动来模拟出采矿船的横荡、纵荡、艏摇、横摇、纵摇和垂荡六个自由度的运动状态,对模拟器的姿态干预既可是正向的亦可是负向的,适用于自然水域不可控,利用本功能进行减摇减摆或增摇增摆来贴近实验要求工况;
    拖曳航行,模拟器所搭载的主推进系统、第一侧推进系统和第二侧推系统均可独立控制推进角度和螺旋桨转速,通过改变螺旋桨转速,使得模拟器可模拟出匀速拖航、匀变速拖航、变加速拖航、以及各类复杂开采路径规划航行及各类半径转向航行工况;
    转向拖航,模拟器所搭载的主推进系统、第一侧推进系统、第二侧推系统均可独立控制推进角度和螺旋桨转速,通过改变推进角度和螺旋桨转速,实现各种形式的曲线运动,模拟出采矿船各类路径规划的拖航工况;
    激励震动,模拟器所搭载的陀螺姿态控制系统与六自由度台架可以对模拟器施加高频的震动,通过模拟器主体结构传递至实验扬矿硬管模型或通过带锁万向节通过陀螺姿态控制系统的下部的扩展连接口直接连接,更为直接的产生激励震动,用来观测扬矿管线系统的动态响应特性;
    铰接固接切换,所述带锁万向节存在两个正交的水平轴,可提供两个自由度的自由转动,带锁万向节将扬矿硬管顶端以铰接的形式与模拟器连接,可独立限制两个水平轴中的任意一个轴的转动后与模拟器连接或两个水平轴的转动都限制后最终将连接形式变为固接的方式与模拟器连接。
PCT/CN2021/087621 2021-04-02 2021-04-16 适用自然水体的深海采矿系统自航拖曳模拟器及模拟方法 WO2022205516A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/781,812 US11739637B2 (en) 2021-04-02 2021-04-16 Self-propelled towing simulator for deep-sea mining system applicable to natural water bodies and simulation method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110358790.0 2021-04-02
CN202110358790.0A CN113192404B (zh) 2021-04-02 2021-04-02 适用自然水体的深海采矿系统自航拖曳模拟器及模拟方法

Publications (1)

Publication Number Publication Date
WO2022205516A1 true WO2022205516A1 (zh) 2022-10-06

Family

ID=76974512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087621 WO2022205516A1 (zh) 2021-04-02 2021-04-16 适用自然水体的深海采矿系统自航拖曳模拟器及模拟方法

Country Status (3)

Country Link
US (1) US11739637B2 (zh)
CN (1) CN113192404B (zh)
WO (1) WO2022205516A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023135A (zh) * 2021-11-08 2022-02-08 哈尔滨工程大学 一种auv避碰训练系统
CN116576829B (zh) * 2023-07-14 2023-10-03 山东国立环境检测科技股份有限公司 测量海底采样位置深度装置
CN116663457B (zh) * 2023-07-25 2023-11-17 山东大学 基于半解析方程的锥形阻力伞拖曳阻力预测方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102140917A (zh) * 2011-05-17 2011-08-03 中南大学 深海采矿升沉补偿模拟试验装置
KR20130120043A (ko) * 2012-04-25 2013-11-04 김종근 요트 가상운항 시스템
KR20150031955A (ko) * 2013-09-17 2015-03-25 대우조선해양 주식회사 드릴쉽
CN205652295U (zh) * 2015-12-31 2016-10-19 武汉船舶设计研究院有限公司 一种基于管道式提升采矿系统的采矿船
WO2017058098A1 (en) * 2015-09-29 2017-04-06 Ame2 Pte Ltd A mobile docking apparatus and method of operating thereof
CN106611540A (zh) * 2015-10-27 2017-05-03 天津工大瑞工光电技术研究院有限公司 一种浮力船舰运动模拟和演艺装置
CN107121151A (zh) * 2017-04-14 2017-09-01 中北大学 一种面向实验教学的稳定平台测试装置及测试方法
CN111577288A (zh) * 2020-07-03 2020-08-25 中国地质大学(北京) 一种深海多金属结核近底拖曳采矿系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105927229B (zh) * 2016-07-08 2018-06-12 长沙矿冶研究院有限责任公司 深海矿产资源开采系统
CN107037823B (zh) * 2017-06-08 2023-08-22 中国海洋大学 一种用于模拟海洋平台运动补偿的实验平台及其实验方法
CN109253857B (zh) * 2018-10-12 2019-08-06 山东科技大学 一种模拟深海采矿扬矿作业的实验装置
CN212406719U (zh) * 2020-07-20 2021-01-26 深圳市优华发展有限公司 一种深海扬矿装置
CN111924044B (zh) * 2020-08-13 2022-10-21 中山大学 一种能够在水下长时间作业的可机动海洋观测平台
CN112127893A (zh) * 2020-10-15 2020-12-25 中国船舶工业集团公司第七0八研究所 一种深海自航悬浮式采集矿机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102140917A (zh) * 2011-05-17 2011-08-03 中南大学 深海采矿升沉补偿模拟试验装置
KR20130120043A (ko) * 2012-04-25 2013-11-04 김종근 요트 가상운항 시스템
KR20150031955A (ko) * 2013-09-17 2015-03-25 대우조선해양 주식회사 드릴쉽
WO2017058098A1 (en) * 2015-09-29 2017-04-06 Ame2 Pte Ltd A mobile docking apparatus and method of operating thereof
CN106611540A (zh) * 2015-10-27 2017-05-03 天津工大瑞工光电技术研究院有限公司 一种浮力船舰运动模拟和演艺装置
CN205652295U (zh) * 2015-12-31 2016-10-19 武汉船舶设计研究院有限公司 一种基于管道式提升采矿系统的采矿船
CN107121151A (zh) * 2017-04-14 2017-09-01 中北大学 一种面向实验教学的稳定平台测试装置及测试方法
CN111577288A (zh) * 2020-07-03 2020-08-25 中国地质大学(北京) 一种深海多金属结核近底拖曳采矿系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HU QIONG: "The Simulation Test Research on Mechanical Behavior of the Lifting Pipe System of Deep-Ocean Mining", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 1 December 2010 (2010-12-01), XP055971948 *

Also Published As

Publication number Publication date
US20230134633A1 (en) 2023-05-04
CN113192404B (zh) 2022-02-25
CN113192404A (zh) 2021-07-30
US11739637B2 (en) 2023-08-29

Similar Documents

Publication Publication Date Title
WO2022205516A1 (zh) 适用自然水体的深海采矿系统自航拖曳模拟器及模拟方法
CN103942383B (zh) 一种深海作业型水下机器人的动力学和运动学估计方法
CN109367738B (zh) 一种水下自主作业机器人及其作业方法
CN107067871A (zh) 拖轮傍拖大型油轮工况的仿真系统
CN107010176A (zh) 一种用于加密测量的小型无人船
CN106644378A (zh) 一种水面飞行器单船身模型水池拖曳试验装置及方法
CN112357004A (zh) 一种中试艇海试系统及其进行舰船总体性能测试的方法
CN105253264A (zh) 一种深水半潜式钻井平台的海浪补偿装置及其控制方法
Jiao et al. A state-of-the-art large scale model testing technique for ship hydrodynamics at sea
CN112683320A (zh) 一种三自由度适航仪实验平台
CN110827616A (zh) 一种潜艇操舵和均衡控制仿真试验平台及方法
CN105966557B (zh) 一种水上结构物混合定位系统
CN202928573U (zh) Gps无验潮水深测量测杆竖直实时控制装置
CN110539867A (zh) 一种仿真水质检测机器海豚
CN208453227U (zh) 一种微型浮潜式多体巡航器
CN205239854U (zh) 一种动态抗风浪的无人船
CN108454808A (zh) 一种多参数可调的无动力水下潜航器模型
CN108520089B (zh) 一种柔性连接的波浪滑翔器运动预测方法
WO2023071703A1 (zh) 一种多船运动姿态实时监测系统
CN111136687A (zh) 一种水下机器人视觉控制目标抓取测试系统与方法
CN107576479B (zh) 海洋核动力平台单点系泊系统试车设备及其调试方法
Guangyi et al. Research on underwater safety inspection and operational robot motion control
Xu et al. Interactive visual reality of the offshore hoisting operation and numerical modeling
Chen et al. Design of Unmanned Surface Vehicle for Submarine Pipeline Detection
Dubey et al. Development of autonomous system for scaled ship model for seakeeping tests

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934170

Country of ref document: EP

Kind code of ref document: A1