WO2022151174A1 - 无线通信的装置及方法 - Google Patents

无线通信的装置及方法 Download PDF

Info

Publication number
WO2022151174A1
WO2022151174A1 PCT/CN2021/071809 CN2021071809W WO2022151174A1 WO 2022151174 A1 WO2022151174 A1 WO 2022151174A1 CN 2021071809 W CN2021071809 W CN 2021071809W WO 2022151174 A1 WO2022151174 A1 WO 2022151174A1
Authority
WO
WIPO (PCT)
Prior art keywords
spatial reception
reference signal
channel state
state information
csi
Prior art date
Application number
PCT/CN2021/071809
Other languages
English (en)
French (fr)
Inventor
陈哲
张磊
张健
蒋琴艳
纪鹏宇
Original Assignee
富士通株式会社
陈哲
张磊
张健
蒋琴艳
纪鹏宇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 陈哲, 张磊, 张健, 蒋琴艳, 纪鹏宇 filed Critical 富士通株式会社
Priority to PCT/CN2021/071809 priority Critical patent/WO2022151174A1/zh
Publication of WO2022151174A1 publication Critical patent/WO2022151174A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications.
  • New Radio introduces a high-frequency communication method in order to increase the frequency resources available to the communication system, thereby increasing the system capacity.
  • UE User Equipment
  • OFDM Orthogonal Frequency Division Multiplexing
  • QCL type-D parameters QCL type-D parameters
  • CSI-RS Channel State Information-Reference Signal
  • CORESET control resource set
  • search space search space, SS
  • FIG. 1 is a schematic diagram of an existing time slot slot n.
  • the UE monitors the PDCCH candidate in the crossbar area. This area corresponds to Search space#1 (SS#1), and SS#1 is associated with CORESET#1.
  • the active TCI state of CORESET#1 is TCI#1, and TCI#1 includes the QCL-typeD parameter QCL-typeD#1.
  • CSI-RS is sent in the second symbol.
  • the UE Since the symbol for sending CSI-RS has the same OFDM symbol as the cross-line area, and the priority of CORESET is higher than that of CSI-RS, the UE receives the QCL-typeD parameter (QCL-typeD#1) corresponding to CORESET#1.
  • QCL-typeD#1 QCL-typeD parameter
  • the terminal device in some scenarios, for example, in a high-speed train-single frequency network (HST-SFN) scenario, the terminal device is generally placed in the high-speed train, while the network device is usually fixed on the rails sides.
  • HST-SFN high-speed train-single frequency network
  • the network device is usually fixed on the rails sides.
  • the communication quality between the terminal equipment and the network equipment will be seriously affected due to the Doppler effect, especially the reliability of the downlink control channel will drop sharply.
  • TRPs Transmit-Receive Points
  • a CORESET for receiving downlink control channels needs to be associated with two different spatial directions, that is, one CORESET is associated with two different QCL-typeD parameters.
  • Embodiments of the present application provide an apparatus and method for wireless communication. According to the relationship between a spatial reception parameter associated with the first CSI-RS and two different spatial reception parameters associated with CORESET, it is determined to receive the first CSI-RS using In this way, when the CORESET is associated with two different spatial reception parameters, the spatial direction for receiving the first CSI-RS can be determined.
  • an apparatus for wireless communication the apparatus is used on the side of a terminal device, and the apparatus includes: a first determination unit, which is configured to use a first channel state information reference signal (CSI) - the relationship between the spatial reception parameter associated with the RS) and the two different spatial reception parameters associated with the control resource set (CORESET), determine the spatial reception parameter used for receiving the first channel state information reference signal, wherein the a first channel state information reference signal and a search space set associated with the control resource set overlap in the time domain; and a first receiving unit configured to receive the first channel state information according to the determined spatial reception parameter reference signal.
  • CSI channel state information reference signal
  • CORESET control resource set
  • an apparatus for wireless communication the apparatus is used on a network device side, and the apparatus includes: a ninth determination unit, which is configured to use a first channel state information reference signal (CSI) - the relationship between the spatial reception parameter associated with RS) and the two different spatial reception parameters associated with the control resource set (CORESET), determine the spatial transmission parameter used for sending the first channel state information reference signal, wherein the a first channel state information reference signal and a search space set associated with the control resource set overlap in the time domain; and a sending unit configured to send the first channel state information reference signal according to the determined space transmission parameter .
  • CSI channel state information reference signal
  • CORESET control resource set
  • a terminal device is provided, where the terminal device includes the apparatus according to the first aspect of the embodiments of the present application.
  • a network device is provided, and the network device includes the apparatus according to the second aspect of the embodiments of the present application.
  • a communication system includes the terminal device according to the third aspect of the embodiments of the present application and/or the terminal device according to the fourth aspect of the embodiments of the present application network equipment.
  • a method for wireless communication the method is applied to a terminal device side, and the method includes: receiving according to a space associated with a first channel state information reference signal (CSI-RS) The relationship between the parameter and the two different spatial reception parameters associated with the control resource set (CORESET), to determine the spatial reception parameter used for receiving the first channel state information reference signal, wherein the first channel state information reference signal is related to the The search space sets associated with the control resource sets overlap in the time domain; and the first channel state information reference signal is received according to the determined spatial reception parameters.
  • CSI-RS channel state information reference signal
  • CORESET control resource set
  • a method for wireless communication is provided, the method is applied to a network device side, and the method includes: receiving according to a space associated with a first channel state information reference signal (CSI-RS) The relationship between the parameter and the two different spatial reception parameters associated with the control resource set (CORESET), to determine the spatial transmission parameter used for transmitting the first channel state information reference signal, wherein the first channel state information reference signal and the The search space sets associated with the control resource sets overlap in the time domain; and the first channel state information reference signal is transmitted according to the determined spatial transmission parameters.
  • CSI-RS channel state information reference signal
  • CORESET control resource set
  • a computer-readable program is provided, wherein when the program is executed in an apparatus or terminal device for wireless communication, the program causes the apparatus or terminal device for wireless communication to execute The wireless communication method described in the sixth aspect of the embodiments of the present application.
  • a storage medium storing a computer-readable program is provided, wherein the computer-readable program enables a wireless communication apparatus or terminal device to perform the sixth aspect of the embodiments of the present application method of wireless communication.
  • a computer-readable program is provided, wherein when the program is executed in a wireless communication apparatus or network device, the program causes the wireless communication apparatus or network device to execute The wireless communication method described in the seventh aspect of the embodiments of the present application.
  • a storage medium storing a computer-readable program wherein the computer-readable program enables a wireless communication apparatus or a network device to perform the procedures of the seventh aspect of the embodiments of the present application. method of wireless communication.
  • the beneficial effect of the present invention is that: the terminal device determines the spatial reception parameter used to receive the first CSI-RS according to the relationship between the spatial reception parameter associated with the first CSI-RS and the two different spatial reception parameters associated with the CORESET, In this way, when the CORESET is associated with two different spatial reception parameters, the spatial direction for receiving the first CSI-RS can be determined.
  • Fig. 1 is a schematic diagram of an existing certain time slot slot n
  • FIG. 2 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a wireless communication method according to Embodiment 1 of the present application.
  • FIG. 4 is a schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • FIG. 5 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • FIG. 6 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • FIG. 7 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • Embodiment 8 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • Embodiment 9 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • FIG. 10 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • FIG. 11 is another schematic diagram of the wireless communication method according to Embodiment 1 of the present application.
  • FIG. 12 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • FIG. 13 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • FIG. 14 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • FIG. 15 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • Embodiment 1 of the present invention are another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • FIG. 17 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • Embodiment 18 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • FIG. 19 is a schematic diagram of a method for wireless communication according to Embodiment 2 of the present application.
  • FIG. 20 is a schematic diagram of a method for wireless communication according to Embodiment 3 of the present application.
  • FIG. 21 is a schematic diagram of an apparatus for wireless communication according to Embodiment 4 of the present application.
  • FIG. 22 is a schematic diagram of the first determination unit of Embodiment 4 of the present application.
  • FIG. 24 is a schematic diagram of an apparatus for wireless communication according to Embodiment 5 of the present application.
  • FIG. 26 is a schematic diagram of the tenth determination unit in Embodiment 5 of the present application.
  • FIG. 27 is a schematic block diagram of a system configuration of a terminal device according to Embodiment 6 of the present invention.
  • FIG. 28 is a schematic block diagram of a system configuration of a network device according to Embodiment 7 of the present invention.
  • the terms “first”, “second”, etc. are used to distinguish different elements in terms of numelation, but do not indicate the spatial arrangement or temporal order of these elements, and these elements should not be referred to by these terms restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • the terms “comprising”, “including”, “having”, etc. refer to the presence of stated features, elements, elements or components, but do not preclude the presence or addition of one or more other features, elements, elements or components.
  • multiple refers to at least two or at least two.
  • the term "communication network” or “wireless communication network” may refer to a network that conforms to any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Long Term Evolution Enhanced (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access) and so on.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Enhanced
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to communication protocols at any stage, for example, including but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, New Radio (NR, New Radio), etc., and/or other communication protocols currently known or to be developed in the future.
  • Network device refers to, for example, a device in a communication system that connects a user equipment to a communication network and provides services for the user equipment.
  • Network devices may include but are not limited to the following devices: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobility management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller) and so on.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), and 5G base station (gNB), etc., and may also include a remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low power node (eg femto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low power node eg femto, pico, etc.
  • base station may include some or all of their functions, each base station may provide communication coverage for a particular geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "user equipment” or “terminal equipment” refers to a device that accesses a communication network through a network device and receives network services.
  • User equipment may be fixed or mobile, and may also be referred to as a mobile station (MS, Mobile Station), a terminal, a subscriber station (SS, Subscriber Station), an access terminal (AT, Access Terminal), a station, and the like.
  • the user equipment may include but not limited to the following equipment: Cellular Phone (Cellular Phone), Personal Digital Assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication device, handheld device, machine type communication device, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • Cellular Phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication device
  • handheld device machine type communication device
  • laptop computer Cordless phones
  • smartphones smart watches, digital cameras, and more.
  • the user equipment may also be a machine or device that performs monitoring or measurement, such as but not limited to: Machine Type Communication (MTC, Machine Type Communication) terminals, In-vehicle communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • FIG. 2 is a schematic diagram of a communication system according to an embodiment of the present application, which schematically illustrates a situation in which a terminal device and a network device are taken as an example.
  • the communication system 100 may include a network device 101 and a user equipment 102.
  • the user equipment 102 Can also be multiple.
  • an existing service or a service that can be implemented in the future may be performed between the network device 101 and the user equipment 102 .
  • these services include but are not limited to: Enhanced Mobile Broadband (eMBB, enhanced Mobile Broadband), Massive Machine Type Communication (mMTC, massive Machine Type Communication) and High Reliable Low Latency Communication (URLLC, Ultra-Reliable and Low-Latency Communication) Latency Communication), etc.
  • FIG. 3 is a schematic diagram of a wireless communication method according to Embodiment 1 of the present application. As shown in Figure 3, the method includes:
  • Step 301 Determine to receive the first channel state information according to the relationship between the spatial reception parameter associated with the first channel state information reference signal (CSI-RS) and the two different spatial reception parameters associated with the control resource set (CORESET). a spatial reception parameter used by a reference signal, wherein the first channel state information reference signal and the set of search spaces associated with the set of control resources overlap in the time domain; and
  • CSI-RS channel state information reference signal
  • CORESET control resource set
  • Step 302 Receive the first channel state information reference signal according to the determined spatial reception parameter.
  • the spatial direction for receiving the first CSI-RS can be determined.
  • the first channel state information reference signal that is, the first CSI-RS refers to the CRI-RS to be received.
  • the first CRI-RS is a CSI-RS for time-frequency tracking (CSI-RS for tracking), a CSI-RS for beam management (CSI-RS for beam management), or a CSI-RS for beam management.
  • CSI-RS for channel state information measurement (CSI measurement) More specifically, for example:
  • the CSI-RS used for time-frequency tracking refers to a CSI-RS resource in a CSI-RS set, wherein the CSI-RS set is configured with a high-level parameter "trs-info" (a CSI-RS resource in a NZP- CSI-RS-ResourceSet configured with higher layer parameter trs-Info).
  • trs-info a CSI-RS resource in a NZP- CSI-RS-ResourceSet configured with higher layer parameter trs-Info
  • the CSI-RS used for beam management refers to a CSI-RS resource in a CSI-RS set, wherein the CSI-RS set is configured with a high-level parameter "repetition" (a CSI-RS resource in a NZP-CSI-RS -ResourceSet configured with higher layer parameter repetition).
  • the CSI-RS used for channel state information measurement refers to a CSI-RS resource in a CSI-RS set, wherein the CSI-RS set is neither configured with the high-level parameter "repetition” nor configured with the high-level parameter "trs-info" (a CSI-RS resource in a NZP-CSI-RS-ResourceSet configured without higher layer parameter trs-Info and without higher layer parameter repetition).
  • the first CRI-RS is a CSI-RS resource in a CSI-RS set, wherein the CSI-RS set does not configure the high-layer parameter "repetition" to be "on" (a CSI-RS set -RS resource associated with a NZP-CSI-RS-ResourceSet with the higher layer parameter other than repetition set to'on').
  • the spatial reception parameter (Spatial Rx parameter) is a spatially related parameter used by the terminal device to receive a signal, for example, the spatial reception parameter is a QCL-TypeD parameter.
  • the QCL-TypeD parameter is used as an example for description.
  • the QCL-TypeD parameter may be a channel state information reference signal, which is referred to as a second channel state information reference signal, that is, the second CRI-RS in this embodiment of the present application; or, the QCL-TypeD parameter Can be a Synchronization Signal Block (SSB).
  • SSB Synchronization Signal Block
  • the number of spatial reception parameters associated with the first CSI-RS may be one or two.
  • control resource set is associated with two different spatial reception parameters, and the two spatial reception parameters may be different second CRI-RSs, or different SSBs, or one is the first Two CRI-RS, the other is SSB.
  • the spatial reception parameter associated with the first CSI-RS and the two different spatial reception parameters associated with the CORESET may be configured by the network.
  • the first CRI-RS and the CORESET may be associated with the spatial reception parameters through a transmission configuration indicator (transmission configuration indicator, TCI) state.
  • TCI transmission configuration indicator
  • the CORESET is activated with two TCI states, namely TCI#1 and TCI#2, the first CRI-RS is associated with TCI#3, and the reference signal associated with TCI#1 is used to indicate QCL-typeD property is CSI-RS#1, the reference signal associated with TCI#2 for indicating QCL-typeD property is CSI-RS#2, and the reference signal associated with TCI#3 for indicating QCL-typeD property is CSI-RS #3, then, the spatial reception parameter associated with the first CRI-RS is CSI-RS#3, and the two spatial reception parameters associated with the CORESET are CSI-RS#1 and CSI-RS#2.
  • the first CSI-RS and the CORESET may be on the same or different intra-band component carriers (intra-band component carriers).
  • step 301 the terminal device determines the spatial reception parameter used to receive the first CSI-RS according to the relationship between the spatial reception parameter associated with the first CSI-RS and two different spatial reception parameters associated with the CORESET.
  • the terminal device determines the spatial reception parameter used to receive the first CSI-RS according to the relationship between the spatial reception parameter associated with the first CSI-RS and two different spatial reception parameters associated with the CORESET.
  • the spatial reception parameter associated with the first CSI-RS is one spatial reception parameter.
  • the terminal device may receive one of the spatial reception parameters associated with the CORESET Determine the spatial reception parameters used for receiving the first CSI-RS.
  • one spatial reception parameter is CSI-RS and the other spatial reception parameter is SSB
  • the two spatial reception parameters are considered to be different.
  • one spatial reception parameter is one CSI-RS and the other spatial reception parameter is another CSI-RS, and the synchronization signal blocks associated with the two CSI-RSs are different, the two spatial reception parameters are considered to be different. different.
  • the terminal device may One of the spatial reception parameters is determined to be the spatial reception parameter used for receiving the first CSI-RS,
  • one of the two spatial reception parameters associated with the CORESET is determined according to the SSB associated with the two spatial reception parameters.
  • the spatial reception parameter associated with the first CSI-RS is an SSB; one spatial reception parameter in the two spatial reception parameters associated with the CORESET is the same as the SSB in the two spatial reception parameters associated with the CORESET The associated space receives parameters.
  • step 302 the first CSI-RS is received according to the determined spatial reception parameter.
  • receiving the first CSI-RS may also be referred to as detecting the first CSI-RS.
  • detecting the first CSI-RS For the specific detection or reception method, reference may be made to the related art.
  • FIG. 4 is a schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • SS#1 search space set, search space set
  • CORESET#1 is associated with two TCI states TCI#1 and TCI#2, or CORESET#1 is activated for two TCI states (TCI#1, TCI#2).
  • this CSI-RS is used for time-frequency tracking, and it is associated with TCI#3.
  • the reference signal associated with TCI#1 and used to indicate QCL-typeD property is CSI-RS#1, and CSI-RS#1 is associated with SSB#1; the reference signal associated with TCI#2 used to indicate QCL-typeD property The reference signal is CSI-RS#2, and CSI-RS#2 is related to SSB#2; the reference signal associated with TCI#3 and used to indicate the QCL-typeD property is SSB#1.
  • the QCL-typeD parameters associated with CORESET#1 are CSI-RS#1 and CSI-RS#2, and the QCL-typeD parameters associated with the CSI-RS are SSB#1.
  • both CSI-RS and CORESET#1 are associated with SSB#1, the measurement accuracy of CSI-RS and SSB is different, and the UE may not be able to receive them simultaneously. That is, the UE cannot detect or receive the CSI-RS according to the QCL-typeD parameters configured for the CSI-RS. At this time, the UE shall detect or receive the CSI-RS according to the QCL-typeD parameter corresponding to CORESET#1. Specifically, since the QCL-typeD parameter corresponding to CSI-RS is SSB#1, and CSI-RS#1 is associated with SSB#1, at this time, the UE detects or The CSI-RS is received.
  • the SSB associated with the TCI state configured by the CSI-RS is consistent with the SSB associated with receiving the CSI-RS, it can be ensured that the UE uses the The measurement accuracy of RS is beneficial to improve system performance.
  • one of the two spatial reception parameters associated with the CORESET is determined according to the TCI state associated with the two spatial reception parameters.
  • one of the two spatial reception parameters associated with the CORESET is the spatial reception parameter with the smallest index of the TCI state associated with the two spatial reception parameters.
  • FIG. 5 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • SS#1 is associated with CORESET#1.
  • CORESET#1 is associated with two TCI states TCI#1, TCI#2, or CORESET#1 is activated with two TCI states (TCI#1, TCI#2).
  • this CSI-RS is used for time-frequency tracking, and it is associated with TCI#3.
  • the reference signal associated with TCI#1 and used to indicate QCL-typeD property is CSI-RS#1, and CSI-RS#1 is associated with SSB#1; the reference signal associated with TCI#2 used to indicate QCL-typeD property The reference signal is CSI-RS#2, and CSI-RS#2 is related to SSB#2; the reference signal associated with TCI#3 and used to indicate the QCL-typeD property is SSB#1.
  • the QCL-typeD parameters associated with CORESET#1 are CSI-RS#1 and CSI-RS#2, and the QCL-typeD parameters associated with CSI-RS are SSB#3.
  • the UE Since CSI-RS and CORESET#1 correspond to different QCL-typeD parameters, the UE does not have the ability to receive them simultaneously. That is, the UE cannot detect or receive the CSI-RS according to the QCL-typeD parameters configured for the CSI-RS. At this time, the UE shall detect or receive the CSI-RS according to the QCL-typeD parameter corresponding to CORESET#1. Specifically, the UE detects or receives the CSI-RS according to the QCL-typeD parameter (QCL-typeD#1) associated with the TCI state (TCI#1) with the smallest index associated with CORESET#1.
  • QCL-typeD#1 QCL-typeD parameter associated with the TCI state (TCI#1) with the smallest index associated with CORESET#1.
  • the TCI state with a smaller index is generally used to determine the default beam, which is more important.
  • the CSI-RS is detected or received according to the TCI state with a smaller index, which enables it to detect more important spatial directions, which is beneficial to improve system performance.
  • FIG. 6 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • SS#1 is associated with CORESET#1.
  • CORESET#1 is associated with two TCI states TCI#1, TCI#2, or CORESET#1 is activated with two TCI states (TCI#1, TCI#2).
  • CSI-RS is associated with TCI#3.
  • the reference signal associated with TCI#1 and used to indicate QCL-typeD property is CSI-RS#1, and CSI-RS#1 is associated with SSB#1; the reference signal associated with TCI#2 used to indicate QCL-typeD property The reference signal is CSI-RS#2, and CSI-RS#2 is related to SSB#2; the reference signal associated with TCI#3 for indicating QCL-typeD property is CSI-RS#3, CSI-RS#3 and SSB #3 Related.
  • the QCL-typeD parameters associated with CORESET#1 are CSI-RS#1 and CSI-RS#2, and the QCL-typeD parameters associated with CSI-RS are SSB#3.
  • the UE Since CSI-RS and CORESET#1 correspond to different QCL-typeD parameters, the UE does not have the ability to receive them simultaneously. That is, the UE cannot detect or receive the CSI-RS according to the QCL-typeD parameters configured for the CSI-RS. At this time, the UE shall detect or receive the CSI-RS according to the QCL-typeD parameter corresponding to CORESET#1. Specifically, the UE detects or receives the CSI-RS according to the QCL-typeD parameter (QCL-typeD#1) corresponding to the TCI state (TCI#1) with the lowest index associated with CORESET#1.
  • the TCI state with a smaller index is generally used to determine the default beam, which is more important.
  • the CSI-RS is detected or received according to the TCI state with a smaller index, which enables it to detect more important spatial directions, which is beneficial to improve system performance.
  • one of the two spatial reception parameters associated with the CORESET is determined according to the index of the second CSI-RS associated with the two spatial reception parameters.
  • one of the two spatial reception parameters associated with the CORESET is the spatial reception parameter with the smallest index of the second CSI-RS associated with the two spatial reception parameters.
  • the UE detects the QCL-typeD parameter (QCL-typeD#1) associated with the CSI-RS (CSI-RS#1) with the smallest index associated with CORESET#1 or receive the CSI-RS.
  • CSI-RSs with smaller indices are generally more important. Detecting or receiving according to CSI-RS with a smaller index enables it to detect more important spatial directions, which is beneficial to improve system performance.
  • the above description is that when one spatial reception parameter associated with the first CSI-RS is different from the two spatial reception parameters associated with the CORESET, the terminal device is one of the two spatial reception parameters associated with the CORESET.
  • the reception parameter is determined to be the spatial reception parameter used for receiving the first CSI-RS; it may also be that when a spatial reception parameter associated with the first CSI-RS is different from the two spatial reception parameters associated with the CORESET, The terminal device determines the two spatial reception parameters associated with the CORESET as the spatial reception parameters used for receiving the first CSI-RS.
  • the first CSI-RS is associated with two spatial reception parameters, and when one of the two spatial reception parameters is different from the two spatial reception parameters associated with the CORESET, the terminal device associates the CORESET
  • the two spatial reception parameters of are determined as the spatial reception parameters used for receiving the first CSI-RS.
  • FIG. 7 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • SS#1 is associated with CORESET#1.
  • CORESET#1 is associated with two TCI states (TCI#1, TCI#2), or CORESET#1 is activated with two TCI states (TCI#1, TCI#2).
  • the CSI-RS is associated with TCI#3 and TCI#4.
  • the reference signal associated with TCI#1 and used to indicate QCL-typeD property is CSI-RS#1, and CSI-RS#1 is associated with SSB#1; the reference signal associated with TCI#2 used to indicate QCL-typeD property The reference signal is CSI-RS#2, and CSI-RS#2 is related to SSB#2; the reference signal associated with TCI#3 for indicating QCL-typeD property is CSI-RS#3, CSI-RS#3 and SSB #1 is correlated; the reference signal associated with TCI#4 and used to indicate QCL-typeD property is CSI-RS#4, and CSI-RS#4 is correlated with SSB#4.
  • the QCL-typeD parameters associated with CORESET#1 are CSI-RS#1 and CSI-RS#2, and the QCL-typeD parameters associated with CSI-RS are CSI-RS#3 and CSI-RS#4.
  • the UE Since some of the QCL-typeD parameters corresponding to the CSI-RS and CORESET#1 are not identical, the UE does not have the ability to receive them simultaneously. That is, the UE cannot detect or receive the CSI-RS according to the QCL-typeD parameters configured for the CSI-RS. At this time, the UE shall detect or receive the CSI-RS according to the QCL-typeD parameter associated with CORESET#1. Specifically, since the CSI-RS is configured with two different QCL-typeD parameters, the UE detects or receives the CSI-RS.
  • the CSI-RS can be used to measure the channel state of the CORESET.
  • this method can use the configuration information of the CSI-RS to distinguish the measurement objects of the CSI-RS (that is, when the TCI state configured by the CSI-RS is associated with only one QCL-typeD parameter, the CSI-RS is used to measure the One QCL-typeD parameter associated; when the TCI state configured by the CSI-RS is associated with two QCL-typeD parameters, the CSI-RS and the CORESET share the same QCL-typeD), so that the base station can make reasonable adjustments to ensure measurement accuracy , thereby improving system performance.
  • the spatial reception parameter associated with the first CSI-RS is different from the two spatial reception parameters associated with the CORESET.
  • the following describes the case where the spatial reception parameter associated with the first CSI-RS is the same as the two spatial reception parameters associated with the CORESET.
  • step 301 for example, when a spatial reception parameter associated with the first CSI-RS is the same as one of the two spatial reception parameters associated with the CORESET, the spatial reception parameter associated with the CSI-RS is The spatial reception parameter is determined as the spatial reception parameter used for receiving the first CSI-RS; and/or, when the two spatial reception parameters associated with the first CSI-RS are respectively the same as the two spatial reception parameters associated with the CORESET At the same time, the two spatial reception parameters associated with the CSI-RS are determined as the spatial reception parameters used for receiving the first CSI-RS.
  • a spatial reception parameter associated with the CSI-RS is the same as one of the two spatial reception parameters associated with the CORESET, including:
  • a second CSI-RS that is a spatial reception parameter associated with the first CSI-RS is the same as a second CSI-RS that is a spatial reception parameter of two spatial reception parameters associated with the CORESET; and/ or,
  • a synchronization signal block (SSB) associated with a spatial reception parameter associated with the first CSI-RS is the same as a synchronization signal block associated with a spatial reception parameter of two spatial reception parameters associated with the CORESET.
  • FIG. 8 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • SS#1 is associated with CORESET#1.
  • CORESET#1 is associated with two TCI states TCI#, TCI#2, or CORESET#1 is activated with two TCI states (TCI#1, TCI#2).
  • CSI-RS is associated with TCI#3.
  • the reference signal associated with TCI#1 for indicating QCL-typeD property is CSI-RS#1; the reference signal associated with TCI#2 for indicating QCL-typeD property is CSI-RS#2; TCI# 3 The associated reference signal for indicating QCL-typeD property is CSI-RS#1.
  • the QCL-typeD parameters associated with CORESET#1 are CSI-RS#1 and CSI-RS#2, and the QCL-typeD parameters associated with CSI-RS are CSI-RS#1.
  • the UE Since the QCL-typeD parameter associated with the CSI-RS is the same as one of the QCL-typeD parameters associated with CORESET#1, the UE is capable of receiving the CSI-RS, that is, the UE is capable of receiving the CSI-RS according to the The QCL-typeD parameter detects or receives the CSI-RS.
  • the UE can receive the CSI-RS according to the QCL-typeD parameters configured for the CSI-RS system.
  • RS avoids behavior ambiguity, can ensure the measurement accuracy of CSI-RS, and is conducive to improving system performance.
  • the two spatial reception parameters associated with the first CSI-RS are respectively the same as the two spatial reception parameters associated with the CORESET, including: as the two spatial reception parameters associated with the first CSI-RS
  • the two second CSI-RSs of the reception parameters are respectively the same as the two second CSI-RSs as the two spatial reception parameters associated with the CORESET; and/or, the two spatial receptions associated with the first CSI-RS
  • the two synchronization signal blocks (SSBs) respectively associated with the parameters are the same as the two synchronization signal blocks respectively associated with the two spatial reception parameters associated with the CORESET.
  • FIG. 9 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • SS#1 is associated with CORESET#1.
  • CORESET#1 is associated with two TCI states TCI#, TCI#2, or CORESET#1 is activated with two TCI states (TCI#1, TCI#2).
  • the CSI-RS is associated with TCI#3 and TCI#4.
  • the reference signal associated with TCI#1 for indicating QCL-typeD property is CSI-RS#1; the reference signal associated with TCI#2 for indicating QCL-typeD property is CSI-RS#2; TCI# 3
  • the associated reference signal for indicating QCL-typeD property is CSI-RS#1; the reference signal associated with TCI#4 for indicating QCL-typeD property is CSI-RS#2
  • the QCL-typeD parameters associated with CORESET#1 are CSI-RS#1 and CSI-RS#2, and the QCL-typeD parameters associated with CSI-RS are CSI-RS#1 and CSI-RS#2.
  • the UE Since the QCL-typeD parameter associated with the CSI-RS is the same as the QCL-typeD parameter associated with CORESET#1, the UE is capable of receiving the CSI-RS, that is, the UE is capable of receiving the CSI-RS according to the QCL-type D parameters configured for the CSI-RS.
  • the typeD parameter detects or receives the CSI-RS.
  • the UE can receive the QCL-typeD parameters according to the QCL-typeD parameters configured for the CSI-RS system.
  • CSI-RS avoids behavior ambiguity, can ensure the measurement accuracy of CSI-RS, and is conducive to improving system performance.
  • FIG. 10 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • SS#1 is associated with CORESET#1.
  • CORESET#1 is associated with two TCI states TCI#1, TCI#2, or CORESET#1 is activated with two TCI states (TCI#1, TCI#2).
  • the CSI-RS is associated with TCI#3 and TCI#4.
  • the reference signal associated with TCI#1 for indicating QCL-typeD property is CSI-RS#1; CSI-RS#1 is associated with SSB#1; TCI#2 is associated with indicating QCL-typeD property
  • the reference signal is CSI-RS#2; wherein CSI-RS#2 is related to SSB#2; the reference signal associated with TCI#3 for indicating QCL-typeD property is CSI-RS#1; wherein CSI-RS# 3 is related to SSB#1; the reference signal associated with TCI#4 for indicating QCL-typeD property is CSI-RS#2; wherein CSI-RS#4 is related to SSB#2.
  • the QCL-typeD parameters associated with CORESET#1 are CSI-RS#1 and CSI-RS#2, and the QCL-typeD parameters associated with CSI-RS are CSI-RS#3 and CSI-RS#4.
  • the UE is capable of receiving the CSI-RS, that is, the UE detects or receives the CSI-RS according to the QCL-typeD parameters configured for the CSI-RS.
  • the UE can receive the CSI-RS according to the QCL-typeD parameters configured for the CSI-RS system, Avoiding behavioral ambiguity can ensure the measurement accuracy of CSI-RS, which is beneficial to improve system performance.
  • the spatial reception parameter for receiving the first CSI-RS may also be determined in combination with the panel information.
  • FIG. 11 is another schematic diagram of the wireless communication method according to Embodiment 1 of the present application. As shown in Figure 11, the method includes:
  • Step 1101 According to the spatial reception parameters associated with the first CSI-RS and the antenna panel information associated with the first CSI-RS, the two spatial reception parameters associated with the CORESET and the antenna panel information associated with the CORESET relationship, determine the spatial reception parameter used to receive the first CSI-RS; and
  • Step 1102 Receive the first CSI-RS according to the determined spatial reception parameter.
  • the spatial reception parameter associated with the first CSI-RS is different from one of the two spatial reception parameters associated with the CORESET, for example, when the antenna panel information associated with one spatial reception parameter is different from the other spatial reception parameter
  • the two spatial receiving parameters are considered to be different.
  • One of the two spatial reception parameters associated with the CORESET is determined according to the antenna panel information of the second CSI-RS associated with the two spatial reception parameters.
  • the first CSI-RS is associated with a piece of antenna panel information; one of the two spatial reception parameters associated with the CORESET is that the two spatial reception parameters associated with the CORESET are associated with the antenna panel information
  • the space receives parameters.
  • the spatial reception parameter associated with the first CSI-RS is the same as one of the two spatial reception parameters associated with the CORESET
  • the first CSI-RS is associated with the same spatial reception parameter
  • a spatial reception parameter is the same as one of the two spatial reception parameters associated with the CORESET
  • an antenna panel information associated with the first CSI-RS is the same as one of the two spatial reception parameters associated with the CORESET.
  • the spatial reception parameter associated with the CSI-RS determines the spatial reception parameter associated with the CSI-RS as the spatial reception parameter used for receiving the first CSI-RS; and/or, when the first CSI-RS is associated with
  • the two spatial reception parameters associated with the CORESET are the same as the two spatial reception parameters associated with the CORESET, and the two antenna panel information associated with the first CSI-RS are the same as the two antenna panel information associated with the CORESET,
  • the two spatial reception parameters associated with the CSI-RS are determined as the spatial reception parameters used for receiving the first CSI-RS.
  • FIG. 12 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • SS#1 is associated with CORESET#1
  • CORESET#1 is associated with two TCI states TCI#1, TCI#2, or CORESET#1 is activated with two TCI states (TCI#1, TCI #2).
  • this CSI-RS is used for time-frequency tracking, and it is associated with TCI#3.
  • the reference signal associated with TCI#1 and used to indicate QCL-typeD property is CSI-RS#1, and CSI-RS#1 is associated with SSB#1; the reference signal associated with TCI#2 used to indicate QCL-typeD property The reference signal is CSI-RS#2, and CSI-RS#2 is related to SSB#2; the reference signal associated with TCI#3 and used to indicate the QCL-typeD property is SSB#1.
  • TCI#1 is associated with panel#1; TCI#2 is associated with panel#2; TCI#3 is associated with panel#1.
  • the QCL-typeD parameters associated with CORESET#1 are CSI-RS#1 and CSI-RS#2, and the QCL-typeD parameters associated with CSI-RS are SSB#1.
  • both CSI-RS and CORESET#1 are associated with SSB#1 and the corresponding panel information is the same, the measurement accuracy of CSI-RS and SSB is different, and the UE may not be able to receive them at the same time. That is, the UE cannot detect or receive the CSI-RS according to the QCL-typeD parameters configured for the CSI-RS. At this time, the UE shall detect or receive the CSI-RS according to the QCL-typeD parameter associated with CORESET#1. Specifically, since CSI-RS#1 is related to SSB#1 and has the same panel ID, the UE detects or receives the CSI-RS according to CSI-RS#1 (QCL-typeD#1).
  • the UE can be guaranteed to receive the CSI-RS using a spatial direction similar to its configured spatial direction. , to ensure the measurement accuracy of CSI-RS, which is beneficial to improve system performance.
  • FIG. 13 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • SS#1 is associated with CORESET#1.
  • CORESET#1 is associated with two TCI states TCI#1, TCI#2, or CORESET#1 is activated with two TCI states (TCI#1, TCI#2).
  • this CSI-RS is used for time-frequency tracking, and it is associated with TCI#3.
  • the reference signal associated with TCI#1 and used to indicate QCL-typeD property is CSI-RS#1, and CSI-RS#1 is associated with SSB#1; the reference signal associated with TCI#2 used to indicate QCL-typeD property The reference signal is CSI-RS#2, and CSI-RS#2 is related to SSB#2; the reference signal associated with TCI#3 and used to indicate the QCL-typeD property is SSB#1.
  • TCI#1 is associated with panel#1; TCI#2 is associated with panel#2; TCI#3 is associated with panel#1.
  • the QCL-typeD parameters associated with CORESET#1 are CSI-RS#1 and CSI-RS#2, and the QCL-typeD parameters associated with CSI-RS are SSB#1.
  • the UE Since CSI-RS and CORESET#1 correspond to different QCL-typeD parameters, the UE does not have the ability to receive them simultaneously. That is, the UE cannot detect or receive the CSI-RS according to the QCL-typeD parameters configured for the CSI-RS. At this time, the UE shall detect or receive the CSI-RS according to the QCL-typeD parameter associated with CORESET#1. Specifically, since the CSI-RS corresponds to panel#1, the UE detects or receives the CSI-RS according to the QCL-typeD parameter (QCL-typeD#1) associated with the TCI state associated with the panel#1.
  • QCL-typeD#1 QCL-typeD parameter associated with the TCI state associated with the panel#1.
  • the UE can be guaranteed to receive the CSI-RS using a spatial direction similar to its configured spatial direction. , to ensure the measurement accuracy of CSI-RS, which is beneficial to improve system performance.
  • FIG. 14 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • SS#1 is associated with CORESET#1.
  • CORESET#1 is associated with two TCI states TCI#1, TCI#2, or CORESET#1 is activated with two TCI states (TCI#1, TCI#2).
  • CSI-RS is associated with TCI#3.
  • the reference signal associated with TCI#1 and used to indicate QCL-typeD property is CSI-RS#1, and CSI-RS#1 is associated with SSB#1; the reference signal associated with TCI#2 used to indicate QCL-typeD property The reference signal is CSI-RS#2, and CSI-RS#2 is related to SSB#2; the reference signal associated with TCI#3 for indicating QCL-typeD property is CSI-RS#3, CSI-RS#3 and SSB #3 Related.
  • TCI#1 is associated with panel#1; TCI#2 is associated with panel#2; TCI#3 is associated with panel#1.
  • the QCL-typeD parameters associated with CORESET#1 are CSI-RS#1 and CSI-RS#2, and the QCL-typeD parameters associated with CSI-RS are SSB#1.
  • the UE Since CSI-RS and CORESET#1 correspond to different QCL-typeD parameters, the UE does not have the ability to receive them simultaneously. That is, the UE cannot detect or receive the CSI-RS according to the QCL-typeD parameters configured for the CSI-RS. At this time, the UE shall detect or receive the CSI-RS according to the QCL-typeD parameter associated with CORESET#1. Specifically, since the CSI-RS corresponds to panel#1, the UE detects or receives the CSI-RS according to the QCL-typeD parameter (QCL-typeD#1) associated with the TCI state associated with Panel#1.
  • QCL-typeD#1 QCL-typeD parameter associated with the TCI state associated with Panel#1.
  • the UE can be guaranteed to receive the CSI-RS using a spatial direction similar to its configured spatial direction. , to ensure the measurement accuracy of CSI-RS, which is beneficial to improve system performance.
  • FIG. 15 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • SS#1 is associated with CORESET#1.
  • CORESET#1 is associated with two TCI states (TCI#1, TCI#2), or CORESET#1 is activated with two TCI states (TCI#1, TCI#2).
  • the CSI-RS is associated with TCI#3 and TCI#4.
  • the reference signal associated with TCI#1 and used to indicate QCL-typeD property is CSI-RS#1, and CSI-RS#1 is associated with SSB#1; the reference signal associated with TCI#2 used to indicate QCL-typeD property The reference signal is CSI-RS#2, and CSI-RS#2 is related to SSB#2; the reference signal associated with TCI#3 for indicating QCL-typeD property is CSI-RS#3, CSI-RS#3 and SSB #1 is correlated; the reference signal associated with TCI#4 and used to indicate QCL-typeD property is CSI-RS#4, and CSI-RS#4 is correlated with SSB#4.
  • TCI#1 is associated with panel#1; TCI#2 is associated with panel#2; TCI#3 is associated with panel#1; TCI#4 is associated with panel#2.
  • the QCL-typeD parameters associated with CORESET#1 are CSI-RS#1 and CSI-RS#2, and the QCL-typeD parameters associated with CSI-RS are SSB#1.
  • the UE Since CSI-RS and CORESET#1 correspond to different QCL-typeD parameters, the UE does not have the ability to receive them simultaneously. That is, the UE cannot detect or receive the CSI-RS according to the QCL-typeD parameters configured for the CSI-RS. At this time, the UE shall detect or receive the CSI-RS according to the QCL-typeD parameter associated with CORESET#1. Specifically, since the CSI-RS is configured with two different QCL-typeD parameters and they correspond to different panels, the UE according to the QCL-typeD parameters (QCL-typeD#1 and QCL-typeD#2) associated with CORESET#1 The CSI-RS is detected or received.
  • this method can use the configuration information of the CSI-RS to distinguish the measurement objects of the CSI-RS (that is, when the TCI state configured by the CSI-RS is associated with only one antenna panel information, the CSI-RS is used to measure the CORESET associated When the TCI state configured by the CSI-RS is associated with two antenna panel information, the CSI-RS and the CORESET share the same antenna panel information), so that the base station can make reasonable adjustments to ensure the measurement accuracy, thereby improving system performance.
  • FIG. 16 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • SS#1 is associated with CORESET#1.
  • CORESET#1 is associated with two TCI states TCI#, TCI#2, or CORESET#1 is activated with two TCI states (TCI#1, TCI#2).
  • CSI-RS is associated with TCI#3.
  • the reference signal associated with TCI#1 for indicating QCL-typeD property is CSI-RS#1; the reference signal associated with TCI#2 for indicating QCL-typeD property is CSI-RS#2; TCI# 3 The associated reference signal for indicating QCL-typeD property is CSI-RS#1.
  • TCI#1 is associated with panel#1;
  • TCI#2 is associated with panel#2;
  • TCI#3 is associated with panel#1.
  • the QCL-typeD parameters associated with CORESET#1 are CSI-RS#1 and CSI-RS#2, and the QCL-typeD parameters associated with CSI-RS are CSI-RS#1.
  • the UE Since the QCL-typeD parameter associated with the CSI-RS is the same as one of the QCL-typeD parameters associated with CORESET#1, and correspondingly their panel IDs are also the same, the UE is capable of receiving the CSI-RS, that is, , the UE detects or receives the CSI-RS according to the QCL-typeD parameter configured for the CSI-RS.
  • the UE can
  • the QCL-typeD parameter configured by the RS system receives the CSI-RS, avoids behavioral ambiguity, ensures the measurement accuracy of the CSI-RS, and is conducive to improving system performance.
  • FIG. 17 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • SS#1 is associated with CORESET#1.
  • CORESET#1 is associated with two TCI states TCI#, TCI#2, or CORESET#1 is activated with two TCI states (TCI#1, TCI#2).
  • the CSI-RS is associated with TCI#3 and TCI#4.
  • the reference signal associated with TCI#1 for indicating QCL-typeD property is CSI-RS#1; the reference signal associated with TCI#2 for indicating QCL-typeD property is CSI-RS#2; TCI# The reference signal associated with 3 for indicating QCL-typeD property is CSI-RS#1; the reference signal associated with TCI#4 for indicating QCL-typeD property is CSI-RS#2.
  • TCI#1 is associated with panel#1; TCI#2 is associated with panel#2; TCI#3 is associated with panel#1; TCI#4 is associated with panel#2.
  • the QCL-typeD parameters associated with CORESET#1 are CSI-RS#1 and CSI-RS#2, and the QCL-typeD parameters associated with CSI-RS are CSI-RS#1 and CSI-RS#2.
  • the UE Since the QCL-typeD parameters associated with the CSI-RS are the same as the QCL-typeD parameters associated with CORESET#1, and correspondingly their panel IDs are also the same, the UE is capable of receiving the CSI-RS, that is, the UE The CSI-RS is detected or received according to the QCL-typeD parameters configured for the CSI-RS.
  • the UE can
  • the QCL-typeD parameter configured by the system receives the CSI-RS, avoids behavioral ambiguity, can ensure the measurement accuracy of the CSI-RS, and is conducive to improving system performance.
  • FIG. 18 is another schematic diagram of a certain time slot slot n in Embodiment 1 of the present invention.
  • SS#1 is associated with CORESET#1.
  • CORESET#1 is associated with two TCI states TCI#1, TCI#2, or CORESET#1 is activated with two TCI states (TCI#1, TCI#2).
  • the CSI-RS is associated with TCI#3 and TCI#4.
  • the reference signal associated with TCI#1 for indicating QCL-typeD property is CSI-RS#1; CSI-RS#1 is associated with SSB#1; TCI#2 is associated with indicating QCL-typeD property
  • the reference signal is CSI-RS#2; wherein CSI-RS#2 is related to SSB#2; the reference signal associated with TCI#3 for indicating QCL-typeD property is CSI-RS#1; wherein CSI-RS# 3 is related to SSB#1; the reference signal associated with TCI#4 for indicating QCL-typeD property is CSI-RS#2; wherein CSI-RS#4 is related to SSB#2.
  • TCI#1 is associated with panel#1; TCI#2 is associated with panel#2; TCI#3 is associated with panel#1; TCI#4 is associated with panel#2.
  • the QCL-typeD parameters associated with CORESET#1 are CSI-RS#1 and CSI-RS#2, and the QCL-typeD parameters associated with CSI-RS are CSI-RS#1 and CSI-RS#2.
  • the UE is capable of receiving the CSI-RS, that is, the UE detects or receives the CSI-RS according to the QCL-typeD parameters configured for the CSI-RS.
  • the UE can use the QCL configured for the CSI-RS system according to the
  • the -typeD parameter receives the CSI-RS, avoids behavior ambiguity, can ensure the measurement accuracy of the CSI-RS, and is conducive to improving system performance.
  • the antenna panel information may include at least one of the following information: an explicitly indicated panel ID (panel ID); antenna port grouping information; antenna panel grouping information; report) related information.
  • the terminal device determines the spatial reception parameter used to receive the first CSI-RS according to the relationship between the spatial reception parameter associated with the first CSI-RS and the two different spatial reception parameters associated with CORESET, so that , when the CORESET is associated with two different spatial reception parameters, the spatial direction for receiving the first CSI-RS can be determined.
  • Embodiment 2 of the present application further provides a wireless communication method, and the method is applied to the network device side.
  • This method corresponds to the method for wireless communication on the terminal device side in Embodiment 1, and the same content will not be described again.
  • FIG. 19 is a schematic diagram of a wireless communication method according to Embodiment 2 of the present application. As shown in Figure 19, the method includes:
  • Step 1901 Determine the spatial transmission parameter used for transmitting the first CSI-RS according to the relationship between the spatial reception parameter associated with the first CSI-RS and two different spatial reception parameters associated with CORESET, wherein the first CSI-RS - the RS overlaps in the time domain with the set of search spaces associated with this CORESET;
  • Step 1902 Send the first CSI-RS according to the determined spatial transmission parameter.
  • the first CSI-RS and the CORESET may be on the same or different intra-band component carriers (intra-band component carriers).
  • the spatial transmission parameter refers to a space-related parameter used by a network device to transmit signals.
  • the spatial transmission parameter includes at least one of the weight of the radio frequency antenna array and the transmission angle of the radio frequency antenna.
  • the sending of the first CSI-RS by the network device corresponds to the action of the terminal device receiving the first CSI-RS.
  • determining the spatial transmission parameter used for sending the first CSI-RS according to the relationship between the spatial reception parameter associated with the first CSI-RS and two different spatial reception parameters associated with CORESET includes:
  • the two spatial reception parameters associated with the CORESET and the antenna panel information associated with the CORESET Determine the spatial transmission parameters used for transmitting the first CSI-RS.
  • determining the spatial transmission parameter used for sending the first CSI-RS according to the relationship between the spatial reception parameter associated with the first CSI-RS and two different spatial reception parameters associated with CORESET includes:
  • one spatial reception parameter associated with the first CSI-RS is different from the two spatial reception parameters associated with the CORESET, it is determined to send the first spatial reception parameter according to one of the two spatial reception parameters associated with the CORESET. Spatial transmission parameters used by a CSI-RS.
  • determining the spatial transmission parameter used for sending the first CSI-RS according to the relationship between the spatial reception parameter associated with the first CSI-RS and two different spatial reception parameters associated with CORESET includes:
  • determine the spatial transmission parameter used for sending the first CSI-RS including:
  • a spatial reception parameter associated with the first CSI-RS is the same as one of the two spatial reception parameters associated with the CORESET, it is determined to send the first spatial reception parameter according to the spatial reception parameter associated with the CSI-RS.
  • a spatial transmission parameter used by the CSI-RS and/or,
  • the two spatial reception parameters associated with the first CSI-RS are the same as the two spatial reception parameters associated with the CORESET, it is determined to send the first CSI according to the two spatial reception parameters associated with the CSI-RS - Spatial transmission parameters used by the RS.
  • the two spatial reception parameters associated with the CORESET and the antenna panel information associated with the CORESET relationship determine the spatial transmission parameters used for sending the first CSI-RS, including:
  • the spatial transmission parameter used for sending the first CSI-RS is determined according to the spatial reception parameter associated with the CSI-RS; and/or,
  • the spatial transmission parameter used for transmitting the first CSI-RS is determined according to the two spatial reception parameters associated with the CSI-RS.
  • the network device determines the spatial transmission parameter used for sending the first CSI-RS according to the relationship between the spatial reception parameter associated with the first CSI-RS and the two different spatial reception parameters associated with CORESET, so that , when the CORESET is associated with two different spatial reception parameters, the terminal device can determine the spatial direction for receiving the first CSI-RS.
  • Embodiment 3 of the present application further provides a wireless communication method, and the method is applied to the network device side and the terminal device side. This method corresponds to Embodiment 1 and Embodiment 2, and the same content will not be repeated.
  • FIG. 20 is a schematic diagram of a wireless communication method according to Embodiment 3 of the present application. As shown in Figure 20, the method includes:
  • Step 2001 The network device determines the spatial transmission parameter used for transmitting the first CSI-RS according to the relationship between the spatial reception parameter associated with the first CSI-RS and the two different spatial reception parameters associated with CORESET, wherein the A CSI-RS overlaps in the time domain with the search space set associated with the CORESET;
  • Step 2002 The terminal device determines the spatial reception parameter used to receive the first CSI-RS according to the relationship between the spatial reception parameter associated with the first CSI-RS and the two different spatial reception parameters associated with the CORESET, wherein the A CSI-RS overlaps in the time domain with the search space set associated with the CORESET;
  • Step 2003 the network device transmits the first CSI-RS according to the determined spatial transmission parameter.
  • Step 2004 The terminal device receives the first CSI-RS according to the determined spatial reception parameter.
  • the first CSI-RS and the CORESET may be on the same or different intra-band component carriers (intra-band component carriers).
  • step 2003 is after step 2001
  • step 2004 is after step 2002.
  • the order of step 2001 and step 2002 is not limited.
  • the network device determines the spatial transmission parameter used for sending the first CSI-RS according to the relationship between the spatial reception parameter associated with the first CSI-RS and the two different spatial reception parameters associated with CORESET, so that , when the CORESET is associated with two different spatial reception parameters, the terminal device can determine the spatial direction for receiving the first CSI-RS.
  • Embodiment 4 of the present application provides an apparatus for wireless communication, and the apparatus is applied to a terminal device side. Since the principle of the device for solving the problem is similar to that of the method in Embodiment 1, the specific implementation can refer to the implementation of the method described in Embodiment 1, and the same or related parts will not be repeated.
  • FIG. 21 is a schematic diagram of an apparatus for wireless communication according to Embodiment 4 of the present application. As shown in FIG. 21 , the apparatus 2100 includes:
  • the first determining unit 2101 is configured to determine the reception according to the relationship between the spatial reception parameter associated with the first channel state information reference signal (CSI-RS) and the two different spatial reception parameters associated with the control resource set (CORESET). Spatial reception parameters used by the first channel state information reference signal, wherein the first channel state information reference signal and a search space set associated with the control resource set overlap in the time domain; and
  • CSI-RS channel state information reference signal
  • CORESET control resource set
  • the first receiving unit 2102 is configured to receive the first channel state information reference signal according to the determined spatial receiving parameter.
  • the search space set associated with the first CSI-RS and the CORESET overlaps in the time domain, for example, the first CSI-RS and the CORESET are located in the same OFDM symbol.
  • the first CSI-RS and the CORESET may be on the same or different intra-band component carriers (intra-band component carriers).
  • FIG. 22 is a schematic diagram of the first determination unit in Embodiment 4 of the present application. As shown in FIG. 22 , the first determination unit 2101 includes:
  • the second determining unit 2201 is configured to, according to the spatial reception parameter associated with the first channel state information reference signal and the antenna panel (panel) information associated with the first channel state information reference signal and the control resource set associated with the two The relationship between the spatial reception parameters and the antenna panel information associated with the control resource set determines the spatial reception parameters used for receiving the first channel state information reference signal.
  • the first determining unit 2101 may further include:
  • the third determining unit 2202 is configured to, when one spatial reception parameter associated with the first channel state information reference signal and two spatial reception parameters associated with the control resource set are different, determine the spatial reception parameter associated with the control resource set. One of the two spatial reception parameters is determined as the spatial reception parameter used for receiving the first channel state information reference signal.
  • the first determining unit 2101 may further include:
  • the fourth determination unit 2203 is configured to, when one spatial reception parameter associated with the first channel state information reference signal is different from the two spatial reception parameters associated with the control resource set, determine the spatial reception parameter associated with the control resource set.
  • the two spatial reception parameters are determined as spatial reception parameters used for receiving the first channel state information reference signal.
  • one spatial reception parameter is the channel state information reference signal
  • the other spatial reception parameter is a synchronization signal block (SSB)
  • the two spatial reception parameters are considered to be different.
  • one spatial reception parameter is one channel state information reference signal
  • the other spatial reception parameter is another channel state information reference signal
  • the synchronization signal blocks associated with the two channel state information reference signals are different, it is considered that The two spaces receive different parameters.
  • the two spatial reception parameters are considered to be different.
  • the spatial reception parameter associated with the first channel state information reference signal is a synchronization signal block; one spatial reception parameter among the two spatial reception parameters associated with the control resource set is the two spatial reception parameters associated with the control resource set.
  • one of the two spatial reception parameters associated with the control resource set is determined according to the TCI state associated with the two spatial reception parameters.
  • one of the two spatial reception parameters associated with the control resource set is the spatial reception parameter with the smallest index of the TCI state associated with the two spatial reception parameters.
  • one of the two spatial reception parameters associated with the control resource set is determined according to the index of the second channel state information reference signal associated with the two spatial reception parameters.
  • one of the two spatial reception parameters associated with the control resource set is the spatial reception parameter with the smallest index of the second channel state information reference signal associated with the two spatial reception parameters.
  • one of the two spatial reception parameters associated with the control resource set is determined according to the antenna panel information of the second channel state information reference signal associated with the two spatial reception parameters.
  • the first channel state information reference signal is associated with an antenna panel information;
  • one of the two spatial reception parameters associated with the control resource set is one of the two spatial reception parameters associated with the control resource set. Spatial reception parameters associated with this antenna panel information.
  • the first channel state information reference signal may be a channel state information reference signal used for time-frequency tracking or a channel state information reference signal used for beam management.
  • the first channel state information reference signal may also be a channel state information reference signal used for channel state information measurement.
  • the first channel state information reference signal may be associated with two spatial reception parameters.
  • the first determining unit 2101 may further include:
  • the fifth determining unit 2204 is configured to, when a spatial reception parameter associated with the first channel state information reference signal is the same as one of the two spatial reception parameters associated with the control resource set, determine the channel
  • the spatial reception parameter associated with the state information reference signal is determined as the spatial reception parameter used for receiving the first channel state information reference signal; and/or,
  • the sixth determining unit 2205 is configured to, when the two spatial reception parameters associated with the first channel state information reference signal and the two spatial reception parameters associated with the control resource set are respectively the same, determine the channel state information reference signal The two associated spatial reception parameters are determined as spatial reception parameters used for receiving the first channel state information reference signal.
  • FIG. 23 is a schematic diagram of the second determination unit in Embodiment 4 of the present application. As shown in FIG. 23 , the second determination unit 2201 includes:
  • the seventh determination unit 2301 is used for when a spatial reception parameter associated with the first channel state information reference signal is the same as one of the two spatial reception parameters associated with the control resource set, and the first spatial reception parameter
  • the antenna panel information associated with the channel state information reference signal is the same as the antenna panel information associated with one of the two spatial reception parameters associated with the control resource set
  • the space reception associated with the channel state information reference signal The parameter is determined as a spatial reception parameter used for receiving the first channel state information reference signal; and/or,
  • the eighth determination unit 2302 is used for when the two spatial reception parameters associated with the first channel state information reference signal are the same as the two spatial reception parameters associated with the control resource set, and the first channel state information reference When the two antenna panel information associated with the signal and the two antenna panel information associated with the control resource set are respectively the same, the two spatial reception parameters associated with the channel state information reference signal are determined as receiving the first channel state Spatial reception parameters used by the information reference signal.
  • one spatial reception parameter associated with the channel state information reference signal is the same as one of the two spatial reception parameters associated with the control resource set, including: as the first channel A second channel state information reference signal of a spatial reception parameter associated with the state information reference signal is the same as a second channel state information reference signal that is one of the two spatial reception parameters associated with the control resource set and/or, a synchronization signal block (SSB) associated with a spatial reception parameter associated with the first channel state information reference signal is associated with a spatial reception parameter in two spatial reception parameters associated with the control resource set
  • SSB synchronization signal block
  • the two spatial reception parameters associated with the first channel state information reference signal are respectively the same as the two spatial reception parameters associated with the control resource set, including: as the two spatial reception parameters associated with the first channel state information reference signal
  • the two second channel state information reference signals of the spatial reception parameters are respectively the same as the two second channel state information reference signals of the two spatial reception parameters associated with the control resource set; and/or, the first channel state information
  • the two synchronization signal blocks (SSBs) respectively associated with the two spatial reception parameters associated with the reference signal are the same as the two synchronization signal blocks (SSBs) respectively associated with the two spatial reception parameters associated with the control resource set.
  • the spatial reception parameter is, for example, a QCL-typeD parameter.
  • the first CSI-RS and the CORESET may be on the same or different in-band carrier components.
  • the antenna panel information includes at least one of the following information: an explicitly indicated panel ID (panel ID); antenna port grouping information; antenna panel grouping information; CSI report) related information.
  • the terminal device determines the spatial reception parameter used to receive the first CSI-RS according to the relationship between the spatial reception parameter associated with the first CSI-RS and the two different spatial reception parameters associated with CORESET, so that , when the CORESET is associated with two different spatial reception parameters, the spatial direction for receiving the first CSI-RS can be determined.
  • Embodiment 5 of the present application provides an apparatus for wireless communication, and the apparatus is applied to a network device side. Since the principle of the device for solving the problem is similar to that of the method in Embodiment 2, its specific implementation can refer to the implementation of the method described in Embodiment 2, and the same or related parts will not be repeated.
  • FIG. 24 is a schematic diagram of an apparatus for wireless communication according to Embodiment 5 of the present application. As shown in FIG. 24 , the apparatus 2400 includes:
  • the ninth determination unit 2401 is configured to determine the transmission according to the relationship between the spatial reception parameter associated with the first channel state information reference signal (CSI-RS) and the two different spatial reception parameters associated with the control resource set (CORESET). Spatial transmission parameters used by the first channel state information reference signal, wherein the first channel state information reference signal and the search space set associated with the control resource set overlap in the time domain; and
  • a sending unit 2402 configured to send the first channel state information reference signal according to the determined spatial sending parameter.
  • the first CSI-RS and the CORESET may be on the same or different intra-band component carriers (intra-band component carriers).
  • FIG. 25 is a schematic diagram of the ninth determination unit in Embodiment 5 of the present application. As shown in FIG. 25 , the ninth determination unit 2401 includes:
  • the tenth determination unit 2501 is configured to, according to the spatial reception parameter associated with the first channel state information reference signal and the two associated with the control resource set, the antenna panel (panel) information associated with the first channel state information reference signal.
  • the relationship between the spatial reception parameters and the antenna panel information associated with the control resource set determines the spatial transmission parameters used for transmitting the first channel state information reference signal.
  • the ninth determining unit 2401 may further include:
  • the eleventh determination unit 2502 is configured to, when one spatial reception parameter associated with the first channel state information reference signal and two spatial reception parameters associated with the control resource set are different, determine the One of the two spatial reception parameters determines the spatial transmission parameter used for transmitting the first channel state information reference signal.
  • the ninth determining unit 2401 may further include:
  • the twelfth determining unit 2503 is configured to, when one spatial reception parameter associated with the first channel state information reference signal is different from the two spatial reception parameters associated with the control resource set The two spatial reception parameters of the determine the spatial transmission parameters used for transmitting the first channel state information reference signal.
  • the ninth determining unit 2401 may further include:
  • the thirteenth determining unit 2504 is configured to, when one spatial reception parameter associated with the first channel state information reference signal is the same as one of the two spatial reception parameters associated with the control resource set, determine the The spatial reception parameter associated with the channel state information reference signal determines the spatial transmission parameter used for transmitting the first channel state information reference signal; and/or,
  • the fourteenth determining unit 2505 is configured to, when the two spatial reception parameters associated with the first channel state information reference signal and the two spatial reception parameters associated with the control resource set are respectively the same, refer to the channel state information
  • the two spatial reception parameters associated with the signal determine the spatial transmission parameters used for transmitting the first channel state information reference signal.
  • FIG. 26 is a schematic diagram of the tenth determination unit in Embodiment 5 of the present application. As shown in FIG. 26 , the tenth determination unit 2501 includes:
  • a fifteenth determining unit 2601 is used for when a spatial reception parameter associated with the first channel state information reference signal is the same as one of the two spatial reception parameters associated with the control resource set, and the first spatial reception parameter When an antenna panel information associated with a channel state information reference signal is the same as the antenna panel information associated with one of the two spatial reception parameters associated with the control resource set, the space associated with the channel state information reference signal
  • the reception parameter determines the spatial transmission parameter used for transmitting the first channel state information reference signal; and/or,
  • the sixteenth determining unit 2602 is used for when the two spatial reception parameters associated with the first channel state information reference signal are the same as the two spatial reception parameters associated with the control resource set, and the first channel state information When the two antenna panel information associated with the reference signal and the two antenna panel information associated with the control resource set are respectively the same, determine to send the first channel state according to the two spatial reception parameters associated with the channel state information reference signal Spatial transmission parameters used by the information reference signal.
  • the network device determines the spatial transmission parameter used for sending the first CSI-RS according to the relationship between the spatial reception parameter associated with the first CSI-RS and the two different spatial reception parameters associated with CORESET, so that , when the CORESET is associated with two different spatial reception parameters, the terminal device can determine the spatial direction for receiving the first CSI-RS.
  • An embodiment of the present application provides a terminal device, where the terminal device includes the apparatus for wireless communication described in Embodiment 4.
  • FIG. 27 is a schematic block diagram of a system configuration of a terminal device according to Embodiment 6 of the present invention.
  • the terminal device 2700 may include a processor 2710 and a memory 2720 ; the memory 2720 is coupled to the processor 2710 .
  • this figure is exemplary; other types of structures may be used in addition to or in place of this structure to implement telecommunication functions or other functions.
  • the functionality of the means of wireless communication may be integrated into the processor 2710.
  • the processor 2710 may be configured to: determine the relationship between the spatial reception parameter associated with the first channel state information reference signal (CSI-RS) and the two different spatial reception parameters associated with the control resource set (CORESET), determine receiving a spatial reception parameter used by the first channel state information reference signal, wherein the first channel state information reference signal and a search space set associated with the control resource set overlap in the time domain; and according to the determined spatial reception parameter, The first channel state information reference signal is received.
  • CSI-RS channel state information reference signal
  • CORESET control resource set
  • the first CSI-RS and the CORESET may be on the same or different intra-band component carriers (intra-band component carriers).
  • the device for wireless communication can be configured separately from the processor 2710 , for example, the device for wireless communication can be configured as a chip connected to the processor 2710 , and the function of the device for wireless communication is realized through the control of the processor 2710 .
  • the terminal device 2700 may further include: a communication module 2730, an input unit 2740, a display 2750, and a power supply 2760. It is worth noting that the terminal device 2700 does not necessarily include all the components shown in FIG. 27 ; in addition, the terminal device 2700 may also include components not shown in FIG. 27 , and reference may be made to the related art.
  • the processor 2710 also sometimes referred to as a controller or operational control, may include a microprocessor or other processor device and/or logic device that receives input and controls the various components of the terminal device 1600. operate.
  • the memory 2720 may be one or more of a cache, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory or other suitable devices.
  • Various kinds of data can be stored, and programs that execute related information can also be stored.
  • the processor 2710 can execute the program stored in the memory 2720 to realize information storage or processing.
  • the functions of other components are similar to the existing ones, and will not be repeated here.
  • the components of the terminal device 2700 may be implemented by dedicated hardware, firmware, software, or a combination thereof without departing from the scope of the present invention.
  • the terminal device determines the spatial reception parameter used to receive the first CSI-RS according to the relationship between the spatial reception parameter associated with the first CSI-RS and the two different spatial reception parameters associated with CORESET, so that , when the CORESET is associated with two different spatial reception parameters, the spatial direction for receiving the first CSI-RS can be determined.
  • An embodiment of the present application provides a network device, where the network device includes the apparatus for wireless communication described in Embodiment 5.
  • FIG. 28 is a schematic block diagram of a system configuration of a network device according to Embodiment 7 of the present invention.
  • the network device 2800 may include: a processor 2810 and a memory 2820 ; the memory 2820 is coupled to the processor 2810 .
  • the memory 2820 can store various data; in addition, the program 2830 for information processing is also stored, and the program 2830 is executed under the control of the processor 2810 to receive various information sent by the terminal device and send various information to the terminal device. .
  • the functionality of the means of wireless communication may be integrated into the processor 2810.
  • the processor 2810 may be configured to: determine the relationship between the spatial reception parameter associated with the first channel state information reference signal (CSI-RS) and the two different spatial reception parameters associated with the control resource set (CORESET), determine sending the spatial transmission parameter used by the first channel state information reference signal, wherein the first channel state information reference signal and the search space set associated with the control resource set overlap in the time domain; and according to the determined spatial transmission parameter, The first channel state information reference signal is sent.
  • CSI-RS channel state information reference signal
  • CORESET control resource set
  • the first CSI-RS and the CORESET may be on the same or different intra-band component carriers (intra-band component carriers).
  • the device for wireless communication can be configured separately from the processor 2810 , for example, the device for wireless communication can be configured as a chip connected to the processor 2810 , and the function of the device for wireless communication is realized through the control of the processor 2810 .
  • the network device 2800 may further include: a transceiver 2840, an antenna 2850, and the like; wherein, the functions of the above components are similar to those in the prior art, and will not be repeated here. It is worth noting that the network device 2800 does not necessarily include all the components shown in FIG. 28 ; in addition, the network device 2800 may also include components not shown in FIG. 28 , and reference may be made to the prior art.
  • the network device determines the spatial transmission parameter used for sending the first CSI-RS according to the relationship between the spatial reception parameter associated with the first CSI-RS and the two different spatial reception parameters associated with CORESET, so that , when the CORESET is associated with two different spatial reception parameters, the terminal device can determine the spatial direction for receiving the first CSI-RS.
  • An embodiment of the present application provides a communication system, including the user equipment described in Embodiment 6 and/or the network device described in Embodiment 7.
  • the structure of the communication system can refer to FIG. 1.
  • the communication system 100 includes a network device 101 and a terminal device 102.
  • the terminal device 102 can be the same as the terminal device described in Embodiment 6.
  • the network devices described in Example 7 are the same, and the repeated content will not be repeated.
  • the terminal device determines the spatial reception parameter used to receive the first CSI-RS according to the relationship between the spatial reception parameter associated with the first CSI-RS and the two different spatial reception parameters associated with CORESET, so that , when the CORESET is associated with two different spatial reception parameters, the spatial direction for receiving the first CSI-RS can be determined.
  • the apparatuses and methods above in the embodiments of the present application may be implemented by hardware, or may be implemented by hardware combined with software.
  • the embodiments of the present application relate to such a computer-readable program, which, when executed by a logic component, can cause the logic component to realize the above-mentioned apparatus or constituent component, or cause the logic component to realize the above-mentioned various components. a method or step.
  • the embodiment of the present application also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, and the like.
  • the method/apparatus described in conjunction with the embodiments of this application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams shown in FIG. 21 and/or one or more combinations of the functional block diagrams may correspond to either software modules or hardware modules of the computer program flow.
  • These software modules may respectively correspond to the various steps shown in FIG. 3 .
  • These hardware modules can be implemented by, for example, solidifying these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor, such that the processor can read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • the functional blocks and/or one or more combinations of the functional blocks described in FIG. 21 can be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described in the present invention ), Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described with respect to FIG. 21 can also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • An apparatus for wireless communication the apparatus is used on the side of a terminal device, and the apparatus comprises:
  • the first determination unit is configured to determine the received space according to the relationship between the space reception parameter associated with the first channel state information reference signal (CSI-RS) and the two different space reception parameters associated with the control resource set (CORESET). Spatial reception parameters used by the first channel state information reference signal, wherein the first channel state information reference signal and the set of search spaces associated with the set of control resources overlap in the time domain; and
  • a first receiving unit configured to receive the first channel state information reference signal according to the determined spatial receiving parameter.
  • the second determining unit is configured to, according to the spatial reception parameter associated with the first channel state information reference signal and the antenna panel (panel) information associated with the first channel state information reference signal and two associated with the control resource set The relationship between the spatial reception parameters and the antenna panel information associated with the control resource set determines the spatial reception parameters used for receiving the first channel state information reference signal.
  • a third determining unit configured to: when one spatial reception parameter associated with the first channel state information reference signal and two spatial reception parameters associated with the control resource set are different, determine the One of the associated two spatial reception parameters is determined as the spatial reception parameter used for receiving the first channel state information reference signal.
  • a fourth determining unit configured to determine the control resource set to be the same when one spatial reception parameter associated with the first channel state information reference signal is different from the two spatial reception parameters associated with the control resource set.
  • the associated two spatial reception parameters are determined as spatial reception parameters used for receiving the first channel state information reference signal.
  • one spatial reception parameter is a channel state information reference signal and the other spatial reception parameter is a synchronization signal block (SSB)
  • the two spatial reception parameters are considered to be different.
  • one spatial reception parameter is one channel state information reference signal
  • the other spatial reception parameter is another channel state information reference signal
  • the synchronization signal blocks associated with the two channel state information reference signals are different, it is considered that the two Each space receives different parameters.
  • the two spatial reception parameters are considered to be different.
  • the spatial reception parameter associated with the first channel state information reference signal is a synchronization signal block
  • One of the two spatial reception parameters associated with the control resource set is the spatial reception parameter associated with the synchronization signal block among the two spatial reception parameters associated with the control resource set.
  • the spatial reception parameter with the smallest index of the TCI state associated with the two spatial reception parameters is the spatial reception parameter with the smallest index of the TCI state associated with the two spatial reception parameters.
  • the spatial reception parameter with the smallest index of the second channel state information reference signal associated with the two spatial reception parameters is the spatial reception parameter with the smallest index of the second channel state information reference signal associated with the two spatial reception parameters.
  • the first channel state information reference signal is associated with an antenna panel information
  • One of the two spatial reception parameters associated with the control resource set is the spatial reception parameter associated with the antenna panel information among the two spatial reception parameters associated with the control resource set.
  • the first channel state information reference signal is a channel state information reference signal for time-frequency tracking or a channel state information reference signal for beam management.
  • the first channel state information reference signal is a channel state information reference signal used for channel state information measurement.
  • the first channel state information reference signal is associated with two spatial reception parameters.
  • a fifth determining unit configured to determine the received spatial reception parameter when one spatial reception parameter associated with the first channel state information reference signal is the same as one of the two spatial reception parameters associated with the control resource set. determining the spatial reception parameter associated with the channel state information reference signal as the spatial reception parameter used for receiving the first channel state information reference signal; and/or,
  • a sixth determination unit configured to determine the channel state information when the two spatial reception parameters associated with the first channel state information reference signal and the two spatial reception parameters associated with the control resource set are respectively the same The two spatial reception parameters associated with the reference signal are determined as spatial reception parameters used for receiving the first channel state information reference signal.
  • a seventh determination unit which is used for when one spatial reception parameter associated with the first channel state information reference signal is the same as one of the two spatial reception parameters associated with the control resource set, and the When the antenna panel information associated with the first channel state information reference signal is the same as the antenna panel information associated with one of the two spatial reception parameters associated with the control resource set, the channel state information reference signal is associated with The spatial reception parameter of the is determined as the spatial reception parameter used for receiving the first channel state information reference signal; and/or,
  • an eighth determining unit configured to be used when the two spatial reception parameters associated with the first channel state information reference signal and the two spatial reception parameters associated with the control resource set are respectively the same, and the first channel state
  • the two spatial reception parameters associated with the channel state information reference signal are determined as receiving The spatial reception parameter used by the first channel state information reference signal.
  • a second channel state information reference signal that is a spatial reception parameter associated with the first channel state information reference signal and a first spatial reception parameter that is one of two spatial reception parameters associated with the control resource set
  • the two channel state information reference signals are the same; and/or,
  • SSB synchronization signal block
  • Two second channel state information reference signals which are the two spatial reception parameters associated with the first channel state information reference signal, and two second channel states, which are the two spatial reception parameters associated with the control resource set
  • the information reference signals are respectively the same; and/or,
  • the spatial reception parameters are QCL-typeD parameters.
  • the first channel state information reference signal and the control resource set are on the same or different in-band carrier components.
  • antenna panel information includes at least one of the following information:
  • CSI report Channel State Information Report
  • An apparatus for wireless communication the apparatus being used on a network device side, the apparatus comprising:
  • the ninth determination unit which is configured to determine, according to the relationship between the spatial reception parameter associated with the first channel state information reference signal (CSI-RS) and the two different spatial reception parameters associated with the control resource set (CORESET), the destination to be sent. space transmission parameters used by the first channel state information reference signal, wherein the first channel state information reference signal and the set of search spaces associated with the set of control resources overlap in the time domain; and
  • a sending unit configured to send the first channel state information reference signal according to the determined spatial sending parameter.
  • a tenth determination unit configured to determine the spatial reception parameter associated with the first channel state information reference signal and the two associated antenna panel (panel) information and the control resource set associated with the first channel state information reference signal.
  • the relationship between the spatial reception parameters and the antenna panel information associated with the control resource set determines the spatial transmission parameters used for transmitting the first channel state information reference signal.
  • the eleventh determining unit is configured to, when one spatial reception parameter associated with the first channel state information reference signal and two spatial reception parameters associated with the control resource set are different, determine according to the control resource set One of the associated two spatial reception parameters determines the spatial transmission parameter used for transmitting the first channel state information reference signal.
  • a twelfth determination unit configured to, when one spatial reception parameter associated with the first channel state information reference signal and two spatial reception parameters associated with the control resource set are different, determine according to the control resource set The associated two spatial reception parameters determine the spatial transmission parameters used for transmitting the first channel state information reference signal.
  • a thirteenth determining unit is configured to, when one spatial reception parameter associated with the first channel state information reference signal is the same as one of the two spatial reception parameters associated with the control resource set, determine according to the The spatial reception parameter associated with the channel state information reference signal determines the spatial transmission parameter used for transmitting the first channel state information reference signal; and/or,
  • the fourteenth determining unit is configured to, when the two spatial reception parameters associated with the first channel state information reference signal and the two spatial reception parameters associated with the control resource set are respectively the same, determine according to the channel state
  • the two spatial reception parameters associated with the information reference signal determine the spatial transmission parameter used for transmitting the first channel state information reference signal.
  • the fifteenth determining unit is configured to, when one spatial reception parameter associated with the first channel state information reference signal is the same as one of the two spatial reception parameters associated with the control resource set, and the When the antenna panel information associated with the first channel state information reference signal is the same as the antenna panel information associated with one of the two spatial reception parameters associated with the control resource set, the channel state information reference signal
  • the associated spatial reception parameter determines the spatial transmission parameter used for transmitting the first channel state information reference signal
  • a sixteenth determining unit which is used for when the two spatial reception parameters associated with the first channel state information reference signal are the same as the two spatial reception parameters associated with the control resource set, and the first channel
  • the transmission is determined according to the two spatial reception parameters associated with the channel state information reference signal. Spatial transmission parameters used by the first channel state information reference signal.
  • a terminal device comprising the apparatus according to any one of appendices 1-25.
  • a network device comprising the apparatus according to any one of appendices 26-31.
  • a communication system comprising the terminal device according to appendix 32 and/or the network device according to appendix 33.
  • a method for wireless communication the method being applied to a terminal device side, the method comprising:
  • the spatial reception parameter associated with the first channel state information reference signal (CSI-RS) and the two different spatial reception parameters associated with the control resource set (CORESET)
  • the first channel state information reference signal is received according to the determined spatial reception parameter.
  • the spatial reception parameter associated with the first channel state information reference signal and the two spatial reception parameters associated with the control resource set and the control resource set between the antenna panel information associated with the first channel state information reference signal and the control resource The relationship between the antenna panel information associated with the set is used to determine the spatial reception parameter used for receiving the first channel state information reference signal.
  • the two spatial reception parameters associated with the control resource set are included in the A spatial reception parameter of the is determined as a spatial reception parameter used for receiving the first channel state information reference signal.
  • one spatial reception parameter is a channel state information reference signal and the other spatial reception parameter is a synchronization signal block (SSB)
  • the two spatial reception parameters are considered to be different.
  • one spatial reception parameter is one channel state information reference signal
  • the other spatial reception parameter is another channel state information reference signal
  • the synchronization signal blocks associated with the two channel state information reference signals are different, it is considered that the two Each space receives different parameters.
  • the two spatial reception parameters are considered to be different.
  • the spatial reception parameter associated with the first channel state information reference signal is a synchronization signal block
  • One of the two spatial reception parameters associated with the control resource set is the spatial reception parameter associated with the synchronization signal block among the two spatial reception parameters associated with the control resource set.
  • the spatial reception parameter with the smallest index of the TCI state associated with the two spatial reception parameters is the spatial reception parameter with the smallest index of the TCI state associated with the two spatial reception parameters.
  • the spatial reception parameter with the smallest index of the second channel state information reference signal associated with the two spatial reception parameters is the spatial reception parameter with the smallest index of the second channel state information reference signal associated with the two spatial reception parameters.
  • the first channel state information reference signal is associated with an antenna panel information
  • One of the two spatial reception parameters associated with the control resource set is the spatial reception parameter associated with the antenna panel information among the two spatial reception parameters associated with the control resource set.
  • the first channel state information reference signal is a channel state information reference signal for time-frequency tracking or a channel state information reference signal for beam management.
  • the first channel state information reference signal is a channel state information reference signal used for channel state information measurement.
  • the first channel state information reference signal is associated with two spatial reception parameters.
  • the spatial reception parameter of the is determined as the spatial reception parameter used for receiving the first channel state information reference signal; and/or,
  • the two spatial reception parameters associated with the first channel state information reference signal and the two spatial reception parameters associated with the control resource set are respectively the same, the two spatial reception parameters associated with the channel state information reference signal are The spatial reception parameters are determined as the spatial reception parameters used for receiving the first channel state information reference signal.
  • the spatial reception parameter associated with the first channel state information reference signal is the same as one of the two spatial reception parameters associated with the control resource set, and the first channel state information reference signal
  • the spatial reception parameter associated with the channel state information reference signal is determined as receiving spatial reception parameters used by the first channel state information reference signal; and/or,
  • the two spatial reception parameters associated with the first channel state information reference signal are the same as the two spatial reception parameters associated with the control resource set, and the two spatial reception parameters associated with the first channel state information reference signal
  • the two spatial reception parameters associated with the channel state information reference signal are determined as receiving the first channel state information reference The spatial receive parameter used by the signal.
  • a second channel state information reference signal that is a spatial reception parameter associated with the first channel state information reference signal and a first spatial reception parameter that is one of two spatial reception parameters associated with the control resource set
  • the two channel state information reference signals are the same; and/or,
  • SSB synchronization signal block
  • Two second channel state information reference signals which are the two spatial reception parameters associated with the first channel state information reference signal, and two second channel states, which are the two spatial reception parameters associated with the control resource set
  • the information reference signals are respectively the same; and/or,
  • the spatial reception parameters are QCL-typeD parameters.
  • the first channel state information reference signal and the control resource set are on the same or different in-band carrier components.
  • the antenna panel information includes at least one of the following information:
  • CSI report Channel State Information Report
  • a method for wireless communication the method being used on a network device side, the method comprising:
  • the spatial reception parameter associated with the first channel state information reference signal (CSI-RS) and the two different spatial reception parameters associated with the control resource set (CORESET)
  • it is determined to send the first channel state information reference signal Spatial transmission parameters used wherein the first channel state information reference signal and the set of search spaces associated with the set of control resources overlap in the time domain
  • the first channel state information reference signal is sent.
  • the spatial reception parameter associated with the first channel state information reference signal and the two spatial reception parameters associated with the control resource set and the control resource set between the antenna panel information associated with the first channel state information reference signal and the control resource The relationship between the antenna panel information associated with the set is used to determine the spatial transmission parameter used for transmitting the first channel state information reference signal.
  • One of the spatial reception parameters determines the spatial transmission parameter used for transmitting the first channel state information reference signal.
  • the one spatial reception parameter associated with the first channel state information reference signal is different from the two spatial reception parameters associated with the control resource set, determine according to the two spatial reception parameters associated with the control resource set Spatial transmission parameters used for transmitting the first channel state information reference signal.
  • one spatial reception parameter associated with the first channel state information reference signal is the same as one spatial reception parameter of the two spatial reception parameters associated with the control resource set, according to the channel state information reference signal associated
  • the spatial reception parameters of the determine the spatial transmission parameters used for transmitting the first channel state information reference signal; and/or,
  • the spatial reception parameters determine the spatial transmission parameters used for transmitting the first channel state information reference signal.
  • the first channel state information reference signal When one spatial reception parameter associated with the first channel state information reference signal is the same as one of the two spatial reception parameters associated with the control resource set, and the first channel state information reference signal When the associated piece of antenna panel information is the same as the antenna panel information associated with one of the two spatial reception parameters associated with the control resource set, determine the transmission according to the spatial reception parameter associated with the channel state information reference signal Spatial transmission parameters used by the first channel state information reference signal; and/or,
  • the two spatial reception parameters associated with the first channel state information reference signal are the same as the two spatial reception parameters associated with the control resource set, and the two spatial reception parameters associated with the first channel state information reference signal
  • the antenna panel information and the two antenna panel information associated with the control resource set are respectively the same, determining to send the first channel state information reference signal according to the two spatial reception parameters associated with the channel state information reference signal The space used to send parameters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的装置及方法。所述方法包括: 根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定接收所述第一信道状态信息参考信号使用的空间接收参数,其中,所述第一信道状态信息参考信号与所述控制资源集关联的搜索空间集在时域上重叠; 以及根据确定的所述空间接收参数,接收所述第一信道状态信息参考信号。

Description

无线通信的装置及方法 技术领域
本发明涉及通信领域。
背景技术
为了缓解日趋紧张的频谱资源,新无线(New Radio,NR)引入了高频通信方式,以便增加通信系统可用的频率资源,进而提升系统容量。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
在frequency range 2(FR2),由于硬件的限制,在同一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号上,用户设备(User Equipment,UE)只能保证根据同一个准共址类型D参数(QCL type-D参数)的监听下行控制信道。
因此,现有的标准中规定了以下行为:
当信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)与一个控制资源集(control-resource set,CORESET)关联的搜索空间(search space,SS)在相同的OFDM符号,并且,该CSI-RS与高层参数重复设置为“on”的一个NZP-CSI-RS-ResourceSet不关联时,UE认为(assume)该CSI-RS与在该CORESET内发送的物理下行控制信道解调参考信号(PDCCH DM-RS)是关于QCL-TypeD参数准共址(QCL)的,也就是说,UE在CSI-RS和CORESET发生时域重叠的情况下,根据该CORESET关联的QCL-typeD参数接收该CSI-RS。
例如,图1是现有的某个时隙slot n的一示意图。如图1所示,在时隙slot n中,UE在交叉线区域监听PDCCH candidate。该区域对应Search space#1(SS#1),并且SS#1与CORESET#1关联。在这个例子中,CORESET#1的激活TCI状态为TCI#1,TCI#1包括QCL-typeD参数QCL-typeD#1。CSI-RS在第二个符号发送。
由于发送CSI-RS的符号与交叉线区域有相同的OFDM符号,并且CORESET的优先级高于CSI-RS,因此,UE根据CORESET#1所对应的QCL-typeD参数(QCL-typeD#1)接收CSI-RS。
发明人发现,在某些场景中,例如,在高速火车-单频网(High speed train single frequency network,HST-SFN)场景中,终端设备一般置于高速列车中,而网络设备通常固定在铁轨两侧。当火车高速移动时(例如,高达330公里每小时),由于多普勒效应,终端设备与网络设备之间的通信质量会受到严重的影响,尤其是下行控制信道的可靠性会急剧下降。为了降低这方面的影响,一种解决方案是终端设备同时接收来自多个发送和接收点(Transmit-Receive Point,TRP)的相同的下行控制信道。为了能够从空间上区分出不同TRP,一个用于接收下行控制信道的CORESET需要与两个不同的空间方向关联,也就是说,一个CORESET会与两个不同QCL-typeD参数关联。
当待接收的CSI-RS与一个CORESET关联的搜索空间在相同的OFDM符号,并且该CORESET与两个不同的QCL-typeD参数关联时,目前没有方法能够确定用于接收该CSI-RS的空间方向。
本申请实施例提供一种无线通信的装置及方法,根据第一CSI-RS所关联的空间接收参数与CORESET所关联的不同的两个空间接收参数的关系,确定接收该第一CSI-RS使用的空间接收参数,这样,在该CORESET与不同的两个空间接收参数关联时,能够确定用于接收该第一CSI-RS的空间方向。
根据本申请实施例的第一方面,提供一种无线通信的装置,所述装置用于终端设备侧,所述装置包括:第一确定单元,其用于根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定接收所述第一信道状态信息参考信号使用的空间接收参数,其中,所述第一信道状态信息参考信号与所述控制资源集关联的搜索空间集在时域上重叠;以及第一接收单元,其用于根据确定的所述空间接收参数,接收所述第一信道状态信息参考信号。
根据本申请实施例的第二方面,提供一种无线通信的装置,所述装置用于网络设备侧,所述装置包括:第九确定单元,其用于根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参 数的关系,确定发送所述第一信道状态信息参考信号使用的空间发送参数,其中,所述第一信道状态信息参考信号与所述控制资源集关联的搜索空间集在时域上重叠;以及发送单元,其用于根据确定的所述空间发送参数,发送所述第一信道状态信息参考信号。
根据本申请实施例的第三方面,提供一种终端设备,所述终端设备包括根据本申请实施例的第一方面所述的装置。
根据本申请实施例的第四方面,提供一种网络设备,所述网络设备包括根据本申请实施例的第二方面所述的装置。
根据本申请实施例的第五方面,提供一种通信系统,所述通信系统包括根据本申请实施例的第三方面所述的终端设备和/或根据根据本申请实施例的第四方面所述的网络设备。
根据本申请实施例的第六方面,提供一种无线通信的方法,所述方法用于终端设备侧,所述方法包括:根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定接收所述第一信道状态信息参考信号使用的空间接收参数,其中,所述第一信道状态信息参考信号与所述控制资源集关联的搜索空间集在时域上重叠;以及根据确定的所述空间接收参数,接收所述第一信道状态信息参考信号。
根据本申请实施例的第七方面,提供一种无线通信的方法,所述方法用于网络设备侧,所述方法包括:根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定发送所述第一信道状态信息参考信号使用的空间发送参数,其中,所述第一信道状态信息参考信号与所述控制资源集关联的搜索空间集在时域上重叠;以及根据确定的所述空间发送参数,发送所述第一信道状态信息参考信号。
根据本申请实施例的第八方面,提供了一种计算机可读程序,其中当在无线通信的装置或终端设备中执行所述程序时,所述程序使得所述无线通信的装置或终端设备执行本申请实施例的第六方面所述的无线通信的方法。
根据本申请实施例的第九方面,提供了一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得无线通信的装置或终端设备执行本申请实施例的第六方面所述的无线通信的方法。
根据本申请实施例的第十方面,提供了一种计算机可读程序,其中当在无线通信的装置或网络设备中执行所述程序时,所述程序使得所述无线通信的装置或网络设备执行本申请实施例的第七方面所述的无线通信的方法。
根据本申请实施例的第十一方面,提供了一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得无线通信的装置或网络设备执行本申请实施例的第七方面所述的无线通信的方法。
本发明的有益效果在于:终端设备根据第一CSI-RS所关联的空间接收参数与CORESET所关联的不同的两个空间接收参数的关系,确定接收该第一CSI-RS使用的空间接收参数,这样,在该CORESET与不同的两个空间接收参数关联时,能够确定用于接收该第一CSI-RS的空间方向。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施方式,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是现有的某个时隙slot n的一示意图;
图2是本申请实施例的通信系统的示意图;
图3是本申请实施例1的无线通信的方法的一示意图;
图4是本发明实施例1的某个时隙slot n的一示意图;
图5是本发明实施例1的某个时隙slot n的另一示意图;
图6是本发明实施例1的某个时隙slot n的又一示意图;
图7是本发明实施例1的某个时隙slot n的又一示意图;
图8是本发明实施例1的某个时隙slot n的又一示意图;
图9是本发明实施例1的某个时隙slot n的又一示意图;
图10是本发明实施例1的某个时隙slot n的又一示意图;
图11是本申请实施例1的无线通信的方法的另一示意图;
图12是本发明实施例1的某个时隙slot n的又一示意图;
图13是本发明实施例1的某个时隙slot n的又一示意图;
图14是本发明实施例1的某个时隙slot n的又一示意图;
图15是本发明实施例1的某个时隙slot n的又一示意图;
与16是本发明实施例1的某个时隙slot n的又一示意图;
图17是本发明实施例1的某个时隙slot n的又一示意图;
图18是本发明实施例1的某个时隙slot n的又一示意图;
图19是本申请实施例2的无线通信的方法的一示意图;
图20是本申请实施例3的无线通信的方法的一示意图;
图21是本申请实施例4的无线通信的装置的一示意图;
图22是本申请实施例4的第一确定单元的一示意图;
图23是本申请实施例4的第二确定单元的一示意图;
图24是本申请实施例5的无线通信的装置的一示意图;
图25是本申请实施例5的第九确定单元的一示意图;
图26是本申请实施例5的第十确定单元的一示意图;
图27是本发明实施例6的终端设备的系统构成的一示意框图;
图28是本发明实施例7的网络设备的系统构成的一示意框图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等可以包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,“多个”或“多种”指的是至少两个或至少两种。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将用户设备接入通信网络并为该用户设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站 可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”或者“终端设备”(TE,Terminal Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备。用户设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,用户设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,用户设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
以下通过示例对本申请实施例的场景进行说明,但本申请实施例不限于此。
图2是本申请实施例的通信系统的示意图,示意性说明了以终端设备和网络设备为例的情况,如图2所示,通信系统100可以包括网络设备101和用户设备102,用户设备102也可以为多个。
在本申请实施例中,网络设备101和用户设备102之间可以进行现有的业务或者未来可实施的业务。例如,这些业务包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
实施例1
本申请实施例提供一种无线通信的方法,应用于终端设备侧。图3是本申请实施例1的无线通信的方法的一示意图。如图3所示,该方法包括:
步骤301:根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定接收该第一信道状态信息参考信号使用的空间接收参数,其中,该第一信道状态信息参考信号 与该控制资源集关联的搜索空间集在时域上重叠;以及
步骤302:根据确定的该空间接收参数,接收该第一信道状态信息参考信号。
这样,在该CORESET与不同的两个空间接收参数关联时,能够确定用于接收该第一CSI-RS的空间方向。
在本申请实施例中,第一信道状态信息参考信号即第一CSI-RS是指待接收的CRI-RS。
在本申请实施例中,例如,第一CRI-RS是用于时频追踪的CSI-RS(CSI-RS for tracking)、用于波束管理的CSI-RS(CSI-RS for beam management)或者用于信道状态信息测量(CSI measurement)的CSI-RS。更具体地说,例如:
用于时频追踪的CSI-RS是指一个在CSI-RS集合中的CSI-RS资源,其中,该CSI-RS集合配置了高层参数“trs-info”(a CSI-RS resource in a NZP-CSI-RS-ResourceSet configured with higher layer parameter trs-Info)。
用于波束管理的CSI-RS是指一个在CSI-RS集合中的CSI-RS资源,其中,该CSI-RS集合配置了高层参数“重复”(a CSI-RS resource in a NZP-CSI-RS-ResourceSet configured with higher layer parameter repetition)。
用于信道状态信息测量的CSI-RS是指一个在CSI-RS集合中的CSI-RS资源,其中,该CSI-RS集合既没有配置高层参数“重复”也没有配置高层参数“trs-info”(a CSI-RS resource in a NZP-CSI-RS-ResourceSet configured without higher layer parameter trs-Info and without higher layer parameter repetition)。
在本申请实施例中,例如,第一CRI-RS是一个在CSI-RS集合中的CSI-RS资源,其中,该CSI-RS集合没有把高层参数“重复”配置为“开”(a CSI-RS resource associated with a NZP-CSI-RS-ResourceSet with the higher layer parameter other than repetition set to'on')。
在本申请实施例中,空间接收参数(Spatial Rx parameter)是终端设备用于接收信号的与空间相关的参数,例如,空间接收参数是QCL-TypeD参数。在本申请实施例中,以QCL-TypeD参数为例进行说明。
在本申请实施例中,例如,QCL-TypeD参数可以是一个信道状态信息参考信号,本申请实施例中称为第二信道状态信息参考信号,即第二CRI-RS;或者,QCL-TypeD参数可以是一个同步信号块(Synchronization Signal Block,SSB)。
在本申请实施例中,第一CSI-RS所关联的空间接收参数可以是一个,也可以是两个。
在本申请实施例中,控制资源集(CORESET)与不同的两个空间接收参数关联,这两个空间接收参数可以是不同的第二CRI-RS,或者,不同的SSB,或者,一个是第二CRI-RS,另一个是SSB。
在本申请实施例中,第一CSI-RS所关联的空间接收参数以及CORESET所关联的不同的两个空间接收参数可以是网络配置的。
在本申请实施例中,第一CRI-RS以及CORESET可以通过传输配置指示(transmission configuration indicator,TCI)状态而与空间接收参数关联。
例如,该CORESET被激活了两个TCI状态,分别为TCI#1和TCI#2,第一CRI-RS与TCI#3关联,而TCI#1所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1,TCI#2所关联的用于指示QCL-typeD property的参考信号为CSI-RS#2,TCI#3所关联的用于指示QCL-typeD property的参考信号为CSI-RS#3,那么,第一CRI-RS所关联的空间接收参数为CSI-RS#3,该CORESET所关联的两个空间接收参数为CSI-RS#1和CSI-RS#2。
在本申请实施例中,该第一CSI-RS与该CORESET关联的搜索空间集在时域上重叠,例如,该第一CSI-RS与该CORESET位于相同的OFDM符号。
在本申请实施例中,该第一CSI-RS与该CORESET可以在相同的或不同的带内载波分量(intra-band component carriers)上。
在步骤301中,终端设备根据第一CSI-RS所关联的空间接收参数与CORESET所关联的不同的两个空间接收参数的关系,确定接收该第一CSI-RS使用的空间接收参数。以下,对具体的确定方法进行说明。
首先,考虑第一CSI-RS所关联的空间接收参数是一个空间接收参数的情况。
例如,当该第一CSI-RS所关联的一个空间接收参数与该CORESET所关联的两个空间接收参数均不同时,终端设备将该CORESET所关联的两个空间接收参数中的一个空间接收参数确定为接收该第一CSI-RS使用的空间接收参数。
在本申请实施例中,需要判断两个空间接收参数是否相同,例如,分别判断该第一CSI-RS所关联的一个空间接收参数与该CORESET所关联的两个空间接收参数是否相同。
例如,当一个空间接收参数为CSI-RS,另一个空间接收参数为SSB时,则认为这两个空间接收参数不同。
例如,当一个空间接收参数为一个CSI-RS,另一个空间接收参数为另一个CSI-RS时,并且这两个CSI-RS所关联的同步信号块不同时,则认为这两个空间接收参数不同。
在本申请实施例中,如上所述,当该第一CSI-RS所关联的一个空间接收参数与该CORESET所关联的两个空间接收参数均不同时,终端设备可以将该CORESET所关联的两个空间接收参数中的一个空间接收参数确定为接收该第一CSI-RS使用的空间接收参数,
例如,该CORESET所关联的两个空间接收参数中的一个空间接收参数是,根据该两个空间接收参数所关联的SSB的确定的。例如,该第一CSI-RS所关联的空间接收参数为一个SSB;该CORESET所关联的两个空间接收参数中的一个空间接收参数是,该CORESET所关联的两个空间接收参数中与该SSB关联的空间接收参数。
在步骤302中,根据确定的该空间接收参数,接收该第一CSI-RS。,
在本申请实施例中,接收该第一CSI-RS也可以称为检测该第一CSI-RS。具体的检测或接收方法可以参考相关技术。
下面举例进行说明。
图4是本发明实施例1的某个时隙slot n的一示意图。如图4所示,SS#1(搜索空间集合,search space set)与CORESET#1关联,CORESET#1与两个TCI状态TCI#1、TCI#2关联,或者说CORESET#1被激活了两个TCI状态(TCI#1,TCI#2)。如图4所示,该CSI-RS用于时频追踪,它与TCI#3关联。
另外,TCI#1所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1,CSI-RS#1与SSB#1相关;TCI#2所关联的用于指示QCL-typeD property的参考信号为CSI-RS#2,CSI-RS#2与SSB#2相关;TCI#3所关联的用于指示QCL-typeD property的参考信号为SSB#1。
因此,CORESET#1所关联的QCL-typeD参数为CSI-RS#1和CSI-RS#2,该CSI-RS所关联的QCL-typeD参数为SSB#1。
虽然CSI-RS与CORESET#1都与SSB#1关联,但是CSI-RS与SSB的测量精度不同,UE不一定有能力同时接收它们。也就是说,UE不能根据为该CSI-RS配置的 QCL-typeD参数检测或接收该CSI-RS。这时,UE应当根据CORESET#1所对应的QCL-typeD参数检测或接收该CSI-RS。具体地说,由于CSI-RS对应的QCL-typeD参数为SSB#1,并且CSI-RS#1与SSB#1相关联,这时UE根据CSI-RS#1,即QCL-typeD#1检测或接收该CSI-RS。
这样,由于CSI-RS所配置的TCI状态所关联的SSB和接收该CSI-RS所关联的SSB是一致的,能够保证UE使用与其配置的空间方向相近的空间方向接收CSI-RS,保证CSI-RS的测量精度,有利于提升系统性能。
又例如,该CORESET所关联的两个空间接收参数中的一个空间接收参数是,根据该两个空间接收参数所关联的TCI状态确定的。例如,该CORESET所关联的两个空间接收参数中的一个空间接收参数是,该两个空间接收参数所关联的TCI状态的索引最小的空间接收参数。
下面举例进行说明。
图5是本发明实施例1的某个时隙slot n的另一示意图。如图5所示,SS#1与CORESET#1关联。CORESET#1与两个TCI状态TCI#1、TCI#2关联,或者说CORESET#1被激活了两个TCI状态(TCI#1,TCI#2)。如图5所示,该CSI-RS用于时频追踪,它与TCI#3关联。
另外,TCI#1所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1,CSI-RS#1与SSB#1相关;TCI#2所关联的用于指示QCL-typeD property的参考信号为CSI-RS#2,CSI-RS#2与SSB#2相关;TCI#3所关联的用于指示QCL-typeD property的参考信号为SSB#1。
因此,CORESET#1所关联的QCL-typeD参数为CSI-RS#1和CSI-RS#2,CSI-RS所关联的QCL-typeD参数为SSB#3。
由于CSI-RS与CORESET#1对应不同的QCL-typeD参数,UE没有能力同时接收它们。也就是说,UE不能根据为该CSI-RS配置的QCL-typeD参数检测或接收该CSI-RS。这时,UE应当根据CORESET#1所对应的QCL-typeD参数检测或接收该CSI-RS。具体地说,UE根据与CORESET#1关联的索引(index)最小的TCI状态(TCI#1)所关联的QCL-typeD参数(QCL-typeD#1)检测或接收该CSI-RS。
这样,在NR系统中,索引较小的TCI状态一般用于确定default beam,更为重要。CSI-RS根据索引较小的TCI状态进行检测或接收,能够使其对更重要的空间方 向进行检测,有利于提升系统性能。
图6是本发明实施例1的某个时隙slot n的又一示意图。如图6所示,SS#1与CORESET#1关联。CORESET#1与两个TCI状态TCI#1、TCI#2关联,或者说CORESET#1被激活了两个TCI状态(TCI#1,TCI#2)。如图6所示,CSI-RS与TCI#3关联。
另外,TCI#1所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1,CSI-RS#1与SSB#1相关;TCI#2所关联的用于指示QCL-typeD property的参考信号为CSI-RS#2,CSI-RS#2与SSB#2相关;TCI#3所关联的用于指示QCL-typeD property的参考信号为CSI-RS#3,CSI-RS#3与SSB#3相关。
因此,CORESET#1所关联的QCL-typeD参数为CSI-RS#1和CSI-RS#2,CSI-RS所关联的QCL-typeD参数为SSB#3。
由于CSI-RS与CORESET#1对应不同的QCL-typeD参数,UE没有能力同时接收它们。也就是说,UE不能根据为该CSI-RS配置的QCL-typeD参数检测或接收该CSI-RS。这时,UE应当根据CORESET#1所对应的QCL-typeD参数检测或接收该CSI-RS。具体地说,UE根据与CORESET#1关联的index最低的TCI状态(TCI#1)所对应的QCL-typeD参数(QCL-typeD#1)检测或接收该CSI-RS。
这样,在NR系统中,索引较小的TCI状态一般用于确定default beam,更为重要。CSI-RS根据索引较小的TCI状态进行检测或接收,能够使其对更重要的空间方向进行检测,有利于提升系统性能。
又例如,该CORESET所关联的两个空间接收参数中的一个空间接收参数是,根据该两个空间接收参数所关联的第二CSI-RS的索引确定的。例如,该CORESET所关联的两个空间接收参数中的一个空间接收参数是,该两个空间接收参数所关联的第二CSI-RS的索引最小的空间接收参数。例如,如图5和图6所示,UE根据与CORESET#1关联的索引(index)最小的CSI-RS(CSI-RS#1)所关联的QCL-typeD参数(QCL-typeD#1)检测或接收该CSI-RS。
这样,在NR系统中,索引较小的CSI-RS一般更为重要。根据索引较小的CSI-RS进行检测或接收,能够使其对更重要的空间方向进行检测,有利于提升系统性能。
以上说明的是当该第一CSI-RS所关联的一个空间接收参数与该CORESET所关联的两个空间接收参数均不同时,终端设备将该CORESET所关联的两个空间接收参 数中的一个空间接收参数确定为接收该第一CSI-RS使用的空间接收参数;也可以是,当该第一CSI-RS所关联的一个空间接收参数与该CORESET所关联的两个空间接收参数均不同时,终端设备将该CORESET所关联的两个空间接收参数确定为接收该第一CSI-RS使用的空间接收参数。
例如,该第一CSI-RS与两个空间接收参数关联,该两个空间接收参数中的一个空间接收参数与该CORESET所关联的两个空间接收参数均不同时,终端设备将该CORESET所关联的两个空间接收参数确定为接收该第一CSI-RS使用的空间接收参数。
图7是本发明实施例1的某个时隙slot n的又一示意图。如图7所示,SS#1与CORESET#1关联。CORESET#1与两个TCI状态(TCI#1、TCI#2)关联,或者说CORESET#1被激活了两个TCI状态(TCI#1,TCI#2)。如图7所示,CSI-RS与TCI#3、TCI#4关联。
另外,TCI#1所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1,CSI-RS#1与SSB#1相关;TCI#2所关联的用于指示QCL-typeD property的参考信号为CSI-RS#2,CSI-RS#2与SSB#2相关;TCI#3所关联的用于指示QCL-typeD property的参考信号为CSI-RS#3,CSI-RS#3与SSB#1相关;TCI#4所关联的用于指示QCL-typeD property的参考信号为CSI-RS#4,CSI-RS#4与SSB#4相关。
因此,CORESET#1所关联的QCL-typeD参数为CSI-RS#1和CSI-RS#2,CSI-RS所关联的QCL-typeD参数为CSI-RS#3和CSI-RS#4。
由于CSI-RS与CORESET#1对应的QCL-typeD参数有一部分不完全相同,UE没有能力同时接收它们。也就是说,UE不能根据为该CSI-RS配置的QCL-typeD参数检测或接收该CSI-RS。这时,UE应当根据CORESET#1所关联的QCL-typeD参数检测或接收该CSI-RS。具体地说,由于CSI-RS配置了两个不同的QCL-typeD参数,UE根据CORESET#1所关联的两个QCL-typeD参数(QCL-typeD#1和QCL-typeD#2)检测或接收该CSI-RS。
这样,当CSI-RS与CORESET在时域重叠时,由于用于接收CSI-RS的QCL-typeD参数与CORESET相同,该CSI-RS可以用于测量CORESET的信道状态。另外,这种方法可以利用CSI-RS的配置信息区分CSI-RS的测量对象(也就是当CSI-RS所配置的TCI状态仅关联一个QCL-typeD参数时,该CSI-RS用于测量CORESET所关联 的一个QCL-typeD参数;当CSI-RS所配置的TCI状态关联两个QCL-typeD参数时,该CSI-RS与该CORESET共享相同的QCL-typeD),以便基站进行合理调整,保证测量精度,进而提升系统性能。
以上,针对该第一CSI-RS所关联的空间接收参数与该CORESET所关联的两个空间接收参数不同的情况进行了说明。下面,针对该第一CSI-RS所关联的空间接收参数与该CORESET所关联的两个空间接收参数相同的情况进行说明。
在步骤301中,例如,当该第一CSI-RS所关联的一个空间接收参数与该CORESET所关联的两个空间接收参数中的一个空间接收参数相同时,将该CSI-RS所关联的该空间接收参数确定为接收该第一CSI-RS使用的空间接收参数;和/或,当该第一CSI-RS所关联的两个空间接收参数与该CORESET所关联的两个空间接收参数分别相同时,将该CSI-RS所关联的该两个空间接收参数确定为接收该第一CSI-RS使用的空间接收参数。
在本申请实施例中,该CSI-RS所关联的一个空间接收参数与该CORESET所关联的两个空间接收参数中的一个空间接收参数相同,包括:
作为该第一CSI-RS所关联的一个空间接收参数的一个第二CSI-RS与作为该CORESET所关联的两个空间接收参数中的一个空间接收参数的一个第二CSI-RS相同;和/或,
该第一CSI-RS所关联的一个空间接收参数所关联的一个同步信号块(SSB)与该CORESET所关联的两个空间接收参数中的一个空间接收参数所关联的一个同步信号块相同。
以下进行示例性的说明。
图8是本发明实施例1的某个时隙slot n的又一示意图。如图8所示,SS#1与CORESET#1关联。CORESET#1与两个TCI状态TCI#、TCI#2关联,或者说CORESET#1被激活了两个TCI状态(TCI#1,TCI#2)。CSI-RS与TCI#3关联。
另外,TCI#1所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1;TCI#2所关联的用于指示QCL-typeD property的参考信号为CSI-RS#2;TCI#3所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1。
因此,CORESET#1所关联的QCL-typeD参数为CSI-RS#1和CSI-RS#2,CSI-RS所关联的QCL-typeD参数为CSI-RS#1。
由于CSI-RS所关联的QCL-typeD参数与CORESET#1所关联的其中一个QCL-typeD参数相同,因此,UE有能力接收该CSI-RS,也就是说,UE根据为该CSI-RS配置的QCL-typeD参数检测或接收该CSI-RS。
这样,在特定条件下,也就是当CSI-RS的一个QCL-typeD参数与CORESET的其中一个QCL-typeD参数相同时,UE能够根据为该CSI-RS系统配置的QCL-typeD参数接收该CSI-RS,避免行为模糊,能够保证CSI-RS的测量精度,有利于提升系统性能。
在本申请实施例中,该第一CSI-RS所关联的两个空间接收参数与该CORESET所关联的两个空间接收参数分别相同,包括:作为该第一CSI-RS所关联的两个空间接收参数的两个第二CSI-RS与作为该CORESET所关联的两个空间接收参数的两个第二CSI-RS分别相同;和/或,该第一CSI-RS所关联的两个空间接收参数所分别关联的两个同步信号块(SSB)与该CORESET所关联的两个空间接收参数所分别关联的两个同步信号块相同。
以下进行示例性的说明。
图9是本发明实施例1的某个时隙slot n的又一示意图。如图9所示,SS#1与CORESET#1关联。CORESET#1与两个TCI状态TCI#、TCI#2关联,或者说CORESET#1被激活了两个TCI状态(TCI#1,TCI#2)。CSI-RS与TCI#3、TCI#4关联。
另外,TCI#1所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1;TCI#2所关联的用于指示QCL-typeD property的参考信号为CSI-RS#2;TCI#3所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1;TCI#4所关联的用于指示QCL-typeD property的参考信号为CSI-RS#2
因此,CORESET#1所关联的QCL-typeD参数为CSI-RS#1和CSI-RS#2,CSI-RS所关联的QCL-typeD参数为CSI-RS#1和CSI-RS#2。
由于CSI-RS所关联的QCL-typeD参数与CORESET#1所关联的QCL-typeD参数相同,因此,UE有能力接收该CSI-RS,也就是说,UE根据为该CSI-RS配置的QCL-typeD参数检测或接收该CSI-RS。
这样,在特定条件下,也就是当CSI-RS的两个QCL-typeD参数与CORESET的两个QCL-typeD参数分别相同时,UE能够根据为该CSI-RS系统配置的QCL-typeD 参数接收该CSI-RS,避免行为模糊,能够保证CSI-RS的测量精度,有利于提升系统性能。
图10是本发明实施例1的某个时隙slot n的又一示意图。如图10所示,SS#1与CORESET#1关联。CORESET#1与两个TCI状态TCI#1、TCI#2关联,或者说CORESET#1被激活了两个TCI状态(TCI#1,TCI#2)。CSI-RS与TCI#3、TCI#4关联。
另外,TCI#1所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1;其中CSI-RS#1与SSB#1相关;TCI#2所关联的用于指示QCL-typeD property的参考信号为CSI-RS#2;其中CSI-RS#2与SSB#2相关;TCI#3所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1;其中CSI-RS#3与SSB#1相关;TCI#4所关联的用于指示QCL-typeD property的参考信号为CSI-RS#2;其中CSI-RS#4与SSB#2相关。
因此,CORESET#1所关联的QCL-typeD参数为CSI-RS#1和CSI-RS#2,CSI-RS所关联的QCL-typeD参数为CSI-RS#3和CSI-RS#4。
虽然CSI-RS所关联的QCL-typeD参数与CORESET#1所关联的QCL-typeD参数不相同,但是这些QCL-typeD参数所关联的SSB是相同的。因此,UE有能力接收该CSI-RS,也就是说,UE根据为该CSI-RS配置的QCL-typeD参数检测或接收该CSI-RS。
这样,在特定条件下,也就是当CSI-RS所关联的SSB与CORESET所关联的两个SSB分别相同时,UE能够根据为该CSI-RS系统配置的QCL-typeD参数接收该CSI-RS,避免行为模糊,能够保证CSI-RS的测量精度,有利于提升系统性能。
在本申请实施例中,在配置了面板(panel)信息的情况下,还可以结合面板信息来确定接收第一CSI-RS的空间接收参数。
图11是本申请实施例1的无线通信的方法的另一示意图。如图11所示,该方法包括:
步骤1101:根据第一CSI-RS所关联的空间接收参数以及该第一CSI-RS所关联的天线面板(panel)信息与CORESET所关联的两个空间接收参数以及该CORESET所关联的天线面板信息的关系,确定接收该第一CSI-RS使用的空间接收参数;以及
步骤1102:根据确定的该空间接收参数,接收该第一CSI-RS。
对于第一CSI-RS所关联的空间接收参数与该CORESET所关联的两个空间接收 参数中的一个空间接收参数不同的情况,例如,当一个空间接收参数关联的天线面板信息与另一个空间接收参数所关联的天线面板信息不同时,则认为这两个空间接收参数不同。
该CORESET所关联的两个空间接收参数中的一个空间接收参数是,根据该两个空间接收参数所关联的第二CSI-RS的天线面板信息确定的。
例如,该第一CSI-RS与一个天线面板信息关联;该CORESET所关联的两个空间接收参数中的一个空间接收参数是,该CORESET所关联的两个空间接收参数中与该天线面板信息关联的空间接收参数。
对于第一CSI-RS所关联的空间接收参数与该CORESET所关联的两个空间接收参数中的一个空间接收参数相同的情况,例如,在步骤1101中,当该第一CSI-RS所关联的一个空间接收参数与该CORESET所关联的两个空间接收参数中的一个空间接收参数相同,且该第一CSI-RS所关联的一个天线面板信息与该CORESET所关联的两个空间接收参数中的一个所关联的天线面板信息相同时,将该CSI-RS所关联的该空间接收参数确定为接收该第一CSI-RS使用的空间接收参数;和/或,当该第一CSI-RS所关联的两个空间接收参数与该CORESET所关联的两个空间接收参数分别相同,且该第一CSI-RS所关联的两个天线面板信息与该CORESET所关联的两个天线面板信息分别相同时,将该CSI-RS所关联的该两个空间接收参数确定为接收该第一CSI-RS使用的空间接收参数。
以下针对结合面板信息确定接收该第一CSI-RS使用的空间接收参数的情况进行示例性的说明。
图12是本发明实施例1的某个时隙slot n的又一示意图。如图12所示,SS#1与CORESET#1关联,CORESET#1与两个TCI状态TCI#1、TCI#2关联,或者说CORESET#1被激活了两个TCI状态(TCI#1,TCI#2)。如图4所示,该CSI-RS用于时频追踪,它与TCI#3关联。
另外,TCI#1所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1,CSI-RS#1与SSB#1相关;TCI#2所关联的用于指示QCL-typeD property的参考信号为CSI-RS#2,CSI-RS#2与SSB#2相关;TCI#3所关联的用于指示QCL-typeD property的参考信号为SSB#1。TCI#1与panel#1关联;TCI#2与panel#2关联;TCI#3与panel#1关联。
因此,CORESET#1所关联的QCL-typeD参数为CSI-RS#1和CSI-RS#2,CSI-RS所关联的QCL-typeD参数为SSB#1。
虽然CSI-RS与CORESET#1都与SSB#1关联并且对应的panel信息相同,但是CSI-RS与SSB的测量精度不同,UE不一定有能力同时接收它们。也就是说,UE不能根据为该CSI-RS配置的QCL-typeD参数检测或接收该CSI-RS。这时,UE应当根据CORESET#1所关联的QCL-typeD参数检测或接收该CSI-RS。具体地说,由于CSI-RS#1与SSB#1相关,并且panel ID相同,UE根据CSI-RS#1(QCL-typeD#1)检测或接收该CSI-RS。
这样,由于CSI-RS所配置的TCI状态所关联的天线面板信息和接收该CSI-RS所关联的天线面板信息是一致的,能够保证UE使用与其配置的空间方向相近的空间方向接收CSI-RS,保证CSI-RS的测量精度,有利于提升系统性能。
图13是本发明实施例1的某个时隙slot n的又一示意图。如图13所示,SS#1与CORESET#1关联。CORESET#1与两个TCI状态TCI#1、TCI#2关联,或者说CORESET#1被激活了两个TCI状态(TCI#1,TCI#2)。如图5所示,该CSI-RS用于时频追踪,它与TCI#3关联。
另外,TCI#1所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1,CSI-RS#1与SSB#1相关;TCI#2所关联的用于指示QCL-typeD property的参考信号为CSI-RS#2,CSI-RS#2与SSB#2相关;TCI#3所关联的用于指示QCL-typeD property的参考信号为SSB#1。TCI#1与panel#1关联;TCI#2与panel#2关联;TCI#3与panel#1关联。
因此,CORESET#1所关联的QCL-typeD参数为CSI-RS#1和CSI-RS#2,CSI-RS所关联的QCL-typeD参数为SSB#1。
由于CSI-RS与CORESET#1对应不同的QCL-typeD参数,UE没有能力同时接收它们。也就是说,UE不能根据为该CSI-RS配置的QCL-typeD参数检测或接收该CSI-RS。这时,UE应当根据CORESET#1所关联的QCL-typeD参数检测或接收该CSI-RS。具体地说,由于CSI-RS对应panel#1,UE根据与Panel#1关联的TCI状态所关联的QCL-typeD参数(QCL-typeD#1)检测或接收该CSI-RS。
这样,由于CSI-RS所配置的TCI状态所关联的天线面板信息和接收该CSI-RS所关联的天线面板信息是一致的,能够保证UE使用与其配置的空间方向相近的空间 方向接收CSI-RS,保证CSI-RS的测量精度,有利于提升系统性能。
图14是本发明实施例1的某个时隙slot n的又一示意图。如图14所示,SS#1与CORESET#1关联。CORESET#1与两个TCI状态TCI#1、TCI#2关联,或者说CORESET#1被激活了两个TCI状态(TCI#1,TCI#2)。如图6所示,CSI-RS与TCI#3关联。
另外,TCI#1所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1,CSI-RS#1与SSB#1相关;TCI#2所关联的用于指示QCL-typeD property的参考信号为CSI-RS#2,CSI-RS#2与SSB#2相关;TCI#3所关联的用于指示QCL-typeD property的参考信号为CSI-RS#3,CSI-RS#3与SSB#3相关。TCI#1与panel#1关联;TCI#2与panel#2关联;TCI#3与panel#1关联。
因此,CORESET#1所关联的QCL-typeD参数为CSI-RS#1和CSI-RS#2,CSI-RS所关联的QCL-typeD参数为SSB#1。
由于CSI-RS与CORESET#1对应不同的QCL-typeD参数,UE没有能力同时接收它们。也就是说,UE不能根据为该CSI-RS配置的QCL-typeD参数检测或接收该CSI-RS。这时,UE应当根据CORESET#1所关联的QCL-typeD参数检测或接收该CSI-RS。具体地说,由于CSI-RS对应panel#1,UE根据与Panel#1关联的TCI state所关联的QCL-typeD参数(QCL-typeD#1)检测或接收该CSI-RS。
这样,由于CSI-RS所配置的TCI状态所关联的天线面板信息和接收该CSI-RS所关联的天线面板信息是一致的,能够保证UE使用与其配置的空间方向相近的空间方向接收CSI-RS,保证CSI-RS的测量精度,有利于提升系统性能。
图15是本发明实施例1的某个时隙slot n的又一示意图。如图15所示,SS#1与CORESET#1关联。CORESET#1与两个TCI状态(TCI#1、TCI#2)关联,或者说CORESET#1被激活了两个TCI状态(TCI#1,TCI#2)。CSI-RS与TCI#3、TCI#4关联。
另外,TCI#1所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1,CSI-RS#1与SSB#1相关;TCI#2所关联的用于指示QCL-typeD property的参考信号为CSI-RS#2,CSI-RS#2与SSB#2相关;TCI#3所关联的用于指示QCL-typeD property的参考信号为CSI-RS#3,CSI-RS#3与SSB#1相关;TCI#4所关联的用于指示QCL-typeD property的参考信号为CSI-RS#4,CSI-RS#4与SSB#4相关。TCI#1与 panel#1关联;TCI#2与panel#2关联;TCI#3与panel#1关联;TCI#4与panel#2关联。
因此,CORESET#1所关联的QCL-typeD参数为CSI-RS#1和CSI-RS#2,CSI-RS所关联的QCL-typeD参数为SSB#1。
由于CSI-RS与CORESET#1对应不同的QCL-typeD参数,UE没有能力同时接收它们。也就是说,UE不能根据为该CSI-RS配置的QCL-typeD参数检测或接收该CSI-RS。这时,UE应当根据CORESET#1所关联的QCL-typeD参数检测或接收该CSI-RS。具体地说,由于CSI-RS配置了两个不同的QCL-typeD参数并且它们对应不同的panel,UE根据CORESET#1所关联的QCL-typeD参数(QCL-typeD#1和QCL-typeD#2)检测或接收该CSI-RS。
这样,当CSI-RS与CORESET在时域重叠时,由于用于接收CSI-RS的天线面板信息与CORESET的天线面板信息相同,该CSI-RS可以用于测量CORESET的信道状态。另外,这种方法可以利用CSI-RS的配置信息区分CSI-RS的测量对象(也就是当CSI-RS所配置的TCI状态仅关联一个天线面板信息时,该CSI-RS用于测量CORESET所关联的一个天线面板信息;当CSI-RS所配置的TCI状态关联两个天线面板信息时,该CSI-RS与该CORESET共享相同的天线面板信息),以便基站进行合理调整,保证测量精度,进而提升系统性能。
图16是本发明实施例1的某个时隙slot n的又一示意图。如图16所示,SS#1与CORESET#1关联。CORESET#1与两个TCI状态TCI#、TCI#2关联,或者说CORESET#1被激活了两个TCI状态(TCI#1,TCI#2)。CSI-RS与TCI#3关联。
另外,TCI#1所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1;TCI#2所关联的用于指示QCL-typeD property的参考信号为CSI-RS#2;TCI#3所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1。TCI#1与panel#1关联;TCI#2与panel#2关联;TCI#3与panel#1关联。
因此,CORESET#1所关联的QCL-typeD参数为CSI-RS#1和CSI-RS#2,CSI-RS所关联的QCL-typeD参数为CSI-RS#1。
由于CSI-RS所关联的QCL-typeD参数与CORESET#1所关联的其中一个QCL-typeD参数相同,并且相应地它们的panel ID也相同,因此,UE有能力接收该CSI-RS,也就是说,UE根据为该CSI-RS配置的QCL-typeD参数检测或接收该CSI-RS。
这样,在特定条件下,也就是当CSI-RS的两个QCL-typeD参数与CORESET的两个QCL-typeD参数分别相同,并且它们对应的天线面板信息也相同时,UE能够根据为该CSI-RS系统配置的QCL-typeD参数接收该CSI-RS,避免行为模糊,保证CSI-RS的测量精度,有利于提升系统性能。
图17是本发明实施例1的某个时隙slot n的又一示意图。如图17所示,SS#1与CORESET#1关联。CORESET#1与两个TCI状态TCI#、TCI#2关联,或者说CORESET#1被激活了两个TCI状态(TCI#1,TCI#2)。CSI-RS与TCI#3、TCI#4关联。
另外,TCI#1所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1;TCI#2所关联的用于指示QCL-typeD property的参考信号为CSI-RS#2;TCI#3所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1;TCI#4所关联的用于指示QCL-typeD property的参考信号为CSI-RS#2。TCI#1与panel#1关联;TCI#2与panel#2关联;TCI#3与panel#1关联;TCI#4与panel#2关联。
这里,CORESET#1所关联的QCL-typeD参数为CSI-RS#1和CSI-RS#2,CSI-RS所关联的QCL-typeD参数为CSI-RS#1和CSI-RS#2。
由于CSI-RS所关联的QCL-typeD参数与CORESET#1所关联的QCL-typeD参数相同,并且相应地它们的panel ID也相同,因此,UE有能力接收该CSI-RS,也就是说,UE根据为该CSI-RS配置的QCL-typeD参数检测或接收该CSI-RS。
这样,在特定条件下,也就是当CSI-RS的两个QCL-typeD参数与CORESET的两个QCL-typeD参数分别相同,并且它们的天线面板信息也相同时,UE能够根据为该CSI-RS系统配置的QCL-typeD参数接收该CSI-RS,避免行为模糊,能够保证CSI-RS的测量精度,有利于提升系统性能。
图18是本发明实施例1的某个时隙slot n的又一示意图。如图18所示,SS#1与CORESET#1关联。CORESET#1与两个TCI状态TCI#1、TCI#2关联,或者说CORESET#1被激活了两个TCI状态(TCI#1,TCI#2)。CSI-RS与TCI#3、TCI#4关联。
另外,TCI#1所关联的用于指示QCL-typeD property的参考信号为CSI-RS#1;其中CSI-RS#1与SSB#1相关;TCI#2所关联的用于指示QCL-typeD property的参考信号为CSI-RS#2;其中CSI-RS#2与SSB#2相关;TCI#3所关联的用于指示QCL-typeD  property的参考信号为CSI-RS#1;其中CSI-RS#3与SSB#1相关;TCI#4所关联的用于指示QCL-typeD property的参考信号为CSI-RS#2;其中CSI-RS#4与SSB#2相关。TCI#1与panel#1关联;TCI#2与panel#2关联;TCI#3与panel#1关联;TCI#4与panel#2关联。
因此,CORESET#1所关联的QCL-typeD参数为CSI-RS#1和CSI-RS#2,CSI-RS所关联的QCL-typeD参数为CSI-RS#1和CSI-RS#2。
虽然CSI-RS所关联的QCL-typeD参数与CORESET#1所关联的QCL-typeD参数不相同,但是这些QCL-typeD参数所关联的SSB是相同的,并且相应地它们的panel ID也相同,因此,UE有能力接收该CSI-RS,也就是说,UE根据为该CSI-RS配置的QCL-typeD参数检测或接收该CSI-RS。
这样,在特定条件下,也就是当CSI-RS所关联的SSB与CORESET所关联的两个SSB分别相同,并且它们的天线面板信息也相同时,UE能够根据为该CSI-RS系统配置的QCL-typeD参数接收该CSI-RS,避免行为模糊,能够保证CSI-RS的测量精度,有利于提升系统性能。
在本申请实施例中,该天线面板信息可以包括以下信息中的至少一个:显式地指示的面板标识(panel ID);天线端口分组信息;天线面板分组信息;以及与信道状态信息报告(CSI report)相关的信息。
由上述实施例可知,终端设备根据第一CSI-RS所关联的空间接收参数与CORESET所关联的不同的两个空间接收参数的关系,确定接收该第一CSI-RS使用的空间接收参数,这样,在该CORESET与不同的两个空间接收参数关联时,能够确定用于接收该第一CSI-RS的空间方向。
实施例2
本申请实施例2还提供一种无线通信的方法,该方法应用于网络设备侧。该方法对应于实施例1中的终端设备侧的无线通信的方法,相同的内容不再重复说明。
图19是本申请实施例2的无线通信的方法的一示意图。如图19所示,该方法包括:
步骤1901:根据第一CSI-RS所关联的空间接收参数与CORESET所关联的不同的两个空间接收参数的关系,确定发送该第一CSI-RS使用的空间发送参数,其中,该第一CSI-RS与该CORESET关联的搜索空间集在时域上重叠;以及
步骤1902:根据确定的该空间发送参数,发送该第一CSI-RS。
在本申请实施例中,该第一CSI-RS与该CORESET关联的搜索空间集在时域上重叠,例如,该第一CSI-RS与该CORESET位于相同的OFDM符号。
在本申请实施例中,该第一CSI-RS与该CORESET可以在相同的或不同的带内载波分量(intra-band component carriers)上。
在本申请实施例中,空间发送参数是指网络设备用于发送信号的与空间相关的参数,例如,空间发送参数包括射频天线阵列的权值和射频天线的发送角中的至少一个。
在本申请实施例中,网络设备发送第一CSI-RS与终端设备接收第一CSI-RS的动作是对应的。
例如,该根据第一CSI-RS所关联的空间接收参数与CORESET所关联的不同的两个空间接收参数的关系,确定发送该第一CSI-RS使用的空间发送参数,包括:
根据第一CSI-RS所关联的空间接收参数以及该第一CSI-RS所关联的天线面板(panel)信息与CORESET所关联的两个空间接收参数以及该CORESET所关联的天线面板信息的关系,确定发送该第一CSI-RS使用的空间发送参数。
例如,该根据第一CSI-RS所关联的空间接收参数与CORESET所关联的不同的两个空间接收参数的关系,确定发送该第一CSI-RS使用的空间发送参数,包括:
当该第一CSI-RS所关联的一个空间接收参数与该CORESET所关联的两个空间接收参数均不同时,根据该CORESET所关联的两个空间接收参数中的一个空间接收参数确定发送该第一CSI-RS使用的空间发送参数。
例如,该根据第一CSI-RS所关联的空间接收参数与CORESET所关联的不同的两个空间接收参数的关系,确定发送该第一CSI-RS使用的空间发送参数,包括:
当该第一CSI-RS所关联的一个空间接收参数与该CORESET所关联的两个空间接收参数均不同时,根据该CORESET所关联的两个空间接收参数确定发送该第一CSI-RS使用的空间发送参数。
例如,该根据第一CSI-RS所关联的空间接收参数与CORESET所关联的两个空间接收参数数的关系,确定发送该第一CSI-RS使用的空间发送参数,包括:
当该第一CSI-RS所关联的一个空间接收参数与该CORESET所关联的两个空间接收参数中的一个空间接收参数相同时,根据该CSI-RS所关联的该空间接收参数确定发送该第一CSI-RS使用的空间发送参数;和/或,
当该第一CSI-RS所关联的两个空间接收参数与该CORESET所关联的两个空间接收参数分别相同时,根据该CSI-RS所关联的该两个空间接收参数确定发送该第一CSI-RS使用的空间发送参数。
例如,该根据第一CSI-RS所关联的空间接收参数以及该第一CSI-RS所关联的天线面板(panel)参数与CORESET所关联的两个空间接收参数以及该CORESET所关联的天线面板信息的关系,确定发送该第一CSI-RS使用的空间发送参数,包括:
当该第一CSI-RS所关联的一个空间接收参数与该CORESET所关联的两个空间接收参数中的一个空间接收参数相同,且该第一CSI-RS所关联的一个天线面板信息与该CORESET所关联的两个空间接收参数中的一个所关联的天线面板信息相同时,根据该CSI-RS所关联的该空间接收参数确定发送该第一CSI-RS使用的空间发送参数;和/或,
当该第一CSI-RS所关联的两个空间接收参数与该CORESET所关联的两个空间接收参数分别相同,且该第一CSI-RS所关联的两个天线面板信息与该CORESET所关联的两个天线面板信息分别相同时,根据该CSI-RS所关联的该两个空间接收参数确定发送该第一CSI-RS使用的空间发送参数。
上述方法的具体实现可以参照实施例1中的记载,此处不再具体说明。
由上述实施例可知,网络设备根据第一CSI-RS所关联的空间接收参数与CORESET所关联的不同的两个空间接收参数的关系,确定发送该第一CSI-RS使用的空间发送参数,这样,在该CORESET与不同的两个空间接收参数关联时,终端设备能够确定用于接收该第一CSI-RS的空间方向。
实施例3
本申请实施例3还提供一种无线通信的方法,该方法应用于网络设备侧和终端设备侧。该方法对应于实施例1和实施例2,相同的内容不再重复说明。
图20是本申请实施例3的无线通信的方法的一示意图。如图20所示,该方法包括:
步骤2001:网络设备根据第一CSI-RS所关联的空间接收参数与CORESET所关联的不同的两个空间接收参数的关系,确定发送该第一CSI-RS使用的空间发送参数,其中,该第一CSI-RS与该CORESET关联的搜索空间集在时域上重叠;
步骤2002:终端设备根据第一CSI-RS所关联的空间接收参数与CORESET所关 联的不同的两个空间接收参数的关系,确定接收该第一CSI-RS使用的空间接收参数,其中,该第一CSI-RS与该CORESET关联的搜索空间集在时域上重叠;
步骤2003:网络设备根据确定的该空间发送参数,发送该第一CSI-RS;以及
步骤2004:终端设备根据确定的该空间接收参数,接收该第一CSI-RS。
在本申请实施例中,该第一CSI-RS与该CORESET关联的搜索空间集在时域上重叠,例如,该第一CSI-RS与该CORESET位于相同的OFDM符号。
在本申请实施例中,该第一CSI-RS与该CORESET可以在相同的或不同的带内载波分量(intra-band component carriers)上。
在本申请实施例中,步骤2003在步骤2001之后,步骤2004在步骤2002之后,另外,不对步骤2001和步骤2002的顺序进行限制。
在本申请实施例中,步骤2001至步骤2004的具体实施可以参见实施例1和实施例2中的记载,此处不再具体说明。
由上述实施例可知,网络设备根据第一CSI-RS所关联的空间接收参数与CORESET所关联的不同的两个空间接收参数的关系,确定发送该第一CSI-RS使用的空间发送参数,这样,在该CORESET与不同的两个空间接收参数关联时,终端设备能够确定用于接收该第一CSI-RS的空间方向。
实施例4
本申请实施例4提供了一种无线通信的装置,该装置应用于终端设备侧。由于该装置解决问题的原理与实施例1的方法类似,因此其具体的实施可以参照实施例1所述的方法的实施,内容相同或相关之处不再重复说明。
图21是本申请实施例4的无线通信的装置的一示意图,如图21所示,装置2100包括:
第一确定单元2101,其用于根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定接收该第一信道状态信息参考信号使用的空间接收参数,其中,该第一信道状态信息参考信号与该控制资源集关联的搜索空间集在时域上重叠;以及
第一接收单元2102,其用于根据确定的该空间接收参数,接收该第一信道状态信息参考信号。
在本申请实施例中,该第一CSI-RS与该CORESET关联的搜索空间集在时域上 重叠,例如,该第一CSI-RS与该CORESET位于相同的OFDM符号。
在本申请实施例中,该第一CSI-RS与该CORESET可以在相同的或不同的带内载波分量(intra-band component carriers)上。
图22是本申请实施例4的第一确定单元的一示意图,如图22所示,第一确定单元2101包括:
第二确定单元2201,其用于根据第一信道状态信息参考信号所关联的空间接收参数以及该第一信道状态信息参考信号所关联的天线面板(panel)信息与控制资源集所关联的两个空间接收参数以及该控制资源集所关联的天线面板信息的关系,确定接收该第一信道状态信息参考信号使用的空间接收参数。
如图22所示,第一确定单元2101还可以包括:
第三确定单元2202,其用于当该第一信道状态信息参考信号所关联的一个空间接收参数与该控制资源集所关联的两个空间接收参数均不同时,将该控制资源集所关联的两个空间接收参数中的一个空间接收参数确定为接收该第一信道状态信息参考信号使用的空间接收参数。
如图22所示,第一确定单元2101还可以包括:
第四确定单元2203,其用于当该第一信道状态信息参考信号所关联的一个空间接收参数与该控制资源集所关联的两个空间接收参数均不同时,将该控制资源集所关联的两个空间接收参数确定为接收该第一信道状态信息参考信号使用的空间接收参数。
例如,当一个空间接收参数为信道状态信息参考信号,另一个空间接收参数为同步信号块(SSB)时,则认为这两个空间接收参数不同。
例如,当一个空间接收参数为一个信道状态信息参考信号,另一个空间接收参数为另一个信道状态信息参考信号时,并且这两个信道状态信息参考信号所关联的同步信号块不同时,则认为这两个空间接收参数不同。
例如,当一个空间接收参数关联的天线面板信息与另一个空间接收参数所关联的天线面板信息不同时,则认为这两个空间接收参数不同。
例如,根据该两个空间接收参数所关联的SSB的确定的。例如,该第一信道状态信息参考信号所关联的空间接收参数为一个同步信号块;该控制资源集所关联的两个空间接收参数中的一个空间接收参数是,该控制资源集所关联的两个空间接收参数 中与该同步信号块关联的空间接收参数。
例如,该控制资源集所关联的两个空间接收参数中的一个空间接收参数是,根据该两个空间接收参数所关联的TCI状态确定的。例如,该控制资源集所关联的两个空间接收参数中的一个空间接收参数是,该两个空间接收参数所关联的TCI状态的索引最小的空间接收参数。
例如,该控制资源集所关联的两个空间接收参数中的一个空间接收参数是,根据该两个空间接收参数所关联的第二信道状态信息参考信号的索引确定的。例如,该控制资源集所关联的两个空间接收参数中的一个空间接收参数是,该两个空间接收参数所关联的第二信道状态信息参考信号的索引最小的空间接收参数。
例如,该控制资源集所关联的两个空间接收参数中的一个空间接收参数是,根据该两个空间接收参数所关联的第二信道状态信息参考信号的天线面板信息确定的。例如,该第一信道状态信息参考信号与一个天线面板信息关联;该控制资源集所关联的两个空间接收参数中的一个空间接收参数是,该控制资源集所关联的两个空间接收参数中与该天线面板信息关联的空间接收参数。
在本申请实施例中,该第一信道状态信息参考信号可以是用于时频追踪的信道状态信息参考信号或用于波束管理的信道状态信息参考信号。
在本申请实施例中,该第一信道状态信息参考信号也可以是用于信道状态信息测量的信道状态信息参考信号。
在本申请实施例中,该第一信道状态信息参考信号可以与两个空间接收参数关联。
如图22所示,第一确定单元2101还可以包括:
第五确定单元2204,其用于当该第一信道状态信息参考信号所关联的一个空间接收参数与该控制资源集所关联的两个空间接收参数中的一个空间接收参数相同时,将该信道状态信息参考信号所关联的该空间接收参数确定为接收该第一信道状态信息参考信号使用的空间接收参数;和/或,
第六确定单元2205,其用于当该第一信道状态信息参考信号所关联的两个空间接收参数与该控制资源集所关联的两个空间接收参数分别相同时,将该信道状态信息参考信号所关联的该两个空间接收参数确定为接收该第一信道状态信息参考信号使用的空间接收参数。
图23是本申请实施例4的第二确定单元的一示意图,如图23所示,第二确定单元2201包括:
第七确定单元2301,其用于当该第一信道状态信息参考信号所关联的一个空间接收参数与该控制资源集所关联的两个空间接收参数中的一个空间接收参数相同,且该第一信道状态信息参考信号所关联的一个天线面板信息与该控制资源集所关联的两个空间接收参数中的一个所关联的天线面板信息相同时,将该信道状态信息参考信号所关联的该空间接收参数确定为接收该第一信道状态信息参考信号使用的空间接收参数;和/或,
第八确定单元2302,其用于当该第一信道状态信息参考信号所关联的两个空间接收参数与该控制资源集所关联的两个空间接收参数分别相同,且该第一信道状态信息参考信号所关联的两个天线面板信息与该控制资源集所关联的两个天线面板信息分别相同时,将该信道状态信息参考信号所关联的该两个空间接收参数确定为接收该第一信道状态信息参考信号使用的空间接收参数。
在本申请实施例中,例如,该信道状态信息参考信号所关联的一个空间接收参数与该控制资源集所关联的两个空间接收参数中的一个空间接收参数相同,包括:作为该第一信道状态信息参考信号所关联的一个空间接收参数的一个第二信道状态信息参考信号与作为该控制资源集所关联的两个空间接收参数中的一个空间接收参数的一个第二信道状态信息参考信号相同;和/或,该第一信道状态信息参考信号所关联的一个空间接收参数所关联的一个同步信号块(SSB)与该控制资源集所关联的两个空间接收参数中的一个空间接收参数所关联的一个同步信号块相同。
例如,该第一信道状态信息参考信号所关联的两个空间接收参数与该控制资源集所关联的两个空间接收参数分别相同,包括:作为该第一信道状态信息参考信号所关联的两个空间接收参数的两个第二信道状态信息参考信号与作为该控制资源集所关联的两个空间接收参数的两个第二信道状态信息参考信号分别相同;和/或,该第一信道状态信息参考信号所关联的两个空间接收参数所分别关联的两个同步信号块(SSB)与该控制资源集所关联的两个空间接收参数所分别关联的两个同步信号块相同。
在本申请实施例中,该空间接收参数例如是QCL-typeD参数。
在本申请实施例中,该第一CSI-RS与该CORESET可以在相同的或不同的带内 载波分量上。
在本申请实施例中,例如,该天线面板信息包括以下信息中的至少一个:显式地指示的面板标识(panel ID);天线端口分组信息;天线面板分组信息;以及与信道状态信息报告(CSI report)相关的信息。
由上述实施例可知,终端设备根据第一CSI-RS所关联的空间接收参数与CORESET所关联的不同的两个空间接收参数的关系,确定接收该第一CSI-RS使用的空间接收参数,这样,在该CORESET与不同的两个空间接收参数关联时,能够确定用于接收该第一CSI-RS的空间方向。
实施例5
本申请实施例5提供了一种无线通信的装置,该装置应用于网络设备侧。由于该装置解决问题的原理与实施例2的方法类似,因此其具体的实施可以参照实施例2所述的方法的实施,内容相同或相关之处不再重复说明。
图24是本申请实施例5的无线通信的装置的一示意图,如图24所示,装置2400包括:
第九确定单元2401,其用于根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定发送该第一信道状态信息参考信号使用的空间发送参数,其中,该第一信道状态信息参考信号与该控制资源集关联的搜索空间集在时域上重叠;以及
发送单元2402,其用于根据确定的该空间发送参数,发送该第一信道状态信息参考信号。
在本申请实施例中,该第一CSI-RS与该CORESET关联的搜索空间集在时域上重叠,例如,该第一CSI-RS与该CORESET位于相同的OFDM符号。
在本申请实施例中,该第一CSI-RS与该CORESET可以在相同的或不同的带内载波分量(intra-band component carriers)上。
图25是本申请实施例5的第九确定单元的一示意图,如图25所示,该第九确定单元2401包括:
第十确定单元2501,其用于根据第一信道状态信息参考信号所关联的空间接收参数以及该第一信道状态信息参考信号所关联的天线面板(panel)信息与控制资源集所关联的两个空间接收参数以及该控制资源集所关联的天线面板信息的关系,确定发 送该第一信道状态信息参考信号使用的空间发送参数。
在本申请实施例中,如图25所示,第九确定单元2401还可以包括:
第十一确定单元2502,其用于当该第一信道状态信息参考信号所关联的一个空间接收参数与该控制资源集所关联的两个空间接收参数均不同时,根据该控制资源集所关联的两个空间接收参数中的一个空间接收参数确定发送该第一信道状态信息参考信号使用的空间发送参数。
在本申请实施例中,如图25所示,第九确定单元2401还可以包括:
第十二确定单元2503,其用于当该第一信道状态信息参考信号所关联的一个空间接收参数与该控制资源集所关联的两个空间接收参数均不同时,根据该控制资源集所关联的两个空间接收参数确定发送该第一信道状态信息参考信号使用的空间发送参数。
在本申请实施例中,如图25所示,第九确定单元2401还可以包括:
第十三确定单元2504,其用于当该第一信道状态信息参考信号所关联的一个空间接收参数与该控制资源集所关联的两个空间接收参数中的一个空间接收参数相同时,根据该信道状态信息参考信号所关联的该空间接收参数确定发送该第一信道状态信息参考信号使用的空间发送参数;和/或,
第十四确定单元2505,其用于当该第一信道状态信息参考信号所关联的两个空间接收参数与该控制资源集所关联的两个空间接收参数分别相同时,根据该信道状态信息参考信号所关联的该两个空间接收参数确定发送该第一信道状态信息参考信号使用的空间发送参数。
图26是本申请实施例5的第十确定单元的一示意图,如图26所示,第十确定单元2501包括:
第十五确定单元2601,其用于当该第一信道状态信息参考信号所关联的一个空间接收参数与该控制资源集所关联的两个空间接收参数中的一个空间接收参数相同,且该第一信道状态信息参考信号所关联的一个天线面板信息与该控制资源集所关联的两个空间接收参数中的一个所关联的天线面板信息相同时,根据该信道状态信息参考信号所关联的该空间接收参数确定发送该第一信道状态信息参考信号使用的空间发送参数;和/或,
第十六确定单元2602,其用于当该第一信道状态信息参考信号所关联的两个空 间接收参数与该控制资源集所关联的两个空间接收参数分别相同,且该第一信道状态信息参考信号所关联的两个天线面板信息与该控制资源集所关联的两个天线面板信息分别相同时,根据该信道状态信息参考信号所关联的该两个空间接收参数确定发送该第一信道状态信息参考信号使用的空间发送参数。
由上述实施例可知,网络设备根据第一CSI-RS所关联的空间接收参数与CORESET所关联的不同的两个空间接收参数的关系,确定发送该第一CSI-RS使用的空间发送参数,这样,在该CORESET与不同的两个空间接收参数关联时,终端设备能够确定用于接收该第一CSI-RS的空间方向。
实施例6
本申请实施例提供了一种终端设备,该终端设备包括如实施例4所述的无线通信的装置。
图27是本发明实施例6的终端设备的系统构成的一示意框图。如图27所示,终端设备2700可以包括处理器2710和存储器2720;存储器2720耦合到处理器2710。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
在一个实施方式中,无线通信的装置的功能可以被集成到处理器2710中。其中,处理器2710可以被配置为:根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定接收该第一信道状态信息参考信号使用的空间接收参数,其中,该第一信道状态信息参考信号与该控制资源集关联的搜索空间集在时域上重叠;以及根据确定的该空间接收参数,接收该第一信道状态信息参考信号。
在本申请实施例中,该第一CSI-RS与该CORESET关联的搜索空间集在时域上重叠,例如,该第一CSI-RS与该CORESET位于相同的OFDM符号。
在本申请实施例中,该第一CSI-RS与该CORESET可以在相同的或不同的带内载波分量(intra-band component carriers)上。
在另一个实施方式中,无线通信的装置可以与处理器2710分开配置,例如可以将无线通信的装置配置为与处理器2710连接的芯片,通过处理器2710的控制来实现无线通信的装置的功能。
如图27所示,终端设备2700还可以包括:通信模块2730、输入单元2740、显 示器2750、电源2760。值得注意的是,终端设备2700也并不是必须要包括图27中所示的所有部件;此外,终端设备2700还可以包括图27中没有示出的部件,可以参考相关技术。
如图27所示,处理器2710有时也称为控制器或操作控件,可以包括微处理器或其他处理器装置和/或逻辑装置,该处理器2710接收输入并控制终端设备1600的各个部件的操作。
其中,存储器2720,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存各种数据,此外还可存储执行有关信息的程序。并且处理器2710可执行该存储器2720存储的该程序,以实现信息存储或处理等。其他部件的功能与现有类似,此处不再赘述。终端设备2700的各部件可以通过专用硬件、固件、软件或其结合来实现,而不偏离本发明的范围。
由上述实施例可知,终端设备根据第一CSI-RS所关联的空间接收参数与CORESET所关联的不同的两个空间接收参数的关系,确定接收该第一CSI-RS使用的空间接收参数,这样,在该CORESET与不同的两个空间接收参数关联时,能够确定用于接收该第一CSI-RS的空间方向。
实施例7
本申请实施例提供了一种网络设备,该网络设备包括如实施例5所述的无线通信的装置。
图28是本发明实施例7的网络设备的系统构成的一示意框图。如图28所示,网络设备2800可以包括:处理器(processor)2810和存储器2820;存储器2820耦合到处理器2810。其中该存储器2820可存储各种数据;此外还存储信息处理的程序2830,并且在处理器2810的控制下执行该程序2830,以接收终端设备发送的各种信息、并且向终端设备发送各种信息。
在一个实施方式中,无线通信的装置的功能可以被集成到处理器2810中。其中,处理器2810可以被配置为:根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定发送该第一信道状态信息参考信号使用的空间发送参数,其中,该第一信道状态信息参考信号与该控制资源集关联的搜索空间集在时域上重叠;以及根据确定的该空 间发送参数,发送该第一信道状态信息参考信号。
在本申请实施例中,该第一CSI-RS与该CORESET关联的搜索空间集在时域上重叠,例如,该第一CSI-RS与该CORESET位于相同的OFDM符号。
在本申请实施例中,该第一CSI-RS与该CORESET可以在相同的或不同的带内载波分量(intra-band component carriers)上。
在另一个实施方式中,无线通信的装置可以与处理器2810分开配置,例如可以将无线通信的装置配置为与处理器2810连接的芯片,通过处理器2810的控制来实现无线通信的装置的功能。
此外,如图28所示,网络设备2800还可以包括:收发机2840和天线2850等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备2800也并不是必须要包括图28中所示的所有部件;此外,网络设备2800还可以包括图28中没有示出的部件,可以参考现有技术。
由上述实施例可知,网络设备根据第一CSI-RS所关联的空间接收参数与CORESET所关联的不同的两个空间接收参数的关系,确定发送该第一CSI-RS使用的空间发送参数,这样,在该CORESET与不同的两个空间接收参数关联时,终端设备能够确定用于接收该第一CSI-RS的空间方向。
实施例8
本申请实施例提供了一种通信系统,包括如实施例6所述的用户设备和/或如实施例7所述的网络设备。
例如,该通信系统的结构可以参照图1,如图1所示,通信系统100包括网络设备101和终端设备102,终端设备102可以与实施例6中记载的终端设备相同,网络设备101与实施例7中记载的网络设备相同,重复的内容不再赘述。
由上述实施例可知,终端设备根据第一CSI-RS所关联的空间接收参数与CORESET所关联的不同的两个空间接收参数的关系,确定接收该第一CSI-RS使用的空间接收参数,这样,在该CORESET与不同的两个空间接收参数关联时,能够确定用于接收该第一CSI-RS的空间方向。
本申请实施例以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请实施例涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法 或步骤。本申请实施例还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图21中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图3所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对图21中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本发明所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对图21描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
1、一种无线通信的装置,所述装置用于终端设备侧,所述装置包括:
第一确定单元,其用于根据第一信道状态信息参考信号(CSI-RS)所关联的空间 接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定接收所述第一信道状态信息参考信号使用的空间接收参数,其中,所述第一信道状态信息参考信号与所述控制资源集关联的搜索空间集在时域上重叠;以及
第一接收单元,其用于根据确定的所述空间接收参数,接收所述第一信道状态信息参考信号。
2、根据附记1所述的装置,其中,所述第一确定单元包括:
第二确定单元,其用于根据第一信道状态信息参考信号所关联的空间接收参数以及所述第一信道状态信息参考信号所关联的天线面板(panel)信息与控制资源集所关联的两个空间接收参数以及所述控制资源集所关联的天线面板信息的关系,确定接收所述第一信道状态信息参考信号使用的空间接收参数。
3、根据附记1所述的装置,其中,所述第一确定单元包括:
第三确定单元,其用于当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数均不同时,将所述控制资源集所关联的两个空间接收参数中的一个空间接收参数确定为接收所述第一信道状态信息参考信号使用的空间接收参数。
4、根据附记1所述的装置,其中,所述第一确定单元包括:
第四确定单元,其用于当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数均不同时,将所述控制资源集所关联的两个空间接收参数确定为接收所述第一信道状态信息参考信号使用的空间接收参数。
5、根据附记3或4所述的装置,其中,
当一个空间接收参数为信道状态信息参考信号,另一个空间接收参数为同步信号块(SSB)时,则认为这两个空间接收参数不同。
6、根据附记3或4所述的装置,其中,
当一个空间接收参数为一个信道状态信息参考信号,另一个空间接收参数为另一个信道状态信息参考信号时,并且这两个信道状态信息参考信号所关联的同步信号块不同时,则认为这两个空间接收参数不同。
7、根据附记3或4所述的装置,其中,
当一个空间接收参数关联的天线面板信息与另一个空间接收参数所关联的天线 面板信息不同时,则认为这两个空间接收参数不同。
8、根据附记3所述的装置,其中,所述控制资源集所关联的两个空间接收参数中的一个空间接收参数是,
根据所述两个空间接收参数所关联的SSB的确定的。
9、根据附记3所述的装置,其中,所述控制资源集所关联的两个空间接收参数中的一个空间接收参数是,
根据所述两个空间接收参数所关联的TCI状态确定的。
10、根据附记3所述的装置,其中,所述控制资源集所关联的两个空间接收参数中的一个空间接收参数是,
根据所述两个空间接收参数所关联的第二信道状态信息参考信号的索引确定的。
11、根据附记3所述的装置,其中,所述控制资源集所关联的两个空间接收参数中的一个空间接收参数是,
根据所述两个空间接收参数所关联的第二信道状态信息参考信号的天线面板信息确定的。
12、根据附记8所述的装置,其中,
所述第一信道状态信息参考信号所关联的空间接收参数为一个同步信号块;
所述控制资源集所关联的两个空间接收参数中的一个空间接收参数是,所述控制资源集所关联的两个空间接收参数中与所述同步信号块关联的空间接收参数。
13、根据附记9所述的装置,其中,所述控制资源集所关联的两个空间接收参数中的一个空间接收参数是,
所述两个空间接收参数所关联的TCI状态的索引最小的空间接收参数。
14、根据附记10所述的装置,其中,所述控制资源集所关联的两个空间接收参数中的一个空间接收参数是,
所述两个空间接收参数所关联的第二信道状态信息参考信号的索引最小的空间接收参数。
15、根据附记11所述的装置,其中,
所述第一信道状态信息参考信号与一个天线面板信息关联;
所述控制资源集所关联的两个空间接收参数中的一个空间接收参数是,所述控制资源集所关联的两个空间接收参数中与所述天线面板信息关联的空间接收参数。
16、根据附记1-15中的任一项所述的装置,其中,
所述第一信道状态信息参考信号是用于时频追踪的信道状态信息参考信号或用于波束管理的信道状态信息参考信号。
17、根据附记1-15中的任一项所述的装置,其中,
所述第一信道状态信息参考信号是用于信道状态信息测量的信道状态信息参考信号。
18、根据附记1-15中的任一项所述的装置,其中,
所述第一信道状态信息参考信号与两个空间接收参数关联。
19、根据附记1所述的装置,其中,所述第一确定单元包括:
第五确定单元,其用于当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数中的一个空间接收参数相同时,将所述信道状态信息参考信号所关联的所述空间接收参数确定为接收所述第一信道状态信息参考信号使用的空间接收参数;和/或,
第六确定单元,其用于当所述第一信道状态信息参考信号所关联的两个空间接收参数与所述控制资源集所关联的两个空间接收参数分别相同时,将所述信道状态信息参考信号所关联的所述两个空间接收参数确定为接收所述第一信道状态信息参考信号使用的空间接收参数。
20、根据附记2所述的装置,其中,所述第二确定单元包括:
第七确定单元,其用于当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数中的一个空间接收参数相同,且所述第一信道状态信息参考信号所关联的一个天线面板信息与所述控制资源集所关联的两个空间接收参数中的一个所关联的天线面板信息相同时,将所述信道状态信息参考信号所关联的所述空间接收参数确定为接收所述第一信道状态信息参考信号使用的空间接收参数;和/或,
第八确定单元,其用于当所述第一信道状态信息参考信号所关联的两个空间接收参数与所述控制资源集所关联的两个空间接收参数分别相同,且所述第一信道状态信息参考信号所关联的两个天线面板信息与所述控制资源集所关联的两个天线面板信息分别相同时,将所述信道状态信息参考信号所关联的所述两个空间接收参数确定为接收所述第一信道状态信息参考信号使用的空间接收参数。
21、根据附记19或20所述的装置,其中,所述信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数中的一个空间接收参数相同,包括:
作为所述第一信道状态信息参考信号所关联的一个空间接收参数的一个第二信道状态信息参考信号与作为所述控制资源集所关联的两个空间接收参数中的一个空间接收参数的一个第二信道状态信息参考信号相同;和/或,
所述第一信道状态信息参考信号所关联的一个空间接收参数所关联的一个同步信号块(SSB)与所述控制资源集所关联的两个空间接收参数中的一个空间接收参数所关联的一个同步信号块相同。
22、根据附记19或20所述的装置,其中,所述第一信道状态信息参考信号所关联的两个空间接收参数与所述控制资源集所关联的两个空间接收参数分别相同,包括:
作为所述第一信道状态信息参考信号所关联的两个空间接收参数的两个第二信道状态信息参考信号与作为所述控制资源集所关联的两个空间接收参数的两个第二信道状态信息参考信号分别相同;和/或,
所述第一信道状态信息参考信号所关联的两个空间接收参数所分别关联的两个同步信号块(SSB)与所述控制资源集所关联的两个空间接收参数所分别关联的两个同步信号块相同。
23、根据附记1-22中的任一项所述的装置,其中,
所述空间接收参数是QCL-typeD参数。
24、根据附记1-23中的任一项所述的装置,其中,
所述第一信道状态信息参考信号与所述控制资源集在相同的或不同的带内载波分量上。
25、根据附记2所述的装置,其中,所述天线面板信息包括以下信息中的至少一个:
显式地指示的面板标识(panel ID);
天线端口分组信息;
天线面板分组信息;以及
与信道状态信息报告(CSI report)相关的信息。
26、一种无线通信的装置,所述装置用于网络设备侧,所述装置包括:
第九确定单元,其用于根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定发送所述第一信道状态信息参考信号使用的空间发送参数,其中,所述第一信道状态信息参考信号与所述控制资源集关联的搜索空间集在时域上重叠;以及
发送单元,其用于根据确定的所述空间发送参数,发送所述第一信道状态信息参考信号。
27、根据附记25所述的装置,其中,所述第九确定单元包括:
第十确定单元,其用于根据第一信道状态信息参考信号所关联的空间接收参数以及所述第一信道状态信息参考信号所关联的天线面板(panel)信息与控制资源集所关联的两个空间接收参数以及所述控制资源集所关联的天线面板信息的关系,确定发送所述第一信道状态信息参考信号使用的空间发送参数。
28、根据附记26所述的装置,其中,所述第九确定单元包括:
第十一确定单元,其用于当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数均不同时,根据所述控制资源集所关联的两个空间接收参数中的一个空间接收参数确定发送所述第一信道状态信息参考信号使用的空间发送参数。
29、根据附记26所述的装置,其中,所述第九确定单元包括:
第十二确定单元,其用于当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数均不同时,根据所述控制资源集所关联的两个空间接收参数确定发送所述第一信道状态信息参考信号使用的空间发送参数。
30、根据附记26所述的装置,其中,所述第九确定单元包括:
第十三确定单元,其用于当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数中的一个空间接收参数相同时,根据所述信道状态信息参考信号所关联的所述空间接收参数确定发送所述第一信道状态信息参考信号使用的空间发送参数;和/或,
第十四确定单元,其用于当所述第一信道状态信息参考信号所关联的两个空间接收参数与所述控制资源集所关联的两个空间接收参数分别相同时,根据所述信道状态 信息参考信号所关联的所述两个空间接收参数确定发送所述第一信道状态信息参考信号使用的空间发送参数。
31、根据附记27所述的装置,其中,所述第十确定单元包括:
第十五确定单元,其用于当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数中的一个空间接收参数相同,且所述第一信道状态信息参考信号所关联的一个天线面板信息与所述控制资源集所关联的两个空间接收参数中的一个所关联的天线面板信息相同时,根据所述信道状态信息参考信号所关联的所述空间接收参数确定发送所述第一信道状态信息参考信号使用的空间发送参数;和/或,
第十六确定单元,其用于当所述第一信道状态信息参考信号所关联的两个空间接收参数与所述控制资源集所关联的两个空间接收参数分别相同,且所述第一信道状态信息参考信号所关联的两个天线面板信息与所述控制资源集所关联的两个天线面板信息分别相同时,根据所述信道状态信息参考信号所关联的所述两个空间接收参数确定发送所述第一信道状态信息参考信号使用的空间发送参数。
32、一种终端设备,所述终端设备包括根据附记1-25中的任一项所述的装置。
33、一种网络设备,所述网络设备包括根据附记26-31中的任一项所述的装置。
34、一种通信系统,所述通信系统包括根据附记32所述的终端设备和/或根据附记33所述的网络设备。
35、一种无线通信的方法,所述方法用于终端设备侧,所述方法包括:
根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定接收所述第一信道状态信息参考信号使用的空间接收参数,其中,所述第一信道状态信息参考信号与所述控制资源集关联的搜索空间集在时域上重叠;以及
根据确定的所述空间接收参数,接收所述第一信道状态信息参考信号。
36、根据附记35所述的方法,其中,所述根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定接收所述第一信道状态信息参考信号使用的空间接收参数,包括:
根据第一信道状态信息参考信号所关联的空间接收参数以及所述第一信道状态 信息参考信号所关联的天线面板(panel)信息与控制资源集所关联的两个空间接收参数以及所述控制资源集所关联的天线面板信息的关系,确定接收所述第一信道状态信息参考信号使用的空间接收参数。
37、根据附记35所述的方法,其中,所述根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定接收所述第一信道状态信息参考信号使用的空间接收参数,包括:
当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数均不同时,将所述控制资源集所关联的两个空间接收参数中的一个空间接收参数确定为接收所述第一信道状态信息参考信号使用的空间接收参数。
38、根据附记35所述的方法,其中,所述根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定接收所述第一信道状态信息参考信号使用的空间接收参数,包括:
当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数均不同时,将所述控制资源集所关联的两个空间接收参数确定为接收所述第一信道状态信息参考信号使用的空间接收参数。
39、根据附记37或38所述的方法,其中,
当一个空间接收参数为信道状态信息参考信号,另一个空间接收参数为同步信号块(SSB)时,则认为这两个空间接收参数不同。
40、根据附记37或38所述的方法,其中,
当一个空间接收参数为一个信道状态信息参考信号,另一个空间接收参数为另一个信道状态信息参考信号时,并且这两个信道状态信息参考信号所关联的同步信号块不同时,则认为这两个空间接收参数不同。
41、根据附记37或38所述的方法,其中,
当一个空间接收参数关联的天线面板信息与另一个空间接收参数所关联的天线面板信息不同时,则认为这两个空间接收参数不同。
42、根据附记37所述的方法,其中,所述控制资源集所关联的两个空间接收参 数中的一个空间接收参数是,
根据所述两个空间接收参数所关联的SSB的确定的。
43、根据附记37所述的方法,其中,所述控制资源集所关联的两个空间接收参数中的一个空间接收参数是,
根据所述两个空间接收参数所关联的TCI状态确定的。
44、根据附记37所述的方法,其中,所述控制资源集所关联的两个空间接收参数中的一个空间接收参数是,
根据所述两个空间接收参数所关联的第二信道状态信息参考信号的索引确定的。
45、根据附记37所述的方法,其中,所述控制资源集所关联的两个空间接收参数中的一个空间接收参数是,
根据所述两个空间接收参数所关联的第二信道状态信息参考信号的天线面板信息确定的。
46、根据附记42所述的方法,其中,
所述第一信道状态信息参考信号所关联的空间接收参数为一个同步信号块;
所述控制资源集所关联的两个空间接收参数中的一个空间接收参数是,所述控制资源集所关联的两个空间接收参数中与所述同步信号块关联的空间接收参数。
47、根据附记43所述的方法,其中,所述控制资源集所关联的两个空间接收参数中的一个空间接收参数是,
所述两个空间接收参数所关联的TCI状态的索引最小的空间接收参数。
48、根据附记44所述的方法,其中,所述控制资源集所关联的两个空间接收参数中的一个空间接收参数是,
所述两个空间接收参数所关联的第二信道状态信息参考信号的索引最小的空间接收参数。
49、根据附记45所述的方法,其中,
所述第一信道状态信息参考信号与一个天线面板信息关联;
所述控制资源集所关联的两个空间接收参数中的一个空间接收参数是,所述控制资源集所关联的两个空间接收参数中与所述天线面板信息关联的空间接收参数。
50、根据附记35-49中的任一项所述的方法,其中,
所述第一信道状态信息参考信号是用于时频追踪的信道状态信息参考信号或用 于波束管理的信道状态信息参考信号。
51、根据附记35-49中的任一项所述的方法,其中,
所述第一信道状态信息参考信号是用于信道状态信息测量的信道状态信息参考信号。
52、根据附记35-49中的任一项所述的方法,其中,
所述第一信道状态信息参考信号与两个空间接收参数关联。
53、根据附记35所述的方法,其中,所述根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定接收所述第一信道状态信息参考信号使用的空间接收参数,包括:
当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数中的一个空间接收参数相同时,将所述信道状态信息参考信号所关联的所述空间接收参数确定为接收所述第一信道状态信息参考信号使用的空间接收参数;和/或,
当所述第一信道状态信息参考信号所关联的两个空间接收参数与所述控制资源集所关联的两个空间接收参数分别相同时,将所述信道状态信息参考信号所关联的所述两个空间接收参数确定为接收所述第一信道状态信息参考信号使用的空间接收参数。
54、根据附记36所述的方法,其中,所述根据第一信道状态信息参考信号所关联的空间接收参数以及所述第一信道状态信息参考信号所关联的天线面板(panel)参数与控制资源集所关联的两个空间接收参数以及所述控制资源集所关联的天线面板信息的关系,确定接收所述第一信道状态信息参考信号使用的空间接收参数,包括:
当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数中的一个空间接收参数相同,且所述第一信道状态信息参考信号所关联的一个天线面板信息与所述控制资源集所关联的两个空间接收参数中的一个所关联的天线面板信息相同时,将所述信道状态信息参考信号所关联的所述空间接收参数确定为接收所述第一信道状态信息参考信号使用的空间接收参数;和/或,
当所述第一信道状态信息参考信号所关联的两个空间接收参数与所述控制资源 集所关联的两个空间接收参数分别相同,且所述第一信道状态信息参考信号所关联的两个天线面板信息与所述控制资源集所关联的两个天线面板信息分别相同时,将所述信道状态信息参考信号所关联的所述两个空间接收参数确定为接收所述第一信道状态信息参考信号使用的空间接收参数。
55、根据附记53或54所述的方法,其中,所述信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数中的一个空间接收参数相同,包括:
作为所述第一信道状态信息参考信号所关联的一个空间接收参数的一个第二信道状态信息参考信号与作为所述控制资源集所关联的两个空间接收参数中的一个空间接收参数的一个第二信道状态信息参考信号相同;和/或,
所述第一信道状态信息参考信号所关联的一个空间接收参数所关联的一个同步信号块(SSB)与所述控制资源集所关联的两个空间接收参数中的一个空间接收参数所关联的一个同步信号块相同。
56、根据附记53或54所述的方法,其中,所述第一信道状态信息参考信号所关联的两个空间接收参数与所述控制资源集所关联的两个空间接收参数分别相同,包括:
作为所述第一信道状态信息参考信号所关联的两个空间接收参数的两个第二信道状态信息参考信号与作为所述控制资源集所关联的两个空间接收参数的两个第二信道状态信息参考信号分别相同;和/或,
所述第一信道状态信息参考信号所关联的两个空间接收参数所分别关联的两个同步信号块(SSB)与所述控制资源集所关联的两个空间接收参数所分别关联的两个同步信号块相同。
57、根据附记35-56中的任一项所述的方法,其中,
所述空间接收参数是QCL-typeD参数。
58、根据附记35-57中的任一项所述的方法,其中,
所述第一信道状态信息参考信号与所述控制资源集在相同的或不同的带内载波分量上。
59、根据附记36所述的方法,其中,所述天线面板信息包括以下信息中的至少一个:
显式地指示的面板标识(panel ID);
天线端口分组信息;
天线面板分组信息;以及
与信道状态信息报告(CSI report)相关的信息。
60、一种无线通信的方法,所述方法用于网络设备侧,所述方法包括:
根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定发送所述第一信道状态信息参考信号使用的空间发送参数,其中,所述第一信道状态信息参考信号与所述控制资源集关联的搜索空间集在时域上重叠;以及
根据确定的所述空间发送参数,发送所述第一信道状态信息参考信号。
61、根据附记60所述的方法,其中,所述根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定发送所述第一信道状态信息参考信号使用的空间发送参数,包括:
根据第一信道状态信息参考信号所关联的空间接收参数以及所述第一信道状态信息参考信号所关联的天线面板(panel)信息与控制资源集所关联的两个空间接收参数以及所述控制资源集所关联的天线面板信息的关系,确定发送所述第一信道状态信息参考信号使用的空间发送参数。
62、根据附记60所述的方法,其中,所述根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定发送所述第一信道状态信息参考信号使用的空间发送参数,包括:
当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数均不同时,根据所述控制资源集所关联的两个空间接收参数中的一个空间接收参数确定发送所述第一信道状态信息参考信号使用的空间发送参数。
63、根据附记60所述的方法,其中,所述根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定发送所述第一信道状态信息参考信号使用的空间发送参 数,包括:
当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数均不同时,根据所述控制资源集所关联的两个空间接收参数确定发送所述第一信道状态信息参考信号使用的空间发送参数。
64、根据附记60所述的方法,其中,所述根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的两个空间接收参数数的关系,确定发送所述第一信道状态信息参考信号使用的空间发送参数,包括:
当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数中的一个空间接收参数相同时,根据所述信道状态信息参考信号所关联的所述空间接收参数确定发送所述第一信道状态信息参考信号使用的空间发送参数;和/或,
当所述第一信道状态信息参考信号所关联的两个空间接收参数与所述控制资源集所关联的两个空间接收参数分别相同时,根据所述信道状态信息参考信号所关联的所述两个空间接收参数确定发送所述第一信道状态信息参考信号使用的空间发送参数。
65、根据附记61所述的方法,其中,所述根据第一信道状态信息参考信号所关联的空间接收参数以及所述第一信道状态信息参考信号所关联的天线面板(panel)参数与控制资源集所关联的两个空间接收参数以及所述控制资源集所关联的天线面板信息的关系,确定发送所述第一信道状态信息参考信号使用的空间发送参数,包括:
当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数中的一个空间接收参数相同,且所述第一信道状态信息参考信号所关联的一个天线面板信息与所述控制资源集所关联的两个空间接收参数中的一个所关联的天线面板信息相同时,根据所述信道状态信息参考信号所关联的所述空间接收参数确定发送所述第一信道状态信息参考信号使用的空间发送参数;和/或,
当所述第一信道状态信息参考信号所关联的两个空间接收参数与所述控制资源集所关联的两个空间接收参数分别相同,且所述第一信道状态信息参考信号所关联的两个天线面板信息与所述控制资源集所关联的两个天线面板信息分别相同时,根据所述信道状态信息参考信号所关联的所述两个空间接收参数确定发送所述第一信道状态信息参考信号使用的空间发送参数。

Claims (20)

  1. 一种无线通信的装置,所述装置用于终端设备侧,所述装置包括:
    第一确定单元,其用于根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定接收所述第一信道状态信息参考信号使用的空间接收参数,其中,所述第一信道状态信息参考信号与所述控制资源集关联的搜索空间集在时域上重叠;以及
    第一接收单元,其用于根据确定的所述空间接收参数,接收所述第一信道状态信息参考信号。
  2. 根据权利要求1所述的装置,其中,所述第一确定单元包括:
    第二确定单元,其用于根据第一信道状态信息参考信号所关联的空间接收参数以及所述第一信道状态信息参考信号所关联的天线面板(panel)信息与控制资源集所关联的两个空间接收参数以及所述控制资源集所关联的天线面板信息的关系,确定接收所述第一信道状态信息参考信号使用的空间接收参数。
  3. 根据权利要求1所述的装置,其中,所述第一确定单元包括:
    第三确定单元,其用于当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数均不同时,将所述控制资源集所关联的两个空间接收参数中的一个空间接收参数确定为接收所述第一信道状态信息参考信号使用的空间接收参数。
  4. 根据权利要求1所述的装置,其中,所述第一确定单元包括:
    第四确定单元,其用于当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数均不同时,将所述控制资源集所关联的两个空间接收参数确定为接收所述第一信道状态信息参考信号使用的空间接收参数。
  5. 根据权利要求3所述的装置,其中,
    当一个空间接收参数为信道状态信息参考信号,另一个空间接收参数为同步信号块(SSB)时,则认为这两个空间接收参数不同。
  6. 根据权利要求3所述的装置,其中,
    当一个空间接收参数为一个信道状态信息参考信号,另一个空间接收参数为另一 个信道状态信息参考信号时,并且这两个信道状态信息参考信号所关联的同步信号块不同时,则认为这两个空间接收参数不同。
  7. 根据权利要求3所述的装置,其中,
    当一个空间接收参数关联的天线面板信息与另一个空间接收参数所关联的天线面板信息不同时,则认为这两个空间接收参数不同。
  8. 根据权利要求3所述的装置,其中,所述控制资源集所关联的两个空间接收参数中的一个空间接收参数是,
    根据所述两个空间接收参数所关联的SSB的确定的。
  9. 根据权利要求3所述的装置,其中,所述控制资源集所关联的两个空间接收参数中的一个空间接收参数是,
    根据所述两个空间接收参数所关联的TCI状态确定的。
  10. 根据权利要求3所述的装置,其中,所述控制资源集所关联的两个空间接收参数中的一个空间接收参数是,
    根据所述两个空间接收参数所关联的第二信道状态信息参考信号的索引确定的。
  11. 根据权利要求3所述的装置,其中,所述控制资源集所关联的两个空间接收参数中的一个空间接收参数是,
    根据所述两个空间接收参数所关联的第二信道状态信息参考信号的天线面板信息确定的。
  12. 根据权利要求1所述的装置,其中,
    所述第一信道状态信息参考信号与两个空间接收参数关联。
  13. 根据权利要求1所述的装置,其中,所述第一确定单元包括:
    第五确定单元,其用于当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数中的一个空间接收参数相同时,将所述信道状态信息参考信号所关联的所述空间接收参数确定为接收所述第一信道状态信息参考信号使用的空间接收参数;和/或,
    第六确定单元,其用于当所述第一信道状态信息参考信号所关联的两个空间接收参数与所述控制资源集所关联的两个空间接收参数分别相同时,将所述信道状态信息参考信号所关联的所述两个空间接收参数确定为接收所述第一信道状态信息参考信号使用的空间接收参数。
  14. 根据权利要求2所述的装置,其中,所述第二确定单元包括:
    第七确定单元,其用于当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数中的一个空间接收参数相同,且所述第一信道状态信息参考信号所关联的一个天线面板信息与所述控制资源集所关联的两个空间接收参数中的一个所关联的天线面板信息相同时,将所述信道状态信息参考信号所关联的所述空间接收参数确定为接收所述第一信道状态信息参考信号使用的空间接收参数;和/或,
    第八确定单元,其用于当所述第一信道状态信息参考信号所关联的两个空间接收参数与所述控制资源集所关联的两个空间接收参数分别相同,且所述第一信道状态信息参考信号所关联的两个天线面板信息与所述控制资源集所关联的两个天线面板信息分别相同时,将所述信道状态信息参考信号所关联的所述两个空间接收参数确定为接收所述第一信道状态信息参考信号使用的空间接收参数。
  15. 根据权利要求1所述的装置,其中,
    所述第一信道状态信息参考信号与所述控制资源集在相同的或不同的带内载波分量上。
  16. 根据权利要求2所述的装置,其中,所述天线面板信息包括以下信息中的至少一个:
    显式地指示的面板标识(panel ID);
    天线端口分组信息;
    天线面板分组信息;以及
    与信道状态信息报告(CSI report)相关的信息。
  17. 一种无线通信的装置,所述装置用于网络设备侧,所述装置包括:
    第九确定单元,其用于根据第一信道状态信息参考信号(CSI-RS)所关联的空间接收参数与控制资源集(CORESET)所关联的不同的两个空间接收参数的关系,确定发送所述第一信道状态信息参考信号使用的空间发送参数,其中,所述第一信道状态信息参考信号与所述控制资源集关联的搜索空间集在时域上重叠;以及
    发送单元,其用于根据确定的所述空间发送参数,发送所述第一信道状态信息参考信号。
  18. 根据权利要求17所述的装置,其中,所述第九确定单元包括:
    第十确定单元,其用于根据第一信道状态信息参考信号所关联的空间接收参数以及所述第一信道状态信息参考信号所关联的天线面板(panel)信息与控制资源集所关联的两个空间接收参数以及所述控制资源集所关联的天线面板信息的关系,确定发送所述第一信道状态信息参考信号使用的空间发送参数。
  19. 根据权利要求17所述的装置,其中,所述第九确定单元包括:
    第十一确定单元,其用于当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数均不同时,根据所述控制资源集所关联的两个空间接收参数中的一个空间接收参数确定发送所述第一信道状态信息参考信号使用的空间发送参数。
  20. 根据权利要求17所述的装置,其中,所述第九确定单元包括:
    第十二确定单元,其用于当所述第一信道状态信息参考信号所关联的一个空间接收参数与所述控制资源集所关联的两个空间接收参数均不同时,根据所述控制资源集所关联的两个空间接收参数确定发送所述第一信道状态信息参考信号使用的空间发送参数。
PCT/CN2021/071809 2021-01-14 2021-01-14 无线通信的装置及方法 WO2022151174A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071809 WO2022151174A1 (zh) 2021-01-14 2021-01-14 无线通信的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071809 WO2022151174A1 (zh) 2021-01-14 2021-01-14 无线通信的装置及方法

Publications (1)

Publication Number Publication Date
WO2022151174A1 true WO2022151174A1 (zh) 2022-07-21

Family

ID=82447806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071809 WO2022151174A1 (zh) 2021-01-14 2021-01-14 无线通信的装置及方法

Country Status (1)

Country Link
WO (1) WO2022151174A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090060A1 (ja) * 2018-10-31 2020-05-07 株式会社Nttドコモ ユーザ端末及び無線通信方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090060A1 (ja) * 2018-10-31 2020-05-07 株式会社Nttドコモ ユーザ端末及び無線通信方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Maintenance of Rel-16 Multi-TRP operation", 3GPP DRAFT; R1-2006842, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051915487 *
ZTE: "Considerations on beam management for multi-TRP", 3GPP DRAFT; R1-1906244 CONSIDERATIONS ON BEAM MANAGEMENT FOR MULTI-TRP, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051727697 *
ZTE: "Maintenance of multi-TRP enhancements", 3GPP DRAFT; R1-2007750, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 17 October 2020 (2020-10-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051939890 *

Similar Documents

Publication Publication Date Title
US11825503B2 (en) Channel quality indicator reporting
CN111972004B (zh) Scell bfr期间的用户设备接收机空间滤波器配置的方法和装置
CN109246743B (zh) 一种波束管理方法及终端设备、网络设备
CN108810922B (zh) 一种通信方法及终端、基站
US20210091900A1 (en) Communication method and communications apparatus
EP3952419A1 (en) Secondary cell activation method and apparatus
WO2016165128A1 (zh) 传输信息的方法、基站和用户设备
WO2020228589A1 (zh) 通信方法和通信装置
US20230144010A1 (en) Methods, apparatuses and systems directed to beam management in connection with multiple cells and/or multiple transmission/reception points
WO2019137346A1 (zh) 监控信道质量的方法和终端设备
WO2018127115A1 (zh) 无线通信的方法、终端设备和网络设备
US11272487B2 (en) Method and apparatus for configuring a triggering condition of a beam failure event and a communication system
WO2018201475A1 (zh) 信息指示方法、检测方法及其装置、通信系统
US11490283B2 (en) L1-SINR measurement period based on channel measurement resource (CMR) and interference measurement resource (IMR)
WO2018137703A1 (zh) 一种信息传输方法和装置
WO2019157663A1 (zh) 参考信号资源的发送位置的指示方法、装置及通信系统
KR102594392B1 (ko) 다운링크 신호 모니터링 및 전송 방법, 및 파라미터 구성 방법 및 장치
TW202013921A (zh) 發送上行信號的方法和設備
WO2018120064A1 (zh) 抑制干扰信息的传输装置、方法以及通信系统
CN110830202B (zh) 通信方法、装置和通信系统
CN116547914A (zh) 用于更高频率中的无线通信的方法
US20190028914A1 (en) Device and Method of Handling a Measurement Configuration and a Reporting
JP2023513291A (ja) データ伝送方法及び装置
WO2017000269A1 (zh) 一种数据传输方法及装置
WO2022151174A1 (zh) 无线通信的装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918382

Country of ref document: EP

Kind code of ref document: A1