WO2022205294A1 - 无人机的控制方法、装置、无人机及存储介质 - Google Patents

无人机的控制方法、装置、无人机及存储介质 Download PDF

Info

Publication number
WO2022205294A1
WO2022205294A1 PCT/CN2021/084885 CN2021084885W WO2022205294A1 WO 2022205294 A1 WO2022205294 A1 WO 2022205294A1 CN 2021084885 W CN2021084885 W CN 2021084885W WO 2022205294 A1 WO2022205294 A1 WO 2022205294A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
position information
flight path
uav
flight
Prior art date
Application number
PCT/CN2021/084885
Other languages
English (en)
French (fr)
Inventor
钱杰
郭晓东
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202180079143.4A priority Critical patent/CN116745722A/zh
Priority to PCT/CN2021/084885 priority patent/WO2022205294A1/zh
Publication of WO2022205294A1 publication Critical patent/WO2022205294A1/zh
Priority to US18/475,536 priority patent/US20240019866A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/656Interaction with payloads or external entities
    • G05D1/689Pointing payloads towards fixed or moving targets
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/12Target-seeking control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/22Command input arrangements
    • G05D1/221Remote-control arrangements
    • G05D1/222Remote-control arrangements operated by humans
    • G05D1/224Output arrangements on the remote controller, e.g. displays, haptics or speakers
    • G05D1/2244Optic
    • G05D1/2247Optic providing the operator with simple or augmented images from one or more cameras
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0021Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located in the aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0034Assembly of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0039Modification of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0052Navigation or guidance aids for a single aircraft for cruising
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2109/00Types of controlled vehicles
    • G05D2109/20Aircraft, e.g. drones

Definitions

  • the present application relates to the technical field of unmanned aerial vehicles, and in particular, to a control method, device, unmanned aerial vehicle and storage medium of an unmanned aerial vehicle.
  • unmanned aerial vehicles can be widely used in aerial photography scenes, survey scenes, monitoring scenes or navigation scenes.
  • the drone may be required to detect or track the target, and a drone carrying a payload (such as a camera) can be used to track or move towards the target.
  • a drone carrying a payload such as a camera
  • the coupling work of each component on the UAV is usually automatically controlled with the same goal, and the real-time automatic control capability provided is limited.
  • one of the objectives of the present application is to provide a control method, device, unmanned aerial vehicle and storage medium of an unmanned aerial vehicle.
  • an embodiment of the present application provides a method for controlling an unmanned aerial vehicle, the method comprising:
  • the imaging device of the drone is controlled according to the position information of the second target to always follow the second target.
  • an embodiment of the present application provides a control device, the device comprising:
  • processors one or more processors
  • processors when executing the executable instructions, are individually or collectively configured to:
  • the imaging device of the drone is controlled according to the position information of the second target to always follow the second target.
  • an unmanned aerial vehicle including:
  • a power system mounted within the body for powering the drone
  • control device according to any one of the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores executable instructions, and when the executable instructions are executed by a processor, any one of the first aspect can be implemented. method described.
  • the control method, device, unmanned aerial vehicle and storage medium of an unmanned aerial vehicle provided by the embodiments of the present application can generate the flight path of the unmanned aerial vehicle according to the position information of the first target, and In the process of flying according to the flight path, the imaging device of the UAV is controlled to always follow the second target according to the position information of the second target.
  • One target-related flight path, and the imaging device of the UAV follows the second target to collect images, so as to realize the decoupling of different components on the UAV according to different targets, which is conducive to improving the real-time automatic control ability of the UAV, and also It can meet the control requirements based on different goals in some scenarios, and the automatic control process is also conducive to reducing the manual operation steps of the user and improving the user experience.
  • FIG. 1 is a schematic structural diagram of an unmanned aerial system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for controlling an unmanned aerial vehicle provided by an embodiment of the present application
  • 4A, 4B and 4C are different schematic diagrams of flight paths provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a flight range provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a flight path provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a control device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • the present application provides a control method of an unmanned aerial vehicle, which can generate the flight path of the unmanned aerial vehicle according to the position information of the first target, and when the unmanned aerial vehicle flies according to the During the flight path, the imaging device of the drone is controlled to always follow the second target according to the position information of the second target.
  • the flight path is flying, and the imaging device of the UAV follows the second target to collect images, so that the different components on the UAV can be decoupled according to different targets, which is conducive to improving the real-time automatic control ability of the UAV, and can also meet certain requirements.
  • the automatic control process is also conducive to reducing the manual operation steps of the user and improving the user experience.
  • control method of the unmanned aerial vehicle can be applied to a control device, and the control device can be a chip, an integrated circuit, or an electronic device with a data processing function.
  • control device is a chip or integrated circuit with a data processing function
  • the control device includes but is not limited to, for example, a central processing unit (Central Processing Unit, CPU), a digital signal processor (Digital Signal Processor, DSP), a dedicated integrated Circuit (Application Specific Integrated Circuit, ASIC) or off-the-shelf Programmable Gate Array (Field-Programmable Gate Array, FPGA), etc.; wherein, the control device can be installed in a remote control terminal or an unmanned aerial vehicle.
  • the remote control terminal can be connected in communication with an unmanned aerial vehicle to control the unmanned aerial vehicle.
  • the control device controls the unmanned aerial vehicle by executing the above method.
  • the control device is an electronic device with a data processing function
  • the electronic device includes, but is not limited to, a drone, a remote control terminal, or a server.
  • the remote control terminal can be communicatively connected with an unmanned aerial vehicle to control the unmanned aerial vehicle.
  • the control device is an unmanned aerial vehicle with a data processing function
  • the unmanned aerial vehicle can control itself by executing the above control method.
  • the drone can be a small or large drone.
  • the unmanned aerial vehicle may be a rotorcraft, for example, a multi-rotor unmanned aerial vehicle propelled through the air by a plurality of propulsion devices.
  • the embodiments of the present application are not limited thereto. Other types of drones are also possible.
  • FIG. 1 is a schematic architectural diagram of an unmanned aerial system according to an embodiment of the present application.
  • a rotary-wing unmanned aerial vehicle is used as an example for description.
  • the unmanned aerial system 100 may include an unmanned aerial vehicle 110 , a display device 130 and a remote control terminal 140 .
  • the UAV 110 may include a power system 150, a flight control system 160, a frame, and a gimbal 120 carried on the frame.
  • the drone 110 may wirelessly communicate with the remote control terminal 140 and the display device 130 .
  • the UAV 110 can be an agricultural UAV or an industrial application UAV, and there is a need for cyclic operation.
  • the frame may include a fuselage and a foot stand (also known as a landing gear).
  • the fuselage may include a center frame and one or more arms connected to the center frame, the one or more arms extending radially from the center frame.
  • the tripod is connected with the fuselage, and is used for supporting when the drone 110 is landed.
  • the power system 150 may include one or more electronic governors (referred to as ESCs for short) 151, one or more propellers 153, and one or more electric motors 152 corresponding to the one or more propellers 153, wherein the electric motors 152 are connected to the Between the electronic governor 151 and the propeller 153, the motor 152 and the propeller 153 are arranged on the arm of the drone 110; the electronic governor 151 is used to receive the driving signal generated by the flight control system 160, and provide driving according to the driving signal Electric current is supplied to the motor 152 to control the rotational speed of the motor 152 .
  • ESCs electronic governors
  • the motor 152 is used to drive the propeller to rotate, thereby providing power for the flight of the drone 110, and the power enables the drone 110 to achieve one or more degrees of freedom movement.
  • the drone 110 may rotate about one or more axes of rotation.
  • the above-mentioned rotation axis may include a roll axis (Roll), a yaw axis (Yaw), and a pitch axis (pitch).
  • the motor 152 may be a DC motor or an AC motor.
  • the motor 152 may be a brushless motor or a brushed motor.
  • Flight control system 160 may include flight controller 161 and sensing system 162 .
  • the sensing system 162 is used to measure the attitude information of the UAV, that is, the position information and state information of the UAV 110 in space, such as three-dimensional position, three-dimensional angle, three-dimensional velocity, three-dimensional acceleration and three-dimensional angular velocity.
  • the sensing system 162 may include, for example, at least one of sensors such as a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (IMU), a vision sensor, a global navigation satellite system, and a barometer.
  • the global navigation satellite system may be the Global Positioning System (GPS).
  • the flight controller 161 is used to control the flight of the UAV 110 , for example, the flight of the UAV 110 can be controlled according to the attitude information measured by the sensing system 162 . It should be understood that the flight controller 161 can control the UAV 110 according to pre-programmed instructions, and can also control the UAV 110 by responding to one or more remote control signals from the remote control terminal 140 .
  • the pan/tilt head 120 may include a motor 122 .
  • the pan/tilt head is used to carry the imaging device 123 .
  • the flight controller 161 can control the movement of the gimbal 120 through the motor 122 .
  • the pan/tilt 120 may further include a controller for controlling the movement of the pan/tilt 120 by controlling the motor 122 .
  • the gimbal 120 may be independent of the drone 110 , or may be a part of the drone 110 .
  • the motor 122 may be a DC motor or an AC motor.
  • the motor 122 may be a brushless motor or a brushed motor.
  • the gimbal can be located on the top of the drone or on the bottom of the drone.
  • the imaging device 123 can be, for example, a device for capturing images such as a camera or a video camera, and the imaging device 123 can communicate with the flight controller and take pictures under the control of the flight controller.
  • the imaging device 123 in this embodiment at least includes a photosensitive element, such as a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) sensor or a charge-coupled device (Charge-coupled Device, CCD) sensor.
  • CMOS complementary Metal Oxide Semiconductor
  • CCD charge-coupled Device
  • the imaging device may capture an image or series of images with a particular image resolution.
  • the imaging device may capture a series of images at a particular capture rate.
  • the imaging device may have a number of adjustable parameters. Imaging devices may capture different images with different parameters when subjected to the same external conditions (eg, location, lighting). It can be understood that the imaging device 123 can also be directly fixed on the UAV 110, so that the gimbal 120 can be omitted.
  • the display device 130 is located on the ground end of the UAV 100 , can communicate with the UAV 110 in a wireless manner, and can be used to display the attitude information of the UAV 110 .
  • the image captured by the imaging device 123 may also be displayed on the display device 130 .
  • the display device 130 may be an independent device, or may be integrated into the remote control terminal 140 .
  • the remote control terminal 140 is located at the ground end of the unmanned aerial vehicle system 100 and can communicate with the unmanned aerial vehicle 110 in a wireless manner, so as to remotely control the unmanned aerial vehicle 110 .
  • the control device is installed on the UAV as an example for illustration: the imaging device of the UAV can transmit the real-time captured pictures to the communication connection with the UAV.
  • the image captured by the imaging device is displayed on the remote control terminal.
  • the user can select a first target and a second target on the screen.
  • the first target can be a target object or a target direction
  • the second target Can be the target object.
  • the control device acquires the first target and the second target, and then can generate a flight path of the UAV according to the position information of the first target, for example, the flight path is a flight toward the first target.
  • the path please refer to FIG. 2.
  • the control device controls the imaging device of the UAV to always control the imaging device according to the position information of the second target.
  • the embodiment of the present application provides a control method of the unmanned aerial vehicle, which can be executed by a control device;
  • the control device can be installed on the drone or a remote control terminal that is communicatively connected to the drone; the method includes:
  • step S101 the flight path of the UAV is generated according to the position information of the first target.
  • step S102 during the flight of the unmanned aerial vehicle according to the flight path, the imaging device of the unmanned aerial vehicle is controlled to always follow the second target according to the position information of the second target.
  • the relevant flight control components of the UAV fly according to the flight path related to the first target, and the imaging device of the UAV follows the second target to collect images, so that different components on the UAV can solve the problem according to different targets.
  • the coupled work is conducive to improving the real-time automatic control capability of the UAV.
  • the drone may be configured with multiple control modes, for example, the control modes include gesture selfie mode, intelligent return-to-home mode, pointing flight mode, intelligent follow mode, and the target mode provided by the embodiments of the present application Wait.
  • control modes include gesture selfie mode, intelligent return-to-home mode, pointing flight mode, intelligent follow mode, and the target mode provided by the embodiments of the present application Wait.
  • the remote control terminal communicatively connected to the drone, and the user can select a corresponding control mode on the remote control terminal based on actual needs, such as when the target mode is selected.
  • the remote control terminal can display the real-time images captured by the imaging device of the UAV, the user can select the first target and the second target in the images captured by the imaging device, and the control device can select the first target and the second target according to the user's selection.
  • the predetermined first target and the second target control the operation of the UAV.
  • the drone is configured to fly towards, away from or around the first target in the target mode; and the imaging device is configured to follow the second target in the target mode.
  • the target mode when multiple control modes are displayed in the remote control terminal, the target mode can be displayed side by side with other modes as an independent mode, and when the user selects the target mode, the target mode is entered with the target mode.
  • the target mode may be one of a pointing flight mode or an intelligent following mode, the pointing flight mode indicates flying toward a target object or a target direction, and the smart following mode indicates following a target object, considering that the The control logic of the target mode is partially similar to the pointing flight mode or the smart follow mode.
  • the target mode can be considered as one of the pointing flight mode or the smart follow mode.
  • the interactive interface of the target mode can be coupled to the interactive mode of the pointing flight mode or the smart follow mode, then the user knows the point flight mode or the smart follow mode In this case, it is helpful for the user to speed up the control process of understanding the target mode.
  • the control device may determine the first target and the second target, respectively, based on different selected points in the picture captured by the imaging device, the Different selection points can be obtained according to different selection operations performed by the user on the screen for the first target and the second target, and the selection operations include but are not limited to click operations, frame selection operations, or long-press operations, etc. Wait.
  • the selection operation for selecting the first target is different from the selection operation for selecting the second target.
  • Two goals so as to facilitate the distinction between the first goal and the second goal.
  • the user when the user selects the target in the target mode, for example, in the interactive interface displaying the real-time captured image of the imaging device, the user may first display "Please select the first target. ” prompt information, after the user selects the first target based on the prompt information, then the prompt information of “Please select the second target” is displayed in the interactive interface displaying the real-time captured image of the imaging device to prompt the user to select the second target.
  • the prompt information of “Please select the second target” is displayed in the interactive interface displaying the real-time captured image of the imaging device to prompt the user to select the second target.
  • the user can specify at least one first target and At least one second target, which is not limited in this embodiment.
  • the first target and the second target may be selected by the user in the same picture, that is, the different selected points include different selected points obtained respectively in the same picture captured by the imaging device; or , the first target and the second target may also be respectively selected by the user in different pictures, that is, the different selected points include selected points obtained respectively in different pictures collected by the imaging device.
  • the drone may be flying towards the target object or flying along the target direction, then the first target may be the target object or the target direction,
  • the user may select the first target at any position in the picture captured by the imaging device, that is, the selected point for determining the first target is selected from any position in the picture.
  • the second target is an object to be photographed by the imaging device, then the second target may be a target object, and the user can select the second target at the position of the object in the picture captured by the imaging device, that is, to determine the second target.
  • the selected point of the second target is selected from the position of the object in the picture.
  • the target object may be a stationary object or a moving object, which is not limited in this embodiment.
  • the control device may convert the pre-stored two-dimensional space to the three-dimensional space according to the position of the selected point related to the first object in the picture relationship, determine the corresponding position of the selected point related to the first target in the three-dimensional space, and obtain the position information of the first target, for example, the position information of the first target may include the relative position of the first target relative to Orientation information of the UAV.
  • the conversion relationship between the two-dimensional space and the three-dimensional space is obtained by at least the internal reference and the external reference of the imaging device.
  • the control device may convert the pre-stored two-dimensional space to the three-dimensional space according to the position of the selected point related to the second object in the picture relationship, determine the corresponding position of the selected point related to the second target in the three-dimensional space, and obtain the position information of the second target, for example, the position information of the second target may include the relative position of the second target relative to Orientation information of the imaging device.
  • the conversion relationship between the two-dimensional space and the three-dimensional space is obtained by at least the internal reference and the external reference of the imaging device.
  • the control device can implement at least the following scenarios: when the drone is flying toward, away from, or flying around the first target During the process, the imaging device of the UAV always follows the second target.
  • the embodiments of the present application do not impose any restrictions on the type of the flight path generated according to the position information of the first target, and specific settings can be made according to actual application scenarios.
  • the flight path includes at least one of the following types of paths: a flight path toward the first target as shown in FIG. 4A , a flight path away from the first target as shown in FIG. 4B , and a flight path as shown in FIG. 4C .
  • control device may generate the flight path of the UAV by combining the position information of the UAV, the position information of the first target and a preset flight path type.
  • the position information of the UAV is used to determine the starting trajectory point of the flight path, and the position information of the first target and the preset flight path type are used to determine the direction and termination trajectory of the flight path point.
  • control device may generate the flight path of the UAV according to the position information of the first target and the position information of the second target.
  • the position information of the second target is referred to when the flight path is generated, so as to ensure that the second target is included in the image collected by the imaging device during the flight of the UAV according to the flight path. Good presentation.
  • control device may determine the flight of the UAV according to the position information of the first target, the position information of the second target and the position information of the UAV range and then generate the flight path within the flight range of the drone.
  • the flight path is generated in the flight range determined with reference to the position information of the second target, so that the second target is in the image collected by the imaging device during the flight of the drone according to the flight path. Has a good presentation effect.
  • the control device may determine the flight range as shown in FIG. 5 according to the position information of the first target, the position information of the second target and the position information of the UAV, wherein the The position information of the UAV can be obtained through the positioning module of the UAV; then the flight path towards the first target is determined within the flight range, and the flight range refers to the position information of the second target, which is conducive to ensuring no During the flight of the man-machine toward the first target according to the flight path, the second target has a good presentation effect in the image collected by the imaging device.
  • control device may determine an initial trajectory point according to the position information of the UAV, determine a termination trajectory point according to the position information of the first target, and determine the end trajectory point according to the position information of the first target
  • the position information of the target determines at least one intermediate trajectory point near the second target, and then the initial trajectory point, the at least one intermediate trajectory point and the termination trajectory point can be used to generate the flight of the UAV path.
  • at least one intermediate trajectory point is generated near the second target, so that during the flight of the drone according to the flight path, the drone can fly to the vicinity of the second target, so that the first The two targets have a good presentation effect in the image collected by the imaging device.
  • the control device can determine the starting trajectory point according to the position information of the UAV, and determine the ending trajectory point according to the position information of the first target;
  • the control device may determine at least one intermediate trajectory in the target area near the second target, for example, as shown in FIG.
  • three intermediate trajectory points are determined in the target area shown in FIG. 6, and then the control device can use the starting trajectory point, the at least one intermediate trajectory point, and the ending trajectory point to generate the following
  • the flight path of the UAV may satisfy the following conditions: when the UAV flies according to the flight path During the process, the size of the second target in the image collected by the imaging device is not smaller than a preset size, so as to ensure that the second target maintains an appropriate size in the image.
  • part of the flight path may satisfy the above conditions, or the entire flight path may satisfy the above conditions.
  • the flight path of the UAV may satisfy the following conditions: when the UAV flies according to the flight path During the process, the distance between the drone and the second target is not greater than a preset distance; the preset distance is used to keep the second target in a preset size in the image, so as to ensure that the second target is Keep the proper size in the image.
  • part of the flight path may satisfy the above conditions, or the entire flight path may satisfy the above conditions.
  • the collection range of the second target may be determined with the second target as the center and the preset distance as the radius, and then the flight range may be determined according to the collection range and the position information of the first target. , and generate a flight path within the flight range; wherein, the flight range overlaps with the collection range to ensure that the second target is in the image when the drone flies within the collection range keep the appropriate size.
  • the starting position of the drone in the flight path may be determined according to the preset distance, for example, when the distance between the drone and the second target is greater than the preset distance.
  • the UAV can be controlled to fly to a position at a preset distance from the second target, and the position after the UAV is taken as the starting position of the UAV in the flight path , which ensures that the second target maintains an appropriate size in the image when the drone takes off.
  • the UAV during the flight of the UAV according to the flight path, if an obstacle appears in the flight path, the UAV needs to be controlled to perform obstacle avoidance flight, considering that the UAV The imaging device needs to always follow the second target.
  • the control device can control the drone to avoid the side close to the second target. Obstacle flight, so as to achieve obstacle avoidance while ensuring that the second target can always be presented in the image collected by the imaging device.
  • the control device may determine a trajectory point at a position that avoids the obstacle on a side close to the second target, and according to the The trajectory point updates the flight path, and the control device can control the UAV to avoid obstacles according to the updated flight path, so as to avoid obstacles while ensuring that the second target can always be presented on the image collected by the imaging device middle.
  • control device may generate a plurality of candidate trajectory points around the obstacle according to the position information of the obstacle, and then determine a side close to the second target from the plurality of candidate trajectory points The trajectory point of In the process of obstacle avoidance, there is a problem that the second target is lost due to the occlusion of obstacles.
  • the control device can control the imaging device of the UAV to always follow the second target during the process of controlling the imaging device to follow the second target.
  • the orientation of the pan/tilt head is controlled according to the position information of the second target, so that the imaging device always follows the second target.
  • the position information of the second target includes the orientation information of the second target, and the control device may adjust the gimbal according to the difference between the current orientation of the gimbal and the orientation of the second target so that the imaging device always follows the second target.
  • an embodiment of the present application further provides a control device 200 , the device includes:
  • memory 201 for storing executable instructions
  • processors 202 one or more processors 202;
  • the one or more processors 202 are individually or collectively configured to:
  • the imaging device of the drone is controlled according to the position information of the second target to always follow the second target.
  • control device may be a chip, an integrated circuit, or an electronic device with a data processing function.
  • the memory 201 may include at least one type of storage medium, and the storage medium includes flash memory, hard disk, multimedia card, card-type memory (eg, SD or DX memory, etc.), random access memory (RAM), static random access memory, etc. Memory (SRAM), Read Only Memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Programmable Read Only Memory (PROM), magnetic memory, magnetic disks, optical disks, and the like. Also, the device may cooperate with a network storage device that performs the storage function of the memory through a network connection.
  • the memory 201 may be an internal storage unit of the device 200 , such as a hard disk or a memory of the device 200 .
  • the memory 201 may also be an external storage device of the device 200, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, and a flash memory card (Flash Card) equipped on the device 200. Wait. Further, the memory 201 may also include both an internal storage unit of the apparatus 200 and an external storage device. Memory 201 is used to store executable instructions and other programs and data required by the device. The memory 201 can also be used to temporarily store data that has been output or is to be output.
  • FIG. 7 is only an example of the control device 200, and does not constitute a limitation to the control device 200. It may include more or less components than the one shown, or combine some components, or different components
  • the device may also include an input and output device, a network access device, a bus, and the like.
  • the flight path includes at least one of: a flight path toward the first target, a flight path away from the first target, and a flight path around the first target.
  • the imaging device is mounted on the drone through a gimbal.
  • the processor 202 is further configured to: control the orientation of the pan/tilt head according to the position information of the second target, so that the imaging device always follows the second target.
  • the processor 202 is further configured to: generate the flight path of the UAV according to the position information of the first target and the position information of the second target.
  • the processor 202 is further configured to: determine the position of the drone according to the position information of the first target, the position information of the second target and the position information of the drone flight range; generating the flight path within the flight range of the drone.
  • the processor 202 is further configured to: determine a starting trajectory point according to the position information of the UAV; determine a termination trajectory point according to the position information of the first target; The position information of the two targets determines at least one intermediate trajectory point near the second target; using the initial trajectory point, the at least one intermediate trajectory point and the termination trajectory point to generate the flight path of the UAV .
  • the flight path satisfies the following condition: the size of the second target in the image captured by the imaging device is not smaller than a preset size.
  • the flight path satisfies the following conditions: the distance between the drone and the second target is not greater than a preset distance; the preset distance is used to keep the second target in the image Default size.
  • the starting position of the drone in the flight path is determined according to the preset distance.
  • the processor 202 is further configured to: control the UAV to approach the UAV if an obstacle appears in the flight path during the flight of the UAV according to the flight path.
  • One side of the second target avoids obstacles and flies.
  • the processor 202 is further configured to: determine a trajectory point on the side close to the second target, and update the flight path according to the trajectory point; control the drone according to Updated flight path for obstacle avoidance flight.
  • the processor 202 is further configured to: generate a plurality of candidate trajectory points according to the position information of the obstacle; determine from the plurality of candidate trajectory points that the distance to the second target is less than a predetermined distance. Thresholded trajectory points.
  • the processor 202 is further configured to: in the target mode, determine the first target and the second target, respectively, based on different selected points in the picture captured by the imaging device.
  • the drone is configured to fly towards, away from or around the first target in the target mode; and the imaging device is configured to follow the target mode in the target mode Second goal.
  • the different selected points include selected points obtained respectively in different frames acquired by the imaging device.
  • the selected point for determining the first object is selected from any position in the picture; and/or, the selected point for determining the second object is selected from an object in the picture Location selection.
  • the various embodiments described herein can be implemented using computer readable media such as computer software, hardware, or any combination thereof.
  • the embodiments described herein can be implemented using application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays ( FPGA), processors, controllers, microcontrollers, microprocessors, electronic units designed to perform the functions described herein are implemented.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, electronic units designed to perform the functions described herein are implemented.
  • embodiments such as procedures or functions may be implemented with separate software modules that allow the performance of at least one function or operation.
  • the software codes may be implemented by a software application (or program) written in any suitable programming language, which may be stored in
  • the control device is a chip or integrated circuit with a data processing function
  • the control device can be installed in an unmanned aerial vehicle.
  • FIG. 8 shows an unmanned aerial vehicle 110 .
  • the drone 110 includes a body 111; a power system 150 installed in the body 111 for powering the drone; and the control device 200 as described above.
  • non-transitory computer-readable storage medium such as a memory including instructions, executable by a processor of an apparatus to perform the above-described method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • a non-transitory computer-readable storage medium when the instructions in the storage medium are executed by the processor of the terminal, enable the terminal to execute the above method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机的控制方法、装置、无人机及存储介质,所述方法包括:根据第一目标的位置信息生成所述无人机的飞行路径;在所述无人机按照所述飞行路径飞行的过程中,根据第二目标的位置信息控制所述无人机的成像装置始终跟随所述第二目标。本实施例实现无人机上的不同部件按照不同的目标解耦工作,有利于提升无人机的实时自动控制能力。

Description

无人机的控制方法、装置、无人机及存储介质 技术领域
本申请涉及无人机技术领域,具体而言,涉及一种无人机的控制方法、装置、无人机及存储介质。
背景技术
随着技术的发展,无人飞行器的应用也越发普及,比如,无人飞行器可广泛应用于航拍场景、勘测场景、监控场景或者导航场景等。在上述场景中,可能需要无人机检测或者跟踪目标,可以使用携带了有效载荷(如相机)的无人机来跟踪目标或者朝向目标移动。在实现上述功能的过程中,相关技术中通常以同一目标来自动控制无人机上各个部件耦合工作,提供的实时自动控制能力有限。
发明内容
有鉴于此,本申请的目的之一是提供一种无人机的控制方法、装置、无人机及存储介质。
第一方面,本申请实施例提供了一种无人机的控制方法,所述方法包括:
根据第一目标的位置信息生成所述无人机的飞行路径;
在所述无人机按照所述飞行路径飞行的过程中,根据第二目标的位置信息控制所述无人机的成像装置始终跟随所述第二目标。
第二方面,本申请实施例提供了一种控制装置,所述装置包括:
用于存储可执行指令的存储器;
一个或多个处理器;
其中,所述一个或多个处理器执行所述可执行指令时,被单独地或共同地配置成:
根据第一目标的位置信息生成无人机的飞行路径;
在所述无人机按照所述飞行路径飞行的过程中,根据第二目标的位置信息控制所述无人机的成像装置始终跟随所述第二目标。
第三方面,本申请实施例提供了一种无人机,包括:
机体;
动力系统,安装在所述机体内,用于为所述无人机提供动力;以及,
如第二方面任意一项所述的控制装置。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有可执行指令,所述可执行指令被处理器执行时实现如第一方面任一项所述的方法。
本申请实施例所提供的一种无人机的控制方法、装置、无人机及存储介质,能够根据第一目标的位置信息生成所述无人机的飞行路径,并且在所述无人机按照所述飞行路径飞行的过程中,根据第二目标的位置信息控制所述无人机的成像装置始终跟随所述第二目标,本实施例中,无人机的相关飞控部件按照与第一目标相关的飞行路径飞行,以及无人机的成像装置跟随第二目标采集图像,实现无人机上的不同部件按照不同的目标解耦工作,有利于提升无人机的实时自动控制能力,也可以满足某些场景下基于不同目标的控制需求,自动控制过程也有利于减少用户手动操作步骤,提升用户的使用体验。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的一种无人飞行系统的示意性架构图;
图2是本申请一个实施例提供的一种应用场景的示意图;
图3是本申请一个实施例提供的一种无人机的控制方法的流程示意图;
图4A、图4B和图4C是本申请一个实施例提供的飞行路径的不同示意图;
图5是本申请一个实施例提供的飞行范围的示意图;
图6是本申请一个实施例提供的飞行路径的示意图;
图7是本申请一个实施例提供的一种控制装置的结构示意图;
图8是本申请一个实施例提供的一种可移动平台的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
针对于相关技术中的问题,本申请提供了一种无人机的控制方法,能够根据第一目标的位置信息生成所述无人机的飞行路径,并且在所述无人机按照所述飞行路径飞行的过程中,根据第二目标的位置信息控制所述无人机的成像装置始终跟随所述第二目标,本实施例中,无人机的相关飞控部件按照与第一目标相关的飞行路径飞行,以及无人机的成像装置跟随第二目标采集图像,实现无人机上的不同部件按照不同的目标解耦工作,有利于提升无人机的实时自动控制能力,也可以满足某些场景下基于不同目标的控制需求,自动控制过程也有利于减少用户手动操作步骤,提升用户的使用体验。
其中,所述无人机的控制方法可以应用于控制装置上,所述控制装置可以是具有数据处理功能的芯片、集成电路或者电子设备等。
如果所述控制装置是具有数据处理功能的芯片或者集成电路,所述控制装置包括但不限于例如中央处理单元(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)或者现成可编程门阵列(Field-Programmable Gate Array,FPGA)等;其中,所述控制装置可以安装于遥控终端或者无人机。示例性的,所述控制装置安装于遥控终端时,所述遥控终端可以与无人机通信连接以实现对所述无人机的控制。示例性的,所述控制装置安装于无人机时,所述控制装置通过执行上述方法以控制所述无人机。
如果所述控制装置是具有数据处理功能的电子设备,所述电子设备包括但不限于无人机、遥控终端或者服务器等。示例性的,所述控制装置为具有数据处理功能的遥控终端时,所述遥控终端可以与无人机通信连接以实现对所述无人机的控制。示例性的,所述控制装置为具有数据处理功能的无人机时,所述无人机通过执行上述控制方法实现对自身的控制。
对于本领域技术人员将会显而易见的是,可以不受限制地使用其他类型的无人机,本申请的实施例可以应用于各种类型的无人机。例如,无人机可以是小型或大型的无人机。在某些实施例中,无人机可以是旋翼无人机(rotorcraft),例如,由多个推动装置通过空气推动的多旋翼无人机,本申请的实施例并不限于此,无人机也可以是其它类型的无人机。
图1是根据本申请的实施例的无人飞行系统的示意性架构图。本实施例以旋翼无人机 为例进行说明。
无人飞行系统100可以包括无人机110、显示设备130和遥控终端140。其中,无人机110可以包括动力系统150、飞行控制系统160、机架和承载在机架上的云台120。无人机110可以与遥控终端140和显示设备130进行无线通信。无人机110可以是农业无人机或行业应用无人机,有循环作业的需求。
机架可以包括机身和脚架(也称为起落架)。机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架与机身连接,用于在无人机110着陆时起支撑作用。
动力系统150可以包括一个或多个电子调速器(简称为电调)151、一个或多个螺旋桨153以及与一个或多个螺旋桨153相对应的一个或多个电机152,其中电机152连接在电子调速器151与螺旋桨153之间,电机152和螺旋桨153设置在无人机110的机臂上;电子调速器151用于接收飞行控制系统160产生的驱动信号,并根据驱动信号提供驱动电流给电机152,以控制电机152的转速。电机152用于驱动螺旋桨旋转,从而为无人机110的飞行提供动力,该动力使得无人机110能够实现一个或多个自由度的运动。在某些实施例中,无人机110可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴(Roll)、偏航轴(Yaw)和俯仰轴(pitch)。应理解,电机152可以是直流电机,也可以交流电机。另外,电机152可以是无刷电机,也可以是有刷电机。
飞行控制系统160可以包括飞行控制器161和传感系统162。传感系统162用于测量无人机的姿态信息,即无人机110在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统162例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。飞行控制器161用于控制无人机110的飞行,例如,可以根据传感系统162测量的姿态信息控制无人机110的飞行。应理解,飞行控制器161可以按照预先编好的程序指令对无人机110进行控制,也可以通过响应来自遥控终端140的一个或多个遥控信号对无人机110进行控制。
云台120可以包括电机122。云台用于携带成像装置123。飞行控制器161可以通过电机122控制云台120的运动。可选的,作为另一实施例,云台120还可以包括控制器,用于通过控制电机122来控制云台120的运动。应理解,云台120可以独立于无人机110,也可以为无人机110的一部分。应理解,电机122可以是直流电机,也可以是交流电机。另外,电机122可以是无刷电机,也可以是有刷电机。还应理解,云台可以位于无人机的 顶部,也可以位于无人机的底部。
成像装置123例如可以是照相机或摄像机等用于捕获图像的设备,成像装置123可以与飞行控制器通信,并在飞行控制器的控制下进行拍摄。本实施例的成像装置123至少包括感光元件,该感光元件例如为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)传感器或电荷耦合元件(Charge-coupled Device,CCD)传感器。示例性的,所述成像装置可以用特定图像分辨率来捕捉图像或一系列图像。示例性的,所述成像装置可以用特定捕捉速率捕捉一系列图像。示例性的,成像装置可以具有多个可调参数。成像装置可以用不同的参数在经受相同的外部条件(例如,位置、光照)时捕捉不同的图像。可以理解,成像装置123也可直接固定于无人机110上,从而云台120可以省略。
显示设备130位于无人飞行系统100的地面端,可以通过无线方式与无人机110进行通信,并且可以用于显示无人机110的姿态信息。另外,还可以在显示设备130上显示成像装置123拍摄的图像。应理解,显示设备130可以是独立的设备,也可以集成在遥控终端140中。
遥控终端140位于无人飞行系统100的地面端,可以通过无线方式与无人机110进行通信,用于对无人机110进行远程操纵。
应理解,上述对于无人飞行系统各组成部分的命名仅是出于标识的目的,并不应理解为对本申请的实施例的限制。
在一示例性的应用场景中,以所述控制装置安装于所述无人机为例进行说明:所述无人机的成像装置可以将实时采集的画面传输给与所述无人机通信连接的遥控终端,遥控终端上显示所述成像装置采集的画面,用户可以在所述画面中选择第一目标和第二目标,所述第一目标可以是目标物体或者目标方向,所述第二目标可以是目标物体。所述控制装置获取所述第一目标和所述第二目标,接着可以根据第一目标的位置信息生成所述无人机的飞行路径,比如所述飞行路径为朝向所述第一目标飞行的路径,请参阅图2,在所述无人机按照所述飞行路径朝向所述第一目标飞行的过程中,所述控制装置根据第二目标的位置信息控制所述无人机的成像装置始终跟随所述第二目标。
接下来对本申请实施例提供的无人机的控制方法进行说明:请参阅图3,本申请实施例提供了一种无人机的控制方法,其可由控制装置来执行;示例性的,所述控制装置可以安装于无人机或者与所述无人机通信连接的遥控终端;所述方法包括:
在步骤S101中,根据第一目标的位置信息生成所述无人机的飞行路径。
在步骤S102中,在所述无人机按照所述飞行路径飞行的过程中,根据第二目标的位 置信息控制所述无人机的成像装置始终跟随所述第二目标。
本实施例中,无人机的相关飞控部件按照与第一目标相关的飞行路径飞行,以及无人机的成像装置跟随第二目标采集图像,实现无人机上的不同部件按照不同的目标解耦工作,有利于提升无人机的实时自动控制能力。
在一些实施例中,所述无人机可以被配置有多种控制模式,比如所述控制模式包括手势自拍模式、智能返航模式、指点飞行模式、智能跟随模式以及本申请实施例提供的目标模式等。
示例性的,与所述无人机通信连接的遥控终端中显示有多种控制模式,用户可以基于实际需要在所述遥控终端选择相应的控制模式,比如在选择了所述目标模式的情况下,所述遥控终端可以显示所述无人机的成像装置实时采集的画面,用户可以在所述成像装置采集的画面中选定第一目标和第二目标,进而所述控制装置可以根据用户选定的第一目标和第二目标控制所述无人机运行。其中,所述无人机在所述目标模式中被配置为朝向、远离或者环绕所述第一目标飞行;以及,所述成像装置在所述目标模式中被配置为跟随所述第二目标。
可以理解的是,本实施例对于所述目标模式在遥控终端中的呈现方式不做任何限制,可依据实际应用场景进行具体设置。作为例子,在所述遥控终端中显示多种控制模式时,所述目标模式可以作为一个独立的模式与其他模式并列显示,在用户选择了所述目标模式的情况下,进入与所述目标模式相关的交互界面,供用户在所述交互界面中选定第一目标和第二目标。作为例子,所述目标模式可以为指点飞行模式或者智能跟随模式中的其中一种,所述指点飞行模式指示朝向目标物体或目标方向飞行,所述智能跟随模式指示跟随目标物体,考虑到所述目标模式的控制逻辑与指点飞行模式或者智能跟随模式存在部分相似,为了减少用户的理解成本,可以考虑将所述目标模式作为所述指点飞行模式或者所述智能跟随模式中的其中一种子模式,在交互设计过程中,可以将所述目标模式的交互界面耦合到所述指点飞行模式或者所述智能跟随模式的交互模式下,则用户在了解了所述指点飞行模式或者所述智能跟随模式的情况下,有助于用户加快理解所述目标模式的控制过程。
在一些实施例中,在所述目标模式下,所述控制装置可以基于在所述成像装置采集的画面中的不同选定点来分别确定所述第一目标和所述第二目标,所述不同选定点可以根据用户针对于所述第一目标和第二目标在所述画面中的不同选定操作获得,所述选定操作包括但不限于点击操作、框选操作或者长按操作等等。
示例性的,用于选定所述第一目标的选定操作和用于选定第二目标的选定操作不同,比如可以通过单击操作选定第一目标,通过长按操作选定第二目标,从而方便区别第一目 标和第二目标。
示例性的,为了方便区分第一目标和第二目标,用户在所述目标模式中进行目标选择时,比如在显示有成像装置实时采集画面的交互界面中,可以先显示“请选择第一目标”的提示信息,在用户基于提示信息选定第一目标之后,接着在显示有成像装置实时采集画面的交互界面中显示“请选择第二目标”的提示信息,以提示用户选择第二目标。当然,也可以先提示用户选择第二目标之后,再提示用户选择第一目标;或者,还可以先由用户选择至少两个目标之后,由用户从至少两个目标中指定至少一个第一目标和至少一个第二目标,本实施例对此不做任何限制。
其中,所述第一目标和所述第二目标可以是用户在同一画面中选定,即所述不同选定点包括在所述成像装置采集的同一画面中分别获得的不同选定点;或者,所述第一目标和所述第二目标也可以是用户在不同的画面中分别选定,即所述不同选定点包括在所述成像装置采集的不同画面中分别获得的选定点。
在一些实施例中,考虑到第一目标与无人机的飞行有关,所述无人机可以是朝向目标物体飞行或者沿目标方向飞行,则所述第一目标可以是目标物体或者目标方向,用户可以在所述成像装置采集的画面中的任意位置处选择所述第一目标,即用于确定所述第一目标的选定点从所述画面中的任意位置选择。所述第二目标是成像装置跟随拍摄的对象,则所述第二目标可以是目标物体,用户可以在所述成像装置采集的画面中物体所在位置处选择所述第二目标,即用于确定所述第二目标的选定点从所述画面中物体所在位置选择。可以理解的是,所述目标物体可以是静止物体或者移动物体,本实施例对此不做任何限制。
在获取有关于第一目标在画面中的选定点之后,所述控制装置可以根据有关于第一目标的选定点在所述画面中的位置,通过预存的二维空间与三维空间的转换关系,确定所述有关于第一目标的选定点在三维空间中对应的位置,得到所述第一目标的位置信息,例如所述第一目标的位置信息可以包括所述第一目标相对于所述无人机的方位信息。其中,所述二维空间与三维空间的转换关系至少通过所述成像装置的内参和外参获得。
在获取有关于第二目标在画面中的选定点之后,所述控制装置可以根据有关于第二目标的选定点在所述画面中的位置,通过预存的二维空间与三维空间的转换关系,确定所述有关于第二目标的选定点在三维空间中对应的位置,得到所述第二目标的位置信息,例如所述第二目标的位置信息可以包括所述第二目标相对于所述成像装置的方位信息。其中,所述二维空间与三维空间的转换关系至少通过所述成像装置的内参和外参获得。
在获取所述第一目标的位置信息和所述第二目标的位置信息之后,可以由所述控制装置至少实现以下场景:在所述无人机朝向、远离或者环绕所述第一目标飞行的过程中,无 人机的成像装置始终跟随所述第二目标。
可以理解的是,本申请实施例对于根据所述第一目标的位置信息生成的飞行路径的类型不做任何限制,可依据实际应用场景进行具体设置。比如飞行路径包括以下至少一种类型的路径:如图4A所示的朝向所述第一目标飞行的路径、如图4B所示的远离所述第一目标飞行的路径和如图4C所示的环绕所述第一目标飞行的路径。
在一些实施例中,所述控制装置可以结合所述无人机的位置信息、所述第一目标的位置信息以及预设的飞行路径类型,生成所述无人机的飞行路径。其中,所述无人机的位置信息用于确定所述飞行路径的起始轨迹点,所述第一目标的位置信息和预设的飞行路径类型用于确定所述飞行路径的方向和终止轨迹点。
在另一些实施例中,所述控制装置可以根据所述第一目标的位置信息和所述第二目标的位置信息,生成所述无人机的飞行路径。本实施例中,在生成所述飞行路径的时候参考了第二目标的位置信息,以保证无人机在按照飞行路径飞行过程中,所述第二目标在所述成像装置采集的图像中有良好的呈现效果。
在一种可能的实现方式中,所述控制装置可以根据所述第一目标的位置信息、所述第二目标的位置信息和所述无人机的位置信息,确定所述无人机的飞行范围,然后在所述无人机的飞行范围内生成所述飞行路径。本实施例中在参考了第二目标的位置信息所确定的飞行范围中生成飞行路径,可以使得无人机在按照飞行路径飞行过程中,所述第二目标在所述成像装置采集的图像中有良好的呈现效果。
在一个例子中,请参阅图5,图5示出了所述第一目标、所述第二目标和所述无人机分别所在位置,以生成的飞行路径为朝向所述第一目标飞行的路径为例,则所述控制装置可以根据所述第一目标的位置信息、所述第二目标的位置信息和所述无人机的位置信息确定如图5所示的飞行范围,其中所述无人机的位置信息可以通过无人机的定位模块获取;然后在所述飞行范围内确定朝向所述第一目标飞行的路径,该飞行范围参考了第二目标的位置信息,有利于保证无人机在按照飞行路径朝向第一目标飞行的过程中,所述第二目标在所述成像装置采集的图像中有良好的呈现效果。
在另一种可能的实现方式中,所述控制装置可以根据所述无人机的位置信息确定起始轨迹点,根据所述第一目标的位置信息确定终止轨迹点,以及根据所述第二目标的位置信息在所述第二目标附近确定至少一个中间轨迹点,进而可以利用所述起始轨迹点、所述至少一个中间轨迹点以及所述终止轨迹点,生成所述无人机的飞行路径。本实施例中,在所述第二目标附近生成至少一个中间轨迹点,使得无人机在按照飞行路径飞行过程中,所述无人机可以飞行至所述第二目标附近,使得所述第二目标在所述成像装置采集的图像中有 良好的呈现效果。
在一个例子中,请参阅图6,图6示出了所述第一目标、所述第二目标和所述无人机分别所在位置,以生成的飞行路径为朝向所述第一目标飞行的路径为例,如图6所示,所述控制装置可以根据所述无人机的位置信息确定起始轨迹点,以及根据所述第一目标的位置信息确定终止轨迹点;在生成所述中间轨迹点的过程中,所述控制装置可以在所述第二目标附近,比如如图6所示,在以所述第二目标为圆心、以指定距离为半径的目标区域内确定至少一个中间轨迹点,比如在图6所示的目标区域内确定了3个中间轨迹点,进而所述控制装置可以利用所述起始轨迹点、所述至少一个中间轨迹点以及所述终止轨迹点,生成如图6所示的无人机的飞行路径,则无人机在按照飞行路径飞行过程中,所述无人机可以飞行至所述第二目标附近,使得所述第二目标在所述成像装置采集的图像中有良好的呈现效果。
其中,为了让所述第二目标在所述成像装置采集的图像中有良好的呈现效果,所述无人机的飞行路径可以满足以下条件:在所述无人机按照所述飞行路径飞行的过程中,所述成像装置采集的图像中所述第二目标的尺寸不小于预设尺寸,保证所述第二目标在图像中保持适当大小。当然,可以是所述飞行路径中的部分路径满足以上条件,也可以是整条飞行路径均满足以上条件。
换句话说,为了让所述第二目标在所述成像装置采集的图像中保持适当大小,所述无人机的飞行路径可以满足以下条件:在所述无人机按照所述飞行路径飞行的过程中,所述无人机与所述第二目标的距离不大于预设距离;所述预设距离用于使所述第二目标在图像中保持预设尺寸,从而保证所述第二目标在图像中保持适当大小。当然,可以是所述飞行路径中的部分路径满足以上条件,也可以是整条飞行路径均满足以上条件。
示例性的,可以以所述第二目标为中心,以所述预设距离为半径确定所述第二目标的采集范围,进而根据所述采集范围和所述第一目标的位置信息确定飞行范围,在所述飞行范围内生成飞行路径;其中,所述飞行范围与所述采集范围有所重叠,保证所述无人机在飞行至所述采集范围内的情况下所述第二目标在图像中保持适当大小。
示例性的,可以根据所述预设距离确定所述无人机在所述飞行路径中的起始位置,比如在所述无人机与所述第二目标的距离大于所述预设距离的情况下,可以控制所述无人机飞行到距所述第二目标预设距离的位置处,并以无人机飞行后的位置作为所述无人机在所述飞行路径中的起始位置,保证了在无人机起飞时刻所述第二目标在图像中保持适当大小。
在一些实施例中,在所述无人机按照所述飞行路径飞行的过程中,如果在所述飞行路径中出现障碍物,需要控制所述无人机进行避障飞行,考虑到无人机中的成像装置需要始 终跟随第二目标,为了避免障碍物的遮挡造成跟丢所述第二目标的问题,所述控制装置可以控制所述无人机往靠近所述第二目标的一侧避障飞行,从而实现在避障的同时保证第二目标能够始终呈现在成像装置采集的图像中。
在所述飞行路径中出现一个或多个障碍物的情况下,所述控制装置可以在靠近所述第二目标的一侧,在避开所述障碍物的位置处确定轨迹点,并根据所述轨迹点更新所述飞行路径,进而所述控制装置可以控制所述无人机按照更新后的飞行路径避障飞行,实现在避障的同时保证第二目标能够始终呈现在成像装置采集的图像中。
其中,所述控制装置可以根据所述障碍物的位置信息,在所述障碍物的周围生成多个候选轨迹点,然后从所述多个候选轨迹点中确定靠近所述第二目标的一侧的轨迹点;作为例子,可以将所述多个候选轨迹点中与所述第二目标的距离小于预设阈值的候选轨迹点作为靠近所述第二目标的一侧的轨迹点,从而避免在避障过程中出现障碍物遮挡造成跟丢第二目标的问题。
在一些实施例中,所述成像装置可以通过云台安装于所述无人机时,则所述控制装置在控制所述无人机的成像装置始终跟随所述第二目标的过程中,可以根据所述第二目标的位置信息控制所述云台的朝向,以使所述成像装置始终跟随所述第二目标。作为例子,所述第二目标的位置信息包括第二目标的方位信息,所述控制装置可以根据所述云台当前的方位与所述第二目标的方位之间的差异,调整所述云台的朝向,以使所述成像装置始终跟随所述第二目标。
相应的,请参阅图7,本申请实施例还提供了一种控制装置200,所述装置包括:
用于存储可执行指令的存储器201;
一个或多个处理器202;
其中,所述一个或多个处理器202执行所述可执行指令时,被单独地或共同地配置成:
根据第一目标的位置信息生成无人机的飞行路径;
在所述无人机按照所述飞行路径飞行的过程中,根据第二目标的位置信息控制所述无人机的成像装置始终跟随所述第二目标。
在一些实施例中,所述控制装置可以是具有数据处理功能的芯片、集成电路或者电子设备等。
其中,所述存储器201可以包括至少一种类型的存储介质,存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等等)、随机访问存储器(RAM)、 静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等等。而且,设备可以与通过网络连接执行存储器的存储功能的网络存储装置协作。存储器201可以是装置200的内部存储单元,例如装置200的硬盘或内存。存储器201也可以是装置200的外部存储设备,例如装置200上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器201还可以既包括装置200的内部存储单元也包括外部存储设备。存储器201用于存储可执行指令以及设备所需的其他程序和数据。存储器201还可以用于暂时地存储已经输出或者将要输出的数据。
本领域技术人员可以理解,图7仅仅是控制装置200的示例,并不构成对控制装置200的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如设备还可以包括输入输出设备、网络接入设备、总线等。
在一实施例中,所述飞行路径包括以下至少一种:朝向所述第一目标飞行的路径、远离所述第一目标飞行的路径和环绕所述第一目标飞行的路径。
在一实施例中,所述成像装置通过云台安装于所述无人机。
所述处理器202还用于:根据所述第二目标的位置信息控制所述云台的朝向,以使所述成像装置始终跟随所述第二目标。
在一实施例中,所述处理器202还用于:根据所述第一目标的位置信息和所述第二目标的位置信息,生成所述无人机的飞行路径。
在一实施例中,所述处理器202还用于:根据所述第一目标的位置信息、所述第二目标的位置信息和所述无人机的位置信息,确定所述无人机的飞行范围;在所述无人机的飞行范围内生成所述飞行路径。
在一实施例中,所述处理器202还用于:根据所述无人机的位置信息确定起始轨迹点;根据所述第一目标的位置信息确定终止轨迹点;以及,根据所述第二目标的位置信息在所述第二目标附近确定至少一个中间轨迹点;利用所述起始轨迹点、所述至少一个中间轨迹点以及所述终止轨迹点,生成所述无人机的飞行路径。
在一实施例中,所述飞行路径满足以下条件:所述成像装置采集的图像中所述第二目标的尺寸不小于预设尺寸。
在一实施例中,所述飞行路径满足以下条件:所述无人机与所述第二目标的距离不大于预设距离;所述预设距离用于使所述第二目标在图像中保持预设尺寸。
在一实施例中,所述无人机在所述飞行路径中的起始位置根据所述预设距离确定。
在一实施例中,所述处理器202还用于:在所述无人机按照所述飞行路径飞行的过程中,如果在所述飞行路径中出现障碍物,控制所述无人机往靠近所述第二目标的一侧避障飞行。
在一实施例中,所述处理器202还用于:在所述靠近所述第二目标的一侧确定轨迹点,并根据所述轨迹点更新所述飞行路径;控制所述无人机按照更新后的飞行路径避障飞行。
在一实施例中,所述处理器202还用于:根据所述障碍物的位置信息生成多个候选轨迹点;从所述多个候选轨迹点中确定与所述第二目标的距离小于预设阈值的轨迹点。
在一实施例中,所述处理器202还用于:在目标模式中,基于在所述成像装置采集的画面中的不同选定点来分别确定所述第一目标和所述第二目标。
在一实施例中,所述无人机在所述目标模式中被配置为朝向、远离或者环绕所述第一目标飞行;以及,所述成像装置在所述目标模式中被配置为跟随所述第二目标。
在一实施例中,所述不同选定点包括在所述成像装置采集的不同画面中分别获得的选定点。
在一实施例中,用于确定所述第一目标的选定点从所述画面中的任意位置选择;和/或,用于确定所述第二目标的选定点从所述画面中物体所在位置选择。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。这里描述的各种实施方式可以使用例如计算机软件、硬件或其任何组合的计算机可读介质来实施。对于硬件实施,这里描述的实施方式可以通过使用特定用途集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理装置(DSPD)、可编程逻辑装置(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、被设计为执行这里描述的功能的电子单元中的至少一种来实施。对于软件实施,诸如过程或功能的实施方式可以与允许执行至少一种功能或操作的单独的软件模块来实施。软件代码可以由以任何适当的编程语言编写的软件应用程序(或程序)来实施,软件代码可以存储在存储器中并且由控制器执行。
相应的,如果所述控制装置是具有数据处理功能的芯片或者集成电路,所述控制装置可以安装于无人机中,请参阅图8,图8示出了一种无人机110,所述无人机110包括机体111;动力系统150,安装在所述机体111内,用于为所述无人机提供动力;以及,如上述的控制装置200。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例 如包括指令的存储器,上述指令可由装置的处理器执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当存储介质中的指令由终端的处理器执行时,使得终端能够执行上述方法。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (34)

  1. 一种无人机的控制方法,其特征在于,所述方法包括:
    根据第一目标的位置信息生成所述无人机的飞行路径;
    在所述无人机按照所述飞行路径飞行的过程中,根据第二目标的位置信息控制所述无人机的成像装置始终跟随所述第二目标。
  2. 根据权利要求1所述的方法,其特征在于,所述飞行路径包括以下至少一种:朝向所述第一目标飞行的路径、远离所述第一目标飞行的路径和环绕所述第一目标飞行的路径。
  3. 根据权利要求1所述的方法,其特征在于,所述成像装置通过云台安装于所述无人机;
    所述根据第二目标的位置信息控制所述成像装置始终跟随所述第二目标,包括:
    根据所述第二目标的位置信息控制所述云台的朝向,以使所述成像装置始终跟随所述第二目标。
  4. 根据权利要求1或2所述的方法,其特征在于,所述根据第一目标的位置信息生成所述无人机的飞行路径,包括:
    根据所述第一目标的位置信息和所述第二目标的位置信息,生成所述无人机的飞行路径。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述第一目标的位置信息和所述第二目标的位置信息,生成所述无人机的飞行路径,包括:
    根据所述第一目标的位置信息、所述第二目标的位置信息和所述无人机的位置信息,确定所述无人机的飞行范围;
    在所述无人机的飞行范围内生成所述飞行路径。
  6. 根据权利要求4所述的方法,其特征在于,所述根据所述第一目标的位置信息和所述第二目标的位置信息,生成所述无人机的飞行路径,包括:
    根据所述无人机的位置信息确定起始轨迹点;根据所述第一目标的位置信息确定终止轨迹点;以及,根据所述第二目标的位置信息在所述第二目标附近确定至少一个中间轨迹点;
    利用所述起始轨迹点、所述至少一个中间轨迹点以及所述终止轨迹点,生成所述无人机的飞行路径。
  7. 根据权利要求4至6任意一项所述的方法,其特征在于,所述飞行路径满足以下条件:所述成像装置采集的图像中所述第二目标的尺寸不小于预设尺寸。
  8. 根据权利要求4至6任意一项所述的方法,其特征在于,所述飞行路径满足以下条件:所述无人机与所述第二目标的距离不大于预设距离;所述预设距离用于使所述第二目标在图像中保持预设尺寸。
  9. 根据权利要求8所述的方法,其特征在于,所述无人机在所述飞行路径中的起始位置根据所述预设距离确定。
  10. 根据权利要求1至9任意一项所述的方法,其特征在于,还包括:
    在所述无人机按照所述飞行路径飞行的过程中,如果在所述飞行路径中出现障碍物,控制所述无人机往靠近所述第二目标的一侧避障飞行。
  11. 根据权利要求10所述的方法,其特征在于,所述控制所述无人机往靠近所述第二目标的一侧避障飞行,包括:
    在所述靠近所述第二目标的一侧确定轨迹点,并根据所述轨迹点更新所述飞行路径;
    控制所述无人机按照更新后的飞行路径避障飞行。
  12. 根据权利要求11所述的方法,其特征在于,所述在所述靠近所述第二目标的一侧确定轨迹点,包括:
    根据所述障碍物的位置信息生成多个候选轨迹点;
    从所述多个候选轨迹点中确定与所述第二目标的距离小于预设阈值的轨迹点。
  13. 根据权利要求1所述的方法,其特征在于,还包括:
    在目标模式中,基于在所述成像装置采集的画面中的不同选定点来分别确定所述第一目标和所述第二目标。
  14. 根据权利要求13所述的方法,其特征在于,所述无人机在所述目标模式中被配置为朝向、远离或者环绕所述第一目标飞行;以及,所述成像装置在所述目标模式中被配置为跟随所述第二目标。
  15. 根据权利要求13所述的方法,其特征在于,所述不同选定点包括在所述成像装置采集的不同画面中分别获得的选定点。
  16. 根据权利要求13所述的方法,其特征在于,用于确定所述第一目标的选定点从所述画面中的任意位置选择;和/或,用于确定所述第二目标的选定点从所述画面中物体所在位置选择。
  17. 一种控制装置,其特征在于,所述装置包括:
    用于存储可执行指令的存储器;
    一个或多个处理器;
    其中,所述一个或多个处理器执行所述可执行指令时,被单独地或共同地配置成:
    根据第一目标的位置信息生成无人机的飞行路径;
    在所述无人机按照所述飞行路径飞行的过程中,根据第二目标的位置信息控制所述无人机的成像装置始终跟随所述第二目标。
  18. 根据权利要求17所述的装置,其特征在于,所述飞行路径包括以下至少一种:朝向所述第一目标飞行的路径、远离所述第一目标飞行的路径和环绕所述第一目标飞行的路径。
  19. 根据权利要求17所述的装置,其特征在于,所述成像装置通过云台安装于所述无人机;
    所述处理器还用于:根据所述第二目标的位置信息控制所述云台的朝向,以使所述成像装置始终跟随所述第二目标。
  20. 根据权利要求17或18所述的装置,其特征在于,所述处理器还用于:根据所述第一目标的位置信息和所述第二目标的位置信息,生成所述无人机的飞行路径。
  21. 根据权利要求20所述的装置,其特征在于,所述处理器还用于:
    根据所述第一目标的位置信息、所述第二目标的位置信息和所述无人机的位置信息,确定所述无人机的飞行范围;
    在所述无人机的飞行范围内生成所述飞行路径。
  22. 根据权利要求20所述的装置,其特征在于,所述处理器还用于:
    根据所述无人机的位置信息确定起始轨迹点;根据所述第一目标的位置信息确定终止轨迹点;以及,根据所述第二目标的位置信息在所述第二目标附近确定至少一个中间轨迹点;
    利用所述起始轨迹点、所述至少一个中间轨迹点以及所述终止轨迹点,生成所述无人机的飞行路径。
  23. 根据权利要求20至22任意一项所述的装置,其特征在于,所述飞行路径满足以下条件:所述成像装置采集的图像中所述第二目标的尺寸不小于预设尺寸。
  24. 根据权利要求20至22任意一项所述的装置,其特征在于,所述飞行路径满足以下条件:所述无人机与所述第二目标的距离不大于预设距离;所述预设距离用于使所述第二目标在图像中保持预设尺寸。
  25. 根据权利要求24所述的装置,其特征在于,所述无人机在所述飞行路径中的起始位置根据所述预设距离确定。
  26. 根据权利要求17至25任意一项所述的装置,其特征在于,所述处理器还用于:在所述无人机按照所述飞行路径飞行的过程中,如果在所述飞行路径中出现障碍物,控制所述无人机往靠近所述第二目标的一侧避障飞行。
  27. 根据权利要求26所述的装置,其特征在于,所述处理器还用于:
    在所述靠近所述第二目标的一侧确定轨迹点,并根据所述轨迹点更新所述飞行路径;
    控制所述无人机按照更新后的飞行路径避障飞行。
  28. 根据权利要求27所述的装置,其特征在于,所述处理器还用于:
    根据所述障碍物的位置信息生成多个候选轨迹点;
    从所述多个候选轨迹点中确定与所述第二目标的距离小于预设阈值的轨迹点。
  29. 根据权利要求17所述的装置,其特征在于,所述处理器还用于:在目标模式中,基于在所述成像装置采集的画面中的不同选定点来分别确定所述第一目标和所述第二目标。
  30. 根据权利要求29所述的装置,其特征在于,所述无人机在所述目标模式中被配置为朝向、远离或者环绕所述第一目标飞行;以及,所述成像装置在所述目标模式中被配置为跟随所述第二目标。
  31. 根据权利要求29所述的装置,其特征在于,所述不同选定点包括在所述成像装置采集的不同画面中分别获得的选定点。
  32. 根据权利要求29所述的装置,其特征在于,用于确定所述第一目标的选定点从所述画面中的任意位置选择;和/或,用于确定所述第二目标的选定点从所述画面中物体所在位置选择。
  33. 一种无人机,其特征在于,包括:
    机体;
    动力系统,安装在所述机体内,用于为所述无人机提供动力;以及,
    如权利要求17至32任意一项所述的控制装置。
  34. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有可执行指令,所述可执行指令被处理器执行时实现如权利要求1至16任一项所述的方法。
PCT/CN2021/084885 2021-04-01 2021-04-01 无人机的控制方法、装置、无人机及存储介质 WO2022205294A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180079143.4A CN116745722A (zh) 2021-04-01 2021-04-01 无人机的控制方法、装置、无人机及存储介质
PCT/CN2021/084885 WO2022205294A1 (zh) 2021-04-01 2021-04-01 无人机的控制方法、装置、无人机及存储介质
US18/475,536 US20240019866A1 (en) 2021-04-01 2023-09-27 Aerial vehicle control method and apparatus, aerial vehicle, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084885 WO2022205294A1 (zh) 2021-04-01 2021-04-01 无人机的控制方法、装置、无人机及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/475,536 Continuation US20240019866A1 (en) 2021-04-01 2023-09-27 Aerial vehicle control method and apparatus, aerial vehicle, and storage medium

Publications (1)

Publication Number Publication Date
WO2022205294A1 true WO2022205294A1 (zh) 2022-10-06

Family

ID=83457778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084885 WO2022205294A1 (zh) 2021-04-01 2021-04-01 无人机的控制方法、装置、无人机及存储介质

Country Status (3)

Country Link
US (1) US20240019866A1 (zh)
CN (1) CN116745722A (zh)
WO (1) WO2022205294A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160300492A1 (en) * 2014-05-20 2016-10-13 Verizon Patent And Licensing Inc. Utilization of third party networks and third party unmanned aerial vehicle platforms
CN106094876A (zh) * 2016-07-04 2016-11-09 苏州光之翼智能科技有限公司 一种无人机目标锁定系统及其方法
CN109643131A (zh) * 2017-11-30 2019-04-16 深圳市大疆创新科技有限公司 无人机、其控制方法以及记录介质
CN110799921A (zh) * 2018-07-18 2020-02-14 深圳市大疆创新科技有限公司 拍摄方法、装置和无人机
CN110806755A (zh) * 2018-08-06 2020-02-18 中兴通讯股份有限公司 一种无人机跟踪拍摄方法、终端及计算机可读存储介质
CN112422895A (zh) * 2020-10-22 2021-02-26 华能阜新风力发电有限责任公司 基于无人机的图像分析跟踪、定位系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160300492A1 (en) * 2014-05-20 2016-10-13 Verizon Patent And Licensing Inc. Utilization of third party networks and third party unmanned aerial vehicle platforms
CN106094876A (zh) * 2016-07-04 2016-11-09 苏州光之翼智能科技有限公司 一种无人机目标锁定系统及其方法
CN109643131A (zh) * 2017-11-30 2019-04-16 深圳市大疆创新科技有限公司 无人机、其控制方法以及记录介质
CN110799921A (zh) * 2018-07-18 2020-02-14 深圳市大疆创新科技有限公司 拍摄方法、装置和无人机
CN110806755A (zh) * 2018-08-06 2020-02-18 中兴通讯股份有限公司 一种无人机跟踪拍摄方法、终端及计算机可读存储介质
CN112422895A (zh) * 2020-10-22 2021-02-26 华能阜新风力发电有限责任公司 基于无人机的图像分析跟踪、定位系统及方法

Also Published As

Publication number Publication date
CN116745722A (zh) 2023-09-12
US20240019866A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
US20200346753A1 (en) Uav control method, device and uav
WO2020143677A1 (zh) 一种飞行控制方法及飞行控制系统
WO2019227441A1 (zh) 可移动平台的拍摄控制方法和设备
WO2020019106A1 (zh) 云台和无人机控制方法、云台及无人机
CN105045279A (zh) 一种利用无人飞行器航拍自动生成全景照片的系统及方法
WO2019227289A1 (zh) 延时拍摄控制方法和设备
WO2020048365A1 (zh) 飞行器的飞行控制方法、装置、终端设备及飞行控制系统
US11272105B2 (en) Image stabilization control method, photographing device and mobile platform
CN108780321B (zh) 用于设备姿态调整的方法、设备、系统和计算机可读存储介质
US20200304719A1 (en) Control device, system, control method, and program
WO2021168819A1 (zh) 无人机的返航控制方法和设备
WO2021217371A1 (zh) 可移动平台的控制方法和装置
WO2019128275A1 (zh) 一种拍摄控制方法、装置及飞行器
US20210120171A1 (en) Determination device, movable body, determination method, and program
WO2020062178A1 (zh) 基于地图识别目标对象的方法与控制终端
WO2020233682A1 (zh) 一种自主环绕拍摄方法、装置以及无人机
WO2020172800A1 (zh) 可移动平台的巡检控制方法和可移动平台
WO2020154942A1 (zh) 无人机的控制方法和无人机
WO2020133410A1 (zh) 一种拍摄方法及装置
CN113795805A (zh) 无人机的飞行控制方法和无人机
WO2019227287A1 (zh) 无人机的数据处理方法和设备
WO2019183789A1 (zh) 无人机的控制方法、装置和无人机
WO2021251441A1 (ja) 方法、システムおよびプログラム
WO2020244648A1 (zh) 一种飞行器控制方法、装置及飞行器
US20210105411A1 (en) Determination device, photographing system, movable body, composite system, determination method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933953

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180079143.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933953

Country of ref document: EP

Kind code of ref document: A1