WO2022203476A1 - 멀티레벨 구조를 가지는 전력변환장치 - Google Patents

멀티레벨 구조를 가지는 전력변환장치 Download PDF

Info

Publication number
WO2022203476A1
WO2022203476A1 PCT/KR2022/004274 KR2022004274W WO2022203476A1 WO 2022203476 A1 WO2022203476 A1 WO 2022203476A1 KR 2022004274 W KR2022004274 W KR 2022004274W WO 2022203476 A1 WO2022203476 A1 WO 2022203476A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
converters
voltage
power
output
Prior art date
Application number
PCT/KR2022/004274
Other languages
English (en)
French (fr)
Inventor
정광순
박정흠
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to JP2023559034A priority Critical patent/JP2024513786A/ja
Priority to EP22776176.4A priority patent/EP4318913A1/en
Priority to CN202280031281.XA priority patent/CN117223209A/zh
Priority to US18/283,892 priority patent/US20240170961A1/en
Publication of WO2022203476A1 publication Critical patent/WO2022203476A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/106Parallel operation of dc sources for load balancing, symmetrisation, or sharing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a power conversion device, and more particularly, to a power conversion device and a solar module using a plurality of converters having a multi-level structure.
  • Photovoltaic power generation is an eco-friendly energy generation method that has been widely disseminated by replacing conventional chemical power generation or nuclear power generation.
  • solar power generation There are two types of solar power generation: a stand-alone type in which a battery is connected to the converter and a connection type connected to the power system.
  • stand-alone power generation consists of a solar cell, a storage battery, and a power conversion device. It is configured to exchange power with the load grid line.
  • the solar cell module has a different maximum power point depending on the amount of sunlight, temperature, and the like.
  • MLPE Module-Level Power Electronics
  • MPPT maximum power point tracking
  • the MLPE of the single converter application method is designed with the same electric potential as the solar cell module, the DC/DC converter, and the controller as shown in FIG. 2 . For this reason, when the controller detects the photovoltaic cell module voltage and the DC/DC converter output voltage, it is possible to implement the voltage detection circuit only with the resistor divider circuit. However, in MLPE of a multi-level structure, the above method cannot be applied as it is.
  • the photovoltaic cell module, DC/DC converter, controller, and auxiliary power all use the same ground. For this reason, as shown in FIGS. 3 and 4 , it is possible to configure an auxiliary power circuit for receiving power from a photovoltaic cell module and supplying auxiliary power to a converter, a controller, and the like.
  • the above method cannot be applied as it is.
  • the technical problem to be solved by the present invention is to provide a power conversion device and a solar module using a plurality of converters having a multi-level structure.
  • a power conversion apparatus includes a plurality of converters each connected to a plurality of cell strings; and an auxiliary power unit supplying driving power to each of the plurality of converters, wherein the auxiliary power unit includes: a primary circuit receiving a voltage of at least one output terminal among output terminals of the plurality of cell strings; an insulated converter for outputting a voltage to a secondary circuit according to the voltage of the primary circuit; and a plurality of secondary-side circuits for supplying driving power to each of the plurality of converters by using the voltage output from the insulated converter, wherein the plurality of converters constitute a multi-level.
  • output terminals of the plurality of cell strings may be connected in parallel through a switching device.
  • the switching device may be a diode.
  • the secondary circuit may include: a first secondary circuit for supplying auxiliary power to an upper switch included in each converter; and a second secondary circuit for supplying auxiliary power to a lower switch included in each of the converters.
  • At least one of an input signal, an output signal of the plurality of converters, and a current flowing in an inductor included in each converter is monitored and transmitted to the outside through power line communication (PLC), or a control signal for each of the plurality of converters and a control unit for generating and applying the , and the secondary circuit may include a third secondary circuit for supplying driving power to the control unit.
  • PLC power line communication
  • the isolated converter may include at least one of a flyback converter, a forward converter, and an LLC converter.
  • the isolated converter may perform Primary Side Regulation (PSR).
  • PSR Primary Side Regulation
  • the insulated converter may perform the PSR with reference to an output voltage of a secondary circuit having the same reference potential as that of the primary circuit.
  • the plurality of converters may receive the control signal to perform the maximum power point tracking control.
  • the plurality of converters may be connected by cascode.
  • a photovoltaic module includes a plurality of cell strings each including one or more photovoltaic cells; a plurality of converters respectively connected to the respective cell strings; and an auxiliary power unit supplying driving power to each of the plurality of converters, wherein the auxiliary power unit includes: a primary circuit receiving a voltage of at least one output terminal among output terminals of the plurality of cell strings; an insulated converter for outputting a voltage to a secondary circuit according to the voltage of the primary circuit; and a plurality of secondary-side circuits for supplying driving power to each of the plurality of converters by using the voltage output from the insulated converter, wherein the plurality of converters constitute a multi-level.
  • output terminals of the plurality of cell strings may be connected in parallel through a diode.
  • the secondary circuit may include: a first secondary circuit for supplying auxiliary power to an upper switch included in each converter; and a second secondary circuit for supplying auxiliary power to a lower switch included in each of the converters.
  • At least one of an input signal, an output signal of the plurality of converters, and a current flowing in an inductor included in each converter is monitored and transmitted to the outside through power line communication (PLC), or a control signal for each of the plurality of converters and a control unit for generating and applying the , wherein the secondary circuit may be a solar module including a third secondary circuit for supplying driving power to the control unit.
  • PLC power line communication
  • the number of controllers can be reduced by controlling a plurality of converters with an integrated control unit.
  • linked control between each converter is possible, and it is easy to implement additional functions such as monitoring and communication in addition to the maximum power point tracking control using the integrated control unit.
  • voltages can be detected only by a resistor divider circuit in the same manner as in the conventional method without an additional element.
  • auxiliary power can be smoothly supplied to each DC/DC converter, control circuit, PLC circuit, etc. by implementing an auxiliary power circuit.
  • auxiliary power sources by applying a single insulated converter to the auxiliary power circuit, which is advantageous in material cost reduction.
  • a more stable auxiliary power supply is possible by providing an individual auxiliary power circuit for each DC/DC converter, and when designing an individual auxiliary power circuit as a step-up type, a step-down type By cascading the regulator and step-up regulator, it is possible to reduce the material cost compared to the non-inverting buck-boost converter.
  • FIGS. 1 to 4 are block diagrams of a solar module according to a comparative embodiment of the present invention.
  • 5 is a diagram for explaining the maximum power point tracking control.
  • FIG. 6 is a block diagram of a power conversion device according to a first embodiment of the present invention.
  • FIG. 7 is a block diagram of a solar module according to a first embodiment of the present invention.
  • FIGS. 8 to 10 are diagrams for explaining a first embodiment of the present invention.
  • FIG. 11 is a block diagram of a power conversion device according to a second embodiment of the present invention.
  • FIG. 12 is a block diagram of a solar module according to a second embodiment of the present invention.
  • 13 to 14 are diagrams for explaining a second embodiment of the present invention.
  • FIG 15 shows another embodiment of the power conversion device according to the second embodiment of the present invention.
  • 16 is a block diagram of a power conversion device according to a third embodiment of the present invention.
  • FIG. 17 is a block diagram of a solar module according to a third embodiment of the present invention.
  • 20 to 24 show various embodiments of a power conversion device according to a fourth embodiment of the present invention.
  • a component when it is described that a component is 'connected', 'coupled', or 'connected' to another component, the component is directly 'connected', 'coupled', or 'connected' to the other component. In addition to the case, it may include a case of 'connected', 'coupled', or 'connected' by another element between the element and the other element.
  • Modifications according to the present embodiment may include some components of each embodiment and some components of other embodiments together. That is, the modified example may include one embodiment among various embodiments, but some components may be omitted and may include some components of corresponding other embodiments. Alternatively, it may be vice versa.
  • Features, structures, effects, etc. to be described in the embodiments are included in at least one embodiment, and are not necessarily limited to only one embodiment.
  • features, structures, effects, etc. illustrated in each embodiment can be combined or modified for other embodiments by those of ordinary skill in the art to which the embodiments belong. Therefore, the contents related to such combinations and modifications should be interpreted as being included in the scope of the embodiment.
  • FIG. 6 is a block diagram of a power conversion device according to a first embodiment of the present invention
  • FIG. 7 is a block diagram of a solar module according to a first embodiment of the present invention.
  • 8 to 10 are diagrams for explaining a first embodiment of the present invention.
  • the power conversion device 100 includes a plurality of cell strings 131 to 133 , a plurality of converters 111 to 113 , and a control unit 120 .
  • the converters 111 to 113 are respectively connected to the plurality of cell strings 131 to 133 .
  • each of the plurality of cell strings 131 to 133 may include at least one cell, and when the plurality of cells are included, the plurality of cells may be connected in series.
  • the cell strings 131 to 133 may be photovoltaic cell strings including photovoltaic cells.
  • the solar cell string may form a solar panel.
  • Photovoltaic cells use the photoelectric effect to generate electricity using photovoltaic (PV) power generation.
  • the photoelectric effect emits electrons when light of a specific frequency or more collides with a specific metal material.
  • a pn junction is formed using a p-type semiconductor and an n-type semiconductor, and electric current is generated using electrons generated by the photoelectric effect.
  • the photovoltaic cell is formed using silicon or the like, and may be formed in the form of a wafer.
  • the photovoltaic cell is located in a field, an outer wall of a building, or a roof that can receive sunlight well, and generates electric power using sunlight.
  • the photovoltaic cell may be formed of a building-integrated photovoltaic power generation (BIPV) that is integrally formed with the building.
  • BIPV building-integrated photovoltaic power generation
  • a string of solar cells may be a basic unit for generating power.
  • a photovoltaic power generation panel may be formed by forming a plurality of cell strings, which are basic units, as a panel.
  • the solar cell has different voltage-current characteristics, as shown in FIG. 5, depending on the amount of sunlight, temperature, etc., and the maximum power point (MPP) also varies.
  • Maximum power voltage X current
  • the power converter plays a role of controlling the solar cell to operate at the maximum power point (MPP), which is the operating point at which the solar cell has the maximum power in each condition. This is called Maximum Power Point Tracking (MPPT), and the efficiency of solar power generation can be increased by using the maximum power point tracking.
  • MPPT Maximum Power Point Tracking
  • the maximum power may be about 80% of the maximum voltage, not the maximum voltage, depending on the relationship between current and voltage and the relationship between voltage and power.
  • the magnitudes of the voltage and the current may be varied so as to become the maximum power. That is, the voltage may be decreased and the current may be increased in the direction in which the power is increased, or the voltage may be increased and the current may be decreased.
  • the converter includes a plurality of converters 111 to 113 corresponding to the number of the plurality of cell strings 111 to 113 .
  • Each of the converters 111 to 113 is connected to the corresponding cell strings 131 to 133 to receive power generated from the cell strings 131 to 133, and converts and outputs a voltage.
  • FIG. 1 when all cell strings are connected in series and the maximum power point tracking control is performed using one converter, when there is a difference in the amount of sunlight between the cell strings, it is difficult to track the optimum maximum power point, A plurality of converters respectively connected to a plurality of cell strings are included in order to perform maximum power point tracking in units of cell strings for efficient maximum power point estimation control.
  • the converters 111 to 113 are DC-DC converters, and may convert a signal having a first voltage into a signal having a second voltage and output the converted signal. Alternatively, the signal having the first current may be converted into a signal having the second current and outputted.
  • the plurality of converters 111 to 113 constitute a multi-level.
  • the plurality of converters 111 to 113 may be connected in a cascode to form a multi-level.
  • the cascode means a form in which the output terminals are connected in multiple stages, and the output terminals of the converter are stacked according to the cascode connection to form a multi-level.
  • the multi-level refers to a structure in which the output signals of each converter are combined into one signal and output.
  • the (-) terminal of the output terminal of the converter 111 of the upper level is sequentially connected to the (+) terminal of the output terminal of the converter 112 of the lower level, and the The outputs of the converter 113 of the lowest level from the output are combined and output as one signal.
  • the controller 120 applies a control signal to each of the plurality of converters 111 to 113 .
  • One control unit 120 generates a control signal for controlling each of the plurality of converters 111 to 113 .
  • the plurality of converters 111 to 113 receives the control signal and performs the maximum power point tracking control.
  • Each of the plurality of converters 111 to 113 receives a control signal from the controller 120 and performs the maximum power point tracking so that the power of each of the connected cell strings 131 to 133 becomes the maximum power.
  • a solar module formed of a plurality of cell strings is formed over a certain area, when the amount of sunlight between the cell strings is different, the maximum power point between the cell strings is different.
  • Each of the plurality of converters controls the maximum power point tracking for each cell string. By doing so, the maximum power is generated in each cell string. Through this, an optimized maximum power point tracking control for each cell string is possible.
  • the control unit 120 may additionally perform other functions as well as a function of generating a control signal for the maximum power point tracking control and applying the control signal to the plurality of converters 111 to 113 .
  • the controller 120 may monitor at least one of an input signal, an output signal of the plurality of converters 111 to 113 , and a current flowing through an inductor included in each converter.
  • the input signal of the converter corresponding to the cell string voltage output from the cell strings 131 to 133 and the output signal output from the converter should be used, and the control unit 120 monitors an input signal and an output signal of the converter. In this case, the voltage and current of the input signal and the voltage and current of the output signal may be monitored.
  • the control unit 120 may monitor various information necessary for power conversion.
  • the controller 120 may transmit the monitored information to the host controller or the outside.
  • the controller 120 may transmit the monitored information through the power line communication (PLC).
  • PLC power line communication
  • Power line communication is to perform communication using a power line, and communication can be performed using a power line without a separate communication line.
  • various types of communication such as wired or wireless may be used.
  • the control unit 120 includes a first control unit that applies a control signal to the plurality of converters 111 to 113 to perform the maximum power point tracking control, input signals and output signals of the plurality of converters, and an inductor included in each converter. It may include a second control unit for monitoring at least one of the current flowing in the and transmitting the monitored information to the outside.
  • the control unit 120 may include a first control unit that performs a maximum power point tracking control function for each function and a second control unit that performs a function of monitoring and communication.
  • the first control unit and the second control unit may be formed as one module or as separate modules.
  • the first control unit and the second control unit may be formed for each functional block or may be formed as a single integrated IC.
  • the power conversion device 100 may be an MLPE.
  • the maximum power point tracking control for each cell string is possible by controlling a plurality of converters constituting a multi-level using one control unit.
  • a controller function that monitors information for the maximum power point tracking control, performs the maximum power point tracking control with an MCU that communicates the monitored information with the outside, and applies a control signal to each converter
  • This one control unit may be formed. It goes without saying that it may be formed as a separate functional block or module on one control unit.
  • FIG. 9 is an embodiment including a plurality of controllers for controlling each converter constituting a multi-level. Since a separate controller is required for each converter, the number of controllers increases, which increases the cost and may make manufacturing difficult. In this case, a separate MCU is also required for monitoring or communication. Compared to the embodiment of FIG. 9 , as in the embodiment of FIG. 8 , efficient control is possible by controlling each of the converters 111 to 113 in one control unit 120 .
  • the control unit 120 individually generates control signals for each of the plurality of converters corresponding to each cell string according to each output signal in the plurality of cell strings to enable tracking of the maximum power point of each cell string.
  • the converters 111 to 113 may include a plurality of switching devices, where the switching devices may include semiconductor switches such as MOSFETs.
  • the control signal may be a pulse-width modulation (PWM) signal for driving the semiconductor switches in the converters 111 to 113 .
  • PWM pulse-width modulation
  • the PWM signal is a signal whose pulse width is adjusted for one period, and the greater the pulse width, the longer the switching element maintains turn-on time. That is, the power ratio (duty ratio) increases, and the magnitude of power transmitted from the converters 111 to 113 to the output increases.
  • the pulse width is reduced, the time ratio is reduced and the amount of power transmitted from the converters 111 to 113 to the output is reduced.
  • the controller 120 may perform the maximum power point tracking control by adjusting the amplitude of the PWM signal.
  • control unit 120 When the control unit 120 applies the control signals to the plurality of converters 111 to 113, the control signals to the plurality of converters may be applied in synchronization or may be applied with a predetermined phase difference. Since one control unit 120 controls the plurality of converters 111 to 113 , it is possible to control the converters in association with each other. For example, each converter may operate in a synchronous method or an interleaving method as shown in FIG. 10 . The synchronous method applies a control signal to each converter at the same time as shown in FIG. 10 , and the interleaving method applies a control signal to each converter with a phase difference.
  • the ADC or operation of the MCU which is the control unit
  • the phase difference may vary depending on the number of converters constituting the multilevel. For example, when there are three converters, 360 degrees may be divided by 3 and the control signal for each converter may be applied with a phase difference of 120 degrees.
  • the photovoltaic module according to the first embodiment of the present invention includes a plurality of cell strings 131 to 133 , a plurality of converters 111 to 113 , and a controller 120 as shown in FIG. 7 .
  • the detailed description of the solar module of FIG. 7 corresponds to the detailed description of the power conversion device according to the first embodiment, and the overlapping description will be omitted.
  • Each of the plurality of cell strings 131 to 133 includes one or more photovoltaic cells, the plurality of converters 111 to 113 are respectively connected to the respective cell strings, and the controller 120 controls the plurality of converters 111 to 113 , respectively.
  • a control unit that monitors each piece of information and applies a control signal to each of the plurality of converters 111 to 113 according to the monitored information.
  • the plurality of converters constitute a multilevel.
  • the plurality of converters 111 to 113 are connected by a cascode, and the control unit 120 applies a control signal to the plurality of converters 111 to 113 to perform the maximum power point tracking control, and It may be an integrated IC that monitors at least one of an input signal, an output signal, and a current flowing through an inductor included in each converter of the converters 111 to 113 and transmits the monitored information to the outside.
  • FIG. 11 is a block diagram of a power conversion device according to a second embodiment of the present invention
  • FIG. 12 is a block diagram of a solar module according to a second embodiment of the present invention
  • 13 to 14 are diagrams for explaining a second embodiment of the present invention.
  • the power conversion device 300 includes a plurality of converters 110 , a voltage detection unit 140 , and a control unit 120 .
  • a description corresponding to the detailed description of the first embodiment will be omitted.
  • the structure for detecting the cell string output voltage and the converter output voltage is mainly expressed. Of course, it may include configurations according to the embodiments.
  • the plurality of converters 110 are respectively connected to the plurality of cell strings 130 and are connected by cascodes to form a multi-level. Signals from the highest level to the lowest level output from the plurality of converters 110 are combined and output as one signal.
  • the voltage detector 140 detects at least one of an input voltage and an output voltage of each of the plurality of converters 110 .
  • the voltage detector 140 may be formed for each input terminal and output terminal of a plurality of converters to detect voltages at respective positions.
  • the voltage detector 140 may include two resistors connected in series between an input or output terminal of each converter and a ground, and detect a voltage applied to a node between the two resistors. As shown in FIG. 13, a voltage is detected at a position at which a voltage is to be measured, that is, a voltage at the corresponding position is detected using voltage division according to two resistors connected in series between the input or output terminal of each converter and the ground.
  • the controller 120 generates and applies a control signal for each of the plurality of converters 110 by using the voltage detected by the voltage detector 140 . Since the voltage detector 140 is detected through voltage division with respect to the ground, the reference potential is different from the lowest level where the ground is the reference potential and at a level higher than the voltage, so it is difficult to accurately detect the voltage. Accordingly, the control unit 120 receives the voltage detected by each voltage detection unit 140 , and calculates the voltage at each level by using the relationship at each level.
  • the controller 120 calculates the voltage measured in the lowest level converter as the voltage of the lowest level converter. Since the reference potential of the lowest level is the same as the reference potential of the voltage detector 140 as ground, the voltage measured by the converter of the lowest level can be used as it is. The voltage measured at the output terminal of the top-level converter can be calculated as the total output voltage. Since the voltage between the output terminal and the ground of the converter of the highest level is the same as the total output voltage, the voltage measured at the highest level can be used as it is without separately detecting the total output voltage.
  • a voltage detected at a level other than the lowest level is calculated using a difference from a voltage measured at a neighboring lower level to calculate a voltage at the corresponding level.
  • the controller 120 may calculate a voltage at each level. 13 , when the cell string voltages measured at the input terminal are V_F1, V_F2, and V_F3 in the level order, and the output voltages measured at the output terminal are V_B1, V_B2, and V_B3, the cell
  • the string voltage 1 may be calculated as V_F1 - V_F2
  • the cell string voltage 2 may be calculated as V_F2 - V_F3
  • the cell string voltage 3 may be calculated as V_F3 as it is.
  • the output voltage 1 can be calculated as V_B1 - V_B2
  • the output voltage 2 can be calculated as V_B2 - V_B3
  • the output voltage 3 can be calculated as V_B3
  • the total output voltage is V_B1.
  • the voltage detector 140 may measure a voltage between an input terminal or an output terminal for which voltage is to be measured and a neighboring input terminal or output terminal rather than between the ground and the ground. At this time, the voltage detection unit 140 determines the reference potential of two resistors connected in series between the input terminal or output terminal of each converter and the input terminal or output terminal of a neighboring lower-level converter and a voltage applied to a node between the two resistors. It may include a reference potential converting unit that converts the same reference potential as the reference potential of the control unit. As shown in FIG. 15 , in measuring the voltage, the voltage may be measured with a reference level at a neighboring lower level, not the ground.
  • each level composed of a cell string and a converter corresponding thereto has a different reference potential. That is, the lowest level has the lowest reference potential, and the higher the level, the higher the reference potential.
  • the reference potential of the lowest level may be the ground.
  • the controller which is a control unit, is designed to detect only a potential difference higher than its own reference potential, in this multilevel structure, the reference potential of the controller is arranged to be the same as the reference potential of the lowest level. In this multi-structure and controller arrangement, the controller can detect voltage only with a potential difference from its own reference potential.
  • the voltage of the lowest level cell string voltage and the converter output voltage having the same reference potential can be detected only by the resistor divider circuit.
  • a reference potential converter such as a separate circuit that converts the voltage divided by resistance at each reference potential into the same reference potential as the controller is required.
  • a reference potential converter for converting the reference potential into the same reference potential is included.
  • the reference potential converter may make the reference potential equal to the reference potential of the controller 120 based on a value in a lower level adjacent to the ground.
  • the reference potential of the voltage detected by the voltage detection unit may be adjusted to match the reference potential of the control unit 120 using various devices or circuits.
  • the controller 120 generates and applies a control signal for each of the plurality of converters 110 by using the voltage detected by the voltage detector 140 .
  • the controller 120 may individually generate a control signal for each of the plurality of converters corresponding to each cell string according to each output signal to the plurality of cell strings.
  • the plurality of converters 110 may receive the control signal and perform the maximum power point tracking control.
  • the control signals for the plurality of converters may be applied in synchronization or may be applied with a predetermined phase difference.
  • the control signal may be a PWM signal for a switching device included in the converter.
  • the controller 120 may monitor at least one of input signals, output signals, and currents flowing in an inductor included in each converter of the plurality of converters, and transmit the monitored information to the outside through power line communication (PLC).
  • PLC power line communication
  • the solar module according to the second embodiment of the present invention includes a plurality of cell strings 130 , a plurality of converters 110 , a voltage detector 140 , and a controller 120 as shown in FIG. 12 .
  • the detailed description of the solar module of FIG. 12 corresponds to the detailed description of the power conversion device according to the second embodiment, and the overlapping description will be omitted.
  • Each of the plurality of cell strings 130 includes one or more photovoltaic cells, and the plurality of converters 110 are respectively connected to each of the cell strings to form a multi-level.
  • the voltage detector 140 detects at least one of an input voltage and an output voltage of each of the plurality of converters, and the controller 120 uses the voltage detected by the voltage detector 140 to provide a control signal for each of the converters. Create and authorize
  • the voltage detection unit 140 includes two resistors connected in series between the input or output terminal of each converter and the ground, and detects a voltage applied to a node between the two resistors, but the controller 120 controls the adjacent lower level
  • the voltage measured by each converter can be calculated using the difference with the voltage detected by the converter.
  • the voltage detection unit 140 may include two resistors connected in series between an input terminal or an output terminal of each converter and an input terminal or an output terminal of a neighboring lower-level converter and a reference potential of a voltage applied to a node between the two resistors. It may include a reference potential converting unit that converts the same reference potential as the reference potential of the control unit.
  • FIG. 16 is a block diagram of a power conversion device according to a third embodiment of the present invention
  • FIG. 17 is a block diagram of a solar module according to a third embodiment of the present invention
  • 18 and 19 show various embodiments of a power conversion device according to a third embodiment of the present invention.
  • the power conversion device 500 includes a plurality of converters 110 and an auxiliary power supply unit 150, and may further include a control unit or a voltage detection unit.
  • a description corresponding to the detailed description of the first embodiment and/or the second embodiment will be omitted.
  • the third embodiment of the present invention is expressed based on the configuration of the auxiliary power unit generating auxiliary power for driving a converter, etc., and includes components according to the embodiments of the present invention even though descriptions of some components are omitted. Of course it can be done.
  • the plurality of converters 110 are respectively connected to the plurality of cell strings 130 and are connected by cascodes to form a multi-level. Signals from the highest level to the lowest level output from the plurality of converters 110 are combined and output as one signal.
  • the auxiliary power unit 150 supplies driving power to each of the plurality of converters. Unlike FIGS. 3 and 4 in which the cell string, the converter, the controller, and the auxiliary power all use the same ground, when the cell string, the converter, the controller, and the auxiliary power source are configured in a multi-level configuration, the auxiliary power supply unit 150 must supply auxiliary power suitable for each level.
  • the auxiliary power supply unit 150 of the power conversion device includes an insulated converter.
  • the primary-side circuit of the insulated converter receives a voltage of at least one output terminal among the output terminals of the plurality of cell strings, and the insulated converter outputs a voltage to the secondary-side circuit according to the voltage of the primary circuit,
  • the secondary circuit supplies driving power to each of the plurality of converters by using the voltage output from the insulated converter.
  • a voltage of at least one output terminal among the output terminals of the plurality of cell strings is applied to the primary circuit.
  • respective output terminals of the plurality of cell strings may be connected in parallel through a switching device.
  • the switching element may be a diode as shown in FIG. 18 .
  • Each of the output terminals of the plurality of cell strings are all connected and connected through a diode, so that the highest voltage among the cell string voltages may be selectively applied. That is, even if the amount of sunlight is insufficient in some cell strings, it is possible to provide driving power to all converters by using voltages of other cell strings in which power is sufficiently generated. Redundancy can also be secured through this.
  • it is natural that a voltage of a specific cell string may be input without a diode and used to supply auxiliary power.
  • the isolated converter may include at least one of a flyback converter, a forward converter, and an LLC converter.
  • the isolated converter may perform Primary Side Regulation (PSR).
  • PSR Primary Side Regulation
  • the PSR may be performed with reference to the output voltage of the secondary circuit having the same reference potential as the primary circuit.
  • the secondary circuit output can be controlled with reference to the voltage reflected to the primary side through the transformer.
  • An isolated converter may use a tertiary winding to control the secondary circuitry output.
  • the isolated converter may be controlled by referring only to the output voltage of the secondary circuit unit based on the same potential as that of the primary circuit unit. For example, when the primary circuit unit is based on the ground, the control may be performed with reference to the output voltage of the secondary circuit unit based on the ground.
  • Auxiliary power can be generated by combining a separate converter and a linear regulator that takes the output of the secondary circuit as an input.
  • the secondary circuit includes a first secondary circuit for supplying auxiliary power to an upper switch included in each converter and a second secondary circuit for supplying auxiliary power to a lower switch included in each converter, as shown in FIG. 19 .
  • the converter may include a high-side FET and a low-side FET, and may supply auxiliary power to each of the high-side FET and the low-side FET, respectively.
  • At least one of an input signal, an output signal of the plurality of converters, and a current flowing in an inductor included in each converter is monitored and transmitted to the outside through power line communication (PLC), or a control signal for each of the plurality of converters is generated and a control unit for applying the voltage to the control unit
  • the secondary side circuit may include a third secondary side circuit for supplying driving power to the control unit.
  • the secondary circuit unit may additionally use a secondary circuit unit for a separate purpose in addition to the secondary circuit unit corresponding to each converter.
  • auxiliary power can be provided to various modules that require power, such as driving power.
  • the plurality of converters 110 may receive a control signal from the controller to perform the maximum power point tracking control.
  • the photovoltaic module according to the third embodiment of the present invention includes a plurality of cell strings 130 , a plurality of converters 110 , and an auxiliary power supply unit 150 as shown in FIG. 17 .
  • the detailed description of the solar module of FIG. 17 corresponds to the detailed description of the power conversion device according to the third embodiment, and the overlapping description will be omitted.
  • Each of the plurality of cell strings 130 includes one or more photovoltaic cells, and the plurality of converters 110 are respectively connected to each of the cell strings to form a multi-level.
  • the auxiliary power unit 150 supplies driving power to each of the plurality of converters 110, and the auxiliary power unit 150 is a primary circuit to which the voltage of at least one output terminal among the output terminals of the plurality of cell strings is applied, the primary side an isolated converter for outputting a voltage to the secondary circuit according to the voltage of the circuit, and a plurality of secondary circuits for supplying driving power to each of the plurality of converters by using the voltage output from the insulated converter.
  • the secondary circuit includes a first secondary circuit for supplying auxiliary power to an upper switch included in each converter and a second secondary circuit for supplying auxiliary power to a lower switch included in each converter. .
  • At least one of an input signal, an output signal of the plurality of converters, and a current flowing in an inductor included in each converter is monitored and transmitted to the outside through power line communication (PLC), or a control signal for each of the plurality of converters is generated and a control unit for applying the voltage to the control unit, and the secondary side circuit may include a third secondary side circuit for supplying driving power to the control unit.
  • PLC power line communication
  • the power conversion device includes a plurality of converters 110 and an auxiliary power supply unit 150, and may further include a control unit or a voltage detection unit.
  • a control unit or a voltage detection unit In the detailed description of the power conversion device according to the fourth embodiment of the present invention, the description corresponding to the detailed description of the first to third embodiments will be omitted.
  • the fourth embodiment of the present invention is mainly expressed in terms of the configuration of an auxiliary power unit generating auxiliary power for driving a converter, etc., and includes components according to the embodiments of the present invention even though descriptions of some components are omitted. Of course it can be done.
  • the power conversion device is applied to each of the plurality of converters 110 and the voltage output from each cell string connected to a plurality of cell strings to form a multi-level, respectively. It includes a plurality of auxiliary power supply units 150 for supplying driving power.
  • the power conversion device According to the configuration of the auxiliary power unit of the power conversion device according to the third embodiment, it is possible to generate a plurality of auxiliary power sources with a single insulated converter, which has an advantage in terms of material cost reduction, but it is difficult to control the output voltage of the individual secondary circuit unit, Since there is a possibility that the entire auxiliary power circuit may malfunction due to a partial failure of the power supply circuit, the power conversion device according to the fourth embodiment separately generates and supplies auxiliary power supplied to each converter.
  • the auxiliary power unit 150 may include at least one of a single regulator and a cascade-connected two-stage or more regulator.
  • the individual auxiliary power supply unit 150 for supplying auxiliary power to each converter may include a single regulator.
  • the single regulator may include at least one of a linear regulator, a charge pump, an up-down converter, and a step-up converter.
  • a single regulator can selectively use a linear regulator, a charge pump, a step-up (buck-boost) converter, and a step-up (Boost) converter.
  • buck-boost step-up
  • Boost step-up
  • the cell string voltage changes frequently according to the conditions of the solar cell, it should be appropriately applied according to the relationship between the string voltage variation range and the target voltage (V_aux) of the auxiliary power source.
  • V_aux target voltage
  • FIG. 21 when the target voltage (V_aux) of the auxiliary power is lower than the lowest cell string voltage, step-down is required.
  • a linear regulator or a buck converter may be used.
  • a boost is required when the target voltage (V_aux) of the auxiliary power is higher than the maximum cell string voltage.
  • a charge pump or a boost converter may be used.
  • the circuit configuration is relatively simple and can be implemented with low material cost.
  • V_aux target voltage of the auxiliary power
  • V_aux target voltage of the auxiliary power
  • step-up and step-up are required. do.
  • the non-inverting buck-boost converter requires four semiconductor switches, so the circuit is relatively complex and the material cost is high.
  • the auxiliary power supply unit 150 may be a multi-output isolated converter, wherein the multi-output isolated converter includes a first output for supplying auxiliary power to an upper switch included in each converter and a lower side included in each converter. It may include a second output for supplying auxiliary power to the switch. As shown in FIG. 22 with a single regulator, an isolated converter capable of multiple outputs may be applied. When an isolated converter capable of multiple outputs is used, the FET driving power can be supplied to the low-side FET, which is the low-side switch, and the high-side FET, which is the high-side switch included in the converter, respectively. When supplying a single auxiliary power to the converter, the high-side FET driving power must be supplied through the bootstrap circuit.
  • the bootstrap circuit Since the bootstrap circuit has to charge the capacitor by intermittently conducting the low-side FET to maintain the output voltage, the high-side FET cannot be continuously conducted. In general, an operation of continuously conducting a high-side FET to bypass a cell string voltage to an output voltage occurs frequently in MLPE operation. If the driving power of the low-side FET and the high-side FET is respectively supplied using an isolated converter, the high-side FET can be operated without a bootstrap circuit. Through this, the shortcomings of the bootstrap circuit can be overcome and the high-side FET can be continuously conducted.
  • two or more stages of regulators connected in cascade can be used.
  • the two or more stages of the regulator may include at least two of a linear regulator, a charge pump, a lift-type converter, and a step-up converter. It is also possible to use two stages of the same type or different types of regulators.
  • a step-up regulator and a step-down regulator may be configured as a cascade. At this time, circuit implementation is possible regardless of the arrangement order of the step-up type and step-down type regulator.
  • the step-up type means that the auxiliary power voltage (V_aux) can be stepped up and stepped down compared to the cell-string voltage.
  • the two or more stages of the regulator may include a step-down type regulator and a step-up type regulator, as shown in FIG. 23 .
  • the step-down regulator may include at least one of a linear regulator and a step-down converter
  • the step-up regulator may include at least one of a charge pump and a step-up converter.
  • a two-stage regulator can be used in combination with a linear regulator, a differential pump, an up-down converter, a step-up converter, and a step-up converter. can do.
  • the auxiliary power unit may be formed by a linear regulator-charge pump combination, a linear regulator-boost converter combination, a buck converter-charge pump combination, and a buck converter-boost converter combination.
  • combinations of 1 to 3 can reduce material cost compared to non-inverting buck-boost converters.
  • the power conversion device monitors at least one of the input signals, the output signals of the plurality of converters, and the current flowing in the inductors included in each converter and transmits them to the outside through power line communication (PLC), or the It may include a control unit for generating and applying a control signal for each of the plurality of converters,
  • the plurality of converters may receive the control signal to perform maximum power point tracking control.
  • the solar module according to the fourth embodiment of the present invention includes a plurality of cell strings 130 , a plurality of converters 110 , and an auxiliary power supply unit 150 .
  • the detailed description of the solar module according to the fourth embodiment of the present invention corresponds to the detailed description of the power conversion device according to the fourth embodiment, and the overlapping description will be omitted.
  • Each of the plurality of cell strings 130 includes one or more photovoltaic cells, and the plurality of converters 110 are respectively connected to each of the cell strings to form a multi-level.
  • the auxiliary power unit 150 supplies driving power to each of the plurality of converters 110 , and supplies driving power to each of the plurality of converters using a voltage output from each cell string.
  • the auxiliary power unit may include at least one of a single regulator and a cascade-connected two-stage or more regulator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Dc-Dc Converters (AREA)

Abstract

본 발명의 일 실시예에 따른 전력변환장치는 복수의 셀 스트링에 각각 연결되는 복수의 컨버터 및 상기 복수의 컨버터 각각에 구동전원을 공급하는 보조전원부를 포함하고, 상기 보조전원부는, 상기 복수의 셀 스트링의 출력단 중 적어도 하나의 출력단의 전압을 인가받는 1차측 회로, 상기 1차측 회로의 전압에 따라 2차측 회로에 전압을 출력하는 절연형 컨버터, 및 상기 절연형 컨버터에서 출력되는 전압을 이용하여 상기 복수의 컨버터 각각에 구동전원을 공급하는 복수의 2차측 회로를 포함하고, 상기 복수의 컨버터는 멀티레벨을 구성한다.

Description

멀티레벨 구조를 가지는 전력변환장치
본 발명은 전력변환장치에 관한 것으로, 보다 구체적으로 멀티레벨 구조를 가지는 복수의 컨버터를 이용하는 전력변환장치 및 태양광 모듈에 관한 발명이다.
태양광 발전은 친환경 에너지 발전 방식으로 기존 화학발전이나 원자력 발전을 대체하여 널리 보급되고 있다. 태양광 발전은 컨버터에 배터리가 접속되는 독립형과 전력계통과 연계되는 연계형태가 있고, 일반적으로 독립형 발전은 태양전지, 축전지, 전력변환 장치 등으로 구성되고 전력계통 연계형 시스템은 상용 전원과 연결하여 부하계통선과 전력을 상호 교류할 수 있도록 구성된다.
태양광 셀 모듈은 일조량, 온도 등에 따라 최대전력점이 상이해진다. 태양광 셀을 최대 전력 점에서 동작시키기 위해 모듈 단위로 최대전력점 추종(MPPT) 제어를 하는 모듈 레벨 파워 일렉트로닉스(Module-Level Power Electronics, MLPE)를 사용할 수 있다. 하지만, 단일 컨버터를 적용한 MLPE는 모듈 내 각 셀의 일조량, 온도 등이 상이할 경우 최적화된 최대전력점 추종 제어가 어렵다.
도 1과 같이, 단일 컨버터 적용 방식은 모든 셀을 직렬 결선하여 MLPE에 입력하고, MLPE는 태양광 셀 모듈 전체에 대한 최대전력점 추종제어를 수행한다. 이 경우, 셀 스트링의 일조량이 상이하여 각 셀 스트링 별로 최대전력점이 다를 경우에 개별 스트링에 대한 최대전력점 추종 제어가 불가한 문제가 있다.
또한, 단일 컨버터 적용 방식의 MLPE는 도 2와 같이, 태양광 셀 모듈, DC/DC 컨버터, 컨트롤러는 동일한 기준 전위(Electric potential)로 설계된다. 이로 인해, 컨트롤러가 태양광 셀 모듈 전압 및 DC/DC 컨버터 출력 전압을 검출함에 있어서, 저항 분배 회로만으로도 전압 검출 회로 구현이 가능하다. 하지만, 멀티레벨 구조의 MLPE에서는 상기와 같을 방식을 그대로 적용할 수 없다.
또한, 단일 컨버터 적용 방식의 MLPE는 태양광 셀 모듈, DC/DC 컨버터, 컨트롤러, 보조전원이 모두 동일한 그라운드를 사용한다. 이로 인해, 도 3 및 도 4와 같이, 태양광 셀 모듈로부터 전력을 공급받아 컨버터 및 컨트롤러 등에 보조전원을 공급하기 위한 보조전원회로를 구성하는 것이 가능하다. 하지만, 멀티레벨 구조의 MLPE에서는 상기와 같을 방식을 그대로 적용할 수 없다.
본 발명이 해결하고자 하는 기술적 과제는, 멀티레벨 구조를 가지는 복수의 컨버터를 이용하는 전력변환장치 및 태양광 모듈을 제공하는 것이다.
상기 기술적 과제를 해결하기 위하여, 본 발명의 일 실시예에 따른 전력변환장치는 복수의 셀 스트링에 각각 연결되는 복수의 컨버터; 및 상기 복수의 컨버터 각각에 구동전원을 공급하는 보조전원부를 포함하고, 상기 보조전원부는, 상기 복수의 셀 스트링의 출력단 중 적어도 하나의 출력단의 전압을 인가받는 1차측 회로; 상기 1차측 회로의 전압에 따라 2차측 회로에 전압을 출력하는 절연형 컨버터; 및 상기 절연형 컨버터에서 출력되는 전압을 이용하여 상기 복수의 컨버터 각각에 구동전원을 공급하는 복수의 2차측 회로를 포함하고, 상기 복수의 컨버터는 멀티레벨을 구성한다.
또한, 상기 1차측 회로는, 상기 복수의 셀 스트링의 각 출력단들이 스위칭소자를 통해 병렬로 연결될 수 있다.
또한, 상기 스위칭소자는 다이오드일 수 있다.
또한, 상기 2차측 회로는 상기 각 컨버터에 포함되는 상측 스위치에 보조전원을 공급하는 제1 2차측 회로; 및 상기 각 컨버터에 포함되는 하측 스위치에 보조전원을 공급하는 제2 2차측 회로를 포함할 수 있다.
또한, 상기 복수의 컨버터의 입력신호, 출력신호, 및 각 컨버터에 포함된 인덕터에 흐르는 전류 중 적어도 하나를 모니터링하여 전력선통신(PLC)를 통해 외부로 전송하거나, 상기 복수의 컨버터 각각에 대한 제어신호를 생성하여 인가하는 제어부를 포함하고, 상기 2차측 회로는 제어부에 구동전원을 공급하는 제3 2차측 회로를 포함할 수 있다.
또한, 상기 절연형 컨버터는 플라이백 컨버터, 포워드 컨버터, 및 LLC 컨터버 중 적어도 하나를 포함할 수 있다.
또한, 상기 절연형 컨버터는 PSR(Primary Side Regulation)을 수행할 수 있다.
또한, 상기 절연형 컨버터는 상기 1차측 회로와 동일 기준 전위를 가지는 2차측 회로의 출력 전압을 참조하여 상기 PSR을 수행할 수 있다.
또한, 상기 복수의 컨버터는 상기 제어신호를 수신하여 최대전력점 추종제어를 수행할 수 있다.
*또한, 상기 복수의 컨버터는 캐스코드(cascode)로 연결될 수 있다.
상기 기술적 과제를 해결하기 위하여, 본 발명의 일 실시예에 따른 태양광 모듈은 각각 하나 이상의 태양광 셀을 포함하는 복수의 셀 스트링; 상기 각 셀 스트링에 각각 연결되는 복수의 컨버터; 및 상기 복수의 컨버터 각각에 구동전원을 공급하는 보조전원부를 포함하고, 상기 보조전원부는, 상기 복수의 셀 스트링의 출력단 중 적어도 하나의 출력단의 전압을 인가받는 1차측 회로; 상기 1차측 회로의 전압에 따라 2차측 회로에 전압을 출력하는 절연형 컨버터; 및 상기 절연형 컨버터에서 출력되는 전압을 이용하여 상기 복수의 컨버터 각각에 구동전원을 공급하는 복수의 2차측 회로를 포함하고, 상기 복수의 컨버터는 멀티레벨을 구성한다.
또한, 상기 1차측 회로는, 상기 복수의 셀 스트링의 각 출력단들이 다이오드를 통해 병렬로 연결될 수 있다.
또한, 상기 2차측 회로는 상기 각 컨버터에 포함되는 상측 스위치에 보조전원을 공급하는 제1 2차측 회로; 및 상기 각 컨버터에 포함되는 하측 스위치에 보조전원을 공급하는 제2 2차측 회로를 포함할 수 있다.
또한, 상기 복수의 컨버터의 입력신호, 출력신호, 및 각 컨버터에 포함된 인덕터에 흐르는 전류 중 적어도 하나를 모니터링하여 전력선통신(PLC)를 통해 외부로 전송하거나, 상기 복수의 컨버터 각각에 대한 제어신호를 생성하여 인가하는 제어부를 포함하고, 상기 2차측 회로는 제어부에 구동전원을 공급하는 제3 2차측 회로를 포함하는 태양광 모듈일 수 있다.
본 발명의 실시예들에 따르면, 통합된 제어부로 다수 컨버터를 제어하여 컨틑롤러의 수를 줄일 수 있다. 또한, 각 컨버터 간에 연계된 제어가 가능하며, 통합된 제어부를 이용하여 최대전력점 추종 제어 외에 모니터링 및 통신 등 부가적인 기능 구현이 용이하다. 또한, 멀티레벨 구조 MLPE에서 상이한 기준 전위를 갖는 전압을 검출함에 있어서, 추가적인 소자 없이 기존 방식과 동일하게 저항 분배 회로만으로 전압을 검출할 수 있다. 나아가, 멀티레벨 구조를 갖는 MLPE를 사용함에 있어서, 보조전원회로를 구현하여 각 DC/DC 컨버터, 제어 회로, PLC 회로 등에 보조전원을 원활히 공급할 수 있다. 여기서, 보조전원회로에 단일 절연형 컨버터를 적용하여 다수의 보조전원생성이 가능하여, 재료비 절감에 유리하다. 아울러, 멀티레벨 구조를 갖는 MLPE를 사용함에 있어서, 각 DC/DC 컨버터의 개별 보조전원회로를 구비함으로써, 보다 안정적인 보조전원 공급이 가능하고, 개별 보조전원회로를 승강압형으로 설계할 때, 강압형 레귤레이터 및 승압형 레귤레이터를 케스케이드 구성함으로써 비반전형 벅-부스트 컨버터 대비 재료비 절감이 가능하다.
도 1 내지 도 4는 본 발명의 비교 실시예에 따른 태양광 모듈의 블록도이다.
도 5는 최대전력점 추종제어를 설명하기 위한 도면이다.
도 6은 본 발명의 제1 실시예에 따른 전력변환장치의 블록도이다.
도 7은 본 발명의 제1 실시예에 따른 태양광 모듈의 블록도이다.
도 8 내지 도 10은 본 발명의 제1 실시예를 설명하기 위한 도면이다.
도 11은 본 발명의 제2 실시예에 따른 전력변환장치의 블록도이다.
도 12는 본 발명의 제2 실시예에 따른 태양광 모듈의 블록도이다.
도 13 내지 도 14는 본 발명의 제2 실시예를 설명하기 위한 도면이다.
도 15는 본 발명의 제2 실시예에 따른 전력변환장치의 또 다른 실시예를 도시한 것이다.
도 16은 본 발명의 제3 실시예에 따른 전력변환장치의 블록도이다.
도 17는 본 발명의 제3 실시예에 따른 태양광 모듈의 블록도이다.
도 18 및 도 19는 본 발명의 제3 실시예에 따른 전력변환장치의 다양한 실시예를 도시한 것이다.
도 20 내지 도 24는 본 발명의 제4 실시예에 따른 전력변환장치의 다양한 실시예를 도시한 것이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합 또는 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "A 및(와) B, C 중 적어도 하나(또는 한 개 이상)"로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성 요소에 '연결', '결합', 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 '연결', '결합', 또는 '접속'되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합', 또는 '접속'되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 "상(위)" 또는 "하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, "상(위)" 또는 "하(아래)"는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라, 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, "상(위)" 또는 "하(아래)"로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함될 수 있다.
본 실시예에 따른 변형례는 각 실시예 중 일부 구성과 다른 실시예 중 일부 구성을 함께 포함할 수 있다. 즉, 변형례는 다양한 실시예 중 하나 실시예를 포함하되 일부 구성이 생략되고 대응하는 다른 실시예의 일부 구성을 포함할 수 있다. 또는, 반대일 수 있다. 실시예들에 설명할 특징, 구조, 효과 등은 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다
도 6은 본 발명의 제1 실시예에 따른 전력변환장치의 블록도이고, 도 7은 본 발명의 제1 실시예에 따른 태양광 모듈의 블록도이다. 도 8 내지 도 10은 본 발명의 제1 실시예를 설명하기 위한 도면이다.
본 발명의 제1 실시예에 따른 전력변환장치(100)는 복수의 셀 스트링(131 내지 133), 복수의 컨버터(111 내지 113), 및 제어부(120)로 구성된다.
컨버터(111 내지 113)는 복수의 셀 스트링(131 내지 133)에 각각 연결된다.
여기서, 복수의 셀 스트링(131 내지 133) 각각은 적어도 하나 이상의 셀을 포함할 수 있고, 복수의 셀을 포함하는 경우, 복수의 셀은 직렬로 연결될 수 있다. 셀 스트링(131 내지 133)은 태양광 셀을 포함하는 태양광 셀 스트링일 수 있다. 태양광 셀 스트링은 태양광패널을 형성할 수 있다. 태양광 셀은 광전효과를 이용하여 전력을 생성하는 태양광 발전(PV, Photovoltaic)을 한다. 광전효과는 특정 주파수 이상의 빛이 특정 금속 물질에 부딪히면 전자 방출하는 것으로, P형 반도체와 n형 반도체를 이용하여 pn 접합을 형성하고, 광전효과에 의해 발생하는 전자를 이용하여 전류를 생성함으로써 전력을 생성한다. 태양광 셀은 실리콘 등을 이용하여 형성되며, 웨이퍼 형태로 형성될 수 있다. 태양광 셀은 태양광을 잘 받을 수 있는 야지나 건물의 외벽, 옥상 등에 위치하여, 태양광을 이용하여 전력을 생성한다. 이때, 태양광 셀은 건물과 일체형으로 형성되는 BIPV(건물 일체형 태양광 발전)로 형성될 수 있다.
하나의 태양광 셀에서 생성되는 전력의 크기가 부하나 전력계통에서 이용하기에는 부족하기 때문에, 하나의 태양광 셀이 아닌 복수의 태양광 셀을 직렬로 연결하여 태양광 셀 스트링을 형성함으로써 이용하기에 적합한 크기의 전력을 생성할 수 있다. 태양광 셀 스트링은 전력을 생성하는 기본 단위일 수 있다. 기본 단위인 셀 스트링을 복수 개를 패널로 형성하여 태양광 발전패널을 형성할 수 있다.
태양광 셀은 일조량, 기온 등에 따라 도 5와 같이, 상이한 전압-전류 특성을 가지며, 최대 전력 점(MPP) 또한 변동된다. (발전전력 = 전압 X 전류) 전력변환장치는 태양광 셀이 각 조건에서 전력이 최대가 되는 동작점인 최대 전력 점(MPP)에서 태양광 셀이 동작하도록 제어하는 역할을 한다. 이를 최대전력점 추종(MPPT, Maximum Power Point Tracking)이라 하고, 최대전력점 추종을 이용하여 태양광 발전의 효율성을 높일 수 있다. 태양광 발전에 있어서 전류와 전압의 관계 및 전압과 전력과의 관계에서의 특성에 따라 최대 전력은 최대 전압이 아닌 최대 전압에서 약 80% 정도일 때의 전력이 될 수 있다. 이와 같은 최대전력점은 태양광패널에서 생성되는 전압 및 전류의 크기에 따라 계속 변하기 때문에, 최대전력 점을 발생시킬 수 있는 지점을 계속 찾아야 한다. 즉, 최대전압이 아닌 최대전력을 추종하기 위하여, 최대전력이 되도록 전압과 전류의 크기를 가변할 수 있다. 즉, 전력이 커지는 방향으로 전압을 감소시키고 전류를 증가시키거나, 전압을 증가시키고, 전류를 감소시킬 수 있다.
컨버터는 복수의 셀 스트링(111 내지 113)의 수에 대응되는 복수의 컨버터(111 내지 113)를 포함한다. 각 컨버터(111 내지 113)는 대응하는 셀 스트링(131 내지 133)과 연결되어 셀 스트링(131 내지 133)에서 생성되는 전력을 인가받고, 전압을 변환하여 출력한다. 도 1과 같이, 모든 셀 스트링을 직렬로 연결하고, 하나의 컨버터를 이용하여 최대전력점 추종제어를 수행하는 경우, 셀 스트링간 일조량 등에 차이가 있는 경우, 최적의 최대전력점 추종이 어려운바, 효율적인 최대전력점 추정제어를 위하여, 셀 스트링 단위로 최대전력점 추종을 수행하기 위하여, 복수의 셀 스트링에 각각 연결되는 복수의 컨버터를 포함한다.
컨버터(111 내지 113)는 DC-DC 컨버터이고, 제1 전압을 가지는 신호를 제2 전압을 가지는 신호로 변환하여 출력할 수 있다. 또는, 제1 전류를 가지는 신호를 제2 전류를 가지는 신호로 변환하여 출력할 수 있다. 이때, 복수의 컨버터(111 내지 113)는 멀티레벨을 구성한다. 복수의 컨버터(111 내지 113)는 멀티레벨을 구성하기 위하여, 캐스코드(cascode)로 연결될 수 있다. 여기서, 캐스코드는 출력단이 다단으로 연결되는 형태를 의미하며, 캐스코드 연결에 따라 컨버터의 출력단이 쌓여 멀티레벨을 구성한다. 멀티레벨은 각 컨버터의 출력신호가 하나의 신호로 합쳐져 출력되는 구조를 의미한다. 이때, 도 6과 같이, 상위 레벨의 컨버터(111) 출력단의 (-)단자가 이웃하는 하위 레벨의 컨버터(112) 출력단의 (+) 단자와 순차적으로 연결되어, 최상위 레벨의 컨버터(111)의 출력부터 최하위 레벨의 컨버터(113)의 출력이 합쳐져 하나의 신호로 출력된다.
제어부(120)는 복수의 컨버터(111 내지 113) 각각에 제어신호를 인가한다. 하나의 제어부(120)가 복수의 컨버터(111 내지 113) 각각을 제어하기 위한 제어신호를 생성한다. 복수의 컨버터(111 내지 113)는 상기 제어신호를 수신하여 최대전력점 추종제어를 수행한다.
복수의 컨버터(111 내지 113) 각각은 제어부(120)로부터 제어신호를 받아, 각자 연결된 셀 스트링(131 내지 133)의 전력이 최대전력이 되도록 최대전력점 추종을 수행한다. 복수의 셀 스트링으로 형성되는 태양광 모듈이 일정 면적 이상으로 형성되는 경우, 셀 스트링 간 일조량이 상이한 경우, 셀 스트링 간 최대전력점이 달라지는바, 복수의 컨버터 각각은 셀 스트링 별로 최대전력점 추종제어를 수행하여, 각 셀 스트링에서 최대전력이 생성되도록 한다. 이를 통해, 셀 스트링 별 최적화된 최대전력점 추종제어가 가능하다.
제어부(120)는 최대전력점 추종제어를 위한 제어신호를 생성하고 복수의 컨버터(111 내지 113)에 인가하는 기능뿐만 아니라, 다른 기능들을 추가적으로 수행할 수 있다. 제어부(120)는 복수의 컨버터(111 내지 113)의 입력신호, 출력신호, 및 각 컨버터에 포함된 인덕터에 흐르는 전류 중 적어도 하나를 모니터링할 수 있다. 최대전력점 추종제어를 위한 제어신호를 생성함에 있어서, 셀 스트링(131 내지 133)에서 출력되고 있는 셀 스트링 전압에 해당하는 컨버터의 입력신호와 컨버터에서 출력되고 있는 출력신호를 이용하여야 하는바, 제어부(120)는 컨버터의 입력신호 및 출력신호를 모니터링한다. 이때, 입력신호의 전압 및 전류와 출력신호의 전압 및 전류를 모니터링할 수 있다. 또한, 컨버터(111 내지 113)를 구성하는 인덕터에 흐르는 전류를 모니터링하여 과전류가 흐르는지를 모니터링하여 과전류 보호에 이용할 수 있다. 이외에 제어부(120)는 전력변환을 위해 필요한 다양한 정보를 모니터링할 수 있다.
제어부(120)는 상기 모니터링한 정보를 상위 제어기 또는 외부로 전송할 수 있다. 이때, 제어부(120)는 전력선통신(PLC)를 통해 모니터링한 정보를 전송할 수 있다. 전력선통신(Power Line Communication)은 전력선을 이용하여 통신을 수행하는 것으로, 별도의 통신라인 없이 전력선을 이용하여 통신을 수행할 수 있다. 이외에 유선 또는 무선의 다양한 방식의 통신을 이용할 수 있음은 당연하다.
제어부(120)는 상기 복수의 컨버터(111 내지 113)가 최대전력점 추종제어를 수행하도록 제어신호를 인가하는 제1 제어부 및 상기 복수의 컨버터의 입력신호, 출력신호, 및 각 컨버터에 포함된 인덕터에 흐르는 전류 중 적어도 하나를 모니터링하고, 상기 모니터링한 정보를 외부로 전송하는 제2 제어부를 포함할 수 있다. 제어부(120)는 기능별로 최대전력점 추종제어 기능을 수행하는 제1 제어부 및 모니터링과 통신을 수행하는 기능을 수행하는 제2 제어부를 포함할 수 있다. 이때, 제1 제어부 및 제2 제어부는 하나의 모듈로 형성되거나, 별도의 모듈로 형성될 수 있다. 제1 제어부 및 제2 제어부는 기능블록별로 형성될 수 있고, 하나의 통합 IC로 형성될 수도 있다.
도 8은 본 발명의 제1 실시예의 구현예를 도시한 것으로, 전력변환장치(100)는 MLPE일 수 있다. 하나의 제어부를 이용하여 멀티레벨을 구성하는 복수의 컨버터를 제어하여 셀 스트링 별로 최대전력점 추종제어가 가능하다. 도 8과 같이, 최대전력점 추종제어를 위한 정보들을 모니터링하고 모니터링한 정보를 외부와 통신을 수행하는 MCU와 최대전력점 추종제어를 수행하돌고 각 컨버터에 제어신호를 인가하는 컨트롤러(controller) 기능이 하나의 제어부로 형성될 수 있다. 하나의 제어부 상에 별도의 기능블록이나 모듈로 형성될 수 있음은 당연하다.
도 9는 멀티레벨을 구성하는 각 컨버터를 제어하는 복수의 컨트롤러를 포함하는 실시예이다. 각 컨버터마다 별도의 컨트롤러가 필요한바, 컨트롤러의 수가 많아져, 비용이 증가하고, 제작이 어려워질 수 있다. 이때도, 모니터링 내지 통신을 위해선 별도의 MCU도 필요하다. 도 9의 실시예에 비해, 도 8의 실시예와 같이, 하나의 제어부(120)에서 각 컨버터(111 내지 113)를 제어함으로써 효율적인 제어가 가능해진다.
제어부(120)는 상기 복수의 셀 스트링에 각각의 출력신호에 따라 각 셀 스트링에 대응하는 상기 복수의 컨버터 각각에 대한 제어신호를 개별적으로 생성하여 각 셀 스트링의 최대전력점 추종이 가능하도록 한다.
컨버터(111 내지 113)는 복수의 스위칭소자를 포함할 수 있고, 여기서, 스위칭소자는 MOSFET 등의 반도체 스위치를 포함할 수 있다. 제어신호는 컨버터(111 내지 113) 내의 반도체 스위치를 구동하기 위한 PWM(pulse-width modulation) 신호일 수 있다. PWM 신호는 한 주기동안의 펄스폭이 조절되는 신호로, 펄스폭이 클수록 스위칭 소자가 턴온을 유지하는 시간이 길어진다. 즉, 시비율(듀티비)이 커지고, 컨버터(111 내지 113)에서 출력으로 전달되는 전력의 크기가 커진다. 반대로, 펄스폭이 작아지면 시비율이 작아져 컨버터(111 내지 113)에서 출력으로 전달되는 전력의 크기가 작아진다. 이를 조절함으로써 전압 및 전류를 제어할 수 있고, 이를 통해, 최대전력점 추종제어가 가능해진다. 즉, 제어부(120)는 PWM 신호의 크기를 조절함으로써 최대전력점 추종제어를 수행할 수 있다.
제어부(120)가 복수의 컨버터(111 내지 113)에 대한 제어신호를 인가함에 있어서, 상기 복수의 컨버터에 대한 제어신호는 동기화되어 인가되거나, 소정의 위상차를 가지고 인가될 수 있다. 하나의 제어부(120)가 복수의 컨버터(111 내지 113)를 제어하므로, 각 컨버터 간에 연계된 제어가 가능하다. 예를 들어, 각 컨버터는 도 10과 같이, 동기 방식 또는 인터리빙(interleaving) 방식으로 동작할 수 있다. 동기 방식은 도 10과 같이, 동일한 시점에 동시에 각 컨버터에 대한 제어신호를 인가하는 것이고, 인터리빙 방식은 각 컨버터마다 위상차를 가지고 제어신호가 인가되는 것이다. 인터리빙 방식 적용 시, 제어부인 MCU의 ADC 또는 연산이 한 시점에 집중되지 않고 분산되어 보다 낮은 성능의 MCU를 적용할 수 있다. 상기 위상차는 멀티레벨을 구성하는 컨버터의 수에 따라 달라질 수 있다. 예를 들어, 컨버터가 3개인 경우, 360 도를 3으로 나누어 각 컨버터에 대한 제어신호는 120 도의 위상차를 가지고 인가될 수 있다.
본 발명의 제1 실시예에 따른 태양광 모듈은 도 7과 같이, 복수의 셀 스트링(131 내지 133), 복수의 컨버터(111 내지 113) 및 제어부(120)로 구성된다. 도 7의 태양광 모듈에 대한 상세한 설명은 제1 실시예에 따른 전력변환장치에 대한 상세한 설명에 대응하는바, 중복되는 설명은 생략하도록 한다. 복수의 셀 스트링(131 내지 133)은 각각 하나 이상의 태양광 셀을 포함하고, 복수의 컨버터(111 내지 113)는 상기 각 셀 스트링에 각각 연결되며, 제어부(120)는 상기 복수의 컨버터(111 내지 113) 각각의 정보를 모니터링하고, 상기 모니터링된 정보에 따라 상기 복수의 컨버터(111 내지 113) 각각에 제어신호를 인가하는 하나의 제어부이다. 상기 복수의 컨버터는 멀티레벨을 구성한다.
상기 복수의 컨버터(111 내지 113)는 캐스코드(cascode)로 연결되며, 제어부(120)는 복수의 컨버터(111 내지 113)가 최대전력점 추종제어를 수행하도록 제어신호를 인가하고, 상기 복수의 컨버터(111 내지 113)의 입력신호, 출력신호, 및 각 컨버터에 포함된 인덕터에 흐르는 전류 중 적어도 하나를 모니터링하고, 상기 모니터링한 정보를 외부로 전송하는 통합 IC일 수 있다.
도 11은 본 발명의 제2 실시예에 따른 전력변환장치의 블록도이고, 도 12는 본 발명의 제2 실시예에 따른 태양광 모듈의 블록도이다. 도 13 내지 도 14는 본 발명의 제2 실시예를 설명하기 위한 도면이다.
본 발명의 제2 실시예에 따른 전력변환장치(300)는 복수의 컨버터(110), 전압 검출부(140), 및 제어부(120)로 구성된다. 본 발명의 제2 실시예에 따른 전력변환장치에 대한 상세한 설명 중 제1 실시예에 대한 상세한 설명에 대응되는 설명은 생략하도록 한다. 본 발명의 제2 실시예는 멀티레벨을 구성하는 컨버터(110)에 있어서, 셀 스트링 출력 전압 및 컨버터 출력 전압을 검출하는 구성을 중심으로 표현한 것으로, 일부 구성에 대한 설명이 생략되었다 하여도 본 발명의 실시예들에 따른 구성들을 포함할 수 있음은 당연하다.
복수의 컨버터(110)는 복수의 셀 스트링(130)에 각각 연결되며, 캐스코드(cascode)로 연결되어 멀티레벨을 구성한다. 복수의 컨버터(110)에서 출력되는 최상위 레벨부터 최하위 레벨까지의 신호들이 합쳐져 하나의 신호로 출력된다.
전압 검출부(140)는 복수의 컨버터(110) 각각의 입력전압 및 출력전압 중 적어도 하나를 검출한다. 전압 검출부(140)는 복수의 컨버터의 입력단 및 출력단마다 형성되어 각 위치에서의 전압을 검출할 수 있다.
전압 검출부(140)는 각 컨버터의 입력단 또는 출력단과 그라운드 사이에 직렬로 연결되는 두 개의 저항을 포함하고, 상기 두 개의 저항 사이의 노드에 걸리는 전압을 검출할 수 있다. 도 13과 같이, 전압을 측정하고자 하는 위치, 즉 각 컨버터의 입력단 또는 출력단과 그라운드 사이에 직렬로 연결되는 두 개의 저항에 따른 전압 분배를 이용하여 해당 위치에서의 전압을 검출한다.
제어부(120)는 전압 검출부(140)에서 검출된 전압을 이용하여 상기 복수의 컨버터(110) 각각에 대한 제어신호를 생성하여 인가한다. 전압 검출부(140)는 그라운드를 기준으로 전압 분배를 통해 검출되는바, 그라운드가 기준 전위인 최하위 레벨에서 전압이 아닌 그 이상의 레벨에서는 기준전위가 달라지기 때문에 정확한 전압 검출이 어렵다. 따라서, 제어부(120)는 각 전압 검출부(140)에서 검출된 전압을 수신하고, 각 레벨에서의 관계를 이용하여 각 레벨에서의 전압을 산출한다.
제어부(120)는, 최하위 레벨의 컨버터에서 측정되는 전압을 상기 최하위 레벨의 컨버터의 전압으로 산출한다. 최하위 레벨의 기준전위는 그라운드로 전압 검출부(140)의 기준전위와 같기 때문에, 최하위 레벨의 컨버터에서 측정되는 전압은 그대로 이용할 수 있다. 최상위 레벨의 컨버터의 출력단에서 측정되는 전압을 전체 출력전압으로 산출할 수 있다. 최상위 레벨의 컨버터의 출력단과 그라운드 사이의 전압은 전체 출력전압과 같은바, 전체 출력전압을 별도로 검출하지 않고, 최상위 레벨에서 측정되는 전압을 그대로 이용할 수 있다.
최하위 레벨이 아닌 다른 레벨에서의 검출된 전압은 이웃하는 하위 레벨에서 측정된 전압과의 차를 이용하여 해당 레벨에서의 전압을 산출한다.
제어부(120)는 도 14와 같이, 각 레벨에서의 전압을 산출할 수 있다. 도 13과 같이, 레벨 순서대로 입력단에서 측정된 셀 스트링 전압(Cell String voltage)이 V_F1, V_F2, 및 V_F3이고, 출력단에서 측정된 출력 전압(Output voltage)이 V_B1, V_B2, 및 V_B3 일 때, 셀 스트링 전압 1은 V_F1 - V_F2로 산출할 수 있고, 셀 스트링 전압 2은 V_F2 - V_F3로 산출할 수 있고, 셀 스트링 전압 3은 그대로 V_F3으로 산출할 수 있다. 또한, 출력 전압 1은 V_B1 - V_B2로 산출할 수 있고, 출력 전압 2는 V_B2 - V_B3으로 산출할 수 있고, 출력 전압 3은 V_B3 그대로 산출할 수 있고, 전체 출력 전압(Total Output voltage)은 V_B1에 해당하는 것으로 산출할 수 있다.
전압 검출부(140)는 전압을 측정하고자 하는 입력단 또는 출력단과 그라운드 사이가 아닌 이웃하는 입력단 또는 출력단과의 사이에서 전압을 측정할 수도 있다. 이때, 전압 검출부(140)는 각 컨버터의 입력단 또는 출력단과 이웃하는 하위 레벨의 컨버터의 입력단 또는 출력단 사이에 직렬로 연결되는 두 개의 저항 및 상기 두 개의 저항 사이의 노드에 걸리는 전압의 기준전위를 상기 제어부의 기준전위와 동일한 기준전위로 변환하는 기준전위 변환부를 포함할 수 있다. 도 15와 같이, 전압을 측정함에 있어서, 그라운드가 아닌 이웃하는 하위 레벨을 기준 준위로 전압을 측정할 수 있다.
도 15와 같이, 캐스코드로 멀티레벨을 구성하는 전력변환장치인 MLPE는 셀 스트링 및 이에 대응되는 컨버터로 구성된 각 레벨은 상이한 기준 전위를 가진다. 즉, 최하위 레벨이 가장 낮은 기준 전위를 가지고, 상위 레벨로 갈수록 높은 기준 전위를 가진다. 일반적으로 최하위 레벨의 기준 전위는 그라운드가 될 수 있다. 제어부인 컨트롤러는 자신의 기준 전위 보다 높은 전위차만 검출할 수 있도록 설계되므로, 이러한 멀티레벨 구조에서 컨트롤러의 기준 전위는 최하위 레벨의 기준 전위와 동일하게 배치된다. 이러한 멀티구조 및 컨트롤러 배치에서 컨트롤러는 자신의 기준 전위와의 전위차(potential difference)로만 전압 검출이 가능하다. 이에 따라, 동일한 기준 전위를 갖는 최하위 레벨의 셀 스트링 전압 및 컨버터 출력 전압은 저항 분배 회로만으로 전압 검출이 가능하다. 하지만, 이외의 상위 레벨은 각각 상이한 기준 전위를 가지므로, 각 기준 전위에서 저항 분배된 전압을 컨트롤러와 동일한 기준 전위로 변환시켜주는 별도의 회로 등 기준전위 변환부가 필요하다.
이때, 제어부(120)인 컨트롤러에서의 기준 전위와 최하위 레벨을 제외한 다른 레벨에서의 기준전위가 상이한바, 이를 동일한 기준전위로 변환하는 기준전위 변환부를 포함한다. 기준전위 변환부는 그라운드와 이웃하는 하위 레벨에서의 값을 기준으로 기준전위를 제어부(120) 기준전위와 같게 할 수 있다. 이외에 다양한 소자 내지 회로를 이용하여 전압 검출부에서 검출된 전압의 기준전위를 제어부(120)의 기준전위 맞도록 조정할 수 있다.
제어부(120)는 전압 검출부(140)에서 검출된 전압을 이용하여 복수의 컨버터(110) 각각에 대한 제어신호를 생성하여 인가한다. 제어부(120)는 상기 복수의 셀 스트링에 각각의 출력신호에 따라 각 셀 스트링에 대응하는 상기 복수의 컨버터 각각에 대한 제어신호를 개별적으로 생성할 수 있다. 복수의 컨버터(110)는 상기 제어신호를 수신하여 최대전력점 추종제어를 수행할 수 있다.
복수의 컨버터에 대한 제어신호는 동기화되어 인가되거나, 소정의 위상차를 가지고 인가될 수 있다. 이때, 상기 제어신호는 상기 컨버터에 포함되는 스위칭소자에 대한 PWM 신호일 수 있다.
제어부(120)는 상기 복수의 컨버터의 입력신호, 출력신호, 및 각 컨버터에 포함된 인덕터에 흐르는 전류 중 적어도 하나를 모니터링하고, 모니터링한 정보를 전력선통신(PLC)를 통해 외부로 전송할 수 있다.
본 발명의 제2 실시예에 따른 태양광 모듈은 도 12와 같이, 복수의 셀 스트링(130), 복수의 컨버터(110), 전압 검출부(140) 및 제어부(120)로 구성된다. 도 12의 태양광 모듈에 대한 상세한 설명은 제2 실시예에 따른 전력변환장치에 대한 상세한 설명에 대응하는바, 중복되는 설명은 생략하도록 한다.
복수의 셀 스트링(130)은 각각 하나 이상의 태양광 셀을 포함하고, 복수의 컨버터(110)는 상기 각 셀 스트링에 각각 연결되어 멀티레벨을 구성한다. 전압 검출부(140)는 상기 복수의 컨버터 각각의 입력전압 및 출력전압 중 적어도 하나를 검출하고, 제어부(120)는 전압 검출부(140)에서 검출된 전압을 이용하여 상기 복수의 컨버터 각각에 대한 제어신호를 생성하여 인가한다.
전압 검출부(140)는 각 컨버터의 입력단 또는 출력단과 그라운드 사이에 직렬로 연결되는 두 개의 저항을 포함하고, 상기 두 개의 저항 사이의 노드에 걸리는 전압을 검출하되, 제어부(120)는 이웃하는 하위 레벨의 컨버터에서 검출되는 전압과의 차를 이용하여 각 컨버터에서 측정되는 전압을 산출할 수 있다.
또는, 전압 검출부(140)는, 각 컨버터의 입력단 또는 출력단과 이웃하는 하위 레벨의 컨버터의 입력단 또는 출력단 사이에 직렬로 연결되는 두 개의 저항 및 상기 두 개의 저항 사이의 노드에 걸리는 전압의 기준전위를 상기 제어부의 기준전위와 동일한 기준전위로 변환하는 기준전위 변환부를 포함할 수 있다.
도 16은 본 발명의 제3 실시예에 따른 전력변환장치의 블록도이고, 도 17는 본 발명의 제3 실시예에 따른 태양광 모듈의 블록도이다. 도 18 및 도 19는 본 발명의 제3 실시예에 따른 전력변환장치의 다양한 실시예를 도시한 것이다.
본 발명의 제3 실시예에 따른 전력변환장치(500)는 복수의 컨버터(110) 및 보조 전원부(150)를 포함하고, 제어부 또는 전압 검출부를 더 포함할 수 있다. 본 발명의 제3 실시예에 따른 전력변환장치에 대한 상세한 설명 중 제1 실시예 및/또는 제2 실시예에 대한 상세한 설명에 대응되는 설명은 생략하도록 한다. 본 발명의 제3 실시예는 컨버터 등을 구동하기 위한 보조전원을 생성하는 보조전원부의 구성을 중심으로 표현한 것으로, 일부 구성에 대한 설명이 생략되었다 하여도 본 발명의 실시예들에 따른 구성들을 포함할 수 있음은 당연하다.
복수의 컨버터(110)는 복수의 셀 스트링(130)에 각각 연결되며, 캐스코드(cascode)로 연결되어 멀티레벨을 구성한다. 복수의 컨버터(110)에서 출력되는 최상위 레벨부터 최하위 레벨까지의 신호들이 합쳐져 하나의 신호로 출력된다.
보조 전원부(150) 복수의 컨버터 각각에 구동전원을 공급한다. 셀 스트링, 컨버터, 컨트롤러, 및 보조전원이 모두 동일한 그라운드를 이용하는 도 3 및 도 4와 달리, 멀티레벨로 구성되는 경우, 보조 전원부(150)는 각 레벨에 맞는 보조전원을 공급해야 한다.
이를 위하여, 제3 실시예에 따른 전력변환장치의 보조 전원부(150)는 절연형 컨버터를 포함한다. 절연형 컨버터의 1차측 회로는 상기 복수의 셀 스트링의 출력단 중 적어도 하나의 출력단의 전압을 인가받고, 절연형 컨버터는 상기 1차측 회로의 전압에 따라 2차측 회로에 전압을 출력하고, 복수의 2차측 회로는 상기 절연형 컨버터에서 출력되는 전압을 이용하여 상기 복수의 컨버터 각각에 구동전원을 공급한다.
1차측 회로에는 복수의 셀 스트링의 출력단 중 적어도 하나의 출력단의 전압을 인가받는다, 이때, 상기 1차측 회로는 상기 복수의 셀 스트링의 각 출력단들이 스위칭소자를 통해 병렬로 연결될 수 있다. 여기서, 상기 스위칭소자는 도 18과 같이 다이오드일 수 있다. 복수의 셀 스트링의 각 출력단들이 모두 연결되되 다이오드를 통해 연결됨으로써 셀 스트링 전압 중 가장 높은 전압이 선택적으로 인가될 수 있다. 즉, 일부의 셀 스트링에 일조량이 부족하더라도 충분히 발전이 이루어지는 다른 셀 스트링의 전압을 이용하여 모든 컨버터에 대한 구동전원을 제공할 수 있다. 이를 통해 리던던시(Redundancy)도 확보할 수 있다. 또는, 다이오드 없이 특정 셀 스트링의 전압을 입력받아 보조전원을 공급하는데 이용할 수도 있음은 당연하다.
절연형 컨버터는 플라이백(flyback) 컨버터, 포워드(forward) 컨버터, 및 LLC 컨터버 중 적어도 하나를 포함할 수 있다. 절연형 컨버터는 PSR(Primary Side Regulation)을 수행할 수 있다. 1차측 회로와 동일 기준 전위를 가지는 2차측 회로의 출력 전압을 참조하여 상기 PSR을 수행할 수 있다. 2차 회로부 출력이 변압기를 통해 1차 측으로 반영(reflected)된 전압을 참조하여 제어할 수 있다. 절연형 컨버터는 2차 회로부 출력을 제어하기 위해 3차 권선(tertiary winding)를 사용할 수도 있다. 절연형 컨버터는 1차 회로부와 동일한 전위를 기준으로 하는 2차 회로부 출력 전압만 참조하여 제어할 수도 있다. 예를 들어, 1차 회로부가 그라운드를 기준으로 하는 경우 그라운드를 기준으로 하는 2차 회로부 출력 전압을 참조하여 제어할 수 있다.
2차 회로의 출력을 입력으로 하는 별도의 컨버터, 리니어 레귤레이터를 결합하여 보조전원을 생성할 수 있다.
상기 2차측 회로는 도 19와 같이, 상기 각 컨버터에 포함되는 상측 스위치에 보조전원을 공급하는 제1 2차측 회로 및 상기 각 컨버터에 포함되는 하측 스위치에 보조전원을 공급하는 제2 2차측 회로를 포함할 수 있다. 컨버터는 상측 FET 및 하측 FET를 포함할 수 있고, 상측 FET 및 하측 FET 각각에 보조전원을 각각 공급할 수 있다.
상기 복수의 컨버터의 입력신호, 출력신호, 및 각 컨버터에 포함된 인덕터에 흐르는 전류 중 적어도 하나를 모니터링하여 전력선통신(PLC)를 통해 외부로 전송하거나, 상기 복수의 컨버터 각각에 대한 제어신호를 생성하여 인가하는 제어부를 포함하고, 상기 2차측 회로는 제어부에 구동전원을 공급하는 제3 2차측 회로를 포함할 수 있다. 2차 회로부는 각 컨버터에 대응되는 2차 회로부 외에 별도 용도의 2차 회로부를 추가 사용할 수 있다. 이외에 구동전원 등 전원이 필요한 다양한 모듈에 보조전원을 제공할 수 있다.
복수의 컨버터(110)는 보조전원을 공급받아 구동된 이후, 제어부로부터 제어신호를 수신하여 최대전력점 추종제어를 수행할 수 있다.
본 발명의 제3 실시예에 따른 태양광 모듈은 도 17과 같이, 복수의 셀 스트링(130), 복수의 컨버터(110), 및 보조 전원부(150)로 구성된다. 도 17의 태양광 모듈에 대한 상세한 설명은 제3 실시예에 따른 전력변환장치에 대한 상세한 설명에 대응하는바, 중복되는 설명은 생략하도록 한다.
복수의 셀 스트링(130)은 각각 하나 이상의 태양광 셀을 포함하고, 복수의 컨버터(110)는 상기 각 셀 스트링에 각각 연결되어 멀티레벨을 구성한다. 보조 전원부(150)는 복수의 컨버터(110) 각각에 구동전원을 공급하되, 보조 전원부(150)는 상기 복수의 셀 스트링의 출력단 중 적어도 하나의 출력단의 전압을 인가받는 1차측 회로, 상기 1차측 회로의 전압에 따라 2차측 회로에 전압을 출력하는 절연형 컨버터, 및 상기 절연형 컨버터에서 출력되는 전압을 이용하여 상기 복수의 컨버터 각각에 구동전원을 공급하는 복수의 2차측 회로를 포함한다.
상기 1차측 회로는 상기 복수의 셀 스트링의 각 출력단들이 다이오드를 통해 병렬로 연결될 수 있다. 상기 2차측 회로는 상기 각 컨버터에 포함되는 상측 스위치에 보조전원을 공급하는 제1 2차측 회로 및 상기 각 컨버터에 포함되는 하측 스위치에 보조전원을 공급하는 제2 2차측 회로를 포함하는 태양광 모듈.
상기 복수의 컨버터의 입력신호, 출력신호, 및 각 컨버터에 포함된 인덕터에 흐르는 전류 중 적어도 하나를 모니터링하여 전력선통신(PLC)를 통해 외부로 전송하거나, 상기 복수의 컨버터 각각에 대한 제어신호를 생성하여 인가하는 제어부를 포함하고, 상기 2차측 회로는 제어부에 구동전원을 공급하는 제3 2차측 회로를 포함할 수 있다.
본 발명의 제4 실시예에 따른 전력변환장치는 복수의 컨버터(110) 및 보조 전원부(150)를 포함하고, 제어부 또는 전압 검출부를 더 포함할 수 있다. 본 발명의 제4 실시예에 따른 전력변환장치에 대한 상세한 설명 중 제1 실시예 내지 제3 실시예에 대한 상세한 설명에 대응되는 설명은 생략하도록 한다. 본 발명의 제4 실시예는 컨버터 등을 구동하기 위한 보조전원을 생성하는 보조전원부의 구성을 중심으로 표현한 것으로, 일부 구성에 대한 설명이 생략되었다 하여도 본 발명의 실시예들에 따른 구성들을 포함할 수 있음은 당연하다.
본 발명의 제4 실시예에 따른 전력변환장치는 복수의 셀 스트링에 각각 연결되어 멀티레벨을 구성하는 복수의 컨버터(110) 및 상기 각 셀 스트링에서 출력되는 전압을 이용하여 상기 복수의 컨버터 각각에 구동전원을 공급하는 복수의 보조 전원부(150)를 포함한다.
제3 실시예에 따른 전력변환장치의 보조전원부의 구성에 따르면 단일 절연형 컨버터로 다수의 보조전원 생성이 가능하여, 재료비 절감 측면에서 이점이 있으나, 개별 2차 회로부의 출력 전압 제어가 어려우며, 보조전원회로 중 일부분 고장으로 전체 보조전원회로가 오작동할 가능성이 있어, 제4 실시예에 따른 전력변환장치는 각 컨버터에 공급되는 보조전원을 개별 생성 및 공급한다.
보조전원을 개별 생성 및 공급하기 위하여, 보조 전원부(150)는 단일 레귤레이터(regulator) 및 케스케이드로 결선된 2단 이상의 레귤레이터 중 적어도 하나를 포함할 수 있다.
각 컨버터에 보조전원을 공급하는 개별 보조 전원부(150)는 단일 레귤레이터를 포함할 수 있다. 단일 레귤레이터는 리니어 레귤레이터, 차지 펌프, 승강형 컨버터, 승압형 컨버터 중 적어도 하나를 포함할 수 있다. 단일 레귤레이터는 리니어(linear) 레귤레이터, 차지 펌프(charge pump), 승강형(벅-부스트) 컨버터, 승압형(Boost) 컨버터를 선택적으로 사용할 수 있다. 보조전원부를 단일 레귤레이터로 구현하면 도 20과 같이, 회로 구성이 간단한 장점이 있다.
셀 스트링 전압은 태양괄 셀의 조건에 따라 수시로 변화하므로 스트링 전압의 변동 범위와 보조전원의 목표 전압(V_aux)의 관계에 따라 적절하게 적용되어야 한다. 도 21과 같이, 보조전원의 목표 전압(V_aux)이 최저 셀 스트링 전압보다 낮은 경우, 강압이 필요한바, 이때는 리니어 레귤레이터 또는 벅 컨버터를 이용할 수 있다. 보조전원의 목표 전압(V_aux)이 최고 셀 스트링 전압보다 높은 경우, 승압이 필요한바, 이때는 차지 펌프 또는 부스트 컨버터를 이용할 수 있다. 강압 또는 승압만 필요한 경우에는 비교적 회로 구성이 간단하고, 낮은 재료비로 구현이 가능하다.
하지만, 보조전원의 목표 전압(V_aux)이 최고 셀 스트링 전압보다 낮고, 최저 셀 스트링 전압보다 높은 경우에는 승강압이 필요하고, 이때는 출력 전압이 음전압으로 반전되지 않는 비반전형 벅-부스트 컨버터를 사용해야 한다. 비반전형 벅-부스트 컨버터는 4개의 반도체 스위치가 필요하여, 상대적으로 회로가 복잡하고, 재료비가 높다.
보조 전원부(150)는 다중 출력 절연형 컨버터일 수 있고, 이때, 상기 다중 출력 절연형 컨버터는, 상기 각 컨버터에 포함되는 상측 스위치에 보조전원을 공급하는 제1 출력 및 상기 각 컨버터에 포함되는 하측 스위치에 보조전원을 공급하는 제2 출력을 포함할 수 있다. 단일 레귤레이터로 도 22와 같이, 다중 출력 가능한 절연형 컨버터를 적용할 수도 있다. 다중 출력 가능한 절연형 컨버터를 사용하면, 컨버터에 포함된 하측 스위치인 Low-side FET 및 상측 스위치인 High-side FET에 각각 FET 구동 전원을 공급할 수 있다. 컨버터에 단일 보조전원을 공급할 경우에는 High-side FET 구동전원을 bootstrap회로를 통해 공급해야 한다. Bootstrap회로는 출력 전압을 유지하기 위해 간헐적으로 Low-side FET를 도통시켜 커패시터를 충전시켜야 하므로, High-side FET를 연속적으로 도통시킬 수 없다. 통상적으로 셀 스트링 전압을 출력 전압으로 바이패스(bypass)시키기 위해 High-side FET를 지속적으로 도통시키는 동작이 MLPE 동작상 빈번하게 발생한다. 절연형 컨버터를 사용하여 Low-side FET 및 High-side FET의 구동전원을 각각 공급하면 bootstrap 회로 없이 High-side FET를 동작시킬 수 있다. 이를 통해 bootstrap 회로의 단점을 극복하고, High-side FET를 연속적으로 도통시킬 수 있다.
보조전원부를 구성함에 있어서, 캐스케이드로 결선된 2단 이상의 레귤레이터를 사용할 수 있다. 상기 2단 이상의 레귤레이터는 리니어 레귤레이터, 차지 펌프, 승강형 컨버터, 승압형 컨버터 중 적어도 두개를 포함할 수 있다. 동일 종류 또는 서로 다른 종류의 레귤레이터를 2 단을 사용할 수도 있다.
승강압이 가능한 보조전원회로를 구현함에 있어서, 승압형 레귤레이터 및 강압형 레귤레이터를 케스케이드로 구성할 수 있다. 이때, 승압형 및 강압형 레귤레이터의 배치 순서에 관계없이 회로 구현이 가능하다. 2단 레귤레이터 구성에서는 승강압형이라 함은 셀-스트링 전압 대비 보조전원 전압(V_aux) 이 승압 및 강압이 가능함을 의미한다.
이때, 상기 2단 이상의 레귤레이터는 도 23과 같이, 강압형 레귤레이터 및 승압형 레귤레이터를 포함할 수 있다. 여기서, 상기 강압형 레귤레이터는 리니어 레귤레이터 및 강압형 컨버터 중 적어도 하나를 포함하고, 상기 승압형 레귤레이터는 차지펌프 및 승압형 컨버터 중 적어도 하나를 포함할 수 있다.
2단 레귤레이터로 리니어 레귤레이터, 차치 펌프, 승강형 컨버터, 승압형 컨버터, 승강형 컨버터를 조합하여 사용할 수 있고, 2단 레귤레이터로로 승강압형 기능을 구현함에 있어서, 강압형 레귤레이터와 승압형 레귤레이터를 조합할 수 있다. 도 24와 같이, 리니어 레귤레이터-차지 펌프 조합, 리니어 레귤레이터-부스트 컨버터 조합, 벅 컨터버-차지 펌프 조합, 벅 컨버터-부스트 컨버터 조합으로 보조전원부를 형성할 수 있다. 이 중 1 내지 3 조합은 비반전형 벅-부스트 컨버터 대비 재료비 절감이 가능하다.
제4 실시예에 따른 전력변환장치는 상기 복수의 컨버터의 입력신호, 출력신호, 및 각 컨버터에 포함된 인덕터에 흐르는 전류 중 적어도 하나를 모니터링하여 전력선통신(PLC)를 통해 외부로 전송하거나, 상기 복수의 컨버터 각각에 대한 제어신호를 생성하여 인가하는 제어부를 포함할 수 있고,
상기 복수의 컨버터는 상기 제어신호를 수신하여 최대전력점 추종제어를 수행할 수 있다.
본 발명의 제4 실시예에 따른 태양광 모듈은 복수의 셀 스트링(130), 복수의 컨버터(110), 및 보조 전원부(150)로 구성된다. 본 발명의 제4 실시예에 따른 태양광 모듈에 대한 상세한 설명은 제4 실시예에 따른 전력변환장치에 대한 상세한 설명에 대응하는바, 중복되는 설명은 생략하도록 한다.
복수의 셀 스트링(130)은 각각 하나 이상의 태양광 셀을 포함하고, 복수의 컨버터(110)는 상기 각 셀 스트링에 각각 연결되어 멀티레벨을 구성한다. 보조 전원부(150)는 복수의 컨버터(110) 각각에 구동전원을 공급하되, 상기 각 셀 스트링에서 출력되는 전압을 이용하여 상기 복수의 컨버터 각각에 구동전원을 공급한다. 보조전원부는 단일 레귤레이터 및 케스케이드로 결선된 2단 이상의 레귤레이터 중 적어도 하나를 포함할 수 있다.
본 실시 예와 관련된 기술 분야에서 통상의 지식을 가진 자는 상기된 기재의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 방법들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (10)

  1. 복수의 셀 스트링에 각각 연결되는 복수의 컨버터; 및
    상기 복수의 컨버터 각각에 구동전원을 공급하는 보조전원부를 포함하고,
    상기 보조전원부는,
    상기 복수의 셀 스트링의 출력단 중 적어도 하나의 출력단의 전압을 인가받는 1차측 회로;
    상기 1차측 회로의 전압에 따라 2차측 회로에 전압을 출력하는 절연형 컨버터; 및
    상기 절연형 컨버터에서 출력되는 전압을 이용하여 상기 복수의 컨버터 각각에 구동전원을 공급하는 복수의 2차측 회로를 포함하고,
    상기 복수의 컨버터는 멀티레벨을 구성하는 전력변환장치.
  2. 제1항에 있어서,
    상기 1차측 회로는,
    상기 복수의 셀 스트링의 각 출력단들이 스위칭소자를 통해 병렬로 연결되는 전력변환장치.
  3. 제1항에 있어서,
    상기 2차측 회로는
    상기 각 컨버터에 포함되는 상측 스위치에 보조전원을 공급하는 제1 2차측 회로; 및
    상기 각 컨버터에 포함되는 하측 스위치에 보조전원을 공급하는 제2 2차측 회로를 포함하는 전력변환장치.
  4. 제1항에 있어서,
    상기 복수의 컨버터의 입력신호, 출력신호, 및 각 컨버터에 포함된 인덕터에 흐르는 전류 중 적어도 하나를 모니터링하여 전력선통신(PLC)를 통해 외부로 전송하거나, 상기 복수의 컨버터 각각에 대한 제어신호를 생성하여 인가하는 제어부를 포함하고,
    상기 2차측 회로는 제어부에 구동전원을 공급하는 제3 2차측 회로를 포함하는 전력변환장치.
  5. 제1항에 있어서,
    상기 절연형 컨버터는 플라이백 컨버터, 포워드 컨버터, 및 LLC 컨터버 중 적어도 하나를 포함하는 전력변환장치.
  6. 제1항에 있어서,
    상기 절연형 컨버터는 PSR(Primary Side Regulation)을 수행하는 전력변환장치.
  7. 제6항에 있어서,
    상기 절연형 컨버터는 상기 1차측 회로와 동일 기준 전위를 가지는 2차측 회로의 출력 전압을 참조하여 상기 PSR을 수행하는 전력변환장치.
  8. 제1항에 있어서,
    상기 복수의 컨버터는 상기 제어신호를 수신하여 최대전력점 추종제어를 수행하는 전력변환장치.
  9. 제1항에 있어서,
    상기 복수의 컨버터는 캐스코드(cascode)로 연결되는 전력변환장치.
  10. 각각 하나 이상의 태양광 셀을 포함하는 복수의 셀 스트링;
    상기 각 셀 스트링에 각각 연결되는 복수의 컨버터; 및
    상기 복수의 컨버터 각각에 구동전원을 공급하는 보조전원부를 포함하고,
    상기 보조전원부는,
    상기 복수의 셀 스트링의 출력단 중 적어도 하나의 출력단의 전압을 인가받는 1차측 회로;
    상기 1차측 회로의 전압에 따라 2차측 회로에 전압을 출력하는 절연형 컨버터; 및
    상기 절연형 컨버터에서 출력되는 전압을 이용하여 상기 복수의 컨버터 각각에 구동전원을 공급하는 복수의 2차측 회로를 포함하고,
    상기 복수의 컨버터는 멀티레벨을 구성하는 태양광 모듈.
PCT/KR2022/004274 2021-03-26 2022-03-25 멀티레벨 구조를 가지는 전력변환장치 WO2022203476A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023559034A JP2024513786A (ja) 2021-03-26 2022-03-25 マルチレベル構造を有する電力変換装置
EP22776176.4A EP4318913A1 (en) 2021-03-26 2022-03-25 Power conversion device having multi-level structure
CN202280031281.XA CN117223209A (zh) 2021-03-26 2022-03-25 具有多级结构的电力转换装置
US18/283,892 US20240170961A1 (en) 2021-03-26 2022-03-25 Power conversion device having multi-level structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0039926 2021-03-26
KR1020210039926A KR20220134359A (ko) 2021-03-26 2021-03-26 멀티레벨 구조를 가지는 전력변환장치

Publications (1)

Publication Number Publication Date
WO2022203476A1 true WO2022203476A1 (ko) 2022-09-29

Family

ID=83397672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004274 WO2022203476A1 (ko) 2021-03-26 2022-03-25 멀티레벨 구조를 가지는 전력변환장치

Country Status (6)

Country Link
US (1) US20240170961A1 (ko)
EP (1) EP4318913A1 (ko)
JP (1) JP2024513786A (ko)
KR (1) KR20220134359A (ko)
CN (1) CN117223209A (ko)
WO (1) WO2022203476A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215439A (ja) * 2003-01-07 2004-07-29 Sharp Corp 系統連系インバータ装置
JP2005278346A (ja) * 2004-03-25 2005-10-06 Tdk Corp 電圧変換装置
JP2007259614A (ja) * 2006-03-24 2007-10-04 Power System:Kk キャパシタ蓄電電源用放電装置
JP2008245458A (ja) * 2007-03-28 2008-10-09 Densei Lambda Kk 電源装置および電源システム
WO2013014879A1 (ja) * 2011-07-28 2013-01-31 パナソニック株式会社 電力線通信装置、太陽光発電システム、電力線通信方法、及び電力線通信プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215439A (ja) * 2003-01-07 2004-07-29 Sharp Corp 系統連系インバータ装置
JP2005278346A (ja) * 2004-03-25 2005-10-06 Tdk Corp 電圧変換装置
JP2007259614A (ja) * 2006-03-24 2007-10-04 Power System:Kk キャパシタ蓄電電源用放電装置
JP2008245458A (ja) * 2007-03-28 2008-10-09 Densei Lambda Kk 電源装置および電源システム
WO2013014879A1 (ja) * 2011-07-28 2013-01-31 パナソニック株式会社 電力線通信装置、太陽光発電システム、電力線通信方法、及び電力線通信プログラム

Also Published As

Publication number Publication date
JP2024513786A (ja) 2024-03-27
US20240170961A1 (en) 2024-05-23
CN117223209A (zh) 2023-12-12
EP4318913A1 (en) 2024-02-07
KR20220134359A (ko) 2022-10-05

Similar Documents

Publication Publication Date Title
US7009859B2 (en) Dual input DC-DC power converter integrating high/low voltage sources
WO2010087608A2 (en) Charge equalization apparatus and method for series-connected battery string
EP3553912A1 (en) Current bypass for distributed power harvesting systems using dc power sources
WO2010147420A9 (ko) 직교 섭동 신호를 사용하는 최대 전력 추종기 및 그것의 최대 전력 추종 제어 방법
KR20130059777A (ko) 태양광 시스템
WO2022203475A1 (ko) 멀티레벨 구조를 가지는 전력변환장치
WO2022203484A1 (ko) 멀티레벨 구조를 가지는 전력변환장치
WO2022203476A1 (ko) 멀티레벨 구조를 가지는 전력변환장치
WO2022203474A1 (ko) 멀티레벨 구조를 가지는 전력변환장치
WO2009145458A2 (ko) 전하공유를 이용한 병렬 연결 스위칭 컨버터
WO2023277672A1 (ko) 멀티레벨 구조를 가지는 전력변환장치
WO2023277653A1 (ko) 멀티레벨 구조를 가지는 전력변환장치
WO2016108597A1 (ko) Mmc 컨버터의 서브모듈용 전원제어장치
KR101849901B1 (ko) 저전압-대전류 방식에 적합한 3상 인터리브드 태양광 컨버터
WO2015170903A1 (ko) 태양광 에너지 발생 소스용 마이크로 컨버터 장치
WO2023090941A1 (ko) 전력변환장치
Zeltner et al. Power electronics for smart micro and nano grids controlled by a novel two-wire interface with integrated power and signal transfer
WO2023106564A1 (ko) 증강 현실 기반 상태 정보를 제공하는 개별 모듈 최적 제어 태양광 발전 시스템
WO2024072016A1 (ko) 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템
Saeed et al. A bidirectional DC-DC bipolar converter for power transmission network
KR20230050184A (ko) 전력변환장치
KR20230053447A (ko) 전력변환장치
CN117155133A (zh) 一种多路输出的反激式恒流电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22776176

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18283892

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023559034

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280031281.X

Country of ref document: CN

Ref document number: 2022776176

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022776176

Country of ref document: EP

Effective date: 20231026