WO2022205206A1 - 色温传感器及电子设备 - Google Patents

色温传感器及电子设备 Download PDF

Info

Publication number
WO2022205206A1
WO2022205206A1 PCT/CN2021/084722 CN2021084722W WO2022205206A1 WO 2022205206 A1 WO2022205206 A1 WO 2022205206A1 CN 2021084722 W CN2021084722 W CN 2021084722W WO 2022205206 A1 WO2022205206 A1 WO 2022205206A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
color temperature
temperature sensor
transparent conductive
incident
Prior art date
Application number
PCT/CN2021/084722
Other languages
English (en)
French (fr)
Inventor
李国维
杨晖
邢志浩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/084722 priority Critical patent/WO2022205206A1/zh
Priority to CN202180010376.9A priority patent/CN115485532A/zh
Publication of WO2022205206A1 publication Critical patent/WO2022205206A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter

Definitions

  • the present application relates to the technical field of light detection, and in particular, to a color temperature sensor and an electronic device.
  • the color temperature sensor has the ability to detect spatial multi-channel spectral information, which can help the imaging device perceive the light information such as the color temperature of the environment, so as to perform color restoration and color display through the auxiliary algorithm link.
  • the current color temperature sensor when it is working, it usually can only observe the average color temperature information within a field of view, and it does not have the ability to spatially resolve, so for scenes with local changes in spatial color temperature, such as night scenes or mixed light sources in shopping malls
  • the detected color temperature information cannot represent the spatial distribution of the light source, so it cannot effectively help the device to improve local color effects and other operations.
  • the present application provides a color temperature sensor and an electronic device, which are used to provide a color temperature sensor with spatial resolution capability of color temperature information.
  • a color temperature sensor provided by the present application includes: a multispectral sensor, a light scattering film layer, a light incident window control part, and a control circuit.
  • the light scattering film layer is arranged on the light incident side of the multi-spectral sensor, which can disperse the incident light from different spatial positions, so that part of the scattered light will be received by the multi-spectral sensor.
  • the received optical signals of different wavelength bands are converted into electrical signals.
  • the light scattering film layer can be formed of a transparent material, such as frosted frosted glass or transparent plastic with a rough surface, etc., which is not limited herein.
  • the light incident window control part is arranged on the side of the light scattering film layer away from the multi-spectral sensor, the light incident window control part includes a plurality of incident light control units, the control circuit is electrically connected with the plurality of incident light control units, and the incident light is directed to each incident light through the control circuit.
  • the light control unit applies a voltage, so that each incident light control unit is in a light-transmitting state or a light-shielding state when different voltages are applied.
  • the above-mentioned color temperature sensor provided by the present application is equivalent to adding a light incident window control part with a controllable incident light window on the light incident side of the traditional color temperature sensor.
  • the color temperature sensor will face the required
  • the light from the environment will first irradiate the light incident window control unit, and each incident light control unit in the light incident window control unit can be in a light-transmitting state or a light-shielding state under the control of the control circuit.
  • the control circuit controls the incident light control unit at the position corresponding to the specific viewing angle range to be in a light-transmitting state, and the incident light control units at other positions are in a light-shielding state, so as to achieve only a specific viewing angle.
  • the light within the range will enter the light scattering film layer through the incident window control part, and irradiate the multispectral sensor through the scattering effect of the light scattering film layer, so that the color temperature sensor can collect light from different viewing angles in a targeted manner, so that the light from different viewing angles can be collected.
  • Color temperature sensors have the ability to detect color temperature information of light within a specific viewing angle range.
  • each incident light control unit in the light incident window control part can be independently controlled by the control circuit, the incident light control unit at any position can be controlled to be in a light-transmitting state according to actual needs, for example, it can be Only one of the incident light control units can be controlled to be in a transparent state according to requirements, or the incident light control units at multiple positions can be controlled to be in a transparent state at the same time, or, the incident light control units at all positions can be controlled to be in a transparent state at the same time.
  • the light state is not limited here.
  • the positions of the plurality of incident light control units in the light-transmitting state may be adjacent or may be spaced apart, which is not limited herein. That is, the color temperature sensor of the present application can obtain color temperature information of light in different viewing angle ranges by controlling the incident light control units at different positions to be in a light-transmitting state.
  • the application does not limit the number of incident light control units, the area of the light incident window, and the shape of the light incident window in the light incident window control part, which can be specifically set according to the actual needs of the product.
  • the light incident area of the light incident window control unit is fixed, the greater the number of incident light control units, the smaller the light incident window area allocated to each incident light control unit, and the more efficient the control of the incident light of the light incident window control unit.
  • the precise control the stronger the spatial resolution of the color temperature sensor.
  • the light incident window of the incident light control unit refers to the light transmission range when the incident light control unit is in a light transmission state.
  • the light incident window area of each incident light control unit in the light incident window control unit can be set to be consistent, and of course, when there are special requirements, it can also be set to be inconsistent, which is not limited here.
  • the shape of the light incident window of each incident light control unit in the present application may be a regular shape, such as a rectangle, or a regular hexagon, etc., of course, it may also be an irregular shape.
  • the shape and size of the light incident window of each incident light control unit are set to be consistent.
  • the adjacent sides of the light incident windows of adjacent incident light control units may be set to be parallel.
  • a plurality of incident light control units can be arranged in a matrix arrangement, and by controlling the incident light control units at different positions to be in a light-transmitting state, the color temperature sensor can collect light from different viewing angles and different ranges, so as to detect these Color temperature information for light in the angular region.
  • the light incident window control part is arranged in parallel with the light scattering film layer.
  • the light incident window control part is parallel to the light scattering film layer, so that the incident light angle range of the color temperature sensor can be as large as possible.
  • a gap is generally set between the light incident window control part and the light scattering film layer to ensure that the light with a wide viewing angle range received by the light incident window control part can be irradiated on the light scattering film layer.
  • the gap distance should not be too large. If the gap is too large, on the one hand, the volume of the color temperature sensor will increase. On the other hand, the light incident area of the light incident window control part and the light incident area of the light scattering film layer are fixed , too large a gap will reduce the incident light viewing angle range of the color temperature sensor.
  • the gap distance L1 between the light incident window control portion and the light scattering film layer can be set according to the light incident area of the light incident window control portion and the light incident area of the light scattering film layer.
  • the gap distance L1 between the light incident window control part and the light scattering film layer can be controlled between 2mm-1cm, which can not only ensure that the volume of the color temperature sensor of the present application is not too large, It can also be ensured that the range of the incident light angle is as large as possible, for example, L1 is 2mm, 5mm, 7mm or 1cm, etc., which is not limited here.
  • the area of the light incident side of the light incident window control part is larger than the area of the light incident side of the light scattering film layer, so as to increase the lighting range of the color temperature sensor.
  • the color temperature sensor generally further includes a processing circuit electrically connected to the multispectral sensor, and the processing circuit is used to read and process the electrical signals output by the multispectral sensor.
  • the processing circuit and the control circuit can be integrated on the same chip, and of course can also be provided on different chips, which are not limited here.
  • the color temperature sensor provided in the embodiment of the present application further includes a fixing member, and the fixing member is used to fix the multispectral sensor, the light scattering film layer and the light incident window control part, so as to facilitate the operation of the color temperature sensor.
  • the specific implementation manner of the fixing member is not limited in the present application, and may be any structure capable of realizing fixing of the multispectral sensor, the light scattering film layer and the light incident window control part.
  • the fixing member may include a first fixing bracket for fixing the multispectral sensor and the light scattering film layer, and a second fixing bracket for fixing the first fixing bracket and the light incident window control part together. Wherein, the first fixing bracket and the second fixing bracket may be hinged or separated, which is not limited herein.
  • a traditional color temperature sensor can also be used to replace the multispectral sensor and the light scattering film layer, that is, the light incident window control part is directly fixed on the light incident side of the traditional color temperature sensor by using a fixing member.
  • the color temperature sensor includes a multispectral sensor, a light The scattering film layer, a light incident window control part, and a control circuit and a processing circuit.
  • the color temperature sensor includes a plurality of multispectral sensors, a plurality of light scattering film layers, and a light incident window control part.
  • the color temperature sensor includes a plurality of multispectral sensors, a plurality of light scattering film layers and a light incident window control part, generally one multispectral sensor corresponds to one light scattering film layer and one light incident window control part.
  • one processing circuit may correspond to one multispectral sensor, and one control circuit may control one light incident window control unit.
  • one control circuit may simultaneously control a plurality of light incident window control units, and one processing circuit may simultaneously correspond to a plurality of multispectral sensors.
  • the color temperature sensor provided by the present application is precisely because the light incident window control part is added, so the color temperature of light in different viewing angle ranges can be obtained by controlling the incident light control units at different positions in the light incident window control part to be in a light-transmitting state information.
  • the light incident window control unit may have various implementation methods, and the present application will be described in detail below with reference to specific embodiments of the light incident window control unit. It should be noted that this embodiment is for better explanation of the present invention, but does not limit the present application.
  • the light incident window control unit is a black and white liquid crystal display (Liquid Crystal Display, LCD) panel; the black and white LCD panel has a plurality of pixels arranged in a matrix, and each incident light control unit is one of the plurality of pixels. one of. Since the pixel size of the LCD panel is small and the pixel resolution is high, using the LCD panel to realize the function of the light incident window control unit can make the color temperature sensor of the present application have a higher spatial resolution.
  • LCD liquid crystal display
  • the black and white liquid crystal display panel here is compared with the color liquid crystal display panel.
  • the color liquid crystal display panel is generally provided with red, green and blue filter films, while the black and white liquid crystal display panel does not need to set the filter film.
  • the black and white LCD panel in this application can be any LCD panel structure without a filter film, which is not limited here.
  • the black and white liquid crystal display panel generally includes: a first polarizer, an array substrate, a first transparent conductive layer, a first alignment film, a liquid crystal layer, a second alignment film, a second transparent conductive layer, the opposite substrate and the second polarizer.
  • the first transparent conductive layer includes a plurality of pixel electrodes arranged in a matrix, and each pixel includes a pixel electrode; the first transparent conductive layer and the second transparent conductive layer are respectively electrically connected to the control circuit.
  • the second transparent conductive layer may be disposed on the opposite substrate, and of course may also be disposed on the array substrate, which is not limited in this application.
  • the second transparent conductive layer may be provided as a whole layer, or the second transparent conductive layer may be divided into a plurality of sub-electrodes corresponding to the pixel electrodes one-to-one, which is not limited herein.
  • both the base substrate and the opposite substrate are transparent substrates, which may be formed of transparent materials such as glass.
  • the light incident window control part is an electrochromic structure
  • the electrochromic structure has a plurality of pixels arranged in a matrix, and each incident light control unit is specifically one of the plurality of pixels. Since the electrochromic structure has the characteristics of bistable, it can only consume electricity when changing color, and maintain the state without power consumption after changing color. Therefore, using the electrochromic structure to realize the function of the light incident window control part can make the application
  • the color temperature sensor has the advantage of low power consumption.
  • the electrochromic structure mainly includes a first transparent substrate, a first transparent conductive layer, an electrochromic layer, an electrolyte layer, an ion storage layer, a second transparent conductive layer and a second transparent substrate that are stacked in sequence;
  • a transparent conductive layer and/or a second transparent conductive layer includes a plurality of sub-electrodes arranged in a matrix, each pixel includes a sub-electrode; the first transparent conductive layer and the second transparent conductive layer are respectively electrically connected to the control circuit.
  • the structure of the first transparent conductive layer or the second transparent conductive layer including a plurality of sub-electrodes arranged in a matrix is similar to the structure of the first transparent conductive layer in a black and white LCD panel.
  • the light incident window control part is an electro-wetting structure
  • the electro-wetting structure has a plurality of pixels arranged in a matrix, and each incident light control unit is one of the plurality of pixels.
  • the electrowetting structure mainly includes a first transparent substrate, a first transparent conductive layer, a water layer, an oil film, a hydrophobic layer, a second transparent conductive layer, and a second transparent substrate that are stacked in sequence;
  • the first transparent conductive layer and /or the second transparent conductive layer includes a plurality of sub-electrodes arranged in a matrix, and each pixel includes a sub-electrode;
  • the first transparent conductive layer and the second transparent conductive layer are respectively electrically connected to the control circuit.
  • the color temperature sensor provided by the embodiment of the present application is equivalent to adding a light incident window control part, such as a black and white LCD panel, an electrochromic structure or an electrowetting structure, to the light incident side of the traditional color temperature sensor, so as to control the light incident
  • a light incident window control part such as a black and white LCD panel, an electrochromic structure or an electrowetting structure
  • the light transmission state of the local area of the window control part can realize the ability to detect the color temperature information of different areas in the environment.
  • an electronic device provided by the present application includes the color temperature sensor provided in the above-mentioned first aspect.
  • the electronic device may be a common device with a photographing function, such as a mobile phone, a tablet computer, and a wearable electronic device.
  • a photographing function such as a mobile phone, a tablet computer, and a wearable electronic device.
  • other types of electronic devices with a photographing function may also be used. Since the color temperature sensor has the ability to detect the color temperature information of different regions in the environment, it will be helpful for better local color restoration and display for many scenes such as image shooting.
  • FIG. 1 is a schematic diagram of an application scenario of a color temperature sensor provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a conventional color temperature sensor
  • FIG. 3 is a schematic structural diagram of a color temperature sensor provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a light incident window control unit in a color temperature sensor provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of a partially incident light control unit in a light-transmitting state in a light incident window control unit provided by an embodiment of the present application;
  • FIG. 6 is a schematic diagram of a partially incident light control unit in a light-transmitting state in a light-incidence window control unit provided by yet another embodiment of the present application;
  • FIG. 7 is a schematic diagram of a partially incident light control unit in a light-transmitting state in a light-incidence window control unit provided by yet another embodiment of the present application;
  • FIG. 8 is a schematic diagram of all incident light control units in a light-transmitting state in a light incident window control unit provided by another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a color temperature sensor provided by another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a color temperature sensor provided by another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a color temperature sensor provided by another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a color temperature sensor provided by another embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a black and white LCD panel according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a first transparent conductive layer in a black and white LCD panel provided by an embodiment of the present application.
  • 15 is a schematic diagram of an optical signal at a detection position A of a color temperature sensor provided by an embodiment of the application;
  • 16 is a schematic diagram of an optical signal at a detection position B of a color temperature sensor provided by an embodiment of the application;
  • 17 is a schematic structural diagram of an electrochromic structure provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of opening a partial window in a light incident window control unit provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of an electrowetting structure provided by an embodiment of the present application.
  • the color temperature sensor in the embodiments of the present application refers to a device capable of detecting color temperature information in the environment, the color temperature of light, or the correlated color temperature.
  • Light and color performance Among them, the spectral energy of the light source is concentrated in the light in the short-wave direction, the color temperature is high, the color of the light source is blue, and the spectral energy of the light source is concentrated in the light in the long-wave direction, the color temperature is low, and the color of the light source is red.
  • the color temperature sensor provided in the embodiments of the present application can be applied to electronic devices, such as mobile phones, tablet computers, wearable electronic devices, and other common devices with a camera function. Of course, it can also be applied to other types of electronic devices with a photographing function.
  • the mobile terminal when the image sensor 2 provided in this embodiment of the present application is applied in a mobile terminal, the mobile terminal includes a casing 1 and a color temperature sensor 2 disposed in the casing 1 or partially protruding from the casing 1 , and It is electrically connected to the main board 3 in the casing 1 .
  • the optical signal can be converted into an electrical signal by the color temperature sensor 2, so as to be used for imaging processing.
  • FIG. 2 the structure of a conventional color temperature sensor is shown in FIG. 2 , which mainly includes a multispectral sensor 21 , a light scattering film layer 22 disposed on the light incident side of the multispectral sensor 21 , and a processing circuit (not shown in FIG. 2 ).
  • the multispectral sensor 21 is used to receive light from the outside world, and convert optical signals of different wavelengths into electrical signals through photoelectric conversion, so as to sense the spectral distribution of the optical signals incident on the multispectral sensor 21 .
  • the function of the light-scattering film layer 22 is to disperse the incident light from different positions in space (for example, the positions A, B and C in the figure), so that the light incident at different positions can be irradiated after passing through the light-scattering film layer 22 onto the multispectral sensor 21.
  • the processing circuit is used to read and process the electrical signal output by the multispectral sensor 21 .
  • this color temperature sensor due to the existence of the light scattering film layer 22 , it cannot be determined whether the light signal comes from the spatial position A, B or C. That is, the color temperature sensor will detect the spectral information within the entire field of view indiscriminately, and does not have the spatial resolution capability of color temperature information.
  • the distribution of ambient light sources is complex, and the electronic device needs to estimate the local color temperature of the environment. Therefore, the traditional color temperature sensor cannot solve the color problem in the mixed light source scene.
  • an embodiment of the present application provides a new color temperature sensor, which realizes spectral information in different viewing angle regions by adding a programmable and controllable light incident window control part with variable local light transmittance on the light incident side of the traditional color temperature sensor. It helps to solve the problems encountered in color effect restoration and display in mixed color temperature scenes.
  • the color temperature sensor provided by the embodiments of the present application will be specifically described below with reference to the accompanying drawings.
  • FIG. 3 exemplarily shows a schematic structural diagram of a color temperature sensor in an embodiment of the present application.
  • the color temperature sensor 10 provided by the embodiment of the present application includes: a multispectral sensor 11 , a light scattering film layer 12 , a light incident window control part 13 and a control circuit 14 .
  • the multispectral sensor 11 is used for converting the received optical signal into an electrical signal
  • the light scattering film layer 12 is arranged on the light incident side of the multispectral sensor 11, and is used for converting signals from different spatial positions (for example, FIG. The incident light at positions A, B and C in the illustration) is scattered, so that a part of the scattered light will be received by the multi-spectral sensor 11, and the received optical signals of different wavelength bands are converted by the multi-spectral sensor into electric signal.
  • the light scattering film layer 12 is used to ensure that light from different positions in space can be irradiated on the multispectral sensor 11 .
  • the light scattering film layer 12 may be formed of a transparent material, such as frosted frosted glass or transparent plastic with a rough surface, which is not limited herein.
  • the light incident window control part 13 is disposed on the side of the light scattering film 12 away from the multispectral sensor 11 , that is, the light incident window control part 13 is disposed on the light incident side of the light scattering film 12 . .
  • FIG. 4 is a schematic top-view structural diagram of a light incident window control portion provided by an embodiment of the present application.
  • the light incident window control unit 13 includes a plurality of incident light control units 130 (36 incident light control units are taken as an example for illustration), and each of the plurality of incident light control units 130 controls the incident light.
  • the unit 130 is configured to be in a light-transmitting state or a light-shielding state when different voltages are applied; the control circuit 14 is electrically connected to the plurality of incident light control units 130 in the light incident window control part 13, respectively, for A voltage is applied to each of the incident light control units 130 so that the incident light control units 130 are in a light-transmitting state or a light-shielding state.
  • the above-mentioned color temperature sensor 10 provided by the present application is equivalent to adding a light incident window control part with controllable incident light window on the light incident side of the traditional color temperature sensor.
  • the color temperature sensor 10 will Facing the environment that needs to be perceived, the light from the environment will first irradiate the light incident window control part 13 , and each incident light control unit 130 in the light incident window control part 13 can be in the control circuit 14 . Under the control of the light-transmitting state or the shading state.
  • the control circuit 14 controls the incident light control unit 130 at the position corresponding to the specific viewing angle range to be in a light-transmitting state, and the incident light control unit 130 at other positions is in a light-shielding state, Therefore, only light within a specific viewing angle range will enter the light scattering film layer 12 through the incident window control part 13 , and irradiate the multispectral sensor 11 through the scattering effect of the light scattering film layer 12 , thereby
  • the color temperature sensor 10 can collect light from different viewing angles in a targeted manner, so that the color temperature sensor 10 has the ability to detect color temperature information of light within a specific viewing angle range.
  • each incident light control unit 130 in the light incident window control unit 13 can be independently controlled by the control circuit 14, the incident light control unit 130 at any position can be controlled to be light-transmitting according to actual requirements.
  • only one of the incident light control units 130 can be controlled to be in a light-transmitting state according to requirements.
  • FIG. 5 only the incident light control unit 130 at control position 10 is in a light-transmitting state, and the incident light control units at other positions 130 are in shading state. It is also possible to control multiple or all incident light control units 130 to be in a light-transmitting state at the same time, for example, as shown in FIG.
  • the incident light control units 130 in all of them are in a light-shielding state; for example, as shown in FIG. 7 , the incident light control units 130 at positions 1 to 6 can also be controlled to be in a light-transmitting state at the same time, and the incident light control units 130 at other positions are in a light-shielding state.
  • the incident light control units 130 at positions 1 to 36 can also be controlled to be in a light-transmitting state at the same time, which is not limited here.
  • the positions of the plurality of incident light control units 130 in the light-transmitting state may be adjacent or spaced, which is not limited herein. That is, the color temperature sensor 10 of the present application can obtain color temperature information of light in different viewing angle ranges by controlling the incident light control units 130 at different positions to be in a light-transmitting state.
  • the application does not limit the number of incident light control units 130 in the light incident window control unit 13, the area of the incident light window, and the shape of the light incident window, which can be set according to the actual needs of the product.
  • the light incident area of the light incident window control unit 13 is fixed, the greater the number of incident light control units 130 and the smaller the light incident window area of the incident light control unit 130, the stronger the spatial resolution of the color temperature sensor 10.
  • the light incident window of the incident light control unit 130 refers to the light transmission range when the incident light control unit 130 is in a light transmission state.
  • the light incident window area of each incident light control unit 130 in the light incident window control unit 13 can be set to be the same, of course, when there are special requirements, it can also be set to be inconsistent, which is not limited here.
  • the shape of the light incident window of each incident light control unit 130 in the present application can be a regular shape, such as a rectangle as shown in FIG. 4 , or a regular hexagon, and of course, an irregular shape.
  • the shape and size of the light incident window of each incident light control unit 130 are set to be consistent.
  • adjacent sides of the light incident windows of adjacent incident light control units 130 may be set to be parallel.
  • a plurality of incident light control units 130 may be arranged in a matrix arrangement, and by controlling the incident light control units 130 at different positions to be in a light-transmitting state, the color temperature sensor 10 can collect light from different viewing angles and different ranges. Thereby, the color temperature information of the light in these angular regions is detected.
  • FIG. 9 is a schematic structural diagram of a color temperature sensor provided by another embodiment of the present application.
  • the light incident window control part 13 is arranged in parallel with the light scattering film layer 12 . In this way, when the light incident area of the light incident window control part 13 is fixed, the light incident surface of the light incident window control part 13 is parallel to the light incident surface of the light scattering film layer 12, so that the color temperature sensor can be The angle of view of incident light should be as wide as possible.
  • a gap is generally set between the light incident window control part 13 and the light scattering film layer 12 to ensure that the light with a large viewing angle range received by the light incident window control part 13 can be irradiated to the light scattering film. layer 12, but the gap distance should not be too large. If the gap is too large, on the one hand, the volume of the color temperature sensor will increase. On the basis of the fixed light incident area, too large a gap will reduce the incident light viewing angle range of the color temperature sensor.
  • the gap distance L1 between the light incident window control part 13 and the light scattering film layer 12 can be based on the light incident area of the light incident window control part 13 and the light scattering film layer 12 Set the light incident area.
  • the gap distance L1 between the light incident window control part 13 and the light scattering film layer 12 can be controlled between 2mm-1cm, so as to ensure that the volume of the color temperature sensor does not If it is too large, it can also ensure the widest possible viewing angle range of incident light, for example, L1 is 2mm, 5mm, 7mm or 1cm, etc., which is not limited here.
  • the area S1 of the light incident window control part 13 on the light incident side is larger than the area S2 of the light incident side of the light scattering film layer 12 , so that The lighting range of the color temperature sensor 10 is increased.
  • the color temperature sensor may further include a processing circuit electrically connected to the multispectral sensor, and the processing circuit is configured to read and process the electrical signal output by the multispectral sensor.
  • the processing circuit and the control circuit may be integrated on the same chip, or may of course be provided on different chips, which are not limited herein.
  • the color temperature sensor 10 provided in the embodiment of the present application further includes a fixing member 15, and the fixing member 15 is used for fixing the multispectral sensor 11, the light scattering film layer 12, and the light incident window.
  • the control unit 13 is used to facilitate the operation of the color temperature sensor.
  • the application does not limit the specific implementation of the fixing member 15 , and may be any structure capable of fixing the multispectral sensor 11 , the light scattering film layer 12 and the light incident window control portion 13 .
  • the fixing member 15 may include a first fixing bracket 151 for fixing the multispectral sensor 11 and the light scattering film layer 12 , and a first fixing bracket 151 for fixing the first fixing bracket 151 and the light scattering layer 12 .
  • the second holder 152 to which the incident window control portion 13 is fixed together.
  • the first fixing bracket 151 and the second fixing bracket 152 may be hinged or separated, which is not limited herein.
  • a traditional color temperature sensor can also be used to replace the multispectral sensor 11 and the light scattering film layer 12 , that is, the light incident window control part 13 is directly fixed to the traditional color temperature by the fixing member 15 The light-incident side of the sensor.
  • the number of the multispectral sensor 11, the light scattering film layer 12, and the light incident window control part 13 is not limited in this application.
  • the The color temperature sensor 10 includes a multispectral sensor 11, a light scattering film layer 12, a light incident window control part 13, a control circuit 14 and a processing circuit 16, or as shown in FIG. 11 and FIG. 12, the color temperature sensor 10 includes a plurality of multispectral sensors 11 , a plurality of light scattering film layers 12 and the light incident window control part 13 .
  • the color temperature sensor includes a plurality of multi-spectral sensors 11, a plurality of light scattering film layers 12 and the light incident window control part 13, as shown in FIG. 11 and FIG.
  • one multi-spectral sensor 11 may correspond to one light The scattering film layer 12 and a light incident window control part 13 .
  • the application does not limit the number of the control circuits 14 and the processing circuits 16.
  • one processing circuit 16 may correspond to one of the multispectral sensors 11, and one control circuit 14 may control one of the multi-spectral sensors 11.
  • the light incident window control unit 13 or as shown in FIG. 12 , one control circuit 14 may simultaneously control a plurality of the light incident window control units 13 , and one processing circuit 14 may simultaneously correspond to a plurality of the multispectral sensors 11 .
  • the color temperature sensor provided by the present application is precisely because the light incident window control part is added, so the color temperature of light in different viewing angle ranges can be obtained by controlling the incident light control units at different positions in the light incident window control part to be in a light-transmitting state information.
  • the light incident window control unit may have various implementation methods, and the present application will be described in detail below with reference to specific embodiments of the light incident window control unit. It should be noted that this embodiment is for better explaining the technical solutions of the present application, but does not limit the protection scope of the present application.
  • the light incident window control part is a black and white liquid crystal display (Liquid Crystal Display, LCD) panel; the black and white LCD panel has a plurality of pixels arranged in a matrix, and each of the incident light control units is one of the plurality of pixels.
  • LCD Liquid Crystal Display
  • the black and white liquid crystal display panel here is compared with the color liquid crystal display panel.
  • the color liquid crystal display panel is generally provided with red, green and blue filter films, while the black and white liquid crystal display panel does not need to set the filter film.
  • the black and white LCD panel in this application can be any LCD panel structure without a filter film, which is not limited here.
  • the black and white liquid crystal display panel 100 generally includes: a first polarizer 101 , an array substrate 102 , a first transparent conductive layer 103 , a first alignment film 104 , and a liquid crystal layer 105 , which are stacked in sequence.
  • the second alignment film 106 the second transparent conductive layer 107 , the opposite substrate 108 and the second polarizer 109 .
  • the first transparent conductive layer 103 includes a plurality of pixel electrodes 1030 arranged in a matrix, and each pixel includes one of the pixel electrodes 1030; the first transparent conductive layer 103 and the The two transparent conductive layers 104 are respectively electrically connected to the control circuit 14 .
  • the array substrate generally includes a base substrate and a circuit film layer on the base substrate.
  • the circuit film layer is provided with a pixel driving circuit array and various wirings. Each pixel in the pixel driving circuit array drives the The circuit is correspondingly connected to a pixel electrode.
  • the second transparent conductive layer may be disposed on the opposite substrate 108 as shown in FIG. 13 , and of course may also be disposed on the array substrate 102 , which is not limited in this application.
  • the second transparent conductive layer may be provided as a whole layer, or the second transparent conductive layer may be divided into a plurality of sub-electrodes corresponding to the pixel electrodes one-to-one, which is not limited herein.
  • both the base substrate and the opposite substrate are transparent substrates, which may be formed of transparent materials such as glass.
  • the working principle of the black and white LCD panel will be described below by taking a twisted nematic (TN) LCD panel as an example.
  • the TN-LCD panel uses TN-type liquid crystal, and the liquid crystal molecules are elliptical.
  • TN type liquid crystal molecules are generally connected in series along the long axis direction, and the long axes are arranged in parallel to each other.
  • the alignment directions of the first alignment film and the second alignment film in the black and white LCD panel are perpendicular to each other. When the liquid crystal molecules contact the alignment film , it will be aligned along the alignment direction of the alignment film.
  • the polarization directions of the first polarizer and the second polarizer in the black-and-white LCD panel are perpendicular to each other, and the polarization direction of the first polarizer is consistent with the alignment direction of the first alignment film, and the polarization direction of the second polarizer is consistent with the alignment direction of the second alignment film. alignment direction is the same.
  • the control circuit does not apply a voltage to the pixel electrode and the second transparent conductive layer corresponding to the pixel, the liquid crystal molecules are arranged in a twisted arrangement, and the incident light propagates along the arrangement of the liquid crystal molecules after passing through the polarizer.
  • the polarization direction of the final incident light is deflected by 90 degrees, making the pixel in a light-transmitting state.
  • the control circuit applies a voltage to the pixel electrode and the second transparent conductive layer corresponding to the pixel, the arrangement of the liquid crystal molecules changes, and the incident light propagates along the gaps of the liquid crystal molecules, keeping its original polarization direction unchanged, and reaches the black and white LCD panel.
  • the polarization direction of the light and the polarization direction of the polarizer are perpendicular to each other, and the light is absorbed and cannot be transmitted, so that the pixel is in a light-shielding state.
  • the control circuit provides voltages to the pixel electrodes through the pixel driving circuits on the array substrate, and each pixel driving circuit corresponds to one pixel electrode.
  • the pixel driving circuit is generally composed of thin film field effect transistors (Thin Film Transistor, TFT).
  • TFT Thin Film Transistor
  • the control circuit applies a voltage to the corresponding pixel electrode and the second transparent conductive layer through the pixel driving circuit, and the light cannot pass through, that is, the corresponding pixel is in a light-shielding state.
  • the color temperature sensor can selectively detect different viewing angles.
  • the black and white LCD panel can be placed in front of the traditional color temperature sensor through the fixing member, and generally the plane where the black and white LCD panel is located and the plane where the multispectral sensor is located are parallel to each other.
  • the black and white LCD panel has a certain distance from the surface of the light scattering film layer, usually between 2mm and 1cm.
  • the area of the black-and-white LCD panel is generally larger than that of the light-scattering film, so that it can better cover the spatial range to be detected.
  • FIGS. 15 and 16 two window positions of the light incident window control section are shown in FIG. 15 and FIG. 16, respectively, wherein, in FIG. 15, the light from position A passes through the light incident window control section 13 such as a black and white LCD panel Incident on the light scattering film layer 12, after the scattering effect of the light scattering film layer 12, a part of the light will be incident on the multispectral sensor 11, and the light from the position B and the position C cannot pass due to the principle of straight line propagation of light.
  • the black and white LCD panel is irradiated on the light scattering film layer 12, so the multispectral sensor 11 cannot receive the light from the spatial position B and the spatial position C, so the color temperature sensor 10 can only detect the color temperature information of the light at the spatial position A at this time.
  • the light from position B is incident on the light scattering film layer 12 through the light incident window control part 13 such as a black and white LCD panel, and after the scattering effect of the light scattering film layer 12 , a part of the light will be incident on the multispectral sensor 11, the light from the position A and the position C cannot be irradiated on the light scattering film layer 12 through the black and white LCD panel due to the principle of straight line propagation of light, so the multispectral sensor 11 cannot receive the light from the position A and the position C. Therefore, the color temperature sensor 10 can only detect the color temperature information of the light at the spatial position B at this time.
  • the light incident window control part 13 such as a black and white LCD panel
  • the window corresponding to the spatial position C in the black-and-white LCD panel can be selectively opened to collect only the color temperature information corresponding to the light at C, or the windows corresponding to the spatial position A and the spatial position B can be simultaneously opened to collect A And the overall color temperature information of the light at B, of course, a larger window can be opened on the black and white LCD panel to collect the overall color temperature information of the light in a larger space.
  • the maximum spatial field of view that the color temperature sensor can perceive is composed of the union of the opening angles of the windows on the black-and-white LCD panel relative to each point of the light-scattering film layer.
  • light from different spatial positions can be collected by controlling the light transmission states of pixels at different positions on the black and white LCD panel, so that the color temperature sensor can realize the collection of color temperature information at different spatial positions.
  • the ability to detect spatial local color temperature information can be achieved by combining a black and white LCD panel with a traditional color temperature sensor.
  • the light incident window control part is an electrochromic structure
  • the electrochromic structure has a plurality of pixels arranged in a matrix, and each of the incident light control units is specifically one of the plurality of pixels. Because the electrochromic structure has the characteristics of bistable, it can only consume electricity when changing color, and maintain the state without power consumption after changing color. Therefore, using the electrochromic structure to realize the function of the light incident window control part can
  • the color temperature sensor of the present application has the advantage of low power consumption.
  • Electrochromism refers to the phenomenon in which the optical properties (reflectivity, transmittance, absorption, etc.) of materials undergo stable and reversible color changes under the action of an external electric field, which is manifested as reversible changes in color and transparency in appearance. Therefore, the electrochromic structure formed by utilizing the electrochromic principle is also a structure capable of controlling the light transmission capability, and the electrochromic structure in this application can be any electrochromic structure having a plurality of pixels arranged in a matrix , as long as each pixel in the electrochromic structure can achieve light transmission or light shielding independently, it is not limited here.
  • the electrochromic structure 200 mainly includes a first transparent substrate 201, a first transparent conductive layer 202, an electrochromic layer 203, an electrolyte layer 204, an ion storage layer 205,
  • the first transparent conductive layer 202 and/or the second transparent conductive layer 206 include a plurality of sub-electrodes arranged in a matrix, and each pixel includes one of the Sub-electrodes;
  • the first transparent conductive layer 1301 and the second transparent conductive layer 1305 are respectively electrically connected to the control circuit 14 .
  • the structure of the first transparent conductive layer 202 or the second transparent conductive layer 206 including a plurality of sub-electrodes arranged in a matrix is similar to the structure of the first transparent conductive layer in a black and white LCD panel. Please refer to the first transparent conductive layer in FIG. 14 .
  • the structure of the conductive layer is similar to the structure of the first transparent conductive layer in FIG. 14 .
  • the working principle of the electrochromic structure 200 is: for each pixel, when the control circuit 14 does not apply a voltage to the first transparent conductive layer 202 and the second transparent conductive layer 206 corresponding to the pixel At this time, the region of the electrochromic layer 203 corresponding to the pixel is in a light-transmitting state, so that the pixel is in a light-transmitting state.
  • the first transparent conductive layer 202 and the second transparent conductive layer corresponding to the pixel are sent to the pixel.
  • a reverse voltage is applied and the pixel becomes transparent.
  • the ability to control the opening of the local window can be realized.
  • the control circuit does not apply voltage to the pixels at the middle 4 positions, and applies voltage to the pixels at the other positions, then only the middle area is in the light-transmitting state and the other areas are in the light-shielding state.
  • the electrochromic structure can be placed in front of the traditional color temperature sensor through the fixing member.
  • the plane where the electrochromic structure is located and the plane where the multispectral sensor is located are parallel to each other.
  • the electrochromic structure has a certain distance from the surface of the light scattering film layer, usually between 2 mm and 1 cm.
  • the area of the electrochromic structure is generally larger than that of the light scattering film layer, so that it can better cover the spatial range to be detected.
  • FIGS. 15 and 16 two window positions of the light incident window control section are shown in FIG. 15 and FIG. 16, respectively, wherein, in FIG. 15, the light from position A passes through the light incident window control section 13 such as electrochromic
  • the structure is incident on the light scattering film layer 12, and through the scattering effect of the light scattering film layer 12, a part of the light will be incident on the multispectral sensor 11, and the light from the position B and the position C cannot be due to the principle of straight line propagation of light.
  • the light scattering film layer 12 is irradiated by the electrochromic structure, so the multispectral sensor 11 cannot receive the light from the spatial position B and the spatial position C, so the color temperature sensor 10 can only detect the color temperature information of the light at the spatial position A at this time.
  • the light from the position B is incident on the light scattering film layer 12 through the light incident window control part 13 such as an electrowetting structure, and after the scattering effect of the light scattering film layer 12 , a part of the light will be incident on the multispectral layer On the sensor 11, the light from the position A and the position C cannot be irradiated on the light scattering film layer 12 through the electrowetting structure due to the principle of linear propagation of light, so the multispectral sensor 11 cannot receive the light from the spatial position A and the spatial position C. Therefore, the color temperature sensor 10 can only detect the color temperature information of the light at the spatial position B at this time.
  • the light incident window control part 13 such as an electrowetting structure
  • the window corresponding to the spatial position C in the electrowetting structure can be selectively opened to collect only the color temperature information corresponding to the light at C, or the windows corresponding to the spatial position A and the spatial position B can be simultaneously opened to collect the information.
  • the overall color temperature information of the light at A and B of course, a larger window can be opened on the electrowetting structure to collect the overall color temperature information of the light at a larger spatial position.
  • the maximum spatial field of view that the color temperature sensor can perceive is composed of the union of the opening angles of the windows on the electrowetting structure relative to each point of the light scattering film.
  • light from different spatial positions can be collected by controlling the light transmission states of pixels at different positions on the electrowetting structure, so that the color temperature sensor can realize the collection of color temperature information at different spatial positions.
  • the ability to detect spatial local color temperature information can be achieved by combining the electrowetting structure with a traditional color temperature sensor.
  • the light incident window control part is an electro-wetting structure
  • the electro-wetting structure has a plurality of pixels arranged in a matrix, and each of the incident light control units is one of the plurality of pixels.
  • the electro-wetting structure is also a structure that can control the light transmission capacity.
  • the electro-wetting structure 300 mainly includes a first transparent substrate 301 , a first transparent conductive layer 302 , a water layer 303 , and an oil film 304 that are stacked in sequence.
  • the first transparent conductive layer 102 and/or the second transparent conductive layer 306 include a plurality of sub-electrodes arranged in a matrix, each of the The pixel includes one of the sub-electrodes; the first transparent conductive layer 302 and the second transparent conductive layer 306 are respectively electrically connected to the control circuit 14 .
  • the structure of the first transparent conductive layer 202 or the second transparent conductive layer 206 including a plurality of sub-electrodes arranged in a matrix is similar to the structure of the first transparent conductive layer in a black and white LCD panel. Please refer to the first transparent conductive layer in FIG. 14 .
  • the electrowetting structure 300 further includes a pixel wall (not shown in the figure) corresponding to each pixel, and the oil film 304 corresponding to each pixel is defined in the corresponding pixel wall.
  • the principle of electrowetting is to change the wetting characteristics of the hydrophobic layer and the water layer, so that the oil film is spread between the hydrophobic layer and the water layer, or scattered in the corners.
  • the working principle of the electrowetting structure 300 is: for each pixel, when the control circuit 14 does not apply a voltage to the first transparent conductive layer 302 and the second transparent conductive layer 306 corresponding to the pixel, The oil film 304 corresponding to the pixel is spread between the hydrophobic layer 305 and the water layer 303, and the pixel is in a light-shielding state. When a voltage is applied to the conductive layer 306, the oil film 304 is scattered in the corners of the pixel walls, and the pixel is in a light-transmitting state.
  • the control circuit applies voltage to the pixels at the middle 4 positions, and the pixels at the other positions do not apply voltage, so only the middle area is in the light-transmitting state and the other areas are in the light-shielding state.
  • the electrowetting structure can be placed in front of the traditional color temperature sensor through the fixing member.
  • the plane where the electrowetting structure is located and the plane where the multispectral sensor is located are parallel to each other.
  • the electrowetting structure has a certain distance from the surface of the light scattering film layer, usually between 2 mm and 1 cm.
  • the area of the electrowetting structure is generally larger than that of the light scattering film layer, so that it can better cover the spatial range to be detected.
  • FIGS. 15 and 16 two window positions of the light incident window control section are shown in FIG. 15 and FIG. 16, respectively, wherein, in FIG. 15, the light from position A passes through the light incident window control section 13 such as electrowetting
  • the structure is incident on the light scattering film layer 12, and through the scattering effect of the light scattering film layer 12, a part of the light will be incident on the multispectral sensor 11, and the light from the position B and the position C cannot be due to the principle of straight line propagation of light.
  • the light scattering film layer 12 is irradiated by the electrowetting structure, so the multispectral sensor 11 cannot receive the light from the spatial position B and the spatial position C, so the color temperature sensor 10 can only detect the color temperature information of the light at the spatial position A at this time.
  • the light from the position B is incident on the light scattering film layer 12 through the light incident window control part 13 such as an electrowetting structure, and after the scattering effect of the light scattering film layer 12 , a part of the light will be incident on the multispectral layer On the sensor 11, the light from the position A and the position C cannot be irradiated on the light scattering film layer 12 through the electrowetting structure due to the principle of linear propagation of light, so the multispectral sensor 11 cannot receive the light from the spatial position A and the spatial position C. Therefore, the color temperature sensor 10 can only detect the color temperature information of the light at the spatial position B at this time.
  • the light incident window control part 13 such as an electrowetting structure
  • the window corresponding to the spatial position C in the electrowetting structure can be selectively opened to collect only the color temperature information corresponding to the light at C, or the windows corresponding to the spatial position A and the spatial position B can be simultaneously opened to collect the information.
  • the overall color temperature information of the light at A and B of course, a larger window can be opened on the electrowetting structure to collect the overall color temperature information of the light at a larger spatial position.
  • the maximum spatial field of view that the color temperature sensor can perceive is composed of the union of the opening angles of the windows on the electrowetting structure relative to each point of the light scattering film.
  • light from different spatial positions can be collected by controlling the light transmission states of pixels at different positions on the electrowetting structure, so that the color temperature sensor can realize the collection of color temperature information at different spatial positions.
  • the ability to detect spatial local color temperature information can be achieved by combining the electrowetting structure with a traditional color temperature sensor.
  • the color temperature sensor provided by the embodiment of the present application is equivalent to adding a light incident window control part, such as a black and white LCD panel, an electrochromic structure or an electrowetting structure, to the light incident side of the traditional color temperature sensor, so as to control the light incident
  • a light incident window control part such as a black and white LCD panel, an electrochromic structure or an electrowetting structure
  • the light transmission state of the local area of the window control part can realize the ability to detect the color temperature information of different areas in the environment.
  • the embodiments of the present application further provide an electronic device, including any of the above-mentioned color temperature sensors provided by the embodiments of the present application.
  • the electronic device may be a common device with a photographing function, such as a mobile phone, a tablet computer, and a wearable electronic device.
  • a photographing function such as a mobile phone, a tablet computer, and a wearable electronic device.
  • other types of electronic devices with a photographing function may also be used. Since the color temperature sensor has the ability to detect the color temperature information of different regions in the environment, it will be helpful for better local color restoration and display for many scenes such as image shooting.

Abstract

本申请公开了一种色温传感器及电子设备,其中色温传感器包括多光谱传感器、光散射膜层、光入射窗口控制部和控制电路,当需要感知环境中的色温信息时,环境中的光首先会照射至光入射窗口控制部,而光入射窗口控制部中每一入射光控制单元都可以在控制电路的控制下呈透光状态或遮光状态。当需要检测特定视角范围内的光时,控制电路控制与该特定视角范围对应的位置处的入射光控制单元呈透光状态,其余位置处的呈遮光状态,从而实现只有特定视角范围内的光才会通过入射窗口控制部进入到光散射膜层,并通过光散射膜层的散射作用照射至多光谱传感器上,从而使色温传感器可以针对性的采集来自不同视角的光,具备检测特定视角范围内光的色温信息的能力。

Description

色温传感器及电子设备 技术领域
本申请涉及光检测技术领域,尤其涉及一种色温传感器及电子设备。
背景技术
随着消费者对拍照及录像装置所拍摄的图像质量的需求越来越高,图像的颜色还原及颜色显示效果也越来越受到消费者以及设备制造商的关注。色温传感器具备检测空间多通道光谱信息的能力,可以帮助成像设备感知环境的色温等光照信息,从而通过辅助算法链路进行颜色还原及颜色显示。
对于目前的色温传感器,当其进行工作时,通常只能观察一个视野范围内的平均色温信息,其不具备空间分辨的能力,因而对于空间色温局部变化的场景例如夜景或是商场中存在混合光源的场景,检测到的色温信息不能表征光源的空间分布,因此不能有效的帮助设备进行局部的颜色效果改善等操作。
发明内容
本申请的提供一种色温传感器及电子设备,用于提供一种具备色温信息的空间分辨能力的色温传感器。
第一方面,本申请提供的一种色温传感器,包括:多光谱传感器、光散射膜层、光入射窗口控制部和控制电路。其中,光散射膜层设置于多光谱传感器的入光侧,可以将来自不同空间位置的入射光打散,从而被打散的光有一部分将会被多光谱传感器接收到,利用多光谱传感器将接收的不同波段的光信号转换成电信号。其中,光散射膜层可以采用透明的材料形成,例如磨砂的毛玻璃或具有粗糙表面的透明塑料等,在此不作限定。光入射窗口控制部设置于光散射膜层背离多光谱传感器一侧,光入射窗口控制部包括多个入射光控制单元,控制电路与多个入射光控制单元分别电连接,通过控制电路向各入射光控制单元施加电压,从而使每个入射光控制单元在被施加不同电压时呈透光状态或遮光状态。
本申请提供的上述色温传感器,相当于在传统色温传感器的入光侧增加了入射光窗口可控的光入射窗口控制部,当需要感知环境中的色温信息时,色温传感器将会正对着需要被感知的环境,来自环境中的光首先会照射至光入射窗口控制部,而光入射窗口控制部中每一入射光控制单元都可以在控制电路的控制下呈透光状态或遮光状态。当需要检测特定视角范围内的光时,控制电路控制与该特定视角范围对应的位置处的入射光控制单元呈透光状态,其余位置处的入射光控制单元呈遮光状态,从而实现只有特定视角范围内的光才会通过入射窗口控制部进入到光散射膜层,并通过光散射膜层的散射作用照射至多光谱传感器上,从而使色温传感器可以针对性的采集来自不同视角的光,从而使色温传感器具备检测特定视角范围内光的色温信息的能力。
在具体实施时,由于所述光入射窗口控制部中的每一入射光控制单元都可以独立的被控制电路控制,因此可以根据实际需求控制任意位置的入射光控制单元处于透光状态,例如可以根据需求仅控制其中一个入射光控制单元处于透光状态,或者,同时控制多个位置处的入射光控制单元处于透光状态,或者,还可以同时控制所有位置处的入射光控制单元 均处于透光状态,在此不作限定。另外,处于透光状态的所述多个入射光控制单元的位置可以是相邻的,也可以是间隔的,在此不作限定。即本申请的色温传感器通过控制不同位置处的入射光控制单元处于透光状态,可以获取不同观察视角范围内光的色温信息。
本申请对光入射窗口控制部中入射光控制单元的数量、入光窗口面积以及入光窗口形状不作限定,具体可以根据产品的实际需求进行设定。当光入射窗口控制部的光入射面积固定时,入射光控制单元的数量越多,分配给每个入射光控制单元的入光窗口面积越小,能够对光入射窗口控制部的入射光进行更加精确的控制,色温传感器的空间分辨能力越强。其中,入射光控制单元的入光窗口是指该入射光控制单元呈透光状态时的透光范围。
在具体实施时,光入射窗口控制部中每个入射光控制单元的入光窗口面积可以设置为一致,当然有特殊的要求时,也可以设置为不一致,在此不作限定。另外,本申请中每个入射光控制单元的入光窗口的形状可以为规则的形状,例如矩形、或者正六边形等,当然也可以是不规则形状。可选地,在本申请中,将每个入射光控制单元的入光窗口的形状和大小均设置为一致。另外,为了保证相邻的入射光控制单元之间的遮光间隙最小,可以将相邻的入射光控制单元的入光窗口的相邻侧边设置为平行。
在本申请中,多个入射光控制单元可以设置成呈矩阵排列,通过控制不同位置处的入射光控制单元处于透光状态可以使得该色温传感器能够采集不同视角、不同范围的光,从而检测这些角度区域的光的色温信息。
可选地,在本申请提供的色温传感器中,光入射窗口控制部与光散射膜层平行设置。这样在光入射窗口控制部的入光面积固定时,光入射窗口控制部与光散射膜层平行,可以使色温传感器的入光视角范围尽可能大。
进一步地,光入射窗口控制部与光散射膜层之间一般设置有间隙,以保证光入射窗口控制部接收的较大视角范围的光能够照射至光散射膜层上。但间隙距离也不能太大,如果间隙太大,一方面会增大色温传感器的体积,另一方面,在光入射窗口控制部的入光面积与光散射膜层的入光面积固定的基础上,间隙太大会降低色温传感器的入光视角范围。在具体实施时,光入射窗口控制部与光散射膜层之间的间隙距离L1可以根据光入射窗口控制部的入光面积以及光散射膜层的入光面积进行设置。在传统色温传感器的基础上,可以将光入射窗口控制部与光散射膜层之间的间隙距离L1控制在2mm-1cm之间,这样既可以保证本申请的色温传感器的体积不会太大,也可以保证有尽可能大的入光视角范围,例如L1为2mm、5mm、7mm或1cm等,在此不作限定。
进一步地,在本申请实施例提供的色温传感器中,光入射窗口控制部入光侧的面积大于光散射膜层入光侧的面积,以增大色温传感器的采光范围。
在具体实施时,色温传感器中一般还包括与多光谱传感器电连接的处理电路,处理电路用于读取并处理多光谱传感器输出的电信号。处理电路和控制电路可以集成在同一芯片上,当然也可以设置在不同芯片上,在此不作限定。
在具体实施时,在本申请实施例提供的色温传感器中,还包括固定件,固定件用于固定多光谱传感器、光散射膜层以及光入射窗口控制部,以方便操作该色温传感器。本申请对固定件的具体实现方式不作限定,可以是能够实现固定多光谱传感器、光散射膜层以及光入射窗口控制部的任何结构。示例性的,固定件可以包括用于固定多光谱传感器和光散射膜层的第一固定支架,以及用于将第一固定支架和光入射窗口控制部固定在一起的第二固定架。其中,第一固定支架和第二固定架可以是铰链的也可以是分离的,在此不作限定。
当然,在具体实施时,也可以采用传统的色温传感器代替多光谱传感器和光散射膜层,即利用固定件将光入射窗口控制部直接固定于传统的色温传感器的入光侧。
需要说明的是,本申请对色温传感器中,多光谱传感器、光散射膜层、光入射窗口控制部的数量不作限定,例如在一种实施例中,色温传感器中包括一个多光谱传感器、一个光散射膜层、一个光入射窗口控制部以及一个控制电路和处理电路。在另一实施例中,色温传感器中包括多个多光谱传感器、多个光散射膜层以及光入射窗口控制部。当色温传感器包括多个多光谱传感器、多个光散射膜层以及光入射窗口控制部时,一般是一个多光谱传感器对应一个光散射膜层和一个光入射窗口控制部。本申请对控制电路和处理电路的数量也不作限定,例如,可以是一个处理电路对应一个多光谱传感器,一个控制电路对应控制一个光入射窗口控制部。或者,也可以是一个控制电路同时控制多个光入射窗口控制部,一个处理电路同时对应多个多光谱传感器。
本申请提供的色温传感器,正是由于增加了光入射窗口控制部,因此可以通过控制光入射窗口控制部中不同位置处的入射光控制单元处于透光状态,获取不同观察视角范围内光的色温信息。在具体实施时,光入射窗口控制部可以有多种实现方法,下面结合光入射窗口控制部的具体实施例,对本申请进行详细说明。需要说明的是,本实施例是为了更好的解释本发明,但不限制本申请。
在一种可能的实现方式中,光入射窗口控制部为黑白液晶显示(Liquid Crystal Display,LCD)面板;黑白LCD面板具有呈矩阵排列的多个像素,每个入射光控制单元为多个像素中的一个。由于LCD面板中像素尺寸较小、像素分辨率高,因此利用LCD面板实现光入射窗口控制部的功能,可以使本申请的色温传感器具有较高的空间分辨率。
这里的黑白液晶显示面板时相对彩色液晶显示面板而言的,彩色液晶显示面板中一般设置有红、绿、蓝三种颜色的滤光膜,而黑白液晶显示面板中则不需要设置滤光膜。本申请中的黑白LCD面板可以是不设置滤光膜的任意LCD面板结构,在此不作限定。
在具体实施时,黑白液晶显示面板中一般包括:依次层叠设置的第一偏光片、阵列基板、第一透明导电层、第一配向膜、液晶层、第二配向膜、第二透明导电层、对向基板和第二偏光片。其中,第一透明导电层包括呈矩阵排列的多个像素电极,每个像素包括一个像素电极;第一透明导电层和第二透明导电层分别与控制电路电连接。
在具体实施时,第二透明导电层可以设置在对向基板上,当然也可以设置在阵列基板上,本申请对此不作限定。另外,第二透明导电层可以整层设置,也可以将第二透明导电层分割成与多个与像素电极一一对应的多个子电极,在此也不作限定。
在具体实施时,衬底基板和对向基板均为透明基板,可采用例如玻璃等的透明材料形成。
在另一种可能的实现方式中,光入射窗口控制部为电致变色结构,电致变色结构具有呈矩阵排列的多个像素,每个入射光控制单元具体为多个像素中的一个。由于电致变色结构具有双稳态的特点,可以做到仅仅在变色时耗电,变色以后维持状态不耗电,因此利用电致变色结构实现光入射窗口控制部的功能,可以使本申请的色温传感器具有功耗小的优点。
在具体实施时,电致变色结构主要包括依次层叠设置的第一透明基板、第一透明导电层、电致变色层、电解质层、离子存储层、第二透明导电层和第二透明基板;第一透明导电层和/或第二透明导电层包括呈矩阵排列的多个子电极,每个像素包括一个子电极;第一 透明导电层和第二透明导电层分别与控制电路电连接。具体第一透明导电层或第二透明导电层包括呈矩阵排列的多个子电极的结构与黑白LCD面板中第一透明导电层的结构相似。
在又一种可能的实现方式中,光入射窗口控制部为电润湿结构,电润湿结构具有呈矩阵排列的多个像素,每个入射光控制单元为多个像素中的一个。利用电润湿结构实现光入射窗口控制部的功能,可以使本申请的色温传感器具有响应时间快,功耗小,对光的偏振性不进行选择的优点。
示例性的,电润湿结构主要包括依次层叠设置的第一透明基板、第一透明导电层、水层、油膜、疏水层、第二透明导电层和第二透明基板;第一透明导电层和/或第二透明导电层包括呈矩阵排列的多个子电极,每个像素包括一个子电极;第一透明导电层和第二透明导电层分别与控制电路电连接。
综上,本申请实施例提供的色温传感器相当于在传统色温传感器的入光侧增加了光入射窗口控制部,例如黑白LCD面板,电致变色结构或电润湿结构等,从而通过控制光入射窗口控制部局部区域的透光状态,可以实现探测环境中不同区域色温信息的能力。
第二方面,本申请提供的一种电子设备,包括上述第一方面提供的色温传感器。具体地,该电子设备可以为手机、平板电脑、可穿戴电子设备等常见的具有拍照功能的设备中。当然,还可以为其他类型的带拍摄功能的电子设备。由于该色温传感器具有探测环境中不同区域色温信息的能力,对于图像拍摄等众多场景,将有助于进行更好的局部颜色还原及显示。
附图说明
图1为本申请实施例提供的色温传感器的一种应用场景的示意图;
图2为传统色温传感器的结构示意图;
图3为本申请一种实施例提供的色温传感器的结构示意图;
图4为本申请一种实施例提供的色温传感器中的光入射窗口控制部的结构示意图;
图5为本申请一种实施例提供的光入射窗口控制部中局部入射光控制单元呈透光状态的示意图;
图6为本申请又一种实施例提供的光入射窗口控制部中局部入射光控制单元呈透光状态的示意图;
图7为本申请又一种实施例提供的光入射窗口控制部中局部入射光控制单元呈透光状态的示意图;
图8为本申请又一种实施例提供的光入射窗口控制部中全部入射光控制单元呈透光状态的示意图;
图9为本申请又一种实施例提供的色温传感器的结构示意图;
图10为本申请又一种实施例提供的色温传感器的结构示意图;
图11为本申请又一种实施例提供的色温传感器的结构示意图;
图12为本申请又一种实施例提供的色温传感器的结构示意图;
图13为本申请一种实施例提供的黑白LCD面板的结构示意图;
图14为本申请一种实施例提供的黑白LCD面板中第一透明导电层的结构示意图;
图15为本申请一种实施例提供的色温传感器的检测位置A处光信号的示意图;
图16为本申请一种实施例提供的色温传感器的检测位置B处光信号的示意图;
图17为本申请一种实施例提供的电致变色结构的结构示意图;
图18为本申请一种实施例提供的光入射窗口控制部中局部窗口打开的示意图;
图19为本申请一种实施例提供的电润湿结构的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本申请更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请的附图仅用于示意相对位置关系不代表真实比例。
需要说明的是,在以下描述中阐述了具体细节以便于充分理解本申请。但是本申请能够以多种不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似推广。因此本申请不受下面公开的具体实施方式的限制。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求所界定者为准。
本申请实施例中的色温传感器,指的是一种能够检测环境中的色温信息、光的色表温度或相关色温度的器件,色温即用于表征光色相对白光的程度,以量化光源的光色表现。其中光源光谱能量集中在短波方向的光,色温较高,光源颜色偏蓝色,光源光谱能量集中在长波方向的光,色温较低,光源颜色偏红色。
为了方便理解本申请实施例提供的色温传感器,下面首先说明一下其应用场景。
本申请实施例提供的色温传感器可以应用于电子设备中,如手机、平板电脑、可穿戴电子设备等常见的具有拍照功能的设备中。当然,还可应用于其他类型的带拍摄功能的电子设备中。如图1中所示,本申请实施例提供的图像传感器2应用于移动终端内时,移动终端包括壳体1以及设置在壳体1内或部分凸出于壳体1的色温传感器2,并与壳体1内的主板3电连接。目标物体的光线在射入到色温传感器2上时,可通过色温传感器2将光学信号转换成电信号,以用于进行成像处理。
目前,传统的色温传感器的结构如图2所示,主要包括多光谱传感器21、设置在多光谱传感器21入光侧的光散射膜层22和处理电路(图2中未示出)。多光谱传感器21用于接收来自外界的光,并将不同波长的光信号经过光电转换作用,转换成电信号,从而感知入射到该多光谱传感器21上光信号的光谱分布。光散射膜层22的作用是为了将来自空间中不同位置(例如图示中的A、B和C位置)的入射光打散,从而使不同位置入射的光经过光散射膜层22后能够照射到多光谱传感器21上。处理电路用于读取并处理该多光谱传感器21输出的电信号。在该色温传感器中,由于光散射膜层22的存在,无法确定光信号具体来自空间位置A、B还是C。即色温传感器会无差别的检测整个视场角之内的光谱信息,不具备色温信息的空间分辨能力。然而在某些情形时,环境光源分布复杂,电子设备需要对环境的局部色温做出估计,因此传统的色温传感器不能解决混合光源场景中的颜色问题。
基于此,本申请实施例提供了一种新的色温传感器,通过在传统色温传感器的入光侧 增加可编程控制的空间局部透光率可变的光入射窗口控制部,实现不同视角区域光谱信息的采集,有助于解决混合色温场景中颜色效果还原及显示中遇到的问题等。下面结合附图对本申请实施例提供的色温传感器进行具体说明。
图3示例性示出了本申请一种实施例中色温传感器的结构示意图。
参见图3,本申请实施例提供的色温传感器10包括:多光谱传感器11,光散射膜层12,光入射窗口控制部13和控制电路14。其中,所述多光谱传感器11用于将接收的光信号转换为电信号;所述光散射膜层12设置于所述多光谱传感器11的入光侧,用于将来自不同空间位置(例如图示中的A、B和C位置)的入射光打散,从而被打散的光有一部分将会被所述多光谱传感器11接收到,利用多光谱传感器将接收的不同波段的光信号转换成电信号。即所述光散射膜层12用于保证空间中不同位置的光都能够照射到所述多光谱传感器11上面。其中,所述光散射膜层12可以采用透明的材料形成,例如磨砂的毛玻璃或具有粗糙表面的透明塑料等,在此不作限定。所述光入射窗口控制部13设置于所述光散射膜层12背离所述多光谱传感器11的一侧,即所述光入射窗口控制部13设置于所述光散射膜层12的入光侧。
参见图4,图4为本申请实施例提供的光入射窗口控制部的俯视结构示意图。所述光入射窗口控制部13包括多个入射光控制单元130(图中以36个入射光控制单元为例进行示意),所述多个入射光控制单元130中的每个所述入射光控制单元130被配置为在被施加不同电压时呈透光状态或遮光状态;所述控制电路14与所述光入射窗口控制部13中的所述多个入射光控制单元130分别电连接,用于向每个所述入射光控制单元130施加电压,以使所述入射光控制单元130呈透光状态或遮光状态。
本申请提供的上述色温传感器10,相当于在传统色温传感器的入光侧增加了入射光窗口可控的光入射窗口控制部,当需要感知环境中的色温信息时,所述色温传感器10将会正对着需要被感知的环境,来自环境中的光首先会照射至所述光入射窗口控制部13,而所述光入射窗口控制部13中每一入射光控制单元130都可以在控制电路14的控制下呈透光状态或遮光状态。当需要检测特定视角范围内的光时,所述控制电路14控制与该特定视角范围对应的位置处的入射光控制单元130呈透光状态,其余位置处的入射光控制单元130呈遮光状态,从而实现只有特定视角范围内的光才会通过所述入射窗口控制部13进入到光散射膜层12,并通过所述光散射膜层12的散射作用照射至所述多光谱传感器11上,从而使所述色温传感器10可以针对性的采集来自不同视角的光,从而使所述色温传感器10具备检测特定视角范围内光的色温信息的能力。
在具体实施时,由于所述光入射窗口控制部13中的每一入射光控制单元130都可以独立的被控制电路14控制,因此可以根据实际需求控制任意位置的入射光控制单元130处于透光状态,例如可以根据需求仅控制其中一个入射光控制单元130处于透光状态,例如图5所示为仅控制位置10处的入射光控制单元130处于透光状态,其它位置处的入射光控制单元130均处于遮光状态。也以可同时控制多个或者全部入射光控制单元130处于透光状态,例如图6所示,同时控制位置15、16、21和22处的入射光控制单元130处于透光状态,其它位置处的入射光控制单元130均处于遮光状态;例如图7所示,还可以同时控制位置1~6处的入射光控制单元130处于透光状态,其它位置处的入射光控制单元130均处于遮光状态;例如图8所示,还可以同时控制位置1~36处的入射光控制单元130均处于透光状态,在此不作限定。另外,处于透光状态的所述多个入射光控制单元130的位 置可以是相邻的,也可以是间隔的,在此不作限定。即本申请的色温传感器10通过控制不同位置处的入射光控制单元130处于透光状态,可以获取不同观察视角范围内光的色温信息。
本申请对光入射窗口控制部13中入射光控制单元130的数量、入光窗口面积以及入光窗口形状不作限定,具体可以根据产品的实际需求进行设定。当光入射窗口控制部13的光入射面积固定时,入射光控制单元130的数量越多,入射光控制单元130的入光窗口面积越小,色温传感器10的空间分辨能力越强。其中,入射光控制单元130的入光窗口是指该入射光控制单元130呈透光状态时的透光范围。
在具体实施时,光入射窗口控制部13中每个入射光控制单元130的入光窗口面积可以设置为一致,当然有特殊的要求时,也可以设置为不一致,在此不作限定。另外,本申请中每个入射光控制单元130的入光窗口的形状可以为规则的形状,例如图4所示的矩形、或者正六边形等,当然也可以是不规则形状。可选地,在本申请中,将每个入射光控制单元130的入光窗口的形状和大小均设置为一致。另外,为了保证相邻的入射光控制单元130之间的遮光间隙最小,可以将相邻的入射光控制单元130的入光窗口的相邻侧边设置为平行。
在本申请中,多个入射光控制单元130可以设置成呈矩阵排列,通过控制不同位置处的入射光控制单元130处于透光状态可以使得该色温传感器10能够采集不同视角、不同范围的光,从而检测这些角度区域的光的色温信息。
参见图9,图9为本申请另一实施例提供的色温传感器的结构示意图。在本申请提供的色温传感器10中,所述光入射窗口控制部13与所述光散射膜层12平行设置。这样在所述光入射窗口控制部13的入光面积固定时,所述光入射窗口控制部13的入光面与所述光散射膜层12的入光面平行,可以使所述色温传感器的入光视角范围尽可能大。
进一步地,所述光入射窗口控制部13与所述光散射膜层12之间一般设置有间隙,以保证所述光入射窗口控制部13接收的较大视角范围的光能够照射至光散射膜层12上,但间隙距离也不能太大,如果间隙太大,一方面会增大色温传感器的体积,另一方面,在光入射窗口控制部13的入光面积与所述光散射膜层12的入光面积固定的基础上,间隙太大会降低色温传感器的入光视角范围。在具体实施时,所述光入射窗口控制部13与所述光散射膜层12之间的间隙距离L1可以根据所述光入射窗口控制部13的入光面积以及所述光散射膜层12的入光面积进行设置。在传统色温传感器的基础上,可以将所述光入射窗口控制部13与所述光散射膜层12之间的间隙距离L1控制在2mm-1cm之间,这样既可以保证色温传感器的体积不会太大,也可以保证有尽可能大的入光视角范围,例如L1为2mm、5mm、7mm或1cm等,在此不作限定。
继续参见图9,优选的,在本申请实施例提供的色温传感器10中,所述光入射窗口控制部13入光侧的面积S1大于所述光散射膜层12入光侧的面积S2,以增大色温传感器10的采光范围。
在具体实施时,色温传感器中还可以包括与所述多光谱传感器电连接的处理电路,所述处理电路用于读取并处理所述多光谱传感器输出的电信号。所述处理电路和所述控制电路可以集成在同一芯片上,当然也可以设置在不同芯片上,在此不作限定。
参见图9,在本申请实施例提供的色温传感器10中,还包括固定件15,所述固定件15用于固定所述多光谱传感器11、所述光散射膜层12以及所述光入射窗口控制部13,以 方便操作所述色温传感器。本申请对固定件15的具体实现方式不作限定,可以是能够实现固定所述多光谱传感器11、所述光散射膜层12以及所述光入射窗口控制部13的任何结构。例如图9所示,所述固定件15可以包括用于固定所述多光谱传感器11和所述光散射膜层12的第一固定支架151,以及用于将第一固定支架151和所述光入射窗口控制部13固定在一起的第二固定架152。其中,第一固定支架151和第二固定架152可以是铰链的也可以是分离的,在此不作限定。
当然,在具体实施时,也可以采用传统的色温传感器代替所述多光谱传感器11和所述光散射膜层12,即利用固定件15将所述光入射窗口控制部13直接固定于传统的色温传感器的入光侧。
需要说明的是,本申请对所述色温传感器10中,所述多光谱传感器11、所述光散射膜层12、所述光入射窗口控制部13的数量不作限定,例如图10所示,所述色温传感器10中包括一个多光谱传感器11、一个光散射膜层12、一个光入射窗口控制部13以及一个控制电路14和处理电路16,或者如图11和图12所示,所述色温传感器10中包括多个多光谱传感器11、多个光散射膜层12以及所述光入射窗口控制部13。当所述色温传感器包括多个多光谱传感器11、多个光散射膜层12以及所述光入射窗口控制部13时,如图11和图12所示,可以是一个多光谱传感器11对应一个光散射膜层12和一个光入射窗口控制部13。本申请对所述控制电路14和所述处理电路16的数量也不作限定,例如图11所示,可以是一个处理电路16对应一个所述多光谱传感器11,一个控制电路14对应控制一个所述光入射窗口控制部13。或如图12所示,也可以是一个控制电路14同时控制多个所述光入射窗口控制部13,一个处理电路14同时对应多个所述多光谱传感器11。
本申请提供的色温传感器,正是由于增加了光入射窗口控制部,因此可以通过控制光入射窗口控制部中不同位置处的入射光控制单元处于透光状态,获取不同观察视角范围内光的色温信息。在具体实施时,所述光入射窗口控制部可以有多种实现方法,下面结合所述光入射窗口控制部的具体实施例,对本申请进行详细说明。需要说明的是,本实施例是为了更好的解释本申请的技术方案,但不限制本申请的保护范围。
示例一
所述光入射窗口控制部为黑白液晶显示(Liquid Crystal Display,LCD)面板;所述黑白LCD面板具有呈矩阵排列的多个像素,每个所述入射光控制单元为所述多个像素中的一个。由于LCD面板中像素尺寸较小、像素分辨率高,因此利用LCD面板实现所述光入射窗口控制部的功能,可以使本申请的色温传感器具有较高的空间分辨率。
这里的黑白液晶显示面板时相对彩色液晶显示面板而言的,彩色液晶显示面板中一般设置有红、绿、蓝三种颜色的滤光膜,而黑白液晶显示面板中则不需要设置滤光膜。本申请中的黑白LCD面板可以是不设置滤光膜的任意LCD面板结构,在此不作限定。
在具体实施时,参见图13,所述黑白液晶显示面板100中一般包括:依次层叠设置的第一偏光片101、阵列基板102、第一透明导电层103、第一配向膜104、液晶层105、第二配向膜106、第二透明导电层107、对向基板108和第二偏光片109。其中,参见图14,所述第一透明导电层103包括呈矩阵排列的多个像素电极1030,每个所述像素包括一个所述像素电极1030;所述第一透明导电层103和所述第二透明导电层104分别与所述控制电路14电连接。
其中,所述阵列基板一般包括衬底基板和位于衬底基板上的电路膜层,电路膜层中设置有像素驱动电路阵列以及各种走线,所述像素驱动电路阵列中的每一像素驱动电路对应连接一个像素电极。
另外,在具体实施时,第二透明导电层可以设置在如图13所示的对向基板108上,当然也可以设置在阵列基板102上,本申请对此不作限定。另外,第二透明导电层可以整层设置,也可以将第二透明导电层分割成与多个与像素电极一一对应的多个子电极,在此不作限定。
在具体实施时,衬底基板和对向基板均为透明基板,可采用例如玻璃等的透明材料形成。
下面以扭曲向列型(Twisted Nematic,TN)LCD面板为例,说明所述黑白LCD面板的工作原理。TN-LCD面板使用的是TN型液晶,液晶分子成椭圆状。TN型液晶分子一般是顺着长轴方向串接,长轴间彼此平行方式排列,黑白LCD面板中的第一配向膜和第二配向膜的配向方向相互垂直,当液晶分子接触到配向膜时,就会顺着配向膜的配向方向进行排列。黑白LCD面板中的第一偏光片和第二偏光片的偏振方向相互垂直,且第一偏振片的偏振方向和第一配向膜的配向方向一致,第二偏振片的偏振方向和第二配向膜的配向方向一致。针对每一像素,当控制电路不向该像素对应的像素电极和第二透明导电层施加电压时,液晶分子呈扭转型排列,入射光透过偏光片后沿着液晶分子的排列方式传播,做90度的扭转,最终入射光的偏振方向发生90度偏转,使该像素呈透光状态。当控制电路向该像素对应的像素电极和第二透明导电层施加电压时,液晶分子排列方式发生变化,入射光沿着液晶分子的空隙传播,保持其原来的偏振方向不变,到达黑白LCD面板的另一基板时光线的偏振方向和偏振片的偏振方向相互垂直,光线被吸收无法透过,使该像素呈遮光状态。
控制电路通过阵列基板上的像素驱动电路向像素电极提供电压,每一像素驱动电路对应一个像素电极。像素驱动电路一般由薄膜场效应晶体管(Thin Film Transistor,TFT)组成,通过对像素驱动电路的控制,黑白LCD面板上面每一个像素驱动电路都可以独立的被施加电压,从而使像素驱动电路处于导通或截止状态。当像素驱动电路处于截止状态时,对应的像素电极上没有电压,光线可以透过,即对应的像素呈透光状态。当像素驱动电路处于导通状态时,控制电路通过像素驱动电路向对应的像素电极以及第二透明导电层上施加电压,光线不能透过,即对应的像素呈遮光状态。通过控制电路控制黑白LCD面板中每一像素对应的像素电极以及第二透明导电层的电压来控制该像素的通光状态,就可以选择性的使色温传感器检测不同的视角。
在该实施例中,可以将黑白LCD面板通过固定件放置于传统的色温传感器之前,通常黑白LCD面板所在平面和多光谱传感器所在平面相互平行。黑白LCD面板距离光散射膜层的表面具有一定距离,通常为2mm到1cm之间。黑白LCD面板的面积一般大于光散射膜层的面积,以便其能较好的覆盖所要检测的空间范围。
参见图15和图16,图15和图16中分别展示了光入射窗口控制部的两种窗口位置,其中,在图15中,来自位置A的光经过光入射窗口控制部13例如黑白LCD面板入射至光散射膜层12上,经过光散射膜层12的散射作用,其中有一部分光会入射到多光谱传感器11上,来自位置B和位置C处的光由于光线的直线传播原则,无法通过黑白LCD面板照射至光散射膜层12上,因而多光谱传感器11无法接收来自空间位置B和空间位置C处 的光线,因而此时色温传感器10只可以检测空间位置A处光的色温信息。在图16中,来自位置B的光经过光入射窗口控制部13例如黑白LCD面板入射至光散射膜层12上,经过光散射膜层12的散射作用,其中有一部分光会入射到多光谱传感器11上,来自位置A和位置C处的光由于光线的直线传播原则,无法通过黑白LCD面板照射至光散射膜层12上,因而多光谱传感器11无法接收来自空间位置A和空间位置C处的光线,因而此时色温传感器10只可以检测空间位置B处光的色温信息。
在具体实施时,可以选择性的打开黑白LCD面板中空间位置C处对应的窗口以便仅仅收集C处光线对应的色温信息,也可以同时打开空间位置A处和空间位置B处对应的窗口收集A和B处光的整体色温信息,当然也可以在黑白LCD面板上打开更大的窗口,以便收集更大空间位置的光的整体色温信息。具体而言,色温传感器可以感受到的最大空间视野由黑白LCD面板上窗口相对光散射膜层每一点张角的并集构成。
本实施例可以通过控制黑白LCD面板上不同位置像素的透光状态,收集来自不同空间位置上的光,从而色温传感可以实现不同空间位置色温信息的采集。具体可以通过将黑白LCD面板与传统的色温传感器相结合从而实现检测空间局部色温信息的能力。
示例二
所述光入射窗口控制部为电致变色结构,所述电致变色结构具有呈矩阵排列的多个像素,每个所述入射光控制单元具体为所述多个像素中的一个。由于电致变色结构具有双稳态的特点,可以做到仅仅在变色时耗电,变色以后维持状态不耗电,因此利用所述电致变色结构实现所述光入射窗口控制部的功能,可以使本申请的色温传感器具有功耗小的优点。
电致变色是指材料的光学属性(反射率、透过率、吸收率等)在外加电场的作用下发生稳定、可逆的颜色变化的现象,在外观上表现为颜色和透明度的可逆变化。因此,通过利用电致变色原理形成的电致变色结构也是一种能够控制光透过能力的结构,本申请中的电致变色结构可以是具有呈矩阵排列的多个像素的任意电致变色结构,只要电致变色结构中的每一像素都可以独立的实现透光或遮光即可,在此不作限定。
在具体实施时,参见图17,所述电致变色结构200主要包括依次层叠设置的第一透明基板201、第一透明导电层202、电致变色层203、电解质层204、离子存储层205、第二透明导电层206和第二透明基板207;所述第一透明导电层202和/或所述第二透明导电层206包括呈矩阵排列的多个子电极,每个所述像素包括一个所述子电极;所述第一透明导电层1301和所述第二透明导电层1305分别与所述控制电路14电连接。具体所述第一透明导电层202或所述第二透明导电层206包括呈矩阵排列的多个子电极的结构与黑白LCD面板中第一透明导电层的结构相似,可以参见图14中第一透明导电层的结构。
其中,所述电致变色结构200的工作原理为:针对每一像素,当所述控制电路14不向该像素对应的所述第一透明导电层202和所述第二透明导电层206施加电压时,电致变色层203与该像素对应的区域为透光状态,从而该像素呈透光状态。当所述控制电路14向该像素对应的所述第一透明导电层202和所述第二透明导电层206施加电压时,电子进入电致变色层203与该像素对应的区域,电致变色层203与该像素对应的区域发生电化学氧化还原反应,导致该区域的光吸收或是反射发生变化,从而从透光状态转化为着色状态,即该像素呈遮光状态,当该像素呈遮光状态后即使控制电路不再向该像素施加电压,该像素仍会维持遮光状态,后续当需要该像素呈透光状态,向该像素对应的所述第一透明导电 层202和所述第二透明导电层206施加反向电压,该像素变为透光状态。通过控制电路控制电致变色结构中每一像素对应的第一透明电极层以及第二透明电极层的电压来控制该像素的通光状态,就可以选择性的使色温传感器检测不同的视角。
在本实施例中,通过控制电致变色结构中每一像素的透光状态,便可以实现控制局部窗口打开的能力。例如在图18中,控制电路对中间4个位置处的像素不施加电压,其余位置处的像素施加电压,那么只有中间区域表现为透光状态而其它区域表现为遮光状态。
在该实施例中,可以将电致变色结构通过固定件放置于传统的色温传感器之前,通常电致变色结构所在平面和多光谱传感器所在平面相互平行。电致变色结构距离光散射膜层的表面具有一定距离,通常为2mm到1cm之间。电致变色结构的面积一般大于光散射膜层的面积,以便其能较好的覆盖所要检测的空间范围。
参见图15和图16,图15和图16中分别展示了光入射窗口控制部的两种窗口位置,其中,在图15中,来自位置A的光经过光入射窗口控制部13例如电致变色结构入射至光散射膜层12上,经过光散射膜层12的散射作用,其中有一部分光会入射到多光谱传感器11上,来自位置B和位置C处的光由于光线的直线传播原则,无法通过电致变色结构照射至光散射膜层12上,因而多光谱传感器11无法接收来自空间位置B和空间位置C处的光线,因而此时色温传感器10只可以检测空间位置A处光的色温信息。在图16中,来自位置B的光经过光入射窗口控制部13例如电润湿结构入射至光散射膜层12上,经过光散射膜层12的散射作用,其中有一部分光会入射到多光谱传感器11上,来自位置A和位置C处的光由于光线的直线传播原则,无法通过电润湿结构照射至光散射膜层12上,因而多光谱传感器11无法接收来自空间位置A和空间位置C处的光线,因而此时色温传感器10只可以检测空间位置B处光的色温信息。
在具体实施时,可以选择性的打开电润湿结构中空间位置C处对应的窗口以便仅仅收集C处光线对应的色温信息,也可以同时打开空间位置A处和空间位置B处对应的窗口收集A和B处光的整体色温信息,当然也可以在电润湿结构上打开更大的窗口,以便收集更大空间位置的光的整体色温信息。具体而言,色温传感器可以感受到的最大空间视野由电润湿结构上窗口相对光散射膜层每一点张角的并集构成。
本实施例可以通过控制电润湿结构上不同位置像素的透光状态,收集来自不同空间位置上的光,从而色温传感可以实现不同空间位置色温信息的采集。具体可以通过将电润湿结构与传统的色温传感器相结合从而实现检测空间局部色温信息的能力。
示例三
所述光入射窗口控制部为电润湿结构,所述电润湿结构具有呈矩阵排列的多个像素,每个所述入射光控制单元为所述多个像素中的一个。利用所述电润湿结构实现所述光入射窗口控制部的功能,可以使本申请的色温传感器具有响应时间快,功耗小,对光的偏振性不进行选择的优点。
电润湿结构也是一种能够控制光透过能力的结构,参见图19,电润湿结构300主要包括依次层叠设置的第一透明基板301、第一透明导电层302、水层303、油膜304、疏水层305、第二透明导电层306和第二透明基板307;所述第一透明导电层102和/或所述第二透明导电层306包括呈矩阵排列的多个子电极,每个所述像素包括一个所述子电极;所述第一透明导电层302和所述第二透明导电层306分别与所述控制电路14电连接。具体所 述第一透明导电层202或所述第二透明导电层206包括呈矩阵排列的多个子电极的结构与黑白LCD面板中第一透明导电层的结构相似,可以参见图14中第一透明导电层的结构。在具体实施时,在电润湿结构300中,还包括与每一像素对应的像素墙(图中未示出),每一像素对应的油膜304被限定在对应的像素墙内。
电润湿原理是通过改变疏水层与水层的润湿特性,使得油膜平铺与疏水层与水层之间,或是散落在角落里。所述电润湿结构300的工作原理为:针对每一像素,当所述控制电路14不向该像素对应的所述第一透明导电层302和所述第二透明导电层306施加电压时,该像素对应的油膜304平铺于疏水层305与水层303之间,该像素呈遮光状态,当所述控制电路14向该像素对应的所述第一透明导电层302和所述第二透明导电层306施加电压时,油膜304散落在像素墙的角落里,该像素呈透光状态。
在本实施例中,通过控制电润湿结构中每一像素的透光状态,便可以实现控制局部窗口打开的能力。例如在图18中,控制电路对中间4个位置处的像素施加电压,其余位置处的像素不施加电压,那么只有中间区域表现为透光状态而其它区域表现为遮光状态。
在该实施例中,可以将电润湿结构通过固定件放置于传统的色温传感器之前,通常电润湿结构所在平面和多光谱传感器所在平面相互平行。电润湿结构距离光散射膜层的表面具有一定距离,通常为2mm到1cm之间。电润湿结构的面积一般大于光散射膜层的面积,以便其能较好的覆盖所要检测的空间范围。
参见图15和图16,图15和图16中分别展示了光入射窗口控制部的两种窗口位置,其中,在图15中,来自位置A的光经过光入射窗口控制部13例如电润湿结构入射至光散射膜层12上,经过光散射膜层12的散射作用,其中有一部分光会入射到多光谱传感器11上,来自位置B和位置C处的光由于光线的直线传播原则,无法通过电润湿结构照射至光散射膜层12上,因而多光谱传感器11无法接收来自空间位置B和空间位置C处的光线,因而此时色温传感器10只可以检测空间位置A处光的色温信息。在图16中,来自位置B的光经过光入射窗口控制部13例如电润湿结构入射至光散射膜层12上,经过光散射膜层12的散射作用,其中有一部分光会入射到多光谱传感器11上,来自位置A和位置C处的光由于光线的直线传播原则,无法通过电润湿结构照射至光散射膜层12上,因而多光谱传感器11无法接收来自空间位置A和空间位置C处的光线,因而此时色温传感器10只可以检测空间位置B处光的色温信息。
在具体实施时,可以选择性的打开电润湿结构中空间位置C处对应的窗口以便仅仅收集C处光线对应的色温信息,也可以同时打开空间位置A处和空间位置B处对应的窗口收集A和B处光的整体色温信息,当然也可以在电润湿结构上打开更大的窗口,以便收集更大空间位置的光的整体色温信息。具体而言,色温传感器可以感受到的最大空间视野由电润湿结构上窗口相对光散射膜层每一点张角的并集构成。
本实施例可以通过控制电润湿结构上不同位置像素的透光状态,收集来自不同空间位置上的光,从而色温传感可以实现不同空间位置色温信息的采集。具体可以通过将电润湿结构与传统的色温传感器相结合从而实现检测空间局部色温信息的能力。
综上,本申请实施例提供的色温传感器相当于在传统色温传感器的入光侧增加了光入射窗口控制部,例如黑白LCD面板,电致变色结构或电润湿结构等,从而通过控制光入射窗口控制部局部区域的透光状态,可以实现探测环境中不同区域色温信息的能力。
本申请实施例还提供了一种电子设备,包括本申请实施例提供的上述任一种色温传感器。具体地,该电子设备可以为手机、平板电脑、可穿戴电子设备等常见的具有拍照功能的设备中。当然,还可以为其他类型的带拍摄功能的电子设备。由于该色温传感器具有探测环境中不同区域色温信息的能力,对于图像拍摄等众多场景,将有助于进行更好的局部颜色还原及显示。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (14)

  1. 一种色温传感器,其特征在于,包括:
    多光谱传感器,用于将接收的光信号转换为电信号;
    光散射膜层,设置于所述多光谱传感器的入光侧;
    光入射窗口控制部,设置于所述光散射膜层背离所述多光谱传感器的一侧,所述光入射窗口控制部包括多个入射光控制单元,每个所述入射光控制单元被配置为在被施加不同电压时呈透光状态或遮光状态;
    控制电路,与所述多个入射光控制单元分别电连接,用于向每个所述入射光控制单元施加电压,以使所述入射光控制单元呈透光状态或遮光状态。
  2. 如权利要求1所述的色温传感器,其特征在于,所述光入射窗口控制部为黑白液晶显示面板;所述黑白液晶显示面板具有呈矩阵排列的多个像素,每个所述入射光控制单元为所述多个像素中的一个。
  3. 如权利要求2所述的色温传感器,其特征在于,所述黑白液晶显示面板包括:依次层叠设置的第一偏光片、阵列基板、第一透明导电层、第一配向膜、液晶层、第二配向膜、第二透明导电层、对向基板和第二偏光片;
    所述第一透明导电层包括呈矩阵排列的多个像素电极,每个所述像素包括一个所述像素电极;
    所述第一透明导电层和所述第二透明导电层分别与所述控制电路电连接。
  4. 如权利要求1所述的色温传感器,其特征在于,所述光入射窗口控制部为电致变色结构,所述电致变色结构具有呈矩阵排列的多个像素,每个所述入射光控制单元为所述多个像素中的一个。
  5. 如权利要求4所述的色温传感器,其特征在于,所述电致变色结构包括依次层叠设置的第一透明基板、第一透明导电层、电致变色层、电解质层、离子存储层、第二透明导电层和第二透明基板;
    所述第一透明导电层或所述第二透明导电层包括呈矩阵排列的多个子电极,每个所述像素包括一个所述子电极;
    所述第一透明导电层和所述第二透明导电层分别与所述控制电路电连接。
  6. 如权利要求1所述的色温传感器,其特征在于,所述光入射窗口控制部为电润湿结构,所述电润湿结构具有呈矩阵排列的多个像素,每个所述入射光控制单元为所述多个像素中的一个。
  7. 如权利要求6所述的色温传感器,其特征在于,所述电润湿结构包括依次层叠设置的第一透明基板、第一透明导电层、水层、油膜、疏水层、第二透明导电层和第二透明基板;
    所述第一透明导电层或所述第二透明导电层包括呈矩阵排列的多个子电极,每个所述像素包括一个所述子电极;
    所述第一透明导电层和所述第二透明导电层分别与所述控制电路电连接。
  8. 如权利要求1~7任一项所述的色温传感器,其特征在于,所述光入射窗口控制部与所述光散射膜层之间具有间隙。
  9. 如权利要求8所述的色温传感器,其特征在于,所述光入射窗口控制部与所述光散射膜层之间的间隙距离为2mm-1cm。
  10. 如权利要求1~9任一项所述的色温传感器,其特征在于,所述光入射窗口控制部入光侧的面积大于所述光散射膜层入光侧的面积。
  11. 如权利要求1~10任一项所述的色温传感器,其特征在于,所述光入射窗口控制部与所述光散射膜层平行设置。
  12. 如权利要求1~11任一所述的色温传感器,其特征在于,所述色温传感器还包括固定件,所述固定件用于固定所述多光谱传感器、所述光散射膜层以及所述光入射窗口控制部。
  13. 如权利要求1~12任一所述的色温传感器,其特征在于,还包括与所述多光谱传感器电连接的处理电路,所述处理电路用于读取并处理所述多光谱传感器输出的电信号。
  14. 一种电子设备,其特征在于,包括如权利要求1~13任一项所述的色温传感器。
PCT/CN2021/084722 2021-03-31 2021-03-31 色温传感器及电子设备 WO2022205206A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/084722 WO2022205206A1 (zh) 2021-03-31 2021-03-31 色温传感器及电子设备
CN202180010376.9A CN115485532A (zh) 2021-03-31 2021-03-31 色温传感器及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084722 WO2022205206A1 (zh) 2021-03-31 2021-03-31 色温传感器及电子设备

Publications (1)

Publication Number Publication Date
WO2022205206A1 true WO2022205206A1 (zh) 2022-10-06

Family

ID=83457721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084722 WO2022205206A1 (zh) 2021-03-31 2021-03-31 色温传感器及电子设备

Country Status (2)

Country Link
CN (1) CN115485532A (zh)
WO (1) WO2022205206A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150015146A1 (en) * 2013-07-10 2015-01-15 Canon Kabushiki Kaisha Image display device and control method thereof
US20160054175A1 (en) * 2014-08-25 2016-02-25 Apple Inc. Light Sensor Windows For Electronic Devices
CN109471491A (zh) * 2017-09-08 2019-03-15 苹果公司 具有环境光传感器的电子设备
CN112161703A (zh) * 2020-09-27 2021-01-01 深圳市汇顶科技股份有限公司 环境光感测装置和电子设备
CN112437893A (zh) * 2018-08-21 2021-03-02 Jsr株式会社 光学滤波器及环境光传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150015146A1 (en) * 2013-07-10 2015-01-15 Canon Kabushiki Kaisha Image display device and control method thereof
US20160054175A1 (en) * 2014-08-25 2016-02-25 Apple Inc. Light Sensor Windows For Electronic Devices
CN109471491A (zh) * 2017-09-08 2019-03-15 苹果公司 具有环境光传感器的电子设备
CN112437893A (zh) * 2018-08-21 2021-03-02 Jsr株式会社 光学滤波器及环境光传感器
CN112161703A (zh) * 2020-09-27 2021-01-01 深圳市汇顶科技股份有限公司 环境光感测装置和电子设备

Also Published As

Publication number Publication date
CN115485532A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
KR101495918B1 (ko) 디스플레이 장치
TWI444715B (zh) 液晶顯示裝置
US8681291B2 (en) Display apparatus
US7692734B2 (en) Liquid crystal device and electronic apparatus
KR100659454B1 (ko) 액정표시장치 및 이를 구비한 이동통신 단말기
CN101464588B (zh) 显示器和电子设备
CN109656052B (zh) 液晶显示面板及其制作方法和显示装置
JP2008257495A (ja) 液晶装置、イメージセンサ、及び電子機器
EP2743756A1 (en) Optical device and display device with the same
WO2004090708A1 (en) Display device with display panel
KR20050109068A (ko) 전기 영동 다중 칼라 디스플레이 디바이스
WO2021027127A1 (zh) 显示装置、显示装置中摄像方法
US20240027835A1 (en) Display panel and electronic device
CN102736306A (zh) 显示装置及电子设备
CN115616820B (zh) 防窥显示屏、电子设备及防窥方法
CN107843996A (zh) 触控显示面板与显示装置
CN214225625U (zh) 一种显示装置
JP2013003466A (ja) 表示装置および電子機器
JP5239317B2 (ja) 液晶装置及び電子機器
US9599854B2 (en) Liquid crystal display device and electronic apparatus
CN111290069B (zh) 液晶显示装置
TW201942726A (zh) 膽固醇液晶書寫板
WO2022205206A1 (zh) 色温传感器及电子设备
TWI336794B (en) Liquid crystal display apparatus
WO2019029036A1 (zh) 半穿透半反射式液晶显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933869

Country of ref document: EP

Kind code of ref document: A1