WO2022205419A1 - 无线通信方法、装置和系统 - Google Patents

无线通信方法、装置和系统 Download PDF

Info

Publication number
WO2022205419A1
WO2022205419A1 PCT/CN2021/085273 CN2021085273W WO2022205419A1 WO 2022205419 A1 WO2022205419 A1 WO 2022205419A1 CN 2021085273 W CN2021085273 W CN 2021085273W WO 2022205419 A1 WO2022205419 A1 WO 2022205419A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
pdsch
symbol
coreset
pdcch candidates
Prior art date
Application number
PCT/CN2021/085273
Other languages
English (en)
French (fr)
Inventor
陈哲
王昕�
Original Assignee
富士通株式会社
陈哲
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 陈哲, 王昕� filed Critical 富士通株式会社
Priority to PCT/CN2021/085273 priority Critical patent/WO2022205419A1/zh
Publication of WO2022205419A1 publication Critical patent/WO2022205419A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • This application relates to the field of communications.
  • NR New Radio, New Radio introduces a high-frequency communication method in order to increase the frequency resources available to the communication system, thereby increasing the system capacity.
  • mapping method of PDSCH Physical Downlink Shared Channel
  • the scheduling PDCCH Physical Downlink Control Channel, physical downlink control channel
  • the terminal device needs to consider whether there is sufficient preparation time to generate valid HARQ-ACK (Hybrid Automatic Repeat reQuest-Acknowledge) information corresponding to the PDSCH.
  • HARQ-ACK Hybrid Automatic Repeat reQuest-Acknowledge
  • Overlapped symbols overlapped symbols between the PDCCH and the PDSCH and/or the CORESET (Control Resource Set, control resource set) corresponding to the PDCCH.
  • the terminal device may incorrectly estimate the preparation time required to feed back the HARQ-ACK information, thereby causing the terminal device to discard some HARQ-ACK information that could have been correctly fed back, resulting in performance degradation of the communication system.
  • the embodiments of the present application provide a wireless communication method, apparatus and system, so that when the PDCCH of the scheduled PDSCH is repeated, the terminal device can correctly determine whether there is sufficient preparation time to generate a corresponding generation Valid HARQ-ACK information.
  • a wireless communication apparatus wherein the apparatus includes:
  • a receiving unit which receives PDSCH, and the PDSCH is scheduled by the PDCCH; wherein, the PDCCH corresponds to two PDCCH candidates;
  • the providing unit if the PUCCH carrying the HARQ-ACK information of the PDSCH is not earlier than the first time point, the providing unit device provides a valid HARQ-ACK information, wherein,
  • the first time point is related to the overlapping symbols of the PDSCH and one of the two PDCCH candidates.
  • a wireless communication device wherein the device includes:
  • a receiving unit which receives PDSCH, and the PDSCH is scheduled by the PDCCH; wherein, the PDCCH corresponds to two PDCCH candidates;
  • the providing unit if the PUCCH carrying the HARQ-ACK information of the PDSCH is not earlier than the first time point, the providing unit provides a valid HARQ-ACK information, wherein the first time point is related to the PDSCH and the PDSCH and the first time point.
  • the overlapping symbols of the PDCCH are correlated;
  • the overlapping symbol of the PDSCH and the PDCCH refers to the overlapping part of the symbol corresponding to the PDSCH and the symbol corresponding to the PDCCH;
  • the symbols corresponding to the PDCCH refer to all the symbols from the first symbol to the second symbol;
  • the first symbol refers to the start symbol corresponding to the PDCCH candidate with the earliest start symbol in the two PDCCH candidates;
  • the second symbol refers to the end symbol corresponding to the PDCCH candidate whose end symbol is the latest among the two PDCCH candidates.
  • a wireless communication apparatus wherein the apparatus includes:
  • a receiving unit which receives PDSCH, and the PDSCH is scheduled by the PDCCH; wherein, the PDCCH corresponds to two CORESETs;
  • the providing unit if the PUCCH carrying the HARQ-ACK information of the PDSCH is not earlier than a first time point, the providing unit provides a valid HARQ-ACK information, wherein the first time point is related to the first CORESET , wherein the first CORESET refers to one of the two CORESETs.
  • One of the beneficial effects of the embodiments of the present application is that according to the embodiments of the present application, when the PDCCH of the scheduled PDSCH is repeated, the terminal device can correctly estimate whether the time for generating the HARQ-ACK information corresponding to the PDSCH is sufficient, and further Feeding back valid HARQ-ACK information when the time is sufficient to avoid performance degradation of the communication system due to wrongly discarding the HARQ-ACK information.
  • FIG. 1 is a schematic diagram of a wireless communication method according to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of an application scenario of the method shown in Fig. 1;
  • Fig. 3 is a schematic diagram of another application scenario of the method shown in Fig. 1;
  • Fig. 4 is a schematic diagram of another application scenario of the method shown in Fig. 1;
  • FIG. 5 is another schematic diagram of a wireless communication method according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of an application scenario of the method shown in Fig. 5;
  • FIG. 7 is another schematic diagram of a wireless communication method according to an embodiment of the present application.
  • Fig. 8 is a schematic diagram of an application scenario of the method shown in Fig. 7;
  • Fig. 9 is a schematic diagram of another application scenario of the method shown in Fig. 7;
  • Figure 10 is a schematic diagram of another application scenario of the method shown in Figure 7;
  • FIG. 11 is a schematic diagram of a wireless communication device according to an embodiment of the present application.
  • FIG. 12 is another schematic diagram of a wireless communication device according to an embodiment of the present application.
  • FIG. 13 is still another schematic diagram of a wireless communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements in terms of numelation, but do not indicate the spatial arrangement or temporal order of these elements, and these elements should not be referred to by these terms restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • the terms “comprising”, “including”, “having”, etc. refer to the presence of stated features, elements, elements or components, but do not preclude the presence or addition of one or more other features, elements, elements or components.
  • the term "communication network” or “wireless communication network” may refer to a network that conforms to any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Long Term Evolution Enhanced (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access) and so on.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Enhanced
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to communication protocols at any stage, for example, including but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, New Radio (NR, New Radio), etc., and/or other communication protocols currently known or to be developed in the future.
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network devices may include but are not limited to the following devices: Base Station (BS, Base Station), Access Point (AP, Access Point), Transceiver Node (TRP, Transmission Reception Point), broadcast transmitter, Mobile Management Entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller) and so on.
  • BS Base Station
  • AP Access Point
  • TRP Transmission Reception Point
  • MME Mobile Management Entity
  • gateway server
  • RNC Radio Network Controller
  • BSC Base Station Controller
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), and 5G base station (gNB), etc., and may also include a remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low power node (eg femto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low power node eg femto, pico, etc.
  • base station may include some or all of their functions, each base station may provide communication coverage for a particular geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” refers to a device that accesses a communication network through a network device and receives network services, and may also be called “Terminal Equipment” (TE, Terminal Equipment).
  • a terminal device may be fixed or mobile, and may also be referred to as a mobile station (MS, Mobile Station), a terminal, a user, a subscriber station (SS, Subscriber Station), an access terminal (AT, Access Terminal), a station, etc. Wait.
  • the terminal device may include but is not limited to the following devices: Cellular Phone (Cellular Phone), Personal Digital Assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication device, handheld device, machine type communication device, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • Cellular Phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication device
  • handheld device machine type communication device
  • laptop computer Cordless phones, smartphones, smart watches, digital cameras, and more.
  • the terminal device may also be a machine or device that performs monitoring or measurement, such as but not limited to: Machine Type Communication (MTC, Machine Type Communication) terminals, In-vehicle communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • N1timeline is used to determine the symbol L1 (corresponding to the first time point referred to later), which is related to the capability of the terminal device. That is to say, if the first symbol of PUCCH (Physical Uplink Control Channel, Physical Uplink Control Channel) carrying HARQ-ACK information is not earlier than L 1 , the terminal device should provide a valid HARQ-ACK information.
  • PUCCH Physical Uplink Control Channel
  • Physical Uplink Control Channel Physical Uplink Control Channel
  • L 1 refers to the first uplink symbol after the last symbol of the received PDSCH and after T proc,1 .
  • the determination of L1 needs to consider the influence of timing advance.
  • the CP (Cyclic Prefix, cyclic prefix) of the first upstream symbol is also after T proc,1 .
  • the calculation formula of T proc,1 is as follows:
  • T proc,1 (N 1 +d 1,1 +d 2 )(2048+144) ⁇ 2 ⁇ ⁇ T C +T ext
  • the parameters d 1,1 are related to overlapping symbols between PDCCH and PDSCH and/or CORESET corresponding to PDCCH.
  • the specific meanings of other parameters in the above formula can refer to existing standards, and the description is omitted here.
  • T proc,1 when the UE calculates the above T proc,1 , it needs to consider the overlapping symbols between PDCCH and PDSCH and/or the CORESET corresponding to PDCCH.
  • PDCCH overlaps how to define the difference between PDCCH and PDSCH Overlapping symbols, and then calculating T proc,1 is unclear; on the other hand, PDCCH may correspond to more than one CORESET, and it is unclear which CORESET or which PDCCH repetition corresponds to calculating T proc,1 .
  • the PDCCH repetition refers to that the same DCI (Downlink Control Information, downlink control information) is sent separately in different time-frequency resources (or different PDCCH candidates).
  • DCI Downlink Control Information, downlink control information
  • PDCCH repetition refers to that the same DCI (Downlink Control Information, downlink control information) is sent separately in different time-frequency resources (or different PDCCH candidates).
  • An embodiment of the present application provides a wireless communication method, which is described from the side of a terminal device.
  • FIG. 1 is a schematic diagram of a wireless communication method according to an embodiment of the present application. Please refer to FIG. 1 .
  • the method includes:
  • the terminal device receives the PDSCH, the PDSCH is scheduled by the PDCCH, and the PDCCH corresponds to two PDCCH candidates;
  • the terminal device If the PUCCH carrying the HARQ-ACK information of the PDSCH is not earlier than a first time point, the terminal device provides a valid HARQ-ACK information, wherein the first time point is related to the PDSCH and all the HARQ-ACK information.
  • the overlapping symbols of one of the two PDCCH candidates are correlated.
  • the overlapping symbols that need to be considered when calculating the above T proc,1 , or the d 1 that needs to be considered, is clarified. ,1 , to avoid the HARQ-ACK information being discarded incorrectly because d 1,1 is not clear.
  • one PDCCH candidate of the two PDCCH candidates refers to the one PDCCH candidate whose ending symbol is later in the two PDCCH candidates. That is, the terminal device calculates T proc,1 or calculates d 1,1 with reference to the overlapping symbols of the PDSCH and the PDCCH candidate whose end symbol is later, so as to obtain the above-mentioned first time point.
  • FIG. 2 is a schematic diagram of an application scenario of the foregoing embodiment.
  • the mapping type of PDSCH is type B, and PDSCH is scheduled by PDCCH, which is related to two PDCCH candidates, and the association between these two PDCCH candidates is through RRC signaling or MAC - CE signaling indication, respectively PDCCH#can1 and PDCCH#can2.
  • PDCCH Physical Downlink Control Channel
  • the UE has performed blind detection on the time-frequency resources corresponding to PDCCH#can1 and/or PDCCH#can2, and successfully received the corresponding PDCCH.
  • PDCCH#can1 is the PDCCH candidate of the search space set SS#1, and PDCCH#can1 is in CORESET#1, the time domain length of CORESET#1 is 1 symbol, and the corresponding PDCCH occasion is in the first symbol of time slot n ; CORESET#1 is associated with a TCI state (TCI#1).
  • PDCCH#can2 is the PDCCH candidate of the search space set SS#2, and PDCCH#can2 is in CORESET#2, the time domain length of CORESET#2 is 1 symbol, and the corresponding PDCCH occasion is in the 5th symbol of time slot n ; CORESET#2 is associated with a TCI state (TCI#2).
  • the UE before feeding back the HARQ-ACK information corresponding to the PDSCH, the UE needs to perform the following steps:
  • Step 1 Perform a blind PDCCH check
  • Step 2 After detecting the PDCCH scheduled for downlink, determine the location of the DM-RS (Demodulation Reference Signal) of the PDSCH according to the instructions therein, and receive these DM-RS;
  • DM-RS Demodulation Reference Signal
  • Step 3 After the DM-RS is received, the UE performs channel estimation according to the received DM-RS;
  • Step 4 The UE demodulates the PDSCH according to the channel estimation result.
  • PDCCH has the following two possible blind detection results:
  • the UE can demodulate the PDCCH very early, know the location of the DM-RS, and use the DM-RS for channel estimation in time.
  • the UE can only complete the reception of the PDCCH in the 5th symbol of time slot n, and can only know the content carried by the PDCCH and determine the position of the DM-RS after a certain period of time before starting the channel estimation. Therefore, compared with result 1, result 2 has a later feedback time of HARQ-ACK.
  • N1timeline is determined according to result 2. That is to say, N1timeline is determined according to the PDCCH candidate with a later symbol ending, and more specifically, d 1,1 is determined according to the overlapping symbol between the PDCCH candidate with a later ending symbol (PDCCH#can2) and the PDSCH. In other words, d 1,1 is determined according to the CORESET corresponding to the PDCCH candidate (PDCCH#can2) with a later end symbol.
  • the start symbol of any one of the two PDCCH candidates is not later than the start symbol of the PDSCH scheduled by the PDCCH. That is, the PDSCH is received at a position no earlier than the start symbol of any PDCCH candidate.
  • T proc,1 can be calculated by using the method of the embodiment of the present application, so as to obtain the above-mentioned first time point.
  • one of the two PDCCH candidates refers to a PDCCH candidate with a longer CORESET time domain length corresponding to the two PDCCH candidates; wherein, the end of the two PDCCH candidates The symbols are the same. That is, for two PDCCH candidates with the same end symbol, the terminal device calculates T proc,1 by referring to the overlapping symbols of the PDSCH and the corresponding PDCCH candidate with a longer CORESET time domain length, thereby obtaining the above-mentioned first time point.
  • FIG. 3 is a schematic diagram of an application scenario of the foregoing embodiment.
  • the end symbols of PDCCH#can1 and PDCCH#can2 are the same, and the time domain length (2 symbols) of the CORESET (CORESET#2) corresponding to PDCCH#can2 is greater than the CORESET corresponding to PDCCH#can1 (CORESET#1) time domain length (1 symbol). Therefore, the UE determines N1timeline according to the overlapping symbols between PDCCH#can2 and PDSCH.
  • one of the two PDCCH candidates refers to any one of the two PDCCH candidates; wherein, the end symbols of the two PDCCH candidates are the same, and the two PDCCH candidates The CORESET time domain lengths corresponding to the PDCCH candidates are the same. That is, when the end symbols of the two PDCCH candidates are the same and the corresponding CORESET time domain lengths are also the same, the terminal device calculates T proc,1 with reference to the overlapping symbols of the PDSCH and any one of the PDCCH candidates, so as to obtain the first point in time.
  • FIG. 4 is a schematic diagram of an application scenario of the foregoing embodiment.
  • the end symbols of PDCCH#can1 and PDCCH#can2 are the same, and the time domain length (2 symbols) of the CORESET (CORESET#2) corresponding to PDCCH#can2 is equal to the CORESET corresponding to PDCCH#can1 (CORESET#1) time domain length (2 symbols). Therefore, the UE can determine the N1 timeline according to the overlapping symbols between any one of PDCCH #can1 and PDCCH #can2 and the PDSCH. In other words, the UE can determine the N1timeline according to the overlapping symbols between the PDCCH#can1 and the PDSCH; the UE can determine the N1timeline according to the overlapping symbols between the PDCCH#can2 and the PDSCH.
  • the start symbol of any one of the two PDCCH candidates is not later than the start symbol of the PDSCH scheduled by the PDCCH. That is, the PDSCH is received at a position no earlier than the start symbol of any PDCCH candidate.
  • T proc,1 can be calculated by using the method of the embodiment of the present application, so as to obtain the above-mentioned first time point.
  • FIG. 1 only schematically illustrates the embodiment of the present application, but the present application is not limited thereto.
  • the execution order of each operation can be adjusted appropriately, and other operations can be added or some of the operations can be reduced.
  • Those skilled in the art can make appropriate modifications according to the above content, and are not limited to the description of the above-mentioned FIG. 1 .
  • the overlapping symbols between the PDCCH and the PDSCH that need to be considered when determining the N1 timeline are clarified, which avoids the HARQ-ACK information from being discarded by mistake.
  • An embodiment of the present application provides a wireless communication method, which is described from the side of a terminal device.
  • FIG. 5 is a schematic diagram of a wireless communication method according to an embodiment of the present application. Please refer to FIG. 5 .
  • the method includes:
  • a terminal device receives a PDSCH, the PDSCH is scheduled by a PDCCH, and the PDCCH corresponds to two PDCCH candidates;
  • the terminal device If the PUCCH carrying the HARQ-ACK information of the PDSCH is not earlier than a first time point, the terminal device provides a valid HARQ-ACK information, wherein the first time point is related to the PDSCH and all the HARQ-ACK information.
  • the overlapping symbols of the PDCCH are correlated;
  • the overlapping symbol of the PDSCH and the PDCCH refers to the overlapping part of the symbol corresponding to the PDSCH and the symbol corresponding to the PDCCH;
  • the symbol corresponding to the PDCCH refers to all symbols from the first symbol to the second symbol;
  • the first symbol refers to the start symbol corresponding to the PDCCH candidate with the earliest start symbol in the two PDCCH candidates;
  • the second symbol refers to the end symbol corresponding to the PDCCH candidate whose end symbol is the latest among the two PDCCH candidates.
  • FIG. 6 is a schematic diagram of an application scenario of the foregoing embodiment.
  • the mapping type of PDSCH is type B, and PDSCH is scheduled by PDCCH, which is related to two PDCCH candidates, and the association between these two PDCCH candidates is through RRC signaling or MAC - CE signaling indication, respectively PDCCH#can1 and PDCCH#can2.
  • PDCCH Physical Downlink Control Channel
  • the UE has performed blind detection on the time-frequency resources corresponding to PDCCH#can#1 and/or PDCCH#can#2, and successfully received the corresponding PDCCH.
  • PDCCH#can1 is the PDCCH candidate of the search space set SS#1, and PDCCH#can1 is in CORESET#1, the time domain length of CORESET#1 is 1 symbol, and the corresponding PDCCH occasion is in the first symbol of time slot n ; CORESET#1 is associated with a TCI state (TCI#1).
  • PDCCH#can2 is the PDCCH candidate of the search space set SS#2, and PDCCH#can2 is in CORESET#2, the time domain length of CORESET#2 is 1 symbol, and the corresponding PDCCH occasion is in the third symbol of time slot n ; CORESET#2 is associated with a TCI state (TCI#2).
  • the UE before feeding back the HARQ-ACK information corresponding to the PDSCH, the UE needs to perform the following steps:
  • Step 1 Perform a blind PDCCH check
  • Step 2 After detecting the PDCCH scheduled for downlink, determine the location of the DM-RS of the PDSCH according to the indication therein, and receive these DM-RS;
  • Step 3 After the DM-RS is received, the UE performs channel estimation according to the received DM-RS;
  • Step 4 The UE demodulates the PDSCH according to the channel estimation result.
  • PDCCH has the following two possible blind detection results:
  • the UE can demodulate the PDCCH very early, know the location of the DM-RS, and use the DM-RS for channel estimation in time.
  • the UE can only complete the reception of the PDCCH in the third symbol of time slot n, and can only know the content carried by the PDCCH after a certain period of time and determine the position of the DM-RS before starting the channel estimation. Therefore, compared with result 1, result 2 has a later feedback time of HARQ-ACK.
  • N1timeline is determined according to result 2. That is, the N1timeline is determined according to the PDCCH candidate whose end symbol is later.
  • the embodiments of the present application define d 1,1 as the symbols overlapping between the PDCCH and the PDSCH, where the PDCCH symbol refers to the earliest symbol of the PDCCH (the first symbol of PDCCH#can1) to the latest symbol corresponding to the PDCCH All symbols between the symbols (the last symbol of PDCCH#can2).
  • the PDCCH symbol refers to between the earliest start symbol (the first symbol of PDCCH#can1) in the PDCCH candidate corresponding to the PDCCH to the latest end symbol (the last symbol of PDCCH#can2) in the PDCCH candidate corresponding to the PDCCH all symbols in between.
  • the PDCCH symbols refer to symbols 1, 2 and 3 of slot n. Therefore, there are two overlapping symbols between the PDCCH and the PDSCH, which can reflect the influence brought by the late end of the PDCCH (PDCCH#can2).
  • the time domain positional relationship between the start symbol of the PDCCH candidate and the start symbol of the PDSCH scheduled by the PDCCH is not limited. That is, PDSCH can be received at a position earlier than the start symbol of PDCCH candidate, for example, received at a position earlier than the start symbol of PDCCH candidate 2; it can also be received at a position later than the start symbol of PDCCH candidate, such as in Received at a position later than the start symbol of PDCCH candidate 1.
  • FIG. 5 only schematically illustrates the embodiment of the present application, but the present application is not limited thereto.
  • the execution order of each operation can be adjusted appropriately, and other operations can be added or some of the operations can be reduced.
  • Those skilled in the art can make appropriate modifications according to the above content, and are not limited to the description of the above-mentioned FIG. 5 .
  • the overlapping symbols between the PDCCH and the PDSCH that need to be considered when determining the N1 timeline are clarified, which avoids the HARQ-ACK information from being discarded by mistake.
  • An embodiment of the present application provides a wireless communication method, which is described from the side of a terminal device.
  • FIG. 7 is a schematic diagram of a wireless communication method according to an embodiment of the present application. Please refer to FIG. 7 .
  • the method includes:
  • a terminal device receives a PDSCH, the PDSCH is scheduled by a PDCCH, and the PDCCH corresponds to two CORESETs;
  • the terminal device If the PUCCH carrying the HARQ-ACK information of the PDSCH is not earlier than a first time point, the terminal device provides a valid HARQ-ACK information, wherein the first time point is related to the first CORESET, Wherein, the first CORESET refers to one of the two CORESETs.
  • the CORESET that needs to be considered when calculating the above T proc,1 or calculating the above d 1,1 is clarified, It is avoided that HARQ-ACK information is erroneously discarded.
  • the PDCCH corresponds to two PDCCH candidates; the first CORESET refers to the CORESET corresponding to a PDCCH candidate whose ending symbol is later in the two PDCCH candidates. That is, the terminal device calculates T proc,1 or calculates d 1,1 with reference to the CORESET corresponding to the PDCCH candidate with a later end symbol, so as to obtain the above-mentioned first time point.
  • FIG. 8 is a schematic diagram of an application scenario of the foregoing embodiment.
  • the mapping type of PDSCH is type B, and PDSCH is scheduled by PDCCH, which is related to two PDCCH candidates, and the association between these two PDCCH candidates is through RRC signaling or MAC - CE signaling indication, respectively PDCCH#can1 and PDCCH#can2.
  • PDCCH Physical Downlink Control Channel
  • the UE has performed blind detection on the time-frequency resources corresponding to PDCCH#can1 and/or PDCCH#can2, and successfully received the corresponding PDCCH.
  • PDCCH#can1 is the PDCCH candidate of the search space set SS#1, and PDCCH#can1 is in CORESET#1, the time domain length of CORESET#1 is 1 symbol, and the corresponding PDCCH occasion is in the first symbol of time slot n ; CORESET#1 is associated with a TCI state (TCI#1).
  • PDCCH#can2 is the PDCCH candidate of the search space set SS#2, and PDCCH#can2 is in CORESET#2, the time domain length of CORESET#2 is 3 symbols, and the corresponding PDCCH occasion starts from the third time slot n. symbols and ends at symbol 5; CORESET#2 is associated with one TCI state (TCI#2).
  • the UE before feeding back the HARQ-ACK information corresponding to the PDSCH, the UE needs to perform the following steps:
  • Step 1 Perform a blind PDCCH check
  • Step 2 After detecting the PDCCH scheduled for downlink, determine the location of the DM-RS of the PDSCH according to the indication therein, and receive these DM-RS;
  • Step 3 After the DM-RS is received, the UE performs channel estimation according to the received DM-RS;
  • Step 4 The UE demodulates the PDSCH according to the channel estimation result.
  • PDCCH has the following two possible blind detection results:
  • the UE can demodulate the PDCCH very early, know the location of the DM-RS, and use the DM-RS for channel estimation in time.
  • the UE can only complete the reception of the PDCCH in the 5th symbol of time slot n, and can only know the content carried by the PDCCH and determine the position of the DM-RS after a certain period of time before starting the channel estimation. Therefore, compared with result 1, result 2 has a later feedback time of HARQ-ACK.
  • N1timeline is determined according to result 2. That is to say, the N1timeline is determined according to the PDCCH candidate with a later end symbol, and more specifically, d 1,1 is determined according to the CORESET corresponding to the PDCCH candidate (PDCCH#can2) with a later end symbol.
  • the start symbol of any one of the two PDCCH candidates is not later than the start symbol of the PDSCH scheduled by the PDCCH. That is, the PDSCH is received at a position no earlier than the start symbol of any PDCCH candidate.
  • T proc,1 can be calculated by using the method of the embodiment of the present application, so as to obtain the above-mentioned first time point.
  • the PDCCH corresponds to two PDCCH candidates; the first CORESET refers to a PDCCH candidate with a longer CORESET time domain length corresponding to the two PDCCH candidates; wherein the two PDCCH candidates end symbols are the same. That is, for two PDCCH candidates with the same end symbol, the terminal device calculates T proc,1 or calculates d 1,1 by referring to the CORESET corresponding to the PDCCH candidate with the corresponding CORESET time domain length longer, so as to obtain the above-mentioned first time point.
  • FIG. 9 is a schematic diagram of an application scenario of the foregoing embodiment.
  • the end symbols of PDCCH#can1 and PDCCH#can2 are the same, and the time domain length (3 symbols) of the CORESET (CORESET#2) corresponding to PDCCH#can2 is greater than the CORESET corresponding to PDCCH#can1 (CORESET#1) time domain length (1 symbol). Therefore, the UE determines the N1timeline according to the CORESET (CORESET#2) corresponding to the PDCCH#can2.
  • the PDCCH corresponds to two PDCCH candidates; the first CORESET refers to the CORESET corresponding to any one of the two PDCCH candidates; wherein, the end of the two PDCCH candidates The symbols are the same, and the CORESET time domain lengths corresponding to the two PDCCH candidates are the same. That is, when the end symbols of the two PDCCH candidates are the same and the corresponding CORESET time domain lengths are also the same, the terminal device refers to the CORESET corresponding to any one of the PDCCH candidates to calculate T proc,1 or calculate d 1,1 , Thereby, the above-mentioned first time point is obtained.
  • FIG. 10 is a schematic diagram of an application scenario of the foregoing embodiment.
  • the end symbols of PDCCH#can1 and PDCCH#can2 are the same, and the time domain length (3 symbols) of the CORESET (CORESET#2) corresponding to PDCCH#can2 is equal to the CORESET corresponding to PDCCH#can1 (CORESET#1) time domain length (3 symbols). Therefore, the UE can determine the N1timeline according to the CORESET (CORESET#1 or CORESET#2) corresponding to any one of PDCCH#can1 and PDCCH#can2. In other words, the UE may determine the N1timeline according to the CORESET corresponding to PDCCH#can1; the UE may determine the N1timeline according to the CORESET corresponding to the PDCCH#can2.
  • the start symbol of any one of the two PDCCH candidates is not later than the start symbol of the PDSCH scheduled by the PDCCH. That is, the PDSCH is received at a position no earlier than the start symbol of any PDCCH candidate.
  • T proc,1 can be calculated by using the method of the embodiment of the present application, so as to obtain the above-mentioned first time point.
  • FIG. 7 only schematically illustrates the embodiment of the present application, but the present application is not limited thereto.
  • the execution order of each operation can be adjusted appropriately, and other operations can be added or some of the operations can be reduced.
  • Those skilled in the art can make appropriate modifications according to the above content, and are not limited to the description of the above-mentioned FIG. 7 .
  • the CORESET corresponding to the scheduled PDCCH that needs to be considered when determining the N1timeline is clarified, which prevents the HARQ-ACK information from being discarded by mistake.
  • An embodiment of the present application provides a wireless communication apparatus, and the apparatus may be, for example, a terminal device, or one or some components or components configured in the terminal device.
  • FIG. 11 is a schematic diagram of a wireless communication device according to an embodiment of the present application. Since the principle of the device for solving problems is similar to the method of the embodiment of the first aspect, the specific implementation of the device may refer to the implementation of the method of the embodiment of the first aspect. , the same content will not be repeated.
  • the wireless communication apparatus 1100 includes:
  • the providing unit 1102 if the PUCCH carrying the HARQ-ACK information of the PDSCH is not earlier than the first time point, the providing unit 1102 provides a valid HARQ-ACK information, wherein the first time point is related to the PDSCH and the PDSCH and the PUCCH.
  • the overlapping symbols of one of the two PDCCH candidates are related to each other.
  • one PDCCH candidate of the two PDCCH candidates refers to the one PDCCH candidate whose ending symbol is later in the two PDCCH candidates.
  • the start symbol of any one of the two PDCCH candidates is not later than the start symbol of the PDSCH scheduled by the PDCCH.
  • one of the two PDCCH candidates refers to a PDCCH candidate with a longer CORESET time domain length corresponding to the two PDCCH candidates; wherein, the end of the two PDCCH candidates The symbols are the same.
  • one of the two PDCCH candidates refers to any one of the two PDCCH candidates; wherein, the end symbols of the two PDCCH candidates are the same, and the two PDCCH candidates have the same end symbol.
  • the CORESET time domain corresponding to the PDCCH candidate has the same length.
  • the start symbol of any one of the two PDCCH candidates is not later than the start symbol of the PDSCH scheduled by the PDCCH.
  • FIG. 12 is another schematic diagram of a wireless communication device according to an embodiment of the present application. Since the principle of the device for solving problems is similar to the method of the embodiment of the second aspect, the specific implementation of the device may refer to the method of the embodiment of the second aspect. Implementation, the same content will not be repeated.
  • the wireless communication apparatus 1200 includes:
  • a receiving unit 1201 which receives and receives PDSCH, the PDSCH is scheduled by the PDCCH; wherein, the PDCCH corresponds to two PDCCH candidates;
  • the providing unit 1202 if the PUCCH carrying the HARQ-ACK information of the PDSCH is not earlier than the first time point, the providing unit 1202 provides a valid HARQ-ACK information, wherein the first time point is related to the PDSCH and the PDSCH and the PUCCH.
  • the overlapping symbols of the PDCCH are correlated;
  • the overlapping symbol of the PDSCH and the PDCCH refers to the overlapping part of the symbol corresponding to the PDSCH and the symbol corresponding to the PDCCH;
  • the symbols corresponding to the PDCCH refer to all the symbols from the first symbol to the second symbol;
  • the first symbol refers to the start symbol corresponding to the PDCCH candidate with the earliest start symbol in the two PDCCH candidates;
  • the second symbol refers to the end symbol corresponding to the PDCCH candidate whose end symbol is the latest among the two PDCCH candidates.
  • FIG. 13 is another schematic diagram of the wireless communication device according to the embodiment of the present application. Since the principle of solving the problem of the device is similar to the method of the embodiment of the third aspect, the specific implementation of the device may refer to the method of the embodiment of the third aspect. Implementation, the same content will not be repeated.
  • the wireless communication apparatus 1300 includes:
  • Receiving unit 1301 it receives PDSCH, and described PDSCH is scheduled by PDCCH; Wherein, described PDCCH corresponds to two CORESET;
  • the providing unit 1302 if the PUCCH carrying the HARQ-ACK information of the PDSCH is not earlier than the first time point, the providing unit 1302 provides a valid HARQ-ACK information, wherein the first time point is related to the first CORESET , wherein the first CORESET refers to one of the two CORESETs.
  • the PDCCH corresponds to two PDCCH candidates; the first CORESET refers to the CORESET corresponding to a PDCCH candidate with a later end symbol among the two PDCCH candidates.
  • the start symbol of any one of the two PDCCH candidates is not later than the start symbol of the PDSCH scheduled by the PDCCH.
  • the PDCCH corresponds to two PDCCH candidates; the first CORESET refers to a PDCCH candidate with a longer CORESET time domain length corresponding to the two PDCCH candidates; wherein, the two PDCCH candidates end symbols are the same.
  • the PDCCH corresponds to two PDCCH candidates; the first CORESET refers to the CORESET corresponding to any one of the two PDCCH candidates; wherein, the end of the two PDCCH candidates The symbols are the same, and the CORESET time domain lengths corresponding to the two PDCCH candidates are the same.
  • the start symbol of any one of the two PDCCH candidates is not later than the start symbol of the PDSCH scheduled by the PDCCH.
  • the wireless communication apparatus 1100/1200/1300 in this embodiment of the present application may further include other components or modules, and for the specific content of these components or modules, reference may be made to the related art.
  • FIG. 11 to FIG. 13 only exemplarily show the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used .
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc. The implementation of this application does not limit this.
  • the overlapping symbols and/or CORESET that need to be considered when determining the N1timeline is clarified, which prevents the HARQ-ACK information from being discarded by mistake.
  • FIG. 14 is a schematic diagram of the communication system according to the embodiment of the present application.
  • the communication system 1400 includes a network device 1401 and a terminal device 1402 .
  • FIG. 14 only A terminal device and a network device are used as examples for description, but the embodiments of the present application are not limited thereto.
  • the network device 1401 and the terminal device 1402 may perform transmission of existing services or services that can be implemented in the future.
  • these services may include, but are not limited to: Enhanced Mobile Broadband (eMBB), Massive Machine Type Communication (mMTC), Highly Reliable Low Latency Communication (URLLC), and Vehicle-to-Network (V2X) communication, among others.
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Highly Reliable Low Latency Communication
  • V2X Vehicle-to-Network
  • the network device 1401 generates a PDSCH and sends the PDSCH to the terminal device 1402; the terminal device 1402 receives the PDSCH; the PDSCH is scheduled by the PDCCH; wherein, the PDCCH corresponds to two PDCCH candidates; If the PUCCH of the HARQ-ACK information of the PDSCH is not earlier than the first time point, the terminal device 1402 provides a valid HARQ-ACK information, wherein the first time point is the same as that in the PDSCH and the two PDCCH candidates. The overlapping symbols of one of the PDCCH candidates are correlated.
  • This application does not limit the content related to the network device 1401 .
  • the related content of the terminal device 1402 is the same as the method of the embodiment of the first aspect, and the description is omitted here.
  • the network device 1401 generates a PDSCH and sends the PDSCH to the terminal device 1402; the terminal device 1402 receives the PDSCH; the PDSCH is scheduled by the PDCCH; wherein, the PDCCH corresponds to two PDCCH candidates; If the PUCCH of the HARQ-ACK information of the PDSCH is not earlier than the first time point, the terminal device 1402 provides a valid HARQ-ACK information, wherein the first time point is related to the overlapping symbols of the PDSCH and the PDCCH ; Wherein, the overlapping symbols of the PDSCH and the PDCCH refer to the overlapping part of the symbols corresponding to the PDSCH and the symbols corresponding to the PDCCH; wherein, the symbols corresponding to the PDCCH refer to all the symbols from the first symbol to the second symbol.
  • the first symbol refers to, in the two PDCCH candidates, the starting symbol corresponding to the PDCCH candidate with the earliest starting symbol;
  • the second symbol refers to, in the two PDCCH candidates, the ending symbol is the latest The end symbol corresponding to PDCCH candidate.
  • This application does not limit the content related to the network device 1401 .
  • the related content of the terminal device 1402 is the same as the method of the embodiment of the second aspect, and the description is omitted here.
  • the network device 1401 generates a PDSCH and sends the PDSCH to the terminal device 1402; the terminal device 1402 receives the PDSCH; the PDSCH is scheduled by the PDCCH; wherein the PDCCH corresponds to two CORESETs;
  • the PUCCH of the HARQ-ACK information of the PDSCH is not earlier than the first time point, the terminal device 1402 provides a valid HARQ-ACK information, wherein the first time point is related to the first CORESET, wherein the first CORESET Refers to one of the two CORESETs.
  • This application does not limit the content related to the network device 1401 .
  • the related content of the terminal device 1402 is the same as the method of the embodiment of the third aspect, and the description is omitted here.
  • the embodiment of the present application further provides a terminal device, for example, the terminal device may be a UE, but the present application is not limited to this, and may also be other devices.
  • FIG. 15 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1500 may include a processor 1501 and a memory 1502 ; the memory 1502 stores data and programs, and is coupled to the processor 1501 .
  • this figure is exemplary; other types of structures may be used in addition to or in place of this structure to implement telecommunication functions or other functions.
  • the processor 1501 may be configured to execute a program to implement the wireless communication method according to the embodiments of any one of the first to third aspects.
  • the terminal device 1500 may further include: a communication module 1503 , an input unit 1504 , a display 1505 , and a power supply 1506 .
  • the functions of the above components are similar to those in the prior art, and details are not repeated here. It is worth noting that the terminal device 1500 does not necessarily include all the components shown in FIG. 15 , and the above components are not required; in addition, the terminal device 1500 may also include components not shown in FIG. 15 . There is technology.
  • Embodiments of the present application further provide a computer-readable program, wherein when the program is executed in a terminal device, the program causes a computer to execute the implementation of any one of the first to third aspects in the terminal device method described in the example.
  • Embodiments of the present application further provide a storage medium storing a computer-readable program, wherein the computer-readable program causes a computer to execute the method described in the embodiments of any one of the first to third aspects in a terminal device .
  • the apparatuses and methods above in the present application may be implemented by hardware, or may be implemented by hardware combined with software.
  • the present application relates to a computer-readable program that, when executed by logic components, enables the logic components to implement the above-described apparatus or constituent components, or causes the logic components to implement the above-described various methods or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, and the like.
  • the present application also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, and the like.
  • the method/apparatus described in conjunction with the embodiments of this application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams shown in the figures and/or one or more combinations of the functional block diagrams may correspond to either software modules or hardware modules of the computer program flow.
  • These software modules may respectively correspond to the various steps shown in the figure.
  • These hardware modules can be implemented by, for example, solidifying these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor, such that the processor can read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • the functional blocks and/or one or more combinations of the functional blocks described in the figures can be implemented as a general-purpose processor, a digital signal processor (DSP) for performing the functions described in this application ), Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described with respect to the figures can also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • a wireless communication method comprising:
  • the terminal device receives the PDSCH
  • the PDSCH is scheduled by the PDCCH; wherein, the PDCCH corresponds to two PDCCH candidates;
  • the terminal device If the PUCCH carrying the HARQ-ACK information of the PDSCH is not earlier than the first time point, the terminal device provides a valid HARQ-ACK information, wherein,
  • the first time point is related to the overlapping symbols of the PDSCH and one of the two PDCCH candidates.
  • One of the PDCCH candidates in the two PDCCH candidates refers to a PDCCH candidate with a later end symbol in the two PDCCH candidates.
  • One of the PDCCH candidates in the two PDCCH candidates refers to a PDCCH candidate with a longer CORESET time domain length corresponding to the two PDCCH candidates; wherein, the end symbols of the two PDCCH candidates are the same.
  • One of the PDCCH candidates in the two PDCCH candidates refers to any one of the two PDCCH candidates; wherein, the end symbols of the two PDCCH candidates are the same, and the CORESET corresponding to the two PDCCH candidates The fields are the same length.
  • the start symbol of any one of the two PDCCH candidates is not later than the start symbol of the PDSCH scheduled by the PDCCH.
  • a wireless communication method comprising:
  • the terminal device receives the PDSCH
  • the PDSCH is scheduled by the PDCCH; wherein, the PDCCH corresponds to two PDCCH candidates;
  • the terminal device If the PUCCH carrying the HARQ-ACK information of the PDSCH is not earlier than a first time point, the terminal device provides a valid HARQ-ACK information, wherein the first time point is related to the PDSCH and the PDCCH The overlapping sign correlation of ;
  • the overlapping symbol of the PDSCH and the PDCCH refers to the overlapping part of the symbol corresponding to the PDSCH and the symbol corresponding to the PDCCH;
  • the symbols corresponding to the PDCCH refer to all the symbols from the first symbol to the second symbol;
  • the first symbol refers to the start symbol corresponding to the PDCCH candidate with the earliest start symbol in the two PDCCH candidates;
  • the second symbol refers to the end symbol corresponding to the PDCCH candidate whose end symbol is the latest among the two PDCCH candidates.
  • a wireless communication method comprising:
  • the terminal device receives the PDSCH
  • the PDSCH is scheduled by the PDCCH; wherein, the PDCCH corresponds to two CORESETs;
  • the terminal device If the PUCCH carrying the HARQ-ACK information of the PDSCH is not earlier than the first time point, the terminal device provides a valid HARQ-ACK information, wherein the first time point is related to the first CORESET, wherein, The first CORESET refers to one of the two CORESETs.
  • the PDCCH corresponds to two PDCCH candidates
  • the first CORESET refers to the CORESET corresponding to a PDCCH candidate whose end symbol is later in the two PDCCH candidates.
  • the PDCCH corresponds to two PDCCH candidates
  • the first CORESET refers to a PDCCH candidate with a longer CORESET time domain length corresponding to the two PDCCH candidates; wherein, the end symbols of the two PDCCH candidates are the same.
  • the PDCCH corresponds to two PDCCH candidates
  • the first CORESET refers to the CORESET corresponding to any one of the two PDCCH candidates; wherein, the end symbols of the two PDCCH candidates are the same, and the CORESET time domain corresponding to the two PDCCH candidates same length.
  • the start symbol of any one of the two PDCCH candidates is not later than the start symbol of the PDSCH scheduled by the PDCCH.
  • a terminal device comprising a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to implement the method according to any one of appendixes 1 to 12.
  • a communication system comprising terminal equipment and network equipment, wherein,
  • the end device is configured to:
  • Receive PDSCH which is scheduled by PDCCH; wherein, the PDCCH corresponds to two PDCCH candidates;
  • the PUCCH carrying the HARQ-ACK information of the PDSCH is not earlier than the first time point, a valid HARQ-ACK information is provided, wherein the first time point is the same as the PDSCH and the two PDCCH candidates The overlapping symbols of one of the PDCCH candidates are correlated;
  • the network device is configured to send the PDSCH to the terminal device and receive the PUCCH sent by the terminal device.
  • a communication system comprising terminal equipment and network equipment, wherein,
  • the end device is configured to:
  • the PDSCH is scheduled by the PDCCH; wherein, the PDCCH corresponds to two PDCCH candidates;
  • the PUCCH carrying the HARQ-ACK information of the PDSCH is not earlier than a first time point, wherein the first time point is related to the overlapping symbols of the PDSCH and the PDCCH ;
  • the overlapping symbol of the PDSCH and the PDCCH refers to the overlapping part of the symbol corresponding to the PDSCH and the symbol corresponding to the PDCCH;
  • the symbols corresponding to the PDCCH refer to all the symbols from the first symbol to the second symbol;
  • the first symbol refers to the start symbol corresponding to the PDCCH candidate with the earliest start symbol in the two PDCCH candidates;
  • the second symbol refers to the end symbol corresponding to the PDCCH candidate whose end symbol is the latest among the two PDCCH candidates;
  • the network device is configured to send the PDSCH to the terminal device and receive the PUCCH sent by the terminal device.
  • a communication system comprising terminal equipment and network equipment, wherein,
  • the end device is configured to:
  • the PDSCH is scheduled by PDCCH; wherein, the PDCCH corresponds to two CORESETs;
  • the PUCCH carrying the HARQ-ACK information of the PDSCH is not earlier than the first time point, a valid HARQ-ACK information is provided, wherein the first time point is related to the first CORESET, wherein the first time point CORESET means one of the two CORESETs;
  • the network device is configured to send the PDSCH to the terminal device and receive the PUCCH sent by the terminal device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法、装置和系统,所述方法包括:终端设备接收PDSCH;所述PDSCH是由PDCCH调度的;其中,所述PDCCH对应两个PDCCH candidate;如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则所述终端设备提供一个有效的HARQ-ACK信息,其中,所述第一时间点与所述PDSCH和所述两个PDCCH candidate中的其中一个PDCCH candidate的重叠符号相关。

Description

无线通信方法、装置和系统 技术领域
本申请涉及通信领域。
背景技术
为了缓解日趋紧张的频谱资源,NR(New Radio,新无线)引入了高频通信方式,以便增加通信系统可用的频率资源,进而提升系统容量。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现,当PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的映射方式为类型B(mapping type B),并且该PDSCH所对应的调度PDCCH(Physical Downlink Control Channel,物理下行控制信道)发生重复时,也即存在PDCCH repetition时,终端设备在确定是否有充足的准备时间生成有效的与该PDSCH对应的HARQ-ACK(Hybrid Automatic Repeat reQuest-Acknowledge,混合自动重传请求确认)信息时,需要考虑该PDCCH与该PDSCH之间的重叠符号(overlapped symbols)和/或该PDCCH所对应的CORESET(Control Resource Set,控制资源集合)。然而,在PDCCH发生了重复(PDCCH with repetitions)时,如何界定PDCCH与PDSCH之间的重叠符号是不清楚的。并且,PDCCH可能对应大于一个CORESET,具体根据哪个CORESET,或者说根据哪个PDCCH repetition对应的CORESET是不清楚的。因此,终端设备有可能会错误地估计反馈HARQ-ACK信息所需要的准备时间,进而导致终端设备丢弃一些原本可以被正确反馈的HARQ-ACK信息,导致通信系统的性能下降。
为了解决上述问题或其它类似问题,本申请实施例提供了一种无线通信方法、装置和系统,使得终端设备在调度PDSCH的PDCCH发生重复时,能够正确地判断是否有充足的准备时间相应地生成有效的HARQ-ACK信息。
根据本申请实施例的一方面,提供一种无线通信装置,其中,所述装置包括:
接收单元,其接收PDSCH,所述PDSCH是由PDCCH调度的;其中,所述PDCCH对应两个PDCCH candidate;
提供单元,如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则所述提供单元设备提供一个有效的HARQ-ACK信息,其中,
所述第一时间点与所述PDSCH和所述两个PDCCH candidate中的其中一个PDCCH candidate的重叠符号相关。
根据本申请实施例的另一方面,提供一种无线通信装置,其中,所述装置包括:
接收单元,其接收PDSCH,所述PDSCH是由PDCCH调度的;其中,所述PDCCH对应两个PDCCH candidate;
提供单元,如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则所述提供单元提供一个有效的HARQ-ACK信息,其中,所述第一时间点与所述PDSCH和所述PDCCH的重叠符号相关;
其中,所述PDSCH和所述PDCCH的重叠符号是指,PDSCH对应的符号与PDCCH对应的符号的重叠部分;其中,
PDCCH对应的符号是指从第一符号至第二符号之间所有的符号;其中,
第一符号是指,所述两个PDCCH candidate中,起始符号最早的PDCCH candidate所对应的起始符号;
第二符号是指,所述两个PDCCH candidate中,结束符号最晚的PDCCH candidate所对应的结束符号。
根据本申请实施例的再一方面,提供一种无线通信装置,其中,所述装置包括:
接收单元,其接收PDSCH,所述PDSCH是由PDCCH调度的;其中,所述PDCCH对应两个CORESET;
提供单元,如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则所述提供单元提供一个有效的HARQ-ACK信息,其中,所述第一时间点与第一CORESET相关,其中,所述第一CORESET是指所述两个CORESET中的一个。
本申请实施例的有益效果之一在于:根据本申请实施例,在调度PDSCH的PDCCH发生重复时,终端设备能够正确地估计用于生成对应所述PDSCH的HARQ-ACK信息的时间是否充足,进而在时间充足的情况下反馈有效的HARQ-ACK 信息,避免通信系统因为HARQ-ACK信息被错误的丢弃而导致的性能下降。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是本申请实施例的无线通信方法的一示意图;
图2是图1所示的方法的一个应用场景的示意图;
图3是图1所示的方法的另一个应用场景的示意图;
图4是图1所示的方法的再一个应用场景的示意图;
图5是本申请实施例的无线通信方法的另一示意图;
图6是图5所示的方法的一个应用场景的示意图;
图7是本申请实施例的无线通信方法的再一示意图;
图8是图7所示的方法的一个应用场景的示意图;
图9是图7所示的方法的另一个应用场景的示意图;
图10是图7所示的方法的再一个应用场景的示意图;
图11是本申请实施例的无线通信装置的一示意图;
图12是本申请实施例的无线通信装置的另一示意图;
图13是本申请实施例的无线通信装置的再一示意图;
图14是本申请实施例的通信系统的示意图;
图15是本申请实施例的终端设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站 (BS,Base Station)、接入点(AP、Access Point)、收发节点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
在当前标准中,当UE接收到PDSCH后,需要反馈HARQ-ACK信息。由于硬件的限制,在反馈HARQ-ACK信息之前,UE需要一定的准备时间处理PDSCH。该准备时间被称为N1timeline,或者被称为UE PDSCH processing procedure time。具体地说,N1timeline用于确定符号L 1(对应后文所指的第一时间点),其与终端设备的能力相关。也就是说,如果承载HARQ-ACK信息的PUCCH(Physical Uplink Control Channel,物理上行控制信道)的第一个符号不早于L 1,则终端设备应当提供一个有 效的HARQ-ACK信息。其中,L 1是指接收到的PDSCH的最后一个符号之后,又经过T proc,1之后的第一个上行符号。另外,L 1的确定需要考虑定时提前(timing advance)的影响。其中,该第一个上行符号的CP(Cyclic Prefix,循环前缀)也在T proc,1之后。另外,T proc,1的计算公式如下:
T proc,1=(N 1+d 1,1+d 2)(2048+144)·κ2 ·T C+T ext
其中,参数d 1,1与PDCCH和PDSCH之间的重叠符号和/或PDCCH对应的CORESET相关。上述公式中其他参数的具体含义可以参考现有标准,此处省略说明。
如前所述,UE在计算上述T proc,1时,需要考虑PDCCH和PDSCH之间的重叠符号和/或PDCCH所对应的CORESET,然而,当PDCCH发生重复时,如何界定PDCCH和PDSCH之间的重叠符号,进而计算T proc,1是不清楚的;另一方面,PDCCH可能对应大于一个CORESET,具体根据哪个CORESET或者说具体根据哪个PDCCH repetition对应的CORESET计算T proc,1是不清楚的。
在本申请实施例中,PDCCH repetition是指相同的DCI(Downlink Control Information,下行控制信息)在不同的时频资源(或者不同的PDCCH candidate)分别发送。关于PDCCH repetition的具体含义,可以参考相关技术,此处省略说明。
下面结合附图对本申请的各种实施方式进行说明。这些实施方式只是示例性的,不是对本申请的限制。
第一方面的实施例
本申请实施例提供一种无线通信方法,从终端设备侧进行说明。
图1是本申请实施例的无线通信方法的一示意图,请参照图1,该方法包括:
101:终端设备接收PDSCH,所述PDSCH是由PDCCH调度的,所述PDCCH对应两个PDCCH candidate;
102:如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则所述终端设备提供一个有效的HARQ-ACK信息,其中,所述第一时间点与所述PDSCH和所述两个PDCCH candidate中的其中一个PDCCH candidate的重叠符号相关。
根据本申请实施例的方法,由于规定了第一时间点与PDSCH和其中一个PDCCH candidate的重叠符号相关,从而明确了计算上述T proc,1时需要考虑的重叠符号,或者说需要考虑的d 1,1,避免了因为d 1,1不明确而导致的HARQ-ACK信息被错误丢弃。
在一些实施例中,所述两个PDCCH candidate中的其中一个PDCCH candidate是指,所述两个PDCCH candidate中结束符号较晚的一个PDCCH candidate。也即,终端设备参考PDSCH和结束符号较晚的PDCCH candidate的重叠符号来计算T proc,1或者计算d 1,1,从而获得上述第一时间点。
图2是上述实施例的一个应用场景的示意图。
如图2所示,在这个例子中,PDSCH的映射类型为type B,并且,PDSCH由PDCCH调度,该PDCCH与两个PDCCH candidate相关,这两个PDCCH candidate之间的关联通过RRC信令或MAC-CE信令指示,分别为PDCCH#can1和PDCCH#can2。从UE的角度而言,在接收PDSCH之前,UE已经在PDCCH#can1和/或PDCCH#can2所对应的时频资源上对进行盲检,并且成功地接收到相应的PDCCH。
其中,PDCCH#can1是搜索空间集合SS#1的PDCCH candidate,且PDCCH#can1在CORESET#1中,CORESET#1的时域长度为1符号,对应的PDCCH occasion在时隙n的第1个符号;CORESET#1与一个TCI状态(TCI#1)关联。
其中,PDCCH#can2是搜索空间集合SS#2的PDCCH candidate,且PDCCH#can2在CORESET#2中,CORESET#2的时域长度为1符号,对应的PDCCH occasion在时隙n的第5个符号;CORESET#2与一个TCI状态(TCI#2)关联。
在图2的例子中,在反馈PDSCH所对应的HARQ-ACK information之前,UE需要进行以下几个步骤的处理:
第一步:进行PDCCH盲检;
第二步:当检测到下行调度的PDCCH后,根据其中的指示,确定PDSCH的DM-RS(Demodulation Reference Signal,解调参考信号)所在的位置,并接收这些DM-RS;
第三步:当DM-RS接收完毕之后,UE根据接收的DM-RS进行信道估计;
第四步:UE根据信道估计的结果解调PDSCH。
然而,由于PDCCH发生了重复,对于第一步而言,PDCCH有以下两种可能的盲检结果:
结果1:在时隙n的第1个符号接收完毕后,检测到PDCCH;
结果2:在时隙n的第5个符号接收完毕后,检测到PDCCH。
对于上述两个结果而言,UE最早的能够反馈相应HARQ-ACK信息的时间点是不同的。对于结果1而言,UE能够很早地解调PDCCH,得知DM-RS的位置,并及时利用DM-RS进行信道估计。对于结果2而言,UE要在时隙n的第5个符号才能完成PDCCH的接收,在一定的时间之后才能得知PDCCH所承载的内容,确定DM-RS的位置,才能开始信道估计。因此,结果2相较于结果1而言,HARQ-ACK的反馈时间更晚。
在实际通信中,是结果1还是结果2很大程度取决于下行信道的状态,这对于UE和基站而言都是不可控的。因此,根据上述实施例的方法,无论实际的传输情况如何,按照结果2来确定N1timeline。也就是说,根据结束符号较晚的PDCCH candidate来确定N1timeline,更具体地说,d 1,1是根据结束符号较晚的PDCCH candidate(PDCCH#can2)与PDSCH之间重叠的符号确定的。或者说,d 1,1是根据结束符号较晚的PDCCH candidate(PDCCH#can2)所对应的CORESET确定的。
在上述实施例中,所述两个PDCCH candidate中的任意一个PDCCH candidate的起始符号不晚于所述PDCCH所调度的PDSCH的起始符号。也即,PDSCH在不早于任意一个PDCCH candidate的起始符号的位置接收,在该场景下,可以使用本申请实施例的方法来计算T proc,1,从而获得上述第一时间点。
在一些实施例中,所述两个PDCCH candidate中的其中一个PDCCH candidate是指,所述两个PDCCH candidate中对应的CORESET时域长度更长的PDCCH candidate;其中,所述两个PDCCH candidate的结束符号相同。也即,对于结束符号相同的两个PDCCH candidate,终端设备参考PDSCH和对应的CORESET时域长度更长的PDCCH candidate的重叠符号来计算T proc,1,从而获得上述第一时间点。
图3是上述实施例的一个应用场景的示意图。
如图3所示,在这个例子中,PDCCH#can1与PDCCH#can2的结束符号相同,PDCCH#can2对应的CORESET(CORESET#2)的时域长度(2个符号)大于PDCCH#can1对应的CORESET(CORESET#1)的时域长度(1个符号)。因此,UE根据PDCCH#can2与PDSCH之间的重叠符号确定N1timeline。
在一些实施例中,所述两个PDCCH candidate中的其中一个PDCCH candidate是指,所述两个PDCCH candidate中的任意一个;其中,所述两个PDCCH candidate的结束符号相同,并且所述两个PDCCH candidate对应的CORESET时域长度相同。也 即,在两个PDCCH candidate的结束符号相同并且对应的CORESET时域长度也相同的情况下,终端设备参考PDSCH和其中任意一个PDCCH candidate的重叠符号来计算T proc,1,从而获得上述第一时间点。
图4是上述实施例的一个应用场景的示意图。
如图4所示,在这个例子中,PDCCH#can1与PDCCH#can2的结束符号相同,PDCCH#can2对应的CORESET(CORESET#2)的时域长度(2个符号)等于PDCCH#can1对应的CORESET(CORESET#1)的时域长度(2个符号)。因此,UE可以根据PDCCH#can1和PDCCH#can2之中的任意一个与PDSCH之间的重叠符号确定N1timeline。或者说,UE可以根据PDCCH#can1与PDSCH之间的重叠符号确定N1timeline;UE可以根据PDCCH#can2与PDSCH之间的重叠符号确定N1timeline。
在上述实施例中,所述两个PDCCH candidate中的任意一个PDCCH candidate的起始符号不晚于所述PDCCH所调度的PDSCH的起始符号。也即,PDSCH在不早于任意一个PDCCH candidate的起始符号的位置接收,在该场景下,可以使用本申请实施例的方法来计算T proc,1,从而获得上述第一时间点。
值得注意的是,以上图1仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作,或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图1的记载。
根据本申请实施例的方法,明确了确定N1timeline时需要考虑的PDCCH与PDSCH之间的重叠符号,避免了HARQ-ACK信息被错误的丢弃。
第二方面的实施例
本申请实施例提供一种无线通信方法,从终端设备侧进行说明。
图5是本申请实施例的无线通信方法的一示意图,请参照图5,该方法包括:
501,终端设备接收PDSCH,所述PDSCH是由PDCCH调度的,所述PDCCH对应两个PDCCH candidate;
502,如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则所述终端设备提供一个有效的HARQ-ACK信息,其中,所述第一时间点与所述PDSCH和所述PDCCH的重叠符号相关;
其中,所述PDSCH和所述PDCCH的重叠符号是指,所述PDSCH对应的符号 与所述PDCCH对应的符号的重叠部分;其中,
所述PDCCH对应的符号是指从第一符号至第二符号之间所有的符号;其中,
第一符号是指,所述两个PDCCH candidate中,起始符号最早的PDCCH candidate所对应的起始符号;
第二符号是指,所述两个PDCCH candidate中,结束符号最晚的PDCCH candidate所对应的结束符号。
根据本申请实施例的方法,由于规定了用于计算与PDSCH重叠的PDCCH符号(第一符号至第二符号之间的所有符号),从而明确了计算上述T proc,1或者计算上述d 1,1时需要考虑的重叠符号,避免了HARQ-ACK信息被错误的丢弃。
图6是上述实施例的一个应用场景的示意图。
如图6所示,在这个例子中,PDSCH的映射类型为type B,并且,PDSCH由PDCCH调度,该PDCCH与两个PDCCH candidate相关,这两个PDCCH candidate之间的关联通过RRC信令或MAC-CE信令指示,分别为PDCCH#can1和PDCCH#can2。从UE的角度而言,在接收PDSCH之前,UE已经在PDCCH#can#1和/或PDCCH#can#2所对应的时频资源上对进行盲检,并且成功地接收到相应的PDCCH。
其中,PDCCH#can1是搜索空间集合SS#1的PDCCH candidate,且PDCCH#can1在CORESET#1中,CORESET#1的时域长度为1符号,对应的PDCCH occasion在时隙n的第1个符号;CORESET#1与一个TCI状态(TCI#1)关联。
其中,PDCCH#can2是搜索空间集合SS#2的PDCCH candidate,且PDCCH#can2在CORESET#2中,CORESET#2的时域长度为1符号,对应的PDCCH occasion在时隙n的第3个符号;CORESET#2与一个TCI状态(TCI#2)关联。
在图6的例子中,在反馈PDSCH所对应的HARQ-ACK information之前,UE需要进行以下几个步骤的处理:
第一步:进行PDCCH盲检;
第二步:当检测到下行调度的PDCCH后,根据其中的指示,确定PDSCH的DM-RS所在的位置,并接收这些DM-RS;
第三步:当DM-RS接收完毕之后,UE根据接收的DM-RS进行信道估计;
第四步:UE根据信道估计的结果解调PDSCH。
然而,由于PDCCH发生了重复,对于第一步而言,PDCCH有以下两种可能的盲检结果:
结果1:在时隙n的第1个符号接收完毕后,检测到PDCCH;
结果2:在时隙n的第3个符号接收完毕后,检测到PDCCH。
对于上述两个结果而言,UE最早的能够反馈相应HARQ-ACK信息的时间点是不同的。对于结果1而言,UE能够很早地解调PDCCH,得知DM-RS的位置,并及时利用DM-RS进行信道估计。对于结果2而言,UE要在时隙n的第3个符号才能完成PDCCH的接收,在一定的时间之后才能得知PDCCH所承载的内容,确定DM-RS的位置,才能开始信道估计。因此,结果2相较于结果1而言,HARQ-ACK的反馈时间更晚。
在实际通信中,是结果1还是结果2很大程度取决于下行信道的状态,这对于UE和基站而言都是不可控的。因此,根据本申请实施例的方法,无论实际的传输情况如何,按照结果2来确定N1timeline。也就是说,根据结束符号较晚的PDCCH candidate来确定N1timeline。与图2的示例不同的是,如果d 1,1是根据结束符号较晚的PDCCH candidate(PDCCH#can2)与PDSCH之间重叠的符号确定的,由于PDCCH#can2的起始符号晚于PDSCH,结束符号较晚的PDCCH candidate(PDCCH#can2)与PDSCH之间重叠的符号无法体现PDCCH所带来的额外处理时间(少一个符号)。
为了解决上述问题,本申请实施例将d 1,1定义为PDCCH与PDSCH之间重叠的符号,其中PDCCH符号是指PDCCH最早的符号(PDCCH#can1的第一个符号)至PDCCH对应的最晚的符号(PDCCH#can2的最后一个符号)之间所有的符号。或者说,PDCCH符号是指PDCCH对应的PDCCH candidate中最早的起始符号(PDCCH#can1的第一个符号)至PDCCH对应的PDCCH candidate中最晚的结束符号(PDCCH#can2的最后一个符号)之间所有的符号。
如图6所示,PDCCH符号是指时隙n的符号1、2和3。由此,PDCCH和PDSCH之间重叠的符号为两个,可以体现PDCCH结束较晚(PDCCH#can2)所带来的影响。
在本申请实施例中,对PDCCH candidate的起始符号与PDCCH所调度的PDSCH的起始符号之间的时域位置关系不做限制。也即,PDSCH可以在早于PDCCH candidate的起始符号的位置接收,例如在早于PDCCH candidate 2的起始符号的位置 接收;也可以在晚于PDCCH candidate的起始符号的位置接收,例如在晚于PDCCH candidate 1的起始符号的位置接收。
值得注意的是,以上图5仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作,或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图5的记载。
根据本申请实施例的方法,明确了确定N1timeline时需要考虑的PDCCH与PDSCH之间的重叠符号,避免了HARQ-ACK信息被错误的丢弃。
第三方面的实施例
本申请实施例提供一种无线通信方法,从终端设备侧进行说明。
图7是本申请实施例的无线通信方法的一示意图,请参照图7,该方法包括:
701,终端设备接收PDSCH,所述PDSCH是由PDCCH调度的,所述PDCCH对应两个CORESET;
702,如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则所述终端设备提供一个有效的HARQ-ACK信息,其中,所述第一时间点与第一CORESET相关,其中,所述第一CORESET是指所述两个CORESET中的一个。
根据本申请实施例的方法,由于规定了第一时间点与PDCCH所对应的两个CORESET中的一个相关,从而明确了计算上述T proc,1或者计算上述d 1,1时需要考虑的CORESET,避免了HARQ-ACK信息被错误的丢弃。
在一些实施例中,所述PDCCH对应两个PDCCH candidate;所述第一CORESET是指,所述两个PDCCH candidate中结束符号较晚的一个PDCCH candidate所对应的CORESET。也即,终端设备参考结束符号较晚的PDCCH candidate所对应的CORESET来计算T proc,1或者计算d 1,1,从而获得上述第一时间点。
图8是上述实施例的一个应用场景的示意图。
如图8所示,在这个例子中,PDSCH的映射类型为type B,并且,PDSCH由PDCCH调度,该PDCCH与两个PDCCH candidate相关,这两个PDCCH candidate之间的关联通过RRC信令或MAC-CE信令指示,分别为PDCCH#can1和PDCCH#can2。从UE的角度而言,在接收PDSCH之前,UE已经在PDCCH#can1和/或PDCCH#can2所对应的时频资源上对进行盲检,并且成功地接收到相应的 PDCCH。
其中,PDCCH#can1是搜索空间集合SS#1的PDCCH candidate,且PDCCH#can1在CORESET#1中,CORESET#1的时域长度为1符号,对应的PDCCH occasion在时隙n的第1个符号;CORESET#1与一个TCI状态(TCI#1)关联。
其中,PDCCH#can2是搜索空间集合SS#2的PDCCH candidate,且PDCCH#can2在CORESET#2中,CORESET#2的时域长度为3符号,对应的PDCCH occasion起始于时隙n的第3个符号并且结束于第5个符号;CORESET#2与一个TCI状态(TCI#2)关联。
在图8的例子中,在反馈PDSCH所对应的HARQ-ACK information之前,UE需要进行以下几个步骤的处理:
第一步:进行PDCCH盲检;
第二步:当检测到下行调度的PDCCH后,根据其中的指示,确定PDSCH的DM-RS所在的位置,并接收这些DM-RS;
第三步:当DM-RS接收完毕之后,UE根据接收的DM-RS进行信道估计;
第四步:UE根据信道估计的结果解调PDSCH。
然而,由于PDCCH发生了重复,对于第一步而言,PDCCH有以下两种可能的盲检结果:
结果1:在时隙n的第1个符号接收完毕后,检测到PDCCH;
结果2:在时隙n的第5个符号接收完毕后,检测到PDCCH。
对于上述两个结果而言,UE最早的能够反馈相应HARQ-ACK信息的时间点是不同的。对于结果1而言,UE能够很早地解调PDCCH,得知DM-RS的位置,并及时利用DM-RS进行信道估计。对于结果2而言,UE要在时隙n的第5个符号才能完成PDCCH的接收,在一定的时间之后才能得知PDCCH所承载的内容,确定DM-RS的位置,才能开始信道估计。因此,结果2相较于结果1而言,HARQ-ACK的反馈时间更晚。
在实际通信中,是结果1还是结果2很大程度取决于下行信道的状态,这对于UE和基站而言都是不可控的。因此,根据上述实施例的方法,无论实际的传输情况如何,按照结果2来确定N1timeline。也就是说,根据结束符号较晚的PDCCH candidate来确定N1timeline,更具体地说,d 1,1是根据结束符号较晚的PDCCH  candidate(PDCCH#can2)所对应的CORESET确定的。例如,如图8所示,PDSCH与PDCCH#can2的起始符号相同,并且PDCCH#can2所对应的CORESET#2的长度为3个符号,则d 1,1=3。
在上述实施例中,所述两个PDCCH candidate中的任意一个PDCCH candidate的起始符号不晚于所述PDCCH所调度的PDSCH的起始符号。也即,PDSCH在不早于任意一个PDCCH candidate的起始符号的位置接收,在该场景下,可以使用本申请实施例的方法来计算T proc,1,从而获得上述第一时间点。
在一些实施例中,所述PDCCH对应两个PDCCH candidate;所述第一CORESET是指,所述两个PDCCH candidate中对应的CORESET时域长度更长的PDCCH candidate;其中,所述两个PDCCH candidate的结束符号相同。也即,对于结束符号相同的两个PDCCH candidate,终端设备参考对应的CORESET时域长度更长的PDCCH candidate所对应的CORESET来计算T proc,1或者计算d 1,1,从而获得上述第一时间点。
图9是上述实施例的一个应用场景的示意图。
如图9所示,在这个例子中,PDCCH#can1与PDCCH#can2的结束符号相同,PDCCH#can2对应的CORESET(CORESET#2)的时域长度(3个符号)大于PDCCH#can1对应的CORESET(CORESET#1)的时域长度(1个符号)。因此,UE根据PDCCH#can2对应的CORESET(CORESET#2)确定N1timeline。
在一些实施例中,所述PDCCH对应两个PDCCH candidate;所述第一CORESET是指,所述两个PDCCH candidate中的任意一个PDCCH candidate所对应的CORESET;其中,所述两个PDCCH candidate的结束符号相同,并且所述两个PDCCH candidate对应的CORESET时域长度相同。也即,在两个PDCCH candidate的结束符号相同并且对应的CORESET时域长度也相同的情况下,终端设备参考其中任意一个PDCCH candidate所对应的CORESET来计算T proc,1或者计算d 1,1,从而获得上述第一时间点。
图10是上述实施例的一个应用场景的示意图。
如图10所示,在这个例子中,PDCCH#can1与PDCCH#can2的结束符号相同,PDCCH#can2对应的CORESET(CORESET#2)的时域长度(3个符号)等于PDCCH#can1对应的CORESET(CORESET#1)的时域长度(3个符号)。因此,UE可以根据PDCCH#can1和PDCCH#can2之中的任意一个对应的CORESET(CORESET#1或CORESET#2)确定N1timeline。或者说,UE可以根据PDCCH#can1 对应的CORESET确定N1timeline;UE可以根据PDCCH#can2对应的CORESET确定N1timeline。
在本上述实施例中,所述两个PDCCH candidate中的任意一个PDCCH candidate的起始符号不晚于所述PDCCH所调度的PDSCH的起始符号。也即,PDSCH在不早于任意一个PDCCH candidate的起始符号的位置接收,在该场景下,可以使用本申请实施例的方法来计算T proc,1,从而获得上述第一时间点。
值得注意的是,以上图7仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作,或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图7的记载。
根据本申请实施例的方法,明确了确定N1timeline时需要考虑的调度PDCCH所对应的CORESET,避免了HARQ-ACK信息被错误的丢弃。
第四方面的实施例
本申请实施例提供一种无线通信装置,该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件。
图11是本申请实施例的无线通信装置的一个示意图,由于该装置解决问题的原理与第一方面的实施例的方法类似,因此其具体的实施可以参照第一方面的实施例的方法的实施,内容相同之处不再重复说明。
如图11所示,本申请实施例的无线通信装置1100包括:
接收单元1101,其接收接收PDSCH,所述PDSCH是由PDCCH调度的;其中,所述PDCCH对应两个PDCCH candidate;
提供单元1102,如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则提供单元1102提供一个有效的HARQ-ACK信息,其中,所述第一时间点与所述PDSCH和所述两个PDCCH candidate中的其中一个PDCCH candidate的重叠符号相关。
在一些实施例中,所述两个PDCCH candidate中的其中一个PDCCH candidate是指,所述两个PDCCH candidate中结束符号较晚的一个PDCCH candidate。
在上述实施例中,所述两个PDCCH candidate中的任意一个PDCCH candidate的起始符号不晚于所述PDCCH所调度的PDSCH的起始符号。
在一些实施例中,所述两个PDCCH candidate中的其中一个PDCCH candidate是指,所述两个PDCCH candidate中对应的CORESET时域长度更长的PDCCH candidate;其中,所述两个PDCCH candidate的结束符号相同。
在一些实施例中,所述两个PDCCH candidate中的其中一个PDCCH candidate是指,所述两个PDCCH candidate中的任意一个;其中,所述两个PDCCH candidate的结束符号相同,并且所述两个PDCCH candidate对应的CORESET时域长度相同。
在上述实施例中,所述两个PDCCH candidate中的任意一个PDCCH candidate的起始符号不晚于所述PDCCH所调度的PDSCH的起始符号。
图12是本申请实施例的无线通信装置的另一个示意图,由于该装置解决问题的原理与第二方面的实施例的方法类似,因此其具体的实施可以参照第二方面的实施例的方法的实施,内容相同之处不再重复说明。
如图12所示,本申请实施例的无线通信装置1200包括:
接收单元1201,其接收接收PDSCH,所述PDSCH是由PDCCH调度的;其中,所述PDCCH对应两个PDCCH candidate;
提供单元1202,如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则提供单元1202提供一个有效的HARQ-ACK信息,其中,所述第一时间点与所述PDSCH和所述PDCCH的重叠符号相关;
其中,所述PDSCH和所述PDCCH的重叠符号是指,PDSCH对应的符号与PDCCH对应的符号的重叠部分;其中,
PDCCH对应的符号是指从第一符号至第二符号之间所有的符号;其中,
第一符号是指,所述两个PDCCH candidate中,起始符号最早的PDCCH candidate所对应的起始符号;
第二符号是指,所述两个PDCCH candidate中,结束符号最晚的PDCCH candidate所对应的结束符号。
图13是本申请实施例的无线通信装置的另一个示意图,由于该装置解决问题的原理与第三方面的实施例的方法类似,因此其具体的实施可以参照第三方面的实施例的方法的实施,内容相同之处不再重复说明。
如图13所示,本申请实施例的无线通信装置1300包括:
接收单元1301,其接收PDSCH,所述PDSCH是由PDCCH调度的;其中,所 述PDCCH对应两个CORESET;
提供单元1302,如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则提供单元1302提供一个有效的HARQ-ACK信息,其中,所述第一时间点与第一CORESET相关,其中,所述第一CORESET是指所述两个CORESET中的一个。
在一些实施例中,所述PDCCH对应两个PDCCH candidate;所述第一CORESET是指,所述两个PDCCH candidate中结束符号较晚的一个PDCCH candidate所对应的CORESET。
在上述实施例中,所述两个PDCCH candidate中的任意一个PDCCH candidate的起始符号不晚于所述PDCCH所调度的PDSCH的起始符号。
在一些实施例中,所述PDCCH对应两个PDCCH candidate;所述第一CORESET是指,所述两个PDCCH candidate中对应的CORESET时域长度更长的PDCCH candidate;其中,所述两个PDCCH candidate的结束符号相同。
在一些实施例中,所述PDCCH对应两个PDCCH candidate;所述第一CORESET是指,所述两个PDCCH candidate中的任意一个PDCCH candidate所对应的CORESET;其中,所述两个PDCCH candidate的结束符号相同,并且所述两个PDCCH candidate对应的CORESET时域长度相同。
在上述实施例中,所述两个PDCCH candidate中的任意一个PDCCH candidate的起始符号不晚于所述PDCCH所调度的PDSCH的起始符号。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的无线通信装置1100/1200/1300还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图11至图13中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
根据本申请实施例的装置,明确了确定N1timeline时需要考虑的重叠符号和/或CORESET,避免了HARQ-ACK信息被错误的丢弃。
第五方面的实施例
本申请实施例提供了一种通信系统,图14是本申请实施例的通信系统的示意图,如图14所示,该通信系统1400包括网络设备1401和终端设备1402,为简单起见,图14仅以一个终端设备和一个网络设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备1401和终端设备1402之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB)、大规模机器类型通信(mMTC)、高可靠低时延通信(URLLC)和车联网(V2X)通信,等等。
在一些实施例中,网络设备1401生成PDSCH,并向终端设备1402发送该PDSCH;终端设备1402接收PDSCH;所述PDSCH是由PDCCH调度的;其中,所述PDCCH对应两个PDCCH candidate;如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则终端设备1402提供一个有效的HARQ-ACK信息,其中,所述第一时间点与所述PDSCH和所述两个PDCCH candidate中的其中一个PDCCH candidate的重叠符号相关。关于网络设备1401的相关内容,本申请不做限制。关于终端设备1402的相关内容,与第一方面的实施例的方法相同,此处省略说明。
在一些实施例中,网络设备1401生成PDSCH,并向终端设备1402发送该PDSCH;终端设备1402接收PDSCH;所述PDSCH是由PDCCH调度的;其中,所述PDCCH对应两个PDCCH candidate;如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则终端设备1402提供一个有效的HARQ-ACK信息,其中,所述第一时间点与所述PDSCH和所述PDCCH的重叠符号相关;其中,所述PDSCH和所述PDCCH的重叠符号是指,PDSCH对应的符号与PDCCH对应的符号的重叠部分;其中,PDCCH对应的符号是指从第一符号至第二符号之间所有的符号;其中,第一符号是指,所述两个PDCCH candidate中,起始符号最早的PDCCH candidate所对应的起始符号;第二符号是指,所述两个PDCCH candidate中,结束符号最晚的PDCCH candidate所对应的结束符号。关于网络设备1401的相关内容,本申请不做限制。关于终端设备1402的相关内容,与第二方面的实施例的方法相同,此处省略说明。
在一些实施例中,网络设备1401生成PDSCH,并向终端设备1402发送该PDSCH;终端设备1402接收PDSCH;所述PDSCH是由PDCCH调度的;其中,所述PDCCH 对应两个CORESET;如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则终端设备1402提供一个有效的HARQ-ACK信息,其中,所述第一时间点与第一CORESET相关,其中,所述第一CORESET是指所述两个CORESET中的一个。关于网络设备1401的相关内容,本申请不做限制。关于终端设备1402的相关内容,与第三方面的实施例的方法相同,此处省略说明。
本申请实施例还提供一种终端设备,该终端设备例如可以是UE,但本申请不限于此,还可以是其它的设备。
图15是本申请实施例的终端设备的示意图。如图15所示,该终端设备1500可以包括处理器1501和存储器1502;存储器1502存储有数据和程序,并耦合到处理器1501。值得注意的是,该图是示例性的;还可以使用其它类型的结构,来补充或代替该结构,以实现电信功能或其它功能。
例如,处理器1501可以被配置为执行程序而实现如第一方面至第三方面中任一方面的实施例所述的无线通信方法。
如图15所示,该终端设备1500还可以包括:通信模块1503、输入单元1504、显示器1505、电源1506。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备1500也并不是必须要包括图15中所示的所有部件,上述部件并不是必需的;此外,终端设备1500还可以包括图15中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机可读程序,其中当在终端设备中执行所述程序时,所述程序使得计算机在所述终端设备中执行第一方面至第三方面中任一方面的实施例所述的方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在终端设备中执行第一方面至第三方面中任一方面的实施例所述的方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于本实施例公开的上述实施方式,还公开了如下的附记:
1.一种无线通信方法,其中,所述方法包括:
终端设备接收PDSCH;
所述PDSCH是由PDCCH调度的;其中,所述PDCCH对应两个PDCCH candidate;
如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则所述终端设备提供一个有效的HARQ-ACK信息,其中,
所述第一时间点与所述PDSCH和所述两个PDCCH candidate中的其中一个PDCCH candidate的重叠符号相关。
2.根据附记1所述的方法,其中,
所述两个PDCCH candidate中的其中一个PDCCH candidate是指,所述两个PDCCH candidate中结束符号较晚的一个PDCCH candidate。
3.根据附记1所述的方法,其中,
所述两个PDCCH candidate中的其中一个PDCCH candidate是指,所述两个PDCCH candidate中对应的CORESET时域长度更长的PDCCH candidate;其中,所述两个PDCCH candidate的结束符号相同。
4.根据附记1所述的方法,其中,
所述两个PDCCH candidate中的其中一个PDCCH candidate是指,所述两个PDCCH candidate中的任意一个;其中,所述两个PDCCH candidate的结束符号相同,并且所述两个PDCCH candidate对应的CORESET时域长度相同。
5.根据附记2或4所述的方法,其中,
所述两个PDCCH candidate中的任意一个PDCCH candidate的起始符号不晚于所述PDCCH所调度的PDSCH的起始符号。
6.一种无线通信方法,其中,所述方法包括:
终端设备接收PDSCH;
所述PDSCH是由PDCCH调度的;其中,所述PDCCH对应两个PDCCH candidate;
如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则所述终端设备提供一个有效的HARQ-ACK信息,其中,所述第一时间点与所述PDSCH和所述PDCCH的重叠符号相关;
其中,所述PDSCH和所述PDCCH的重叠符号是指,PDSCH对应的符号与PDCCH对应的符号的重叠部分;其中,
PDCCH对应的符号是指从第一符号至第二符号之间所有的符号;其中,
第一符号是指,所述两个PDCCH candidate中,起始符号最早的PDCCH candidate所对应的起始符号;
第二符号是指,所述两个PDCCH candidate中,结束符号最晚的PDCCH candidate所对应的结束符号。
7.一种无线通信方法,其中,所述方法包括:
终端设备接收PDSCH;
所述PDSCH是由PDCCH调度的;其中,所述PDCCH对应两个CORESET;
如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则所述终端设备提供一个有效的HARQ-ACK信息,其中,所述第一时间点与第一CORESET相关,其中,所述第一CORESET是指所述两个CORESET中的一个。
8.根据附记7所述的方法,其中,
所述PDCCH对应两个PDCCH candidate;
所述第一CORESET是指,所述两个PDCCH candidate中结束符号较晚的一个PDCCH candidate所对应的CORESET。
9.根据附记7所述的方法,其中,
所述PDCCH对应两个PDCCH candidate;
所述第一CORESET是指,所述两个PDCCH candidate中对应的CORESET时域长度更长的PDCCH candidate;其中,所述两个PDCCH candidate的结束符号相同。
10.根据附记7所述的方法,其中,
所述PDCCH对应两个PDCCH candidate;
所述第一CORESET是指,所述两个PDCCH candidate中的任意一个PDCCH candidate所对应的CORESET;其中,所述两个PDCCH candidate的结束符号相同,并且所述两个PDCCH candidate对应的CORESET时域长度相同。
11.根据附记8或10所述的方法,其中,
所述两个PDCCH candidate中的任意一个PDCCH candidate的起始符号不晚于所述PDCCH所调度的PDSCH的起始符号。
12、一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至12任一项所述的方法。
13、一种通信系统,包括终端设备和网络设备,其中,
所述终端设备被配置为:
接收PDSCH,所述PDSCH是由PDCCH调度的;其中,所述PDCCH对应两个PDCCH candidate;
如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则提 供一个有效的HARQ-ACK信息,其中,所述第一时间点与所述PDSCH和所述两个PDCCH candidate中的其中一个PDCCH candidate的重叠符号相关;
所述网络设备被配置为:向所述终端设备发送所述PDSCH,并接收所述终端设备发送的所述PUCCH。
14、一种通信系统,包括终端设备和网络设备,其中,
所述终端设备被配置为:
接收PDSCH;所述PDSCH是由PDCCH调度的;其中,所述PDCCH对应两个PDCCH candidate;
如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则提供一个有效的HARQ-ACK信息,其中,所述第一时间点与所述PDSCH和所述PDCCH的重叠符号相关;
其中,所述PDSCH和所述PDCCH的重叠符号是指,PDSCH对应的符号与PDCCH对应的符号的重叠部分;其中,
PDCCH对应的符号是指从第一符号至第二符号之间所有的符号;其中,
第一符号是指,所述两个PDCCH candidate中,起始符号最早的PDCCH candidate所对应的起始符号;
第二符号是指,所述两个PDCCH candidate中,结束符号最晚的PDCCH candidate所对应的结束符号;
所述网络设备被配置为:向所述终端设备发送所述PDSCH,并接收所述终端设备发送的所述PUCCH。
15、一种通信系统,包括终端设备和网络设备,其中,
所述终端设备被配置为:
接收PDSCH;所述PDSCH是由PDCCH调度的;其中,所述PDCCH对应两个CORESET;
如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则提供一个有效的HARQ-ACK信息,其中,所述第一时间点与第一CORESET相关,其中,所述第一CORESET是指所述两个CORESET中的一个;
所述网络设备被配置为:向所述终端设备发送所述PDSCH,并接收所述终端设备发送的所述PUCCH。

Claims (13)

  1. 一种无线通信装置,其中,所述装置包括:
    接收单元,其接收PDSCH,所述PDSCH是由PDCCH调度的,所述PDCCH对应两个PDCCH candidate;
    提供单元,如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则所述提供单元提供一个有效的HARQ-ACK信息,其中,所述第一时间点与所述PDSCH和所述两个PDCCH candidate中的其中一个PDCCH candidate的重叠符号相关。
  2. 根据权利要求1所述的装置,其中,
    所述两个PDCCH candidate中的其中一个PDCCH candidate是指,所述两个PDCCH candidate中结束符号较晚的一个PDCCH candidate。
  3. 根据权利要求2所述的装置,其中,
    所述两个PDCCH candidate中的任意一个PDCCH candidate的起始符号不晚于所述PDCCH所调度的PDSCH的起始符号。
  4. 根据权利要求1所述的装置,其中,
    所述两个PDCCH candidate中的其中一个PDCCH candidate是指,所述两个PDCCH candidate中对应的CORESET时域长度更长的PDCCH candidate;其中,所述两个PDCCH candidate的结束符号相同。
  5. 根据权利要求1所述的装置,其中,
    所述两个PDCCH candidate中的其中一个PDCCH candidate是指,所述两个PDCCH candidate中的任意一个;其中,所述两个PDCCH candidate的结束符号相同,并且所述两个PDCCH candidate对应的CORESET时域长度相同。
  6. 根据权利要求5所述的装置,其中,
    所述两个PDCCH candidate中的任意一个PDCCH candidate的起始符号不晚于所述PDCCH所调度的PDSCH的起始符号。
  7. 一种无线通信装置,其中,所述装置包括:
    接收单元,其接收PDSCH,所述PDSCH是由PDCCH调度的,所述PDCCH对应两个PDCCH candidate;
    提供单元,如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则所述提供单元提供一个有效的HARQ-ACK信息,其中,所述第一时间点与所述PDSCH和所述PDCCH的重叠符号相关;
    其中,所述PDSCH和所述PDCCH的重叠符号是指,所述PDSCH对应的符号与所述PDCCH对应的符号的重叠部分;其中,
    所述PDCCH对应的符号是指从第一符号至第二符号之间所有的符号;其中,
    所述第一符号是指,所述两个PDCCH candidate中,起始符号最早的PDCCH candidate所对应的起始符号;
    所述第二符号是指,所述两个PDCCH candidate中,结束符号最晚的PDCCH candidate所对应的结束符号。
  8. 一种无线通信装置,其中,所述装置包括:
    接收单元,其接收PDSCH,所述PDSCH是由PDCCH调度的,所述PDCCH对应两个CORESET;
    提供单元,如果承载所述PDSCH的HARQ-ACK信息的PUCCH不早于第一时间点,则所述提供单元提供一个有效的HARQ-ACK信息,其中,所述第一时间点与第一CORESET相关,其中,所述第一CORESET是指所述两个CORESET中的一个。
  9. 根据权利要求8所述的装置,其中,
    所述PDCCH对应两个PDCCH candidate;
    所述第一CORESET是指,所述两个PDCCH candidate中结束符号较晚的一个PDCCH candidate所对应的CORESET。
  10. 根据权利要求9所述的装置,其中,
    所述两个PDCCH candidate中的任意一个PDCCH candidate的起始符号不晚于所述PDCCH所调度的PDSCH的起始符号。
  11. 根据权利要求8所述的装置,其中,
    所述PDCCH对应两个PDCCH candidate;
    所述第一CORESET是指,所述两个PDCCH candidate中对应的CORESET时域长度更长的PDCCH candidate;其中,所述两个PDCCH candidate的结束符号相同。
  12. 根据权利要求8所述的装置,其中,
    所述PDCCH对应两个PDCCH candidate;
    所述第一CORESET是指,所述两个PDCCH candidate中的任意一个PDCCH candidate所对应的CORESET;其中,所述两个PDCCH candidate的结束符号相同,并且所述两个PDCCH candidate对应的CORESET时域长度相同。
  13. 根据权利要求12所述的装置,其中,
    所述两个PDCCH candidate中的任意一个PDCCH candidate的起始符号不晚于所述PDCCH所调度的PDSCH的起始符号。
PCT/CN2021/085273 2021-04-02 2021-04-02 无线通信方法、装置和系统 WO2022205419A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/085273 WO2022205419A1 (zh) 2021-04-02 2021-04-02 无线通信方法、装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/085273 WO2022205419A1 (zh) 2021-04-02 2021-04-02 无线通信方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2022205419A1 true WO2022205419A1 (zh) 2022-10-06

Family

ID=83457579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085273 WO2022205419A1 (zh) 2021-04-02 2021-04-02 无线通信方法、装置和系统

Country Status (1)

Country Link
WO (1) WO2022205419A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020197333A1 (ko) * 2019-03-28 2020-10-01 엘지전자 주식회사 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 저장 매체, 그리고 상향링크 수신을 수행하는 방법 및 기지국
WO2020196804A1 (en) * 2019-03-27 2020-10-01 Sharp Kabushiki Kaisha User equipments, base stations, and methods
CN111742510A (zh) * 2018-02-17 2020-10-02 韦勒斯标准与技术协会公司 无线通信系统中发送上行链路控制信息的方法及使用其的装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111742510A (zh) * 2018-02-17 2020-10-02 韦勒斯标准与技术协会公司 无线通信系统中发送上行链路控制信息的方法及使用其的装置
WO2020196804A1 (en) * 2019-03-27 2020-10-01 Sharp Kabushiki Kaisha User equipments, base stations, and methods
WO2020197333A1 (ko) * 2019-03-28 2020-10-01 엘지전자 주식회사 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 저장 매체, 그리고 상향링크 수신을 수행하는 방법 및 기지국

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LENOVO, MOTOROLA MOBILITY: "Enhancements on Multi-TRP for PDCCH, PUCCH and PUSCH", 3GPP DRAFT; R1-2100274, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 18 January 2021 (2021-01-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970317 *
MODERATOR (QUALCOMM): "Discussion Summary for mTRP PDCCH Reliability Enhancements", 3GPP DRAFT; R1-2101838, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 29 January 2021 (2021-01-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051975934 *
VIVO: "Discussion on potential enhancements for DL-AoD method", 3GPP DRAFT; R1-2100447, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 18 January 2021 (2021-01-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970369 *

Similar Documents

Publication Publication Date Title
US9900876B2 (en) Repetition transmission for downlink control signal
JP2019536308A (ja) 無線通信システムにおけるダウンリンク制御チャネルの送信および検出のための方法およびデバイス
WO2018120064A1 (zh) 抑制干扰信息的传输装置、方法以及通信系统
WO2022151299A1 (zh) 指示信息的上报和接收方法以及装置
WO2018120065A1 (zh) 动态时分双工的设置装置、方法以及通信系统
WO2022027500A1 (zh) 信息发送方法,资源确定方法以及装置
WO2022151287A1 (zh) 资源选择方法、装置和系统
JP2022537251A (ja) サイドリンクモニタリング方法とデバイス
WO2022077322A1 (zh) 探测参考信号的发送和接收方法以及装置
WO2022027515A1 (zh) 上行控制信息的发送方法、装置和系统
WO2019096059A1 (en) Corresponding configuration for simultaneous physical uplink control channel pucch and physical uplink shared channel pusch transmission
WO2022205419A1 (zh) 无线通信方法、装置和系统
WO2022077270A1 (zh) 数据接收方法,数据发送方法以及装置
WO2019227404A1 (zh) 控制信息的传输方法及装置
EP3997931A1 (en) Discontinuous transmission, dtx, detection
WO2021159400A1 (zh) 无线通信方法、装置和系统
WO2023010422A1 (zh) 边链路协作信息的指示和接收装置以及方法
WO2022077321A1 (zh) 无线通信方法、装置和系统
WO2023010469A1 (zh) 信号发送方法、装置和系统
WO2023010368A1 (zh) 收发信号的方法、装置和通信系统
WO2022205394A1 (zh) 测量方法以及装置
WO2019028775A1 (zh) 反馈信息的发送和接收方法、装置及通信系统
WO2022151174A1 (zh) 无线通信的装置及方法
WO2022205388A1 (zh) 边链路资源的选择方法及装置
WO2022082672A1 (zh) 资源选择方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934076

Country of ref document: EP

Kind code of ref document: A1