WO2022205114A1 - 显示模组及显示装置 - Google Patents

显示模组及显示装置 Download PDF

Info

Publication number
WO2022205114A1
WO2022205114A1 PCT/CN2021/084507 CN2021084507W WO2022205114A1 WO 2022205114 A1 WO2022205114 A1 WO 2022205114A1 CN 2021084507 W CN2021084507 W CN 2021084507W WO 2022205114 A1 WO2022205114 A1 WO 2022205114A1
Authority
WO
WIPO (PCT)
Prior art keywords
film layer
index film
refractive
substrate
refractive index
Prior art date
Application number
PCT/CN2021/084507
Other languages
English (en)
French (fr)
Inventor
田雪雁
王纯阳
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/780,832 priority Critical patent/US20240164192A1/en
Priority to CN202180000684.3A priority patent/CN115485613A/zh
Priority to PCT/CN2021/084507 priority patent/WO2022205114A1/zh
Publication of WO2022205114A1 publication Critical patent/WO2022205114A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display module and a display device.
  • Vehicles such as cars, trucks, etc. all include rear-view mirrors and lights, wherein the rear-view mirrors include interior rear-view mirrors (head-up rear-view mirrors) arranged inside the car and rear-view mirrors arranged outside the vehicle.
  • the interior rearview mirror is a car rearview mirror display (vehicle rearview display) with a display function.
  • the car rearview mirror display can be used as a reflector, which is convenient for the driver to observe the rear of the vehicle.
  • Road condition information when reversing, the rearview mirror display of the car is connected to the reversing image system, and acts as a display to display the road condition information behind the vehicle, assisting the driver in reversing and parking, etc.
  • the car rearview mirror display can be an LCD display or an OLED display.
  • the lights When the vehicle is driving at night, the lights will be turned on to enhance the driver's vision; however, if there are vehicles driving in the same direction behind the vehicle, and the lights, especially the high beams, will be turned on, the lights of the vehicles behind will be in front of the vehicle.
  • the rearview mirror reflects light and shoots into the eyes of the driver in front, causing the driver of the vehicle in front to dazzle, affecting the safe driving of the vehicle in front, and increasing the safety hazard of driving.
  • a display module including a display panel and an anti-glare substrate, the display panel has a light emitting surface and a backlight surface, and the anti-glare substrate is disposed on one side of the light emitting surface of the display panel.
  • the anti-glare substrate includes a base, a first laminated structure and a second laminated structure, and the first laminated structure and the second laminated structure are respectively disposed on opposite sides of the base.
  • the first laminated structure includes a plurality of high refractive index film layers and at least one low refractive index film layer
  • the first laminated structure includes a plurality of high refractive index film layers and at least one low refractive index film The layers are alternately stacked on one side of the substrate.
  • the second laminated structure includes a plurality of high-refractive-index film layers and at least one low-refractive-index film layer, and the plurality of high-refractive-index film layers and at least one low-refractive-index film layer included in the second laminated structure are in The other sides of the base are alternately stacked.
  • the film layer farthest from the substrate of the first stacked structure and the film layer closest to the substrate are both high-refractive index film layers; the film layer of the second stacked structure farthest from the substrate , and the film layers closest to the substrate are all high-refractive index film layers.
  • the first laminated structure and the second laminated structure have the same number of film layers.
  • the thickness of the high-refractive-index film layer is 10 nm-45 nm; and/or the thickness of the low-refractive-index film layer is 80-120 nm.
  • the refractive index of the high refractive index film layer for visible light is 2-2.5; and/or the refractive index of the low refractive index film layer for visible light is 1.3-1.5.
  • the material of the high refractive index film layer includes: one or more of titanium dioxide, niobium pentoxide, and tantalum pentoxide; and/or, the material of the low refractive index film layer includes: Silica and/or magnesium fluoride.
  • the first laminated structure and the second laminated structure each include three film layers, and along a direction perpendicular to the substrate and away from the substrate, the three film layers are sequentially A high-refractive-index film layer, a first low-refractive-index film layer and a second high-refractive-index film layer.
  • the ratio of the thickness of the first high refractive index film layer to the thickness of the second high refractive index film layer is within 2/7 ⁇ 4/7; the first high refractive index film layer The ratio of the thickness of the first low refractive index film layer to the thickness of the first low refractive index film layer is within 1/10-1/5.
  • the material of the first high-refractive-index film layer is titanium dioxide, and the thickness is (15 ⁇ 2) nm; the material of the first low-refractive-index film layer is silicon dioxide, and the thickness is (100 ⁇ 2) nm. ) nm; the material of the second high refractive index film layer is titanium dioxide, and the thickness is (35 ⁇ 2) nm.
  • a display module including a display panel and an anti-glare substrate.
  • the display panel has a light-emitting surface and a backlight surface; the anti-glare substrate is arranged on one side of the light-emitting surface of the display panel.
  • the anti-glare substrate includes a base and two laminated structures, and the two laminated structures are respectively disposed on opposite sides of the base; each laminated structure includes a plurality of high-refractive index film layers and at least one Low-refractive-index film layers, the plurality of high-refractive-index film layers and the at least one low-refractive-index film layer are alternately stacked on the substrate, and the stacked structure is the film layer closest to the substrate , and the film layers farthest from the substrate are all high-refractive index film layers.
  • each high-refractive-index film layer is 10nm-45nm, and the high-refractive-index film layer has a refractive index of 2-2.5 for visible light; and/or, the thickness of each low-refractive-index film layer is 80nm-120nm, and The refractive index of the low-refractive-index film layer to visible light is 1.3-1.5.
  • a display device including the display module described in any of the above embodiments.
  • the display device further includes a circular polarizer and an optical glue.
  • the circular polarizer is arranged between the display panel of the display module and the anti-glare substrate; the optical adhesive is arranged between the circular polarizer and the anti-glare substrate for bonding the circular polarizer to the anti-glare substrate.
  • the anti-glare substrate is a circular polarizer and an optical glue.
  • FIG. 1 is a block diagram of a display device according to some embodiments.
  • Fig. 2 is the sectional view of A-A in Fig. 1;
  • 3 is the reflectivity of an anti-glare substrate for light of different wavelengths according to some embodiments.
  • Fig. 5 is the reflectivity of the optical substrate of the comparative example to the light of different wavelengths
  • FIG. 6 is a comparison table of the light reflectivity of different film layer structures.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • A, B and C each includes the following combinations of A, B and C: A only, B only, C only, A and B in combination, A and C in combination, B and C in combination combinations, and combinations of A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Exemplary embodiments are described herein with reference to cross-sectional and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes of the drawings due to, for example, manufacturing techniques and/or tolerances, are contemplated.
  • example embodiments should not be construed as limited to the shapes of the regions shown herein, but to include deviations in shapes due, for example, to manufacturing. For example, an etched area shown as a rectangle will typically have curved features.
  • the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example embodiments.
  • the blue film has poor wear resistance, is prone to wear, and is prone to bubbles when pasting; The light output efficiency of the car rearview mirror display itself is reduced, and display ghosting will occur, resulting in poor image display effect on the car rearview mirror display.
  • the wavelength of visible light that can be perceived by the human eye is between 400 and 780 nm.
  • different wavelengths of light cause different sensitivity to light perception in the human eye.
  • the human eye has the highest perception efficiency for yellow-green light with a wavelength of 555 nm, while the perception efficiency for blue light is lower.
  • the brightness of light in the 500nm-600nm band perceived by the human eye is higher, and the brightness of the light in the 400nm-500nm band perceived by the human eye is lower; that is, yellow-green light (wavelength 500nm-600nm) Light) is the light that the human eye is more sensitive to, while blue-violet light (light with a wavelength of 400nm to 500nm) is the light that the human eye is most adaptable to.
  • brightness is the visual reflection of the brightness of light waves.
  • the display device 1000 may be any head-up display such as a vehicle rearview display, a streaming media rearview mirror, a smart rearview mirror, a driving recorder, etc., or a TV Any product or component with display function, such as computer, monitor, notebook computer, tablet computer, mobile phone, navigator, etc.
  • the display device 100 can be a liquid crystal display device (Liquid Crystal Display, LCD for short); the display device can also be an electroluminescence display device or a photoluminescence display device.
  • the electroluminescence display device may be an organic electroluminescence display device (Organic Light-Emitting Diode, OLED for short) or a quantum dot electroluminescence display device (Quantum Dot Light Emitting). Diodes, referred to as QLED).
  • the display device is a photoluminescence display device
  • the photoluminescence display device may be a quantum dot photoluminescence display device.
  • a display device 1000 provided by an embodiment of the present disclosure includes a display module 100 , and the display module 100 includes a stacked display panel 10 and an anti-glare substrate 20 .
  • the display panel 10 when the display device 1000 is an OLED display device, the display panel 10 includes a stacked substrate 11 , an array substrate 12 , a light-emitting functional layer 13 and an encapsulation layer 14 ; wherein the light-emitting functional layer includes a plurality of sub-pixels 131 , the sub-pixel 131 includes a red sub-pixel R, a green sub-pixel G and a blue sub-pixel B.
  • the display panel 10 has a light-emitting surface and a backlight surface; wherein, the light-emitting surface refers to the surface of the display panel 10 for displaying image information (the upper surface of the display panel 10 in FIG. 2 ), and the backlight surface refers to the surface of the display panel 10 opposite to the light-emitting surface. surface (the lower surface of the display panel 10 in FIG. 2 ).
  • the anti-glare substrate 20 is disposed on the light-emitting surface side of the display panel 10 .
  • the anti-glare substrate 20 includes a base 1 , a first laminated structure 2 and a second laminated structure 3 , and the first laminated structure 2 and the second laminated structure 3 are respectively disposed on opposite sides of the base 1 .
  • the first laminated structure includes a plurality of high refractive index film layers H and at least one low refractive index film layer L
  • the first laminated structure 2 includes a plurality of high refractive index film layers H and at least one low refractive index film layer.
  • the layers 1 are alternately stacked on one side of the substrate 1 .
  • the second laminated structure 3 includes a plurality of high-refractive-index film layers H and at least one low-refractive-index film layer L, and the second laminated structure 3 includes a plurality of high-refractive-index film layers H and at least one low-refractive-index film layer L is alternately stacked on the other side of the base 1 .
  • the film layer farthest from the substrate 1 in the first stacked structure 2 and the film layer closest to the substrate 1 are both high-refractive index film layers H; the film layer farthest from the substrate 1 in the second stacked structure 3, and 1
  • the nearest film layers are all high-refractive index film layers H.
  • the anti-glare substrate 20 sequentially includes a high refractive index film layer H, a low refractive index film layer L, a high refractive index film layer, and a high refractive index film layer.
  • the anti-glare substrate 20 included in the display module 100 provided by the embodiment of the present disclosure has different transmittances and reflectances of the anti-glare substrate 20 to light of different wavelengths when light is irradiated on the anti-glare substrate 20 .
  • the transmittance and reflectivity of the anti-glare substrate 20 for different wavelengths of light can be used to make the transmittance of the yellow-green light of the anti-glare substrate 20 greater than that of the blue-violet light (the reflectivity of the blue-violet light is greater than that of the yellow-green light).
  • the anti-glare substrate 20 increases the reflectance ratio of blue-violet light and reduces the reflectance ratio of yellow-green light (reflecting blue-violet light as much as possible, and reduce the reflectivity of yellow-green light); since the sensitivity of the human eye to blue-violet light is lower than that of yellow-green light, the degree and possibility of dazzling the driver (human eye) are reduced.
  • the overall reflectivity of the anti-glare substrate 20 is greater than 40%, which will not affect the driver's observation of the road condition information behind the vehicle during the day.
  • the number of film layers of the first stacked structure 2 and the second stacked structure 3 are the same; that is, the number of the high refractive index film layers H included in the first stacked structure 2 and the second stacked structure 3 contains the same number of high refractive index film layers H; the number of low refractive index film layers L contained in the first laminated structure 2 is the same as the number of low refractive index film layers L contained in the second laminated structure 3 .
  • the first laminated structure 2 and the second laminated structure 3 are symmetrically disposed with respect to the substrate 1; that is, the high refractive index film layers H in the first laminated structure 2 and the second laminated structure 3 correspond to each other
  • the material and thickness of the low refractive index film layer L are the same.
  • the first laminated structure 2 and the second laminated structure 3 are symmetrically arranged with respect to the substrate 1, which is beneficial to enhance the reflectivity of the anti-glare substrate 20, increase the reflection ratio of blue-violet light, and improve the anti-glare capability of the anti-glare substrate.
  • the high-refractive index film layers H and the low-refractive index film layers L included in the first laminated structure 2 and the second laminated structure 3 are sequentially numbered, wherein the mutual Correspondence means: the high-refractive-index film layer H and the low-refractive-index film layer L with the same number.
  • the high-refractive-index film layers H and the low-refractive-index film layers L included in the first laminated structure 2 and the second laminated structure 3 are sequentially numbered as: the first high-refractive-index film layer H1, the first low-refractive-index film layer H1
  • the Mth high refractive index film layer HM included in the first stacked structure 2 corresponds to the Mth high refractive index film layer HM included in the second stacked structure 3, wherein M is greater than or equal to 1 and less than or equal to N A positive integer of +1; the Q-th low-refractive-index film layer LQ included in the first stacked structure 2 corresponds to the Q-th low-refractive-index film layer LQ included in the second stacked structure 3; wherein, Q is greater than or equal to 1, and a positive integer less than or equal to N.
  • the thickness of the high refractive index film layer H is 10 nm ⁇ 45 nm; and/or the thickness of the low refractive index film layer L is 80 ⁇ 120 nm. It has been verified by simulation experiments that when the thickness of the high refractive index film layer H is 10 nm to 45 nm; and/or the thickness of the low refractive index film layer L is 80 to 120 nm, the reflectivity of the anti-glare substrate 20 in the entire wavelength range is greater than 40%, and the reflectivity of blue-violet light is greater than that of yellow-green light, which is beneficial to improve the anti-glare capability of the anti-glare substrate.
  • the refractive index of the high-refractive-index film layer H for visible light is 2-2.5; and/or the refractive index of the low-refractive-index film layer L for visible light is 1.3-1.5. It is verified by simulation experiments that when the refractive index of the high refractive index film layer H for visible light is 2-2.5; and/or the refractive index of the low refractive index film layer L for visible light is 1.3-1.5, the anti-glare substrate 20
  • the reflectivity of the whole waveband is greater than 40%, and the reflectivity of blue-violet light is greater than that of yellow-green light, which can achieve the effect of reducing the risk of dazzling drivers.
  • the refractive index of the high-refractive-index film layer H to visible light may be 2, 2.3, 2.5, etc., which will not be listed one by one here; the refractive index of the low-refractive-index film layer to visible light may be 1.3, 1.35, 1.4, 1.5, etc., will not be listed here.
  • the computer experiment simulation analysis shows that the thickness of the high refractive index film layer H is 10nm-45nm, the refractive index of visible light is 2-2.5; and the thickness of the low-refractive index film layer L is 80-120nm, the refractive index of visible light is 80-120nm.
  • the reflectivity of the anti-glare substrate 20 for blue-violet light is greater than the reflectivity for yellow-green light, which can achieve the effect of reducing the risk of dazzling the driver.
  • the material of the high refractive index film layer H includes: one or more of titanium dioxide, niobium pentoxide, and tantalum pentoxide; and/or, the material of the low refractive index film layer L includes: two Silicon oxide and/or magnesium fluoride.
  • the substrate 1 is a rigid substrate or a flexible substrate.
  • the rigid substrate may be a glass substrate
  • the flexible substrate may be a resin substrate.
  • the anti-glare substrate 20 has high structural strength, high structural stability, and is not easily deformed; when the base 1 is a flexible base of the flexible base 1, the anti-glare substrate 20 can produce certain The deformation is beneficial to the adhesion of the anti-glare substrate and the display panel 10 .
  • the display panel 10 included in the display module 100 may be a rigid display panel or a flexible display panel; if the display panel 10 is a rigid display panel, the substrate 1 may be a rigid substrate or a flexible substrate; In the case of a flexible display panel, the substrate 1 may be a flexible substrate.
  • the first laminated structure 2 and the second laminated structure 3 each include three film layers, and along the direction perpendicular to the substrate 1 and away from the substrate 1 , the three film layers are sequentially the first High refractive index film layer H1, first low refractive index film layer L1 and second high refractive index film layer H2.
  • both the first laminated structure 2 and the second laminated structure 3 include three film layers, which can reduce the influence of the anti-glare substrate 20 on the light extraction efficiency of the display module 100 .
  • the ratio of the thickness of the first high-refractive-index film layer to the thickness of the second high-refractive-index film layer is 2/7 ⁇ Within 4/7; the ratio of the thickness of the first high-refractive-index film layer to the thickness of the first low-refractive-index film layer is within 1/10-1/5. It has been verified by simulation experiments that the ratio of the thickness of the first high refractive index film layer H1 to the thickness of the second high refractive index film layer H2 is within 2/7 to 4/7, and the thickness of the first high refractive index film layer H1 is within 2/7 to 4/7.
  • the reflectivity of the anti-glare substrate 20 in the entire wavelength band is greater than 40%, and the reflectivity of blue-violet light is greater than that of yellow-green light.
  • the reflectivity can achieve the effect of reducing the risk of dazzling drivers.
  • the material of the first high refractive index film layer H1 is titanium dioxide (TiO2) with a thickness of about (15 ⁇ 2) nm; the material of the first low refractive index film layer L1 is silicon dioxide (SiO2) with a thickness of about is (100 ⁇ 2) nm; the material of the second high refractive index film layer H2 is titanium dioxide (TiO2), and the thickness is about (35 ⁇ 2) nm.
  • ⁇ 2 refers to the fluctuation within a reasonable range due to the manufacturing accuracy and measurement error in the vicinity of the selected thickness value of each film layer.
  • the fluctuation range can also be " ⁇ 1", or " ⁇ 5", etc., which will not be exemplified one by one here.
  • FIG. 3 shows that the substrate 1 is a rigid substrate (glass substrate), the thickness is 0.5 mm, the refractive index is 1.52, and the parameters (thickness, material) of each film layer included in the anti-glare substrate 20 are shown in FIG.
  • the material of the first high-refractive-index film layer H1 is titanium dioxide (TiO2) with a thickness of 15nm; the material of the first low-refractive-index film layer L1 is silicon dioxide (SiO2), The thickness is 100nm; the material of the second high refractive index film layer H2 is titanium dioxide (TiO2), the thickness is 35nm), the reflectivity curve diagram of the anti-glare substrate 20 to light of different wavelengths; it can be seen from the figure: The reflectivity of the anti-glare substrate 20 for blue-violet light (light with a wavelength of 400 nm to 500 nm) is greater than the reflectivity for yellow-green light (light with a wavelength of 500 nm to 600 nm).
  • the reflectivity is about 72.00%, and the reflectivity for yellow-green light is about 50.07%. It can be seen that the reflectivity of the anti-glare substrate 20 for blue-violet light is greater than the reflectivity for yellow-green light, which can reduce the degree of dazzling the driver (human eye) produces and Possibility to improve the safety of drivers driving at night.
  • the reflectivity of the anti-glare substrate 20 in the full band is about 45.51%, which can meet the national standards of the People's Republic of China, the performance and installation requirements of motor vehicle rearview mirrors (GB 15084-2006 ), the interior rear-view mirror of motor vehicles, with a reflectivity of ⁇ 40% during the day.
  • the transmittance of the whole wavelength band is about 54.46%, and the light extraction efficiency of the display panel 10 can meet the requirements of displaying image information.
  • FIG. 4 shows that the substrate 1 is a flexible substrate (PI substrate), the thickness is 0.5 mm, the refractive index is 1.54, and the parameters (thickness, material) of each film layer included in the anti-glare substrate 20 are shown in FIG.
  • the second row of data in the middle (the row with the serial number 2; the material of the first high-refractive-index film layer H1 is titanium dioxide (TiO2) with a thickness of 15nm; the material of the first low-refractive-index film layer L1 is silicon dioxide (SiO2), The thickness is 100nm; the material of the second high refractive index film layer H2 is titanium dioxide (TiO2), the thickness is 35nm), the reflectivity curves of the anti-glare substrate 20 to light of different wavelengths; it can be seen from the figure: The reflectivity of the glare substrate 20 for blue-violet light (light with a wavelength of 400 nm to 500 nm) is greater than the reflectivity for yellow-green light (light with a wavelength of 500 nm to 600 nm).
  • the reflectivity of the anti-glare substrate 20 to blue-violet light is greater than that of yellow-green light; it can reduce the degree and possibility of dazzling drivers (human eyes) improve the safety of drivers driving at night.
  • the reflectivity of the anti-glare substrate 20 in the full band is about 45.79%, which can meet the national standards of the People's Republic of China, the performance and installation requirements of motor vehicle rearview mirrors (GB 15084-2006 ), the interior rear-view mirror of motor vehicles, with a reflectivity of ⁇ 40% during the day.
  • the transmittance of the whole wavelength band is about 52.70%, and the light extraction efficiency of the display panel 10 can meet the requirements of displaying image information.
  • FIG. 5 shows that the substrate 1 is a rigid substrate (glass substrate), the thickness is 0.5 mm, the refractive index is 1.52, and only one side of the substrate 1 (a single glass substrate) is provided.
  • the material and thickness of each film layer are shown in the third row of data in Figure 6 (the row with the serial number 3; the material of the first high-refractive-index film layer H1 is titanium dioxide (TiO2) with a thickness of 15nm; the material of the first low refractive index film layer L1 is silicon dioxide (SiO2) with a thickness of 100nm; the material of the second high refractive index film layer H2 is titanium dioxide (TiO2) with a thickness of 35nm), the reflectivity curves of optical devices to light of different wavelengths; comparing Figure 3 and Figure 5, and in conjunction with Figure 6, it can be seen that a laminated structure is arranged on one side of the substrate 1, and its full-band reflectance Below 40%, it does not meet the industry standard.
  • the anti-glare substrate 20 provided by the embodiment of the present disclosure can increase the reflectance ratio of blue-violet light and reduce the reflectance ratio of yellow-green light under the premise of meeting the industry standard (daytime visible light reflectivity ⁇ 40%), thereby reducing driver (human Eyes) to generate dazzling degree and possibility to improve the safety of drivers driving at night.
  • Some embodiments of the present disclosure also provide a display module 100 including a display panel 10 and an anti-glare substrate 20 .
  • the display panel 10 has a light-emitting surface and a backlight surface; the anti-glare substrate 20 is disposed on one side of the light-emitting surface of the display panel 10 .
  • the anti-glare substrate 20 includes a base 1 and two laminated structures (a first laminated structure 2 and a second laminated structure 3), and the two laminated structures are respectively disposed on opposite sides of the base 1; each Each of the stacked structures includes a plurality of high refractive index film layers H and at least one low refractive index film layer L, and the plurality of high refractive index film layers H and at least one low refractive index film layer L are alternately stacked on the substrate 1, and The film layer farthest from the substrate 1 in the laminated structure is the high refractive index film layer H.
  • each high-refractive-index film layer is 10nm-45nm, and the high-refractive-index film layer H has a refractive index of 2-2.5 for visible light; and/or, the thickness of each low-refractive-index film layer L is 80nm-120nm , and the refractive index of the low-refractive-index film layer to visible light is 1.3-1.5.
  • an anti-glare substrate 20 is disposed on one side of the light-emitting surface of the display panel 10 .
  • the ratio of reflected blue-violet light is greater than that of yellow-green light. Since the sensitivity of the human eye to blue-violet light is lower than that of yellow-green light, the overall reflectivity of the anti-glare substrate 20 is greater than 40%. ) produces a dazzling degree and possibility to improve the safety of drivers driving at night.
  • some embodiments of the present disclosure further provide a display device 1000 including the display module 100 described in any of the above embodiments. Based on the same reason as the display panel 10, the display device 1000 can reduce the degree and possibility of the driver's (human eye) dazzling, and improve the driver's safety when driving at night, on the premise that the overall reflectivity of the anti-glare substrate 20 is greater than 40%. sex.
  • the display device 1000 further includes an adhesive layer 30 , a circular polarizer 40 , and an optical adhesive 50 ; the adhesive layer 30 is disposed on the light-emitting surface of the display panel 10 , and the circular polarizer 40 is disposed on the adhesive The side of the layer 30 away from the display panel 10 is used for bonding the display panel 10 and the circular polarizer 40; the optical adhesive 50 is arranged between the circular polarizer 40 and the anti-glare substrate 20, and is used for bonding the circular polarizer 40 and the circular polarizer 40. Anti-glare substrate 20 .
  • the circular polarizer 40 can reduce the reflection on the surface of the display panel 10 and prevent the color separation phenomenon from occurring on the surface of the display panel 10 .

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

一种显示模组(100),包括显示面板(10)和防眩目基板(20),显示面板(10)具有出光面和背光面,防眩目基板(20)设置于显示面板(10)的出光面一侧。防眩目基板(20)包括基底(1)、第一叠层结构(2)和第二叠层结构(3),第一叠层结构(2)和第二叠层结构(3)分别设置于基底(1)相对的两侧;其中,第一叠层结构(2)包括多个高折射率膜层(H)和至少一个低折射率膜层(L),第一叠层结构(2)所包括的多个高折射率膜层(H)和至少一个低折射率膜层(L)在基底(1)的一侧交替层叠设置;第二叠层结构(3)包括多个高折射率膜层(H)和至少一个低折射率膜层(L),第二叠层结构(3)所包括的多个高折射率膜层(H)和至少一个低折射率膜层(L)在基底(1)的另一侧交替层叠设置;第一叠层结构(2)和第二叠层结构(3)距离基底(1)最远的膜层均为高折射率膜层(H)。

Description

显示模组及显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种显示模组及显示装置。
背景技术
车辆(比如汽车、卡车等)均包括有后视镜和车灯,其中,后视镜包括设置于汽车内部的车内后视镜(抬头后视镜)和设置于车外的后视镜。在一些车辆中,车内后视镜为具有显示功能的汽车后视镜显示器(车载后视显示器),在车辆正常行驶状态下,汽车后视镜显示器可以作为反光镜,便于司机观察车辆后方的路况信息;倒车时,汽车后视镜显示器连接倒车影像系统,并作为显示器,显示车辆后方的路况信息,辅助司机进行倒车和停车等。汽车后视镜显示器可以为LCD显示器或OLED显示器等。
车辆在夜间行驶过程中,会打开车灯以加强司机的视野;但是,若车辆的后方有同向行驶的车辆,且开启车灯,尤其是开启远光灯,后方车辆的灯光会在前车的后视镜上反光,并射入前车司机的眼睛,使前方车辆的司机产生眩目,影响前方车辆的安全驾驶,增加行车的安全隐患。
因此,如何在保证汽车后视镜显示器的最低反光率的前提下(确保司机在白天能够清晰的观察到车辆后方的路况信息),降低司机受后车灯光的影响,以增加司机夜间驾车的行驶安全,是汽车后视镜显示器的设计难点。
公开内容
一方面,提供一种显示模组,包括显示面板和防眩目基板,显示面板具有出光面和背光面,防眩目基板设置于显示面板的出光面一侧。所述防眩目基板包括基底、第一叠层结构和第二叠层结构,所述第一叠层结构和所述第二叠层结构分别设置于所述基底相对的两侧。其中,所述第一叠层结构包括多个高折射率膜层和至少一个低折射率膜层,所述第一叠层结构所包括的多个高折射率膜层和至少一个低折射率膜层在所述基底的一侧交替层叠设置。所述第二叠层结构包括多个高折射率膜层和至少一个低折射率膜层,所述第二叠层结构所包括的多个高折射率膜层和至少一个低折射率膜层在所述基底的另一侧交替层叠设置。所述第一叠层结构距离所述基底最远的膜层,以及距离所述基底最近的膜层均为高折射率膜层;所述第二叠层结构距离所述基底最远的膜层,以及距离所述基底最近的膜层均为高折射率膜层。
在一些实施例中,所述第一叠层结构和所述第二叠层结构的膜层数量相同。
在一些实施例,所述高折射率膜层的厚度为10nm~45nm;和/或,所述低折射率膜层的厚度为80~120nm。
在一些实施例,所述高折射率膜层对可见光的折射率为2~2.5;和/或,所述低折射率膜层对可见光的折射率为1.3~1.5。
在一些实施例,所述高折射率膜层的材料包括:二氧化钛、五氧化二铌、和五氧化钽中的一种或多种;和/或,所述低折射率膜层的材料包括:二氧化硅和/或氟化镁。
在一些实施例,所述第一叠层结构和所述第二叠层结构均包括三个膜层,沿垂直于所述基底且远离所述基底的方向,所述三个膜层依次为第一高折射率膜层、第一低折射率膜层和第二高折射率膜层。
在一些实施例,所述第一高折射率膜层的厚度与所述第二高折射率膜层的厚度的比值在2/7~4/7之内;所述第一高折射率膜层的厚度与所述第一低折射率膜层厚度的比值在1/10~1/5之内。
在一些实施例,所述第一高折射率膜层的材料为二氧化钛,厚度为(15±2)nm;所述第一低折射率膜层的材料为二氧化硅,厚度为(100±2)nm;所述第二高折射率膜层的材料为二氧化钛,厚度为(35±2)nm。
另一方面,提供一种显示模组,包括显示面板和防眩目基板。显示面板具有出光面和背光面;防眩目基板设置于所述显示面板的出光面一侧。所述防眩目基板包括基底和两个叠层结构,所述两个叠层结构分别设置于所述基底相对的两侧;每个叠层结构均包括多个高折射率膜层和至少一个低折射率膜层,所述多个高折射率膜层和所述至少一个低折射率膜层在所述衬底上交替层叠设置,且所述叠层结构距离所述衬底最近的膜层,以及距离所述衬底最远的膜层均为高折射率膜层。每个高折射率膜层的厚度为10nm~45nm,所述高折射率膜层对可见光的折射率为2~2.5;和/或,每个低折射率膜层的厚度为80nm~120nm,且所述低折射率膜层对可见光的折射率为1.3~1.5。
又一方面,提供一种显示装置,包括上述任一实施例中所述的显示模组。
在一些实施例中,所述显示装置还包括圆偏光片和光学胶。圆偏光片设置于所述显示模组的显示面板与防眩目基板之间;光学胶设置于所述圆偏光片与所述防眩目基板之间,用于粘接所述圆偏光片与所述防眩目基板。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的显示装置的结构图;
图2为图1中A-A的剖视图;
图3为根据一些实施例的一种防眩目基板对不同波长的光线的反射率;
图4为根据一些实施例的另一种防眩目基板对不同波长的光线的反射率;
图5为对比例的光学基板对不同波长的光线的反射率;
图6为不同膜层结构对光线反射率的对比表。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
“A、B和C中的一种或多种”均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文所使用的那样,“大约”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
相关技术中,为了解决司机容易在后车的强光照射下产生炫目的问题,通常采用如下两种方案。
一种是,在汽车后视镜显示器的表面粘贴半透半反膜材(或外加镜面Al玻璃盖板),然后再贴一层蓝膜。一方面,蓝膜的耐磨性差,容易发生磨损,而且粘贴时容易产生气泡;另一方面,在汽车后视镜显示器的表面粘接两层膜结构(半透半反膜和蓝膜)会降低汽车后视镜显示器本身的出光效率,并且会产生显示重影,导致汽车后视镜显示器显示图像时的效果较差。
通过研究发现,一般情况下,人眼可感知的可见光波长在400~780nm之间。但是,不同波长的光在人眼中引起光觉的灵敏度是不同的,其中,人眼对波长为555nm的黄绿光感受效率最高,而对蓝色光的感受效率较低。比如:在相同亮度下,人眼感知到的500nm~600nm波段的光的明度较高,人眼感知到的以400nm~500nm波段的光的明度较低;即,黄绿光(波长为500nm~600nm的光)为人眼较为敏感的光,而蓝紫光(波长为400nm~500nm的光)为人眼最能适应的光。其中,明度为光波的亮度在视觉上的反映。
参阅图1,本公开的一些实施例提供一种显示装置1000,显示装置1000可以为车载后视显示器、流媒体后视镜,智能后视镜、行车记录仪等任意抬头显示器,也可以是电视机、显示器、笔记本电脑、平板电脑、手机、导航仪等任何具有显示功能的产品或者部件。
该显示装置100可以为液晶显示装置(Liquid Crystal Display,简称LCD);该显示装置也可以为电致发光显示装置或光致发光显示装置。在该显示装置为电致发光显示装置的情况下,电致发光显示装置可以为有机电致发光显示装置(Organic Light-Emitting Diode,简称OLED)或量子点电致发光显示装置(Quantum Dot Light Emitting Diodes,简称QLED)。在该显示装置为光致发光显示装置的情况下,光致发光显示装置可以为量子点光致发光显示装置。
参阅图2,本公开的实施例提供的显示装置1000包括显示模组100,显示模组100包括层叠设置的显示面板10和防眩目基板20。
示例性的,在显示装置1000为OLED显示装置的情况下,显示面板10包括层叠设置的衬底11、阵列基板12、发光功能层13和封装层14;其中,发光功能层包括多个子像素131,子像素131包括红色子像素R、绿色子像素G和蓝色子像素B。
显示面板10具有出光面和背光面;其中,出光面是指显示面板10用于显示图像信息的表面(图2中显示面板10的上表面),背光面是指显示面板10的与出光面相对的表面(图2中显示面板10的下表面)。防眩目基板20设置于显示面板10的出光面一侧。
参阅图2,防眩目基板20包括基底1、第一叠层结构2和第二叠层结构3,第一叠层结构2和第二叠层结构3分别设置于基底1相对的两侧。其中,第一叠层结构包括多个高折射率膜层H和至少一个低折射率膜层L,第一叠层结构2所包括的多个高折射率膜层H和至少一个低折射率膜层1在基底1的一侧交替层叠设置。第二叠层结构3包括多个高折射率膜层H和至少一个低折射率膜层L,第二叠层结构3所包括的多个高折射率膜层H和至少一个低折射率膜层L在基底1的另一侧交替层叠设置。第一叠层结构2距离基底1最远的膜层,及距离基底1最近的膜层均为高折射率膜层H;第二叠层结构3距离基底1最远的膜层,及距离基底1最近的膜层均为高折射率膜层H。
示例性的,参阅图2,在基底1的任一侧,沿垂直于基底1且远离基底1的方向,防眩目基板20依次包括高折射率膜层H、低折射率膜层L、高折射率膜层H、低折射率膜层L、…、高折射率膜层H;其中,图2仅示例性的表示出了两层高折射率膜层H和一层低折射率膜层L,但是其膜层数量还可以进行增加。
本公开的实施例提供的显示模组100所包含的防眩目基板20,光线照射到防眩目基板20上时,防眩目基板20对不同波长的光线的透过率和反射率 不同。可以利用防眩目基板20对不同波长的光线的透过率和反射率不同的特性,使防眩目基板20的黄绿光的透过率大于蓝紫光的透过率(蓝紫光的反射率大于黄绿光的反射率),以使防眩目基板20在整体反射率(全波段反射率)大于40%的基础上,增加蓝紫光的反射比例,降低黄绿光的反射率比例(尽可能的反射蓝紫光,并降低黄绿光的反射率);由于人眼对蓝紫光的敏感度低于对黄绿光的敏感度,进而降低司机(人眼)产生炫目的程度和可能性。同时,防眩目基板20整体的反射率大于40%,不会影响司机在白天观察车辆后方的路况信息。
在一些实施例中,第一叠层结构2和第二叠层结构3的膜层数量相同;即,第一叠层结构2所包含的高折射率膜层H的数量和第二叠层结构3所包含的高折射率膜层H的数量相同;第一叠层结构2所包含的低折射率膜层L的数量和第二叠层结构3所包含的低折射率膜层L的数量相同。
在一些实施例中,第一叠层结构2和第二叠层结构3关于基底1对称设置;即,第一叠层结构2与第二叠层结构3中相互对应的高折射率膜层H和低折射率膜层L的材料和厚度相同。第一叠层结构2和第二叠层结构3关于基底1对称设置,有利于增强防眩目基板20的反射率,并增加蓝紫光的反射比例,提升防眩目基板的防眩目能力。其中,沿垂直与基底1且远离基底1的方向,对第一叠层结构2和第二叠层结构3所包含的高折射率膜层H和低折射率膜层L依次编号,其中,相互对应是指:编号相同的高折射率膜层H和低折射率膜层L。
示例性的,对第一叠层结构2和第二叠层结构3所包含的高折射率膜层H和低折射率膜层L依次编号为:第一高折射率膜层H1、第一低折射率膜层L1、第二高折射率膜层H2、第二低折射率膜层L2、…、第N高折射率膜层HN、第一低折射率膜层LN、第N+1高折射率膜层H(N+1)。第一叠层结构2所包含的第M高折射率膜层HM与第二叠层结构3所包含的第M高折射率膜层HM相对应,其中,M为大于等于1,且小于等于N+1的正整数;第一叠层结构2所包含的第Q低折射率膜层LQ与第二叠层结构3所包含的第Q低折射率膜层LQ相对应;其中,Q为大于等于1,且小于等于N的正整数。
在一些实施例中,高折射率膜层H的厚度为10nm~45nm;和/或,低折射率膜层L的厚度为80~120nm。经模拟实验验证,在高折射率膜层H的厚度为10nm~45nm;和/或,低折射率膜层L的厚度为80~120nm的情况下,防眩目基板20全波段的反射率大于40%,且蓝紫光的反射率大于黄绿光的反射率,有利于提升防眩目基板的防眩目能力。示例性的,高折射率膜层H的厚度可 以为10nm、20nm、45nm等,在此不再一一列举;低折射率膜层L的厚度可以为80nm、100nm和120nm等,在此不再一一列举。
在一些实施例中,高折射率膜层H对可见光的折射率为2~2.5;和/或,低折射率膜层L对可见光的折射率为1.3~1.5。经模拟实验验证,在高折射率膜层H对可见光的折射率为2~2.5;和/或,低折射率膜层L对可见光的折射率为1.3~1.5的情况下,防眩目基板20全波段的反射率大于40%,且蓝紫光的反射率大于黄绿光的反射率,可以达到降低司机产生炫目的风险的效果。示例性的,高折射率膜层H对可见光的折射率可以为2、2.3、2.5等,在此不再一一列举;低折射率膜层对可见光的折射率可以为1.3、1.35、1.4、1.5等,在此不再一一列举。
经计算机实验模拟分析可知,在高折射率膜层H的厚度为10nm~45nm,对可见光的折射率为2~2.5;且低折射率膜层L的厚度为80~120nm,对可见光的折射率为1.3~1.5的情况下,防眩目基板20对蓝紫光的反射率大于对黄绿光的反射率,可以达到降低司机产生炫目的风险的效果。
在一些实施例中,高折射率膜层H的材料包括:二氧化钛、五氧化二铌、和五氧化钽中的一种或多种;和/或,低折射率膜层L的材料包括:二氧化硅和/或氟化镁。
在一些实施例中,基底1为刚性基底或柔性基底。示例性的,刚性基底可以为玻璃基底,柔性基底可以为树脂基底。在基底1为刚性基底时,防眩目基板20的结构强度较大,结构稳定性较高,不容易产生变形;在基底1为柔性基底1的柔性基底时,防眩目基板20可以产生一定变形,有利于防眩目基板与显示面板10贴合。示例性的,显示模组100所包含的显示面板10可以是刚性显示面板或柔性显示面板;在显示面板10为刚性显示面板的情况下,基底1可以为刚性基底或柔性基底;在显示面板10为柔性显示面板的情况下,基底1可以为柔性基底。
在一些实施例中,参阅图2,第一叠层结构2和第二叠层结构3均包括三个膜层,沿垂直于基底1且远离基底1的方向,三个膜层依次为第一高折射率膜层H1、第一低折射率膜层L1和第二高折射率膜层H2。随着第一叠层结构2和第二叠层结构3所包含的膜层厚度的增加,防眩目基板20对各波长的光线的反射率逐渐上升,对各波长的光线的透过率逐渐降低;第一叠层结构2和第二叠层结构3均包括三个膜层,可以降低防眩目基板20对显示模组100的出光效率的影响。
在第一叠层结构2和第二叠层结构3均包括三个膜层的情况下,第一高 折射率膜层的厚度与第二高折射率膜层的厚度的比值在2/7~4/7之内;第一高折射率膜层的厚度与第一低折射率膜层厚度的比值在1/10~1/5之内。经模拟实验验证,在第一高折射率膜层H1的厚度与第二高折射率膜层H2的厚度的比值在2/7~4/7之内,且第一高折射率膜层H1的厚度与第一低折射率膜层L1厚度的比值在1/10~1/5之内的情况下,防眩目基板20全波段的反射率大于40%,且蓝紫光的反射率大于黄绿光的反射率,可以达到降低司机产生炫目的风险的效果。
示例性的,第一高折射率膜层H1的材料为二氧化钛(TiO2),厚度大约为(15±2)nm;第一低折射率膜层L1的材料为二氧化硅(SiO2),厚度大约为(100±2)nm;第二高折射率膜层H2的材料为二氧化钛(TiO2),厚度大约为(35±2)nm。其中,“±2”是指在各膜层在所选厚度值的附近,由于制作精度以及测量误差,出现的合理范围内的波动。当然,波动范围也可以为“±1”、或者“±5”等,在此不再一一举例。
参阅图3,图3为在基底1为刚性基底(玻璃基底),厚度为0.5mm,折射率为1.52,且防眩目基板20所包含的各膜层的参数(厚度、材料)如图6中第一行数据(序号为1的行;第一高折射率膜层H1的材料为二氧化钛(TiO2),厚度为15nm;第一低折射率膜层L1的材料为二氧化硅(SiO2),厚度为100nm;第二高折射率膜层H2的材料为二氧化钛(TiO2),厚度为35nm)所示的情况下,防眩目基板20对不同波长的光线的反射率曲线图;由图可知:防眩目基板20对蓝紫光(波长为400nm~500nm的光)的反射率大于对黄绿光(波长为500nm~600nm的光)的反射率;同时参阅图6可知,防眩目基板20对蓝紫光反射率大约为72.00%,对黄绿光反射率大约为50.07%,由此可见,防眩目基板20对蓝紫光的反射率大于对黄绿光的反射率,能够降低司机(人眼)产生炫目的程度和可能性,提升司机夜间驾车的安全性。同时,防眩目基板20的全波段(波长为400nm~780nm的光线)的反射率大约为45.51%,能够满足中华人民共和国国家标准,机动车辆后视镜的性能和安装要求(GB 15084-2006),机动车辆的内后视镜,在日间的反射率≥40%。全波段的透过率大约为54.46%,显示面板10的出光效率能够满足显示图像信息的需求。
参阅图4,图4为在基底1为柔性基底(PI基底),厚度为0.5mm,折射率为1.54,且防眩目基板20所包含的各膜层的参数(厚度、材料)如图6中第二行数据(序号为2的行;第一高折射率膜层H1的材料为二氧化钛(TiO2),厚度为15nm;第一低折射率膜层L1的材料为二氧化硅(SiO2), 厚度为100nm;第二高折射率膜层H2的材料为二氧化钛(TiO2),厚度为35nm)所示的情况下,防眩目基板20对不同波长的光线的反射率曲线;由图可知:防眩目基板20对蓝紫光(波长为400nm~500nm的光)的反射率大于对黄绿光(波长为500nm~600nm的光)的反射率;同时参阅图6可知,防眩目基板20对蓝紫光反射率大约为71.89%,对黄绿光反射率大约为50.42%,由此可见,防眩目基板20对蓝紫光的反射率大于对黄绿光的反射率;能够降低司机(人眼)产生炫目的程度和可能性,提升司机夜间驾车的安全性。同时,防眩目基板20的全波段(波长为400nm~780nm的光线)的反射率大约为45.79%,能够满足中华人民共和国国家标准,机动车辆后视镜的性能和安装要求(GB 15084-2006),机动车辆的内后视镜,在日间的反射率≥40%。全波段的透过率大约为52.70%,显示面板10的出光效率能够满足显示图像信息的需求。
本公开的实施例还提供了一组对比例,参阅图5,图5为基底1为刚性基底(玻璃基底),厚度为0.5mm,折射率为1.52,且只在基底1的一侧(单侧)交叠设置高折射率膜层H和低折射率膜层L,各膜层材料、厚度如图6中第三行数据(序号为3的行;第一高折射率膜层H1的材料为二氧化钛(TiO2),厚度为15nm;第一低折射率膜层L1的材料为二氧化硅(SiO2),厚度为100nm;第二高折射率膜层H2的材料为二氧化钛(TiO2),厚度为35nm)所示的情况下,光学器件对不同波长的光线的反射率曲线图;对比图3和图5,并结合图6对比可知,在基底1单侧设置叠层结构,其全波段反射率低于40%,不符合行业标准。本公开实施例提供的防眩目基板20,可以在满足行业标准(日间可见光反射率≥40%)的前提下,增加蓝紫光的反射比例,降低黄绿光的反射率比例,从而降低司机(人眼)产生炫目的程度和可能性,提升司机夜间驾车的安全性。
本公开的一些实施例还提供了一种显示模组100,包括显示面板10和防眩目基板20。显示面板10具有出光面和背光面;防眩目基板20设置于显示面板10的出光面一侧。
参阅图2,防眩目基板20包括基底1和两个叠层结构(第一叠层结构2和第二叠层结构3),两个叠层结构分别设置于基底1相对的两侧;每个叠层结构均包括多个高折射率膜层H和至少一个低折射率膜层L,多个高折射率膜层H和至少一个低折射率膜层L在基底1上交替层叠设置,且叠层结构离基底1最远的膜层为高折射率膜层H。其中,每个高折射率膜层的厚度为 10nm~45nm,高折射率膜层H对可见光的折射率为2~2.5;和/或,每个低折射率膜层L的厚度为80nm~120nm,且低折射率膜层对可见光的折射率为1.3~1.5。
本公开实施例提供的显示模组100,显示面板10的出光面一侧设置有防眩目基板20,防眩目基板20对蓝紫光的反射率大于对黄绿光的反射率,防眩目基板20反射的蓝紫光比例大于黄绿光的比例,由于人眼对蓝紫光的敏感度低于对黄绿光的敏感度,在防眩目基板20的整体反射率大于40%的前提下,能够降低司机(人眼)产生炫目的程度和可能性,提升司机夜间驾车的安全性。
参阅图1,本公开的一些实施例还提供了一种显示装置1000,包括上述任一实施例中所述的显示模组100。基于与显示面板10相同的原因,显示装置1000在防眩目基板20的整体反射率大于40%的前提下,能够降低司机(人眼)产生炫目的程度和可能性,提升司机夜间驾车的安全性。
在一些实施例中,参阅图2,显示装置1000还包括粘胶层30、圆偏光片40、光学胶50;粘胶层30设置于显示面板10的出光面,圆偏光片40设置于粘胶层30远离显示面板10的一侧,用于粘接显示面板10和圆偏光片40;光学胶50设置于圆偏光片40与防眩目基板20之间,用于粘接圆偏光片40与防眩目基板20。圆偏光片40能够降低显示面板10表面的反射,防止显示面板10表面产生色分离现象。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种显示模组,包括:
    显示面板,具有出光面和背光面;
    防眩目基板,设置于所述显示面板的出光面一侧;所述防眩目基板包括基底、第一叠层结构和第二叠层结构,所述第一叠层结构和所述第二叠层结构分别设置于所述基底相对的两侧;其中,所述第一叠层结构包括多个高折射率膜层和至少一个低折射率膜层,所述第一叠层结构所包括的多个高折射率膜层和至少一个低折射率膜层在所述基底的一侧交替层叠设置;所述第二叠层结构包括多个高折射率膜层和至少一个低折射率膜层,所述第二叠层结构所包括的多个高折射率膜层和至少一个低折射率膜层在所述基底的另一侧交替层叠设置;其中,所述第一叠层结构距离所述基底最远的膜层,以及距离所述基底最近的膜层均为高折射率膜层;所述第二叠层结构距离所述基底最远的膜层,以及距离所述基底最近的膜层均为高折射率膜层。
  2. 根据权利要求1所述的显示模组,其中,所述第一叠层结构和所述第二叠层结构的膜层数量相同。
  3. 根据权利要求1或2所述的显示模组,其中,
    所述高折射率膜层的厚度为10nm~45nm;和/或,
    所述低折射率膜层的厚度为80~120nm。
  4. 根据权利要求1~3中任一项所述的显示模组,其中,
    所述高折射率膜层对可见光的折射率为2~2.5;和/或,
    所述低折射率膜层对可见光的折射率为1.3~1.5。
  5. 根据权利要求1~4中任一项所述的显示模组,其中,
    所述高折射率膜层的材料包括:二氧化钛、五氧化二铌、和五氧化钽中的一种或多种;和/或,
    所述低折射率膜层的材料包括:二氧化硅和/或氟化镁。
  6. 根据权利要求1~5中任一项所述的显示模组,其中,所述第一叠层结构和所述第二叠层结构均包括三个膜层,沿垂直于所述基底且远离所述基底的方向,所述三个膜层依次为第一高折射率膜层、第一低折射率膜层和第二高折射率膜层。
  7. 根据权利要求6所述的显示模组,其中,所述第一高折射率膜层的厚度与所述第二高折射率膜层的厚度的比值在2/7~4/7之内;所述第一高折射率膜层的厚度与所述第一低折射率膜层厚度的比值在1/10~1/5之内。
  8. 根据权利要求7所述的显示模组,其中,所述第一高折射率膜层的材 料为二氧化钛,厚度为(15±2)nm;所述第一低折射率膜层的材料为二氧化硅,厚度为(100±2)nm;所述第二高折射率膜层的材料为二氧化钛,厚度为(35±2)nm。
  9. 一种显示模组,包括:
    显示面板,具有出光面和背光面;
    防眩目基板,设置于所述显示面板的出光面一侧,包括基底和两个叠层结构,所述两个叠层结构分别设置于所述基底相对的两侧;每个叠层结构均包括多个高折射率膜层和至少一个低折射率膜层,所述多个高折射率膜层和所述至少一个低折射率膜层在所述衬底上交替层叠设置,且所述叠层结构距离所述衬底最近的膜层,以及距离所述衬底最远的膜层均为高折射率膜层;其中,
    每个高折射率膜层的厚度为10nm~45nm,且所述高折射率膜层对可见光的折射率为2~2.5;和/或,
    每个低折射率膜层的厚度为80nm~120nm,且所述低折射率膜层对可见光的折射率为1.3~1.5。
  10. 一种显示装置,包括:
    如权利要求1~8中任一项所述的显示模组;或,
    如权利要求9所述的显示模组。
  11. 根据权利要求10所述的显示装置,还包括:
    圆偏光片,设置于所述显示模组的显示面板与防眩目基板之间;
    光学胶,设置于所述圆偏光片与所述防眩目基板之间,用于粘接所述圆偏光片与所述防眩目基板。
PCT/CN2021/084507 2021-03-31 2021-03-31 显示模组及显示装置 WO2022205114A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/780,832 US20240164192A1 (en) 2021-03-31 2021-03-31 Display module and display device
CN202180000684.3A CN115485613A (zh) 2021-03-31 2021-03-31 显示模组及显示装置
PCT/CN2021/084507 WO2022205114A1 (zh) 2021-03-31 2021-03-31 显示模组及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084507 WO2022205114A1 (zh) 2021-03-31 2021-03-31 显示模组及显示装置

Publications (1)

Publication Number Publication Date
WO2022205114A1 true WO2022205114A1 (zh) 2022-10-06

Family

ID=83455348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084507 WO2022205114A1 (zh) 2021-03-31 2021-03-31 显示模组及显示装置

Country Status (3)

Country Link
US (1) US20240164192A1 (zh)
CN (1) CN115485613A (zh)
WO (1) WO2022205114A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101276005A (zh) * 2007-03-29 2008-10-01 郭爱军 新型抗反射导电膜
CN102351438A (zh) * 2011-07-15 2012-02-15 深圳市三鑫精美特玻璃有限公司 在玻璃基板上制备膜层的方法及其玻璃基板、膜系结构
US20130314772A1 (en) * 2012-05-28 2013-11-28 Ga-Lane Chen Infrared-cut filter with sapphire substrate and lens module including the infrared-cut filter
CN104044313A (zh) * 2014-07-01 2014-09-17 深圳市三鑫精美特玻璃有限公司 防刮伤超硬玻璃及其制备方法
CN106291782A (zh) * 2016-10-27 2017-01-04 宜昌南玻显示器件有限公司 一种汽车半反半透型电致变色内后视镜用第三面导电膜
CN107757495A (zh) * 2017-09-27 2018-03-06 信义光伏产业(安徽)控股有限公司 汽车后视镜用蓝镜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101276005A (zh) * 2007-03-29 2008-10-01 郭爱军 新型抗反射导电膜
CN102351438A (zh) * 2011-07-15 2012-02-15 深圳市三鑫精美特玻璃有限公司 在玻璃基板上制备膜层的方法及其玻璃基板、膜系结构
US20130314772A1 (en) * 2012-05-28 2013-11-28 Ga-Lane Chen Infrared-cut filter with sapphire substrate and lens module including the infrared-cut filter
CN104044313A (zh) * 2014-07-01 2014-09-17 深圳市三鑫精美特玻璃有限公司 防刮伤超硬玻璃及其制备方法
CN106291782A (zh) * 2016-10-27 2017-01-04 宜昌南玻显示器件有限公司 一种汽车半反半透型电致变色内后视镜用第三面导电膜
CN107757495A (zh) * 2017-09-27 2018-03-06 信义光伏产业(安徽)控股有限公司 汽车后视镜用蓝镜及其制备方法

Also Published As

Publication number Publication date
CN115485613A (zh) 2022-12-16
US20240164192A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
JP6302140B2 (ja) ヘッドアップディスプレイシステム
JP5022869B2 (ja) 発光表示装置付きバックミラー
US20180050641A1 (en) Rear-view mirror and driving auxiliary apparatus
CN204166197U (zh) 一种抬头显示系统
CN104267498A (zh) 一种抬头显示系统
CN106990530B (zh) 平视显示器装置的冷光镜以及平视显示器装置
CN204143067U (zh) 一种抬头显示系统
WO2022218367A1 (zh) 一种抬头显示系统
WO2011068852A1 (en) Rearview mirror assemblies with anisotropic polymer laminates
CN102216843A (zh) 具有各向异性聚合物叠层体的后视镜组件
CN106094213A (zh) 一种能够多区域显示的抬头显示系统
WO2024078605A1 (zh) 车窗玻璃及其制备方法、车辆
WO2023041060A1 (zh) 显示车窗及车辆
CN206147178U (zh) 一种能够多区域显示的抬头显示系统
WO2024078606A1 (zh) 车窗玻璃及其制备方法、车辆
WO2022205114A1 (zh) 显示模组及显示装置
WO2023123338A1 (zh) 显示装置、抬头显示器以及交通设备
CN112339357B (zh) 复合膜层及包含其的窗口、显示系统和汽车
WO2023026131A1 (en) Multilayer optical film and display system
JP2019066773A (ja) 反射表示板、映像表示装置、車両
JP7110575B2 (ja) 映像表示装置、車両
CN220509161U (zh) 透反膜、抬头显示系统及交通工具
CN201357799Y (zh) 汽车电子防眩后视镜
CN220961998U (zh) 抬头显示系统及交通工具
WO2023155316A1 (zh) 抬头显示玻璃及抬头显示系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17780832

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.01.2024)