WO2022205116A1 - 无人飞行器、控制终端、救机方法和救机系统 - Google Patents

无人飞行器、控制终端、救机方法和救机系统 Download PDF

Info

Publication number
WO2022205116A1
WO2022205116A1 PCT/CN2021/084509 CN2021084509W WO2022205116A1 WO 2022205116 A1 WO2022205116 A1 WO 2022205116A1 CN 2021084509 W CN2021084509 W CN 2021084509W WO 2022205116 A1 WO2022205116 A1 WO 2022205116A1
Authority
WO
WIPO (PCT)
Prior art keywords
rescue
rotors
unmanned aerial
aerial vehicle
mode
Prior art date
Application number
PCT/CN2021/084509
Other languages
English (en)
French (fr)
Inventor
李罗川
段武阳
商志猛
吕熙敏
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202180094174.7A priority Critical patent/CN116888045A/zh
Priority to PCT/CN2021/084509 priority patent/WO2022205116A1/zh
Publication of WO2022205116A1 publication Critical patent/WO2022205116A1/zh
Priority to US18/470,824 priority patent/US20240019873A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/20Transmission of mechanical power to rotors or propellers
    • B64U50/23Transmission of mechanical power to rotors or propellers with each propulsion means having an individual motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the present disclosure relates to the technical field of unmanned aerial vehicles, and in particular, to an unmanned aerial vehicle, a control terminal, an aircraft rescue method and an aircraft rescue system.
  • Unmanned Aerial Vehicle can be used in many fields such as aerial photography, aerial surveillance, monitoring and reconnaissance.
  • a multi-rotor UAV is a special unmanned aircraft with three or more rotor axes.
  • the multi-rotor UAV generates lift by rotating the rotors by the motors corresponding to each axis.
  • the multi-rotor UAV falls abnormally during flight, its ground attitude may have a large rollover, and it can no longer take off normally. If the multi-rotor UAV is far away from the operator, or if it falls on the roof, the other side of the river and other places that are not easily accessible by manpower, it will be more difficult to rescue the aircraft, and even make it impossible to rescue the aircraft.
  • Embodiments of the present disclosure provide an unmanned aerial vehicle, a control terminal, an aircraft rescue method, and an aircraft rescue system, so as to reduce the difficulty of rescue aircraft.
  • an embodiment of the present disclosure provides an unmanned aerial vehicle, the unmanned aerial vehicle comprising: a body, at least two rotors rotatably arranged on the body, and each of the at least two rotors rotates in the forward direction to provide The first thrust in one direction, the at least two rotors each provide a second thrust in the second direction when they rotate in the opposite direction, and the first direction is opposite to the second direction; wherein, when the body is in the standby attitude, and the unmanned aerial vehicle When the rescue operation can be performed, at least some of the at least two rotors can provide the second thrust in response to the rescue control command, so as to perform the rescue operation.
  • At least some of the at least two rotors of the unmanned aerial vehicle can provide reverse thrust when they rotate in the reverse direction.
  • the unmanned aerial vehicle can perform the rescue operation
  • at least two At least a part of the rotors of the rotors can be reversely rotated in response to the rescue control command to provide reverse thrust to perform rescue operations.
  • the rotor rotates in the forward direction, it provides a forward thrust away from the center of the earth to the body in the non-rescue attitude.
  • the unmanned aerial vehicle of this embodiment can perform a remote rescue operation based on the rescue control command, which effectively reduces the difficulty of rescue.
  • an embodiment of the present disclosure provides a control terminal, where the control terminal includes: a processor for generating a rescue control instruction; a communication interface for sending the rescue control instruction to an unmanned aerial vehicle, the The rescue control instruction is used to instruct the unmanned aerial vehicle to perform the rescue operation when the body of the unmanned aerial vehicle is in the standby attitude and the unmanned aerial vehicle can perform the rescue operation.
  • control terminal can generate a rescue control instruction to send the rescue control instruction to the unmanned aerial vehicle, so that the unmanned aerial vehicle can perform a remote rescue operation in response to the rescue control instruction, which effectively reduces the rescue operation. difficulty.
  • an embodiment of the present disclosure provides an aircraft rescue method, which is applied to an unmanned aerial vehicle.
  • the unmanned aerial vehicle includes: a body; at least two rotors, which are rotatably arranged on the body, and each of the at least two rotors is in an upright position.
  • a first thrust along a first direction is provided during rotation, and each of the at least two rotors provides a second thrust along a second direction during reverse rotation, and the first direction is opposite to the second direction.
  • the above method includes: receiving a rescue control command; when the unmanned aerial vehicle is in a standby attitude and the unmanned aerial vehicle can perform a rescue operation, at least part of the rotors of the at least two rotors provide the first rescue operation in response to the rescue control command. Two thrusts to perform rescue operations.
  • the unmanned aerial vehicle may control at least some of the rotors to provide reverse thrust through reverse rotation based on the rescue control command.
  • the reverse thrust provided by at least part of the rotor can realize the remote rescue operation, which effectively reduces the difficulty of rescue.
  • the embodiments of the present disclosure provide an aircraft rescue method, which is applied to a control terminal, and the control terminal is communicatively connected to an unmanned aerial vehicle.
  • the above method includes: acquiring rescue control instructions; sending rescue control instructions to the unmanned aerial vehicle, where the rescue control instructions are used when the unmanned aerial vehicle is in a standby attitude and the unmanned aerial vehicle can perform rescue operations, Instruct the UAV to perform rescue operations.
  • control terminal can acquire the rescue control instruction input by the user, and send the rescue control instruction to the unmanned aerial vehicle, so that the unmanned aerial vehicle can perform the remote rescue operation in response to the rescue control instruction, effectively Reduced the difficulty of rescue.
  • an embodiment of the present disclosure provides an air rescue system
  • the air rescue system includes: an unmanned aerial vehicle, including: a body; at least two rotors, which are rotatably arranged on the body, and the at least two rotors are respectively in the normal position.
  • a first thrust along a first direction when rotating at least two rotors each provide a second thrust along a second direction when reversely rotating, and the first direction is opposite to the second direction;
  • a first memory which stores available Executing instructions, when executed by one or more processors, the executable instructions can cause one or more processors to perform the operations of the above method;
  • the control terminal includes: a second memory, which stores executable instructions, executable instructions The instructions, when executed by one or more processors, may cause the one or more processors to perform the operations of the methods above.
  • an embodiment of the present disclosure provides a computer-readable storage medium, which stores executable instructions, and when the executable instructions are executed by one or more processors, can cause one or more processors to execute the above method.
  • embodiments of the present disclosure provide a computer program product, including executable instructions, which, when executed, implement the above method.
  • FIG. 1 is an application scenario of an unmanned aerial vehicle, a control terminal, an aircraft rescue method, and an aircraft rescue system provided by an embodiment of the present disclosure
  • FIG. 2 is an application scenario of an unmanned aerial vehicle, a control terminal, an aircraft rescue method, and an aircraft rescue system provided by another embodiment of the present disclosure
  • FIGS. 3(a) to 3(d) are application scenarios of an unmanned aerial vehicle, a control terminal, an aircraft rescue method, and an aircraft rescue system provided by another embodiment of the present disclosure
  • 4(a) to 4(b) are application scenarios of an unmanned aerial vehicle, a control terminal, an aircraft rescue method, and an aircraft rescue system provided by another embodiment of the present disclosure
  • FIG. 5 is a block diagram of an unmanned aerial vehicle provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic top view of an X-configuration quadrotor UAV provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic front view of an X-configuration quadrotor UAV provided by an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of an X-configuration quadrotor UAV in a standby attitude provided by an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of an X-configuration quadrotor UAV in a standby attitude provided by another embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of an X-configuration quadrotor UAV in a standby attitude provided by another embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of an X-configuration quadrotor UAV and its rotor serial number provided by an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of the stick command mapping for the X-configuration quadrotor UAV and its motor shown in FIG. 11;
  • FIG. 13 is a schematic diagram of an open-loop control process provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of a reference coordinate system for flipping a rescue aircraft provided by an embodiment of the present disclosure
  • 15 is a schematic diagram of a closed-loop control process provided by an embodiment of the present disclosure.
  • 16 is a block diagram of a control terminal provided by an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of a control terminal provided by an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of a control terminal provided by another embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram of a control terminal provided by another embodiment of the present disclosure.
  • FIG. 20 is a flowchart of a rescue method performed by an unmanned aerial vehicle according to an embodiment of the present disclosure
  • 21 is a flowchart of a rescue method performed by a control terminal according to an embodiment of the present disclosure
  • FIG. 22 is a block diagram of an air rescue system provided by an embodiment of the present disclosure.
  • FIG. 23 is a schematic diagram of functional interaction of an aircraft rescue system provided by an embodiment of the present disclosure.
  • FIG. 24 is a flowchart of a flight control execution operation in a manual rescue mode provided by an embodiment of the present disclosure
  • FIG. 25 is a flowchart of the execution operation of the flight controller in the automatic rescue mode provided by an embodiment of the present disclosure
  • FIG. 26 is a flowchart of a flight control execution operation in an automatic rescue aircraft return-to-home mode provided by an embodiment of the present disclosure
  • FIG. 27 is a sequence diagram of a function of prompting whether the take-off can be normally performed according to an embodiment of the present disclosure
  • FIG. 28 is a sequence diagram of entering rescue mode and manual rescue function provided by an embodiment of the present disclosure.
  • FIG. 29 is a sequence diagram of an automatic rescue function and an automatic rescue and return-to-home function provided by an embodiment of the present disclosure.
  • the ground attitude of the multi-rotor UAV may have a larger roll than the normal take-off attitude. As a result, the multi-rotor UAV can no longer take off in the normal take-off attitude.
  • the multi-rotor UAV may be far from the operator or in an orientation that is not easy to rescue the aircraft.
  • the drop location is on the roof, on the other side of the river, etc. that are not easily accessible. This will make it difficult to rescue the aircraft, and even the multi-rotor UAV may be lost due to the inability to rescue the multi-rotor UAV.
  • the above problems are common to remotely controlled rotary-wing UAVs.
  • At least two rotors can each provide a reverse thrust (such as a thrust to keep the bottom-up UAV away from the landing surface when each of the rotors rotates in the opposite direction) ).
  • a reverse thrust such as a thrust to keep the bottom-up UAV away from the landing surface when each of the rotors rotates in the opposite direction.
  • At least a portion of the rotors can be remotely controlled so that the multi-rotor UAV can go from a stand-by attitude (non-takeoff attitude) to a take-off attitude, or take off with reverse thrust directly in the stand-by attitude.
  • the embodiments of the present disclosure effectively reduce the difficulty of rescue, reduce the risk of property loss of the sending user, and improve the user experience.
  • FIGS. 1 to 29 In order to facilitate a better understanding of the embodiments of the present disclosure, a detailed description is given below with reference to FIGS. 1 to 29 .
  • FIG. 1 is an application scenario of an unmanned aerial vehicle, a control terminal, an aircraft rescue method, and an aircraft rescue system provided by embodiments of the present disclosure.
  • the unmanned aerial vehicle 10 is a multi-rotor unmanned aerial vehicle (UAV) as an example for description.
  • UAV multi-rotor unmanned aerial vehicle
  • the UAV 10 includes a main body 11 , a carrier 13 and a load 14 .
  • unmanned aerial vehicle 10 is described as an aircraft, such description is not limiting, and any type of unmanned aerial vehicle described above is applicable (eg, unmanned aerial vehicle).
  • payload 14 may be located directly on UAV 10 without carrier 13 .
  • Unmanned aerial vehicle 10 may include powertrain 15 , sensing system 12 . Additionally, the UAV 10 may also include a communication system.
  • the powertrain 15 may include one or more rotating bodies, propellers, blades, engines, motors, bearings, magnets, nozzles.
  • the rotating body of the powertrain may be a self-tightening rotating body, a rotating body assembly, or other rotating body power unit.
  • Unmanned aerial vehicles may have two, three, four or more powertrains. All powertrains can be of the same type.
  • at least one of the plurality of power mechanisms may be of a different type from the other power mechanisms.
  • the power mechanism 15 may be mounted on the UAV by suitable means, such as by supporting elements (eg, drive shafts).
  • the power mechanism 15 may be installed in any suitable location of the UAV 10, such as the top end, the lower end, the front end, the rear end, the side, or any combination thereof.
  • the powertrain 15 enables the UAV to take off vertically from a surface, or land vertically on a surface, without any horizontal movement of the UAV 10 (eg, without taxiing on a runway).
  • the power mechanism 15 may allow the UAV 10 to preset positions and/or turn the steering wheel in the air.
  • One or more of the power mechanisms 100 may be controlled independently of the other power mechanisms.
  • one or more power mechanisms 100 may be controlled simultaneously.
  • the UAV 10 may have multiple horizontally oriented rotating bodies to control the lift and/or push of the UAV. The rotating body in the horizontal direction can be actuated to provide the UAV 10 with the ability to take off vertically, land vertically, and hover.
  • one or more of the horizontal rotating bodies may rotate clockwise, while the other one or more of the horizontal rotating bodies may rotate counterclockwise.
  • the rate of rotation of each horizontal rotating body can be varied independently to effect the lifting and/or pushing operation caused by each rotating body to adjust the spatial orientation, velocity and/or acceleration of the UAV 10 (eg, relative to up to rotation and translation in three degrees of freedom).
  • Sensing system 12 may include one or more sensors to sense surrounding obstacles, spatial orientation, velocity, and/or acceleration (eg, rotation and translation with respect to up to three degrees of freedom) of UAV 10 .
  • the one or more sensors include any of the sensors described above, including but not limited to ranging sensors, GPS sensors, motion sensors, inertial sensors, or image sensors.
  • the sensed data provided by the sensing system 12 may be used to control the spatial orientation, velocity and/or acceleration of the UAV 10 .
  • the sensing system 12 may be used for data on the environment of the UAV, such as climatic conditions, surrounding obstacle distances, locations of geographic features, locations of man-made structures, and the like.
  • the carrier 13 may be various supporting structures, including but not limited to: fixed brackets, detachable brackets, and adjustable posture structures, etc., for disposing the load 14 on the body 11 .
  • the carrier 13 may be a head, and the load 14 may be a camera, which allows the camera to be displaced relative to the body 11, or rotate along one or more axes, such as the carrier 13 allows the camera to move along The combined translational movement of one or more of the pitch, pan, and roll axes.
  • the carrier 13 may allow the camera to rotate about one or more of a pitch axis, a pan axis, and a roll axis.
  • the communication system can realize the communication between the unmanned aerial vehicle 10 and the control terminal 20 having the communication system through the wireless signal 30 sent and received by the antenna 22 provided on the casing 21 .
  • the communication system may include any number of transmitters, receivers, and/or transceivers for wireless communication.
  • Communication can be one-way communication, so that data can be sent from one direction.
  • one-way communication may include that only the UAV 10 transmits data to the control terminal 20, or vice versa.
  • One or more transmitters of the communication system may transmit data to one or more receivers of the communication system, and vice versa.
  • the communication may be two-way communication, such that data may be transmitted between the UAV 10 and the control terminal 20 in both directions. Two-way communication includes that one or more transmitters of the communication system can send data to one or more receivers of the communication system, and vice versa.
  • the payload 14 can be used to realize functions such as: observation, reconnaissance, tracking, aiming, liquid (such as water, pesticide, etc.) spraying, transportation, etc., including but not limited to at least one of the following: a photographing device, a fire extinguishing device, an aiming device, and a pesticide spraying device , recording devices, cabinets, etc.
  • functions such as: observation, reconnaissance, tracking, aiming, liquid (such as water, pesticide, etc.) spraying, transportation, etc., including but not limited to at least one of the following: a photographing device, a fire extinguishing device, an aiming device, and a pesticide spraying device , recording devices, cabinets, etc.
  • control terminal 20 may provide control instructions to one or more of the UAV 10 , the carrier 13 and the payload 14 , and control commands from one or more of the UAV 10 , the carrier 13 and the payload 14 or Information (eg, position and/or motion information of obstacles, UAV 10, carrier 13, or payload 14, payload sensing data, such as image data captured by a camera) is received in a plurality of devices.
  • Information eg, position and/or motion information of obstacles, UAV 10, carrier 13, or payload 14, payload sensing data, such as image data captured by a camera
  • the control data of the control terminal 20 may include instructions regarding position, movement, braking, or control of the UAV 10 , the carrier 13 and/or the payload 14 .
  • control data may cause changes in the position and/or orientation of the UAV (eg, by controlling the power mechanism 15 ), or cause movement of the carrier 13 relative to the UAV 10 (eg, by controlling the carrier 13 ).
  • Control data from the control terminal 20 may result in load control, such as controlling the operation of a camera or other image capture device (capturing still or moving images, zooming, turning on or off, switching imaging modes, changing image resolution, changing focus, changing depth of field, change the exposure time, change the viewing angle or field of view).
  • the communications of the UAV 10 , the carrier 13 and/or the payload 14 may include information from one or more sensors (eg, a distance sensor or an image sensor of the payload 14 ).
  • Communication may include sensory information transmitted from one or more different types of sensors, such as GPS sensors, motion sensors, inertial sensors, proximity sensors, or image sensors.
  • the sensed information is about the position (eg, orientation, position), motion, or acceleration of the UAV 10 , the carrier 13 , and/or the payload 14 .
  • the sensed information transmitted from the load 14 includes the data captured by the load 14 or the state of the load 14 .
  • the control data transmitted by the control terminal 20 may be used to control the state of one or more of the UAV 10 , the carrier 13 or the payload 14 .
  • one or more of the carrier 13 and the load 14 may include a communication module for communicating with the control terminal 20 , so that the terminal can communicate or control the UAV 10 , the carrier 13 and the load 14 individually.
  • the UAV 10 may communicate with other remote devices other than the control terminal 20 , or with remote devices other than the control terminal 20 .
  • the control terminal 20 may also communicate with another remote device and the UAV 10 .
  • the UAV and/or the control terminal 20 may communicate with another UAV or a carrier or payload of another UAV.
  • the additional remote device may be a second terminal or other computing device (eg, a computer, desktop, tablet, smartphone, or other mobile device).
  • the remote device may transmit data to the UAV 10 , receive data from the UAV 10 , transmit data to the control terminal 20 , and/or receive data from the control terminal 20 .
  • the remote device may be connected to the Internet or other telecommunications network to allow data received from the UAV 10 and/or the control terminal 20 to be uploaded to a website or server.
  • the sensors are used to collect information about the UAV 10 .
  • sensors include inertial sensors, GPS sensors, distance sensors, or vision/image sensors (eg, cameras).
  • the sensors may be connected to a processing unit including a plurality of processors, such that the processing unit incorporates obstacle information from the sensors into obstacle avoidance calculations to determine the desired speed of the unmanned aerial vehicle.
  • the sensor may be connected to a communication system (eg, a Wi-Fi image transmission module) for directly transmitting sensing data to a suitable external device or system.
  • a communication system can be used to transmit images captured by an image sensor to a remote terminal.
  • FIG. 2 is an application scenario of an unmanned aerial vehicle, a control terminal, an aircraft rescue method, and an aircraft rescue system provided by another embodiment of the present disclosure.
  • the drone in the process of using the drone to perform operations, such as using the drone for photography or inspection, the drone will explode due to interference with obstacles and the influence of gusts of wind. The incident caused the drone to be unable to take off in a normal attitude. In some scenarios, such as scenarios that are inconvenient for manpower to reach, it is inconvenient for users to rescue the aircraft.
  • the attitude tilt angle cannot be too large, otherwise the thrust generated by the forward rotation of the blades cannot make the multi-rotor UAV take off. If the paddle is forced to take off, it will even cause a series of dangerous situations such as the blades scratching the ground and the unmanned aerial vehicle flying close to the ground.
  • the embodiments of the present disclosure can be used to improve the problem that the multi-rotor UAV cannot take off normally when the multi-rotor UAV rolls and falls at a long distance from the operator, causing the multi-rotor UAV to be lost easily.
  • the unmanned aerial vehicle, control terminal, rescue method, and rescue system provided by the embodiments of the present disclosure can adjust the attitude of the multi-rotor UAV to a normal take-off attitude when the inclination angle of the ground is large, so that the multi-rotor UAV can take off normally Attitude for takeoff.
  • the inclination angle on the ground is too large (for example, the body is turned over about 150-210°)
  • the multi-rotor UAV can be made to take off in a standby attitude.
  • FIGS. 3( a ) to 3 ( d ) are application scenarios of an unmanned aerial vehicle, a control terminal, an aircraft rescue method, and an aircraft rescue system provided by another embodiment of the present disclosure.
  • the controllable part when the multi-rotor UAV is in the standby attitude, if there is interference between at least some of the blades and the landing surface or the angle between the body and the landing surface is too large, the controllable part does not interact with the landing surface.
  • the interfering blades between the landing surfaces provide thrust and cause the body to roll. For example, a portion of the blade that does not interfere with the landing surface can be controlled to rotate in reverse to provide thrust that keeps the blade away from the landing surface.
  • the rotors providing reverse thrust cause the body to roll over and transform into a normal take-off attitude. It should be noted that the rotor providing thrust cannot interfere with the landing surface. Rotors that do not provide thrust may or may not interfere with the landing surface.
  • the take-off operation can be performed in response to the control command.
  • the multi-rotor can be made through the above methods.
  • the UAV can recover to an attitude that can take off normally and complete the rescue operation with a high probability.
  • FIGS. 4( a ) to 4 ( b ) are application scenarios of an unmanned aerial vehicle, a control terminal, an aircraft rescue method, and an aircraft rescue system provided by another embodiment of the present disclosure.
  • the multi-rotor UAV is located in a narrow space, or it is inconvenient to provide the multi-rotor UAV with thrust in a specific direction, so that the multi-rotor UAV rolls to realize the rescue operation.
  • a multi-rotor UAV rolls 180° relative to the landing surface, and the rotors do not interfere with the landing surface (e.g.
  • the rotors are in the middle of the connecting shaft instead of the top, or the rotors are on the outward-facing side of the body with other components so that there is no interference between the rotor and the landing surface, etc.).
  • one or more rotors can be controlled to rotate in the opposite direction to provide thrust relative to the landing surface, so that the multi-rotor UAV rotates about 180° relative to the normal take-off attitude. take off.
  • the rescue process in special scenarios is realized by the above method.
  • the multi-rotor UAV is used as an example for description above, which should not be construed as a limitation on the technical solutions of the present disclosure.
  • the above-mentioned rescue process may also be directed to an unmanned aerial vehicle using a jet power source, an unmanned aerial vehicle using a motor or an engine as a power source, an unmanned aerial vehicle using magnetic force as a power source, etc., which are not limited here.
  • the UAV may include: a body and at least two rotors.
  • the body, at least two rotors are rotatably arranged on the body, the at least two rotors each provide a first thrust along a first direction when rotating in the forward direction, and the at least two rotors each provide a second direction when rotating in a reverse direction
  • the second thrust of the first direction is opposite to the second direction, wherein the number of rotors can be 2, 3, 4, 8 or more, etc.
  • the body may include sensor assemblies for collecting sensory data.
  • the at least two rotors are respectively rotatably arranged on different positions of the body, for example, they are respectively arranged on four top corners or arms of the body that are far away from each other.
  • the rotation directions of the at least two rotors during forward rotation may be the same or different.
  • two diagonal rotors have the same selection direction, and two adjacent rotors have opposite rotation directions.
  • the rotation direction of each of the at least two rotors in the reverse rotation is opposite to that in the forward rotation.
  • the first direction may be a direction in which the rotors are away from the landing surface when the multi-rotor UAV is in a normal take-off attitude.
  • the second direction may be a direction in which the rotors that need to provide thrust move away from the landing surface when the multi-rotor UAV is in the standby attitude.
  • the body includes a sensor assembly for collecting sensor data
  • the sensor assembly includes at least one of an inertial detection unit (IMU) and an image sensor.
  • IMU inertial detection unit
  • the IMU can be respectively arranged on the body and the bracket (such as a pan/tilt head), and the image sensor can adopt a photographing device, which can be rotatably fixed on the bracket.
  • the rescue operation may be to cause the multi-rotor UAV to roll over to convert to the normal take-off attitude, or to directly take off in the standby attitude.
  • the unmanned aerial vehicle has a rescue mode.
  • the rescue mode when the attitude information determined based on the sensing data indicates that the body is in a standby attitude, and the sensing data indicates that the unmanned aerial vehicle can perform rescue, at least two At least a portion of the rotors can provide a second thrust in response to the rescue control command to perform rescue.
  • the direction of the resultant force of the thrust provided by the at least two rotors in the forward rotation, the projection on the vertical line through the center of gravity of the unmanned aerial vehicle points to the center of the earth , and/or the respective blades of at least two rotors may interfere with the landing surface in the current attitude.
  • the angle between the resultant direction of the thrust provided by the at least two rotors in the forward rotation and the direct vertical line is less than or equal to 30°.
  • the blades of at least part of the rotors of the at least two rotors can be rotated forward or reversely, and the blades of at least part of the rotors are separated from the landing surface in the current attitude .
  • This can effectively reduce the probability of damage to the rotor due to the interference between the rotor and the landing surface during the rescue process. In this way, it is convenient to control the rotor satisfying the rescue operation in the standby attitude, so as to realize the rescue operation.
  • the respective forward and reverse directions of the at least two rotors are determined based on respective blade angles of the at least two rotors.
  • a multi-rotor UAV obtains lift through the rotation of the blades, where the direction of rotation of each blade is determined according to the blade angle of the blade, ensuring that the blade rotates when the angle of attack is positive to generate lift.
  • the rotation direction of the blade to generate upward force is forward rotation
  • the rotation direction of the blade to generate downward pull force is reverse rotation.
  • controlling the inversion of the blades to turn the UAV to rescue the aircraft can be divided into two categories.
  • One is manual lever-controlled flip rescue, and the other is automatic flip rescue.
  • the manual stick flipping and rescue machine outputs the motor reversal command corresponding to the direction and size to realize the UAV flip.
  • the multi-rotor UAV automatically selects the corresponding motor to perform the rollover operation according to the current attitude rollover.
  • the control methods of automatic flip rescue can be divided into open-loop command control and closed-loop command control.
  • manually flipping the stick to save the aircraft needs to be connected to the multi-rotor UAV by remote control to realize remote control or remote control through the application (app) virtual joystick.
  • remote control for example, it can be triggered by remote control triggers, app triggers, or remote control devices such as flight goggles.
  • the embodiment of the present disclosure requires the ESC of the multi-rotor UAV to support forward rotation and reverse rotation functions.
  • At least some of the at least two rotors provide the second thrust in response to the first control command, so that the airframe transitions from the standby attitude to the normal take-off attitude.
  • the multi-rotor UAV rolls and transitions to a normal take-off attitude.
  • the first part of the rotors of the at least two rotors respectively provide the first thrust in response to the first control command
  • the second part of the rotors of the at least two rotors respectively provide the first thrust in response to the first control command Two thrust.
  • the process of providing the second thrust can be referred to as shown in FIGS. 4(a) to 4(b), by controlling at least part of the rotors to provide reverse thrust, so that the multi-rotor UAV takes off with the rotors facing downwards relative to the body, for rescue operations.
  • the rotor can be powered by a motor, a fuel engine, etc. Motors, fuel engines, etc. can be controlled by a designated control unit. For example, at least one of the rotation direction, rotation speed or rotation duration of the motor can be controlled by the ESC.
  • the ESC may include one or more processors to process the collected data and output control signals for the motor.
  • the UAV may also have one or more other processors to control the pan/tilt, working equipment, and the like.
  • the unmanned aerial vehicle has a rescue mode
  • the rescue mode includes at least one of a manual rescue mode, an automatic rescue mode, and an automatic rescue return-to-home mode.
  • the manual rescue mode the rotor that needs to be rotated, the speed of rotation and the selected duration are input by the user.
  • the received user operation is converted into a control command through the control terminal connected to the unmanned aerial vehicle, and sent to the user. unmanned aerial vehicle.
  • the automatic rescue mode only the trigger event for entering the automatic mode is required, for example, the user inputs a user operation corresponding to entering the automatic mode on the control terminal.
  • the trigger event of the automatic rescue and return mode is similar to that of the automatic rescue mode. In this mode, when the rescue is successful, the UAV will perform the automatic return operation.
  • the UAV further includes: a communication interface for communicating with the control terminal.
  • the rescue control instruction is obtained by the communication interface of the UAV from the communication interface of the control terminal.
  • FIG. 5 is a block diagram of an unmanned aerial vehicle provided by an embodiment of the present disclosure.
  • the information processing apparatus 500 may include one or more processors 510, and the one or more processors 510 may be integrated in one processing unit, or may be separately provided in multiple processing units.
  • processors such as programmable processors (eg, central processing units), packaged in one or more processing units.
  • the processing unit may comprise a Field-Programmable Gate Array (FPGA) or one or more ARM processors.
  • the processing unit may be connected to non-volatile computer readable storage medium 520 .
  • the non-volatile computer-readable storage medium 520 may store logic, code and/or computer instructions executed by the processing unit for performing one or more steps.
  • the non-volatile computer-readable storage medium 520 may include one or more storage units (removable media or external memory such as SD card or RAM).
  • the data sensed by the sensor may be transferred and stored directly into a storage unit of the non-volatile computer-readable storage medium 520 .
  • the storage units of the non-volatile computer-readable storage medium 520 may store logic, code, and/or computer instructions executed by the processing unit to perform various embodiments of the various methods described herein.
  • a processing unit may be configured to execute instructions to cause one or more processors of the processing unit to perform the tracing functions described above.
  • the storage unit may store sensing module sensing data, the data sensing being processed by the processing unit.
  • the storage unit of the non-volatile computer-readable storage medium 520 may store processing results generated by the processing unit.
  • the processing unit may be connected to the control module for controlling the state of the UAV.
  • the control module may be used to control the powertrain of the UAV to adjust the spatial orientation, velocity and/or acceleration of the UAV with respect to six degrees of freedom.
  • the control module may control one or more of the carrier, load or sensing module.
  • the processing unit may also be connected to the communication module for transmitting and/or receiving data with one or more peripheral devices (eg, terminals, display devices, or other remote control devices).
  • peripheral devices eg, terminals, display devices, or other remote control devices.
  • Any suitable communication method may be utilized here, such as wired communication or wireless communication.
  • the communication module may utilize one or more local area networks, wide area networks, infrared, radio, Wi-Fi, peer-to-peer (P2P) networks, telecommunication networks, cloud networks, and the like.
  • P2P peer-to-peer
  • a relay station such as a signal tower, a satellite, or a mobile base station, can be used.
  • Wireless communication may or may not be based on proximity. In some embodiments, line-of-sight distance may or may not be required for communication.
  • the communication module can transmit and/or receive one or more kinds of sensing data with the sensor, receive processing results generated by the processing unit, and receive preset control data or user instructions sent by terminals
  • the above-mentioned various components may be compatible with each other.
  • one or more components are located on the UAV, carrier, payload, terminal, sensing system, or additional external device in communication with each of the aforementioned devices.
  • one or more of the processing unit and/or the non-transitory computer-readable medium may be located in different locations, such as in an unmanned aerial vehicle, carrier, payload, terminal, sensing system, or Additional external devices that communicate with the foregoing devices and various combinations of the foregoing.
  • control terminal adapted to the UAV may include an input device, a processing unit, a memory, a display module, and a communication module, and the user can send control commands to the UAV or receive information collected by the UAV or payload through the terminal. .
  • the unmanned aerial vehicle of the embodiment of the present disclosure will be exemplarily described below by taking the X-configuration quadrotor UAV as an example.
  • FIG. 6 is a schematic top view of an X-configuration quadrotor UAV according to an embodiment of the present disclosure.
  • the rotors 62 are provided at the top corners of the body 61 away from each other.
  • the rotors 62 can be directly and rotatably fixed on the body 61 , or can be rotatably fixed on the body 61 through the arms.
  • the rotation directions of the rotors 62 may be different when rotating in the forward direction.
  • the resultant force provided causes the body 61 to receive a force away from the landing surface.
  • the included angles between the four machine arms in FIG. 6 are only illustrative, and the included angles between the four machine arms may be the same or different, which are not limited herein.
  • FIG. 7 is a schematic front view of an X-configuration quadrotor UAV provided by an embodiment of the present disclosure.
  • the X-configuration quadrotor UAV may also include a tripod 63 .
  • the tripod 63 provides support for components such as the body after the UAV lands. Wherein, the tripod 63 can be arranged on the machine arm or the body 61 .
  • the included angle between the body along the first direction and the horizontal plane is greater than a first preset angle threshold.
  • the first preset angle threshold includes but is not limited to 30° to 180°, such as 30°, 35°, 50°, 70°, 90°, 120°, 130°, 150°, 170°, 180° and the like.
  • FIG. 8 is a schematic diagram of an X-configuration quadrotor UAV in a standby attitude according to an embodiment of the present disclosure.
  • At least one rotor 62 of the quad-rotor UAV in FIG. 8 interferes with the horizontal plane, and the included angle between the motor shaft to which the rotor is connected and the horizontal plane is too large, so that the quad-rotor UAV cannot take off normally and is in Standby attitude. If the rotor 62 in FIG. 8 is fully rotated, at least part of the rotor 62 may be damaged. In addition, even if all the rotors 62 can be rotated, when the rotors 62 rotate in the forward direction, a downward force will be provided to the body 61, so that the posture of the body 61 is more different from the normal take-off posture.
  • FIG. 9 is a schematic diagram of an X-configuration quadrotor UAV in a standby attitude according to another embodiment of the present disclosure.
  • interference occurs between at least one rotor 62 of the quadrotor UAV in FIG. 9 and the horizontal plane, and the included angle between the motor shaft to which the rotor is connected and the horizontal plane is greater than the preset angle threshold required for normal takeoff, Such as greater than 20°, 25°, 30°, etc.
  • the quadrotor UAV cannot take off normally and is in a standby attitude. If the rotor 62 in FIG. 9 is fully rotated, at least part of the rotor 62 may be damaged. At this time, at least part of the rotors 62 can be controlled to be reversed to adjust the posture of the body 61 .
  • the at least two rotors in response to the second control command, provide the second thrust when the included angle is greater than the second preset angle threshold, so that the airframe takes off in a standby attitude.
  • the second control command may be an automatic rescue control command, so that the multi-rotor UAV enters the automatic rescue mode to perform the rescue operation.
  • the second part of the rotors in the control of at least two rotors respectively provide the first During the two-thrust process, the first part of the at least two rotors respectively provides the first thrust in response to the first control command. In this way, a larger rotational force can be provided to the body 61 so as to adjust the attitude of the multi-rotor UAV to the normal take-off attitude.
  • FIG. 10 is a schematic diagram of an X-configuration quadrotor UAV in a standby attitude according to another embodiment of the present disclosure.
  • the X-configuration quadrotor UAV is turned about 180° relative to the normal take-off attitude.
  • at least part of the rotors 62 can be controlled to rotate in the opposite direction to provide the effect of keeping the body 61 away from the horizontal plane. force.
  • the rotor 62 and the horizontal plane are isolated by the isolation structure 64 to reduce the probability of interference between the rotor 62 and the horizontal plane.
  • the isolation structure 64 in FIG. 10 is only shown by way of example, and it may also be an isolation structure surrounding the side circumference of the rotor 62, which is not limited herein.
  • the UAV includes an inertial measurement unit for measuring attitude information of the body.
  • the unmanned aerial vehicle may further include: a carrier disposed on the body, and the carrier is used to carry the photographing device.
  • at least one processor of the unmanned aerial vehicle is configured to: determine whether the unmanned aerial vehicle can be rescued based on the attitude information and/or the photographed image of the photographing device.
  • the rescue operation can be performed.
  • the interval range can be: 30° ⁇ 45°, 170° ⁇ 180°, etc.
  • the interval range can be: 30° to 180°, etc.
  • the unmanned aerial vehicle includes a bidirectional electronic governor for controlling the forward or reverse rotation of the motor rotors connected to the at least two rotors respectively, so as to drive the at least two rotors to rotate forward or reversely;
  • a bidirectional electronic governor for controlling the forward or reverse rotation of the motor rotors connected to the at least two rotors respectively, so as to drive the at least two rotors to rotate forward or reversely;
  • a photographing device when a photographing device is provided on the airborne platform, it can be determined whether the UAV can be rescued based on the images photographed by the photographing device. For example, calculating the angle between the rotor and the landing surface based on the image or whether there will be interference with the landing surface when the rotor rotates. It should be noted that the user can determine whether the UAV can be rescued based on the images captured by the photographing device, or the processor can perform image processing on the captured images to determine whether the UAV can be executed. rescue operation.
  • the at least one processor when executing the executable command, is further configured to: determine the salvage aircraft rotor capable of providing the second thrust based on the attitude information and/or the captured image of the photographing device, so as to control the salvage aircraft rotor to perform rescue operation.
  • each rotor may have a unique rotor identification in order to determine which rotor can be turned.
  • controlling the inversion of the rotor to achieve UAV flipping and rescue can be divided into two categories.
  • One is manual lever-controlled flip rescue, and the other is automatic flip rescue.
  • the manual stick command and the size of the stick it outputs the motor reversal command corresponding to the direction and size to realize the UAV flip.
  • Automatically flip to save the aircraft the UAV automatically rolls according to the current posture, and selects the corresponding motor to reverse the rescue operation.
  • the control methods of automatic flip rescue can be divided into open-loop command control and closed-loop command control.
  • the UAV detects a power failure during the propeller reversal process, it will actively remind the user to guide the user to manually rescue the aircraft, or automatically adjust the propeller rotation strategy according to the power failure in the automatic rescue mode.
  • FIG. 11 is a schematic diagram of an X-configuration quadrotor UAV and its rotor serial number provided by an embodiment of the present disclosure.
  • the rotor on the right front of the fuselage is No. 1 rotor
  • the rotor on the left front of the fuselage is No. 2 rotor
  • the rotor on the left rear of the fuselage is No. 3 rotor
  • the rotor on the right rear of the fuselage is No. 4 rotor.
  • each of the at least two rotors is connected to a corresponding motor shaft.
  • the at least one processor when executing the executable command, is configured to: if the body is in the standby attitude and the unmanned aerial vehicle can perform the rescue operation, send a control command to the motors of at least part of the rotors in the at least two rotors, The second thrust is provided by controlling the motor to drive the rotor corresponding to the motor.
  • the four motors of the X-configuration rotor are numbered, starting from the right front motor of the nose and numbering the motors 1, 2, 3, and 4 counterclockwise.
  • the rotation directions of motors 1, 2, 3, and 4 are counterclockwise, clockwise, counterclockwise, and clockwise. Its rotation direction is the forward rotation direction for the respective propellers.
  • the UAV's attitude When the UAV's attitude is normal, it provides upward lift. When the UAV's attitude inclination exceeds 90°, the force generated by the forward rotation of each propeller will make the aircraft downward.
  • attitude information indicates that the body is in a standby attitude
  • sensing data indicates that the unmanned aerial vehicle can perform rescue
  • a control command is sent to the motors of at least part of the rotors of the at least two rotors to control the motor drive corresponding to the motor
  • the rotor provides the second thrust.
  • the unmanned aerial vehicle when the unmanned aerial vehicle is in a normal take-off attitude: the direction of the resultant force of the thrust provided by the at least two rotors when rotating in the forward direction, on the projection of the vertical line through the center of gravity of the unmanned aerial vehicle, is away from the center of gravity of the earth, And/or the respective blades of at least two rotors are separated from the landing surface in the current attitude.
  • the UAV when the UAV is in a normal take-off attitude, it can perform take-off tasks, etc.
  • the at least two rotors each have a rotor identification.
  • the unmanned aerial vehicle may further include: a memory for storing the rescue strategy, so that the unmanned aerial vehicle performs the rescue operation based on the rescue strategy in the automatic rescue mode or the automatic rescue return mode, wherein the rescue strategy includes At least one of the following.
  • the rescue strategy includes a first mapping relationship between angles and rotor identifications.
  • the stick operation input by the user on the control terminal may include the stick angle.
  • the rotor identifier of the rotor to be rotated can be determined, so as to control the corresponding rotor to provide the second direction. of the force.
  • the rotation speed and rotation time of the rotor are automatically controlled to realize the rescue operation.
  • the rescue strategy includes a second mapping relationship between angle, rotor identification, and rod modulus value.
  • the stick operation input by the user on the control terminal may include the stick angle and the stick modulo value.
  • the rotor provides a force having a second direction corresponding to the rod modulus value.
  • the rescue strategy includes a third mapping relationship between angles, rotor identification, attribute information and rod modulus values.
  • the attribute information includes at least one of the following: voltage information of the power supply, weight information of the unmanned aerial vehicle, air pressure information of the environment, and the number of times the rescue control command is triggered.
  • the voltage information is used to measure the remaining power. Since the energy efficiency of the motor in reverse rotation is lower than that in forward rotation, it may be necessary to provide greater energy to drive the motor to output higher power. When the power is sufficient, rescue strategies with higher energy consumption, such as higher rotation speed, can be adopted. When the power is insufficient, a rescue strategy with lower energy consumption can be adopted to avoid the failure to determine the landing position of the UAV due to the exhaustion of the power.
  • the weight information of the UAV is used to measure the amount of force that the rotor needs to provide. For example, for a heavier rotor UAV, the UAV needs a higher rotational speed to provide a greater force against the gravity of the rotor UAV. For example, a UAV carrying heavier work equipment, the UAV needs a higher rotational speed to provide a greater force against the gravity of the work equipment, etc.
  • the rod modulus value or the current value corresponding to the rod modulus value (the magnitude of the current input to the motor) and the like can be compensated based on the weight information of the unmanned aerial vehicle. For example, the greater the weight of the UAV, the greater the degree of compensation, in order to cope with UAVs with different weights, and improve the scope of application of the rescue strategy.
  • the air pressure information of the environment is used to measure the amount of force that the rotor needs to provide. For example, for UAVs at higher altitudes, the thinner the atmosphere in the environment, more power needs to be provided to generate a sufficiently high reaction force. For example, the higher the altitude of the UAV, the higher the rotation speed of the UAV is required to provide a high enough force to resist the gravity of the unmanned aerial vehicle and operating equipment. Specifically, the rod modulus value or the current value corresponding to the rod modulus value, etc. can be compensated based on the air pressure information of the environment where the unmanned aerial vehicle is located. For example, the higher the altitude of the environment where the unmanned aerial vehicle is located, the greater the degree of compensation, so as to cope with UAVs in different geographical locations and improve the scope of application of the rescue strategy.
  • the rescue mode of the UAV includes: a manual rescue mode and an automatic rescue mode.
  • the rescue control command includes the rod modulo value, the command direction and the motor rotation command input by the joystick of the control terminal.
  • the manual rescue mode it is characterized in that at least some of the at least two rotors can provide the second thrust in response to the rod modulus value, the command direction and the motor rotation command.
  • the manual rescue strategy outputs the motor reversal command corresponding to the direction and size according to the user's horizontal lever (pitch lever and roll lever) command direction and lever amount.
  • the input of manual rescue mode includes: rod modulo value, command direction and motor rotation command.
  • the output of the manual rescue mode includes: the rotor identification and the rod modulo value corresponding to the motor performing the reversal.
  • FIG. 12 is a schematic diagram of the stick command mapping for the X-configuration quadrotor UAV and its motor shown in FIG. 11 .
  • the body coordinate system x-y-z As shown in Figure 12, define the body coordinate system x-y-z, the x-axis direction is the direction of the nose, the y-axis direction is perpendicular to the x-axis and points to the right side of the body, and the z-axis direction is perpendicular to x and y downward.
  • the horizontal stick command is directly mapped to the body coordinate system, where the pitch command direction is the x direction, and the roll bar command direction is the y direction.
  • the motor control output command is a function of the stick input command:
  • num is the serial number of the motor output by the command, and the range of possible values is ⁇ 1, 2, 3, 4 ⁇ .
  • pwm is the instruction output size, the value range is [0,100%].
  • is the angle between the horizontal rod command and the x-axis (machine head) in the body coordinate system, the range is [-180° ⁇ +180°];
  • A is the modulo value of the input rod command, the range is [0,1].
  • the at least one processor of the UAV is configured to: convert the modulo value of the stick to the modulo value of the safety stick when executing the executable command.
  • the rescue control command includes the safety lever modulo value, the command direction and the motor rotation command.
  • the safety rod modulus value may be limited to less than or equal to 0.8A.
  • determines which motor reverses
  • A determines the command size.
  • the rescue strategy supports the user to control the rotation of one or two motors through the horizontal stick direction, or it can be simplified to control the rotation of only two motors.
  • the strategy takes into account the dead zone of the rod, and when the input rod modulo value is less than a certain threshold (the threshold is adjustable), the motor will not rotate to prevent false triggering.
  • the threshold is adjustable
  • the user if abnormal power is detected, the user will be prompted through an app or a virtual reality device (VR device), such as virtual reality glasses (VR glasses, referred to as glasses), to guide the user to operate the motor without abnormality.
  • VR device virtual reality device
  • VR glasses virtual reality glasses
  • the method may further include the following operations: in the manual rescue mode, the unmanned aerial vehicle also sends the communication interface of the control terminal to the communication interface of the control terminal through its own communication interface. Send the guidance prompt information, so that the display screen of the control terminal can display the prompt information and guide the user to rescue the aircraft.
  • the guidance prompt information includes, but is not limited to, at least one of the following: a stroke direction, a stroke modulus, and the like.
  • the display manner of the guidance prompt information includes, but is not limited to, at least one of text prompts, picture prompts, or animation demonstration effect prompts.
  • the guidance prompt information sent by the communication interface of the unmanned aerial vehicle includes at least one of the following: a stick diagram image and a stick parameter value, wherein the stick schematic image is generated based on the stick parameter value, The value of the stick parameter is determined based on at least the attitude information of the body.
  • the determination method of the stroke direction and the stroke modulus value can refer to the following content related to the automatic rescue mode.
  • the user does not need to judge which motor is reversed and then manually give the corresponding control instructions.
  • the user only needs to trigger to enter the flip rescue mode through the remote control button, and the UAV can automatically roll according to the current posture and select the corresponding motor to perform the reverse rescue operation.
  • the control methods of automatic flip rescue can be divided into open-loop command control and closed-loop command control.
  • At least some of the at least two rotors can perform open-loop control in response to the initial attitude information and the motor rotation command to provide the second thrust.
  • the open-loop command control means that the UAV calculates and outputs an open-loop control command according to the initial attitude tilt situation, and the control command will not be adjusted in real time according to the current state during the command control process.
  • the rescue control command includes the motor rotation command.
  • the input of the open-loop control includes: initial attitude information, take-off attitude threshold, motor rotation command and attribute information
  • the attribute information includes at least one of the following: voltage information of the power supply, weight information of the unmanned aerial vehicle, and environmental The number of triggers for air pressure information and rescue control commands.
  • the output of the open-loop control includes: rotor identification, rod modulo value and command output duration.
  • FIG. 13 is a schematic diagram of an open-loop control process provided by an embodiment of the present disclosure.
  • the target angle (target_ang) is the target attitude control instruction
  • the current angle (current_ang) is the current attitude angle of the UAV.
  • C is the open-loop controller module, which calculates and outputs control commands according to the open-loop control strategy.
  • P is the control object module, here represents the aircraft.
  • the fault diagnosis and protection module (fault diagnosis and protection, referred to as FDP) is responsible for monitoring the power failure and other problems in the control process, and selects the corresponding protection strategy according to the fault situation.
  • FIG. 14 is a schematic diagram of a reference coordinate system for turning over a rescue aircraft provided by an embodiment of the present disclosure.
  • the body coordinate system x-y-z is fixed to the body as defined above, and a reference coordinate system X-Y-Z is defined. on a horizontal plane.
  • the current pose of the UAV can be obtained by rotating the initial X-Y-Z position by an angle of ⁇ . Take the angle between the projection z' of the rotated body's z-axis on the X-Y horizontal plane and the X-axis as ⁇ .
  • the actual control output command is a function of variables such as ⁇ , tilt angle ⁇ , and battery voltage, as shown in formula (4).
  • num is the motor serial number output by the command, and the range of possible values is ⁇ 1, 2, 3, 4 ⁇ .
  • pwm is the instruction output size, the value range is [0,100%].
  • t is the command output duration.
  • is the tilt angle, the range is [0°, 180°].
  • vol is the current voltage ratio of the battery (current voltage/full voltage), in the range [0,1].
  • the reversed motor serial number num is determined by the current attitude and tilting situation of the aircraft. This strategy makes a mapping according to the ⁇ angle, and other strategies can also be done according to the tilting situation.
  • the size of the reversal command pwm and the output duration t are both piecewise linearly mapped according to the tilt angle ⁇ .
  • the mapping relationship can also be adjusted according to different models, and different thresholds and even mapping relationships can be selected.
  • the battery voltage will also have a certain influence on the output command.
  • This strategy performs piecewise linear compensation on the output command according to the current voltage ratio.
  • Other compensation strategies can also be adopted in practical applications.
  • the number of times the rescue is triggered will also affect the output command. For example, after the first trigger during the rescue process, the aircraft does not turn over and is still in an abnormal take-off attitude. The size and duration of the output command after subsequent triggering will vary. increase accordingly.
  • the above is the strategy when the power of the aircraft is normal. Especially when the power of a motor is abnormal, the FDP module will monitor the power abnormality, and automatically adjust the reverse motor serial number num according to the abnormal power situation, and use the motor with normal power to automatically save the aircraft. .
  • At least some of the at least two rotors can perform closed-loop control in response to current attitude information and motor rotation commands to provide the second thrust.
  • the closed-loop command control means that the UAV calculates the control command in real time according to the current attitude to make the attitude roll, and adjusts the control command according to the real-time attitude of the aircraft during the rolling process.
  • the input of the closed-loop control includes: current attitude information, take-off attitude threshold and motor rotation command, or current attitude information, take-off attitude threshold, motor rotation command and attribute information, wherein the attribute information includes at least one of the following: Voltage information, weight information of the UAV, and air pressure information of the environment.
  • the output of the closed-loop control includes: rotor identification and rod modulus value.
  • FIG. 15 is a schematic diagram of a closed-loop control process provided by an embodiment of the present disclosure.
  • the target angle (target_ang) is the target attitude control instruction
  • the current angle (current_ang) is the current attitude angle of the UAV.
  • C is the closed-loop controller module, which calculates and outputs control commands according to the closed-loop control strategy.
  • P is the control object module, here represents the unmanned aerial vehicle.
  • the fault diagnosis and protection module (fault diagnosis and protection, referred to as FDP) is responsible for monitoring the power failure and other problems in the control process, and selects the corresponding protection strategy according to the fault situation.
  • closed-loop control can adjust the command size in real time according to the current attitude of the UAV, and the whole process can be smoother and more controllable.
  • the thrust output by at least some of the at least two rotors can be replaced by the thrust output by one of the at least two rotors except at least some of the rotors or by the combined force output by multiple rotors.
  • the thrust output by one rotor can be replaced by the combined force output by two adjacent rotors. In this way, when it is determined that there is interference between a rotor and the landing surface, the resultant force output by the two rotors adjacent to the rotor can be used to replace the force output by the rotor.
  • At least one processor of the unmanned aerial vehicle when executing the executable commands, is configured to monitor for power failures of the motors corresponding to the at least two rotors, and to replace the motors with power failures.
  • a manner of replacing a motor with a power failure may include replacing with two motors adjacent to the motor with a power failure.
  • the communication interface of the UAV is further configured to receive a rescue mode setting instruction from the communication interface of the control terminal, and the rescue mode setting instruction includes at least one of the following: a rescue strategy setting instruction, and/or, Takeoff attitude threshold setting command.
  • the rescue strategy can be modified through the rescue strategy setting instruction.
  • the take-off attitude threshold such as the angle, can be set through the take-off attitude threshold setting command.
  • the entry condition of the flip rescue function is to judge that the current attitude of the UAV does not meet the normal take-off requirements.
  • the attitude information of the UAV is obtained by the fusion of the sensor IMU and the vision module.
  • Whether the unmanned aerial vehicle meets the normal take-off requirements mainly has two conditions. For example, one is whether the total pulling force generated by the forward rotation of the blades in the current attitude is upward, and the other is whether the rotation of the blades in the current attitude has the risk of scratching the ground if it is placed on a horizontal plane. .
  • the attitude threshold used for judgment needs to be determined according to different UAVs.
  • the condition for the automatic exit of the flip rescue function is to judge that the current attitude of the UAV meets the normal take-off requirements, that is, the total pulling force generated by the forward rotation of the blades in the current attitude is upward, and the blades will not scratch the ground when the current attitude is placed on a horizontal plane. Automatically exit the rollover rescue function.
  • the attitude threshold used for judgment is also determined according to different UAV designs. Of course, the user can also manually exit this function at any time.
  • the unmanned aerial vehicle provided by the embodiment of the present disclosure, after abnormally falling due to blade scratching, collision and other problems during flight, the ground posture often has a large rollover and can no longer take off normally. At this time, the unmanned aerial vehicle is often far away from the operator, or the drop position is in a place where manpower is not easy to reach, such as the roof or the other side of the river. It is very difficult to rescue the unmanned aerial vehicle and even eventually causes the unmanned aerial vehicle to be lost. Humans are ubiquitous.
  • the unmanned aerial vehicle provided by the embodiments of the present disclosure can be remotely controlled so that the attitude of the unmanned aerial vehicle changes from the attitude of a rescue aircraft to a ready-to-fly attitude, so as to take off in the ready-to-fly attitude, greatly reducing the difficulty of rescue, reducing user losses, and improving user flight. experience.
  • Another aspect of the embodiments of the present disclosure further provides a control terminal.
  • the control terminal may include a processor for generating rescue control instructions.
  • a communication interface for sending the rescue control command to the UAV, where the rescue control command is used when the body of the UAV is in a standby attitude and the UAV can perform a rescue operation , instruct the unmanned aerial vehicle to perform rescue operation.
  • Control terminals include but are not limited to: remote controllers, smart terminals installed with designated applications, virtual reality devices, and the like.
  • the unmanned aerial vehicle may include: a body; at least two rotors, which are rotatably arranged on the body, each of the at least two rotors provides a first thrust in a first direction when rotating in a forward direction, and each of the at least two rotors rotates in a reverse direction Provides a second thrust along the second direction, the first direction is opposite to the second direction; the unmanned aerial vehicle has a rescue mode, in the rescue mode, when the body is in the standby attitude, and the unmanned aerial vehicle can perform rescue. At least a part of the at least two rotors can provide a second thrust in response to the rescue control command, so as to perform the rescue operation.
  • FIG. 16 is a block diagram of a control terminal provided by an embodiment of the present disclosure.
  • the control terminal 1600 may include: one or more processors 1610, which may be integrated in one processing unit, or may be separately provided in multiple processing units.
  • the computer-readable storage medium 1620 is used to store one or more computer programs 1621. When the computer program is executed by the processor, the computer program obtains rescue control instructions through the input device, and sends rescue control instructions to the UAV through the communication interface.
  • processors such as programmable processors (eg, central processing units), packaged in one or more processing units.
  • the processing unit may comprise a Field-Programmable Gate Array (FPGA) or one or more ARM processors.
  • FPGA Field-Programmable Gate Array
  • the processing unit may be connected to non-volatile computer readable storage medium 1620 .
  • the non-volatile computer-readable storage medium 1620 may store logic, code and/or computer instructions executed by the processing unit for performing one or more steps.
  • the processing unit may also be connected to the communication module for transmitting and/or receiving data with one or more peripheral devices (eg, terminals, display devices, or other remote control devices).
  • peripheral devices eg, terminals, display devices, or other remote control devices.
  • control terminal may further include an input device in order to acquire user operations.
  • control terminal may include a processing unit, a memory, a display module, and a communication module, and a user may send control commands to the UAV or receive information collected by the UAV or payload through the control terminal.
  • the input device includes one or more input mechanisms to receive input generated by the user by operating the input device.
  • Input mechanisms include one or more joysticks, switches, knobs, slide switches, buttons, dials, touchscreens, keypads, keyboards, mice, voice controls, gesture controls, inertial modules, and the like.
  • the input device may be used to receive user input for controlling any aspect of the unmanned aerial vehicle, carrier, payload, or components thereof. Any aspect includes attitude, position, orientation, flight, tracking, etc.
  • the input mechanism may be that the user manually sets one or more positions, each position corresponding to a preset input, to control the UAV.
  • the input mechanism may be operated by a user to input control commands to control the movement of the UAV.
  • a user can use a knob, switch, or similar input mechanism to input the motion mode of the UAV, such as auto-flying, auto-pilot, or moving according to a preset motion path.
  • the user can control the position, attitude, direction, or other aspects of the UAV by tilting the control terminal in a certain way. The tilt of the control terminal can be detected by one or more inertial sensors, and corresponding motion commands can be generated.
  • the user may utilize the input mechanisms described above to adjust operational parameters of the payload (such as zoom), the attitude of the payload (via the carrier), or other aspects of any object onboard the UAV.
  • the input mechanism may be operated by the user to input the aforementioned descriptive object information.
  • the user may select an appropriate tracking mode, such as a manual tracking mode or an automatic tracking mode, using a knob, switch, or similar input mechanism.
  • the user may also utilize this input mechanism to select a specific target to be tracked, target type information to execute, or other similar information.
  • the input means may be performed by more than one device.
  • the input device may be implemented by a standard remote controller with a joystick.
  • a standard remote controller with a joystick connects to a mobile device (such as a smartphone) running a suitable application ("app") to generate control commands for the UAV.
  • the app can be used to get input from the user.
  • the processing unit has one or more processors, such as programmable processors (eg, central processing units or microcontrollers).
  • the processing unit may be connected to the memory.
  • Memory includes volatile or non-volatile storage media for storing data, and/or logic, code, and/or program instructions executable by a processing unit for performing one or more rules or functions.
  • the memory may include one or more storage units (removable media or external memory such as SD card or RAM).
  • the data input to the device may be directly transferred and stored in a storage unit of the memory.
  • the storage units of the memory may store logic, code and/or computer instructions executed by the processing unit to perform various embodiments of the various methods described herein.
  • the processing unit may be configured to execute instructions to cause one or more processors of the processing unit to process and display sensory data (eg, images) received from the UAV, control commands generated based on user input, including motion commands and targets information, and cause the communication module to transmit and/or receive data, etc.
  • the storage unit may store sensed data or other data received from external devices such as unmanned aerial vehicles.
  • the storage unit of the memory may store the processing result generated by the processing unit.
  • the display module can be used to display the position, translation velocity, translation acceleration, orientation, angular velocity, angular acceleration, or a combination thereof of the UAV 10, the carrier 13 and/or the payload 14 as shown in FIG. 1 , etc. Information.
  • the display module may be used to receive information sent by the UAV and/or payload, such as sensory data (images recorded by cameras or other image capture devices), described tracking data, control feedback data, and the like.
  • the display module may be executed by the same device as the input device. In other embodiments, the display module and the input device may be executed by different devices.
  • the communication module may be used to transmit and/or receive data from one or more remote devices (eg, unmanned aerial vehicles, carriers, base stations, etc.).
  • the communication module can transmit control signals (such as motion signals, target information, and tracking control commands) to peripheral systems or devices, such as the UAV 10 , the carrier 13 and/or the payload 14 in FIG. 1 .
  • the communication module may include a transmitter and a receiver for receiving data from and transmitting data to the remote device, respectively.
  • the communication module may include a transceiver that combines the functions of a transmitter and a receiver.
  • the transmitter and receiver and the processing unit may communicate with each other. Communication may utilize any suitable means of communication, such as wired or wireless communication.
  • the images captured during the motion of the UAV can be transmitted from the UAV or the imaging device back to the control terminal or other suitable device for display, playback, storage, editing or other purposes. Such transmission may occur in real-time or near real-time as the imaging device captures the imagery. Optionally, there may be a delay between the capture and transmission of the imagery.
  • the imagery may be stored in the UAV's memory without being transmitted anywhere else. The user can view these images in real time and, if necessary, adjust the target information or adjust other aspects of the UAV or its components. Adjusted target information may be provided to the UAV, and the iterative process may continue until the desired image is obtained.
  • the imagery may be transmitted to a remote server from the UAV, the imaging device, and/or the control terminal. For example, images can be shared on some social networking platforms, such as WeChat Moments or Weibo.
  • control terminal includes at least one of the following: a remote control or a wearable device.
  • FIG. 17 is a schematic diagram of a control terminal provided by an embodiment of the present disclosure.
  • the control terminal may be a remote controller.
  • the remote controller may include components such as joysticks, direction buttons, function buttons, processors, and antennas, wherein the antenna components are used to receive wireless signals from the UAV, or to transmit wireless signals to the UAV.
  • the joystick, direction buttons, function buttons, etc. can generate corresponding operation instructions in response to user operations, and send them to the UAV.
  • a display screen may be provided on the remote controller, and the display screen is used to display parameters such as the state of the UAV.
  • a rescue control command can be sent to the UAV by the remote controller, so that at least some of the at least two rotors of the UAV can provide a second thrust in response to the rescue control command to perform the rescue operation.
  • the input device includes a joystick for generating a joystick amount, a command direction, and a motor rotation command in response to a first user operation.
  • a joystick for the amount of the control stick, the command direction, the motor rotation command, etc., reference may be made to the relevant parts of the embodiment for the unmanned aerial vehicle, which will not be described in detail here.
  • the input device includes a mode button, which is used to control the UAV to switch to any one of rescue mode, automatic rescue mode, manual rescue mode, open-loop control mode or closed-loop control mode in response to the operation of the second user; In any one of exit rescue mode, automatic rescue mode, manual rescue mode, automatic rescue return-to-home mode, open-loop control mode or closed-loop control mode.
  • the input device includes a display screen, and the display screen is used to display an interactive interface, and the interactive interface displays a virtual joystick and/or virtual keys.
  • the remote controller sends a rescue mode on command to the UAV in response to the rescue mode on operation, so that the UAV enters the rescue mode in response to the rescue mode on command.
  • the rescue mode includes, but is not limited to, at least one of the following: manual rescue mode, automatic rescue mode, or automatic rescue and return-to-home mode.
  • the remote controller sends a mode switching instruction to the UAV in response to the mode switching operation, and the mode switching instruction includes any one of the following: a manual rescue mode selection instruction, an automatic rescue mode selection instruction, or an automatic rescue and return home. Mode selection command.
  • control terminal further includes: an output device, where the output device is configured to output at least one of the following prompt information: current attitude information, initial attitude information, motor state information, two-way electronic governor state information, entering rescue mode Failure prompt information, current mode information, exit mode prompt information or current flight status information.
  • prompt information current attitude information, initial attitude information, motor state information, two-way electronic governor state information, entering rescue mode Failure prompt information, current mode information, exit mode prompt information or current flight status information.
  • FIG. 18 is a schematic diagram of a control terminal according to another embodiment of the present disclosure.
  • the control terminal may be a wearable device, such as a virtual reality device (VR), an augmented reality device, etc. (AR).
  • VR virtual reality device
  • AR augmented reality device
  • the VR device can be VR glasses or the like.
  • the user can receive data collected from the unmanned aerial vehicle or the operation equipment mounted on the unmanned aerial vehicle through the VR glasses, and display at least part of the image data.
  • the VR device may also have an input mechanism. For example, the user gazes at a certain function and then double-clicks the casing of the VR glasses. When the sensor of the VR glasses detects the trigger event of the double-click, it can determine the function of the user's gaze. For example, the user can select the automatic rescue mode through the VR glasses, so as to realize the automatic rescue operation.
  • control terminal may further include a remote controller and a virtual reality device at the same time.
  • control terminal includes a remote controller and a wearable device
  • the remote controller includes a communication interface
  • the wearable device includes a communication interface
  • the communication interface of the remote controller and the communication interface of the wearable device respectively communicate with the communication interface of the UAV.
  • FIG. 19 is a schematic diagram of a control terminal according to another embodiment of the present disclosure.
  • the user can simultaneously operate the remote control while wearing the VR glasses, so as to use the unmanned aerial vehicle for operation.
  • the VR glasses, the remote control and the unmanned aerial vehicle can carry out information interaction respectively.
  • the wearable device in response to the remote control setting operation, sends a rescue mode setting instruction to the remote control.
  • the remote control responds to the rescue mode setting instruction and outputs a setting result prompt message to prompt the rescue mode setting result.
  • the prompt information of the setting result may be from the unmanned aerial vehicle.
  • the wearable device displays the mode entry failure prompt information, so that the user can search for the unmanned aerial vehicle.
  • the communication interface is further configured to receive guidance prompt information
  • the output device includes a display
  • the display is used to display the guidance prompt information so as to guide the user to rescue the aircraft
  • the guidance prompt information includes at least one of the following: a stick drawing image, The value of the stick parameter.
  • the control terminal provided by the embodiments of the present disclosure can feel the image information collected by the camera mounted on the unmanned aerial vehicle in the VR glasses, and at the same time can use the remote controller to control the unmanned aerial vehicle, such as controlling the forward and backward of the unmanned aerial vehicle At least one of , hover, lift, and rescue aircraft, you can also control the posture of the gimbal or the shooting device, and in addition, you can control the shooting parameters of the shooting device, etc., effectively improving the user's operation convenience and operating experience.
  • Another aspect of the present disclosure provides a rescue method.
  • FIG. 20 is a flowchart of an aircraft rescue method performed by an unmanned aerial vehicle according to an embodiment of the present disclosure.
  • the unmanned aerial vehicle comprises: a body; at least two rotors are rotatably arranged on the body, each of the at least two rotors provides a first thrust along a first direction when rotating in a forward direction, and each of the at least two rotors rotates in a reverse direction When the second thrust is provided in the second direction, the first direction is opposite to the second direction.
  • the rescue method includes operations S2002 to S2004.
  • At least some of the at least two rotors provide the second thrust in response to the rescue control command to perform the rescue operation may include the following operations: at least some of the at least two rotors provide the second thrust in response to the first control command The second thrust makes the airframe change from the standby attitude to the normal take-off attitude.
  • the at least part of the at least two rotors providing the second thrust in response to the rescue control command to perform the rescue operation may include: a first part of the at least two rotors responding to the first control command, respectively The first thrust is provided, and the second part of the at least two rotors respectively provides the second thrust in response to the first control command, so that the airframe changes from the standby attitude to the normal take-off attitude.
  • the body is in the standby attitude, and the included angle between the body along the first direction and the horizontal plane is greater than a first preset angle threshold.
  • the first preset angle threshold may be a preset threshold.
  • At least some of the at least two rotors provide the second thrust in response to the rescue control command, so as to perform the rescue operation may include the following operations: in response to the second control command, the at least two rotors are at an angle greater than A second thrust is provided at the second preset angle threshold, so that the airframe takes off in a rescue attitude.
  • the unmanned aerial vehicle further includes an inertial measurement unit for measuring the attitude information of the body.
  • the unmanned aerial vehicle may further include: a carrier disposed on the body, and the carrier is used to carry the photographing device.
  • the above method further includes: determining whether the unmanned aerial vehicle can be rescued based on the attitude information and/or the photographed image of the photographing device.
  • the above-mentioned method further includes: determining the salvageable aircraft rotor capable of providing the second thrust based on the attitude information and/or the photographed image of the photographing device, so as to control the salvageable aircraft rotor to perform the rescue operation.
  • each of the at least two rotors is connected to a corresponding motor shaft.
  • the above method also includes: if the body is in a standby attitude and the unmanned aerial vehicle can perform a rescue operation, sending a control command to the motors of at least part of the rotors in the at least two rotors to control the motors to drive the motors corresponding to the motors.
  • the rotor provides the second thrust.
  • the unmanned aerial vehicle includes a bidirectional electronic governor for controlling the rotors of the motors connected to the at least two rotors to rotate forwardly or reversely, so as to drive the at least two rotors to rotate forwardly or reversely.
  • a bidirectional electronic governor for controlling the rotors of the motors connected to the at least two rotors to rotate forwardly or reversely, so as to drive the at least two rotors to rotate forwardly or reversely.
  • the respective forward and reverse directions of the at least two rotors are determined based on respective blade angles of the at least two rotors.
  • the unmanned aerial vehicle has a rescue mode
  • the rescue mode includes at least one of a manual rescue mode, an automatic rescue mode, and an automatic rescue return-to-home mode.
  • At least two rotors each have a rotor identification.
  • the above method may further include: storing the rescue strategy, so that the unmanned aerial vehicle performs the rescue operation based on the rescue strategy in the automatic rescue mode or the automatic rescue return mode.
  • the rescue strategy can be stored in memory.
  • the rescue strategy may include at least one of the following.
  • the first mapping relationship between angle and rotor identification For example, a second mapping relationship between angle, rotor identification, and rod modulus value.
  • the third mapping relationship between the angle, the rotor identification, the attribute information and the rod modulus value wherein the attribute information includes at least one of the following: voltage information of the power supply, weight information of the unmanned aerial vehicle, air pressure information of the environment, and rescue The number of times the machine control command is triggered.
  • the heart, and/or the respective blades of at least two rotors may interfere with the landing surface at the current attitude.
  • the blades of at least part of the rotors of the at least two rotors can be rotated forward or reversely, and the blades of at least part of the rotors are separated from the landing surface in the current attitude .
  • the direction of the resultant force of the thrust provided by the at least two rotors when rotating in the forward direction, on a vertical line through the center of gravity of the UAV, is directed away from the earth.
  • the center of gravity, and/or the separation of the respective blades of at least two rotors from the landing surface in the current attitude is directed away from the earth.
  • the UAV further includes: a communication interface for communicating with the control terminal.
  • receiving the rescue control instruction may include: receiving the rescue control instruction from the communication interface of the control terminal through the communication interface of the UAV.
  • the rescue mode of the UAV includes: a manual rescue mode and an automatic rescue mode.
  • the rescue control command includes the rod modulo value, the command direction and the motor rotation command input by the joystick of the control terminal.
  • the rescue control command includes the motor rotation command.
  • At least some of the at least two rotors are capable of providing the second thrust in response to the rod modulo value, the commanded direction, and the motor rotation command.
  • the inputs to the manual rescue mode include: rod modulo value, command direction and motor rotation command.
  • the output of the manual rescue mode may include: a rotor identification and a rod modulo value corresponding to the motor performing the reversal.
  • At least some of the at least two rotors are open-loop controlled based on the initial attitude information and the motor rotation command to provide the second thrust.
  • the input of the open-loop control includes: initial attitude information, take-off attitude threshold, motor rotation command and attribute information
  • the attribute information includes at least one of the following: voltage information of the power supply, weight information of the unmanned aerial vehicle, and environmental The number of triggers for air pressure information and rescue control commands.
  • the output of the open-loop control includes: rotor identification, rod modulo value and command output duration.
  • closed-loop control is performed on at least some of the at least two rotors based on the current attitude information and the motor rotation command to provide the second thrust.
  • the input of the closed-loop control includes: current attitude information, take-off attitude threshold and motor rotation command, or current attitude information, take-off attitude threshold, motor rotation command and attribute information, wherein the attribute information includes at least one of the following: the voltage of the power supply information, weight information of the UAV, and air pressure information of the environment.
  • the output of the closed-loop control includes: rotor identification and rod modulus value.
  • the above method further includes: converting the rod modulus value to a safety rod modulus value.
  • the rescue control command includes the safety lever modulo value, the command direction and the motor rotation command.
  • the above method further includes: in the manual rescue mode, the unmanned aerial vehicle sends guidance prompt information to the communication interface of the control terminal through the communication interface, so that the display screen of the control terminal displays the prompt information and guides the user to rescue the aircraft. .
  • the guidance prompt information includes at least one of the following: a schematic image of the stroke, and a value of a stroke parameter, wherein the schematic image of the stroke is generated based on the value of the stroke parameter, and the value of the stroke parameter is at least based on the body determined by the attitude information.
  • the above method further includes: receiving a rescue mode setting instruction from a communication interface of the control terminal through the communication interface, where the rescue mode setting instruction includes at least one of the following: a rescue strategy setting instruction, and/or taking off Attitude threshold setting command.
  • the above method further comprises: replacing the thrust output by at least part of the at least two rotors respectively with the thrust output by one of the at least two rotors except at least a part of the rotors instead of the resultant force output by or multiple rotors replace.
  • the above method further includes: monitoring power failures of the motors corresponding to the at least two rotors, so as to replace the motors with power failures.
  • the body includes a sensor assembly for collecting sensor data
  • the sensor assembly includes at least one of an inertial detection unit and an image sensor.
  • the sensor assembly may be disposed on the unmanned aerial vehicle, or may be fixed on the unmanned aerial vehicle in the form of working equipment, which is not limited herein.
  • Another aspect of the present disclosure also provides an aircraft rescue method, which is applied to a control terminal, and the control terminal is communicatively connected to the unmanned aerial vehicle.
  • FIG. 21 is a flowchart of a rescue method performed by a control terminal according to an embodiment of the present disclosure.
  • the method includes: operations S2102 to S2104.
  • a rescue control instruction is sent to the unmanned aerial vehicle, so that the rescue control instruction is used to instruct the unmanned aerial vehicle to perform the rescue operation when the unmanned aerial vehicle is in the standby attitude and the unmanned aerial vehicle can perform the rescue operation .
  • control terminal includes at least one of the following: a remote control or a wearable device.
  • obtaining rescue control instructions includes at least one of the following. For example, based on a first user operation on a joystick on the control terminal, a control command including at least one of a joystick amount, a command direction, and a motor rotation command is generated. For example, based on the second user operation on the mode button on the control terminal, a method for controlling the UAV to switch to any one of rescue mode, automatic rescue mode, manual rescue mode, open-loop control mode or closed-loop control mode is generated. or, generate any control instructions for exiting rescue mode, automatic rescue mode, manual rescue mode, automatic rescue return-to-home mode, open-loop control mode or closed-loop control mode. For example, rescue control instructions are obtained through virtual joysticks and/or virtual keys, wherein the control terminal includes a display screen, and the display screen is used to display an interactive interface, and the interactive interface displays virtual joysticks and/or virtual keys.
  • control terminal includes a remote controller and a wearable device
  • the remote controller includes a communication interface
  • the wearable device includes a communication interface
  • the communication interface of the remote controller and the communication interface of the wearable device are respectively connected with the communication interface of the unmanned aerial vehicle. to communicate.
  • the above method further includes: first, in response to the remote control setting operation, the wearable device sends a rescue mode setting instruction to the remote control. Then, the remote controller outputs a setting result prompt message in response to the rescue mode setting instruction to prompt the rescue mode setting result.
  • the above method may further include the following operation, the wearable device displays the mode entry failure prompt information in response to the failure to enter the rescue mode from the unmanned aerial vehicle, so that the user can search for the unmanned aerial vehicle.
  • the above-mentioned method may further include the following operation, in response to the operation of turning on the rescue mode, sending a rescue mode turning on instruction to the UAV, so that the UAV enters the rescue mode in response to the turning on command of the rescue mode.
  • the above method may further include the following operations: in response to the mode switching operation, sending a mode switching instruction to the unmanned aerial vehicle, where the mode switching instruction includes any one of the following: a manual rescue mode selection instruction, an automatic rescue mode selection command or select command in automatic rescue and return-to-home mode.
  • the above method further includes: outputting prompt information, where the prompt information includes at least one of the following: current attitude information, initial attitude information, motor status information, two-way electronic governor status information, and failure prompt information for entering rescue mode , current mode information, exit mode prompt information or current flight status information.
  • prompt information includes at least one of the following: current attitude information, initial attitude information, motor status information, two-way electronic governor status information, and failure prompt information for entering rescue mode , current mode information, exit mode prompt information or current flight status information.
  • the above method may further include the following operations: first, receiving guidance prompt information. Then, the guidance prompt information is displayed so as to guide the user to rescue the aircraft, and the guidance prompt information includes at least one of the following: a stroke diagram image and a stroke parameter value.
  • the value of the stick parameter in the guidance prompt information may be determined by the method of determining the stick parameter value in the open-loop control, such as the determination based on the attitude information of the unmanned aerial vehicle.
  • Another aspect of the present disclosure also provides an air rescue system.
  • FIG. 22 is a block diagram of an air rescue system provided by an embodiment of the present disclosure.
  • the rescue system 2200 may include: an unmanned aerial vehicle 2210 and a control terminal 2220 .
  • the unmanned aerial vehicle 2210 includes: a body; at least two rotors are rotatably arranged on the body, each of the at least two rotors provides a first thrust along a first direction when rotating in a forward direction, and each of the at least two rotors is in a reverse direction. Provides a second thrust in a second direction to the rotation, the first direction being opposite to the second direction; a first memory storing executable instructions that, when executed by one or more processors, cause a or multiple processors performing the operations of the above method.
  • the control terminal 2220 includes: a second memory, which stores executable instructions. When executed by one or more processors, the executable instructions can cause the one or more processors to execute the above method.
  • FIG. 23 is a schematic diagram of functional interaction of an aircraft rescue system provided by an embodiment of the present disclosure.
  • the user uses glasses to set the remote control entering rescue mode (C1 for short) and clicks the remote control function button to enter the rescue mode.
  • the glasses send the setting instructions to the remote controller, so that the remote controller can perform corresponding settings.
  • the remote controller feeds back the configuration result to the user (for example, it can be displayed through glasses). If the configuration is successful, the user can click the C1 button of the remote controller that has been successfully set. If the configuration fails, it is up to the user to reconfigure.
  • the remote control can send an instruction to enter rescue mode to the flight controller of the UAV in response to the user's triggering operation of the C1 key.
  • the flight controller In response to the command to enter the rescue mode, the flight controller enters the rescue mode detection, such as judging whether the current motor state is turned off, and if so, it will feedback the failure error code of entering the rescue mode to the glasses. If it is not turned off, continue to judge the current attitude, and if it is currently in a normal take-off attitude, give the glasses an error code for failing to enter the rescue mode. If it is currently in the standby attitude, continue to judge whether the ESC is normal. If the ESC is abnormal, give the glasses an error code for failing to enter the rescue mode. If the ESC is normal, it will enter the automatic rescue mode by default. During this period, the user can select gears, such as selecting manual rescue mode, automatic rescue mode or automatic rescue return-to-home mode.
  • the rescue mode detection such as judging whether the current motor state is turned off, and if so, it will feedback the failure error code of entering the rescue mode to the glasses. If it is not turned off, continue to judge the current attitude, and if it is currently in a
  • the gear selected by the user will be sent to the flight controller through the remote control, so that the flight controller can switch the corresponding rescue mode according to the current gear. If the rescue is successful, the process will be received. If the rescue fails, the user can be prompted to pick up the UAV through glasses or remote control.
  • FIG. 24 is a flowchart of the execution operation of the flight controller in the manual rescue mode according to an embodiment of the present disclosure.
  • the flight controller switches the corresponding rescue mode according to the current gear position, if it is the manual rescue mode, it can respond to the stick command from the remote control and carry out rescue according to the stick command.
  • the user can judge whether the current rescue is successful based on the attitude information of the UAV and the image information collected by the shooting equipment. If the rescue is successful, you can exit the rescue mode. Otherwise, it can be used to continue to rescue the aircraft by hitting the pole.
  • FIG. 25 is a flowchart of the execution operation of the flight controller in the automatic rescue mode according to an embodiment of the present disclosure.
  • the flight controller switches the corresponding rescue mode according to the current gear, if it is the automatic rescue mode, it can automatically rescue the aircraft according to the current attitude in response to the button command from the remote control.
  • the unmanned aerial vehicle can determine whether the current rescue of the aircraft is successful based on the current attitude information and/or the collected image information, and if the rescue is successful, it exits the rescue mode. Otherwise, the flight controller can perform the rescue operation again based on the current attitude information until the stopping conditions are met, such as reaching the threshold of the number of attempts, reaching the threshold of the duration of the attempts, and the battery being less than the battery threshold.
  • FIG. 26 is a flowchart of the execution operation of the flight controller in the automatic rescue and return-to-home mode according to an embodiment of the present disclosure.
  • the flight controller switches the corresponding rescue mode according to the current gear, if it is the automatic rescue and return mode, it can respond to the stick command (or key command) from the remote control, and automatically according to the command or the current attitude. Carry out rescue.
  • the unmanned aerial vehicle can determine whether the current rescue of the aircraft is successful based on the current attitude information and/or the collected image information, and if the rescue is successful, perform automatic takeoff and return functions. After the return home is successful, you can exit the automatic rescue and return home mode. Otherwise, prompt the user to pick up the UAV.
  • FIG. 27 is a sequence diagram of a function of prompting whether the takeoff can be performed normally according to an embodiment of the present disclosure.
  • the user uses the glasses to configure the remote control function button to enter the rescue mode. If the setting is successful, the user can enter the automatic rescue mode based on the function button, or enter any one of the manual rescue mode, the automatic rescue mode or the automatic rescue return mode based on the gear switch selection.
  • the remote control can send the mode selected by the user to the flight controller.
  • the flight controller continuously receives the ESC status from the ESC push. During the period, the flight controller can perform at least one of attitude detection, bomb detection and motor status detection, and based on the detection results, prompt the user whether the current state can take off normally.
  • FIG. 28 is a sequence diagram of entering rescue mode and manual rescue functions provided by an embodiment of the present disclosure.
  • the flight control can push the error code of the failure to enter the rescue to the glasses. Based on the received error code of the failure to enter the rescue, the glasses will remind the user of the failure to enter the rescue and the reason with a copy. and other information.
  • the flight controller can return the glasses to the current rescue mode.
  • the user can use the remote control to switch the manual rescue mode, switch the automatic rescue mode or switch the automatic rescue mode and the automatic return mode, and send the selected mode to the flight controller.
  • the flight controller can return the rescue mode result to the glasses.
  • the user can use the remote control to manually flip the stick, and send the operation command to the flight controller to perform the rescue action.
  • the flight controller can return the rescue mode result to the glasses.
  • FIG. 29 is a sequence diagram of an automatic rescue function and an automatic rescue and return-to-home function provided by an embodiment of the present disclosure.
  • the user can use the remote control to manually push the throttle, etc. to trigger the automatic rescue (such as flipping the rescue), and send it to the flight controller.
  • the user can also use the glasses to trigger automatic rescue (such as flipping the rescue) and send it to the flight controller.
  • the flight controller performs rescue operations. When the aircraft is successfully rescued, the flight controller can send a prompt message to the glasses, such as exiting the automatic rescue mode.
  • the user can use the remote control return case and other methods to trigger the automatic rescue return and send it to the flight controller.
  • the user can also use the glasses to trigger the automatic rescue and return home, and send it to the flight controller.
  • the flight controller executes the rescue action. After the rescue is successful, the UAV automatically takes off to the return altitude, and then performs the automatic return operation. During this period, the flight controller can push the current flight status of the aircraft to the glasses.
  • the remote rescue function can be realized by controlling at least part of the blades to be reversed, and the function interaction is humanized, which helps to improve the user experience.
  • Another aspect of the present disclosure may also provide a computer-readable storage medium storing executable instructions that, when executed by one or more processors, can cause one or more processors to execute the above method.
  • the computer-readable storage medium may be included in the apparatus/apparatus/system described in the above embodiments; or may exist alone without being assembled into the apparatus/apparatus/system.
  • the above-mentioned computer-readable storage medium carries one or more programs, and when the above-mentioned one or more programs are executed, implement the method according to the embodiment of the present disclosure.
  • the computer-readable storage medium may be a non-volatile computer-readable storage medium, such as, but not limited to, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM) , erasable programmable read only memory (EPROM or flash memory), portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable storage medium may include one or more memories other than ROM and/or RAM and/or ROM and RAM described above.
  • Another aspect of the present disclosure may also provide a computer program product, comprising a computer program that, when executed, implements the method as described above.
  • the computer program may rely on a tangible storage medium such as an optical storage device, a magnetic storage device, or the like.
  • the computer program may also be transmitted, distributed in the form of a signal over a network medium, downloaded and installed over a communication system, and/or installed from a removable medium.
  • the program code embodied by the computer program may be transmitted using any suitable network medium, including but not limited to: wireless, wired, etc., or any suitable combination of the foregoing.
  • the program code for executing the computer program provided by the embodiments of the present disclosure may be written in any combination of one or more programming languages, and specifically, high-level procedures and/or object-oriented programming may be used. programming language, and/or assembly/machine language to implement these computational programs. Programming languages include, but are not limited to, languages such as Java, C++, python, "C" or similar programming languages.
  • the program code may execute entirely on the computing device, partly on the user device, partly on a remote computing device, or entirely on the remote computing device or server.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (eg, using an Internet service provider business via an Internet connection).
  • LAN local area network
  • WAN wide area network
  • an external computing device eg, using an Internet service provider business via an Internet connection

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人飞行器、控制终端、救机方法和救机系统,该无人飞行器包括机体;至少两个旋翼,可转动地设置在所述机体上,至少两个所述旋翼各自在正向旋转时提供沿第一方向的第一推力,至少两个所述旋翼各自在反向旋转时提供沿第二方向的第二推力,所述第一方向与所述第二方向相反;其中,当所述机体处于待救机姿态,并且所述无人飞行器能够执行救机操作时,至少两个所述旋翼中至少部分旋翼能够响应于救机控制指令提供所述第二推力,以执行救机操作。

Description

无人飞行器、控制终端、救机方法和救机系统 技术领域
本公开涉及无人飞行器技术领域,尤其涉及一种无人飞行器、控制终端、救机方法和救机系统。
背景技术
无人机(Unmanned Aerial Vehicle,简称UAV)可以用于航拍、空中监控、监测和侦查等诸多领域。多旋翼无人机,是一种具有三个及以上旋翼轴的特殊的无人驾驶飞机。多旋翼UAV通过与每个轴对应的电动机带动旋翼旋转而产生升力。
多旋翼UAV在飞行过程中异常掉落后,其地面姿态可能有较大翻滚,不再能正常地起桨起飞。如果多旋翼UAV距离操控人员较远,或者掉落位置在屋顶、河对岸等人力不易到达的地方,则救机难度较大,甚至造成无法救机。
公开内容
本公开实施例提供一种无人飞行器、控制终端、救机方法和救机系统,以降低救机难度。
第一方面,本公开实施例提供了一种无人飞行器,该无人飞行器包括:机体,至少两个旋翼,可转动地设置在机体上,至少两个旋翼各自在正向旋转时提供沿第一方向的第一推力,至少两个旋翼各自在反向旋转时提供沿第二方向的第二推力,第一方向与第二方向相反;其中,当机体处于待救机姿态,并且无人飞行器能够执行救机操作时,至少两个旋翼中至少部分旋翼能够响应于救机控制指令提供第二推力,以执行救机操作。
在本实施例中,无人飞行器的至少两个旋翼中至少部分旋翼在反向转动时能提供反向推力,在机体处于待救机姿态,并且无人飞行器能够执行救机操作时,至少两个旋翼中至少部分旋翼能够响应于救机控制指令进行反向转动,提供反向推力,以执行救机操作。其中,旋翼正向转动时,给处于非待救机姿态的机体提供远离地心的正向推力。本实施例的无人飞行器可以基于救机控制指令进行远程救机操作,有效降低了救机难度。
第二方面,本公开实施例提供了一种控制终端,该控制终端包括:处理器,用于生成救机控制指令;通信接口,用于向无人飞行器发送所述救机控制指令,所述救机控制指令用于当所述无人飞行器的机体处于待救机姿态,并且所述无人飞行器能够执行救机操作时,指示所述无人飞行器执行救机操作。
在本实施例中,控制终端可以生成救机控制指令,以向无人飞行器发送该救机控制指令,使得无人飞行器可以响应于该救机控制指令执行远程救机操作,有效降低了救机难度。
第三方面,本公开实施例提供了一种救机方法,应用于无人飞行器,该无人飞行器包括:机体;至少两个旋翼,可转动地设置在机体上,至少两个旋翼各自在正向旋转时提供沿第一方向的第一推力,至少两个旋翼各自在反向旋转时提供沿第二方向的第二推力,第一方向与第二方向相反。相应地,上述方法包括:接收救机控制指令;当无人飞行器处于待救机姿态,并且无人飞行器能够执行救机操作时,至少两个旋翼中至少部分旋翼响应于救机控制指令提供第二推力,以执行救机操作。
在本实施例中,无人飞行器可以基于救机控制指令,控制多个旋翼中至少部分旋翼通过反向转动提供反向推力。在无人飞行器处于待救机姿态,并且无人飞行器能够执行救机操作时,至少部分旋翼提供的反向推力可以实现远程救机操作,有效降低了救机难度。
第四方面,本公开实施例提供了一种救机方法,应用于控制终端,控制终端与无人飞行器通信连接。相应地,上述方法包括:获取救机控制指令;向无人飞行器发送救机控制指令,救机控制指令用于当无人飞行器处于待救机姿态,并且无人飞行器能够执行救机操作时,指示无人飞行器执行救机操作。
在本实施例中,控制终端可以获取用户输入的救机控制指令,并且将该救机控制指令发送给无人飞行器,使得无人飞行器可以响应于该救机控制指令执行远程救机操作,有效降低了救机难度。
第五方面,本公开实施例提供了一种救机系统,该救机系统包括:无人飞行器,包括:机体;至少两个旋翼,可转动地设置在机体上,至少两个旋翼各自在正向旋转时提供沿第一方向的第一推力,至少两个旋翼各自在反向旋转时提供沿第二方向的第二推力,第一方向与第二方向相反;第一存储器,其存储有可执行指令,可执行指令在由一个或多个处理器执行时,可以使一个或多个处理器执行如上的方法的操作;控制终端,包括:第二存储器,其存储有可执行指令,可执行指令在由一个或多个处理器执行时,可以使一个或多个处理器执行如上的方法的操作。
第六方面,本公开实施例提供了一种计算机可读存储介质,其存储有可执行指令,可执行指令在由一个或多个处理器执行时,可以使一个或多个处理器执行如上的方法。
第七方面,本公开实施例提供了一种计算机程序产品,包括可执行指令,该可执行指令在被执行时,实现如上的方法。
本公开的附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
图1为本公开实施例提供的无人飞行器、控制终端、救机方法和救机系统的应用场景;
图2为本公开另一实施例提供的无人飞行器、控制终端、救机方法和救机系统的应用场景;
图3(a)~图3(d)为本公开另一实施例提供的无人飞行器、控制终端、救机方法和救机系统的应用场景;
图4(a)~图4(b)为本公开另一实施例提供的无人飞行器、控制终端、救机方法和救机系统的应用场景;
图5为本公开实施例提供的无人飞行器的方框图;
图6为本公开实施例提供的X构型四旋翼UAV的俯视示意图;
图7为本公开实施例提供的X构型四旋翼UAV的主视示意图;
图8为本公开实施例提供的X构型四旋翼UAV处于待救机姿态的示意图;
图9为本公开另一实施例提供的X构型四旋翼UAV处于待救机姿态的示意图;
图10为本公开另一实施例提供的X构型四旋翼UAV处于待救机姿态的示意图;
图11为本公开实施例提供的X构型四旋翼UAV及其旋翼序号的示意图;
图12为针对图11所示X构型四旋翼UAV及其电机的打杆指令映射示意图;
图13为本公开实施例提供的开环控制过程示意图;
图14为本公开实施例提供的翻转救机参考坐标系示意图;
图15为本公开实施例提供的闭环控制过程示意图;
图16为本公开实施例提供的控制终端的方框图;
图17为本公开实施例提供的控制终端的示意图;
图18为本公开另一实施例提供的控制终端的示意图;
图19为本公开另一实施例提供的控制终端的示意图;
图20为本公开实施例提供的由无人飞行器执行的救机方法的流程图;
图21为本公开实施例提供的由控制终端执行的救机方法的流程图;
图22为本公开实施例提供的救机系统的方框图;
图23为本公开实施例提供的救机系统的功能交互示意图;
图24为本公开实施例提供的手动救机模式下飞控执行操作的流程图;
图25为本公开实施例提供的自动救机模式下飞控执行操作的流程图;
图26为本公开实施例提供的自动救机返航模式下飞控执行操作的流程图;
图27为本公开实施例提供的提示是否可正常起飞功能的时序图;
图28为本公开实施例提供的进入救机模式和手动救机功能的时序图;
图29为本公开实施例提供的自动救机功能和自动救机返航功能的时序图。
具体实施方式
下面详细描述本公开的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
在无人飞行器领域,当无人飞行器发生侧翻、异常坠落、翻滚后着陆等异常时,无人飞行器如何进行自救是一个亟待解决的问题。
以多旋翼无人机为例进行说明。多旋翼无人机在飞行过程中发生桨叶剐蹭、碰撞等问题导致异常掉落后,多旋翼UAV的地面姿态相比于正常起飞姿态之间可能具有较大翻滚。这导致多旋翼UAV不再能在正常的起飞姿态下起桨起飞。
多旋翼UAV可能距离操控人员较远或位于不易进行救机的方位。例如,掉落位置在屋顶、河对岸等不易到达的地方。这会导致救机难度较大,甚至可能由于无法对多旋翼UAV进行救机,到孩子多旋翼UAV丢失。以上问题对于可远程操控的旋翼式无人机普遍存在。
本公开实施例提供的无人飞行器、控制终端、救机方法和救机系统,至少两个旋翼各自在反向旋转时能够提供反向推力(如使得处于底部朝上的UAV远离着陆面的推力)。这样使得多旋翼UAV处于待救机姿态下,并且能够执行救机操作时,可以响应于救机控制指令,通过控制至少部分旋翼的工作状态来执行救机操作。例如可以远程操控至少部分旋翼使得多旋翼UAV从待救机姿态(不可起飞姿态)变为可起飞姿态,或者直接在待救机姿态下以反向推力起飞。本公开实施例有效降低救机难度,降低发送用户财产损失的风险,提升用户体验。
为了便于更好地理解本公开的实施例,以下结合图1~图29进行详细说明。
图1为本公开实施例提供的无人飞行器、控制终端、救机方法和救机系统的应用场景。如图1所示,以无人飞行器10是多旋翼无人机(UAV)为例进行说明。
该无人飞行器10包括本体11、承载体13及负载14。尽管无人飞行器10被描述为飞行器,然而这样的描述并不是限制,前述描述的任何类型的无人飞行器都适用(如无人飞行器)。在某些实施例中,负载14可以直接位于无人飞行器10上,而不需要承载体13。无人飞行器10可以包括动力机构15,传感系统12。此外,该无人飞行器10还可以包括通讯系统。
动力机构15可以包括一个或者多个旋转体、螺旋桨、桨叶、引擎、电机、轴承、磁铁、喷嘴。例如,动力机构的旋转体可以是自紧固(self-tightening)旋转体、旋转体组件、或者其它的旋转体动力单元。无人飞行器可以有两个、三个、四个或者更多个动力机构。所有的动力机构可以是相同的类型。可选地,多个动力机构中至少一个可以和其它动力机构是不同的类型。动力机构15可以通过合适的手段安装在无人飞行器上,如通过支撑元件(如驱动轴)。动力机构15可以安装在无人飞行器10任何合适的位置,如顶端、下端、前端、后端、侧面或者其中的任意结合。
在某些实施例中,动力机构15能够使无人飞行器垂直地从表面起飞,或者垂直地降落在表面上,而不需要无人飞行器10任何水平运动(如不需要在跑道上滑行)。可选地,动力机构15可以允许无人飞行器10在空中预设位置和/或者方向盘旋。一个或者多个动力机构100在受到控制时可以独立于其它的动力机构。可选地,一个或者多个动力机构100可以同时受到控制。例如,无人飞行器10可以有多个水平方向的旋转体,以控制无人飞行器的提升和/或推动。水平方向的旋转体可以被致动以提供无人飞行器10垂直起飞、垂直降落、盘旋的能力。在某些实施例中,水平方向的旋转体中的一个或者多个可以顺时针方向旋转,而水平方向的旋转体中的其它一个或者多个可以逆时针方向旋转。例如,顺时针旋转的旋转体与逆时针旋转的旋转体的数量一样。每一个水平方向的旋转体的旋转速率可以独立变化,以实现每个旋转体导致的提升和/或推动操作,从而调整无人飞行器10的空间方位、速度和/或加速度(如相对于多达三个自由度的旋转及平移)。
传感系统12可以包括一个或者多个传感器,以感测无人飞行器10的周边障碍物、空间方位、速度和/或加速度(如相对于多达三个自由度的旋转及平移)。一个或者多个传感器包括前述描述的任何传感器,包括但不限于测距传感器、GPS传感器、运动传感器、惯性传感器或者影像传感器。传感系统12提供的感测数据可以用于控制无人飞行器10的空间方位、速度和/或加速度。可选地,传感系统12可以用于无人飞行器的环境的数据,如气候条件、周边障碍物距离、地理特征的位置、人造结构的位置等。
承载体13可以是多种支撑结构,包括但不限于:固定支架、可拆卸支架、姿态可调结构等,用于将负载14设置在本体11上。例如,承载体13可以是云台,负载14可以是拍摄装置,该云台允许拍摄装置相对于本体11发生位移,或者,沿着一个或多个轴转动,如承载体13允许拍摄装置沿着俯仰轴、航向轴和横滚轴中一个轴或多个轴的结合平移运动。又例如,承载体13可以允许拍摄装置围绕俯仰轴、航向轴和横滚轴中的一个或多个轴转动。
通讯系统能够实现无人飞行器10与具有通讯系统的控制终端20通过设置在壳体21 上的天线22收发的无线信号30进行通讯。通讯系统可以包括任何数量的用于无线通讯的发送器、接收器、和/或收发器。通讯可以是单向通讯,这样数据可以从一个方向发送。例如,单向通讯可以包括,只有无人飞行器10传送数据给控制终端20,或者反之亦然。通讯系统的一个或者多个发送器可以发送数据给通讯系统的一个或者多个接收器,反之亦然。可选地,通讯可以是双向通讯,这样,数据可以在无人飞行器10与控制终端20之间在两个方向传输。双向通讯包括通讯系统的一个或者多个发送器可以发送数据给通讯系统的一个或者多个接收器,及反之亦然。
负载14可以用于实现诸如:观测、侦察、跟踪、瞄准、液体(如水、农药等)喷洒、运输等功能,包括但不限于以下至少一种:拍摄装置、灭火装置、瞄准装置、农药喷洒装置、录音装置、箱体等。
在某些实施例中,控制终端20可以向无人飞行器10、承载体13及负载14中的一个或者多个提供控制指令,并且从无人飞行器10、承载体13及负载14中的一个或者多个中接收信息(如障碍物、无人飞行器10、承载体13或者负载14的位置和/或运动信息,负载感测的数据,如相机捕获的影像数据)。在某些实施例中,控制终端20的控制数据可以包括关于位置、运动、制动的指令,或者对无人飞行器10、承载体13和/或负载14的控制。例如,控制数据可以导致无人飞行器位置和/或方向的改变(如通过控制动力机构15),或者导致承载体13相对于无人飞行器10的运动(如通过对承载体13的控制)。控制终端20的控制数据可以导致负载控制,如控制相机或者其它影像捕获设备的操作(捕获静止或者运动的影像、变焦、开启或关闭、切换成像模式、改变影像分辨率、改变焦距、改变景深、改变曝光时间、改变可视角度或者视场)。在某些实施例中,无人飞行器10、承载体13和/或负载14的通讯可以包括一个或者多个传感器(如距离传感器或者负载14的图像传感器)发出的信息。通讯可以包括从一个或者多个不同类型的传感器(如GPS传感器、运动传感器、惯性传感器、近程传感器或者影像传感器)传送的感应信息。感应信息是关于无人飞行器10、承载体13和/或负载14的位置(如方向、位置)、运动、或者加速度。从负载14传送的感应信息包括负载14捕获的数据或者负载14的状态。控制终端20传送提供的控制数据可以用于控制无人飞行器10、承载体13或者负载14中一个或者多个的状态。可选地,承载体13及负载14中一个或多个可以包括通讯模块,用于与控制终端20通讯,以便终端可以单独地通讯或者控制无人飞行器10、承载体13及负载14。
在某些实施例中,无人飞行器10可以与除了控制终端20之外的其它远程设备,或者非控制终端20的远程设备通讯。控制终端20也可以与另外一个远程设备及无人飞行器10进行通讯。例如,无人飞行器和/或控制终端20可以与另一个无人飞行器或者另一个无人飞行器的承载体或负载通讯。当有需要的时候,另外的远程设备可以是第二终端或者其它计算设备(如计算机、桌上型电脑、平板电脑、智能手机、或者其它移动设备)。该远程设备可以向无人飞行器10传送数据,从无人飞行器10接收数据,传送数据给控制终端20,和/或从控制终端20接收数据。可选地,该远程设备可以连接到因特网或者其它电信网络,以使从无人飞行器10和/或控制终端20接收的数据上传到网站或者服务器上。
传感器用于收集无人飞行器10的相关信息。不同类型的传感器可以感测不同种类的信号或者感测不同来源的信号。例如,传感器包括惯性传感器、GPS传感器、距离传感器、或者视觉/影像传感器(如相机)。传感器可以与包括多个处理器的处理单元连接,以由处 理单元将来自传感器的障碍物信息引入避障计算中,确定无人飞行器的期望速度。在某些实施例中,传感器可以与通讯系统(如Wi-Fi影像传送模块)连接,用于直接传送感测数据给合适的外部设备或者系统。例如,通讯系统可以用于传送图像传感器捕获的影像给远程终端。
图2为本公开另一实施例提供的无人飞行器、控制终端、救机方法和救机系统的应用场景。
如图2所示,用户在使用无人机进行作业的过程中,如使用无人机进行拍摄或巡检的过程中,无人机由于和障碍物发生干涉、受到阵风影响等导致发生炸机事件,导致无人机无法以正常姿态进行起飞。在某些场景下,如不便于人力到达的场景下,不便于用户进行救机。
以多旋翼UAV为例,目前多旋翼UAV在正常起飞飞行时,姿态倾转角度不能过大,否则桨叶正转产生的推力,无法使得多旋翼UAV起飞。如果强行起桨起飞,甚至会造成桨叶剐蹭地面,无人飞行器贴地飞行等一系列危险情况。例如,本公开实施例可以用于改善当多旋翼UAV在距离操控人员较远距离,发生姿态翻滚掉落时,导致多旋翼UAV无法正常起飞,极易造成多旋翼UAV丢失的问题。
本公开实施例提供的无人飞行器、控制终端、救机方法和救机系统,当在地面倾角较大时,可以使得多旋翼UAV的姿态调整为正常可起飞姿态,以便多旋翼UAV以正常起飞姿态进行起飞。此外,当在地面倾角过大(如机体翻转约150~210°)时,可以使得多旋翼UAV以待救机姿态进行起飞。
图3(a)~图3(d)为本公开另一实施例提供的无人飞行器、控制终端、救机方法和救机系统的应用场景。
如图3(a)所示,当多旋翼UAV处于待救机姿态,如至少部分桨叶与着陆面之间存在干涉或机体与着陆面之间的夹角过大时,可以控制部分没有与着陆面之间存在干涉的桨叶提供推力使得机体发生翻滚。例如,可以控制部分没有与着陆面之间存在干涉的桨叶反向旋转,以提供使得该桨叶远离着陆面的推力。
如图3(b)、3(c)所示,提供反向推力的旋翼使得机体发生翻滚动作,转换为正常起飞姿态。需要说明的是,提供推力的旋翼不能与着陆面之间发生干涉。不提供推力的旋翼可以与着陆面之间发生干涉或不发生干涉。
如图3(d)所示,当多旋翼UAV处于正常起飞姿态下时,可以响应于控制指令进行起飞操作。
当多旋翼UAV相对于着陆面的翻滚角度较大时,如大于45°、60°、90°、120°、150°、180°、200°或更大角度时,通过以上方式可以使得多旋翼UAV在较大概率下能够恢复至可以正常起飞的姿态,完成救机操作。
图4(a)~图4(b)为本公开另一实施例提供的无人飞行器、控制终端、救机方法和救机系统的应用场景。
如图4(a)所示,在一些特殊场景下,可能不便于通过如图3(a)~图3(d)的翻转救机方式进行救机。例如,多旋翼UAV位于较狭小的空间中,或者不便于通过给多旋翼UAV提供特定方向的推力,使得多旋翼UAV发生翻滚动作以实现救机操作。例如,多旋翼UAV相对于着陆面发生了180°翻滚,并且旋翼没有与着陆面之间发生干涉(例如旋 翼位于连接轴的中部而不是顶部,或者旋翼相对于机体朝外的一侧还有其他部件使得旋翼与着陆面之间没有干涉等)。如图4(b)所示,在该场景下,则可以控制一个或多个旋翼反向转动,提供相对着陆面的推力,使多旋翼UAV以相对于正常起飞姿态翻转约180°的姿态进行起飞。通过如上方式实现在特殊场景下的救机过程。
需要说明的是,以上以多旋翼UAV为示例进行说明,不能理解为对本公开技术方案的限定。例如,上述救机过程还可以是针对使用喷气式动力源的无人飞行器、以电机或引擎作为动力源的无人飞行器、以磁力作为动力的无人飞行器等,在此不做限定。
在一个实施例中,该无人飞行器可以包括:机体和至少两个旋翼。机体,至少两个旋翼,可转动地设置在机体上,至少两个旋翼各自在正向旋转时提供沿第一方向的第一推力,至少两个旋翼各自在反向旋转时提供沿第二方向的第二推力,第一方向与第二方向相反其中,旋翼的数量可以是2个、3个、4个、8个或更多个等。
例如,机体可以包括传感器组件,传感器组件用于采集传感数据。至少两个旋翼各自可转动地设置在机体的不同位置上,如分别设置在机体上相互远离的四个顶角或机臂上。至少两个旋翼各自在正向旋转时的转动方向可以相同或不同,如对角的两个旋翼的选择方向相同,相邻的两个旋翼的旋转方向相反。至少两个旋翼各自在反向旋转时的转动方向与正向转动时的方向相反。第一方向可以是当多旋翼UAV处于正常起飞姿态下,使得旋翼远离着陆面的方向。第二方向可以是当多旋翼UAV处于待救机姿态下,使得需要提供推力的旋翼远离着陆面的方向。
具体地,机体包括传感器组件,用于采集传感器数据,传感器组件包括惯性检测单元(IMU)和图像传感器中至少一种。其中,IMU可以分别设置在机体和支架(如云台)上,图像传感器可以采用拍摄装置,可转动地固定在支架上。
当机体处于待救机姿态,并且无人飞行器能够执行救机操作时,至少两个旋翼中至少部分旋翼能够响应于救机控制指令提供第二推力,以执行救机操作。例如,救机操作可以是使得多旋翼UAV发生翻滚动作以转换为正常起飞姿态,或者直接以待救机姿态进行起飞。
例如,无人飞行器具有救机模式,在救机模式下,当基于传感数据确定的姿态信息表征机体处于待救机姿态,并且传感数据表征无人飞行器能够执行救机时,至少两个旋翼中至少部分旋翼能够响应于救机控制指令提供第二推力,以执行救机。
在一个实施例中,无人飞行器处于待救机姿态时:至少两个旋翼在正向旋转时提供的推力的合力方向,在经由无人飞行器的重心的铅垂线上的投影指向地球球心,和/或,至少两个旋翼各自的桨叶在当前姿态下会与着陆面之间发生干涉。例如,至少两个旋翼在正向旋转时提供的推力的合力方向与铅垂线直接的夹角小于或等于30°。
在一个实施例中,无人飞行器能够执行救机操作时:至少两个旋翼中至少部分旋翼的桨叶能够正转或者反转,至少部分旋翼的桨叶在当前姿态下与着陆面之间分离。这样可以有效降低在救机过程中因旋翼与着陆面之间发生的干涉,导致旋翼损坏的概率。这样便于在待救机姿态下对满足执行救机操作的旋翼进行控制,以实现救机操作。
以下对多旋翼UAV所需满足的一些性能要求进行示例性说明。
一方面,至少两个旋翼各自的正转方向和反转方向是基于至少两个旋翼各自的桨叶角来确定的。例如,多旋翼UAV通过桨叶的旋转获取升力,其中每个桨叶旋转的方向根据 桨叶的桨叶角确定,保证桨叶在旋转的时候攻角为正时产生升力。本公开实施例中约定使桨叶产生向上升力的旋转方向为正转,产生向下拉力的旋转方向为反转。多旋翼UAV在正常飞行控制时,每个桨叶都是正转以产生向上升力。而当UAV姿态处于翻滚状态时,正转反而使UAV产生向下的力,此时UAV是无法正常起飞的。需要通过控制桨叶反转产生向上的力使得UAV姿态调整为可正常起飞姿态。
一方面,控制桨叶反转进行UAV翻转救机可分为两大类。一类是手动打杆控制翻转救机,一类是自动翻转救机。其中,手动打杆翻转救机根据手动打杆指令方向和杆量大小,输出对应方向和大小的电机反转指令实现UAV翻转。自动翻转救机过程中,多旋翼UAV自动根据当前姿态翻滚情况,选择对应的电机进行反转救机操作。自动翻转救机的控制方式可分为开环指令控制和闭环指令控制。
例如,手动打杆翻转救机需要通过遥控连接多旋翼UAV,以实现远程操控或者通过应用(app)虚拟摇杆进行远程操控。例如,针对自动翻转救机,可以通过遥控触发、app触发或者飞行眼镜等远程操控设备触发。
一方面,本公开实施例需要多旋翼UAV的电调支持正转和反转功能。
在一个实施例中,至少两个旋翼中至少部分旋翼响应于第一控制指令提供第二推力,使得机体从待救机姿态转变成正常起飞姿态。具体地,参考图3(a)~图3(d)所示,通过控制至少部分旋翼提供反向推力使得多旋翼UAV发生翻滚动作,转换为正常起飞姿态。
在一个实施例中,至少两个旋翼中第一部分旋翼响应于第一控制指令,各自分别提供第一推力,并且,至少两个旋翼中第二部分旋翼响应于第一控制指令,各自分别提供第二推力。具体地,提供第二推力的过程可以参考图4(a)~图4(b)所示,通过控制至少部分旋翼提供反向推力,使得多旋翼UAV以旋翼相对于机体朝下的姿态起飞,以实现救机操作。
需要说明的是,可以通过电机、燃油机等给旋翼提供动力。电机、燃油机等可以指定的控制单元进行控制。例如,可以通过电调控制电机的转动方向、转速或转动时长等中至少一种。其中,电调可以包括一个或多个处理器以对采集的数据进行处理,并输出针对电机的控制信号。此外,无人飞行器上还可以具有一个或多个其它处理器,以实现对云台、作业设备等的控制。
在一个实施例中,无人飞行器具有救机模式,救机模式包括手动救机模式、自动救机模式和自动救机返航模式中的至少一种。其中,手动救机模式下,需要旋转的旋翼、旋转的速度和选择的时长等由用户输入,如通过与无人飞行器通信连接的控制终端,将接收的用户操作转换为控制指令,并发送给无人飞行器。自动救机模式下,只需要进入自动模式的触发事件即可,如用户在控制终端上输入了与进入自动模式对应的用户操作。自动救机返航模式的触发事件与自动救机模式的触发事件类似,在该模式下,当救机成功后,UAV会执行自动返航的操作。
在一个实施例中,无人飞行器还包括:通信接口,用于与控制终端进行通信。相应地,救机控制指令是无人飞行器的通信接口从控制终端的通信接口获取的。通信系统可以参考图1中相关部分的说明,在此不再赘述。
图5为本公开实施例提供的无人飞行器的方框图。
如图5所示,该信息处理装置500可以包括一个或多个处理器510,该一个或多个 处理器510可以集成在一个处理单元中,也可以分别设置在多个处理单元中。计算机可读存储介质520,用于存储一个或多个计算机程序521,计算机程序在被处理器执行时,使得至少两个旋翼中至少部分旋翼能够响应于救机控制指令提供第二推力,以执行救机操作。
例如,一个或者多个处理器,如可编程的处理器(如中央处理器),被封装在一个或多个处理单元可以有。例如,处理单元可以包括现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者一个或者多个ARM处理器。处理单元可以与非易失性计算机可读存储介质520连接。与非易失性计算机可读存储介质520可以存储由处理单元所执行的逻辑、代码和/或者计算机指令,用于执行一个或者多个步骤。非易失性计算机可读存储介质520可以包括一个或者多个存储单元(可去除的介质或者外部存储器,如SD卡或者RAM)。在某些实施例中,传感器感测的数据可以直接传送并存储到非易失性计算机可读存储介质520的存储单元中。非易失性计算机可读存储介质520的存储单元可以存储由处理单元所执行的逻辑、代码和/或者计算机指令,以执行本案描述的各种方法的各个实施例。例如,处理单元可以用于执行指令,以导致处理单元的一个或者多个处理器执行上述描述的追踪功能。存储单元可以存储感测模块感测数据,该数据感测由处理单元所处理。在某些实施例中,非易失性计算机可读存储介质520的存储单元可以存储处理单元产生的处理结果。
在某些实施例中,处理单元可以与控制模块连接,用以控制无人飞行器的状态。例如,控制模块可以用于控制无人飞行器的动力机构,以调整无人飞行器相对于六个自由度的空间方位、速度和/或加速度。可选地或者相结合的,控制模块可以控制承载体,负载或者感测模块中的一个或者多个。
处理单元还可以与通讯模块连接,用以与一个或者多个外围设备(如终端、显示设备、或者其它远程控制设备)传送和/或者接收数据。这里可以利用任何合适的通讯方法,如有线通讯或者无线通讯。例如,通讯模块可以利用到一个或者多个局域网、广域网、红外线、无线电、Wi-Fi、点对点(P2P)网络、电信网络、云网络等。可选地,可以用到中继站,如信号塔、卫星、或者移动基站等。无线通讯可以是基于近距离的,也可以不是近距离的。在某些实施例中,通讯时可以要求视线距离也可以不要求视线距离。通讯模块可以与传感器之间传送和/或者接收一种或者多种感测数据,接收处理单元产生的处理结果,接收终端或者远程控制器等发送的预设控制数据或者用户指令。
上述各个部件之间可以是相互适配的。例如,一个或者多个部件位于无人飞行器、承载体、负载、终端、感测系统、或者与前述各设备通讯的额外的外部设备上。在某些实施例中,处理单元和/或非易失性计算机可读介质中的一个或者多个可以位于不同的位置,如在无人飞行器、承载体、负载、终端、感测系统、或者与前述各设备通讯的额外的外部设备以及前述的各种结合上。
此外,与无人飞行器相适配的控制终端可以包括输入装置、处理单元、存储器、显示模块、以及通讯模块,用户可以通过终端向无人飞行器发送控制指令或接收无人飞行器或负载采集的信息。
以下以X构型四旋翼UAV为例对本公开实施例的无人飞行器进行示例性说明。
图6为本公开实施例提供的X构型四旋翼UAV的俯视示意图。
如图6所示,机体61上相互远离的顶角设置有四个旋翼62,旋翼62可以直接可转动地固定在机体61上,也可以通过机臂可转动地固定在机体61上。其中,各旋翼62在正向转动时的转动方向可以不同,但是,四个旋翼62中处于转动状态的旋翼共同处于正向转动时,提供的合力使得机体61受到远离着陆面的作用力。图6中四个机臂之间的夹角仅为示例性示出,四个机臂之间的夹角可以相同或不同,在此不做限定。
图7为本公开实施例提供的X构型四旋翼UAV的主视示意图。
如图7所示,X构型四旋翼UAV除了包括机体61和旋翼62之外,还可以包括脚架63。该脚架63在UAV着陆后给机体等部件提供支撑力。其中,脚架63可以设置在机臂上或机体61上。
在一个实施例中,机体处于待救机姿态下,机体在沿第一方向与水平面之间的夹角大于第一预设角度阈值。例如,第一预设角度阈值包括但不限于30°至180°,如30°、35°、50°、70°、90°、120°、130°、150°、170°、180°等。
图8为本公开实施例提供的X构型四旋翼UAV处于待救机姿态的示意图。
如图8所示,图8中四旋翼UAV的至少一个旋翼62与水平面之间发生干涉,并且旋翼所连接的电机轴与水平面之间的夹角过大,使得四旋翼UAV无法正常起飞,处于待救机姿态。图8中旋翼62如果全部转动,则至少部分旋翼62可能发生损伤。此外,即使所有旋翼62都可以转动,由于旋翼62正向转动时,会给机体61提供向下的作用力,使得机体61的姿态相对于正常起飞姿态相差更大。
图9为本公开另一实施例提供的X构型四旋翼UAV处于待救机姿态的示意图。
如图9所示,图9中四旋翼UAV的至少一个旋翼62与水平面之间发生干涉,并且旋翼所连接的电机轴与水平面之间的夹角大于正常起飞所需的预设夹角阈值,如大于20°、25°、30°等。使得四旋翼UAV无法正常起飞,处于待救机姿态。图9中旋翼62如果全部转动,则至少部分旋翼62可能发生损伤。此时,可以控制至少部分旋翼62反转以调整机体61的姿态。
在一个实施例中,至少两个旋翼响应于第二控制指令,在夹角大于第二预设角度阈值时提供第二推力,使得机体以待救机姿态起飞。其中,第二控制指令可以是自动救机控制指令,使得多旋翼UAV进入自动救机模式,以执行救机操作。
需要说明的是,如果在翻转救机的过程中所有旋翼都可以不与着陆面之间发生干涉,则为了提升翻转救机的成功率,在控制至少两个旋翼中第二部分旋翼分别提供第二推力的过程中,至少两个旋翼中第一部分旋翼响应于第一控制指令,各自分别提供第一推力。这样可以针对机体61提供一个较大的旋转力,以便将多旋翼UAV的姿态调整至正常起飞姿态。
图10为本公开另一实施例提供的X构型四旋翼UAV处于待救机姿态的示意图。
如图10所示,X构型四旋翼UAV相对于正常起飞姿态翻转了约180°,在该待救机姿态下,可以控制至少部分旋翼62反向转动,以提供使得机体61远离水平面的作用力。其中,为了实现该功能,需要使得至少部分旋翼62相对于水平面之间没有发生干涉。图10中旋翼62和水平面之间通过隔离结构64进行隔离,降低旋翼62与水平面之间发生干涉的概率。需要说明的是,图10中隔离结构64仅为示例性示出,此外还可以是环绕在旋翼62侧周的隔离结构等,在此不做限定。
在一个实施例中,无人飞行器包括惯性测量单元,用于测量机体的姿态信息。相应地,无人飞行器还可以包括:设置在机体上的承载体,承载体用于承载拍摄装置。相应地,无人飞行器的至少一个处理器在执行可执行命令时用于:基于姿态信息和/或拍摄装置的拍摄图像确定是否能够对无人飞行器进行救机操作。
例如,对于特定型号的UAV,当机体在沿第一方向与水平面之间的夹角在某个区间范围时,则可以执行救机操作。其中,区间范围可以为:30°~45°、170°~180°等。对于另一个特定型号的UAV,区间范围可以为:30°~180°等。
在一个实施例中,无人飞行器包括双向电子调速器,用于控制与至少两个旋翼各自相连的电机转子正转或者反转,以驱动至少两个旋翼各自正转或者反转;无人飞行器能够执行救机操作时:至少两个旋翼中至少部分旋翼的桨叶能够正转或者反转,至少部分旋翼的桨叶在当前姿态下不会发生干涉,双向电子调速器能够正常工作。
例如,当机载云台上设置有拍摄装置时,则可以基于拍摄装置拍摄的图像来确定是否能够对无人飞行器进行救机操作。如基于图像计算旋翼相对于着陆面之间的夹角或者当旋翼转动时是否会与着陆面之间发生干涉。需要说明的是,可以由用户基于拍摄装置拍摄的图像来确定是否可以对无人飞行器执行救机操作,也可以是由处理器对拍摄的图像进行图像处理,来确定是否可以对无人飞行器执行救机操作。
在一个实施例中,至少一个处理器在执行可执行命令时还用于:基于姿态信息和/或拍摄装置的拍摄图像确定能够提供第二推力的可救机旋翼,以便控制可救机旋翼进行救机操作。其中,每个旋翼可以具有唯一的旋翼标识,以便确定可以转动的旋翼。
例如,控制旋翼反转以实现UAV翻转救机可分为两大类。一类是手动打杆控制翻转救机,一类是自动翻转救机。手动打杆翻转救机根据手动打杆指令方向和杆量大小,输出对应方向和大小的电机反转指令实现UAV翻转。自动翻转救机,UAV自动根据当前姿态翻滚情况,选择对应的电机进行反转救机操作。自动翻转救机的控制方式可分为开环指令控制和闭环指令控制。当UAV在桨叶反转过程中如果检测到动力故障也会主动向用户提醒,给用户手动救机操作以指引,或者自动救机模式下会根据动力故障情况自动调整转桨策略。
图11为本公开实施例提供的X构型四旋翼UAV及其旋翼序号的示意图。
如图11所示,位于机体右前方的旋翼是1号旋翼,位于机体左前方的旋翼是2号旋翼,位于机体左后方的旋翼是3号旋翼,位于机体右后方的旋翼是4号旋翼。
在一个实施例中,至少两个旋翼各自与对应的电机转轴连接。相应地,至少一个处理器在执行可执行命令时用于:如果机体处于待救机姿态,并且无人飞行器能够执行救机操作,则给至少两个旋翼中至少部分旋翼的电机发送控制指令,以控制电机驱动与电机对应的旋翼提供第二推力。具体地,对X构型旋翼四个电机进行编号,从机头右前电机开始逆时针编号为1、2、3、4号电机。正常飞行时1、2、3、4号电机旋转的方向依次为逆时针、顺时针、逆时针、顺时针。其旋转方向对各自桨叶来说是正转方向,UAV的姿态正常时提供向上的升力,UAV姿态倾角超过90°后,各桨正转产生的力会使得飞机向下。
具体地,如果姿态信息表征机体处于待救机姿态,并且传感数据表征无人飞行器能够执行救机,则给至少两个旋翼中至少部分旋翼的电机发送控制指令,以控制电机驱动与电机对应的旋翼提供第二推力。
在一个实施例中,无人飞行器处于正常起飞姿态时:至少两个旋翼在正向旋转时提供的推力的合力方向,在经由无人飞行器的重心的铅垂线上的投影背向地球重心,和/或,至少两个旋翼各自的桨叶在当前姿态下与着陆面之间分离。无人飞行器处于正常起飞姿态时,可以执行起飞任务等。
在一个实施例中,至少两个旋翼各自具有旋翼标识。
相应地,无人飞行器还可以包括:存储器,用于存储救机策略,以便无人飞行器在自动救机模式或者自动救机返航模式下基于救机策略执行救机操作,其中,救机策略包括以下至少一种。
例如,救机策略包括角度和旋翼标识之间的第一映射关系。以手动救机模式为例,用户在控制终端上输入的打杆操作,可以包括打杆角度,基于该第一映射关系可以确定需要旋转的旋翼的旋翼标识,以便控制对应的旋翼提供第二方向的作用力。以自动救机模式为例,基于用户的打杆操作输入的打杆角度确定对应的旋翼后,自动控制该旋翼的转速和转动时长等实现救机操作。
例如,救机策略包括角度、旋翼标识和杆量模值之间的第二映射关系。以手动救机模式为例,用户在控制终端上输入的打杆操作,可以包括打杆角度和杆量模值,基于该第二映射关系可以确定需要旋转的旋翼的旋翼标识,以便控制对应的旋翼提供具有第二方向的与杆量模值对应的作用力。
例如,救机策略包括角度、旋翼标识、属性信息和杆量模值之间的第三映射关系。其中,属性信息包括以下至少一种:电源的电压信息、无人飞行器的重量信息、环境的气压信息和救机控制指令触发次数。
其中,电压信息用于衡量剩余电量。由于电机反转时的能效相对于正转时的能效要低一些,因此,可能需要提供较大的能量来驱动电机输出更高的功率。当电量充足时,可以采用能耗更高的救机策略,如更高的转速等。当电量不够充足时,可以采用能耗更低的救机策略,避免电量被耗完导致无法确定UAV的着陆位置等。
无人飞行器的重量信息用于衡量旋翼需要提供的作用力的大小。例如,对于体重较大的旋翼UAV,则UAV需要更高的转速以提供更大的作用力来对抗旋翼UAV的重力。例如,携带更重作业设备的UAV,则UAV需要更高的转速以提供更大的作用力来对抗作业设备的重力等。具体地,可以基于无人飞行器的重量信息对杆量模值或与杆量模值对应的电流值(给电机输入的电流大小)等进行补偿。例如,无人飞行器的重量越大,则补偿的程度越大,以应对具有不同重量的UAV,提升救机策略的适用范围。
环境的气压信息用于衡量旋翼需要提供的作用力的大小。例如,对于处于海拔越高的UAV,则环境中大气越稀薄,需要提供更大的功率以产生足够高的反作用力。例如,所在海拔越高的UAV,则UAV需要更高的转速以提供足够高的作用力来对抗无人飞行器和作业设备的重力等。具体地,可以基于无人飞行器所处环境的气压信息对杆量模值或与杆量模值对应的电流值等进行补偿。例如,无人飞行器所处环境的海拔越高,则补偿的程度越大,以应对处于不同地理位置的UAV,提升救机策略的适用范围。
在一个实施例中,无人飞行器的救机模式包括:手动救机模式和自动救机模式。
例如,在手动救机模式下,救机控制指令包括由控制终端的摇杆输入的杆量模值、指 令方向和电机转动指令。具体地,针对手动救机模式,其特征在于,至少两个旋翼中至少部分旋翼能够响应于杆量模值、指令方向和电机转动指令,提供第二推力。手动救机策略根据用户水平打杆(pitch杆和roll杆)指令方向和杆量大小,输出对应方向和大小的电机反转指令。
例如,手动救机模式的输入包括:杆量模值、指令方向和电机转动指令。相应地,手动救机模式的输出包括:与执行反转的电机对应的旋翼标识和杆量模值。
图12为针对图11所示X构型四旋翼UAV及其电机的打杆指令映射示意图。
如图12所示,定义机体坐标系x-y-z,其x轴方向为机头方向,y轴方向垂直x轴指向机体右侧,z轴方向垂直x、y向下。水平打杆指令直接映射到机体坐标系下,其中pitch杆指令方向为x方向,roll杆指令方向为y方向。
电机控制输出指令是打杆输入指令的函数:
Figure PCTCN2021084509-appb-000001
num为指令输出的电机序号,可取值范围为{1,2,3,4}。pwm为指令输出大小,值域[0,100%]。θ为水平打杆指令在机体坐标系下与x轴(机头)夹角,范围[-180°~+180°];A为输入杆量指令的模值,范围[0,1]。一种示例性的映射关系如式(2)和式(3)所示:
Figure PCTCN2021084509-appb-000002
在一个实施例中,为了提升手动救机模式的安全度,无人飞行器的至少一个处理器在执行可执行命令时用于:将杆量模值转换为安全杆量模值。相应地,在手动救机模式下,救机控制指令包括安全杆量模值、指令方向和电机转动指令。例如,如果最大杆量模值是A,则可以限定安全杆量模值小于或等于0.8A。
Figure PCTCN2021084509-appb-000003
式(2)和式(3)中,θ决定了哪个电机反转,A决定了指令大小。该救机策略支持用户通过水平打杆方向控制某一个或某两个电机转动,也可以简化为只控制两个电机转动。
该策略考虑到了打杆死区,在输入杆量模值小于一定阈值(阈值可调)时电机也不会转动防止误触发。在转动过程中,如果检测到动力异常,会通过app或者虚拟现实设备(VR设备),如虚拟现实眼镜(VR眼镜,简称眼镜)提示用户,指引用户对无异常的电机进行操作。需要说明的是,上述救机策略并不是唯一的,策略中涉及的阈值和参数等可根据无人飞行器的实际救机效果进行调整。
在一个实施例中,为了降低手动救机模式下用户误操作造成损失的风险,该方法还可以包括如下操作:手动救机模式下,无人飞行器还通过自身的通信接口给控制终端的通信 接口发送引导提示信息,以便控制终端的显示屏显示提示信息,引导用户进行救机。例如,引导提示信息包括但不限于以下至少一种:打杆方向、打杆模值等。引导提示信息的显示方式包括但不限于文字提示、图片提示或动画演示效果提示等中至少一种。
在一个实施例中,无人飞行器的通信接口发送的引导提示信息包括以下至少一种:打杆示意图像、打杆参数取值,其中,打杆示意图像是基于打杆参数取值生成的,打杆参数取值至少基于机体的姿态信息来确定的。
其中,打杆方向和打杆模值的确定方法可以参考如下的自动救机模式相关内容。
以下对自动救机模式进行示例性说明。
自动翻转救机模式下,不需要用户自己判断哪个电机反转再手动给出相应的控制指令。用户只需要通过遥控按键触发进入翻转救机模式,UAV就能自动根据当前姿态翻滚情况,选择对应的电机进行反转救机操作。自动翻转救机的控制方式可分为开环指令控制和闭环指令控制。
关于开环指令控制。
在一个实施例中,至少两个旋翼中至少部分旋翼能够响应初始姿态信息和电机转动指令,进行开环控制,以提供第二推力。
其中,开环指令控制指UAV根据初始姿态倾转情况计算输出一个开环控制指令,指令控制过程中不会根据当前状态实时调整控制指令。在自动救机模式下,救机控制指令包括电机转动指令。
在一个实施例中,开环控制的输入包括:初始姿态信息、起飞姿态阈值、电机转动指令和属性信息,属性信息包括以下至少一种:电源的电压信息、无人飞行器的重量信息和环境的气压信息和救机控制指令触发次数。相应地,开环控制的输出包括:旋翼标识、杆量模值和指令输出持续时长。
图13为本公开实施例提供的开环控制过程示意图。
如图13所示,其中,目标角度(target_ang)是目标姿态控制指令,当前角度(current_ang)为无人飞行器当前姿态角度。C为开环控制器模块,根据开环控制策略进行控制指令计算和输出。P为控制对象模块,这里代表飞机。故障诊断和保护模块(fault diagnosis and protection,简称FDP),负责监控控制过程中的动力故障等问题,并根据故障情况选择相应保护策略。
图14为本公开实施例提供的翻转救机参考坐标系示意图。
如图14所示,机体坐标系x-y-z如前述定义与机体固连,定义参考坐标系X-Y-Z,该坐标系由机体系x-y-z绕水平面上转轴旋转而来,其Z轴为竖直向下,X-Y平面在水平面上。根据定义,UAV当前姿态可以由初始X-Y-Z位置旋转α角度得到。取旋转后的机体z轴在X-Y水平面的投影z'与X轴之间夹角为θ。
实际控制输出指令是θ、倾转角度α、电池电压等变量的函数如式(4)所示。
Figure PCTCN2021084509-appb-000004
其中num为指令输出的电机序号,可取值范围为{1,2,3,4}。pwm为指令输出大小,值域[0,100%]。t为指令输出持续时间。α为倾转角度大小,范围[0°,180°]。vol为电池当前电压比(当前电压/满电电压),范围[0,1]。一种自动救机策略如式(5)~式(8)所示。
Figure PCTCN2021084509-appb-000005
Figure PCTCN2021084509-appb-000006
其中,
Figure PCTCN2021084509-appb-000007
Figure PCTCN2021084509-appb-000008
由上可知,当电机倾角α小于一定阈值(例如,取35°)时认为可正常起飞,只有大于一定阈值时才可以执行反转操作。
反转的电机序号num是由飞机当前的姿态倾转情况决定的,本策略根据θ角作了一种映射,还可以根据倾转情况做其他策略。
反转指令的大小pwm和输出的持续时间t都根据倾转角度α做了分段线性映射,该映射关系也是可以根据不同机型进行调整的,可以选取不同的阈值甚至映射关系。
同时电池电压也会对输出指令有一定影响,该策略根据当前电压比对输出指令做了分段线性补偿,实际应用中还可以采取其他补偿策略。
另外,救机的触发次数也会对输出指令产生影响,比如在救机过程中第一次触发后飞机并没有翻转过来,仍然处于非正常起飞姿态,后续再次触发输出指令大小和持续时间都会有相应增加。
以上是飞机动力正常时候的策略,特别的当某个电机动力异常时,FDP模块会监控到动力异常,并根据动力异常情况自动调整反转电机序号num,使用动力正常的电机进行自动救机操作。
关于闭环指令控制。
在一个实施例中,至少两个旋翼中至少部分旋翼能够响应当前姿态信息和电机转动指令进行闭环控制,以提供第二推力。闭环指令控制是指UAV根据当前姿态实时计算控制指令使姿态翻滚,并在翻滚过程中根据飞机姿态实时姿态调整控制指令。
具体地,闭环控制的输入包括:当前姿态信息、起飞姿态阈值和电机转动指令,或者,当前姿态信息、起飞姿态阈值、电机转动指令和属性信息,其中,属性信息包括以下至少一种:电源的电压信息、无人飞行器的重量信息和环境的气压信息。相应地,闭环控制的输出包括:旋翼标识、杆量模值。
其中,属性信息可以参考如上实施例中相关内容,在此不再详述。
图15为本公开实施例提供的闭环控制过程示意图。
如图15所示,目标角度(target_ang)是目标姿态控制指令,当前角度(current_ang)为无人飞行器当前姿态角度。C为闭环控制器模块,根据闭环控制策略进行控制指令计算和输出。P为控制对象模块,这里代表无人飞行器。故障诊断和保护模块(fault diagnosis and protection,简称FDP),负责监控控制过程中的动力故障等问题,并根据故障情况选择相应保护策略。
相比开环指令控制,闭环控制可以根据无人机当前姿态实时调整指令大小,整个过程可以更加平滑、可控。
在一个实施例中,至少两个旋翼中至少部分旋翼各自输出的推力,能够由至少两个旋翼中除至少部分旋翼之外的一个旋翼输出的推力代替或者多个旋翼输出的合力代替。例如,对于X构型四旋翼UAV,一个旋翼输出的推力可以通过与该旋翼相邻的两个旋翼输出的合力进行代替。这样当确定一个旋翼与着陆面之间存在干涉后,则可以利用与该旋翼相邻的两个旋翼输出的合力代替该旋翼输出的作用力。
在一个实施例中,无人飞行器的至少一个处理器在执行可执行命令时用于:监控与至少两个旋翼对应的电机的动力故障,并且对存在动力故障的电机进行替换。例如,对存在动力故障的电机替换的方式可以包括:利用与存在动力故障的电机相邻的两个电机进行代替。
在一个实施例中,无人飞行器的通信接口还用于接收来自控制终端的通信接口的救机模式设置指令,救机模式设置指令包括以下至少一种:救机策略设置指令,和/或,起飞姿态阈值设置指令。其中,通过救机策略设置指令可以对救机策略进行修改。通过起飞姿态阈值设置指令可以对起飞姿态阈值,如角度进行设置。
以下对救机功能的进入和退出条件进行示例性说明。
以翻转救机方式为例进行示例性说明。翻转救机功能的进入条件是判断无人飞行器当前姿态不满足正常起飞要求。无人飞行器的姿态信息由传感器IMU、视觉模块等融合得到。无人飞行器是否满足正常起飞要求主要有两个条件,例如,一个是当前姿态下桨叶正转产生的总拉力是否向上,一个是当前姿态下如果在水平面放置,桨叶旋转是否有剐蹭地面风险。如果当前姿态下桨叶正转产生的总拉力向下,或者当前姿态下在水平面放置,桨叶旋转有剐蹭地面风险就认为当前姿态不满足正常起飞要求,可以触发进入翻转救机功能。用于判断的姿态阈值需要根据不同的无人飞行器确定。
翻转救机功能自动退出的条件是判断无人飞行器当前姿态满足了正常起飞要求,也就是当前姿态下桨叶正转产生的总拉力向上并且当前姿态在水平面上放置桨叶不会剐蹭地面,可自动退出翻转救机功能。用于判断的姿态阈值也是根据不同的无人飞行器设计来确定。当然用户也可以手动随时退出该功能。
需要说明的是,针对除X构型之外其他构型的多旋翼无人机,依然可以通过上述原理和方法进行翻转救机操作。
本公开实施例提供的无人飞行器,由于在飞行过程中发生桨叶剐蹭、碰撞等问题异常掉落后,其地面姿态往往有较大翻滚,不再能正常地起桨起飞。此时无人飞行器往往距离操控人员较远,或者掉落位置在屋顶、河对岸等人力不易到达的地方,救机难度很大甚至最终造成无人飞行器丢失,该问题对于可远程操控的旋翼无人机普遍存在。本公开实施例 提供的无人飞行器可以远程操控使得无人飞行器的姿态从待救机姿态变为可起飞姿态,以便在可起飞姿态下起飞,大大降低救机难度,降低用户损失,提升用户飞行体验。
本公开实施例的另一方面还提供了一种控制终端。
该控制终端可以包括处理器,用于生成救机控制指令。
通信接口,用于向无人飞行器发送所述救机控制指令,所述救机控制指令用于当所述无人飞行器的机体处于待救机姿态,并且所述无人飞行器能够执行救机操作时,指示所述无人飞行器执行救机操作。
控制终端包括但不限于:遥控器、安装有指定应用的智能终端、虚拟现实设备等。
无人飞行器可以包括:机体;至少两个旋翼,可转动地设置在机体上,至少两个旋翼各自在正向旋转时提供沿第一方向的第一推力,至少两个旋翼各自在反向旋转时提供沿第二方向的第二推力,第一方向与第二方向相反;无人飞行器具有救机模式,在救机模式下,当机体处于待救机姿态,并且无人飞行器能够执行救机时,至少两个旋翼中至少部分旋翼能够响应于救机控制指令提供第二推力,以执行救机操作。
图16为本公开实施例提供的控制终端的方框图。
如图16所示,该控制终端1600可以包括:一个或多个处理器1610,可以集成在一个处理单元中,也可以分别设置在多个处理单元中。计算机可读存储介质1620,用于存储一个或多个计算机程序1621,计算机程序在被处理器执行时,通过输入装置获取救机控制指令,并且通过通信接口向无人飞行器发送救机控制指令。
例如,一个或者多个处理器,如可编程的处理器(如中央处理器),被封装在一个或多个处理单元可以有。例如,处理单元可以包括现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者一个或者多个ARM处理器。处理单元可以与非易失性计算机可读存储介质1620连接。与非易失性计算机可读存储介质1620可以存储由处理单元所执行的逻辑、代码和/或者计算机指令,用于执行一个或者多个步骤。
处理单元还可以与通讯模块连接,用以与一个或者多个外围设备(如终端、显示设备、或者其它远程控制设备)传送和/或者接收数据。
此外,控制终端还可以包括输入装置以便获取用户操作。例如,控制终端可以包括处理单元、存储器、显示模块、以及通讯模块,用户可以通过控制终端向无人飞行器发送控制指令或接收无人飞行器或负载采集的信息。
输入装置包括一个或者多个输入机制,以接收用户通过操作该输入装置产生的输入。输入机制包括一个或者多个操纵杆、开关、旋钮、滑动开关、按钮、拨号盘、触摸屏、小键盘、键盘、鼠标、声音控制、手势控制、惯性模块等。输入装置可以用于接收用户的输入,该输入用于控制无人飞行器、承载体、负载、或者其中部件的任何方面。任何方面包括姿态、位置、方向、飞行、追踪等。例如,输入机制可以是用户手动设置一个或者多个位置,每个位置对应一个预设输入,以控制无人飞行器。
在某些实施例中,输入机制可以由用户操作,以输入控制指令,控制无人飞行器的运动。例如,用户可以利用旋钮、开关或者相似的输入机制,输入无人飞行器的运动模式,如自动飞行、自动驾驶或者根据预设运动路径运动。又如,用户可以通过用某种方法倾斜控制终端,以控制无人飞行器的位置、姿态、方向、或者其它方面。控制终端的倾斜可以由一个或者多个惯性传感器所侦测,并产生对应的运动指令。再如,用户可以利用上述输 入机制调整负载的操作参数(如变焦)、负载的姿态(通过承载体),或者无人飞行器上的任何物体的其它方面。
在某些实施例中,输入机制可以由用户操作,以输入前述描述目标物信息。例如,用户可以利用旋钮、开关或者相似的输入机制,选择合适的追踪模式,如人工追踪模式或者自动追踪模式。用户也可以利用该输入机制选择所要追踪的特定目标物、执行的目标物类型信息、或者其它相似的信息。在各种实施例中,输入装置可以由不止一个设备所执行。例如,输入装置可以由带有操纵杆的标准远程控制器所执行。带有操纵杆的标准远程控制器连接到运行适合应用程序(“app”)的移动设备(如智能手机)中,以产生无人飞行器的控制指令。app可以用于获取用户的输入。
处理单元有一个或者多个处理器,如可编程的处理器(如中央处理器或者微控制器)。处理单元可以与存储器连接。存储器包括易失性或者非易失性存储介质,用于存储数据,和/或处理单元可执行的逻辑、代码、和/或程序指令,用于执行一个或者多个规则或者功能。存储器可以包括一个或者多个存储单元(可去除的介质或者外部存储器,如SD卡或者RAM)。在某些实施例中,输入装置的数据可以直接传送并存储在存储器的存储单元中。存储器的存储单元可以存储由处理单元所执行的逻辑、代码和/或者计算机指令,以执行本案描述的各种方法的各个实施例。例如,处理单元可以用于执行指令,以导致处理单元的一个或者多个处理器处理及显示从无人飞行器接收的感应数据(如影像),基于用户输入产生的控制指令,包括运动指令及目标物信息,并导致通讯模块传送和/或者接收数据等。存储单元可以存储感测数据或者从外部设备(如无人飞行器)接收的其它数据。在某些实施例中,存储器的存储单元可以存储处理单元生成的处理结果。
在某些实施例中,显示模块可以用于显示如图1中无人飞行器10、承载体13和/或负载14关于位置、平移速度、平移加速度、方向、角速度、角加速度、或者其结合等的信息。显示模块可以用于接收无人飞行器和/或者负载发送的信息,如感测数据(相机或者其它影像捕获设备记录的影像)、所描述的追踪数据、控制反馈数据等。在某些实施例中,显示模块可以与输入装置由相同的设备所执行。在其它实施例中,显示模块与输入装置可以由不相同的设备所执行。
通讯模块可以用于从一个或者多个远程设备(如无人飞行器、承载体、基站等)传送和/或者接收数据。例如,通讯模块可以传送控制信号(如运动信号、目标物信息、追踪控制指令)给外围系统或者设备,如图1中无人飞行器10、承载体13和/或负载14。通讯模块可以包括传送器及接收器,分别用于从远程设备接收数据以及传送数据给远程设备。在某些实施例中,通讯模块可以包括收发器,其结合了传送器与接收器的功能。在某些实施例中,传送器与接收器之间以及与处理单元之间可以彼此通讯。通讯可以利用任何合适的通讯手段,如有线通讯或者无线通讯。
无人飞行器在运动过程中捕获的影像可以从无人飞行器或者影像设备传回给控制终端或者其它适合的设备,以显示、播放、存储、编辑或者其它目的。这样的传送可以是当影像设备捕获影像时,实时的或者将近实时的发生。可选地,影像的捕获及传送之间可以有延迟。在某些实施例中,影像可以存储在无人飞行器的存储器中,而不用传送到任何其它地方。用户可以实时看到这些影像,如果需要,调整目标物信息或者调整无人飞行器或者其部件的其它方面。调整的目标物信息可以提供给无人飞行器,重复的过程可能继续直 到获得可想要的影像。在某些实施例中,影像可以从无人飞行器、影像设备和/或控制终端传送给远程服务器。例如,影像可以在一些社交网络平台,如微信朋友圈或者微博上以进行分享。
在一个实施例中,控制终端包括以下至少一种:遥控器或可穿戴设备。
图17为本公开实施例提供的控制终端的示意图。
如图17所示,控制终端可以是遥控器。该遥控器上可以包括摇杆、方向按钮、功能按钮、处理器、天线等部件,其中,天线部件用于接收来自无人飞行器的无线信号,或者用于向无人飞行器发送无线信号。摇杆、方向按钮、功能按钮等可以响应于用户操作产生对应的操作指令,并发送给无人飞行器。此外,遥控器上还可以设置有显示屏,该显示屏用于显示诸如无人飞行器的状态等参数。图17中可以由遥控器给无人飞行器发送救机控制指令,使得无人飞行器的至少两个旋翼中至少部分旋翼能够响应于救机控制指令提供第二推力,以执行救机操作。
在一个实施例中,输入装置包括摇杆,摇杆用于响应于第一用户操作生成控制杆量、指令方向、电机转动指令。其中,控制杆量、指令方向、电机转动指令等可以参考针对无人飞行器的实施例中相关部分内容,在此不再详述。
输入装置包括模式按键,用于响应于第二用户操作控制无人飞行器切换至救机模式、自动救机模式、手动救机模式、开环控制模式或闭环控制模式中任意一种;或者,用于退出救机模式、自动救机模式、手动救机模式、自动救机返航模式、开环控制模式或闭环控制模式中任意一种。
输入装置包括显示屏,显示屏用于显示交互界面,交互界面显示虚拟摇杆和/或虚拟按键。
例如,遥控器响应于救机模式开启操作,向无人飞行器发送救机模式开启指令,以便无人飞行器响应于救机模式开启指令,进入救机模式。其中,救机模式包括但不限于以下至少一种:手动救机模式、自动救机模式或者自动救机返航模式。
在一个实施例中,遥控器响应于模式切换操作,向无人飞行器发送模式切换指令,模式切换指令包括以下任意一种:手动救机模式选取指令、自动救机模式选取指令或者自动救机返航模式选取指令。
在一个实施例中,控制终端还包括:输出装置,输出装置用于输出以下至少一种提示信息:当前姿态信息、初始姿态信息、电机状态信息、双向电子调速器状态信息、进入救机模式失败提示信息、当前模式信息、退出模式提示信息或者当前飞行状态信息。
图18为本公开另一实施例提供的控制终端的示意图。
如图18所示,控制终端可以是可穿戴设备,如虚拟现实设备(VR)、增强现实设备等(AR)。具体地,可以是VR眼镜等。用户可以通过VR眼镜接收来自无人飞行器或搭载在无人飞行器上的作业设备采集的数据,并显示至少部分图像数据。此外,VR设备也可以具有输入机制,如用户注视某个功能,然后双击VR眼镜的外壳,当VR眼镜的传感器检测到双击的触发事件后,则可以确定选取用户注视的功能。如用户可以通过VR眼镜选取自动救机模式,以便实现自动救机操作。
在一个实施例中,控制终端还可以同时包括遥控器和虚拟现实设备。
例如,控制终端包括遥控器和可穿戴设备,遥控器包括通信接口,可穿戴设备包括通信接口,遥控器的通信接口和可穿戴设备的通信接口各自分别与无人飞行器的通信接口进行通信。
图19为本公开另一实施例提供的控制终端的示意图。
如图19,用户可以在穿戴VR眼镜的同时,对遥控器进行同步操作,以实现利用无人飞行器进行作业。其中,VR眼镜、遥控器和无人飞行器三者的两两之间分别可以进行信息交互。
例如,可穿戴设备响应于遥控设置操作,给遥控器发送救机模式设置指令。遥控器响应于救机模式设置指令输出设置结果提示信息,以提示救机模式设置结果。其中,设置结果提示信息可以是来自无人飞行器的。
例如,可穿戴设备响应于来自无人飞行器的进入救机模式失败的模式进入失败提示信息,显示模式进入失败提示信息,以便用户寻找无人飞行器。
在一个实施例中,通信接口还用于接收引导提示信息,输出装置包括显示器,显示器用于显示引导提示信息,以便引导用户进行救机,引导提示信息包括以下至少一种:打杆示意图像、打杆参数取值。
本公开实施例提供的控制终端,可以在VR眼镜中感受搭载在无人飞行器上的拍摄装置采集的图像信息,同时可以利用遥控器对无人飞行器进行操控,如控制无人飞行器的前进、后退、悬停、升降、救机中至少一种,还可以控制云台或拍摄装置的姿态,另外,还可以控制拍摄装置的拍摄参数等,有效提升用户操作便捷度和操作体验。
本公开的另一方面提供了一种救机方法。
图20为本公开实施例提供的由无人飞行器执行的救机方法的流程图。该无人飞行器包括:机体;至少两个旋翼,可转动地设置在机体上,至少两个旋翼各自在正向旋转时提供沿第一方向的第一推力,至少两个旋翼各自在反向旋转时提供沿第二方向的第二推力,第一方向与第二方向相反。
如图20所示,该救机方法包括操作S2002~操作S2004。
在操作S2002,接收救机控制指令。
在本实施例中,救机控制指令可以参考上述实施例中关于救机控制指令的说明,在此不再详述。
在操作S2004,当无人飞行器处于待救机姿态,并且无人飞行器能够执行救机操作时,至少两个旋翼中至少部分旋翼响应于救机控制指令提供第二推力,以执行救机操作。
在一个实施例中,至少两个旋翼中至少部分旋翼响应于救机控制指令提供第二推力,以执行救机操作可以包括如下操作:至少两个旋翼中至少部分旋翼响应于第一控制指令提供第二推力,使得机体从待救机姿态转变成正常起飞姿态。
具体内容参考前面的实施例的相同部分,此处不再做赘述。
在一个实施例中,至少两个旋翼中至少部分旋翼响应于救机控制指令提供第二推力,以执行救机操作可以包括:至少两个旋翼中第一部分旋翼响应于第一控制指令,各自分别提供第一推力,并且,至少两个旋翼中第二部分旋翼响应于第一控制指令,各自分别提供第二推力,使得机体从待救机姿态转变成正常起飞姿态。
在一个实施例中,机体处于待救机姿态下,机体在沿第一方向与水平面之间的夹角大 于第一预设角度阈值。其中,第一预设角度阈值可以是预先设置的阈值。
在一个实施例中,至少两个旋翼中至少部分旋翼响应于救机控制指令提供第二推力,以执行救机操作可以包括如下操作,至少两个旋翼响应于第二控制指令,在夹角大于第二预设角度阈值时提供第二推力,使得机体以待救机姿态起飞。
在一个实施例中,无人飞行器还包括惯性测量单元,用于测量机体的姿态信息。无人飞行器还可以包括:设置在机体上的承载体,承载体用于承载拍摄装置。
相应地,上述方法还包括:基于姿态信息和/或拍摄装置的拍摄图像确定是否能够对无人飞行器进行救机操作。
在一个实施例中,上述方法还包括:基于姿态信息和/或拍摄装置的拍摄图像确定能够提供第二推力的可救机旋翼,以便控制可救机旋翼进行救机操作。
具体内容参考前面的实施例的相同部分,此处不再做赘述。
在一个实施例中,至少两个旋翼各自与对应的电机转轴连接。
相应地,上述方法还包括:如果机体处于待救机姿态,并且无人飞行器能够执行救机操作,则给至少两个旋翼中至少部分旋翼的电机发送控制指令,以控制电机驱动与电机对应的旋翼提供第二推力。
在一个实施例中,无人飞行器包括双向电子调速器,用于控制与至少两个旋翼各自相连的电机转子正转或者反转,以驱动至少两个旋翼各自正转或者反转。无人飞行器能够执行救机操作时:至少两个旋翼中至少部分旋翼的桨叶能够正转或者反转,至少部分旋翼的桨叶在当前姿态下不会发生干涉,双向电子调速器能够正常工作。
在一个实施例中,至少两个旋翼各自的正转方向和反转方向是基于至少两个旋翼各自的桨叶角来确定的。
在一个实施例中,无人飞行器具有救机模式,救机模式包括手动救机模式、自动救机模式和自动救机返航模式中的至少一种。
具体内容参考前面的实施例的相同部分,此处不再做赘述。
例如,至少两个旋翼各自具有旋翼标识。
上述方法还可以包括:存储救机策略,以便无人飞行器在自动救机模式或者自动救机返航模式下基于救机策略执行救机操作。救机策略可以存储在存储器中。其中,救机策略可以包括以下至少一种。例如,角度和旋翼标识之间的第一映射关系。例如,角度、旋翼标识和杆量模值之间的第二映射关系。例如,角度、旋翼标识、属性信息和杆量模值之间的第三映射关系,其中,属性信息包括以下至少一种:电源的电压信息、无人飞行器的重量信息、环境的气压信息和救机控制指令触发次数。
在一个实施例中,无人飞行器处于待救机姿态时,则至少两个旋翼在正向旋转时提供的推力的合力方向,在经由无人飞行器的重心的铅垂线上的投影指向地球球心,和/或,至少两个旋翼各自的桨叶在当前姿态下会与着陆面之间发生干涉。
具体内容参考前面的实施例的相同部分,此处不再做赘述。
在一个实施例中,无人飞行器能够执行救机操作时:至少两个旋翼中至少部分旋翼的桨叶能够正转或者反转,至少部分旋翼的桨叶在当前姿态下与着陆面之间分离。
在一个实施例中,无人飞行器处于正常起飞姿态时,例如,至少两个旋翼在正向旋转时提供的推力的合力方向,在经由无人飞行器的重心的铅垂线上的投影背向地球重心,和 /或,至少两个旋翼各自的桨叶在当前姿态下与着陆面之间分离。
在一个实施例中,无人飞行器还包括:通信接口,用于与控制终端进行通信。
相应地,接收救机控制指令可以包括:通过无人飞行器的通信接口接收来自控制终端的通信接口的救机控制指令。
在一个实施例中,无人飞行器的救机模式包括:手动救机模式和自动救机模式。
其中,在手动救机模式下,救机控制指令包括由控制终端的摇杆输入的杆量模值、指令方向和电机转动指令。
在自动救机模式下,救机控制指令包括电机转动指令。
在一个实施例中,针对手动救机模式,至少两个旋翼中至少部分旋翼能够响应于杆量模值、指令方向和电机转动指令,提供第二推力。
具体内容参考前面的实施例的相同部分,此处不再做赘述。
在一个实施例中,手动救机模式的输入包括:杆量模值、指令方向和电机转动指令。相应地,手动救机模式的输出可以包括:与执行反转的电机对应的旋翼标识和杆量模值。
在一个实施例中,基于初始姿态信息和电机转动指令对至少两个旋翼中至少部分旋翼进行开环控制,以提供第二推力。
在一个实施例中,开环控制的输入包括:初始姿态信息、起飞姿态阈值、电机转动指令和属性信息,属性信息包括以下至少一种:电源的电压信息、无人飞行器的重量信息和环境的气压信息和救机控制指令触发次数。
相应地,开环控制的输出包括:旋翼标识、杆量模值和指令输出持续时长。
具体内容参考前面的实施例的相同部分,此处不再做赘述。
在一个实施例中,基于当前姿态信息和电机转动指令对至少两个旋翼中至少部分旋翼进行闭环控制,以提供第二推力。
例如,闭环控制的输入包括:当前姿态信息、起飞姿态阈值和电机转动指令,或者,当前姿态信息、起飞姿态阈值、电机转动指令和属性信息,其中,属性信息包括以下至少一种:电源的电压信息、无人飞行器的重量信息和环境的气压信息。
相应地,闭环控制的输出包括:旋翼标识、杆量模值。
在一个实施例中,上述方法还包括:将杆量模值转换为安全杆量模值。
相应地,在手动救机模式下,救机控制指令包括安全杆量模值、指令方向和电机转动指令。
在一个实施例中,上述方法还包括:在手动救机模式下,无人飞行器通过通信接口给控制终端的通信接口发送引导提示信息,以便控制终端的显示屏显示提示信息,引导用户进行救机。
具体内容参考前面的实施例的相同部分,此处不再做赘述。
在一个实施例中,引导提示信息包括以下至少一种:打杆示意图像、打杆参数取值,其中,打杆示意图像是基于打杆参数取值生成的,打杆参数取值至少基于机体的姿态信息来确定的。
在一个实施例中,上述方法还包括:通过通信接口接收来自控制终端的通信接口的救机模式设置指令,救机模式设置指令包括以下至少一种:救机策略设置指令,和/或,起飞姿态阈值设置指令。
在一个实施例中,上述方法还包括:至少两个旋翼中至少部分旋翼各自输出的推力,由至少两个旋翼中除至少部分旋翼之外的一个旋翼输出的推力代替或者多个旋翼输出的合力进行代替。
具体内容参考前面的实施例的相同部分,此处不再做赘述。
在一个实施例中,上述方法还包括:监控与至少两个旋翼对应的电机的动力故障,以便对存在动力故障的电机进行替换。
在一个实施例中,机体包括传感器组件,用于采集传感器数据,传感器组件包括惯性检测单元和图像传感器中至少一种。其中,传感器组件可以是设置在无人飞行器上的,也可以是以作业设备的形式固定在无人飞行器上的,在此不做限定。
本公开的另一方还提供了一种救机方法,应用于控制终端,控制终端与无人飞行器通信连接。
图21为本公开实施例提供的由控制终端执行的救机方法的流程图。
如图21所示,该方法包括:操作S2102~操作S2104。
在操作S2102,获取救机控制指令。
在操作S2104,向无人飞行器发送救机控制指令,使得救机控制指令用于当无人飞行器处于待救机姿态,并且无人飞行器能够执行救机操作时,指示无人飞行器执行救机操作。
例如,控制终端包括以下至少一种:遥控器或可穿戴设备。
在一个实施例中,获取救机控制指令包括以下至少一种。例如,基于针对控制终端上摇杆的第一用户操作,生成包括控制杆量、指令方向、电机转动指令中至少一种的控制指令。例如,基于针对控制终端上模式按键的第二用户操作,生成用于控制无人飞行器切换至救机模式、自动救机模式、手动救机模式、开环控制模式或闭环控制模式中任意一种的控制指令;或者,生成用于退出救机模式、自动救机模式、手动救机模式、自动救机返航模式、开环控制模式或闭环控制模式中任意一种的控制指令。例如,通过虚拟摇杆和/或虚拟按键获取救机控制指令,其中,控制终端包括显示屏,显示屏用于显示交互界面,交互界面显示虚拟摇杆和/或虚拟按键。
具体内容参考前面的实施例的相同部分,此处不再做赘述。
在一个实施例中,控制终端包括遥控器和可穿戴设备,遥控器包括通信接口,可穿戴设备包括通信接口,遥控器的通信接口和可穿戴设备的通信接口各自分别与无人飞行器的通信接口进行通讯。
在一个实施例中,上述方法还包括:首先,可穿戴设备响应于遥控设置操作,给遥控器发送救机模式设置指令。然后,遥控器响应于救机模式设置指令输出设置结果提示信息,以提示救机模式设置结果。
在一个实施例中,上述方法还可以包括如下操作,可穿戴设备响应于来自无人飞行器的进入救机模式失败的模式进入失败提示信息,显示模式进入失败提示信息,以便用户寻找无人飞行器。
在一个实施例中,上述方法还可以包括如下操作,响应于救机模式开启操作,向无人飞行器发送救机模式开启指令,以便无人飞行器响应于救机模式开启指令,进入救机模式。
在一个实施例中,上述方法还可以包括如下操作,响应于模式切换操作,向无人飞行器发送模式切换指令,模式切换指令包括以下任意一种:手动救机模式选取指令、自动救 机模式选取指令或者自动救机返航模式选取指令。
在一个实施例中,上述方法还包括:输出提示信息,提示信息包括以下至少一种:当前姿态信息、初始姿态信息、电机状态信息、双向电子调速器状态信息、进入救机模式失败提示信息、当前模式信息、退出模式提示信息或者当前飞行状态信息。
具体内容参考前面的实施例的相同部分,此处不再做赘述。
在一个实施例中,上述方法还可以包括如下操作,首先,接收引导提示信息。然后,显示引导提示信息,以便引导用户进行救机,引导提示信息包括以下至少一种:打杆示意图像、打杆参数取值。其中,引导提示信息中打杆参数取值等可以是通过开环控制中确定打杆参数取值的方法来确定的,如基于无人飞行器的姿态信息来确定的。
本公开的另一方面还提供了一种救机系统。
图22为本公开实施例提供的救机系统的方框图。
如图22所示,该救机系统2200可以包括:无人飞行器2210和控制终端2220。
其中,无人飞行器2210包括:机体;至少两个旋翼,可转动地设置在机体上,至少两个旋翼各自在正向旋转时提供沿第一方向的第一推力,至少两个旋翼各自在反向旋转时提供沿第二方向的第二推力,第一方向与第二方向相反;第一存储器,其存储有可执行指令,可执行指令在由一个或多个处理器执行时,可以使一个或多个处理器执行如上的方法的操作。
控制终端2220包括:第二存储器,其存储有可执行指令,可执行指令在由一个或多个处理器执行时,可以使一个或多个处理器执行如上的方法。
无人飞行器2210和控制终端2220具体的结构或执行的操作,可以参考前面的实施例的相同部分,此处不再做赘述。
以下对救机系统的功能交互进行示例性说明。
图23为本公开实施例提供的救机系统的功能交互示意图。
如图23所示,用户利用眼镜设置遥控的进入救机模式(简称C1)单击进入救机模式的遥控功能按键。眼镜将设置指令发送给遥控器,使得遥控器进行相应的设置。遥控器给用户反馈配置结果(如可以是通过眼镜进行显示的),如果配置成功,则用户可以单击设置成功的遥控器C1键。如果配置失败,则由用户重新进行配置。遥控可以响应于用户对C1键的触发操作,给无人飞行器的飞控发送进入救机模式指令。
飞控响应于进入救机模式指令,进入救机模式检测,如判断当前电机状态是否关闭,如果是,则给眼镜反馈进入救机模式失败错误码。如果没有关闭,则继续判断当前姿态,如果当前处于正常起飞姿态,则给眼镜反馈进入救机模式失败错误码。如果当前处于待救机姿态,则继续判断电调是否正常。如果电调异常,则给眼镜反馈进入救机模式失败错误码。如果电调正常,则默认进入自动救机模式。用户在此期间可以进行档位选择,如选择手动救机模式、自动救机模式或自动救机返航模式等。用户选择的档位会通过遥控发送给飞控,以便飞控根据当前档位切换对应的救机模式。如果救机成功,则接收流程,如果救机失败,则可以通过眼镜或遥控提示用户需要去捡UAV。
图24为本公开实施例提供的手动救机模式下飞控执行操作的流程图。
如图24所示,飞控根据当前档位切换对应的救机模式之后,如果是手动救机模式,则可以响应于来自遥控的打杆指令,根据该打杆指令进行救机。用户可以基于无人飞行器 的姿态信息和和拍摄设备采集的图像信息等判断当前是否救机成功。如果救机成功在可以退出救机模式。否则,用于可以继续通过打杆的方式进行救机。
图25为本公开实施例提供的自动救机模式下飞控执行操作的流程图。
如图25所示,飞控根据当前档位切换对应的救机模式之后,如果是自动救机模式,则可以响应于来自遥控的按键指令,根据当前姿态自动进行救机。无人飞行器可以基于当前姿态信息和/或采集的图像信息判断当前是否救机成功,如果救机成功则退出救机模式。否则,飞控可以基于当前姿态信息再次进行救机操作,直至满足停止条件,如达到尝试次数阈值、达到尝试时长阈值、电量小于电量阈值等。
图26为本公开实施例提供的自动救机返航模式下飞控执行操作的流程图。
如图26所示,飞控根据当前档位切换对应的救机模式之后,如果是自动救机返航模式,则可以响应于来自遥控的打杆指令(或按键指令),根据指令或当前姿态自动进行救机。无人飞行器可以基于当前姿态信息和/或采集的图像信息判断当前是否救机成功,如果救机成功则执行自动起飞和返航功能。在返航成功后,可以退出自动救机返航模式。否则,提示用户捡UAV。
图27为本公开实施例提供的提示是否可正常起飞功能的时序图。
如图27所示,用户使用眼镜配置进入救机模式的遥控功能按键。如果设置成功了,则用户可以基于功能按键进入自动救机模式,或者基于档位开关选择进入手动救机模式、自动救机模式或自动救机返航模式中任意一种。遥控可以将用户选择的模式发送给飞控。飞控持续地接收来自电调推送的电调状态。期间,飞控可以进行姿态检测、炸机检测和电机状态检测中至少一种,基于检测结果提示用户当前状态是否可以正常起飞。
图28为本公开实施例提供的进入救机模式和手动救机功能的时序图。
如图28所示,如果进入救机模式失败,则飞控可以给眼镜推送进入救机失败错误码,眼镜基于接收的进入救机失败错误码,以文案等提示用户进入救机失败及其原因等信息。
如果进入救机模式成功,则飞控可以给眼镜返回当前救机模式。用户可以利用遥控切换手动救机模式、切换自动救机模式或切换自动救机模式和自动返航模式,并将选择的模式发送给飞控。飞控可以给眼镜返回救机模式结果。
其中,针对手动救机模式,如果无人飞行器处于待救机姿态,则用户可以使用遥控手动打杆翻转,并操作指令发送给飞控以执行救机动作。飞控可以给眼镜返回救机模式结果。
图29为本公开实施例提供的自动救机功能和自动救机返航功能的时序图。
如图29所示,针对自动救机模式,当无人飞行器处于待救机姿态,用户可以使用遥控手动推油门等方式触发自动救机(如翻转救机),并且发送给飞控。此外,用户也可以使用眼镜触发自动救机(如翻转救机),并且发送给飞控。飞控执行救机动作。当成功救机后,飞控可以给眼镜发送提示信息,如退出自动救机模式。
针对自动救机+返航模式,用户可以使用遥控返航案件等方式触发自动救机返航,并且发送给飞控。此外,用户也可以使用眼镜触发自动救机返航,并且发送给飞控。当前如果无人飞行器处于待救机姿态,则飞控执行救机动作。在救机成功后,无人飞行器自动起飞至返航高度,然后执行自动返航操作。期间,飞控可以给眼镜推送飞机当前飞行状态。
本公开实施例可以通过控制至少部分桨叶反转,实现远程救机功能,并且功能交互人性化,有助于提升用户体验。
本公开的另一方面还可以提供了一种计算机可读存储介质,其存储有可执行指令,可执行指令在由一个或多个处理器执行时,可以使一个或多个处理器执行如上的方法。
该计算机可读存储介质可以是上述实施例中描述的设备/装置/系统中所包含的;也可以是单独存在,而未装配入该设备/装置/系统中。上述计算机可读存储介质承载有一个或者多个程序,当上述一个或者多个程序被执行时,实现根据本公开实施例的方法。
根据本公开的实施例,计算机可读存储介质可以是非易失性的计算机可读存储介质,例如可以包括但不限于:便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。例如,根据本公开的实施例,计算机可读存储介质可以包括上文描述的ROM和/或RAM和/或ROM和RAM以外的一个或多个存储器。
本公开的另一方面还可以提供了一种计算机程序产品,包括计算机程序,计算机程序在被执行时实现如上所述的方法。
在该计算机程序被处理器执行时,执行本公开实施例的系统/装置中限定的上述功能。根据本公开的实施例,上文描述的系统、装置、模块、单元等可以通过计算机程序模块来实现。
在一种实施例中,该计算机程序可以依托于光存储器件、磁存储器件等有形存储介质。在另一种实施例中,该计算机程序也可以在网络介质上以信号的形式进行传输、分发,并通过通信系统被下载和安装,和/或从可拆卸介质被安装。该计算机程序包含的程序代码可以用任何适当的网络介质传输,包括但不限于:无线、有线等等,或者上述的任意合适的组合。
根据本公开的实施例,可以以一种或多种程序设计语言的任意组合来编写用于执行本公开实施例提供的计算机程序的程序代码,具体地,可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。程序设计语言包括但不限于诸如Java,C++,python,“C”语言或类似的程序设计语言。程序代码可以完全地在计算设备上执行、部分地在用户设备上执行、部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
在一些可能的实施例中,最后应说明的是:以上实施方式仅用以说明本公开的技术方案,而非对其进行限制;尽管参照前述实施方式对本公开已经进行了详细的说明,但本领域的普通技术人员应当理解:其依然可以对前述实施方式所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开实施方式技术方案的范围。

Claims (83)

  1. 一种无人飞行器,其特征在于,包括:
    机体;
    至少两个旋翼,可转动地设置在所述机体上,至少两个所述旋翼各自在正向旋转时提供沿第一方向的第一推力,至少两个所述旋翼各自在反向旋转时提供沿第二方向的第二推力,所述第一方向与所述第二方向相反;
    其中,当所述机体处于待救机姿态,并且所述无人飞行器能够执行救机操作时,至少两个所述旋翼中至少部分旋翼能够响应于救机控制指令提供所述第二推力,以执行救机操作。
  2. 根据权利要求1所述的无人飞行器,其特征在于,至少两个所述旋翼中至少部分旋翼响应于第一控制指令提供所述第二推力,使得所述机体从所述待救机姿态转变成正常起飞姿态。
  3. 根据权利要求1所述的无人飞行器,其特征在于,至少两个所述旋翼中第一部分旋翼响应于第一控制指令,各自分别提供所述第一推力,并且,至少两个所述旋翼中第二部分旋翼响应于所述第一控制指令,各自分别提供所述第二推力。
  4. 根据权利要求1所述的无人飞行器,其特征在于,所述机体处于所述待救机姿态下,所述机体在沿所述第一方向与水平面之间的夹角大于第一预设角度阈值。
  5. 根据权利要求4所述的无人飞行器,其特征在于,至少两个所述旋翼响应于第二控制指令,在所述夹角大于第二预设角度阈值时提供所述第二推力,使得所述机体以所述待救机姿态起飞。
  6. 根据权利要求1所述的无人飞行器,其特征在于,所述无人飞行器包括惯性测量单元,用于测量所述机体的姿态信息;
    所述无人飞行器还包括:
    设置在所述机体上的承载体,所述承载体用于承载拍摄装置;
    至少一个处理器在执行可执行命令时用于:基于所述姿态信息和/或所述拍摄装置的拍摄图像确定是否能够对所述无人飞行器进行救机操作。
  7. 根据权利要求6所述的无人飞行器,其特征在于,至少一个所述处理器在执行可执行命令时还用于:基于所述姿态信息和/或所述拍摄装置的拍摄图像确定能够提供第二推力的可救机旋翼,以便控制所述可救机旋翼进行救机操作。
  8. 根据权利要求6所述的无人飞行器,其特征在于,至少两个所述旋翼各自与对应的电机转轴连接;
    至少一个所述处理器在执行可执行命令时用于:如果所述机体处于待救机姿态,并且所述无人飞行器能够执行救机操作,则给至少两个所述旋翼中至少部分旋翼的电机发送控制指令,以控制所述电机驱动与所述电机对应的旋翼提供所述第二推力。
  9. 根据权利要求1所述的无人飞行器,其特征在于,所述无人飞行器包括双向电子调速器,用于控制与至少两个所述旋翼各自相连的电机转子正转或者反转,以驱动至少两个所述旋翼各自正转或者反转;所述无人飞行器能够执行救机操作时:至少两个所述旋翼中至少部分旋翼的桨叶能够正转或者反转,所述至少部分旋翼的桨叶在当前姿态下不会发 生干涉,所述双向电子调速器能够正常工作。
  10. 根据权利要求1所述的无人飞行器,其特征在于,至少两个所述旋翼各自的正转方向和反转方向是基于至少两个所述旋翼各自的桨叶角来确定的。
  11. 根据权利要求1所述的无人飞行器,其特征在于,所述无人飞行器具有救机模式,所述救机模式包括手动救机模式、自动救机模式和自动救机返航模式中的至少一种。
  12. 根据权利要求11所述的无人飞行器,其特征在于,至少两个所述旋翼各自具有旋翼标识;
    所述无人飞行器还包括:存储器,用于存储救机策略,以便所述无人飞行器在所述自动救机模式或者所述自动救机返航模式下基于所述救机策略执行救机操作,其中,所述救机策略包括以下至少一种:
    角度和旋翼标识之间的第一映射关系;
    角度、旋翼标识和杆量模值之间的第二映射关系;
    角度、旋翼标识、属性信息和杆量模值之间的第三映射关系,其中,所述属性信息包括以下至少一种:电源的电压信息、无人飞行器的重量信息、环境的气压信息和救机控制指令触发次数。
  13. 根据权利要求1所述的无人飞行器,其特征在于,所述无人飞行器处于所述待救机姿态时:
    至少两个所述旋翼在正向旋转时提供的推力的合力方向,在经由所述无人飞行器的重心的铅垂线上的投影指向地球球心;和/或
    至少两个所述旋翼各自的桨叶在当前姿态下会与着陆面之间发生干涉。
  14. 根据权利要求1所述的无人飞行器,其特征在于,所述无人飞行器能够执行救机操作时:至少两个所述旋翼中至少部分旋翼的桨叶能够正转或者反转,所述至少部分旋翼的桨叶在当前姿态下与着陆面之间分离。
  15. 根据权利要求2所述的无人飞行器,其特征在于,所述无人飞行器处于正常起飞姿态时:
    至少两个所述旋翼在正向旋转时提供的推力的合力方向,在经由所述无人飞行器的重心的铅垂线上的投影背向地球重心;和/或
    至少两个所述旋翼各自的桨叶在当前姿态下与着陆面之间分离。
  16. 根据权利要求1所述的无人飞行器,其特征在于,所述无人飞行器还包括:通信接口,用于与控制终端进行通信;
    所述救机控制指令是所述无人飞行器的通信接口从所述控制终端的通信接口获取的。
  17. 根据权利要求16所述的无人飞行器,其特征在于,所述无人飞行器的救机模式包括:手动救机模式和自动救机模式;
    在所述手动救机模式下,所述救机控制指令包括由所述控制终端的摇杆输入的杆量模值、指令方向和电机转动指令;
    在所述自动救机模式下,所述救机控制指令包括电机转动指令。
  18. 根据权利要求17所述的无人飞行器,针对所述手动救机模式,其特征在于,至少两个所述旋翼中至少部分旋翼能够响应于所述杆量模值、所述指令方向和所述电机转动指令,提供所述第二推力。
  19. 根据权利要求18所述的无人飞行器,其特征在于,所述手动救机模式的输入包括:所述杆量模值、所述指令方向和所述电机转动指令;
    所述手动救机模式的输出包括:与执行反转的电机对应的旋翼标识和杆量模值。
  20. 根据权利要求17所述的无人飞行器,其特征在于,至少两个所述旋翼中至少部分旋翼能够响应初始姿态信息和所述电机转动指令,进行开环控制,以提供所述第二推力。
  21. 根据权利要求20所述的无人飞行器,其特征在于,所述开环控制的输入包括:所述初始姿态信息、起飞姿态阈值、电机转动指令和属性信息,所述属性信息包括以下至少一种:电源的电压信息、无人飞行器的重量信息和环境的气压信息和救机控制指令触发次数;
    所述开环控制的输出包括:旋翼标识、杆量模值和指令输出持续时长。
  22. 根据权利要求17所述的无人飞行器,其特征在于,至少两个所述旋翼中至少部分旋翼能够响应当前姿态信息和所述电机转动指令进行闭环控制,以提供所述第二推力。
  23. 根据权利要求22所述的无人飞行器,其特征在于,所述闭环控制的输入包括:当前姿态信息、起飞姿态阈值和电机转动指令,或者,当前姿态信息、起飞姿态阈值、电机转动指令和属性信息,其中,所述属性信息包括以下至少一种:电源的电压信息、无人飞行器的重量信息和环境的气压信息;
    所述闭环控制的输出包括:旋翼标识、杆量模值。
  24. 根据权利要求17所述的无人飞行器,其特征在于,所述无人飞行器的至少一个处理器在执行可执行命令时用于:将所述杆量模值转换为安全杆量模值;
    在所述手动救机模式下,所述救机控制指令包括安全杆量模值、指令方向和电机转动指令。
  25. 根据权利要求17所述的无人飞行器,其特征在于,所述手动救机模式下,所述无人飞行器还通过所述通信接口给所述控制终端的通信接口发送引导提示信息,以便所述控制终端的显示屏显示所述提示信息,引导用户进行救机。
  26. 根据权利要求25所述的无人飞行器,其特征在于,所述通信接口发送的引导提示信息包括以下至少一种:打杆示意图像、打杆参数取值,其中,所述打杆示意图像是基于所述打杆参数取值生成的,所述打杆参数取值至少基于所述机体的姿态信息来确定的。
  27. 根据权利要求16所述的无人飞行器,其特征在于,所述通信接口还用于接收来自所述控制终端的通信接口的救机模式设置指令,所述救机模式设置指令包括以下至少一种:救机策略设置指令,和/或,起飞姿态阈值设置指令。
  28. 根据权利要求1所述的无人飞行器,其特征在于,至少两个所述旋翼中至少部分旋翼各自输出的推力,能够由至少两个所述旋翼中除所述至少部分旋翼之外的一个旋翼输出的推力代替或者多个旋翼输出的合力代替。
  29. 根据权利要求28所述的无人飞行器,其特征在于,所述无人飞行器的至少一个处理器在执行可执行命令时用于:监控与至少两个所述旋翼对应的电机的动力故障,并且对存在动力故障的电机进行替换。
  30. 根据权利要求1-29任一项所述的无人飞行器,其特征在于,所述机体包括传感器组件,用于采集传感器数据,所述传感器组件包括惯性检测单元和图像传感器中至少一种。
  31. 一种控制终端,其特征在于,包括:
    处理器,用于生成救机控制指令;
    通信接口,用于向无人飞行器发送所述救机控制指令,所述救机控制指令用于当所述无人飞行器的机体处于待救机姿态,并且所述无人飞行器能够执行救机操作时,指示所述无人飞行器执行救机操作。
  32. 根据权利要求31所述的控制终端,其特征在于,所述控制终端包括以下至少一种:遥控器或可穿戴设备。
  33. 根据权利要求31所述的控制终端,其特征在于,还包括输入装置,
    所述输入装置包括摇杆,所述摇杆用于响应于第一用户操作生成控制杆量、指令方向、电机转动指令;和/或
    所述输入装置包括模式按键,用于响应于第二用户操作控制所述无人飞行器切换至救机模式、自动救机模式、手动救机模式、开环控制模式或闭环控制模式中任意一种;或者,用于退出所述救机模式、自动救机模式、手动救机模式、自动救机返航模式、开环控制模式或闭环控制模式中任意一种;和/或
    所述输入装置包括显示屏,所述显示屏用于显示交互界面,所述交互界面显示虚拟摇杆和/或虚拟按键。
  34. 根据权利要求33所述的控制终端,其特征在于,所述控制终端包括遥控器和可穿戴设备,所述遥控器包括通信接口,所述可穿戴设备包括通信接口,所述遥控器的通信接口和所述可穿戴设备的通信接口各自分别与所述无人飞行器的通信接口进行通信。
  35. 根据权利要求34所述的控制终端,其特征在于,所述可穿戴设备响应于遥控设置操作,给所述遥控器发送救机模式设置指令;
    所述遥控器响应于所述救机模式设置指令输出设置结果提示信息,以提示救机模式设置结果。
  36. 根据权利要求34所述的控制终端,其特征在于,所述可穿戴设备响应于来自所述无人飞行器的进入救机模式失败的模式进入失败提示信息,显示所述模式进入失败提示信息,以便用户寻找所述无人飞行器。
  37. 根据权利要求34所述的控制终端,其特征在于,所述遥控器响应于救机模式开启操作,向所述无人飞行器发送救机模式开启指令,以便所述无人飞行器响应于所述救机模式开启指令,进入所述救机模式。
  38. 根据权利要求37所述的控制终端,其特征在于,所述遥控器响应于模式切换操作,向所述无人飞行器发送模式切换指令,所述模式切换指令包括以下任意一种:手动救机模式选取指令、自动救机模式选取指令或者自动救机返航模式选取指令。
  39. 根据权利要求34所述的控制终端,其特征在于,所述控制终端还包括:输出装置,所述输出装置用于输出以下至少一种提示信息:当前姿态信息、初始姿态信息、电机状态信息、双向电子调速器状态信息、进入救机模式失败提示信息、当前模式信息、退出模式提示信息或者当前飞行状态信息。
  40. 根据权利要求39所述的控制终端,其特征在于,所述控制终端的通信接口还用于接收引导提示信息,所述输出装置包括显示器,所述显示器用于显示所述引导提示信息, 以便引导所述用户进行救机,所述引导提示信息包括以下至少一种:打杆示意图像、打杆参数取值。
  41. 一种救机方法,应用于无人飞行器,其特征在于,所述无人飞行器包括:机体;至少两个旋翼,可转动地设置在所述机体上,至少两个所述旋翼各自在正向旋转时提供沿第一方向的第一推力,至少两个所述旋翼各自在反向旋转时提供沿第二方向的第二推力,所述第一方向与所述第二方向相反;
    所述方法包括:
    接收救机控制指令;
    当所述无人飞行器的机体处于待救机姿态,并且所述无人飞行器能够执行救机操作时,至少两个所述旋翼中至少部分旋翼响应于所述救机控制指令提供所述第二推力,以执行救机操作。
  42. 根据权利要求41所述的方法,其特征在于,所述至少两个所述旋翼中至少部分旋翼响应于所述救机控制指令提供所述第二推力,以执行救机操作包括:
    至少两个所述旋翼中至少部分旋翼响应于第一控制指令提供所述第二推力,使得所述机体从所述待救机姿态转变成正常起飞姿态。
  43. 根据权利要求41所述的方法,其特征在于,所述至少两个所述旋翼中至少部分旋翼响应于所述救机控制指令提供所述第二推力,以执行救机操作包括:
    至少两个所述旋翼中第一部分旋翼响应于第一控制指令,各自分别提供所述第一推力,并且,至少两个所述旋翼中第二部分旋翼响应于所述第一控制指令,各自分别提供所述第二推力,使得所述机体从所述待救机姿态转变成正常起飞姿态。
  44. 根据权利要求41所述的方法,其特征在于,所述机体处于所述待救机姿态下,所述机体在沿所述第一方向与水平面之间的夹角大于第一预设角度阈值。
  45. 根据权利要求44所述的方法,其特征在于,所述至少两个所述旋翼中至少部分旋翼响应于所述救机控制指令提供所述第二推力,以执行救机操作包括:
    至少两个所述旋翼响应于第二控制指令,在所述夹角大于第二预设角度阈值时提供所述第二推力,使得所述机体以所述待救机姿态起飞。
  46. 根据权利要求41所述的方法,其特征在于,所述无人飞行器还包括惯性测量单元,用于测量所述机体的姿态信息;
    所述无人飞行器还包括:
    设置在所述机体上的承载体,所述承载体用于承载拍摄装置;
    所述方法还包括:基于所述姿态信息和/或所述拍摄装置的拍摄图像确定是否能够对所述无人飞行器进行救机操作。
  47. 根据权利要求46所述的方法,其特征在于,所述方法还包括:基于所述姿态信息和/或所述拍摄装置的拍摄图像确定能够提供第二推力的可救机旋翼,以便控制所述可救机旋翼进行救机操作。
  48. 根据权利要求46所述的方法,其特征在于,至少两个所述旋翼各自与对应的电机转轴连接;
    所述方法还包括:如果所述机体处于待救机姿态,并且所述无人飞行器能够执行救机操作,则给至少两个所述旋翼中至少部分旋翼的电机发送控制指令,以控制所述电机驱动 与所述电机对应的旋翼提供所述第二推力。
  49. 根据权利要求41所述的方法,其特征在于,所述无人飞行器包括双向电子调速器,用于控制与至少两个所述旋翼各自相连的电机转子正转或者反转,以驱动至少两个所述旋翼各自正转或者反转;所述无人飞行器能够执行救机操作时:至少两个所述旋翼中至少部分旋翼的桨叶能够正转或者反转,所述至少部分旋翼的桨叶在当前姿态下不会发生干涉,所述双向电子调速器能够正常工作。
  50. 根据权利要求41所述的方法,其特征在于,至少两个所述旋翼各自的正转方向和反转方向是基于至少两个所述旋翼各自的桨叶角来确定的。
  51. 根据权利要求41所述的方法,其特征在于,所述无人飞行器具有救机模式,所述救机模式包括手动救机模式、自动救机模式和自动救机返航模式中的至少一种。
  52. 根据权利要求51所述的方法,其特征在于,至少两个所述旋翼各自具有旋翼标识;
    所述方法还包括:存储救机策略,以便所述无人飞行器在所述自动救机模式或者所述自动救机返航模式下基于所述救机策略执行救机操作,其中,所述救机策略包括以下至少一种:
    角度和旋翼标识之间的第一映射关系;
    角度、旋翼标识和杆量模值之间的第二映射关系;
    角度、旋翼标识、属性信息和杆量模值之间的第三映射关系,其中,所述属性信息包括以下至少一种:电源的电压信息、无人飞行器的重量信息、环境的气压信息和救机控制指令触发次数。
  53. 根据权利要求41所述的方法,其特征在于,所述无人飞行器处于所述待救机姿态时:
    至少两个所述旋翼在正向旋转时提供的推力的合力方向,在经由所述无人飞行器的重心的铅垂线上的投影指向地球球心;和/或
    至少两个所述旋翼各自的桨叶在当前姿态下会与着陆面之间发生干涉。
  54. 根据权利要求41所述的方法,其特征在于,所述无人飞行器能够执行救机操作时:至少两个所述旋翼中至少部分旋翼的桨叶能够正转或者反转,所述至少部分旋翼的桨叶在当前姿态下与着陆面之间分离。
  55. 根据权利要求42所述的方法,其特征在于,所述无人飞行器处于正常起飞姿态时:
    至少两个所述旋翼在正向旋转时提供的推力的合力方向,在经由所述无人飞行器的重心的铅垂线上的投影背向地球重心;和/或
    至少两个所述旋翼各自的桨叶在当前姿态下与着陆面之间分离。
  56. 根据权利要求41所述的方法,其特征在于,所述无人飞行器还包括:通信接口,用于与控制终端进行通信;
    所述接收救机控制指令包括:
    通过所述无人飞行器的通信接口接收来自所述控制终端的通信接口的所述救机控制指令。
  57. 根据权利要求56所述的方法,其特征在于,所述无人飞行器的救机模式包括:手动救机模式和自动救机模式;
    在所述手动救机模式下,所述救机控制指令包括由所述控制终端的摇杆输入的杆量模值、指令方向和电机转动指令;
    在所述自动救机模式下,所述救机控制指令包括电机转动指令。
  58. 根据权利要求57所述的方法,针对所述手动救机模式,其特征在于,至少两个所述旋翼中至少部分旋翼能够响应于所述杆量模值、所述指令方向和所述电机转动指令,提供所述第二推力。
  59. 根据权利要求58所述的方法,其特征在于,所述手动救机模式的输入包括:所述杆量模值、所述指令方向和所述电机转动指令;
    所述手动救机模式的输出包括:与执行反转的电机对应的旋翼标识和杆量模值。
  60. 根据权利要求57所述的方法,其特征在于,基于初始姿态信息和所述电机转动指令对至少两个所述旋翼中至少部分旋翼进行开环控制,以提供所述第二推力。
  61. 根据权利要求60所述的方法,其特征在于,所述开环控制的输入包括:所述初始姿态信息、起飞姿态阈值、电机转动指令和属性信息,所述属性信息包括以下至少一种:电源的电压信息、无人飞行器的重量信息和环境的气压信息和救机控制指令触发次数;
    所述开环控制的输出包括:旋翼标识、杆量模值和指令输出持续时长。
  62. 根据权利要求57所述的方法,其特征在于,基于当前姿态信息和所述电机转动指令对至少两个所述旋翼中至少部分旋翼进行闭环控制,以提供所述第二推力。
  63. 根据权利要求62所述的方法,其特征在于,所述闭环控制的输入包括:当前姿态信息、起飞姿态阈值和电机转动指令,或者,当前姿态信息、起飞姿态阈值、电机转动指令和属性信息,其中,所述属性信息包括以下至少一种:电源的电压信息、无人飞行器的重量信息和环境的气压信息;
    所述闭环控制的输出包括:旋翼标识、杆量模值。
  64. 根据权利要求57所述的方法,其特征在于,还包括:将所述杆量模值转换为安全杆量模值;
    在所述手动救机模式下,所述救机控制指令包括安全杆量模值、指令方向和电机转动指令。
  65. 根据权利要求57所述的方法,其特征在于,还包括:在所述手动救机模式下,所述无人飞行器通过所述通信接口给所述控制终端的通信接口发送引导提示信息,以便所述控制终端的显示屏显示所述提示信息,引导用户进行救机。
  66. 根据权利要求65所述的方法,其特征在于,所述引导提示信息包括以下至少一种:打杆示意图像、打杆参数取值,其中,所述打杆示意图像是基于所述打杆参数取值生成的,所述打杆参数取值至少基于所述机体的姿态信息来确定的。
  67. 根据权利要求56所述的方法,其特征在于,还包括:通过所述通信接口接收来自所述控制终端的通信接口的救机模式设置指令,所述救机模式设置指令包括以下至少一种:救机策略设置指令,和/或,起飞姿态阈值设置指令。
  68. 根据权利要求41所述的方法,其特征在于,还包括:至少两个所述旋翼中至少部分旋翼各自输出的推力,由至少两个所述旋翼中除所述至少部分旋翼之外的一个旋翼输出的推力代替或者多个旋翼输出的合力进行代替。
  69. 根据权利要求68所述的方法,其特征在于,还包括:监控与至少两个所述旋翼对应的电机的动力故障,以便对存在动力故障的电机进行替换。
  70. 根据权利要求41-69任一项所述的方法,其特征在于,所述机体包括传感器组件,用于采集传感器数据,所述传感器组件包括惯性检测单元和图像传感器中至少一种。
  71. 一种救机方法,应用于控制终端,其特征在于,所述控制终端与无人飞行器通信连接;
    所述方法包括:
    获取救机控制指令;
    向所述无人飞行器发送所述救机控制指令,所述救机控制指令用于当所述无人飞行器处于待救机姿态,并且所述无人飞行器能够执行救机操作时,指示所述无人飞行器执行救机操作。
  72. 根据权利要求71所述的方法,其特征在于,所述控制终端包括以下至少一种:遥控器或可穿戴设备。
  73. 根据权利要求71所述的方法,其特征在于,所述获取救机控制指令包括以下至少一种:
    基于针对所述控制终端上摇杆的第一用户操作,生成包括控制杆量、指令方向、电机转动指令中至少一种的控制指令;
    基于针对所述控制终端上模式按键的第二用户操作,生成用于控制所述无人飞行器切换至救机模式、自动救机模式、手动救机模式、开环控制模式或闭环控制模式中任意一种的控制指令;或者,生成用于退出所述救机模式、自动救机模式、手动救机模式、自动救机返航模式、开环控制模式或闭环控制模式中任意一种的控制指令;和/或
    通过虚拟摇杆和/或虚拟按键获取救机控制指令,其中,所述控制终端包括显示屏,所述显示屏用于显示交互界面,所述交互界面显示所述虚拟摇杆和/或所述虚拟按键。
  74. 根据权利要求73所述的方法,其特征在于,所述控制终端包括遥控器和可穿戴设备,所述遥控器包括通信接口,所述可穿戴设备包括通信接口,所述遥控器的通信接口和所述可穿戴设备的通信接口各自分别与所述无人飞行器的通信接口进行通讯。
  75. 根据权利要求74所述的方法,其特征在于,还包括:
    所述可穿戴设备响应于遥控设置操作,给所述遥控器发送救机模式设置指令;
    所述遥控器响应于所述救机模式设置指令输出设置结果提示信息,以提示救机模式设置结果。
  76. 根据权利要求74所述的方法,其特征在于,还包括:
    所述可穿戴设备响应于来自所述无人飞行器的进入救机模式失败的模式进入失败提示信息,显示所述模式进入失败提示信息,以便用户寻找所述无人飞行器。
  77. 根据权利要求74所述的方法,其特征在于,还包括:
    响应于救机模式开启操作,向所述无人飞行器发送救机模式开启指令,以便所述无人飞行器响应于所述救机模式开启指令,进入所述救机模式。
  78. 根据权利要求77所述的方法,其特征在于,还包括:
    响应于模式切换操作,向所述无人飞行器发送模式切换指令,所述模式切换指令包括以下任意一种:手动救机模式选取指令、自动救机模式选取指令或者自动救机返航模式选取指令。
  79. 根据权利要求74所述的方法,其特征在于,还包括:输出提示信息,所述提示信息包括以下至少一种:当前姿态信息、初始姿态信息、电机状态信息、双向电子调速器状态信息、进入救机模式失败提示信息、当前模式信息、退出模式提示信息或者当前飞行状态信息。
  80. 根据权利要求79所述的方法,其特征在于,还包括:
    接收引导提示信息;
    显示所述引导提示信息,以便引导所述用户进行救机,所述引导提示信息包括以下至少一种:打杆示意图像、打杆参数取值。
  81. 一种救机系统,其特征在于,包括:
    无人飞行器,包括:机体;至少两个旋翼,可转动地设置在所述机体上,至少两个所述旋翼各自在正向旋转时提供沿第一方向的第一推力,至少两个所述旋翼各自在反向旋转时提供沿第二方向的第二推力,所述第一方向与所述第二方向相反;第一存储器,其存储有可执行指令,所述可执行指令在由一个或多个处理器执行时,可以使一个或多个所述处理器执行如权利要求41至70中任一项权利要求所述的方法的操作;
    控制终端,包括:第二存储器,其存储有可执行指令,所述可执行指令在由一个或多个处理器执行时,可以使一个或多个所述处理器执行如权利要求71至80中任一项权利要求所述的方法。
  82. 一种计算机可读存储介质,其特征在于,其存储有可执行指令,所述可执行指令在由一个或多个处理器执行时,可以使所述一个或多个处理器执行如权利要求41至80中任一项权利要求所述的方法。
  83. 一种计算机程序产品,其特征在于,包括计算机程序,所述计算机程序在被执行时实现根据权利要求41至80任一项所述的方法。
PCT/CN2021/084509 2021-03-31 2021-03-31 无人飞行器、控制终端、救机方法和救机系统 WO2022205116A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180094174.7A CN116888045A (zh) 2021-03-31 2021-03-31 无人飞行器、控制终端、救机方法和救机系统
PCT/CN2021/084509 WO2022205116A1 (zh) 2021-03-31 2021-03-31 无人飞行器、控制终端、救机方法和救机系统
US18/470,824 US20240019873A1 (en) 2021-03-31 2023-09-20 Unmanned aerial vehicle, control terminal, aircraft rescue method, and aircraft rescue system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084509 WO2022205116A1 (zh) 2021-03-31 2021-03-31 无人飞行器、控制终端、救机方法和救机系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/470,824 Continuation US20240019873A1 (en) 2021-03-31 2023-09-20 Unmanned aerial vehicle, control terminal, aircraft rescue method, and aircraft rescue system

Publications (1)

Publication Number Publication Date
WO2022205116A1 true WO2022205116A1 (zh) 2022-10-06

Family

ID=83455423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084509 WO2022205116A1 (zh) 2021-03-31 2021-03-31 无人飞行器、控制终端、救机方法和救机系统

Country Status (3)

Country Link
US (1) US20240019873A1 (zh)
CN (1) CN116888045A (zh)
WO (1) WO2022205116A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104097767A (zh) * 2014-06-13 2014-10-15 芜湖特源鑫复合材料科技有限公司 一种四旋翼飞行器
CN106143888A (zh) * 2016-07-08 2016-11-23 李须真 一种长航时的多旋翼飞行器
KR20170061884A (ko) * 2015-11-27 2017-06-07 (주)지이에스 동축반전을 이용한 멀티콥터
CN108839795A (zh) * 2018-08-01 2018-11-20 辽宁壮龙无人机科技有限公司 一种水平推动多旋翼无人机及控制方法
CN106032166B (zh) * 2015-03-12 2018-12-04 优利科技有限公司 飞行器及其翻转方法
CN209719911U (zh) * 2019-01-30 2019-12-03 李芸君 一种基于无人机的救援系统
CN111056015A (zh) * 2019-12-31 2020-04-24 陈秀梅 一种多旋翼巡飞弹

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104097767A (zh) * 2014-06-13 2014-10-15 芜湖特源鑫复合材料科技有限公司 一种四旋翼飞行器
CN106032166B (zh) * 2015-03-12 2018-12-04 优利科技有限公司 飞行器及其翻转方法
KR20170061884A (ko) * 2015-11-27 2017-06-07 (주)지이에스 동축반전을 이용한 멀티콥터
CN106143888A (zh) * 2016-07-08 2016-11-23 李须真 一种长航时的多旋翼飞行器
CN108839795A (zh) * 2018-08-01 2018-11-20 辽宁壮龙无人机科技有限公司 一种水平推动多旋翼无人机及控制方法
CN209719911U (zh) * 2019-01-30 2019-12-03 李芸君 一种基于无人机的救援系统
CN111056015A (zh) * 2019-12-31 2020-04-24 陈秀梅 一种多旋翼巡飞弹

Also Published As

Publication number Publication date
CN116888045A (zh) 2023-10-13
US20240019873A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
US11188101B2 (en) Method for controlling aircraft, device, and aircraft
US20220169383A1 (en) Systems and methods for multi-orientation flight
US11204611B2 (en) Assisted takeoff
JP6816156B2 (ja) Uav軌道を調整するシステム及び方法
CN110325939B (zh) 用于操作无人驾驶飞行器的系统和方法
WO2018058320A1 (zh) 无人机控制方法及装置
CN108351574B (zh) 用于设置相机参数的系统、方法和装置
WO2018209702A1 (zh) 无人机的控制方法、无人机以及机器可读存储介质
US20170300051A1 (en) Amphibious vertical take off and landing unmanned device with AI data processing apparatus
CN112650267B (zh) 一种飞行器的飞行控制方法、装置及飞行器
KR102254491B1 (ko) 지능형 영상 분석 모듈을 탑재한 자율비행 드론
CN104769496A (zh) 具有用于定位和交互的绳组件的飞行摄像机
CN106483980A (zh) 一种无人机跟随飞行的控制方法、装置及系统
US20230341875A1 (en) Unmanned aerial vehicle, control method and control system thereof, handheld control device, and head-mounted device
US11435743B2 (en) Throwable unmanned aerial vehicle and method of operation
JP2021179976A (ja) 遠隔操縦システムおよびその操縦装置
WO2022205116A1 (zh) 无人飞行器、控制终端、救机方法和救机系统
WO2021217425A1 (zh) 控制方法、控制装置和可移动平台
WO2022056683A1 (zh) 视场确定方法、视场确定装置、视场确定系统和介质
WO2021238743A1 (zh) 一种无人机飞行控制方法、装置及无人机
WO2022188151A1 (zh) 影像拍摄方法、控制装置、可移动平台和计算机存储介质
EP4258079A1 (en) Method and system for controlling an unmanned aerial vehicle
WO2022134301A1 (zh) 无人机及其控制方法、系统、手持控制设备、头戴设备
WO2024009447A1 (ja) 飛行制御システム、及び飛行制御方法
WO2024069790A1 (ja) 空中撮影システム、空中撮影方法および空中撮影プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933785

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180094174.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933785

Country of ref document: EP

Kind code of ref document: A1