WO2022205367A1 - 无线通信方法、终端设备和网络设备 - Google Patents

无线通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022205367A1
WO2022205367A1 PCT/CN2021/085082 CN2021085082W WO2022205367A1 WO 2022205367 A1 WO2022205367 A1 WO 2022205367A1 CN 2021085082 W CN2021085082 W CN 2021085082W WO 2022205367 A1 WO2022205367 A1 WO 2022205367A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
mbs
common
pdcch
terminal device
Prior art date
Application number
PCT/CN2021/085082
Other languages
English (en)
French (fr)
Inventor
张世昌
赵振山
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/085082 priority Critical patent/WO2022205367A1/zh
Priority to PCT/CN2021/093099 priority patent/WO2022205570A1/zh
Priority to EP21934221.9A priority patent/EP4319375A1/en
Priority to CN202180096688.6A priority patent/CN117121590A/zh
Publication of WO2022205367A1 publication Critical patent/WO2022205367A1/zh
Priority to US18/374,733 priority patent/US20240032072A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the embodiments of the present application relate to the field of communication, and more particularly, to a wireless communication method, a terminal device, and a network device.
  • the New Radio (NR) Multimedia Broadcast Service needs to support one-to-many multicast transmission.
  • the base station needs to send a common physical downlink control channel (Physical Downlink Control Channel, PDCCH) to schedule a common physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), the common PDCCH and common PDSCH are sent in a common frequency domain range (Common Frequency Resource, CFR).
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink shared channel
  • CFR Common Frequency Resource
  • the embodiments of the present application provide a wireless communication method, terminal equipment, and network equipment, which can avoid the delay caused by the BWP handover of the terminal equipment during the MBS process, and can ensure the public communication without increasing the PDCCH detection capability of the terminal. Detection of PDCCH.
  • the present application provides a wireless communication method, including:
  • a common physical downlink control channel PDCCH is received on at least one MBS BWP associated with the activated dedicated unicast bandwidth part BWP; wherein the at least one MBS BWP is a common frequency domain resource CFR for MBS, the frequency domain range of each MBS BWP in the at least one MBS BWP is located within the frequency domain range of the activated dedicated unicast BWP;
  • a common PDSCH scheduled by the common PDCCH is received.
  • the present application provides a wireless communication method, including:
  • the common physical downlink control channel PDCCH is sent; wherein, the at least one MBS BWP is a common frequency domain resource CFR for MBS, the frequency domain range of each MBS BWP in the at least one MBS BWP is located within the frequency domain range of the activated dedicated unicast BWP;
  • the common PDSCH scheduled by the common PDCCH is transmitted.
  • the present application provides a terminal device for executing the method in the first aspect or each of its implementations.
  • the terminal device includes a functional module for executing the method in the first aspect or each implementation manner thereof.
  • the terminal device may include a processing unit for performing functions related to information processing.
  • the processing unit may be a processor.
  • the terminal device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to transmission, and the receiving unit is used to perform functions related to reception.
  • the sending unit may be a transmitter or a transmitter, and the receiving unit may be a receiver or a receiver.
  • the terminal device is a communication chip, the sending unit may be an input circuit or an interface of the communication chip, and the sending unit may be an output circuit or an interface of the communication chip.
  • the present application provides a network device for executing the method in the second aspect or each of its implementations.
  • the network device includes a functional module for executing the method in the second aspect or each implementation manner thereof.
  • the network device may include a processing unit for performing functions related to information processing.
  • the processing unit may be a processor.
  • the network device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to transmission, and the receiving unit is used to perform functions related to reception.
  • the sending unit may be a transmitter or a transmitter, and the receiving unit may be a receiver or a receiver.
  • the network device is a communication chip, the receiving unit may be an input circuit or an interface of the communication chip, and the sending unit may be an output circuit or an interface of the communication chip.
  • the present application provides a terminal device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • the processor is one or more and the memory is one or more.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the terminal device also includes a transmitter (transmitter) and a receiver (receiver).
  • the present application provides a network device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above-mentioned second aspect or each implementation manner thereof.
  • the processor is one or more and the memory is one or more.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the network device also includes a transmitter (transmitter) and a receiver (receiver).
  • the present application provides a chip for implementing any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor for calling and running a computer program from a memory, so that a device installed with the chip executes any one of the above-mentioned first to second aspects or each of its implementations method in .
  • the present application provides a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method in any one of the above-mentioned first aspect to the second aspect or each of its implementations .
  • the present application provides a computer program product, comprising computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above-mentioned first to second aspects or the implementations thereof.
  • the present application provides a computer program, which, when run on a computer, causes the computer to execute the method in any one of the above-mentioned first to second aspects or the respective implementations thereof.
  • At least one MBS BWP associated with the activated dedicated unicast BWP receives a public PDCCH; on the one hand, the at least one MBS BWP is designed as a public frequency domain resource CFR for MBS, which is equivalent to, The CFR can use the existing BWP signaling configuration, which is beneficial to reduce the workload of the standard.
  • the frequency domain range of each MBS BWP in the at least one MBS BWP is designed to be located in the activated dedicated unicast Within the frequency domain of the BWP, the delay caused by the BWP switching of the terminal equipment during the MBS process can be avoided, and the detection of the common PDCCH can also be guaranteed without increasing the PDCCH detection capability of the terminal.
  • FIG. 1 is an example of the system architecture of the present application.
  • FIG. 2 is a schematic diagram of a mapping relationship between a logical channel and a transport channel provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a configuration transmission mechanism provided by an embodiment of the present application.
  • 4 to 6 are schematic block diagrams of a BWP of a terminal device according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • 8 to 10 are examples of the association relationship between the terminal-specific unicast BWP and the MBS BWP provided by the embodiments of the present application.
  • FIG. 11 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a system architecture of an embodiment of the present application.
  • the system architecture 100 may include: terminal equipment, access network equipment, multi-cell/multicast coordination entity (Multi-cell/multicast Coordination Entity, MCE), mobility management network element (Mobility Management Entity) , MME), Home Subscriber Server (HSS), Policy and Charging Rules Function (Policy and Charging Rules Function, PCRF), Serving/PDN Gateway (S/P-GW), Cluster Communication Service Application Server (GCS AS), Broadcasting Multicast Service Center (BM-SC), Multimedia Broadcast Multicast Service Gateway (MBMS-GW).
  • MCE Multi-cell/multicast Coordination Entity
  • MME mobility management network element
  • HSS Home Subscriber Server
  • Policy and Charging Rules Function Policy and Charging Rules Function
  • PCRF Policy and Charging Rules Function
  • S/P-GW Serving/PDN Gateway
  • GCS AS Cluster Communication Service Application Server
  • BM-SC Broadcasting Multicast Service Center
  • MBMS-GW Multimedia Broadcast Multicast Service Gateway
  • each node or network element in the system architecture 100 can communicate with each other.
  • each node or network element in the SC-PTM 100 can communicate through various types of interfaces.
  • the terminal device can communicate with the access network device through the Uu interface; the access network device can communicate with the MCE through the M2 interface, can also communicate with the MME through the S1-MME interface, and can also communicate with the M1 interface through the M1 interface.
  • the MBMS-GW can communicate with the S/P-GW through the S1-U interface; the MCE can communicate with the MME through the M3 interface; the MME can communicate with the HSS through the S6a interface, and can also communicate with the HSS through the S6a interface.
  • the S/P-GW communicates with the S/P-GW through the S-11 interface, and can also communicate with the MBMS-GW through the Sm interface; the S/P-GW can also communicate with the GCS AS through the SGi interface, and can also communicate through the Gx interface Communicate with PCRF; Described PCRF can communicate with GCS AS through Rx interface; Described GCS AS can also communicate with BM-SC through MB2-C interface and MB2-U interface; Described BM-SC communicates with all through SGimb interface and SGmb Describe the MBMS-GW communication.
  • interfaces may be interfaces specified or defined in communication standards, so as to realize the transmission of data or signaling between various nodes or network elements.
  • the access network device may be an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (Long Term Evolution, LTE) system, or a Next Generation Radio Access Network (Next Generation Radio Access Network, NG RAN) device, or a base station (gNB) in an NR system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, Vehicle-mounted devices, wearable devices, hubs, switches, bridges, routers, or network devices in the future evolved Public Land Mobile Network (PLMN).
  • PLMN Public Land Mobile Network
  • the above-mentioned terminal device may be any terminal device, which includes, but is not limited to, a terminal device that adopts a wired or wireless connection with the network device 120 or other terminal devices.
  • the terminal equipment may refer to an access terminal, a user equipment (UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device , user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, end devices in 5G networks or end devices in future evolved networks, etc.
  • the terminal device may be used for device-to-device (Device to Device, D2D) communication.
  • the system architecture 100 may be Single Cell Point To Multiploint (SC-PTM).
  • SC-PTM may be based on MBMS network architecture.
  • Multimedia Broadcast Multicast Service is a service introduced in 3GPP Release 6.
  • Multimedia broadcast and multicast service is a technology that transmits data from one data source to multiple user equipments by sharing network resources. It can effectively utilize network resources while providing multimedia services, and realize high-speed (256kbps) multimedia service broadcasts. and multicast.
  • 3GPP Due to the low spectral efficiency of MBMS in 3GPP R6, it is not enough to effectively carry and support the operation of mobile TV type services. Therefore, in the Long Term Evolution (LTE) project of the wireless access network, 3GPP proposed to enhance the support capability for downlink high-speed multimedia broadcast and multicast services, and determined the design requirements for the physical layer and air interface.
  • LTE Long Term Evolution
  • E-MBMS was introduced into the LTE network by R9.
  • E-MBMS proposed the concept of Single Frequency Network (SFN), that is, using a uniform frequency to transmit data in all cells at the same time, but to ensure the synchronization between cells. In this way, the overall signal-to-noise ratio distribution of the cell can be greatly improved, and the spectral efficiency will also be greatly improved accordingly.
  • SFN Single Frequency Network
  • IP Internet Protocol
  • SC-PTM is introduced, and SC-PTM is based on MBMS network architecture.
  • the reception of the MBMS service is applicable to the UE in the RRC_CONNECTED or RRC_IDLE state.
  • the Multi-cell/multicast Coordination Entity decides whether to use the SC-PTM transmission mode or the Multimedia Broadcast multicast service Single Frequency Network (MBSFN) transmission Way.
  • FIG. 2 is a schematic diagram of a logical channel and a physical channel of an SC-PTM provided by an embodiment of the present application.
  • the downlink logical channel may include a single cell multicast control channel (Single Cell Multicast Control Channel, SC-MCCH) and a single cell multicast traffic channel (Single Cell Multicast Transport Channel, SC-MTCH).
  • SC-MCCH Single Cell Multicast Control Channel
  • SC-MTCH Single Cell Multicast Traffic Channel
  • the logical channel identifier (LCID) of the SC-MCCH is 11001
  • the LCID of the SC-MTCH is 11001.
  • Both the SC-MCCH and the SC-MTCH can be mapped to the downlink shared channel (DL-SCH), for example, Physical Downlink Shared Channel (PDSCH).
  • DL-SCH downlink shared channel
  • PDSCH Physical Downlink Shared Channel
  • SC-MCCH and SC-MTCH do not support Hybrid Automatic Repeat Request (HARQ) operations.
  • HARQ Hybrid Automatic Repeat Request
  • the downlink logical channels may further include: Multicast Control Channel (MCCH), Multicast Transport Channel (MTCH), and Paging Control Channel (PCCH) , at least one of a common control channel (Common Control Channel, CCCH), a dedicated control channel (Dedicated Control Channel, DCCH), a broadcast control channel (Broadcast Control Channel, BCCH) and a dedicated traffic channel (Dedicated Traffic Channel, DTCH).
  • the downlink transmission channel may further include: at least one of a broadcast channel (Broadcast Channel, BCH), a paging channel (Paging Channel, PCH), and a multicast channel (Multicast Channel, MCH).
  • the configuration information of the SC-MCCH can be carried in a system information block (System Information Block, SIB).
  • SIB 20 may include configuration information of the SC-MCCH.
  • a cell has only one SC-MCCH.
  • the configuration information may include: modification period of SC-MCCH, repetition period, and radio frame and subframe configuration information.
  • the subframe scheduled by the SC-MCCH is indicated by an SC-MCCH subframe (sc-mcch-Subframe).
  • the SC-MCCH only transmits one message, that is, SCPTM configuration (SCPTMConfiguration), and the message is used to configure the configuration information of the SC-PTM.
  • a new RNTI may be introduced, such as a single cell RNTI (Single Cell RNTI, SC-RNTI) (fixed value FFFC) to identify the scheduling information of the SC-MCCH on the PDCCH.
  • a new RNTI may be introduced, such as a single cell notification RNTI (Single Cell Notification RNTI, SC-N-RNTI) (fixed value FFFB) to identify the PDCCH of the SC-MCCH change notification.
  • the modification period of the SC-MCCH may indicate a change notification through one bit (bit) of 8 bits in the DCI 1C.
  • FIG. 3 is a schematic diagram of a configuration transmission mechanism (configuration transmission mechanism) provided by an embodiment of the present application.
  • SIB20 can configure (Config) SC-MCCH PDCCH, and can also configure notification PDCCH.
  • the SC-MCCH PDCCH may be scrambled by a single cell wireless network temporary identifier (Single Cell RNTI, SC-RNTI), and/or, the wireless network temporary identifier (Single Cell Notification RNTI, SC-N-RNTI) scrambling the notification PDCCH.
  • the downlink control information (Downlink Control Information, DCI) in the SC-MCCH PDCCH can be used to schedule the SC-MCCH PDSCH.
  • the SC-MCCH PDSCH may be configured (Config) SC-MTCH 1 to SC-MTCH M, wherein the SC-MTCH 1 to SC-MTCH M may include SC-MTCH 1 PDCCH to SC-MTCH M PDCCH, the SC - DCI in MTCH 1PDCCH ⁇ SC-MTCH M PDCCH can be used for scheduling SC-MTCH 1PDSCH ⁇ SC-MTCH M PDSCH.
  • the PDCCH ⁇ SC-MTCH M PDCCH may be scrambled by group wireless network temporary identifiers (Group RNTI, G-RNTI) G-RNTI 1 ⁇ -RNTI M respectively.
  • the SC-MTCH 1 PDSCH to SC-MTCH M PDSCH may carry Temporary Mobile Group Identity (TMGI) 1 to TMGI M respectively.
  • TMGI Temporary Mobile Group Identity
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-Reliable and Low Latency Communication
  • mMTC Massive Machine Type of Communication
  • eMBB targets users to obtain multimedia content, services and data, and its demand is growing rapidly.
  • eMBB may be deployed in different scenarios. For example, indoor, urban, rural, etc., have large differences in their capabilities and needs, so they cannot be generalized, and can be analyzed in detail in combination with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety assurance, etc.
  • Typical features of mMTC include: high connection density, small data volume, latency-insensitive services, low cost and long service life of the module.
  • RRC Radio Resource Control
  • RRC_IDLE state mobility is UE-based cell selection reselection, paging is initiated by the Core Network (CN), and the paging area is configured by the CN. There is no UE access stratum (Access Stratum, AS) context on the base station side, nor does an RRC connection exist.
  • CN Core Network
  • AS Access Stratum
  • RRC_CONNECTED state there is an RRC connection, and the base station and the UE have a UE AS context.
  • the location of the UE is known to the network device at the specific cell level. Mobility is the mobility of network device control. Unicast data can be transmitted between the UE and the base station.
  • Mobility is UE-based cell selection reselection, there is a connection between CN-NR, UE AS context exists on a base station, paging is triggered by Radio Access Network (RAN), RAN-based The paging area is managed by the RAN, and the network equipment knows the location of the UE based on the paging area level of the RAN.
  • RAN Radio Access Network
  • the maximum channel bandwidth can be 400MHZ (wideband carrier), which is very large compared to the maximum 20M bandwidth of LTE.
  • BWP BandWidth Part
  • Another purpose of BWP is to trigger the coexistence of multiple air interface parameter sets (Numerology) in a cell.
  • the UE in the idle or inactive state resides on the initial BWP. This BWP is visible to the idle or inactive UE. In this BWP, information such as MIB, RMSI, OSI and paging can be obtained.
  • 4 to 6 are schematic block diagrams of a BWP of a terminal device according to an embodiment of the present application.
  • BWP1 if the rate of the UE is low, part of the carrier bandwidth, such as BWP1, may be configured for the UE.
  • BWP2 if the UE has a higher rate requirement, a larger BWP can be configured for the UE.
  • BWP2 is larger than BWP1.
  • BWP1 and BWP2 may correspond to air interface parameter set 1 and air interface parameter set 2, respectively.
  • a UE can be configured with up to 4 UL BWPs and up to 4 DL BWPs through RRC dedicated signaling, but only one DL BWP and UL BWP can be activated at the same time.
  • the first activated BWP among the configured BWPs can be indicated.
  • the UE when the UE is in the connected state, it can also switch between different BWPs through DCI.
  • the first activated BWP is the first activated BWP configured in the RRC.
  • the configuration parameters for each BWP include at least one of the following:
  • subcarrier spacing subcarrierSpacing
  • cyclicPrefix cyclic prefix
  • the first PRB of the BWP and the number of consecutive PRBs (locationAndBandwidth).
  • BWP common configuration parameters (bwp-Common) and dedicated configuration parameters (bwp-Dedicated).
  • the value of the BWP id in the RRC signaling may be 0 to 4, and 0 is the initial BWP by default.
  • the BWP indicator is 2bit. If the number of configured BWPs is less than or equal to 3, the BWP indicator can be 1, 2 or 3. BWP indicator 1, 2 and 3 correspond to BWP id 1, 2 and 3 respectively. If the number of BWPs is 4, the BWP indicators can be 0, 1, 2, and 3. Optionally, BWP indicators 0, 1, 2, and 3 correspond to the BWPs configured according to the sequential index. Optionally, use consecutive BWP ids when configuring BWP.
  • a UE in idle or inactive state resides on an initial BWP, which is visible to a UE in idle or inactive state.
  • initial BWP information such as MIB, RMSI, and OSI paging can be obtained.
  • the downlink BWP can be configured through a downlink BWP (BWP-Downlink) parameter, a downlink BWP common (BWP-DownlinkCommon) parameter, and a downlink BWP indication (BWP-DownlinkDedicated) parameter.
  • BWP-Downlink downlink BWP
  • BWP-DownlinkCommon downlink BWP common
  • BWP-DownlinkDedicated downlink BWP indication
  • BWP-Downlink parameters can be shown in the first paragraph of ASN.1 code below.
  • the BWP-Downlink parameter includes a bwp-Id parameter and a bwp-Common parameter.
  • the bwp-Id parameter is used to identify the ID of the current BWP
  • the bwp-Common parameter is used to configure the downlink BWP common (BWP-DownlinkCommon).
  • BWP-DownlinkCommon For a dedicated unicast BWP of a terminal device, the bwp-Dedicated parameter in the BWP-Downlink parameter will configure the downlink reception parameter on the downlink BWP, that is, the downlink BWP indication (BWP-DownlinkDedicated) parameter.
  • the BWP-DownlinkCommon parameter can be shown in the second paragraph of ASN.1 code below.
  • the genericParameters in the BWP-DownlinkCommon parameter is used to configure the frequency domain starting point of the downlink BWP and the number of PRBs included.
  • the pdcch-ConfigCommon parameter in the BWP-DownlinkCommon parameter is used to indicate the common configuration parameter of the PDCCH on the downlink BWP
  • the pdsch-ConfigCommon parameter in the BWP-DownlinkCommon parameter is used to indicate the common configuration parameter of the PDSCH on the downlink BWP.
  • the BWP-DownlinkDedicated parameter may be, for example, as shown in the ASN.1 code in the third paragraph below.
  • the BWP-DownlinkDedicated parameter includes at least the pdcch-Config parameter, the pdsch-Config parameter and the sps-Config parameter, and the sps-Config parameter is used to indicate the SPS configuration on the downlink BWP.
  • the pdcch-Config parameter is used to indicate the PDCCH transmission mode on the downlink BWP.
  • the pdsch-Config parameter is used to indicate the PDSCH transmission mode on the downlink BWP.
  • NR MBS In NR MBS, one-to-many multicast transmission needs to be supported.
  • the base station In this transmission mode, the base station needs to schedule a common PDSCH by sending a common downlink control channel, and the common PDCCH and common PDSCH are in a common frequency domain range ( Common Frequency Resource, CFR).
  • CFR Common Frequency Resource
  • the CFR configuration can include the following two:
  • the CFR is configured as the MBS-specific BWP, and the MBS-specific BWP is associated with the terminal's dedicated unicast BWP, and the subcarrier spacing and cyclic prefix configured on the CFR are the same as those on the terminal-specific unicast BWP.
  • CFR is configured as multiple consecutive PRBs within the terminal-specific unicast BWP range.
  • the advantage of the first method is that CFR can continue to use the existing BWP signaling configuration, which is beneficial to reduce the workload of the standard, but the problem is that since CFR is defined as BWP, if the terminal is required to receive unicast in the dedicated unicast BWP at the same time and Receiving multicast in CFR means that the terminal needs to receive downlink transmission on two BWPs at the same time, but the terminal can only receive downlink on one BWP at a given time. In addition, even if the terminal receives unicast and multicast at different times, because The two are located in different BWPs, and a BWP switching delay will also be introduced.
  • the second method can avoid the problem of BWP handover, but because CFR is a continuous multiple PRBs in this method, the current BWP-based signaling configuration cannot be used, and the resource range of CFR and uplink and downlink transmission parameters need to be redesigned.
  • the configuration method has a greater impact on the standard.
  • the terminals since the common PDCCH that schedules the common PDSCH needs to be sent to multiple receiving terminals at the same time, in order to ensure that the number of bits of the common DCI carried in the common PDCCH determined by the multiple terminals is the same, the terminals cannot configure their own dedicated unicast BWP according to the same number of bits of the common DCI. Determine the number of bits of the public DCI.
  • the number of PRBs of the CFR may be different from the initial BWP or control resource set #0 (Control Resource SET 0, CORESET#0) currently configured by the terminal, the terminal cannot pass the initial BWP or CORESET# 0 determines the number of bits of the common DCI.
  • the number of bits of the common DCI may be different from the number of bits of DCI received by the terminal in the USS or CSS. Then, in order to reduce the implementation complexity of the terminal, currently the terminal can only receive at most four DCIs with different numbers of bits in a cell, wherein the number of DCI bits scrambled by the C-RNTI does not exceed three.
  • this application further improves the NR MBS system. More specifically, how to configure the CFR for transmitting the common PDCCH and the common PDSCH, and how the terminal detects and schedules the common PDCCH of the common PDSCH in the CFR is to be solved in this application. technical problem.
  • FIG. 7 shows a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application, and the method 200 may be executed interactively by a terminal device and a network device.
  • the terminal device shown in FIG. 7 may be the terminal device shown in FIG. 1
  • the network device shown in FIG. 7 may be the access network device shown in FIG. 1 .
  • the method 200 may include some or all of the following:
  • S210 on at least one multimedia broadcast service bandwidth part MBS BWP associated with the activated dedicated unicast bandwidth part BWP, receive a common physical downlink control channel PDCCH; wherein, the at least one MBS BWP is a common frequency domain resource for MBS CFR, the frequency domain range of each MBS BWP in the at least one MBS BWP is located within the frequency domain range of the activated dedicated unicast BWP;
  • S220 Receive the common PDSCH scheduled by the common PDCCH.
  • the terminal device receives the common PDCCH sent by the network device, and receives the common PDSCH scheduled by the common PDCCH sent by the network device.
  • the CFR is configured as BWP by dedicated RRC signaling of the terminal device.
  • At least one MBS BWP associated with the activated dedicated unicast BWP receives a public PDCCH; on the one hand, the at least one MBS BWP is designed as a public frequency domain resource CFR for MBS, which is equivalent to, The CFR can use the existing BWP signaling configuration, which is beneficial to reduce the workload of the standard.
  • the frequency domain range of each MBS BWP in the at least one MBS BWP is designed to be located in the activated dedicated unicast Within the frequency domain of the BWP, the delay caused by the BWP switching of the terminal equipment during the MBS process can be avoided, and the detection of the common PDCCH can also be guaranteed without increasing the PDCCH detection capability of the terminal.
  • each BWP serving as a CFR may be associated with one or more dedicated unicast BWPs of a terminal device, which is not specifically limited in this embodiment of the present application.
  • an MBS BWP of the at least one MBS BWP may also be associated to a dedicated unicast BWP other than the activated dedicated unicast BWP.
  • the network device is configured to configure at least one dedicated unicast BWP for the terminal device, each dedicated unicast BWP of the at least one dedicated unicast BWP is associated with one or more MBS BWPs, The at least one dedicated unicast BWP includes the activated dedicated unicast BWP.
  • the terminal device is configured with at least one dedicated unicast BWP.
  • the MBS BWP associated with the at least one dedicated unicast BWP is not used as an activated BWP; and/or the terminal device does not expect physical layer signaling and/or radio resource control RRC layer signaling to activate the The MBS BWP associated with the at least one dedicated unicast BWP.
  • the MBS BWP associated with the at least one dedicated unicast BWP does not count towards the total number of BWPs configured by the terminal device.
  • the at least one MBS BWP is configured with the same subcarrier spacing and cycle as the activated dedicated unicast BWP is configured with the same subcarrier spacing and cycle, respectively.
  • the subcarrier spacing and cycle configured on the BWP as a CFR are the same as the terminal-specific unicast BWP associated therewith.
  • the at least one MBS BWP is one MBS BWP, and the identity of the one MBS BWP is associated with the identity of the activated dedicated unicast BWP.
  • the at least one MBS BWP may be a plurality of MBS BWPs.
  • the identity of the one MBS BWP is the same as the identity of the activated dedicated unicast BWP.
  • each MBS BWP is associated with a dedicated unicast BWP, and the MBS BWP and the associated dedicated unicast BWP have the same BWP ID, and the terminal determines the associated MBS BWP according to the ID of the currently activated dedicated unicast BWP .
  • the terminal activation ID is w's terminal dedicated unicast BWP and receives common PDCCH, common PDSCH or SPS transmissions in its associated MBS BWP.
  • the frequency domain size of the one MBS BWP is less than or equal to the frequency domain size of the activated dedicated unicast BWP.
  • FIG. 8 and 9 are schematic diagrams of the association relationship between the terminal-specific unicast BWP and the MBS BWP when the optional ID values of the MBS BWP and the terminal-specific unicast BWP provided by the embodiments of the present application are the same.
  • the optional value of the ID of the MBS BWP is the same as that of the terminal-specific unicast BWP.
  • the terminal considers that the two BWPs are associated.
  • the terminal if the terminal is configured with multiple BWPs with the same ID, the terminal considers that there is an association relationship between the two BWPs with the same ID, and the BWP with a smaller frequency domain range is the MBS BWP, The other is a terminal-specific unicast BWP. If two BWPs with the same ID have the same frequency domain range, the terminal can use any one of them as the MBS BWP and the other as the terminal-specific unicast BWP. In this embodiment, the MBS BWP is not included in the total number of terminal-specific BWPs.
  • the identifier of the one MBS BWP is different from the identifier of the activated dedicated unicast BWP.
  • each MBS BWP has an independent BWP ID.
  • the BWP ID value space of the MBS BWP is different from the BWP ID value space of the terminal-specific unicast BWP.
  • it is associated with a terminal-specific unicast BWP.
  • FIG. 10 is a schematic diagram of the association relationship between the terminal-specific unicast BWP and the MBS BWP when the optional ID values of the MBS BWP and the terminal-specific unicast BWP provided by the embodiment of the present application are different.
  • the terminal considers BWPs with ID values of 5, 6, 7 and 8 to be MBS BWPs, and MBS BWPs with ID values of 5, 6, 7 and 8 and dedicated unicast BWPs with ID values of 1 and 2, respectively. , 3, and 4 are associated.
  • the BWPs whose IDs are 5, 6, 7 and 8 are not included in the total number of terminal-specific BWPs.
  • the value of the "Bandwidth part indicator" field in the DCI that the terminal does not expect to receive is greater than 4, that is, the value of the ID of the BWP activated by the RRC layer signaling that the terminal does not expect to receive is greater than 4.
  • the method 200 may further include:
  • Receive configuration information of each MBS BWP in the at least one MBS BWP where the configuration information includes at least one of the following: the starting physical resource block PRB of the MBS BWP, the number of PRBs of the MBS BWP, the PDSCH on the MBS BWP configuration, PDCCH configuration on MBS BWP or Semi-Persistent Scheduling SPS configuration on MBS BWP.
  • the terminal device receives configuration information of each MBS BWP in the at least one MBS BWP.
  • the network device sends the configuration information of each MBS BWP in the at least one MBS BWP.
  • the configuration for each MBS BWP at least includes the initial PRB, the number of PRBs included in the MBS BWP, the PDSCH configuration on the MBS BWP, the PDCCH configuration on the MBS BWP, and the SPS configuration on the MBS BWP Wait.
  • the S210 may include:
  • the frequency domain range of the at least one MBS BWP is determined according to the initial PRB and the number of PRBs of each MBS BWP in the at least one MBS BWP;
  • the public PDCCH is received according to the PDCCH configuration corresponding to the at least one MBS BWP; based on this, the S220 may include:
  • the common PDSCH is received according to the indication information in the common PDCCH and the PDSCH configuration corresponding to the at least one MBS BWP.
  • the terminal device determines the frequency domain of the at least one MBS BWP according to the initial PRB and the number of PRBs of each MBS BWP in the at least one MBS BWP range; the terminal device receives the public PDCCH according to the PDCCH configuration corresponding to the at least one MBS BWP within the frequency domain range of the at least one MBS BWP; the terminal device receives the public PDCCH according to the indication in the public PDCCH information and the PDSCH configuration corresponding to the at least one MBS BWP to receive the common PDSCH.
  • the network device determines the frequency of the at least one MBS BWP according to the initial PRB and the number of PRBs of each MBS BWP in the at least one MBS BWP. domain range; the network device sends the public PDCCH according to the PDCCH configuration corresponding to the at least one MBS BWP within the frequency domain range of the at least one MBS BWP; the network device sends the public PDCCH according to the The indication information and the PDSCH configuration corresponding to the at least one MBS BWP are used to send the common PDSCH.
  • the method 200 may further include:
  • Downlink transmission is received according to SPS activation and/or deactivation signaling.
  • the terminal device receives SPS activation and/or deactivation signaling according to the SPS configuration corresponding to at least one MBS BWP; the terminal device receives downlink transmission according to the SPS activation and/or deactivation signaling.
  • the network device sends SPS activation and/or deactivation signaling according to the SPS configuration corresponding to at least one MBS BWP; the network device receives downlink transmission according to the SPS activation and/or deactivation signaling .
  • the terminal device may, according to the initial PRB of the MBS BWP and the number of PRBs included in the MBS BWP, Determine the frequency domain range of the MBS BWP, receive the public PDCCH according to the PDCCH configuration (pdcch-Config) on the MBS BWP, receive the public PDSCH according to the indication information in the public PDCCH and the PDSCH configuration (pdsch-Config) on the MBS BWP, and receive the public PDSCH according to the MBS BWP.
  • the SPS configuration (sps-Config) on the BWP receives SPS activation and/or deactivation signaling, and receives SPS downlink transmissions according to the activated SPS configuration.
  • the relevant configuration required for receiving the common PDCCH, common PDSCH and SPS downlink transmission can be provided for the terminal, and the BWP switching delay will not be introduced when the terminal needs to receive unicast.
  • the maximum number of bits of the common downlink control information DCI carried in the common PDCCH is configured by a network device, or the maximum number of bits of the common DCI is predefined.
  • the number of bits of the common DCI is configured by radio resource control RRC layer signaling.
  • the maximum number of bits of the common DCI is 126 or 128.
  • the number of bits of the common DCI carried in the common PDCCH is configured by RRC signaling, and the maximum number of bits that can be configured is 126 bits.
  • the number of bits of the common DCI carried in the common PDCCH is configured by RRC signaling, and the maximum number of bits that can be configured is 128 bits.
  • the CRC of the public PDCCH is scrambled by the Groupcast Radio Network Temporary Identifier (G-RNTI), and when calculating the number of different DCI bits that the terminal in a cell needs to detect, the public DCI is not Takes into account the number of DCI bits scrambled by the C-RNTI.
  • G-RNTI Groupcast Radio Network Temporary Identifier
  • the number of bits of the common DCI By configuring the number of bits of the common DCI, it can be ensured that the number of bits of the common DCI for the terminal receiving the common PDCCH is ideally the same, and the number of bits of the common DCI can be aligned with the number of bits of other DCIs to avoid increasing the number of different DCI bits that the terminal needs to detect. number.
  • the common PDCCH is sent within a common search space CSS.
  • the terminal device receives the common PDCCH according to the PDCCH configuration (pdcch-Config) in the frequency domain range of the at least one MBS BWP.
  • the network device sends the common PDCCH according to the PDCCH configuration (pdcch-Config) in the frequency domain range of the at least one MBS BWP.
  • the common PDCCH is sent in a common search space (Common Search Space, CSS).
  • the index of the CSS is the same as the index of a dedicated search space USS configured by the terminal device.
  • the method 200 may further include:
  • the priority of the CSS is the same as the priority of the USS.
  • both the terminal device and the network device determine that the priority of the CSS is the same as the priority of the USS.
  • the index of the CSS is the same as the index (searchSpaceId) of a dedicated search space (UE-specific Search Space, USS) configured by the terminal, and the terminal device can receive in the USS a message indicating that the terminal is in the CFR
  • the sent PDCCH used for scheduling common PDSCH retransmission if the number of times the terminal blindly detects the PDCCH in a certain time slot exceeds the UE capability, when determining the receiving priority of all spaces, the priority of the CSS and the priority of the USS are determined.
  • the priority is the same.
  • the terminal may not detect the PDCCH in the CSS, so that the PDCCH in the USS with other higher priority can be guaranteed. detection.
  • the index of the CSS is configured through a PDCCH configuration (pdcch-Config).
  • the method 200 may further include:
  • the priority of the CSS is determined according to the index of the CSS.
  • both the terminal device and the network device determine the priority of the CSS according to the index of the CSS.
  • the index of the CSS is configured separately in the PDCCH configuration (pdcch-Config).
  • the index of CSS determines the priority of the CSS.
  • This application provides a method for a terminal to receive a public PDCCH and a public PDSCH in an NR MBS system.
  • the terminal receives terminal-specific RRC signaling to determine the configuration of public frequency domain resources, where the public frequency domain resource configuration is BWP , the BWP is associated with the terminal-specific unicast BWP, and the BWP used for CFR is not used as an activated BWP; through the method proposed in this application, the BWP switching delay in the process of receiving MBS by the terminal can be avoided, and in addition, the BWP switching delay can be avoided without increasing In the case of the terminal PDCCH detection capability, the detection of the common PDCCH is guaranteed.
  • the terminal receives the public PDCCH in the CSS configured on the CFR, and the priority of the CSS may be the same as that of a USS, or the priority of the CSS may be configured separately and the priority of the CSS may be determined according to the index of the CSS. Priority, by setting the index of the CSS, when the number of blind detections of the terminal PDCCH exceeds the UE capability and the priority of the CSS is low, the terminal may not detect the PDCCH in the CSS, thereby ensuring that other higher priority USSs are within the detection of the PDCCH.
  • the number of bits of the DCI carried in the common PDCCH can be configured to be 126 bits or 128 bits by the RRC layer signaling; by configuring the number of bits of the common DCI, it can be ensured that the terminal receiving the common PDCCH has the same ideal number of bits of the common DCI, and The number of bits of the common DCI can be aligned with the number of bits of other DCIs to avoid increasing the number of different DCI bits that the terminal needs to detect.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the present application.
  • the implementation of the embodiments constitutes no limitation.
  • the terms “downlink” and “uplink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is from the site to the user equipment of the cell In the first direction, “uplink” is used to indicate that the transmission direction of the signal or data is the second direction sent from the user equipment of the cell to the site.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship for describing associated objects, indicating that there may be three kinds of relationships. Specifically, A and/or B can represent three situations: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this document generally indicates that the related objects are an "or" relationship.
  • FIG. 11 is a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 may include:
  • the communication unit 310 is used for:
  • a common physical downlink control channel PDCCH is received on at least one MBS BWP associated with the activated dedicated unicast bandwidth part BWP; wherein the at least one MBS BWP is a common frequency domain resource CFR for MBS, the frequency domain range of each MBS BWP in the at least one MBS BWP is located within the frequency domain range of the activated dedicated unicast BWP;
  • a common PDSCH scheduled by the common PDCCH is received.
  • the terminal device is configured with at least one dedicated unicast BWP, each dedicated unicast BWP of the at least one dedicated unicast BWP is associated with one or more MBS BWPs, the at least one dedicated unicast BWP The unicast BWP includes the activated dedicated unicast BWP.
  • the MBS BWP associated with the at least one dedicated unicast BWP is not used as an activated BWP; and/or the terminal device does not expect physical layer signaling and/or radio resource control RRC layer signaling to activate the MBS BWP associated with at least one dedicated unicast BWP.
  • the MBS BWP associated with the at least one dedicated unicast BWP does not count towards the total number of BWPs configured for the terminal device.
  • the at least one MBS BWP is configured with the same subcarrier spacing and cycle as the activated dedicated unicast BWP is configured with the same subcarrier spacing and cycle, respectively.
  • the at least one MBS BWP is one MBS BWP, and the identity of the one MBS BWP is associated with the identity of the activated dedicated unicast BWP.
  • the identity of the one MBS BWP is the same as the identity of the activated dedicated unicast BWP.
  • the frequency domain size of the one MBS BWP is less than or equal to the frequency domain size of the activated dedicated unicast BWP.
  • the identity of the one MBS BWP is different from the identity of the activated dedicated unicast BWP.
  • the communication unit 310 is further configured to:
  • Receive configuration information of each MBS BWP in the at least one MBS BWP where the configuration information includes at least one of the following: the starting physical resource block PRB of the MBS BWP, the number of PRBs of the MBS BWP, the PDSCH on the MBS BWP configuration, PDCCH configuration on MBS BWP or Semi-Persistent Scheduling SPS configuration on MBS BWP.
  • the communication unit 310 is specifically used for:
  • the frequency domain range of the activated dedicated unicast BWP determine the frequency domain range of the at least one MBS BWP according to the initial PRB and the number of PRBs of each MBS BWP in the at least one MBS BWP;
  • the common PDSCH is received according to the indication information in the common PDCCH and the PDSCH configuration corresponding to the at least one MBS BWP.
  • the communication unit 310 is further configured to:
  • Downlink transmission is received according to SPS activation and/or deactivation signaling.
  • the maximum number of bits of the common downlink control information DCI carried in the common PDCCH is configured by a network device, or the maximum number of bits of the common DCI is predefined.
  • the number of bits of the common DCI is configured by RRC layer signaling.
  • the maximum number of bits of the common DCI is 126 or 128.
  • the common PDCCH is sent within a common search space CSS.
  • the index of the CSS is the same as the index of a dedicated search space USS configured by the terminal device.
  • the terminal device 300 further includes:
  • a processing unit configured to determine that the priority of the CSS is the same as the priority of the USS if the number of times the terminal device blindly detects the PDCCH in a certain time slot exceeds the capability of the terminal device.
  • the index of the CSS is configured by configuring in the PDCCH.
  • the terminal device 300 further includes:
  • a processing unit configured to determine the priority of the CSS according to the index of the CSS if the number of times the terminal device blindly detects the PDCCH in a certain time slot exceeds the capability of the terminal device.
  • FIG. 12 is a schematic block diagram of a network device 400 according to an embodiment of the present application.
  • the network device 400 may include:
  • the communication unit 410 is used for:
  • the common physical downlink control channel PDCCH is sent; wherein, the at least one MBS BWP is a common frequency domain resource CFR for MBS, the frequency domain range of each MBS BWP in the at least one MBS BWP is located within the frequency domain range of the activated dedicated unicast BWP;
  • the common PDSCH scheduled by the common PDCCH is transmitted.
  • the network device is configured to configure at least one dedicated unicast BWP for the terminal device, each dedicated unicast BWP of the at least one dedicated unicast BWP is associated with one or more MBS BWPs, the At least one dedicated unicast BWP includes the activated dedicated unicast BWP.
  • the MBS BWP associated with the at least one dedicated unicast BWP is not used as an activated BWP; and/or the terminal device does not expect physical layer signaling and/or radio resource control RRC layer signaling to activate the MBS BWP associated with at least one dedicated unicast BWP.
  • the MBS BWP associated with the at least one dedicated unicast BWP does not count towards the total number of BWPs configured for the terminal device.
  • the at least one MBS BWP is configured with the same subcarrier spacing and cycle as the activated dedicated unicast BWP is configured with the same subcarrier spacing and cycle, respectively.
  • the at least one MBS BWP is one MBS BWP, and the identity of the one MBS BWP is associated with the identity of the activated dedicated unicast BWP.
  • the identity of the one MBS BWP is the same as the identity of the activated dedicated unicast BWP.
  • the frequency domain size of the one MBS BWP is less than or equal to the frequency domain size of the activated dedicated unicast BWP.
  • the identity of the one MBS BWP is different from the identity of the activated dedicated unicast BWP.
  • the communication unit 410 is further configured to:
  • the configuration information includes at least one of the following: the starting physical resource block PRB of the MBS BWP, the number of PRBs of the MBS BWP, the PDSCH on the MBS BWP configuration, PDCCH configuration on MBS BWP or Semi-Persistent Scheduling SPS configuration on MBS BWP.
  • the communication unit 410 is specifically used for:
  • the frequency domain range of the activated dedicated unicast BWP determine the frequency domain range of the at least one MBS BWP according to the initial PRB and the number of PRBs of each MBS BWP in the at least one MBS BWP;
  • the common PDSCH is sent according to the indication information in the common PDCCH and the PDSCH configuration corresponding to the at least one MBS BWP.
  • the communication unit 410 is further configured to:
  • Downlink transmission is received according to SPS activation and/or deactivation signaling.
  • the maximum number of bits of the common downlink control information DCI carried in the common PDCCH is configured by a network device, or the maximum number of bits of the common DCI is predefined.
  • the number of bits of the common DCI is configured by RRC layer signaling.
  • the maximum number of bits of the common DCI is 126 or 128.
  • the common PDCCH is sent within a common search space CSS.
  • the index of the CSS is the same as the index of a dedicated search space USS configured by the terminal device.
  • the network device 400 further includes:
  • a processing unit configured to determine that the priority of the CSS is the same as the priority of the USS if the number of times the terminal device blindly detects the PDCCH in a certain time slot exceeds the capability of the terminal device.
  • the index of the CSS is configured by configuring in the PDCCH.
  • the network device 400 further includes:
  • a processing unit configured to determine the priority of the CSS according to the index of the CSS if the number of times the terminal device blindly detects the PDCCH in a certain time slot exceeds the capability of the terminal device.
  • the apparatus embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the terminal device 300 shown in FIG. 11 may correspond to the corresponding subject in executing the method 200 of the embodiment of the present application, and the aforementioned and other operations and/or functions of the various units in the terminal device 300 are respectively for the purpose of realizing the method shown in FIG. 7 .
  • the corresponding processes in each of the methods are not repeated here.
  • the communication device of the embodiments of the present application is described above from the perspective of functional modules with reference to the accompanying drawings.
  • the functional modules can be implemented in the form of hardware, can also be implemented by instructions in the form of software, and can also be implemented by a combination of hardware and software modules.
  • the steps of the method embodiments in the embodiments of the present application may be completed by an integrated logic circuit of hardware in the processor and/or instructions in the form of software, and the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as hardware
  • the execution of the decoding processor is completed, or the execution is completed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, registers, and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the above method embodiments in combination with its hardware.
  • processing unit referred to above may be implemented by a processor
  • communication unit 310 and the communication unit 410 referred to above may be implemented by transceivers, respectively.
  • FIG. 13 is a schematic structural diagram of a communication device 500 according to an embodiment of the present application.
  • the communication device 500 may include a processor 510 .
  • the processor 510 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the communication device 500 may also include a memory 520 .
  • the memory 520 may be used to store instruction information, and may also be used to store codes, instructions, etc. executed by the processor 510 .
  • the processor 510 may call and run a computer program from the memory 520 to implement the methods in the embodiments of the present application.
  • the memory 520 may be a separate device independent of the processor 510 , or may be integrated in the processor 510 .
  • the communication device 500 may also include a transceiver 530 .
  • the processor 510 may control the transceiver 530 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices.
  • Transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include antennas, and the number of the antennas may be one or more.
  • each component in the communication device 500 is connected through a bus system, wherein the bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the communication device 500 may be a terminal device of an embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application.
  • the communication device 500 may correspond to the terminal device 300 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 200 according to the embodiment of the present application, which is not repeated here for brevity.
  • the communication device 500 may be the network device of the embodiments of the present application, and the communication device 500 may implement corresponding processes implemented by the network device in each method of the embodiments of the present application.
  • the communication device 500 in the embodiment of the present application may correspond to the network device 400 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 200 according to the embodiment of the present application, which is omitted here for brevity. Repeat.
  • the embodiment of the present application also provides a chip.
  • the chip may be an integrated circuit chip, which has a signal processing capability, and can implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the chip may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the chip can be applied to various communication devices, so that the communication device installed with the chip can execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • FIG. 14 is a schematic structural diagram of a chip 600 according to an embodiment of the present application.
  • the chip 600 includes a processor 610 .
  • the processor 610 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the chip 600 may further include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be used to store instruction information, and may also be used to store codes, instructions and the like executed by the processor 610 .
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the chip 600 may further include an input interface 630 .
  • the processor 610 may control the input interface 630 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 600 may further include an output interface 640 .
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip 600 can be applied to the network device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods in the embodiments of the present application, and can also implement the various methods in the embodiments of the present application.
  • the corresponding process implemented by the terminal device in FIG. 1 is not repeated here.
  • bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the processors referred to above may include, but are not limited to:
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of this application.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory mentioned above includes but is not limited to:
  • Non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Random Access Memory
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium stores one or more programs including instructions that, when executed by a portable electronic device including a plurality of application programs, enable the portable electronic device to perform the implementation shown in method 200 example method.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For brevity, here No longer.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • the embodiments of the present application also provide a computer program product, including a computer program.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, in order to It is concise and will not be repeated here.
  • a computer program is also provided in the embodiments of the present application.
  • the computer program When the computer program is executed by a computer, the computer can execute the method of the embodiment shown in method 200 .
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program runs on the computer, the computer program is implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. The corresponding process, for the sake of brevity, will not be repeated here.
  • An embodiment of the present application further provides a communication system
  • the communication system may include the above-mentioned terminal equipment and network equipment to form the communication system 100 shown in FIG. 1 , which is not repeated here for brevity.
  • system and the like in this document may also be referred to as “network management architecture” or “network system” and the like.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that make contributions to the prior art or the parts of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk and other media that can store program codes.
  • the above-mentioned units/modules/components described as separate/display components may or may not be physically separated, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units/modules/components may be selected according to actual needs to achieve the purpose of the embodiments of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed above may be through some interfaces, indirect coupling or communication connection of devices or units, which may be electrical, mechanical or other forms .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信方法、终端设备和网络设备,所述方法包括:在与激活的专用单播带宽部分BWP关联的至少一个多媒体广播服务带宽部分MBS BWP上,接收公共物理下行控制信道PDCCH;其中,所述至少一个MBS BWP为用于MBS的公共频域资源CFR,所述至少一个MBS BWP中的每一个MBS BWP的频域范围位于所述激活的专用单播BWP的频域范围内;接收所述公共PDCCH调度的公共PDSCH。该方法可以避免终端设备在MBS过程中BWP切换造成的时延,另外,可以在不增加终端PDCCH检测能力的情况下,保证公共PDCCH的检测。

Description

无线通信方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法、终端设备和网络设备。
背景技术
新空口(New Radio,NR)多媒体广播服务(Multimedia Broadcast Service,MBS)需要支持一对多的组播传输,在这种传输方式中,基站需要通过发送公共物理下行控制信道(Physical Downlink Control Channel,PDCCH)调度公共物理下行共享信道(Physical Downlink Shared Channel,PDSCH),所述公共PDCCH和公共PDSCH在一段公共的频域范围(Common Frequency Resource,CFR)内发送。
然而,在NR MBS中,如何配置CFR本领域并没有相关的技术方案。另外,在引入MBS之后,如何在不增加终端DCI检测能力的情况下保证MBS和单播的接收,目前也没有解决方案。
发明内容
本申请实施例提供了一种无线通信方法、终端设备和网络设备,可以避免终端设备在MBS过程中由于BWP切换造成的时延,另外,可以在不增加终端PDCCH检测能力的情况下,保证公共PDCCH的检测。
第一方面,本申请提供了一种无线通信方法,包括:
在与激活的专用单播带宽部分BWP关联的至少一个多媒体广播服务带宽部分MBS BWP上,接收公共物理下行控制信道PDCCH;其中,所述至少一个MBS BWP为用于MBS的公共频域资源CFR,所述至少一个MBS BWP中的每一个MBS BWP的频域范围位于所述激活的专用单播BWP的频域范围内;
接收所述公共PDCCH调度的公共PDSCH。
第二方面,本申请提供了一种无线通信方法,包括:
在与激活的专用单播带宽部分BWP关联的至少一个多媒体广播服务带宽部分MBS BWP上,发送公共物理下行控制信道PDCCH;其中,所述至少一个MBS BWP为用于MBS的公共频域资源CFR,所述至少一个MBS BWP中的每一个MBS BWP的频域范围位于所述激活的专用单播BWP的频域范围内;
发送所述公共PDCCH调度的公共PDSCH。
第三方面,本申请提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该终端设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该终端设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该终端设备为通信芯片,该发送单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第四方面,本申请提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。具体地,所述网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该网络设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该网络设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该网络设备为通信芯片,该接收单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第五方面,本申请提供了一种终端设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该终端设备还包括发射机(发射器)和接收机(接收器)。
第六方面,本申请提供了一种网络设备,包括处理器和存储器。所述存储器用于存储计算机程序, 所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第二方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该网络设备还包括发射机(发射器)和接收机(接收器)。
第七方面,本申请提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,本申请提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,本申请提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,本申请提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
本申请实施例中,在与激活的专用单播BWP关联的至少一个MBS BWP上,接收公共PDCCH;一方面,所述至少一个MBS BWP设计为用于MBS的公共频域资源CFR,相当于,CFR可以沿用现有的BWP信令配置,有利于减少标准的工作量,另一方面,将所述至少一个MBS BWP中的每一个MBS BWP的频域范围设计为位于所述激活的专用单播BWP的频域范围内,可以避免终端设备在MBS过程中由于BWP切换造成的时延,另外,还可以在不增加终端PDCCH检测能力的情况下,保证公共PDCCH的检测。
附图说明
图1是本申请系统架构的示例。
图2是本申请实施例提供的逻辑信道和传输信道的映射关系的示意图。
图3是本申请实施例提供的配置传输机制的示意图。
图4至图6是本申请实施例的终端设备的BWP的示意性框图。
图7是本申请实施例提供的无线通信方法的示意性流程图。
图8至图10是本申请实施例提供的终端专用单播BWP和MBS BWP的关联关系的示例。
图11是本申请实施例提供的终端设备的示意性框图。
图12是本申请实施例提供的网络设备的示意性框图。
图13是本申请实施例提供的通信设备的示意性框图。
图14是本申请实施例提供的芯片的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个系统架构的示意图。
如图1所示,所述系统架构100可包括:终端设备、接入网设备、多小区/多播协调实体(Multi-cell/multicast Coordination Entity,MCE)、移动性管理网元(Mobility Management Entity,MME)、归属签约用户服务器(Home Subscriber Server,HSS)、策略与计费规则功能(Policy and Charging Rules Function,PCRF)、服务/公共数据网关(Serving/PDN Gateway,S/P-GW)、集群通信应用服务器(Group Communication Service Application Server,GCS AS)、广播多播服务中心(Broadcasting multicast Service Center,BM-SC)、多媒体广播多播服务网关(Multimedia Broadcast Multicast Service Gateway,MBMS-GW)。
其中,所述系统架构100中的各个节点或网元之间可以进行通信。例如,所述SC-PTM100中的各个节点或网元可以通过各种类型的接口进行通信。
例如,所述终端设备可以通过Uu接口与接入网设备通信;所述接入网设备可以通过M2接口与MCE通信,还可以通过S1-MME接口与所述MME通信,还可通过M1接口与所述MBMS-GW通信,还可通过S1-U接口与所述S/P-GW通信;所述MCE可通过M3接口与MME通信;所述MME可通过S6a接口与所述HSS通信,还可通过S-11接口与所述S/P-GW通信,还可通过Sm接口与所述MBMS-GW通信;所述S/P-GW还可通过SGi接口与GCS AS通信,还可通过Gx接口与PCRF通信;所述PCRF可通过Rx接口与GCS AS通信;所述GCS AS还可通过MB2-C接口和MB2-U接口与 BM-SC通信;所述BM-SC通过SGimb接口和SGmb与所述MBMS-GW通信。
应理解,上述涉及的接口可以是通信标准中规定或定义的接口,以实现各个节点或网元之间的数据或信令的传输。
需要说明的是,本申请对上述各个节点或网元的具体实现形式不做限定。
例如,所述接入网设备可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
再如,上述终端设备可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。例如,所述终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。再如,所述终端设备可以用于设备到设备(Device to Device,D2D)通信。
作为示例,所述系统架构100可以是单小区点到多点(Single Cell Point To Multiploint,SC-PTM)。SC-PTM可以是基于MBMS网络架构。
多媒体广播多播服务(Multimedia Broadcast Multicast Service,MBMS)是在3GPP Release 6中引入的一项业务。多媒体广播多播服务是一种通过共享网络资源从一个数据源向多个用户设备传送数据的技术,在提供多媒体业务的同时能有效地利用网络资源,实现较高速率(256kbps)的多媒体业务广播和组播。
由于3GPP R6中的MBMS频谱效率较低,不足以有效地承载和支撑手机电视类型业务的运营。因此,在无线接入网长期演进标准(Long Term Evolution,LTE)项目中,3GPP提出增强对下行高速多媒体广播多播服务业务的支持能力,并确定了对物理层和空中接口的设计要求。
E-MBMS是R9引入到LTE网络的,E-MBMS提出了单频网(Single Frequency Network,SFN)的概念,即采用统一频率在所有小区同时发送数据,但是要保证小区间的同步。这种方式可以极大的提高小区整体信噪比分布,频谱效率也会相应的大幅提高。并基于IP(Internet Protocol)多播协议实现业务的广播和多播。
R13中,引入了SC-PTM,SC-PTM基于MBMS网络架构。可选的,MBMS业务的接收适用于RRC_CONNECTED或者RRC_IDLE状态的UE。可选的,多小区/多播协调实体(Multi-cell/multicast Coordination Entity,MCE)决定采用SC-PTM传输方式还是多媒体广播多播业务单频网络(Multimedia Broadcast multicast service Single Frequency Network,MBSFN)传输方式。
图2是本申请实施例提供的SC-PTM的逻辑信道和物理信道的示意图。
如图2所示,下行逻辑信道可包括单小区多播控制信道(Single Cell Multicast Control Channel,SC-MCCH)和单小区多播业务信道(Single Cell Multicast Transport Channel,SC-MTCH)。例如,SC-MCCH的逻辑信道标识(LCID)为11001,SC-MTCH的LCID为11001,所述SC-MCCH和所述SC-MTCH均可以映射到下行共享信道(DL-SCH)上,例如,物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。可选的,SC-MCCH和SC-MTCH不支持混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)操作。
此外,如图2所示,下行逻辑信道还可包括:多播控制信道(Multicast Control Channel,MCCH)、多播业务信道(Multicast Transport Channel,MTCH)、寻呼控制信道(Paging Control Channel,PCCH)、公共控制信道(Common Control Channel,CCCH)、专用控制信道(Dedicated Control Channel,DCCH)、广播控制信道(Broadcast Control Channel,BCCH)以及专用业务信道(Dedicated Traffic Channel,DTCH)中的至少一项。此外,下行传输信道还可包括:广播信道(Broadcast Channel,BCH)、寻呼信道(Paging Channel,PCH)以及多播信道(Multicast Channel,MCH)中的至少一项。
另外,SC-MCCH的配置信息可携带在可以通过系统信息块(System Information Block,SIB)中。例如,SIB20可包括SC-MCCH的配置信息。可选的,一个小区只有一个SC-MCCH。配置信息可包括:SC-MCCH的修改周期,重复周期,以及无线帧和子帧配置信息。可选的,SC-MCCH调度的无线帧:SFN mod MCCH重复周期(mcch-RepetitionPeriod)=MCCH偏移(mcch-Offset)。可选的, SC-MCCH调度的子帧通过SC-MCCH子帧(sc-mcch-Subframe)指示。可选的,SC-MCCH只传输一个消息,即SCPTM配置(SCPTMConfiguration),该消息用于配置SC-PTM的配置信息。可选的,可引入新的RNTI例如单小区RNTI(Single Cell RNTI,SC-RNTI)(固定取值FFFC)识别SC-MCCH在PDCCH上的调度信息。可选的,可引入新的RNTI例如单小区通知RNTI(Single Cell Notification RNTI,SC-N-RNTI)(固定取值FFFB)识别SC-MCCH的变更通知的PDCCH。可选的,所述SC-MCCH的修改周期可通过DCI 1C中的8个bit中的一个比特(bit)来指示变更通知。可选的,所述修改周期的边界可以定义为SFN mod m=0,m是SIB20中配置的修改周期(sc-mcch-ModificationPeriod)。
图3是本申请实施例提供的配置传输机制(configuration transmission mechanism)的示意图。
如图3所示,SIB20可配置(Config)SC-MCCH PDCCH,还可配置通知PDCCH。可选的,所可通过单小区无线网络临时标识(Single Cell RNTI,SC-RNTI)加扰所述SC-MCCH PDCCH,和/或,可通过单小区通知无线网络临时标识(Single Cell Notification RNTI,SC-N-RNTI)加扰所述通知PDCCH。所述SC-MCCH PDCCH中的下行控制信息(Downlink Control Information,DCI)可用于调度SC-MCCH PDSCH。所述SC-MCCH PDSCH可配置(Config)SC-MTCH 1~SC-MTCH M,其中,所述SC-MTCH 1~SC-MTCH M可包括SC-MTCH 1PDCCH~SC-MTCH M PDCCH,所述SC-MTCH 1PDCCH~SC-MTCH M PDCCH中的DCI可用于调度SC-MTCH 1PDSCH~SC-MTCH M PDSCH。可选的,所述PDCCH~SC-MTCH M PDCCH可分别通过群组无线网络临时标识符(Group RNTI,G-RNTI)G-RNTI 1~-RNTI M加扰。可选的,所述SC-MTCH 1PDSCH~SC-MTCH M PDSCH可分别携带临时移动组标识(Temporary Mobile Group Identity,TMGI)1~TMGI M。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此3GPP国际标准组织开始研发5G。5G的主要应用场景包括:增强移动超宽带(Enhance Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable and Low Latency Communication,URLLC)、大规模机器类通信(massive machine type of communication,mMTC)。其中,eMBB以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。由于eMBB可能部署在不同的场景中。例如,室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,可以结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
5G网络环境中为了降低空口信令和快速恢复无线连接,快速恢复数据业务的目的,定了一个新的无线资源控制(Radio Resource Control,RRC)状态,即RRC_INACTIVE(去激活)状态。这种状态有别于RRC_IDLE(空闲)和RRC_CONNECTED(连接)状态。
在RRC_IDLE状态下:移动性为基于UE的小区选择重选,寻呼由核心网(Core Network,CN)发起,寻呼区域由CN配置。基站侧不存在UE接入层(Access Stratum,AS)上下文,也不存在RRC连接。
在RRC_CONNECTED状态下:存在RRC连接,基站和UE存在UE AS上下文。网络设备知道UE的位置是具体小区级别的。移动性是网络设备控制的移动性。UE和基站之间可以传输单播数据。
RRC_INACTIVE:移动性为基于UE的小区选择重选,存在CN-NR之间的连接,UE AS上下文存在某个基站上,寻呼由无线接入网(Radio Access Network,RAN)触发,基于RAN的寻呼区域由RAN管理,网络设备知道UE的位置是基于RAN的寻呼区域级别的。
在5G中,最大的信道带宽可以是400MHZ(wideband carrier),相比于LTE最大20M带宽来说,带宽很大。如果UE保持工作在宽带载波上,则增加了UE的功率消耗。通过带宽分量(BandWidth Part,BWP)可以优化UE的功率消耗。即UE的RF带宽可以根据UE实际的吞吐量来调整。BWP的另一个目的就是触发一个小区中多个空口参数集(Numerology)共存。idle状态或者inactive状态的UE驻留在initial BWP上,这个BWP对于idle状态或者inactive状态UE是可见的,在这个BWP里面可以获取MIB,RMSI,OSI已经paging等信息。
图4至图6是本申请实施例的终端设备的BWP的示意性框图。
例如,如图4所示,若UE的速率较低,可以给UE配置载波带宽的部分带宽,例如BWP1。再如,如图5所示,如果UE对速率的要求较高,可以给UE配置大一点的BWP。例如比BWP1大的BWP2。再如,如图6所示,如果UE支持高速率或者工作在CA模式下,可以给配置多个BWP,例如BWP1和BWP2。可选的,BWP1和BWP2可以分别对应空口参数集1和空口参数集2。
可以通过RRC专用信令可以给一个UE配置最多4个UL BWP和最多4个DL BWP,但同一时刻只能有一个DL BWP和UL BWP被激活。在RRC专用信令,可以指示所配置的BWP中第一个激活的BWP。同时在UE处于连接态过程中,也可以通过DCI在不同的BWP之间切换。当处于非激活状 态的载波,进入激活状态后,第一个激活的BWP为RRC中配置的第一个激活的BWP。每个BWP的配置参数包括以下中的至少一项:
子载波间隔(subcarrierSpacing);
循环前缀(cyclicPrefix);
BWP的第一个PRB以及连续的PRB个数(locationAndBandwidth)。
BWP标识(bwp-Id);以及
BWP公共配置参数(bwp-Common)和专用配置参数(bwp-Dedicated)。
示例性地,BWP id在RRC信令中取值可以为0到4,0默认为初始BWP。
在DCI中BWP indicator为2bit。如果配置的BWP个数小于等于3个,则BWP indicator可以为1,2或3,BWP indicator 1,2以及3分别对应BWP id 1,2以及3。如果BWP的个数为4个,则BWP indicator可以为0,1,2以及3,可选的,BWP indicator 0,1,2以及3分别对应按照顺序索引配置的BWP。可选的,在配置BWP的时候使用连续的BWP id。
通常,空闲(idle)态或者去激活(inactive)态的UE驻留在初始(initial)BWP上,这个初始BWP对于空闲(idle)态或者去激活(inactive)态的UE是可见的,在这个初始BWP里面可以获取MIB,RMSI,OSI已经寻呼(paging)等信息。
为便于对本申请方案的理解,下面对下行BWP配置进行说明。
下行BWP可通过下行BWP(BWP-Downlink)参数、下行BWP的公共(BWP-DownlinkCommon)参数以及下行BWP的指示(BWP-DownlinkDedicated)参数配置。
BWP-Downlink参数可如下面第一段ASN.1编码所示。
第一段ASN.1编码:
Figure PCTCN2021085082-appb-000001
如第一段ASN.1编码所示,该BWP-Downlink参数包括bwp-Id参数和bwp-Common参数。其中,bwp-Id参数用于标识当前BWP的ID,bwp-Common参数用于配置下行BWP的公共(BWP-DownlinkCommon)。对于一个终端设备的专用单播BWP,BWP-Downlink参数中的bwp-Dedicated参数将配置该下行BWP上的下行接收参数,即下行BWP的指示(BWP-DownlinkDedicated)参数。
BWP-DownlinkCommon参数可如下面第二段ASN.1编码所示。
第二段ASN.1编码:
Figure PCTCN2021085082-appb-000002
如第二段ASN.1编码所示,其中BWP-DownlinkCommon参数中的genericParameters用于配置该下行BWP的频域起点和包含的PRB个数。BWP-DownlinkCommon参数中的pdcch-ConfigCommon参数用于指示该下行BWP上的PDCCH的公共配置参数,BWP-DownlinkCommon参数中的pdsch-ConfigCommon参数用于指示该下行BWP上的PDSCH的公共配置参数。
BWP-DownlinkDedicated参数例如可如下面第三段ASN.1编码所示。
第三段ASN.1编码:
Figure PCTCN2021085082-appb-000003
Figure PCTCN2021085082-appb-000004
如第三段ASN.1编码所示,BWP-DownlinkDedicated参数至少包括pdcch-Config参数,pdsch-Config参数和sps-Config参数,sps-Config参数用于指示该下行BWP上的SPS配置。pdcch-Config参数用于指示该下行BWP上的PDCCH发送方式。pdsch-Config参数用于指示该下行BWP上的PDSCH发送方式。
在NR MBS中需要支持一对多的组播传输,在这种传输方式中,基站需要通过发送公共的下行控制信道调度公共的PDSCH,所述公共PDCCH和公共PDSCH在一段公共的频域范围(Common Frequency Resource,CFR)内发送。
在一些实施例中,CFR配置方式可包括以下两种:
第一种:CFR配置为MBS专用的BWP,MBS专用BWP和终端的专用单播BWP关联,而且CFR上配置的子载波间隔和循环前缀和终端专用单播BWP上的配置相同。
第二种:CFR配置为终端专用单播BWP范围内连续的多个PRB。
第一种方式的优点在于CFR可以沿用现有的BWP信令配置,有利于减少标准的工作量,但问题在于,由于CFR定义为BWP,如果要求终端同时在专用单播BWP接收单播和在CFR内接收组播,意味着终端需要同时在两个BWP上接收下行传输,然而终端在既定时刻只有能力在一个BWP上接收下行,另外,即使终端在不同的时间接收单播和组播,由于两者位于不同的BWP,也会引入BWP切换时延。第二种方式可以避免BWP切换的问题,但是由于这一方式中CFR是连续的多个PRB,无法沿用目前以BWP为基础的信令配置,需要重新设计CFR的资源范围和上下行传输参数等的配置方式,对标准影响较大。
此外,由于调度公共PDSCH的公共PDCCH需要同时发送给多个接收终端,为了保证所述多个终端确定的公共PDCCH中承载的公共DCI的比特数相同,终端不能根据各自的专用单播BWP的配置确定公共DCI的比特数,另外,由于CFR的PRB个数可能和终端当前配置的初始BWP或控制资源集#0(Control Resource SET 0,CORESET#0)不同,终端也无法通过初始BWP或CORESET#0确定公共DCI的比特数。所以,不可避免的,公共DCI的比特数可能和终端在USS或CSS中接收的DCI比特数不同。然后,为了降低终端的实现复杂度,目前终端在一个小区内最多只能接收4个不同比特数的DCI,其中,由C-RNTI加扰的DCI比特数不超过3种。
因此,本申请对NR MBS系统做了进一步完善,更为具体的,如何配置用于发送公共PDCCH和公共PDSCH的CFR,以及终端如何在CFR内检测调度公共PDSCH的公共PDCCH是本申请要解决的技术问题。
图7示出了根据本申请实施例的无线通信方法200的示意性流程图,所述方法200可以由终端设备和网络设备交互执行。图7中所示的终端设备可以是如图1所示的终端设备,图7中所示的网络设备可以是如图1所示的接入网设备。
如图7所示,所述方法200可包括以下部分或全部内容:
S210,在与激活的专用单播带宽部分BWP关联的至少一个多媒体广播服务带宽部分MBS BWP上,接收公共物理下行控制信道PDCCH;其中,所述至少一个MBS BWP为用于MBS的公共频域资源CFR,所述至少一个MBS BWP中的每一个MBS BWP的频域范围位于所述激活的专用单播BWP的频域范围内;
S220,接收所述公共PDCCH调度的公共PDSCH。
换言之,终端设备在与激活的专用单播BWP关联的至少一个MBS BWP上,接收网络设备发送的公共PDCCH,并接收网络设备发送的所述公共PDCCH调度的公共PDSCH。例如,所述CFR由终端设备的专用RRC信令配置为BWP。
本申请实施例中,在与激活的专用单播BWP关联的至少一个MBS BWP上,接收公共PDCCH;一方面,所述至少一个MBS BWP设计为用于MBS的公共频域资源CFR,相当于,CFR可以沿用现有的BWP信令配置,有利于减少标准的工作量,另一方面,将所述至少一个MBS BWP中的每一个MBS BWP的频域范围设计为位于所述激活的专用单播BWP的频域范围内,可以避免终端设备在MBS过程中由于BWP切换造成的时延,另外,还可以在不增加终端PDCCH检测能力的情况下,保证公共PDCCH的检测。
需要说明的是,本申请实施例中,每一个作为CFR的BWP(即MBS BWP)可与终端设备的一个或多个专用单播BWP关联,本申请实施例对此不作具体限定。换言之,所述至少一个MBS BWP 中的MBS BWP还可以关联至除所述激活的专用单播BWP之外的专用单播BWP。
在一些实施例中,所述网络设备用于为所述终端设备配置至少一个专用单播BWP,所述至少一个专用单播BWP中的每一个专用单播BWP和一个或多个MBS BWP关联,所述至少一个专用单播BWP包括所述激活的专用单播BWP。换言之,所述终端设备被配置有至少一个专用单播BWP。
在一种实现方式中,所述至少一个专用单播BWP关联的MBS BWP不作为激活BWP;和/或,所述终端设备不期望物理层信令和/或无线资源控制RRC层信令激活所述至少一个专用单播BWP关联的MBS BWP。
在一种实现方式中,所述至少一个专用单播BWP关联的MBS BWP不计入所述终端设备被配置的BWP总数。
在一些实施例中,所述至少一个MBS BWP被配置的子载波间隔和循环分别与所述激活的专用单播BWP被配置的子载波间隔和循环相同。
换言之,作为CFR的BWP上配置的子载波间隔和循环和与其关联的终端专用单播BWP相同。
在一些实施例中,所述至少一个MBS BWP为一个MBS BWP,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识关联。
当然,在本申请的其他实施例中,所述至少一个MBS BWP可以是多个MBS BWP。
在一种实现方式中,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识相同。
换言之,每一个MBS BWP均与一个专用单播BWP关联,而且MBS BWP和与之关联的专用单播BWP的BWP ID相同,终端根据当前激活的专用单播BWP的ID确定与之关联的MBS BWP。较优的,在本实施例中,如果终端收到的DCI中“Bandwidth part indicator”的域的值为w,或终端接收到的RRC层信令激活ID为w的BWP,则终端激活ID为w的终端专用单播BWP,并在与之关联的MBS BWP中接收公共PDCCH,公共PDSCH或SPS传输。
在一种实现方式中,所述一个MBS BWP的频域大小小于或等于所述激活的专用单播BWP的频域大小。
图8和9是本申请实施例提供的MBS BWP和终端专用单播BWP的ID可选值相同时,终端专用单播BWP和MBS BWP的关联关系的示意图。在一个示例中,如图8所示,MBS BWP的ID的可选值和终端专用单播BWP相同,当两个BWP的ID相同时,终端认为两个BWP存在关联关系。在另一个示中,如图9所示,如果终端配置有多个ID相同的BWP,则终端认为ID相同的两个BWP之间存在关联关系,而且频域范围较小的BWP为MBS BWP,另外一个为终端专用单播BWP。如果两个ID相同的BWP频域范围相同,则终端可以将其中的任何一个作为MBS BWP,另外一个作为终端专用单播BWP。在本实施例中,MBS BWP不计入终端专用BWP总数。
在一种实现方式中,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识不同。
换言之,每一个MBS BWP具有独立的BWP ID。较优的,MBS BWP的BWP ID取值空间和终端专用单播BWP的BWP ID取值空间不同。对于任意一个MBS BWP,均关联到一个终端专用单播BWP。
图10是本申请实施例提供的MBS BWP和终端专用单播BWP的ID可选值不同时,终端专用单播BWP和MBS BWP的关联关系的示意图。如图10所示,终端认为ID取值为5,6,7和8的BWP为MBS BWP,ID值为5,6,7和8的MBS BWP分别与专用单播BWP ID值为1,2,3,和4关联。在该实施例中,ID取值为5,6,7和8的BWP不计入终端专用BWP总数。较优的,在本实施例中,终端不期望接收到的DCI中“Bandwidth part indicator”的域的值大于4,即终端不期望接收到的RRC层信令激活的BWP的ID的取值大于4。
在一些实施例中,所述方法200还可包括:
接收所述至少一个MBS BWP中每一个MBS BWP的配置信息,所述配置信息包括以下中的至少一项:MBS BWP的起始物理资源块PRB,MBS BWP的PRB个数,MBS BWP上的PDSCH配置,MBS BWP上的PDCCH配置或MBS BWP上的半持续性调度SPS配置。
换言之,终端设备接收所述至少一个MBS BWP中每一个MBS BWP的配置信息。相应的,网络设备发送所述至少一个MBS BWP中每一个MBS BWP的配置信息。
在一种实现方式中,针对每一个MBS BWP的配置至少包括起始PRB,MBS BWP内包含的PRB个数,MBS BWP上的PDSCH配置,MBS BWP上的PDCCH配置,以及MBS BWP上的SPS配置等。
在一些实施例中,所述S210可包括:
在所述激活的专用单播BWP的频域范围内,根据所述至少一个MBS BWP中每一个MBS BWP的起始PRB和PRB个数,确定所述至少一个MBS BWP的频域范围;在所述至少一个MBS BWP的 频域范围内,分别根据所述至少一个MBS BWP对应的PDCCH配置,接收所述公共PDCCH;基于此,所述S220可包括:
根据所述公共PDCCH中的指示信息以及所述至少一个MBS BWP对应的PDSCH配置,接收所述公共PDSCH。
换言之,在所述激活的专用单播BWP的频域范围内,终端设备根据所述至少一个MBS BWP中每一个MBS BWP的起始PRB和PRB个数,确定所述至少一个MBS BWP的频域范围;所述终端设备在所述至少一个MBS BWP的频域范围内,分别根据所述至少一个MBS BWP对应的PDCCH配置,接收所述公共PDCCH;所述终端设备根据所述公共PDCCH中的指示信息以及所述至少一个MBS BWP对应的PDSCH配置,接收所述公共PDSCH。相应的,在所述激活的专用单播BWP的频域范围内,网络设备根据所述至少一个MBS BWP中每一个MBS BWP的起始PRB和PRB个数,确定所述至少一个MBS BWP的频域范围;所述网络设备在所述至少一个MBS BWP的频域范围内,分别根据所述至少一个MBS BWP对应的PDCCH配置,发送所述公共PDCCH;所述网络设备根据所述公共PDCCH中的指示信息以及所述至少一个MBS BWP对应的PDSCH配置,发送所述公共PDSCH。
在一些实施例中,所述方法200还可包括:
根据至少一个MBS BWP对应的SPS配置,接收SPS的激活和/或去激活信令;
根据SPS的激活和/或去激活信令,进行下行传输的接收。
换言之,所述终端设备根据至少一个MBS BWP对应的SPS配置,接收SPS的激活和/或去激活信令;所述终端设备根据SPS的激活和/或去激活信令,进行下行传输的接收。相应的,所述网络设备根据至少一个MBS BWP对应的SPS配置,发送SPS的激活和/或去激活信令;所述网络设备根据SPS的激活和/或去激活信令,进行下行传输的接收。
作为一个示例,如果终端当前的专用单播BWP为w,如果配置有与专用单播BWP w对应的MBS BWP,则终端设备可以根据该MBS BWP的起始PRB和MBS BWP内包含的PRB个数确定MBS BWP的频域范围,根据该MBS BWP上的PDCCH配置(pdcch-Config)接收公共PDCCH,根据公共PDCCH中的指示信息以及MBS BWP上的PDSCH配置(pdsch-Config)接收公共PDSCH,根据MBS BWP上的SPS配置(sps-Config)接收SPS的激活和/或去激活信令,并根据激活SPS配置接收SPS下行传输。换言之,可以为终端提供接收公共PDCCH、公共PDSCH以及SPS下行传输所需的相关配置,而且,在终端需要接收单播时不会引入BWP切换时延。
在一些实施例中,所述公共PDCCH中承载的公共下行控制信息DCI的最大比特数为通过网络设备配置,或所述公共DCI的最大比特数为预定义的。
在一种实现方式中,所述公共DCI的比特数由无线资源控制RRC层信令配置。
在一种实现方式中,所述公共DCI的最大比特数为126或128。
作为一个示例,所述公共PDCCH中携带的公共DCI的比特数由RRC信令配置,可配置的最大比特数为126比特。作为另一个示例,所述公共PDCCH中携带的公共DCI的比特数由RRC信令配置,可配置的最大比特数为128比特。较优的,所述公共PDCCH的CRC由组无线网络临时标识(Groupcast Radio Network Temporary Identifier,G-RNTI)加扰,在计算一个小区内终端需要检测的不同DCI比特数时,所述公共DCI不计入由C-RNTI加扰的DCI比特数。通过配置公共DCI的比特数,能够保证接收公共PDCCH的终端对公共DCI的比特数理想相同,并且可以将公共DCI的比特数和其他DCI的比特数对其,避免增加终端需要检测的不同DCI比特数。
当然,上述数值仅为本申请的示例,不应理解为对本申请的限制。
在一些实施例中,所述公共PDCCH在公共搜索空间CSS内发送。
换言之,终端设备在所述至少一个MBS BWP的频域范围根据PDCCH配置(pdcch-Config)接收公共PDCCH。相应的,所述网络设备在所述至少一个MBS BWP的频域范围根据PDCCH配置(pdcch-Config)发送公共PDCCH。其中,所述公共PDCCH在公共搜索空间(Common Search Space,CSS)内发送。
在一种实现方式中,所述CSS的索引和所述终端设备被配置的一个专用搜索空间USS的索引相同。
在一种实现方式中,所述方法200还可包括:
若所述终端设备在某一个时隙内盲检PDCCH的次数超出所述终端设备的能力,则确定所述CSS的优先级和所述USS的优先级相同。
换言之,若所述终端设备在某一个时隙内盲检PDCCH的次数超出所述终端设备的能力,则终端设备和网络设备均确定所述CSS的优先级和所述USS的优先级相同。
作为一个示例,所述CSS的索引和终端被配置的一个专用搜索空间(UE specific Search Space, USS)的索引(searchSpaceId)相同,所述终端设备在所述USS中能够接收用于指示在CFR中发送的用于调度公共PDSCH重传的PDCCH,如果终端在某一个时隙内盲检PDCCH的次数超出UE能力,则确定所有空间的接收优先级时,所述CSS的优先级和所述USS的优先级相同。通过设置所述CSS的索引,当终端PDCCH盲检次数超出UE能力且该CSS的优先级较低时,终端可以不在该CSS中检测PDCCH,从而可以保证其他更高优先级的USS内的PDCCH的检测。
在一些实施例中,所述CSS的索引通过PDCCH配置(pdcch-Config)进行配置。
在一种实现方式中,所述方法200还可包括:
若所述终端设备在某一个时隙内盲检PDCCH的次数超出所述终端设备的能力,则根据所述CSS的索引确定所述CSS的优先级。
换言之,若所述终端设备在某一个时隙内盲检PDCCH的次数超出所述终端设备的能力,则终端设备和网络设备均根据所述CSS的索引确定所述CSS的优先级。
作为一个示例,所述CSS的索引在PDCCH配置(pdcch-Config)中单独配置,如果所述终端设备在某一个时隙内盲检PDCCH的次数超出UE能力,则所述终端设备可以根据所述CSS的索引确定所述CSS的优先级。通过设置所述CSS的索引,当终端PDCCH盲检次数超出UE能力且该CSS的优先级较低时,终端可以不在该CSS中检测PDCCH,从而可以保证其他更高优先级的USS内的PDCCH的检测。
本申请提供了一种NR MBS系统中终端接收公共PDCCH和公共PDSCH的方法,根据本申请提出的方法,终端接收终端特定RRC信令确定公共频域资源的配置,其中公共频域资源配置为BWP,该BWP和终端专用单播BWP关联,而且用于CFR的BWP不作为激活BWP使用;通过本申请提出的方法,可以避免终端在接收MBS过程中的BWP切换时延,另外,可以在不增加终端PDCCH检测能力的情况下,保证公共PDCCH的检测。另外,终端在CFR上配置的CSS中接收公共PDCCH,所述CSS的优先级可以和一个USS的优先级相同,或者该CSS的优先级可以单独配置并根据所述CSS的索引确定所述CSS的优先级,通过设置所述CSS的索引,当终端PDCCH盲检次数超出UE能力且该CSS的优先级较低时,终端可以不在该CSS中检测PDCCH,从而可以保证其他更高优先级的USS内的PDCCH的检测。另外,公共PDCCH中承载的DCI的比特数可以由RRC层信令配置为126比特或128比特;通过配置公共DCI的比特数,能够保证接收公共PDCCH的终端对公共DCI的比特数理想相同,并且可以将公共DCI的比特数和其他DCI的比特数对其,避免增加终端需要检测的不同DCI比特数。
应当理解,网络设备侧方法中的步骤和终端设备侧方法中的相应步骤可相互参考,为避免重复,此处不再赘述。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”和“上行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上文结合图1至图10,详细描述了本申请的方法实施例,下文结合图11至图14,详细描述本申请的装置实施例。
图11是本申请实施例的终端设备300的示意性框图。
如图11所示,所述终端设备300可包括:
通信单元310,用于:
在与激活的专用单播带宽部分BWP关联的至少一个多媒体广播服务带宽部分MBS BWP上,接收公共物理下行控制信道PDCCH;其中,所述至少一个MBS BWP为用于MBS的公共频域资源CFR,所述至少一个MBS BWP中的每一个MBS BWP的频域范围位于所述激活的专用单播BWP的频域范 围内;
接收所述公共PDCCH调度的公共PDSCH。
在一些实施例中,所述终端设备被配置有至少一个专用单播BWP,所述至少一个专用单播BWP中的每一个专用单播BWP和一个或多个MBS BWP关联,所述至少一个专用单播BWP包括所述激活的专用单播BWP。
在一些实施例中,所述至少一个专用单播BWP关联的MBS BWP不作为激活BWP;和/或,所述终端设备不期望物理层信令和/或无线资源控制RRC层信令激活所述至少一个专用单播BWP关联的MBS BWP。
在一些实施例中,所述至少一个专用单播BWP关联的MBS BWP不计入所述终端设备被配置的BWP总数。
在一些实施例中,所述至少一个MBS BWP被配置的子载波间隔和循环分别与所述激活的专用单播BWP被配置的子载波间隔和循环相同。
在一些实施例中,所述至少一个MBS BWP为一个MBS BWP,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识关联。
在一些实施例中,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识相同。
在一些实施例中,所述一个MBS BWP的频域大小小于或等于所述激活的专用单播BWP的频域大小。
在一些实施例中,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识不同。
在一些实施例中,所述通信单元310还用于:
接收所述至少一个MBS BWP中每一个MBS BWP的配置信息,所述配置信息包括以下中的至少一项:MBS BWP的起始物理资源块PRB,MBS BWP的PRB个数,MBS BWP上的PDSCH配置,MBS BWP上的PDCCH配置或MBS BWP上的半持续性调度SPS配置。
在一些实施例中,所述通信单元310具体用于:
在所述激活的专用单播BWP的频域范围内,根据所述至少一个MBS BWP中每一个MBS BWP的起始PRB和PRB个数,确定所述至少一个MBS BWP的频域范围;
在所述至少一个MBS BWP的频域范围内,分别根据所述至少一个MBS BWP对应的PDCCH配置,接收所述公共PDCCH;
根据所述公共PDCCH中的指示信息以及所述至少一个MBS BWP对应的PDSCH配置,接收所述公共PDSCH。
在一些实施例中,所述通信单元310还用于:
根据至少一个MBS BWP对应的SPS配置,接收SPS的激活和/或去激活信令;
根据SPS的激活和/或去激活信令,进行下行传输的接收。
在一些实施例中,所述公共PDCCH中承载的公共下行控制信息DCI的最大比特数为通过网络设备配置,或所述公共DCI的最大比特数为预定义的。
在一些实施例中,所述公共DCI的比特数由无线资源控制RRC层信令配置。
在一些实施例中,所述公共DCI的最大比特数为126或128。
在一些实施例中,所述公共PDCCH在公共搜索空间CSS内发送。
在一些实施例中,所述CSS的索引和所述终端设备被配置的一个专用搜索空间USS的索引相同。
在一些实施例中,所述终端设备300还包括:
处理单元,用于若所述终端设备在某一个时隙内盲检PDCCH的次数超出所述终端设备的能力,则确定所述CSS的优先级和所述USS的优先级相同。
在一些实施例中,所述CSS的索引通过在PDCCH配置进行配置。
在一些实施例中,所述终端设备300还包括:
处理单元,用于若所述终端设备在某一个时隙内盲检PDCCH的次数超出所述终端设备的能力,则根据所述CSS的索引确定所述CSS的优先级。
图12是本申请实施例的网络设备400的示意性框图。
如图12所示,所述网络设备400可包括:
通信单元410,用于:
在与激活的专用单播带宽部分BWP关联的至少一个多媒体广播服务带宽部分MBS BWP上,发送公共物理下行控制信道PDCCH;其中,所述至少一个MBS BWP为用于MBS的公共频域资源CFR,所述至少一个MBS BWP中的每一个MBS BWP的频域范围位于所述激活的专用单播BWP的频域范围内;
发送所述公共PDCCH调度的公共PDSCH。
在一些实施例中,所述网络设备用于为终端设备配置至少一个专用单播BWP,所述至少一个专用单播BWP中的每一个专用单播BWP和一个或多个MBS BWP关联,所述至少一个专用单播BWP包括所述激活的专用单播BWP。
在一些实施例中,所述至少一个专用单播BWP关联的MBS BWP不作为激活BWP;和/或,所述终端设备不期望物理层信令和/或无线资源控制RRC层信令激活所述至少一个专用单播BWP关联的MBS BWP。
在一些实施例中,所述至少一个专用单播BWP关联的MBS BWP不计入所述终端设备被配置的BWP总数。
在一些实施例中,所述至少一个MBS BWP被配置的子载波间隔和循环分别与所述激活的专用单播BWP被配置的子载波间隔和循环相同。
在一些实施例中,所述至少一个MBS BWP为一个MBS BWP,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识关联。
在一些实施例中,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识相同。
在一些实施例中,所述一个MBS BWP的频域大小小于或等于所述激活的专用单播BWP的频域大小。
在一些实施例中,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识不同。
在一些实施例中,所述通信单元410还用于:
发送所述至少一个MBS BWP中每一个MBS BWP的配置信息,所述配置信息包括以下中的至少一项:MBS BWP的起始物理资源块PRB,MBS BWP的PRB个数,MBS BWP上的PDSCH配置,MBS BWP上的PDCCH配置或MBS BWP上的半持续性调度SPS配置。
在一些实施例中,所述通信单元410具体用于:
在所述激活的专用单播BWP的频域范围内,根据所述至少一个MBS BWP中每一个MBS BWP的起始PRB和PRB个数,确定所述至少一个MBS BWP的频域范围;
在所述至少一个MBS BWP的频域范围内,分别根据所述至少一个MBS BWP对应的PDCCH配置,发送所述公共PDCCH;
根据所述公共PDCCH中的指示信息以及所述至少一个MBS BWP对应的PDSCH配置,发送所述公共PDSCH。
在一些实施例中,所述通信单元410还用于:
根据至少一个MBS BWP对应的SPS配置,发送SPS的激活和/或去激活信令;
根据SPS的激活和/或去激活信令,进行下行传输的接收。
在一些实施例中,所述公共PDCCH中承载的公共下行控制信息DCI的最大比特数为通过网络设备配置,或所述公共DCI的最大比特数为预定义的。
在一些实施例中,所述公共DCI的比特数由无线资源控制RRC层信令配置。
在一些实施例中,所述公共DCI的最大比特数为126或128。
在一些实施例中,所述公共PDCCH在公共搜索空间CSS内发送。
在一些实施例中,所述CSS的索引和所述终端设备被配置的一个专用搜索空间USS的索引相同。
在一些实施例中,所述网络设备400还包括:
处理单元,用于若所述终端设备在某一个时隙内盲检PDCCH的次数超出所述终端设备的能力,则确定所述CSS的优先级和所述USS的优先级相同。
在一些实施例中,所述CSS的索引通过在PDCCH配置进行配置。
在一些实施例中,所述网络设备400还包括:
处理单元,用于若所述终端设备在某一个时隙内盲检PDCCH的次数超出所述终端设备的能力,则根据所述CSS的索引确定所述CSS的优先级。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图11所示的终端设备300可以对应于执行本申请实施例的方法200中的相应主体,并且终端设备300中的各个单元的前述和其它操作和/或功能分别为了实现图7中的各个方法中的相应流程,为了简洁,在此不再赘述。类似的,图12所示的网络设备400可以对应于执行本申请实施例的方法200中的相应主体,并且网络设备400中的各个单元的前述和其它操作和/或功能分别为了实现图7中的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。具体地, 本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的处理单元可由处理器实现,上文涉及的通信单元310和通信单元410可分别由收发器实现。
图13是本申请实施例的通信设备500示意性结构图。
如图13所示,所述通信设备500可包括处理器510。
其中,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图13所示,通信设备500还可以包括存储器520。
其中,该存储器520可以用于存储指示信息,还可以用于存储处理器510执行的代码、指令等。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
如图13所示,通信设备500还可以包括收发器530。
其中,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
应当理解,该通信设备500中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该通信设备500可为本申请实施例的终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由终端设备实现的相应流程,也就是说,本申请实施例的通信设备500可对应于本申请实施例中的终端设备300,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。类似地,该通信设备500可为本申请实施例的网络设备,并且该通信设备500可以实现本申请实施例的各个方法中由网络设备实现的相应流程。也就是说,本申请实施例的通信设备500可对应于本申请实施例中的网络设备400,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。
此外,本申请实施例中还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。所述芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图14是根据本申请实施例的芯片600的示意性结构图。
如图14所示,所述芯片600包括处理器610。
其中,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图14所示,所述芯片600还可以包括存储器620。
其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
如图14所示,所述芯片600还可以包括输入接口630。
其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
如图14所示,所述芯片600还可以包括输出接口640。
其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,所述芯片600可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,也可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
还应理解,该芯片600中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific  Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行方法200所示实施例的方法。可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行方法200所示实施例的方法。可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选的,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种通信系统,所述通信系统可以包括上述涉及的终端设备和网络设备,以形成如图1所示的通信系统100,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员还可以意识到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (86)

  1. 一种无线通信方法,其特征在于,包括:
    在与激活的专用单播带宽部分BWP关联的至少一个多媒体广播服务带宽部分MBS BWP上,接收公共物理下行控制信道PDCCH;其中,所述至少一个MBS BWP为用于MBS的公共频域资源CFR,所述至少一个MBS BWP中的每一个MBS BWP的频域范围位于所述激活的专用单播BWP的频域范围内;
    接收所述公共PDCCH调度的公共PDSCH。
  2. 根据权利要求1所述的方法,其特征在于,所述方法应用于终端设备,所述终端设备被配置有至少一个专用单播BWP,所述至少一个专用单播BWP中的每一个专用单播BWP和一个或多个MBS BWP关联,所述至少一个专用单播BWP包括所述激活的专用单播BWP。
  3. 根据权利要求2所述的方法,其特征在于,所述至少一个专用单播BWP关联的MBS BWP不作为激活BWP;和/或,所述终端设备不期望物理层信令和/或无线资源控制RRC层信令激活所述至少一个专用单播BWP关联的MBS BWP。
  4. 根据权利要求2或3所述的方法,其特征在于,所述至少一个专用单播BWP关联的MBS BWP不计入所述终端设备被配置的BWP总数。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述至少一个MBS BWP被配置的子载波间隔和循环分别与所述激活的专用单播BWP被配置的子载波间隔和循环相同。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述至少一个MBS BWP为一个MBS BWP,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识关联。
  7. 根据权利要求6所述的方法,其特征在于,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识相同。
  8. 根据权利要求7所述的方法,其特征在于,所述一个MBS BWP的频域大小小于或等于所述激活的专用单播BWP的频域大小。
  9. 根据权利要求6所述的方法,其特征在于,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识不同。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述至少一个MBS BWP中每一个MBS BWP的配置信息,所述配置信息包括以下中的至少一项:MBS BWP的起始物理资源块PRB,MBS BWP的PRB个数,MBS BWP上的PDSCH配置,MBS BWP上的PDCCH配置或MBS BWP上的半持续性调度SPS配置。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述在与激活的专用单播带宽部分BWP关联的至少一个多媒体广播服务带宽部分MBS BWP上,接收公共物理下行控制信道PDCCH,包括:
    在所述激活的专用单播BWP的频域范围内,根据所述至少一个MBS BWP中每一个MBS BWP的起始PRB和PRB个数,确定所述至少一个MBS BWP的频域范围;
    在所述至少一个MBS BWP的频域范围内,分别根据所述至少一个MBS BWP对应的PDCCH配置,接收所述公共PDCCH;
    其中,所述接收所述公共PDCCH调度的公共PDSCH,包括:
    根据所述公共PDCCH中的指示信息以及所述至少一个MBS BWP对应的PDSCH配置,接收所述公共PDSCH。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述方法还包括:
    根据至少一个MBS BWP对应的SPS配置,接收SPS的激活和/或去激活信令;
    根据SPS的激活和/或去激活信令,进行下行传输的接收。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述公共PDCCH中承载的公共下行控制信息DCI的最大比特数为通过网络设备配置,或所述公共DCI的最大比特数为预定义的。
  14. 根据权利要求13所述的方法,其特征在于,所述公共DCI的比特数由无线资源控制RRC层信令配置。
  15. 根据权利要求13所述的方法,其特征在于,所述公共DCI的最大比特数为126或128。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述公共PDCCH在公共搜索空间CSS内发送。
  17. 根据权利要求16所述的方法,其特征在于,所述CSS的索引和终端设备被配置的一个专用搜索空间USS的索引相同。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    若所述终端设备在某一个时隙内盲检PDCCH的次数超出所述终端设备的能力,则确定所述CSS的优先级和所述USS的优先级相同。
  19. 根据权利要求16所述的方法,其特征在于,所述CSS的索引通过在PDCCH配置进行配置。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    若终端设备在某一个时隙内盲检PDCCH的次数超出所述终端设备的能力,则根据所述CSS的索引确定所述CSS的优先级。
  21. 一种无线通信方法,其特征在于,包括:
    在与激活的专用单播带宽部分BWP关联的至少一个多媒体广播服务带宽部分MBS BWP上,发送公共物理下行控制信道PDCCH;其中,所述至少一个MBS BWP为用于MBS的公共频域资源CFR,所述至少一个MBS BWP中的每一个MBS BWP的频域范围位于所述激活的专用单播BWP的频域范围内;
    发送所述公共PDCCH调度的公共PDSCH。
  22. 根据权利要求21所述的方法,其特征在于,所述方法应用于网络设备,所述网络设备用于为终端设备配置至少一个专用单播BWP,所述至少一个专用单播BWP中的每一个专用单播BWP和一个或多个MBS BWP关联,所述至少一个专用单播BWP包括所述激活的专用单播BWP。
  23. 根据权利要求22所述的方法,其特征在于,所述至少一个专用单播BWP关联的MBS BWP不作为激活BWP;和/或,所述终端设备不期望物理层信令和/或无线资源控制RRC层信令激活所述至少一个专用单播BWP关联的MBS BWP。
  24. 根据权利要求22或23所述的方法,其特征在于,所述至少一个专用单播BWP关联的MBS BWP不计入所述终端设备被配置的BWP总数。
  25. 根据权利要求21至24中任一项所述的方法,其特征在于,所述至少一个MBS BWP被配置的子载波间隔和循环分别与所述激活的专用单播BWP被配置的子载波间隔和循环相同。
  26. 根据权利要求21至25中任一项所述的方法,其特征在于,所述至少一个MBS BWP为一个MBS BWP,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识关联。
  27. 根据权利要求26所述的方法,其特征在于,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识相同。
  28. 根据权利要求27所述的方法,其特征在于,所述一个MBS BWP的频域大小小于或等于所述激活的专用单播BWP的频域大小。
  29. 根据权利要求26所述的方法,其特征在于,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识不同。
  30. 根据权利要求21至29中任一项所述的方法,其特征在于,所述方法还包括:
    发送所述至少一个MBS BWP中每一个MBS BWP的配置信息,所述配置信息包括以下中的至少一项:MBS BWP的起始物理资源块PRB,MBS BWP的PRB个数,MBS BWP上的PDSCH配置,MBS BWP上的PDCCH配置或MBS BWP上的半持续性调度SPS配置。
  31. 根据权利要求21至30中任一项所述的方法,其特征在于,所述在与激活的专用单播带宽部分BWP关联的至少一个多媒体广播服务带宽部分MBS BWP上,发送公共物理下行控制信道PDCCH,包括:
    在所述激活的专用单播BWP的频域范围内,根据所述至少一个MBS BWP中每一个MBS BWP的起始PRB和PRB个数,确定所述至少一个MBS BWP的频域范围;
    在所述至少一个MBS BWP的频域范围内,分别根据所述至少一个MBS BWP对应的PDCCH配置,发送所述公共PDCCH;
    其中,所述发送所述公共PDCCH调度的公共PDSCH,包括:
    根据所述公共PDCCH中的指示信息以及所述至少一个MBS BWP对应的PDSCH配置,发送所述公共PDSCH。
  32. 根据权利要求21至31中任一项所述的方法,其特征在于,所述方法还包括:
    根据至少一个MBS BWP对应的SPS配置,发送SPS的激活和/或去激活信令;
    根据SPS的激活和/或去激活信令,进行下行传输的接收。
  33. 根据权利要求21至32中任一项所述的方法,其特征在于,所述公共PDCCH中承载的公共下行控制信息DCI的最大比特数为通过网络设备配置,或所述公共DCI的最大比特数为预定义的。
  34. 根据权利要求33所述的方法,其特征在于,所述公共DCI的比特数由无线资源控制RRC层信令配置。
  35. 根据权利要求33所述的方法,其特征在于,所述公共DCI的最大比特数为126或128。
  36. 根据权利要求21至35中任一项所述的方法,其特征在于,所述公共PDCCH在公共搜索空间CSS内发送。
  37. 根据权利要求36所述的方法,其特征在于,所述CSS的索引和终端设备被配置的一个专用搜索空间USS的索引相同。
  38. 根据权利要求37所述的方法,其特征在于,所述方法还包括:
    若所述终端设备在某一个时隙内盲检PDCCH的次数超出所述终端设备的能力,则确定所述CSS的优先级和所述USS的优先级相同。
  39. 根据权利要求36所述的方法,其特征在于,所述CSS的索引通过在PDCCH配置进行配置。
  40. 根据权利要求39所述的方法,其特征在于,所述方法还包括:
    若终端设备在某一个时隙内盲检PDCCH的次数超出所述终端设备的能力,则根据所述CSS的索引确定所述CSS的优先级。
  41. 一种终端设备,其特征在于,包括:
    通信单元,用于:
    在与激活的专用单播带宽部分BWP关联的至少一个多媒体广播服务带宽部分MBS BWP上,接收公共物理下行控制信道PDCCH;其中,所述至少一个MBS BWP为用于MBS的公共频域资源CFR,所述至少一个MBS BWP中的每一个MBS BWP的频域范围位于所述激活的专用单播BWP的频域范围内;
    接收所述公共PDCCH调度的公共PDSCH。
  42. 根据权利要求41所述的终端设备,其特征在于,所述终端设备被配置有至少一个专用单播BWP,所述至少一个专用单播BWP中的每一个专用单播BWP和一个或多个MBS BWP关联,所述至少一个专用单播BWP包括所述激活的专用单播BWP。
  43. 根据权利要求42所述的终端设备,其特征在于,所述至少一个专用单播BWP关联的MBS BWP不作为激活BWP;和/或,所述终端设备不期望物理层信令和/或无线资源控制RRC层信令激活所述至少一个专用单播BWP关联的MBS BWP。
  44. 根据权利要求42或43所述的终端设备,其特征在于,所述至少一个专用单播BWP关联的MBS BWP不计入所述终端设备被配置的BWP总数。
  45. 根据权利要求41至44中任一项所述的终端设备,其特征在于,所述至少一个MBS BWP被配置的子载波间隔和循环分别与所述激活的专用单播BWP被配置的子载波间隔和循环相同。
  46. 根据权利要求41至45中任一项所述的终端设备,其特征在于,所述至少一个MBS BWP为一个MBS BWP,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识关联。
  47. 根据权利要求46所述的终端设备,其特征在于,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识相同。
  48. 根据权利要求47所述的终端设备,其特征在于,所述一个MBS BWP的频域大小小于或等于所述激活的专用单播BWP的频域大小。
  49. 根据权利要求46所述的终端设备,其特征在于,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识不同。
  50. 根据权利要求41至49中任一项所述的终端设备,其特征在于,所述通信单元还用于:
    接收所述至少一个MBS BWP中每一个MBS BWP的配置信息,所述配置信息包括以下中的至少一项:MBS BWP的起始物理资源块PRB,MBS BWP的PRB个数,MBS BWP上的PDSCH配置,MBS BWP上的PDCCH配置或MBS BWP上的半持续性调度SPS配置。
  51. 根据权利要求41至50中任一项所述的终端设备,其特征在于,所述通信单元具体用于:
    在所述激活的专用单播BWP的频域范围内,根据所述至少一个MBS BWP中每一个MBS BWP的起始PRB和PRB个数,确定所述至少一个MBS BWP的频域范围;
    在所述至少一个MBS BWP的频域范围内,分别根据所述至少一个MBS BWP对应的PDCCH配置,接收所述公共PDCCH;
    根据所述公共PDCCH中的指示信息以及所述至少一个MBS BWP对应的PDSCH配置,接收所述公共PDSCH。
  52. 根据权利要求41至51中任一项所述的终端设备,其特征在于,所述通信单元还用于:
    根据至少一个MBS BWP对应的SPS配置,接收SPS的激活和/或去激活信令;
    根据SPS的激活和/或去激活信令,进行下行传输的接收。
  53. 根据权利要求41至52中任一项所述的终端设备,其特征在于,所述公共PDCCH中承载的公共下行控制信息DCI的最大比特数为通过网络设备配置,或所述公共DCI的最大比特数为预定义 的。
  54. 根据权利要求53所述的终端设备,其特征在于,所述公共DCI的比特数由无线资源控制RRC层信令配置。
  55. 根据权利要求53所述的终端设备,其特征在于,所述公共DCI的最大比特数为126或128。
  56. 根据权利要求41至55中任一项所述的终端设备,其特征在于,所述公共PDCCH在公共搜索空间CSS内发送。
  57. 根据权利要求56所述的终端设备,其特征在于,所述CSS的索引和所述终端设备被配置的一个专用搜索空间USS的索引相同。
  58. 根据权利要求57所述的终端设备,其特征在于,所述终端设备还包括:
    处理单元,用于若所述终端设备在某一个时隙内盲检PDCCH的次数超出所述终端设备的能力,则确定所述CSS的优先级和所述USS的优先级相同。
  59. 根据权利要求56所述的终端设备,其特征在于,所述CSS的索引通过在PDCCH配置进行配置。
  60. 根据权利要求59所述的终端设备,其特征在于,所述终端设备还包括:
    处理单元,用于若所述终端设备在某一个时隙内盲检PDCCH的次数超出所述终端设备的能力,则根据所述CSS的索引确定所述CSS的优先级。
  61. 一种网络设备,其特征在于,包括:
    通信单元,用于:
    在与激活的专用单播带宽部分BWP关联的至少一个多媒体广播服务带宽部分MBS BWP上,发送公共物理下行控制信道PDCCH;其中,所述至少一个MBS BWP为用于MBS的公共频域资源CFR,所述至少一个MBS BWP中的每一个MBS BWP的频域范围位于所述激活的专用单播BWP的频域范围内;
    发送所述公共PDCCH调度的公共PDSCH。
  62. 根据权利要求61所述的网络设备,其特征在于,所述网络设备用于为终端设备配置至少一个专用单播BWP,所述至少一个专用单播BWP中的每一个专用单播BWP和一个或多个MBS BWP关联,所述至少一个专用单播BWP包括所述激活的专用单播BWP。
  63. 根据权利要求62所述的网络设备,其特征在于,所述至少一个专用单播BWP关联的MBS BWP不作为激活BWP;和/或,所述终端设备不期望物理层信令和/或无线资源控制RRC层信令激活所述至少一个专用单播BWP关联的MBS BWP。
  64. 根据权利要求62或63所述的网络设备,其特征在于,所述至少一个专用单播BWP关联的MBS BWP不计入所述终端设备被配置的BWP总数。
  65. 根据权利要求61至64中任一项所述的网络设备,其特征在于,所述至少一个MBS BWP被配置的子载波间隔和循环分别与所述激活的专用单播BWP被配置的子载波间隔和循环相同。
  66. 根据权利要求61至65中任一项所述的网络设备,其特征在于,所述至少一个MBS BWP为一个MBS BWP,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识关联。
  67. 根据权利要求66所述的网络设备,其特征在于,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识相同。
  68. 根据权利要求67所述的网络设备,其特征在于,所述一个MBS BWP的频域大小小于或等于所述激活的专用单播BWP的频域大小。
  69. 根据权利要求66所述的网络设备,其特征在于,所述一个MBS BWP的标识和所述激活的专用单播BWP的标识不同。
  70. 根据权利要求61至69中任一项所述的网络设备,其特征在于,所述通信单元还用于:
    发送所述至少一个MBS BWP中每一个MBS BWP的配置信息,所述配置信息包括以下中的至少一项:MBS BWP的起始物理资源块PRB,MBS BWP的PRB个数,MBS BWP上的PDSCH配置,MBS BWP上的PDCCH配置或MBS BWP上的半持续性调度SPS配置。
  71. 根据权利要求61至70中任一项所述的网络设备,其特征在于,所述通信单元具体用于:
    在所述激活的专用单播BWP的频域范围内,根据所述至少一个MBS BWP中每一个MBS BWP的起始PRB和PRB个数,确定所述至少一个MBS BWP的频域范围;
    在所述至少一个MBS BWP的频域范围内,分别根据所述至少一个MBS BWP对应的PDCCH配置,发送所述公共PDCCH;
    根据所述公共PDCCH中的指示信息以及所述至少一个MBS BWP对应的PDSCH配置,发送所述公共PDSCH。
  72. 根据权利要求61至71中任一项所述的网络设备,其特征在于,所述通信单元还用于:
    根据至少一个MBS BWP对应的SPS配置,发送SPS的激活和/或去激活信令;
    根据SPS的激活和/或去激活信令,进行下行传输的接收。
  73. 根据权利要求61至72中任一项所述的网络设备,其特征在于,所述公共PDCCH中承载的公共下行控制信息DCI的最大比特数为通过网络设备配置,或所述公共DCI的最大比特数为预定义的。
  74. 根据权利要求73所述的网络设备,其特征在于,所述公共DCI的比特数由无线资源控制RRC层信令配置。
  75. 根据权利要求73所述的网络设备,其特征在于,所述公共DCI的最大比特数为126或128。
  76. 根据权利要求61至75中任一项所述的网络设备,其特征在于,所述公共PDCCH在公共搜索空间CSS内发送。
  77. 根据权利要求76所述的网络设备,其特征在于,所述CSS的索引和终端设备被配置的一个专用搜索空间USS的索引相同。
  78. 根据权利要求77所述的网络设备,其特征在于,所述网络设备还包括:
    处理单元,用于若所述终端设备在某一个时隙内盲检PDCCH的次数超出所述终端设备的能力,则确定所述CSS的优先级和所述USS的优先级相同。
  79. 根据权利要求76所述的网络设备,其特征在于,所述CSS的索引通过在PDCCH配置进行配置。
  80. 根据权利要求79所述的网络设备,其特征在于,所述网络设备还包括:
    处理单元,用于若终端设备在某一个时隙内盲检PDCCH的次数超出所述终端设备的能力,则根据所述CSS的索引确定所述CSS的优先级。
  81. 一种终端设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至20中任一项所述的方法。
  82. 一种网络设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求21至40中任一项所述的方法。
  83. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至20任一项所述的方法或如权利要求21至40中任一项所述的方法。
  84. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至20任一项所述的方法或如权利要求21至40中任一项所述的方法。
  85. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至20任一项所述的方法或如权利要求21至40中任一项所述的方法。
  86. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至20任一项所述的方法或如权利要求21至40中任一项所述的方法。
PCT/CN2021/085082 2021-04-01 2021-04-01 无线通信方法、终端设备和网络设备 WO2022205367A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2021/085082 WO2022205367A1 (zh) 2021-04-01 2021-04-01 无线通信方法、终端设备和网络设备
PCT/CN2021/093099 WO2022205570A1 (zh) 2021-04-01 2021-05-11 无线通信方法、终端设备和网络设备
EP21934221.9A EP4319375A1 (en) 2021-04-01 2021-05-11 Wireless communication method, terminal device and network device
CN202180096688.6A CN117121590A (zh) 2021-04-01 2021-05-11 无线通信方法、终端设备和网络设备
US18/374,733 US20240032072A1 (en) 2021-04-01 2023-09-29 Wireless communication method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/085082 WO2022205367A1 (zh) 2021-04-01 2021-04-01 无线通信方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2022205367A1 true WO2022205367A1 (zh) 2022-10-06

Family

ID=83457543

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/085082 WO2022205367A1 (zh) 2021-04-01 2021-04-01 无线通信方法、终端设备和网络设备
PCT/CN2021/093099 WO2022205570A1 (zh) 2021-04-01 2021-05-11 无线通信方法、终端设备和网络设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093099 WO2022205570A1 (zh) 2021-04-01 2021-05-11 无线通信方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20240032072A1 (zh)
EP (1) EP4319375A1 (zh)
CN (1) CN117121590A (zh)
WO (2) WO2022205367A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220039103A1 (en) * 2020-07-30 2022-02-03 Qualcomm Incorporated Multicast downlink control information configuration

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101883325A (zh) * 2009-05-04 2010-11-10 财团法人工业技术研究院 用于无线通信系统中的多播和广播重发的方法和设备
CN104272826A (zh) * 2012-05-03 2015-01-07 高通股份有限公司 在lte中的新载波类型中支持mbms的装置和方法
CN106031200A (zh) * 2014-03-13 2016-10-12 Lg电子株式会社 无线通信系统中发送用于公共报警系统的多媒体广播补充的方法和装置
US20190364558A1 (en) * 2016-11-04 2019-11-28 Lg Electronics Inc. Physical uplink control channel transmission/reception method between terminal and base station in wireless communication system and device supporting same
CN111226486A (zh) * 2017-11-18 2020-06-02 联想(新加坡)私人有限公司 随机接入配置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121414A1 (ja) * 2018-12-11 2020-06-18 株式会社Nttドコモ ユーザ端末及び無線通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101883325A (zh) * 2009-05-04 2010-11-10 财团法人工业技术研究院 用于无线通信系统中的多播和广播重发的方法和设备
CN104272826A (zh) * 2012-05-03 2015-01-07 高通股份有限公司 在lte中的新载波类型中支持mbms的装置和方法
CN106031200A (zh) * 2014-03-13 2016-10-12 Lg电子株式会社 无线通信系统中发送用于公共报警系统的多媒体广播补充的方法和装置
US20190364558A1 (en) * 2016-11-04 2019-11-28 Lg Electronics Inc. Physical uplink control channel transmission/reception method between terminal and base station in wireless communication system and device supporting same
CN111226486A (zh) * 2017-11-18 2020-06-02 联想(新加坡)私人有限公司 随机接入配置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220039103A1 (en) * 2020-07-30 2022-02-03 Qualcomm Incorporated Multicast downlink control information configuration

Also Published As

Publication number Publication date
CN117121590A (zh) 2023-11-24
EP4319375A1 (en) 2024-02-07
US20240032072A1 (en) 2024-01-25
WO2022205570A1 (zh) 2022-10-06

Similar Documents

Publication Publication Date Title
WO2021077434A1 (zh) 一种通信方法及装置
US20220322049A1 (en) Method and apparatus for scheduling service, terminal device, and network device
WO2021142647A1 (zh) 一种业务传输方法及装置、终端设备、网络设备
WO2021134298A1 (zh) 一种资源指示方法及装置、通信设备
CN113661746A (zh) 一种信息配置方法及装置、终端设备、网络设备
CN113661722B (zh) 一种业务数据传输方法及装置、网络设备、终端设备
US20240032072A1 (en) Wireless communication method, terminal device, and network device
WO2022006849A1 (zh) Mbs业务的tci状态管理方法及装置、终端设备
CN113728663B (zh) 一种drx配置方法及装置、终端设备、网络设备
WO2021051312A1 (zh) 一种信息配置方法及装置、终端设备、网络设备
WO2022141545A1 (zh) 一种mcch调度传输方法及装置、终端设备
CN113728683B (zh) 一种bwp配置方法及装置、终端设备、网络设备
WO2021142734A1 (zh) 业务冲突的解决方法、装置、设备及存储介质
WO2021142646A1 (zh) 一种业务传输方法及装置、通信设备
WO2021134291A1 (zh) 一种资源配置方法及装置、终端设备、网络设备
CN115604664A (zh) 一种多播业务修改通知方法及通信装置
WO2021134761A1 (zh) 一种小区重选方法及装置、终端设备、网络设备
WO2022151250A1 (zh) 无线通信方法、终端设备以及网络设备
US20230292341A1 (en) Wireless communication method, terminal device, and network device
WO2022021024A1 (zh) 一种bwp切换的方法及装置、终端设备
WO2023092531A1 (zh) 一种广播业务的配置方法及装置、终端设备、网络设备
WO2022126658A1 (zh) 一种mbs配置变更的方法及装置、终端设备、网络设备
WO2023115411A1 (zh) 通信方法及装置
CN117897921A (zh) 一种数据接收方法及装置、终端设备
CN117063495A (zh) 一种传输方式的确定方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934025

Country of ref document: EP

Kind code of ref document: A1