WO2022202843A1 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
WO2022202843A1
WO2022202843A1 PCT/JP2022/013285 JP2022013285W WO2022202843A1 WO 2022202843 A1 WO2022202843 A1 WO 2022202843A1 JP 2022013285 W JP2022013285 W JP 2022013285W WO 2022202843 A1 WO2022202843 A1 WO 2022202843A1
Authority
WO
WIPO (PCT)
Prior art keywords
crank
gear
fixed
connecting rod
movable member
Prior art date
Application number
PCT/JP2022/013285
Other languages
French (fr)
Japanese (ja)
Inventor
善▲隆▼ 中山
Original Assignee
善▲隆▼ 中山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 善▲隆▼ 中山 filed Critical 善▲隆▼ 中山
Priority to JP2022518891A priority Critical patent/JPWO2022202843A1/ja
Publication of WO2022202843A1 publication Critical patent/WO2022202843A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • F16C7/06Adjustable connecting-rods

Definitions

  • the present invention relates to a reciprocating internal combustion engine.
  • FIG. 1 of Patent Document 1 describes, as this type of internal combustion engine, an internal combustion engine in which a cylinder and a crank mechanism are arranged vertically in the figure.
  • the internal combustion engine has a first gear, a second gear and an intermediate gear.
  • the first gear is arranged coaxially with the crank journal and fixed on the side of the crankcase.
  • the second gear is interlockably connected to the first gear via an intermediate gear as a transmission medium, and is coaxially pivoted on the crankpin.
  • An eccentric pin that pivotally supports the large end of the connecting rod is fixed to the second gear.
  • the cylinder shaft (the axis of the cylinder) and the output shaft are aligned in a straight line.
  • the piston pin, the crank pin, and the output shaft are aligned in a straight line, and the direction of movement of the crank pin is orthogonal to the reciprocating direction of the piston. Therefore, the rotational output of the output shaft is zero or extremely close to zero at and immediately after the top dead center where the combustion pressure is maximized.
  • the combustion pressure is greatly reduced due to the downward movement of the piston (for example, it is reduced to about 1/2 to 1/3). In a conventional internal combustion engine, it is difficult to say that the combustion pressure received by the piston can be efficiently transmitted to the output shaft of the crank as rotational output.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to realize an internal combustion engine capable of efficiently transmitting torque from the piston to the output shaft of the crank mechanism.
  • the first invention provides a piston that reciprocates within a cylinder, a connecting rod that is rotatably connected at one end to the piston, and a connecting rod that is connected at the other end to allow the piston to reciprocate. It comprises a crank mechanism that converts motion into rotary motion, and an output shaft that is rotated by power generated by the rotary motion converted by the crank mechanism.
  • the crank mechanism is movably connected to a crank having a crank pin and the other end of the connecting rod.
  • a movable member rotatably connected to a crankpin; and a fixed gear fixed to one of the movable member and the crankpin.
  • the movable member when the stationary gear is fixed to the movable member and the crank is the first crank, the movable member includes a master shaft rotatably connected to the crank pin and a connecting rod.
  • the transmission mechanism transmits the rotational torque of the second crank to a gear fixed to the engine block via a plurality of gears including a gear that meshes with the fixed gear.
  • a set of gears that mesh with each other among the plurality of gears are non-circular gears that mesh with each other so as to have the same number of rotations, the length of the second crank is longer than the length of one crank, and the connecting rod The central axis of the other end of draws a figure-8 locus.
  • the transmission mechanism transmits the rotational torque of the second crank to a gear fixed to the engine block via a plurality of gears including a gear that meshes with the fixed gear.
  • the gear fixed to the engine block is an internal gear
  • the gear that meshes with the internal gear among the plurality of gears is a non-circular gear
  • the non-circular gear meshes with the internal gear from its rotation axis.
  • the transmission mechanism transmits the rotational torque of the second crank to a gear fixed to the engine block via a plurality of gears including a gear that meshes with the fixed gear.
  • a set of gears that mesh with each other among the plurality of gears are non-circular gears that mesh with each other so that the number of rotations is the same, one gear is fixed to the engine block, and the length of the second crank is , longer than the length of one crank, the farthest part of the outer circumference of one gear with respect to the axis of rotation meshes with the part of the outer circumference of the other gear of the pair of gears, which is closest to the axis of rotation.
  • the crank angle of the first crank in the state deviates from the crank angle of the first crank when the piston is at the bottom dead center by 5° or more and 90° or less.
  • the crank mechanism meshes with the fixed gear and is rotatably supported on the rotating shaft of the first crank, and meshes with the central gear and sandwiches the central gear. and a counter-pole gear rotatably supported on the extension member of the first crank at a position opposite to the fixed gear.
  • an auxiliary mechanism for assisting the movement of the piston toward the top dead center when the combustion chamber in the cylinder is ignited before the top dead center, wherein the auxiliary mechanism is , a third crank and a fourth crank which are respectively rotated by transmission of the rotational torque of the rotating shaft of the first crank, and are rotatably supported by the crank pin of the third crank and the crank pin of the fourth crank.
  • a connecting member that connects the fourth crank; a second fixed gear fixed to the crankpin of the fourth crank; a distal side gear that meshes with the second fixed gear and is rotatably supported by the connecting member; a relay gear mechanism having a plurality of gears including a gear that meshes with the position side gear, each of the plurality of gears being rotatably supported by a connecting member; and among the plurality of gears of the relay gear mechanism, the third crank side
  • the gear meshes with the proximal side gear provided in the , rotates the proximal side gear, rotates itself at twice the speed of the first crank, and is rotatably supported by the engine block. and a gear for transmitting rotational torque to the opposite gear.
  • the second fixed gear and the distal side gear are non-circular gears that mesh with each other so as to have the same number of rotations, and the outer periphery of the second fixed gear is aligned with the rotation axis.
  • the crank angle of the first crank in which the farthest portion is meshed with the portion of the outer periphery of the distal gear that is closest to the rotation axis is the crank angle of the first crank when the piston is at the bottom dead center. There is a deviation of 5° or more and 90° or less.
  • the fixed gear is fixed to the crankpin
  • the movable member is slidably connected to the other end of the connecting rod, so that the connecting rod and the movable member are telescopic members. and further includes a telescopic mechanism that extends the telescopic member using the rotational force of the crank as the piston approaches the top dead center from before the top dead center.
  • the expansion and contraction mechanism comprises an expansion gear rotatably supported by a movable member and meshing with the fixed gear, a main shaft coaxial with the rotation axis of the expansion gear, and A telescopic crank that rotates around the main shaft with the rotation of the telescopic gear, and is rotatably supported by the telescopic crank subshaft and also rotates on the connecting rod.
  • a swinging member that is freely supported and swings with the rotational movement of the telescopic gear to move the connecting rod back and forth with respect to the movable member.
  • the movable member when the fixed gear is fixed to the movable member, the movable member is rotatably connected to the other end of the connecting rod, and the angle formed by the connecting rod and the movable member at the top dead center (for example, FIG. 3 ( d), see FIG. 9(b)) is in the angle range of 90° ⁇ 70°.
  • the direction of motion of the crankpin at top dead center is closer to the direction of the cylinder axis than in a conventional internal combustion engine. Therefore, the torque transmission rate from the piston to the first crank is improved, and the torque transmission rate to the output shaft is also improved.
  • the crankpin rotates about 90° during the period from the top dead center position shown in FIG. 3(d) to the position shown in FIG. is small. Therefore, the amount of decrease in the combustion pressure of the internal combustion engine during this period is small.
  • the combustion pressure drops to nearly one-fifth. Therefore, high combustion pressure can be converted into output power of the output shaft at a high transmission rate.
  • the movable member when the fixed gear is fixed to the crank pin, the movable member is slidably connected to the other end of the connecting rod, and the angle formed by the connecting rod and the crank at top dead center is 90° ⁇ It is in the angular range of 70° (see, for example, the solid line in FIG. 16(a)). Also in this case, the direction of motion of the crankpin at the top dead center is closer to the direction of the cylinder axis than in the conventional internal combustion engine. Therefore, the torque transmission rate from the piston to the first crank is improved, and the torque transmission rate to the output shaft is also improved.
  • FIG. 1(a) is a schematic configuration diagram of the internal combustion engine according to the embodiment viewed in the axial direction of the output shaft, and FIG. 1(b) is a side view in a direction orthogonal to FIG. 1(a).
  • 1 is a schematic configuration diagram of an internal combustion engine
  • FIG. FIG. 2 is a schematic diagram for explaining the configuration of gears in the internal combustion engine according to the embodiment.
  • FIG. 3 is a schematic configuration diagram showing one reciprocating period of a piston at a pitch of 45° crank angle, regarding the state of operation of the internal combustion engine according to the embodiment.
  • FIG. 1 is a schematic configuration diagram of the internal combustion engine according to the embodiment viewed in the axial direction of the output shaft
  • FIG. 1(b) is a side view in a direction orthogonal to FIG. 1(a).
  • 1 is a schematic configuration diagram of an internal combustion engine
  • FIG. 2 is a schematic diagram for explaining the configuration of gears in the internal combustion engine according to the embodiment.
  • FIG. 3 is a
  • FIG. 4 is a chart showing changes in the amount of work transmitted from the piston to the output shaft with respect to changes in the angle between the longitudinal direction of the trajectory of the big end central axis and the cylinder axis.
  • FIG. 5 is a schematic configuration diagram of the internal combustion engine according to Modification 1 of the embodiment, viewed from the same direction as FIG. 1(b).
  • FIG. 6 is a schematic configuration diagram of an internal combustion engine according to Modification 2 of the embodiment, viewed from the same direction as FIG. 1(b).
  • FIG. 7 is a schematic configuration diagram of an internal combustion engine according to Modification 3 of the embodiment, viewed from the same direction as FIG. 1(b).
  • FIG. 5 is a schematic configuration diagram of the internal combustion engine according to Modification 1 of the embodiment, viewed from the same direction as FIG. 1(b).
  • FIG. 6 is a schematic configuration diagram of an internal combustion engine according to Modification 2 of the embodiment, viewed from the same direction as FIG. 1(b).
  • FIG. 7 is a schematic configuration diagram of
  • FIG. 8(a) is a schematic configuration diagram of an internal combustion engine according to Modification 4 of the embodiment viewed in the axial direction of the output shaft
  • FIG. 1 is a schematic configuration diagram of an internal combustion engine viewed from the side
  • FIG. 9 is a schematic diagram for explaining the operation near the top dead center of the operation of the internal combustion engine according to Modification 4 of the embodiment.
  • FIG. 10 is a schematic diagram for explaining the operation of approaching the bottom dead center among the operations of the internal combustion engine according to Modification 4 of the embodiment.
  • FIG. 11 is a schematic diagram for explaining the operation of approaching the top dead center among the operations of the internal combustion engine according to Modification 4 of the embodiment.
  • FIG. 12 is a schematic diagram for explaining the operation of the auxiliary mechanism of the internal combustion engine according to Modification 4 of the embodiment.
  • FIG. 13 is a schematic diagram for explaining a second amplification section of an internal combustion engine according to Modification 4 of the embodiment.
  • FIG. 14 is a schematic diagram for explaining the trajectory of the central axis of the large end of the connecting rod of the internal combustion engine according to Modification 4 of the embodiment.
  • FIG. 15(a) is a schematic configuration diagram of an internal combustion engine according to Modification 5 of the embodiment viewed in the axial direction of the output shaft
  • FIG. 1 is a schematic configuration diagram of an internal combustion engine viewed from the side;
  • FIG. 16(a) is a schematic configuration diagram showing the position of the piston before the top dead center and the top dead center of the internal combustion engine according to Modification 5 of the embodiment
  • FIG. 16(c) is a schematic configuration diagram showing the state of the telescopic mechanism before the top dead center
  • FIG. 17(a) is a schematic configuration diagram showing the state of the telescopic mechanism before the top dead center of the internal combustion engine according to Modification 6 of the embodiment
  • FIG. It is a schematic block diagram showing the state of an expansion-contraction mechanism.
  • 18A and 18B are schematic configuration diagrams showing the positions of the piston at the top dead center and after 45° from the top dead center in an internal combustion engine according to Modification 7 of the embodiment.
  • the internal combustion engine 10 is a reciprocating single-cylinder or multi-cylinder engine.
  • the internal combustion engine 10 is used, for example, in mobile objects such as automobiles and ships, or as a power source such as a stationary power generator.
  • a power source such as a stationary power generator.
  • the case of the single-cylinder internal combustion engine 10 will be described as an example.
  • an internal combustion engine 10 includes a substantially cylindrical cylinder 11, a substantially cylindrical piston 12 reciprocating within the cylinder 11, a piston A connecting rod 13 rotatably connected to 12, a crank mechanism 14 to which the connecting rod 13 is rotatably connected to convert the reciprocating motion of the piston 12 into rotary motion, and an engine block ( (fixed part including crankcase) 16.
  • a combustion chamber 5 is defined in the cylinder 11 by a piston 12 .
  • the rotary motion converted by the crank mechanism 14 is output as power from the output shaft 15 .
  • a shaft 17 provided coaxially with the output shaft 15 is fixed to the engine block 16 .
  • An intake port that is opened and closed by an intake valve and an exhaust port that is opened and closed by an exhaust valve are formed on the ceiling surface of the combustion chamber 5 in the internal combustion engine 10, but are not shown.
  • the connecting rod 13 is a straight rod-shaped component.
  • a piston pin 12a of the piston 12 is rotatably inserted into a ring-shaped small end portion 13a on one end side, and a second crank 22, which will be described later, rotates on a ring-shaped large end portion 13b on the other end side. It is freely inserted (see FIG. 1(b)).
  • the maximum value of the inclination angle ⁇ b of the connecting rod 13 with respect to the cylinder axis (the axis of the cylinder 11) CA is slightly less than 90°, which is relatively large (see FIG. 3A). Therefore, the skirt portion of the cylinder 11 is provided with a notch (not shown) for avoiding contact with the connecting rod 13 .
  • the crank mechanism 14 includes an output shaft 15, a first crank 21 having a crank pin 28 that rotates around an axis A1 of the output shaft 15, a master shaft A2 rotatably connected to the crank pin 28, and a connecting rod. a second crank 22 having a slave shaft A3 rotatably connected to the large end 13b of the crank 22; The second crank 22 corresponds to a movable member movably connected to the other end of the connecting rod 13 and rotatably connected to the crank pin 28 .
  • the large end 13b of the connecting rod is connected to the second crank 22 so as to be rotatable around a child shaft A3 spaced apart from the master shaft A2.
  • the output shaft 15 side may be called “inner side”, and the opposite side may be called “outer side”.
  • the first crank 21 is rotatably supported by a shaft 17 coaxial with the output shaft 15 .
  • the first crank 21 includes a first arm 26 extending between the shaft 17 and the crank pin 28 and a second arm 27 extending between the output shaft 15 and the crank pin 28. ing.
  • a crankpin 28 is provided parallel to the output shaft 15 at a position outside the output shaft 15 .
  • the output shaft 15, the first arm 26, the second arm 27, and the crank pin 28 are integrated. 15 rotate together.
  • the first arm 26 is provided perpendicular to the shaft 17.
  • the first arm 26 has a first bearing portion 26a that rotatably supports the shaft 17, and a second bearing portion 26b that rotatably supports the shaft 18 of the second gear 32, which will be described later.
  • the second bearing portion 26b is located between the first bearing portion 26a and the fixed portion of the crankpin 28 on the first arm 26.
  • the axis of the shaft 18 of the second gear 32 is on a straight line connecting the axis A1 of the shaft 17 and the axis A2 of the crank pin 28, or forms a triangle with these axes A1 and A2.
  • the second arm 27 is provided perpendicular to the output shaft 15.
  • the second arm 27 is integrated with the first arm 26 via a crankpin 28 .
  • the second arm 27 is provided parallel to the first arm 26 .
  • An inner portion of the second arm 27 is integrated with the output shaft 15 .
  • the crank pin 28 is a straight bar.
  • the distance L1 from the axis A1 of the output shaft 15 to the axis A2 of the crank pin 28 is the crank length (hereinafter referred to as "first crank length").
  • the second crank 22 is a disc-shaped component that rotates eccentrically around the crank pin 28 .
  • the second crank 22 is rotatably inserted inside the large end portion 13b of the connecting rod 13 .
  • a pin bearing portion 22a is formed at a position eccentric from the center child shaft A3, and is rotatably supported by the crank pin 28 at the pin bearing portion 22a.
  • the distance L2 from the axis (parent shaft) A2 of the pin bearing portion 22a to the center (child shaft) A3 of the second crank 22 is the crank length (hereinafter referred to as "second crank length").
  • the second crank length L2 may be longer than the first crank length L1.
  • the second crank 22 may be formed in a portal shape like the first crank 21 .
  • the crank mechanism 14 includes a first gear 31 that rotates together with the second crank 22 about the parent shaft A2 of the second crank 22, and a first gear 31 that is rotatably supported by the first crank 21 at a position inside the first crank 21 to rotate therewith.
  • a second gear 32 that meshes with the first gear 31, a third gear 33 that is integrated with the second gear 32 and rotates about a common rotation axis with the second gear 32, and a shaft 17 inside the first crank 21.
  • It further comprises a fourth gear 34 that is integrated and meshes with the third gear 33 .
  • a rotation axis of each gear 31 to 34 is parallel to the output shaft 15 .
  • the crank mechanism 14 transmits the torque of the piston 12 to the output shaft 15 via the first gear 31 , the second gear 32 , the third gear 33 and the fourth gear 34 .
  • the crank mechanism 14 transmits the rotational force of the first crank 21 to the movable member 22 via a plurality of gears 31 to 34 including a fixed gear 31 fixed to the movable member 22, thereby moving the movable member relative to the connecting rod 13. 22 and a transmission mechanism for rotating the movable member 22 with respect to the first crank 21 .
  • This point is the same for Modified Example 1 as well.
  • the transmission mechanism 14 engages the first crank 21 and the second crank 22 so that the first crank 21 and the second crank 22 rotate at the same number of revolutions (same speed) and in opposite directions. This point is the same for modification 1-3.
  • the first gear 31 is arranged coaxially with the parent shaft of the second crank 22 and integrated with the second crank 22 .
  • the first gear 31 is rotatably supported by the crank pin 28 together with the second crank 22 .
  • the first gear 31 is a planetary gear that revolves (rotates) around the output shaft 15 while rotating.
  • the first gear 31 is, for example, a circular gear.
  • the second gear 32 is fixed to the shaft 18 rotatably supported by the second bearing portion 26b of the first crank 21.
  • the second gear 32 is a planetary gear that revolves around the output shaft 15 while rotating.
  • the second gear 32 is a circular gear having the same number of teeth as the first gear 31 .
  • the second gear 32 has the same size as the first gear 31, for example. It is designed so that when the first gear 31 makes one rotation, the second gear 32 also makes exactly one rotation.
  • the third gear 33 is fixed to the shaft 18 and integrated with the second gear 32 .
  • the third gear 33 is a planetary gear that revolves around the output shaft 15 while rotating.
  • the fourth gear 34 is a sun external gear fixed to the engine block via the shaft 17.
  • the number of teeth of the fourth gear 34 is the same as the number of teeth of the third gear 33 .
  • the shaft 17 is fixed to the engine block 16 and the fourth gear 34 cannot rotate.
  • crank angle the angle of the first crank 21
  • Each of the third gear 33 and the fourth gear 34 is a non-circular gear whose distance from the rotation axes GA1 and GA2 to the outer periphery changes in the circumferential direction, as shown in FIG.
  • the third gear 33 and the fourth gear 34 are designed so that when the third gear 33 makes one rotation, the fourth gear 34 also makes exactly one rotation.
  • the distance X2 from the 4-gear 34 to the rotation axis GA2 varies, but the total length of the distance X1 and the distance X2 is constant.
  • the third gear 33 is an eccentric gear having a substantially elliptical outer peripheral shape.
  • the rotation axis GA1 of the third gear 33 is located at the focal point of the ellipse.
  • the fourth gear 34 is also an eccentric gear having a substantially elliptical outer peripheral shape.
  • the fourth gear 34 has the same shape as the third gear 33 .
  • the outer peripheral length of the fourth gear 34 is equal to the outer peripheral length of the third gear 33 .
  • the rotation axis GA2 of the fourth gear 34 is located at the focal point of the ellipse.
  • the third gear 33 having the same number of teeth as the fourth gear 34, the second gear 32 integrated with the third gear 33, and the second gear 32
  • the first gear 31 having the same number of teeth as the first gear 31 rotates once, and the piston 12 reciprocates once.
  • the rotation speed of the third gear 33 changes as the distance X1 and the distance X2 change.
  • the rotation speed of the second crank 22 also changes.
  • the rotation speed of the second crank 22 changes with respect to the rotation speed of the first crank 21 during one reciprocating period of the piston 12 .
  • the side of the outer circumference of the third gear 33 that is closer to the rotation axis GA1 rotates out of the outer circumference of the fourth gear 34. It meshes with the far side with respect to the axis GA2.
  • the distance X1 of the third gear 33 has a value on the lower limit side within the range of change
  • the distance X2 of the fourth gear 34 has a value on the upper limit side of the range of change.
  • the piston 12 is near the bottom dead center, the rotation speed of the third gear 33 is relatively large during one reciprocating period of the piston 12, and the rotation speed of the second crank 22 relative to the rotation speed of the first crank 21 is The speed also becomes relatively large in this one reciprocation period.
  • the side of the outer circumference of the third gear 33 farther from the rotation axis GA1 It meshes with the side closer to the rotating shaft GA2.
  • the distance X1 of the third gear 33 has a value on the upper limit side within the range of change
  • the distance X2 of the fourth gear 34 has a value on the side of the lower limit within that range of change.
  • the piston 12 is in the vicinity of 45° after the top dead center, the rotational speed of the third gear 33 is relatively small during one reciprocating period of the piston 12, and the rotational speed of the first crank 21 is relatively low.
  • the rotation speed of 22 also becomes relatively small during this one reciprocation period.
  • the rotation speed of the third gear 33 decreases on the top dead center side of the piston 12 and increases on the bottom dead center side.
  • the third gear 33 and the fourth gear 34 are meshed. Therefore, when the rotational speed of the first crank 21 is assumed to be constant during one reciprocating period of the piston 12, the rotational speed of the second crank 22 relative to the rotational speed of the first crank 21 is higher than that of the bottom dead center. side is larger.
  • each of the first crank 21 , the second crank 22 and the connecting rod 13 rotates once during one reciprocating period of the piston 12 .
  • 3(a) to 3(h) show the state of operation of the internal combustion engine 10 during one reciprocating period of the piston at a pitch of 45° crank angle. Arrows shown in FIG. 3 indicate the rotation direction of the first crank 21 .
  • the crankpin 28 of the first crank 21 rotates clockwise on a circular locus K1 centered on the output shaft 15 .
  • intake/exhaust ports and intake/exhaust valves are not shown in FIG. 3, in one reciprocating period of the piston shown in FIGS. ) shall be performed.
  • “left" and "right” are used for directions in FIG.
  • the piston 12 is positioned at the bottom dead center.
  • the crankpin 28 is positioned on the left side of the output shaft 15 .
  • the second crank 22 is eccentric so that the child shaft A3 is located on the left side of the main shaft A2, and the center A3 of the big end 13b is located on the left side of the crank pin 28.
  • the connecting rod 13 swings to the right with respect to the cylinder axis CA as shown in FIG. 3(e).
  • the crankpin 28 is positioned on the right side of the output shaft 15.
  • the second crank 22 is eccentric so that the child shaft A3 is positioned on the right side of the main shaft A2, and the center A3 of the big end 13b is positioned on the right side of the crank pin 28.
  • the connecting rod 13 rotates counterclockwise about the rotation axis A3 during the period from the state shown in FIG. 3(a) to the state shown in FIG. 3(e).
  • the axis of the connecting rod 13 is perpendicular to the line tangent to the locus Kc of the center of the big end, and when the first crank 21 further rotates clockwise from the state of FIG. , the connecting rod 13 swings to the left with respect to the cylinder axis CA.
  • the inclination angle ⁇ b of the connecting rod 13 with respect to the cylinder axis CA increases, and the piston 12 approaches the bottom dead center.
  • the axis of the connecting rod 13 at the timing when the axis of the connecting rod 13 becomes parallel to the cylinder axis CA (the timing of Figs.
  • the shape of the locus Kc is designed so that it is perpendicular to the tangent line of the locus Kc at the intersecting position.
  • the second crank 22 is engaged with the first crank 21 via the gears 31 to 34 so that the first crank 21 and the second crank 22 rotate at the same speed and in opposite directions. , the rotations of the first crank 21 and the second crank 22 are constrained to each other. Therefore, the first crank 21 rotates with the reciprocating motion of the piston 12 together with the second crank 22 connected to the connecting rod 13 by the slave shaft A3, and the output shaft 15 rotates with the rotation of the first crank 21. In this embodiment, the reciprocating motion of the piston 12 is converted into rotational motion of the first crank 21 and the second crank 22, and the rotational torque of each crank 21, 22 is transmitted to the output shaft.
  • the crank mechanism 14 is not positioned directly below the piston 12 in the front view of FIG. It is longer than one crank length L1 and shorter than the total length of the first crank length L1 and the second crank length L2.
  • the center A3 of the big end 13b is positioned to the left of the crankpin 28, and the crankpin 28 is furthest from the cylinder axis CA.
  • the center A3 of the big end 13b is located on the right side of the crankpin 28 at the approaching timing (timing in FIG. 3(e)).
  • the center A3 of the big end 13b of the connecting rod 13 is the center A3 of the big end 13b at the timing of FIG. 3(a) and the big end at the timing of FIG.
  • a trajectory (trajectory at the center of the big end) Kc is drawn with a long axis extending from the line connecting the center A3 of the portion 13b.
  • the longitudinal direction of the trajectory Kc of the center of the big end is inclined or perpendicular to the reciprocating direction of the piston 12 (the direction of the cylinder axis CA).
  • the line connecting the slave shaft A3 of the second crank 22 and the axial center A1 of the output shaft 15 at the timing of the top dead center is inclined or orthogonal to the direction of the cylinder axis CA.
  • the angle ⁇ formed between the connecting rod 13 and the second crank 22 is approximately 90°, 90° ⁇ 70° (preferably 90° ⁇ 50°).
  • the direction of movement of the crankpin 28 at top dead center is closer to the direction of the cylinder axis CA than in conventional internal combustion engines. Therefore, the torque transmission rate from the piston 12 to the first crank 21 and the second crank 22 is improved, and the torque transmission rate to the output shaft 15 is also improved.
  • the angle on the piston 12 side and the output shaft 15 side is as in the present embodiment.
  • An angle of 45° or more may be used as long as the relationship of 20° ⁇ a ⁇ 160° is satisfied.
  • the angle ⁇ a is made larger than 90°, the torque transmission rate from the piston 12 to the output shaft 15 gradually decreases, but the stroke of the piston 12 gradually increases. Therefore, the torque transmission rate from the piston 12 to the output shaft 15, as shown in FIG. 4, increases to a peak near 130° and then suddenly decreases from that peak.
  • the angle ⁇ a can be selected from the range of 90° or more and 150° or less, preferably 110° or more and 140° or less, more preferably 120° or more and 130° or less.
  • the second crank length L2 is longer than the first crank length L1. Therefore, in the period from FIG. 3(d) to FIG. 3(f), the piston 12 is hardly separated from the top dead center, and the first crank 21 advances 90° from the position of the crankpin 28 at the top dead center. During the period from FIG. 3(d) to FIG. 3(f), the amount of movement of the piston 12 relative to the amount of change in the crank angle of the first crank 21 is small. Therefore, by suppressing a decrease in combustion pressure immediately after the top dead center when the combustion pressure acting on the piston 12 is high, the power that can be converted into rotational motion of the output shaft 15 increases. According to this embodiment, more power can be produced with a smaller displacement than an engine without the second crank 22 . Note that the smaller the amount of movement of the piston 12 immediately after the top dead center relative to the stroke of the piston 12, the larger the output amount for the fixed amount of fuel.
  • the angle ⁇ a is 90° and the angle ⁇ b at the bottom dead center is close to 90°. generates a large partial pressure that pushes perpendicularly.
  • the trajectory Kc of the center of the big end is configured to draw a figure of eight. Therefore, when the piston 12 starts moving from the bottom dead center to the top dead center, the center of the large end 13b of the connecting rod 13 rotates largely counterclockwise around the piston pin 12a and the small end 13a (Fig. 3 ( a)-(b)), and the moving distance at which the piston 12 begins to move from the bottom dead center to the top dead center is small, and the trajectory Kc of the center of the big end portion begins to be drawn so as to reduce the angle ⁇ b.
  • the partial pressure becomes smaller. Therefore, damage to the cylinder 11 and the piston 12 can be reduced.
  • the damage to the cylinder 11 and the piston 12 can be reduced by lengthening the connecting rod 13 or making the angle ⁇ a greater than 90°. can be reduced.
  • the third gear 33 and the fourth gear 34 may be used.
  • Each of the third gear 33 and the fourth gear 34, which are circular gears, has a rotation axis at the center.
  • the shape of the locus Kc of the center of the big end portion is not a figure 8 shape, but the effects other than the effect due to the figure 8 shape are obtained in the same manner as in the present embodiment. .
  • a secondary heat engine connected to the internal combustion engine 10 may be provided.
  • a control valve is provided in the connection path connecting the combustion chamber 5 of the internal combustion engine 10 and the combustion chamber of the secondary heat engine.
  • the control valve opens when the power transmission efficiency begins to decline after the period (for example, the period up to +45° top dead center) during which power can be efficiently transmitted from the piston 12 to the crankpin 28 and the output shaft 15.
  • the combustion chamber 5 is in a high pressure state even though the power is sufficiently transmitted to the output shaft 15 at the end of the period in which the power can be efficiently transmitted.
  • This modification makes effective use of the high pressure in the secondary heat engine.
  • the secondary heat engine uses the high pressure gas supplied from the internal combustion engine 10 as two cycles without burning fuel. Further, the secondary heat engine in this paragraph can also be used in an internal combustion engine 10 according to a modified example described later.
  • a third gear 33 fixed to a shaft 18 common to the second gear 32 and a fourth gear meshing with the third gear 33 are provided outside the rotation range of the first crank 21. 34 are arranged.
  • a fourth gear 34 is fixed to the engine block 16 .
  • a bearing portion 16 a is provided in the engine block 16 to rotatably support the shaft 17 .
  • the shaft 17 also functions as an output shaft, so the internal combustion engine 10 according to this modification can be used as a multi-cylinder engine.
  • the second gear 32 and the third gear 33 are rotatably supported by the shaft 17 as shown in FIG.
  • the shaft 17 is integrated with the first arm 26 and rotates together with the output shaft 15 .
  • a fourth gear 34 meshing with the third gear 33 is rotatably supported by the crank pin 28 of the first crank 21 .
  • the crank mechanism 14 further includes a fifth gear 35 integrated with the fourth gear 34 and rotatably supported by the crank pin 28 and a sixth gear 36 meshing with the fifth gear 35 .
  • the sixth gear 36 is a sun internal gear having teeth formed on the inner peripheral surface of a cylindrical body.
  • the sixth gear 36 is fixed to the engine block 16 at a position out of rotation of the crankpin 28 .
  • the crank mechanism 14 transmits the rotational force of the first crank 21 to the movable member 22 via a plurality of gears 31 to 36 including the fixed gear 31, thereby moving the movable member 22 with respect to the connecting rod 13, It corresponds to a transmission mechanism that rotates the movable member 22 with respect to one crank 21 . This point is the same for Modification 3 as well.
  • the fifth gear 35 is a non-circular gear that rotates at a rotation speed that is a natural number multiple (for example, two or three times) the rotation speed of the first crank 21 .
  • the sixth gear 36 is It meshes with the fifth gear 35 .
  • the gear ratio of the fourth gear 34 to the third gear 33 and the gear ratio of the fifth gear 35 to the sixth gear 36 are designed to be equal. Therefore, the first crank 21 and the second crank 22 rotate at the same rotational speed with respect to the engine block 16 and in opposite directions. For example, the first crank 21 and the second crank 22 rotate once during one reciprocating period of the piston 12 .
  • the first arm 26 includes a first bearing portion 26a formed between the shaft 17 and the crankpin 28 and a second bearing portion 26a formed outside the crankpin 28. and a portion 26b.
  • the first bearing portion 26a rotatably supports the shaft 18 common to the second gear 32 and the third gear 33 .
  • the second bearing portion 26b rotatably supports the shaft 19 common to the fourth gear 34 and the fifth gear 35.
  • the fifth gear 35 is a non-circular gear that rotates at a rotation speed that is a natural number multiple (for example, two or three times) the rotation speed of the first crank 21 .
  • the sixth gear 36 is an internal sun gear positioned out of rotation of the crankpin 28 .
  • the gear ratio of the fourth gear 34 to the third gear 33 and the gear ratio of the fifth gear 35 to the sixth gear 36 are designed to be equal. Therefore, the first crank 21 and the second crank 22 rotate at the same rotational speed with respect to the engine block 16 and in opposite directions. For example, the first crank 21 and the second crank 22 rotate once during one reciprocating period of the piston 12 .
  • This modification is a modification of the above-described embodiment.
  • pre-top dead center ignition when the combustion chamber 5 is ignited before the piston 12 reaches the top dead center (hereinafter sometimes referred to as "pre-top dead center ignition"), It is configured to provide a force that assists movement to.
  • the combustion pressure acts on the piston 12 in the direction opposite to the moving direction from the time of ignition until the piston 12 reaches the top dead center.
  • an internal combustion engine 100 includes a substantially cylindrical cylinder 11, a substantially cylindrical piston 12 that reciprocates within the cylinder 11, and a connecting rod rotatably connected to the piston 12. 13, a crank mechanism 91 to which the connecting rod 13 is rotatably connected and converts the reciprocating motion of the piston 12 into a rotary motion, and an auxiliary that assists the movement of the piston 12 to the top dead center side in the case of ignition before top dead center.
  • a mechanism 92 is provided.
  • non-circular gears are used for some of the gears, as will be described later.
  • the crank mechanism 91 includes a first crank 101 having a first crank pin 128, a parent shaft A2 rotatably connected to the first crank pin 128, and a large end (other end) 13b of the connecting rod 13. a second crank (movable member) 102 having a slave shaft A3 connected to the second crank (movable member) 102; The reciprocating motion of the piston 12 is converted into rotational motion of the first and second cranks 101,102.
  • the crank mechanism 91 further includes a transmission mechanism having a first fixed gear 131 , a gear (central side gear) 118 , a gear portion 117 and a gear portion 116 .
  • a portion configured by a plurality of gears is called a "gear portion".
  • the transmission mechanism transmits the rotational force of the first crank 101 to the movable member 102 via the gears 116-118, 131, thereby moving the movable member 102 relative to the connecting rod 13 and the movable member relative to the first crank 101. 102 is rotated. Further, the transmission mechanism engages the first crank 21 and the second crank 22 so that the first crank 21 and the second crank 22 rotate at the same number of revolutions and in opposite directions.
  • the first fixed gear 131 is fixed to the second crank 102 coaxially with the parent shaft A2 of the second crank 102.
  • the first fixed gear 131 is rotatably supported by a first crankpin 128 of the first crank 101 extending from one end of the first crank 101 (upper end in FIG. 8(b)), and rotationally moves as the first crank 101 rotates. It is engaged with the first crank 101 so as to do so.
  • the gear 118 is rotatably supported by the first rotating shaft 141 of the first crank 101 and meshes with the first fixed gear 131 .
  • the gear 118 is arranged inside the two crank arms of the first crank 101 (within the rotational range of the first crank) (see FIG. 8(b)).
  • the gear portion 117 is rotatably supported by the extension member 105 extending from the first rotating shaft 141 in the opposite direction to the first crank 101, and includes a gear 117a meshing with the gear 118 and a gear 117b meshing with the gear 116a described later. ing.
  • the gear 117 a corresponds to a counter gear rotatably supported by an extension member 105 integrated with the first crank 101 at a position opposite to the first fixed gear 131 with the gear 118 interposed therebetween.
  • the gear 117a and the gear 117b are provided coaxially with each other and connected by a shaft rotatably supported by the extension member 105.
  • the gear portion 117 is engaged with the first crank 101 so as to rotate according to the rotation of the first crank 101 .
  • the first fixed gear 131 rotates through the gear 118, the gear portion 117 and the extension member 105 so that the first crank 101 and the second crank 102 rotate at the same speed and in opposite directions.
  • the crank 101 is engaged and each rotation of the first crank 101 and the second crank 102 is restrained.
  • the gear portion 116 is arranged outside the two crank arms of the first crank 101 (outside the rotation range of the first crank).
  • the gear portion 116 is rotatably supported by the first rotating shaft 141 between the first crank 101 and a third crank 103 which will be described later.
  • the gear portion 116 includes a gear 116a meshing with the gear 117b and a gear 116b integrated with the gear 116a.
  • the gear 116a and the gear 116b are provided coaxially with each other.
  • the rotational torque of the first fixed gear 131 is transmitted to the gear portion 116 via the gear 118 and the gear portion 117 .
  • the gear portion 116 rotates in the same direction at twice the speed of the first crank 101.
  • the gear 117 functions as a relay gear that transmits power from the gear portion 116 outside the rotation range of the first crank 101 to the gear 118 inside the rotation range.
  • Gear 118 rotates at the same speed and in the same direction as gear 116 via intermediate gear 117 .
  • the first fixed gear 131 has the same diameter and the same number of teeth as the gear 118 and rotates in the opposite direction to the gear 118 .
  • the crank mechanism 91 also includes a first transmission gear 120 fixed to the first rotating shaft 141 and a second transmission gear 121 fixed to the output shaft 15 .
  • the first transmission gear 120 and the second transmission gear 121 mesh with each other. Thereby, the rotational torque of the first crank 101 is transmitted to the output shaft 15 via the first transmission gear 120 and the second transmission gear 121 .
  • the first rotating shaft 141 and the output shaft 15 are rotatably supported by the engine block 16, respectively.
  • the auxiliary mechanism 92 includes a third crank 103 and a fourth crank 104 that are rotated by transmission of the rotational torque of the first rotating shaft 141 .
  • the third crank 103 is fixed to the first rotating shaft 141 .
  • a second fixed gear 132 is fixed to the fourth crank 104 coaxially with the crank pin 104 a of the fourth crank 104 .
  • the second fixed gear 132 revolves around the rotating shaft 142 of the fourth crank 104 .
  • the rotational torque of the first rotating shaft 141 is transmitted to the fourth crank 104 via a plurality of gears 120-122.
  • the gear 122 has the same diameter and number of teeth as the gear 120 and is fixed to the second rotating shaft 142 .
  • the crank length of the third crank 103 (the distance from the rotary shaft to the axial center of the crank pin 103a) is equal to the crank length of the fourth crank 104 (the distance from the rotary shaft to the axial center of the crank pin 104a) (Fig. 8 ( b) see).
  • the second rotating shaft 142 is rotatably supported by the engine block 16 .
  • the auxiliary mechanism 92 includes a gear portion 114 having a rotational speed twice as high as the rotational speed of the first crank 101 (or the third crank 103 or the fourth crank 104), and a gear portion of the crank mechanism 91 for the gear portion 114. It further comprises a gear 115 connecting the portions 116 . Gear 115 is rotatably supported by engine block 16 and meshes with gear 116b.
  • the gear portion 114 includes a gear 114a that meshes with the gear 115, and a gear 114b that is integrated with the gear 114a via a shaft that is rotatably supported by the engine block 16. As shown in FIG.
  • the gear 114a and the gear 114b are provided coaxially with each other.
  • the gear 114b corresponds to a double speed gear that meshes with the gear 113a corresponding to the proximal side gear and causes the gear 113a to revolve.
  • the gear 114 b is connected to the first fixed gear 131 via a plurality of gears, and rotates at the same rotational speed as the first fixed gear 131 and in the opposite direction to the first fixed gear 131 .
  • the auxiliary mechanism 92 includes a connecting rod (connecting member) 130 that connects the third crank 103 and the fourth crank 104, and a gear 111 (distal side) that is rotatably supported by the connecting rod 130 and meshes with the second fixed gear 132. gear) and a relay gear mechanism 140 that transmits the rotational torque of the gear 111 to the first crank 101 side.
  • the connecting rod 130 is rotatably supported by the third crankpin 103a of the third crank 103 and the fourth crankpin 104a of the fourth crank 104, respectively.
  • the rotation angle positions of the third crank 103 and the fourth crank 104 are always the same.
  • the gear 111 is rotatably supported by the connecting rod 130 and meshes with a gear 112 and a second fixed gear 132, which will be described later.
  • the relay gear mechanism 140 includes a gear portion 113 that meshes with the gear 114b of the crank mechanism 91, and gears 112 that mesh with the gear portion 113 and the gear 111, respectively.
  • the gear portion 113 includes a gear 113a that meshes with the gear 114b, and a gear 113b that is integrated with the gear 113a via a shaft that is rotatably supported by the connecting rod .
  • the gear 113a and the gear 113b are provided coaxially with each other.
  • the gear 113a has the same diameter and the same number of teeth as the gear 114b.
  • the distance between the rotation axis of the gear 113a and the rotation axis of the gear 114b is equal to the radius of the third crank 103 (or fourth crank 104).
  • the gear 113 b has the same number of teeth as the second fixed gear 132 .
  • the gear portion 113 revolves around the rotation axis of the gear portion 114 in the same direction as the third crank 103 (or the fourth crank 104), while rotating in the direction opposite to the revolving direction. rotate.
  • the ratio of the rotation speeds of the gear portion 114 and the gear portion 113 is 2:1.
  • the gear portion 114 rotates at twice the rotation speed of the third crank 103 (or the fourth crank 104) (revolution speed of the gear portion 113) due to the sum of the revolution and rotation of the gear portion 113.
  • the gear 112 is rotatably supported by the connecting rod 130 and meshes with the gear 111 and the gear 113b.
  • the auxiliary mechanism 92 causes the gear 111 to generate rotational force through the revolution of the second fixed gear 132 and transmits the rotational force to the first crank 101 side.
  • a rotational force is generated in the gear 111 by meshing with the revolving second fixed gear 132 like a planetary gear.
  • the gear 111 revolves together with the second fixed gear 132 as the connecting rod 130 moves, and rotates once when the second fixed gear 132 revolves once.
  • each of the first to fourth cranks 101 to 104 and the connecting rod 13 makes one revolution during one reciprocating period of the piston 12.
  • the rotational torque of the gear 120 connected to the first crank 101 is transmitted to the output shaft 15 via the gear 121 .
  • 9 to 11 show the state of operation of the internal combustion engine 100 during one reciprocating period of the piston at a pitch of 45° crank angle.
  • the arrows shown in FIG. 9(a) represent the directions of rotation of each crank and each gear. Also, in FIGS.
  • crank 103 the third crank 103, the fourth crank 104 and the connecting rod 130 are represented by dashed lines for clarity of illustration. Although the intake/exhaust ports and intake/exhaust valves are not shown in FIG. 9-11, during one reciprocating period of the piston shown in FIGS. process to intake process) are performed.
  • FIG. 9(a) shows the state of the internal combustion engine 100 at an ignition point timing of 45° before top dead center.
  • the combustion chamber 5 is ignited before the top dead center.
  • the first crank 101 rotates clockwise from this state
  • the first fixed gear 131 revolves (rotates), and the second crank 102 rotates counterclockwise along with the revolution.
  • the piston 12 approaches the top dead center while the large end 13b of the connecting rod 13 rotates counterclockwise.
  • FIG. 9(b) shows the state where the piston 12 is positioned at the top dead center.
  • the second crank 102 continues to rotate counterclockwise. Switch and start rotating clockwise.
  • the piston 12 approaches the bottom dead center from the state of FIG. 9(b) to the state of FIG. 9(f).
  • FIG. 9(f) shows a state where the piston 12 is positioned at the bottom dead center. 9(f), the direction of rotation of the large end 13b of the connecting rod 13 is switched and it begins to rotate counterclockwise, and the piston 12 approaches the top dead center.
  • the angle ⁇ formed by the connecting rod 13 and the second crank 102 is within the angle range of 90° ⁇ 70° (preferably, the angle range of 90° ⁇ 45°) at the top dead center.
  • torque can be efficiently transmitted from the piston 12 to the rotating shaft of the first crank 101 , and torque can also be efficiently transmitted to the output shaft 15 .
  • the line connecting the big end 13b of the connecting rod 13 and the piston pin 12a at the top dead center coincides with the cylinder central axis CA, but this does not necessarily mean that they coincide.
  • the rotational torque of the gear 120 connected to the first crank 101 is transmitted to the fourth crank 104 via gears 121 and 122 .
  • Gears 120 and 122 have the same number of teeth. Therefore, the fourth crank 104 also rotates in the same direction as the first crank 101 at the same number of revolutions. That is, the fourth crank 104 rotates clockwise in FIGS. 9-11.
  • the connecting rod 130 which is rotatably connected to both crank pins 103a and 104a (see FIG. 8(b)), rotates. Moving. Since the third crank 103 and the fourth crank 104 are connected by the connecting rod 130, their rotational torque and rotational timing interact with each other.
  • auxiliary mechanism As described above, in the case of the ignition before top dead center, the combustion pressure acts on the piston 12 in the direction opposite to the movement direction from the time of ignition until the piston 12 reaches the top dead center.
  • the assist mechanism 92 is a mechanism that converts the combustion pressure that hinders the reciprocating motion of the piston 12 into a force that assists the movement of the piston 12 toward the top dead center side.
  • Fig. 12(a) shows the state immediately after ignition at 45 degrees before the top dead center. Combustion pressure is generated after ignition, and the piston 12 heading for top dead center is pushed toward the bottom dead center side by the combustion pressure. Due to the combustion pressure, the piston 12 is acted upon by a force P1 in a direction opposite to the movement direction (hereinafter referred to as "movement resistance force").
  • the connecting rod 13 receives force in the direction of arrow Y due to movement resistance P1.
  • the second crank 102 receives a force in a direction opposite to the rotation direction R2 (hereinafter referred to as "anti-rotation direction"). That is, the movement resistance force P1 tends to rotate the second crank 102 about the master shaft in the direction opposite to the rotation direction R2. Since the first fixed gear 131 is integrated with the second crank 102, the movement resistance P1 is generated by 114 b , gears 113 a and 113 b and gear 112 to gear 111 .
  • the movement resistance force P1 tries to rotate the gear 118, the gears 116a, 116b, the gears 114a, 114b, and the gear 112 counterclockwise, causing the gears 117a, 117b, the gear 115, the gears 113a, 113b, and the gear 111 to rotate. Try to rotate clockwise.
  • the combustion pressure to rotate the first fixed gear 131 clockwise is transmitted so that the gear 111 before the second fixed gear 132 rotates clockwise.
  • the arrow attached to each gear represents the direction in which the movement resistance force P1 tries to rotate.
  • the engagement point B is , the first period (period from the state of FIG. 11(h) to FIG. 10(d)) at a position beyond the reference line S when viewed from the third crank 103 side, at the engagement point B by the movement resistance P1
  • the direction in which the force acts is the direction in which the fourth crank 104 is rotated in the actual rotation direction of the engine (see FIG. 12(a)).
  • the assist mechanism 92 functions as a mechanism that assists the movement of the piston 12 to the top dead center side.
  • the auxiliary mechanism 92 does not work, and the engagement point B is between the reference line S and the third crank 103 during the second period (Fig. 10(d)).
  • torque acts in a direction that prevents the rotation of the fourth crank 104 (see FIG. 12(b)).
  • the movement resistance P1 acts on the piston 12 moving toward the bottom dead center, the exhaust valve is open in the combustion chamber 5, and the movement resistance P1 is very small and canceled. Therefore, the influence of the movement resistance P1 is slight, and the piston 12 smoothly reciprocates.
  • the torque transmitted from the second crank 102 to the fourth crank 104 by the auxiliary mechanism 92 or the like is "a value obtained by dividing the radius of the second crank 102 by the radius of the gear 111 ” is amplified in proportion to Further, the torque transmitted from the second crank 102 to the fourth crank 104 is calculated by the second amplifying part, which is defined as the distance h2 between the reference line S and the engagement point B (see FIG. 13(a)) and the radius h1 of the gear 111. is amplified in proportion to the value divided by The amplification factor of the second amplification section changes as the distance h2 changes as the fourth crank 104 rotates.
  • the amplification factor of the second amplification section is maximized when the connecting rod 30 passes over the axis of the fourth crank 104 (state shown in FIG. 13(a)).
  • the amplification factor of the second amplification section can be increased.
  • the gain in FIG. 13(a) is two.
  • the gain in FIG. 13(b) is one.
  • the total gain from the second crank 102 to the fourth crank 104 is the product of the gain of the first amplifier and the gain of the second amplifier.
  • description of the gear 112 etc. is abbreviate
  • configuration 1 in which the second fixed gear 132 to the gear 113b have the same diameter configuration 2 in which the gear 114a and the gear 116b have the same diameter, or configuration in which the gear 116a to the gear 117b have the same diameter.
  • configurations 1-3 may be selected, and non-circular gears may be used for each meshing gear in the selected configuration.
  • the portion closest to the shaft is meshed, and the portion of the outer periphery of the gear 111 farthest from the rotation axis is meshed with the portion of the outer periphery of the gear 112 closest to the rotation shaft, and the portion of the outer periphery of the gear 112 is rotated.
  • a second meshing state is achieved in which the portion farthest from the shaft meshes with the portion of the outer circumference of the gear 113b that is closest to the rotating shaft.
  • the rotational speed of the gear 111 repeatedly increases and decreases, and the rotational speed of the second crank 102 also increases and decreases synchronously. Specifically, the rotation speed of the second crank 102 becomes slow on the top dead center side, and the rotation speed of the second crank 102 becomes fast on the bottom dead center side. Therefore, as shown in FIG. 14, the trajectory Kc of the rotation axis (center) of the large end 13b of the connecting rod 103 draws a figure 8 shape with a large ring on the bottom dead center side and a small ring on the top dead center side. . Also in this modified example, the second crank length is longer than the first crank length.
  • the crank angle of the first crank 101 in the second meshing state (see FIG. 12(b)) is shifted by 45° from the crank angle of the first crank 101 in which the piston 12 is at the bottom dead center.
  • the deviation angle is 5° or more and 90° or less.
  • the crank pin 128 (see FIG. 12(a)) or the slave shaft A3 enters the first engagement state 45 degrees before the position rotated 180 degrees from the bottom dead center. Therefore, as shown in FIG. 14, the locus Kc bends when the rotation speed of the second crank 102 slows down.
  • the angle ⁇ b between the connecting rod 103 and the cylinder axis CA at the timing when the third crank 103 and the fourth crank 104 are aligned (Fig.
  • the crank angle of the first crank 21 in the meshing state is deviated from the crank angle of the first crank 21 at the bottom dead center of the piston 12 by 5° or more and 90° or less.
  • the deviation of the crank angles of the first cranks 21, 101 is preferably 15° or more and 75° or less, more preferably 30° or more and 60° or less.
  • the first meshing state is established, and the second meshing is performed at the bottom dead center. It may be constructed so as to be in a bent state. In this case, the trajectory Kc draws a figure 8 shape but does not bend.
  • a rod-shaped movable member 93 is slidably connected to the connecting rod 13, and the expansion members 13, 93 formed by the connecting rod 13 and the movable member 93 are configured to be expandable and contractible.
  • the internal combustion engine 10 includes a substantially cylindrical cylinder 11, a substantially cylindrical piston 12 reciprocating within the cylinder 11, and one end 13a of the piston 12. and a crank mechanism 20 movably connected to the other end of the connecting rod 13 to convert the reciprocating motion of the piston 12 into rotary motion.
  • the crank mechanism 20 includes a movable member 93 slidably connected to the other end of the connecting rod 13 and rotatably connected to the crank pin 28 of the crank 21 .
  • the crank 21 has an output shaft 15 that outputs rotational motion converted by the crank mechanism 20 as power, and a crank pin 28 that rotates about the axis A1 of the output shaft 15 .
  • a large end portion 93b of a movable member 93 is rotatably connected to the crank pin 28 .
  • the crank pin 28 rotates as the output shaft 15 rotates, and the piston 12 reciprocates.
  • the connecting rod 13 and the movable member 93 extend in the same direction and constitute an elastic member that can expand and contract in the length direction.
  • the internal combustion engine 10 further includes an expansion mechanism 50 that expands and contracts the expansion members 13 and 93 according to the crank angle.
  • the telescopic mechanism 50 moves from before the top dead center to near the top dead center (for example, when the crank pin 28 is closest to the ceiling surface 5a of the combustion chamber 5 (see FIG. 16 (a), the elastic members 13 and 93 are extended using the rotational force of the crank 21 as the crank angle progresses from before the state shown by the broken line).
  • the telescopic mechanism 50 is, for example, in a state in which a straight line connecting the axial center of the output shaft 15 and the axial center of the crank pin 28 is aligned with the connecting rod 13 (hereinafter, the broken line in FIG. 16A).
  • the extensible members 13 and 93 are extended during the period from the connecting rod straight line state to the top dead center.
  • the telescopic mechanism 50 may be configured so that the telescopic members 13 and 93 are shortened using the rotational force of the crank 21 as the piston 12 approaches the top dead center from before the top dead center.
  • the connecting rod 13 has a small end 13a rotatably connected to the piston 12.
  • the movable member 93 has a large end 93b rotatably connected to the crankpin 28 (see FIG. 15(b)).
  • the connecting rod 13 is attached to the movable member 93 so as to be slidable in the axial direction (longitudinal direction) of the connecting rod 13 .
  • the connecting rod 13 is fitted into a slide groove 80 (see FIG. 16) provided in the movable member 93 and is slidable relative to the movable member 93 along the slide groove 80 .
  • the telescopic mechanism 50 (see FIG. 16) is rotatably supported by a fixed gear 61 that is fixed to a child shaft (crank pin 28) of the crank 21 and rotates about the output shaft 15 together with the crank 21, and a movable member 93.
  • a telescopic gear 62 that meshes with the fixed gear 61, a circular first pin 71 that rotates around a rotating shaft 62a of the telescopic gear 62, and a connecting rod 13 integrated with the crank pin 28 side (the other end).
  • the connecting rod 13 is connected to the circular second pin 72 and the first pin 71 and the second pin 72 , and is swung with the rotational movement of the first pin 71 to move the connecting rod 13 forward and backward with respect to the movable member 93 .
  • a member 75 is provided.
  • the telescopic mechanism 50 corresponds to a transmission mechanism that moves the movable member 93 with respect to the connecting rod 13 and rotates the movable member 93 with respect to the crank 21 .
  • the transmission mechanism transmits the rotational force of the crank 21 to the movable member 93 by causing the swinging member 75 to swing by meshing the fixed gear 61 with the telescopic gear 62 .
  • the fixed gear 61 is fixed to the crank 21 so as to be coaxial with the crank pin 28.
  • the fixed gear 61 is a gear that revolves around the output shaft 15 without rotating.
  • the expansion gear 62 is a gear having the same number of teeth as the fixed gear 61 . It is designed so that when the fixed gear 61 makes one rotation, the telescopic gear 62 also makes exactly one rotation.
  • the rotating shaft 62a of the telescopic gear 62 can be arranged on a straight line passing through the axial center 61a of the fixed gear 61 and the axial center of the second pin 72, or on a position other than this straight line.
  • the first pin is a pin member (columnar member) integrated with the telescopic gear 62 so that the axis does not coincide with the telescopic gear 62 .
  • the first pin 71 has a main shaft 71a coaxial with the rotating shaft 62a of the telescopic gear 62, and a sub-shaft 71b positioned away from the main shaft 71a.
  • the secondary shaft 71 b is positioned at the center of the first pin 71 .
  • a secondary shaft (center) 71b of the first pin 71 is located eccentrically when viewed from the center 62a of the telescopic gear 62 .
  • the first pin 71 rotates about the main shaft 71a as the telescopic gear 62 rotates.
  • the rocking member 75 is, for example, a functional part of the elastic members 13, 93.
  • the rocking member 75 is rotatably supported by each of the first pin 71 and the second pin 72 .
  • the first pin 71 and the second pin 72 are rotatably inserted into the through hole 75a on the crank pin 28 side and the through hole 75b on the piston 12 side, respectively.
  • the fixed gear 61 and the expansion gear 62 are circular gears that mesh at the same number of revolutions, but they may be circular gears that mesh at multiple times the number of revolutions, or may rotate at the same number of revolutions or multiple times. Non-circular gears that mesh in numbers may also be used.
  • the piston 12 reaches the top dead center while the expandable members 13 and 93 are being extended.
  • the expandable members 13 and 93 also extend during the first half of the period when the piston 12 moves from the top dead center to the bottom dead center. Therefore, the descending speed of the piston 12 can be reduced after the top dead center.
  • the extensible members 13 and 93 extend during the period from the crank-connecting rod straight line state to the top dead center.
  • the piston pin, the large end of the connecting rod and the output shaft are aligned on a straight line at the top dead center, and the combustion pressure increases.
  • the transmissibility to the rotational output becomes infinitely close to zero.
  • the transmission rate to the rotational output is extremely small during the period in which the crank angle advances by 20° to 30° after the top dead center. By the time the transfer rate to the rotational output becomes effective, the combustion pressure is greatly reduced from the ignition combustion pressure.
  • the movement direction of the crank pin 28 at the timing of the top dead center approaches the direction of the cylinder axis CA.
  • the angle ⁇ ′ (see FIG. 16A) formed by the connecting rod 13 and the movable member 93 is within an angle range of 90° ⁇ 70° (preferably an angle of 90° ⁇ 45°). range). Therefore, the transmissibility of the combustion pressure to the rotational output at top dead center is improved. Furthermore, even after top dead center, the transmission rate to the rotational output is improved. For example, while the crank angle advances from top dead center by 20° to 30°, the transmission rate approaches 100%. According to this modification, torque can be efficiently transmitted from the piston 12 to the crankpin 28 .
  • This modified example is a modified example of the fifth modified example.
  • a projecting portion 81 projecting from the second gear 62 is provided, and the secondary shaft 71b of the first pin 71 is provided on the projecting portion 81.
  • the main shaft 71a of the first pin 71 is coaxial with the rotating shaft 62a of the expansion gear 62, as in the fifth modification.
  • the secondary shaft (pin) 71b of the first pin 71 is rotatably inserted into the through hole 75a on the crank pin 28 side, and the second pin 72 is rotatably inserted into the through hole 75b on the piston 12 side.
  • the secondary shaft 71b of the first pin 71 extends from the first position closest to the fixed gear 61 on the axis Xs of the connecting rod 13 to the second position farthest from the second pin 72 on the axis Xs.
  • the telescopic members 13, 93 are stretched.
  • the secondary shaft 71b of the first pin 71 moves from the second position to the first position on the axis Xs of the connecting rod 13, the expandable members 13 and 93 contract.
  • the telescopic mechanism 50 of Modified Example 5-6 may be applied to the embodiment and its Modified Example 1-4.
  • the fixed gear 61 is fixed to the child shaft A3 of the second crank 22 . That is, the fixed gear 61 is fixed to the second crank 22 so as to be coaxial with the center A3 of the second crank 22 .
  • the telescopic mechanism 50 shortens the telescopic members 13 and 93 using the rotational force of the second crank 22 as the piston 12 approaches the top dead center from before the top dead center.
  • the telescopic mechanism 50 may be configured to extend the telescopic members 13 and 93 using the rotational force of the second crank 22 as the piston 12 approaches the top dead center from before the top dead center.
  • the inclination angle .theta.a (see FIG. 1) of the cylinder axis CA can be optimized without being constrained by the vertical direction to the tangent line of the locus Kc of the center of the big end.
  • the present invention is applicable to reciprocating internal combustion engines, compressors, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transmission Devices (AREA)

Abstract

In order to realize an internal combustion engine 10 capable of efficiently transmitting torque from a piston 12 to an output shaft 15 of a crank mechanism 14, the crank mechanism 14 of the internal combustion engine 10 has: a crank 21 having a crank pin 28; a movable member 22 that is movably connected to another end part of a connecting rod 13 and is rotatably connected to the crank pin 28; and a transmission mechanism 14 that includes a fixed gear 31 fixed to the movable member 22, and transmits a rotation force of the crank 21 to the movable member 22 via the fixed gear 31 so as to move the movable member 22 with respect to the connecting rod 13 and rotate the movable member 22 with respect to the crank 21. The movable member 22 is rotatably connected to the other end part of the connecting rod 13. The angle formed by the connecting rod 13 and the movable member 22 at the top dead center is in an angle range of 90°±70°.

Description

内燃機関internal combustion engine
 本発明は、レシプロタイプの内燃機関に関する。 The present invention relates to a reciprocating internal combustion engine.
 従来から、レシプロタイプの内燃機関が知られている。特許文献1の図1には、この種の内燃機関として、図における上下方向にシリンダとクランク機構が並ぶ内燃機関が記載されている。この内燃機関は、第1歯車と第2歯車と中間歯車を有する。第1歯車は、クランクジャーナルに同軸をなすように配置され、クランクケースの側に固定されている。第2歯車は、伝動媒体としての中間歯車を介して第1歯車と連動可能に接続され、クランクピンに同軸的に枢支される。第2歯車には、コンロッドの大端部を枢支する偏心ピンが固着されている。 Conventionally, reciprocating internal combustion engines have been known. FIG. 1 of Patent Document 1 describes, as this type of internal combustion engine, an internal combustion engine in which a cylinder and a crank mechanism are arranged vertically in the figure. The internal combustion engine has a first gear, a second gear and an intermediate gear. The first gear is arranged coaxially with the crank journal and fixed on the side of the crankcase. The second gear is interlockably connected to the first gear via an intermediate gear as a transmission medium, and is coaxially pivoted on the crankpin. An eccentric pin that pivotally supports the large end of the connecting rod is fixed to the second gear.
特開2019-27362号公報JP 2019-27362 A
 ところで、従来の内燃機関は、シリンダ軸(シリンダの軸心)と出力軸とが直線上に並ぶ。そして、ピストンが燃焼上死点のタイミングでは、ピストンピンとクランクピンと出力軸とが直線上に並び、クランクピンの運動方向は、ピストンの往復方向に直交する。そのため、燃焼圧が最大となる上死点とその直後で、出力軸の回転出力は、ゼロ又は限りなくゼロに近い。また、出力軸の回転出力が発生し始めるタイミングでは、ピストンの下降により燃焼圧は大きく低下している(例えば、1/2~1/3程度に低下している)。従来の内燃機関では、ピストンが受ける燃焼圧をクランクの出力軸に回転出力として効率的に伝達できているとは言い難い。 By the way, in conventional internal combustion engines, the cylinder shaft (the axis of the cylinder) and the output shaft are aligned in a straight line. At the timing when the piston is at the combustion top dead center, the piston pin, the crank pin, and the output shaft are aligned in a straight line, and the direction of movement of the crank pin is orthogonal to the reciprocating direction of the piston. Therefore, the rotational output of the output shaft is zero or extremely close to zero at and immediately after the top dead center where the combustion pressure is maximized. Further, at the timing when the rotational output of the output shaft begins to be generated, the combustion pressure is greatly reduced due to the downward movement of the piston (for example, it is reduced to about 1/2 to 1/3). In a conventional internal combustion engine, it is difficult to say that the combustion pressure received by the piston can be efficiently transmitted to the output shaft of the crank as rotational output.
 本発明は、このような事情に鑑みてなされたものであり、ピストンからクランク機構の出力軸に対しトルクを効率的に伝達することが可能な内燃機関を実現することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to realize an internal combustion engine capable of efficiently transmitting torque from the piston to the output shaft of the crank mechanism.
 上述の課題を解決するべく、第1の発明は、シリンダ内を往復運動するピストンと、一端部がピストンに回転自在に連結されたコンロッドと、コンロッドの他端部が連結されて、ピストンの往復運動を回転運動に変換するクランク機構と、クランク機構によって変換された回転運動による動力で回転する出力軸とを備え、クランク機構は、クランクピンを有するクランクと、コンロッドの他端部に可動に連結され、クランクピンに回転自在に連結された可動部材と、可動部材又はクランクピンの一方に固定された固定歯車を含み、固定歯車を介してクランクの回転力を可動部材に伝達することにより、コンロッドに対し可動部材を動かし、且つ、クランクに対し可動部材を回転させる伝達機構とを有し、固定歯車が可動部材に固定されている場合は、可動部材はコンロッドの他端部に回転自在に連結され、上死点において、コンロッドと可動部材のなす角度が、90°±70°の角度範囲にあり、固定歯車がクランクピンに固定されている場合は、可動部材はコンロッドの他端部にスライド自在に連結され、上死点において、コンロッドとクランクのなす角度が、90°±70°の角度範囲にある、内燃機関である。 In order to solve the above-mentioned problems, the first invention provides a piston that reciprocates within a cylinder, a connecting rod that is rotatably connected at one end to the piston, and a connecting rod that is connected at the other end to allow the piston to reciprocate. It comprises a crank mechanism that converts motion into rotary motion, and an output shaft that is rotated by power generated by the rotary motion converted by the crank mechanism. The crank mechanism is movably connected to a crank having a crank pin and the other end of the connecting rod. a movable member rotatably connected to a crankpin; and a fixed gear fixed to one of the movable member and the crankpin. and a transmission mechanism for moving the movable member with respect to the crank and rotating the movable member with respect to the crank, and when the fixed gear is fixed to the movable member, the movable member is rotatably connected to the other end of the connecting rod. When the angle formed by the connecting rod and the movable member is within the range of 90°±70° at the top dead center and the fixed gear is fixed to the crank pin, the movable member slides to the other end of the connecting rod. The internal combustion engine is freely connected and the angle formed by the connecting rod and the crank at the top dead center is in the range of 90°±70°.
 第2の発明は、第1の発明において、固定歯車が可動部材に固定され、クランクを第1クランクとした場合に、可動部材は、クランクピンに回転自在に連結された親軸と、コンロッドの他端部に回転自在に連結された子軸とを有する第2クランクを構成し、固定歯車は、第2クランクの親軸と同軸に第2クランクに固定され、伝達機構は、第1クランクと第2クランクとが同じ回転数で且つ反対方向に回転するように第1クランクと第2クランクを係合させる。 In a second invention according to the first invention, when the stationary gear is fixed to the movable member and the crank is the first crank, the movable member includes a master shaft rotatably connected to the crank pin and a connecting rod. A second crank having a child shaft rotatably connected to the other end, a fixed gear is fixed to the second crank coaxially with the master shaft of the second crank, and a transmission mechanism is connected to the first crank. The first and second cranks are engaged so that the second crank rotates at the same speed and in the opposite direction.
 第3の発明は、第2の発明において、伝達機構は、固定歯車に噛み合う歯車を含む複数の歯車を介して、エンジンブロックに固定された歯車に対し、第2クランクの回転トルクが伝達されるように構成され、複数の歯車のうち互いに噛み合う一組の歯車は、互いに同じ回転数となるように噛み合う非円形歯車であり、第2クランクの長さは、1クランクの長さよりも長く、コンロッドの他端部の中心軸が8の字状の軌跡を描く。 In a third invention based on the second invention, the transmission mechanism transmits the rotational torque of the second crank to a gear fixed to the engine block via a plurality of gears including a gear that meshes with the fixed gear. A set of gears that mesh with each other among the plurality of gears are non-circular gears that mesh with each other so as to have the same number of rotations, the length of the second crank is longer than the length of one crank, and the connecting rod The central axis of the other end of draws a figure-8 locus.
 第4の発明は、第2の発明において、伝達機構は、固定歯車に噛み合う歯車を含む複数の歯車を介して、エンジンブロックに固定された歯車に対し、第2クランクの回転トルクが伝達されるように構成され、エンジンブロックに固定された歯車は、内歯車であり、複数の歯車のうち内歯車に噛み合う歯車は、非円形歯車であり、非円形歯車においてその回転軸から内歯車に噛み合う接合点までの距離の変化に応じて、内歯車の内周面が凹凸に波打つように形成することで、内歯車が非円形歯車に噛み合い、第2クランクの長さは、1クランクの長さよりも長く、コンロッドの他端部の中心軸が8の字状の軌跡を描く。 In a fourth aspect based on the second aspect, the transmission mechanism transmits the rotational torque of the second crank to a gear fixed to the engine block via a plurality of gears including a gear that meshes with the fixed gear. The gear fixed to the engine block is an internal gear, and the gear that meshes with the internal gear among the plurality of gears is a non-circular gear, and the non-circular gear meshes with the internal gear from its rotation axis. By forming the inner peripheral surface of the internal gear to undulate in accordance with the change in the distance to the point, the internal gear meshes with the non-circular gear, and the length of the second crank is longer than the length of one crank. It is long, and the central axis of the other end of the connecting rod draws a figure-eight locus.
 第5の発明は、第2の発明において、伝達機構は、固定歯車に噛み合う歯車を含む複数の歯車を介して、エンジンブロックに固定された歯車に対し、第2クランクの回転トルクが伝達されるように構成され、複数の歯車のうち互いに噛み合う一組の歯車は、互いに同じ回転数となるように噛み合う非円形歯車であり、一方の歯車がエンジンブロックに固定され、第2クランクの長さは、前記1クランクの長さよりも長く、一方の歯車の外周のうち回転軸に対して最も遠い部位が、一組の歯車のうち他方の歯車の外周のうち回転軸に対して最も近い部位と噛み合う状態の第1クランクのクランク角は、ピストンが下死点における第1クランクのクランク角に対し5°以上90°以下ずれている。 In a fifth aspect based on the second aspect, the transmission mechanism transmits the rotational torque of the second crank to a gear fixed to the engine block via a plurality of gears including a gear that meshes with the fixed gear. A set of gears that mesh with each other among the plurality of gears are non-circular gears that mesh with each other so that the number of rotations is the same, one gear is fixed to the engine block, and the length of the second crank is , longer than the length of one crank, the farthest part of the outer circumference of one gear with respect to the axis of rotation meshes with the part of the outer circumference of the other gear of the pair of gears, which is closest to the axis of rotation. The crank angle of the first crank in the state deviates from the crank angle of the first crank when the piston is at the bottom dead center by 5° or more and 90° or less.
 第6の発明は、第2の発明において、クランク機構は、固定歯車に噛み合い、第1クランクの回転軸に回転自在に支持された中央側歯車と、中央側歯車に噛み合い、中央側歯車を挟んで固定歯車とは反対側の位置で、第1クランクの延長部材に回転自在に支持された対極歯車とを備えている。 In a sixth aspect based on the second aspect, the crank mechanism meshes with the fixed gear and is rotatably supported on the rotating shaft of the first crank, and meshes with the central gear and sandwiches the central gear. and a counter-pole gear rotatably supported on the extension member of the first crank at a position opposite to the fixed gear.
 第7の発明は、第6の発明において、シリンダ内の燃焼室において上死点手前で着火がなされる場合に、ピストンの上死点側への移動を補助する補助機構を備え、補助機構は、第1クランクの回転軸の回転トルクが伝達されてそれぞれ回転する第3クランク及び第4クランクと、第3クランクのクランクピンと第4クランクのクランクピンとに回転自在に支持されて、第3クランクと第4クランクとを連結する連結部材と、第4クランクのクランクピンに固定された第2固定歯車と、第2固定歯車に噛み合い、連結部材に回転自在に支持された遠位側歯車と、遠位側歯車と噛み合う歯車を含む複数の歯車を有し、該複数の歯車の各々が連結部材に回転自在に支持された中継歯車機構と、中継歯車機構の複数の歯車のうち、第3クランク側に設けられた近位側歯車に噛み合い、近位側歯車を公転させると共に、自らは第1クランクの2倍速で回転し、エンジンブロックに回転自在に支持される2倍速歯車と、2倍速歯車の回転トルクを対極歯車に伝達させる歯車とを備えている。 In a seventh aspect based on the sixth aspect, an auxiliary mechanism is provided for assisting the movement of the piston toward the top dead center when the combustion chamber in the cylinder is ignited before the top dead center, wherein the auxiliary mechanism is , a third crank and a fourth crank which are respectively rotated by transmission of the rotational torque of the rotating shaft of the first crank, and are rotatably supported by the crank pin of the third crank and the crank pin of the fourth crank. a connecting member that connects the fourth crank; a second fixed gear fixed to the crankpin of the fourth crank; a distal side gear that meshes with the second fixed gear and is rotatably supported by the connecting member; a relay gear mechanism having a plurality of gears including a gear that meshes with the position side gear, each of the plurality of gears being rotatably supported by a connecting member; and among the plurality of gears of the relay gear mechanism, the third crank side The gear meshes with the proximal side gear provided in the , rotates the proximal side gear, rotates itself at twice the speed of the first crank, and is rotatably supported by the engine block. and a gear for transmitting rotational torque to the opposite gear.
 第8の発明は、第7の発明において、第2固定歯車と遠位側歯車とは、互いに同じ回転数となるように噛み合う非円形歯車であり、第2固定歯車の外周のうち回転軸に対して最も遠い部位が、遠位側歯車の外周のうち回転軸に対して最も近い部位と噛み合う状態の第1クランクのクランク角は、前記ピストンが下死点における第1クランクのクランク角に対し5°以上90°以下ずれている。 In an eighth aspect based on the seventh aspect, the second fixed gear and the distal side gear are non-circular gears that mesh with each other so as to have the same number of rotations, and the outer periphery of the second fixed gear is aligned with the rotation axis. On the other hand, the crank angle of the first crank in which the farthest portion is meshed with the portion of the outer periphery of the distal gear that is closest to the rotation axis is the crank angle of the first crank when the piston is at the bottom dead center. There is a deviation of 5° or more and 90° or less.
 第9の発明は、第1の発明において、固定歯車がクランクピンに固定され、可動部材がコンロッドの他端部にスライド自在に連結されることで、コンロッドと可動部材は、伸縮可能な伸縮部材を構成し、ピストンが上死点の手前から上死点に近づくに従って、クランクの回転力を利用して伸縮部材を伸長させる伸縮機構をさらに備えている。 In a ninth aspect based on the first aspect, the fixed gear is fixed to the crankpin, and the movable member is slidably connected to the other end of the connecting rod, so that the connecting rod and the movable member are telescopic members. and further includes a telescopic mechanism that extends the telescopic member using the rotational force of the crank as the piston approaches the top dead center from before the top dead center.
 第10の発明は、第9の発明において、伸縮機構は、可動部材に回転自在に支持されて、固定歯車と噛み合う伸縮用歯車と、伸縮用歯車の回転軸と同軸の主軸と、該主軸から偏心した位置の副軸とを有し、伸縮用歯車の回転に伴って主軸を中心に回転移動する伸縮用クランクと、伸縮用クランクの副軸に回転自在に支持されると共に、コンロッドにも回転自在に支持されて、伸縮用歯車の回転移動に伴って揺動して、可動部材に対しコンロッドを進退させる揺動部材とを備えている。 In a tenth aspect based on the ninth aspect, the expansion and contraction mechanism comprises an expansion gear rotatably supported by a movable member and meshing with the fixed gear, a main shaft coaxial with the rotation axis of the expansion gear, and A telescopic crank that rotates around the main shaft with the rotation of the telescopic gear, and is rotatably supported by the telescopic crank subshaft and also rotates on the connecting rod. A swinging member that is freely supported and swings with the rotational movement of the telescopic gear to move the connecting rod back and forth with respect to the movable member.
 本発明では、固定歯車が可動部材に固定されている場合は、可動部材はコンロッドの他端部に回転自在に連結され、上死点において、コンロッドと可動部材のなす角度(例えば、図3(d)、図9(b)参照)が、90°±70°の角度範囲にある。この場合、従来の内燃機関に比べて、上死点におけるクランクピンの運動方向がシリンダ軸の方向に近くなる。従って、ピストンから、第1クランクへのトルクの伝達率が向上し、出力軸へのトルクの伝達率も向上する。 In the present invention, when the fixed gear is fixed to the movable member, the movable member is rotatably connected to the other end of the connecting rod, and the angle formed by the connecting rod and the movable member at the top dead center (for example, FIG. 3 ( d), see FIG. 9(b)) is in the angle range of 90°±70°. In this case, the direction of motion of the crankpin at top dead center is closer to the direction of the cylinder axis than in a conventional internal combustion engine. Therefore, the torque transmission rate from the piston to the first crank is improved, and the torque transmission rate to the output shaft is also improved.
 なお、例えば、後述する実施形態では、ピストンが図3(d)に示す上死点の位置から図3(f)の位置に至るまでの期間に、クランクピンは約90°回転するが、ピストンの下降は小さい。そのため、この期間における内燃機関の燃焼圧の低下量は小さい。既存の内燃機関では、上死点からクランクピンが90°回転すると燃焼圧が5分の1近くに低下するところ、後述する実施形態では、上死点燃焼圧の2分の1以下とはならないため、高い燃焼圧を高伝達率にて出力軸の出力動力に変換することができる。 For example, in the embodiment described later, the crankpin rotates about 90° during the period from the top dead center position shown in FIG. 3(d) to the position shown in FIG. is small. Therefore, the amount of decrease in the combustion pressure of the internal combustion engine during this period is small. In existing internal combustion engines, when the crankpin rotates 90° from top dead center, the combustion pressure drops to nearly one-fifth. Therefore, high combustion pressure can be converted into output power of the output shaft at a high transmission rate.
 また、本発明では、固定歯車がクランクピンに固定されている場合は、可動部材はコンロッドの他端部にスライド自在に連結され、上死点において、コンロッドとクランクのなす角度が、90°±70°の角度範囲(例えば、図16(a)の実線参照)にある。この場合も、従来の内燃機関に比べて、上死点におけるクランクピンの運動方向がシリンダ軸の方向に近くなる。従って、ピストンから、第1クランクへのトルクの伝達率が向上し、出力軸へのトルクの伝達率も向上する。 Further, in the present invention, when the fixed gear is fixed to the crank pin, the movable member is slidably connected to the other end of the connecting rod, and the angle formed by the connecting rod and the crank at top dead center is 90°± It is in the angular range of 70° (see, for example, the solid line in FIG. 16(a)). Also in this case, the direction of motion of the crankpin at the top dead center is closer to the direction of the cylinder axis than in the conventional internal combustion engine. Therefore, the torque transmission rate from the piston to the first crank is improved, and the torque transmission rate to the output shaft is also improved.
図1(a)は、実施形態に係る内燃機関を出力軸の軸方向に見た概略構成図であり、図1(b)は、図1(a)とは直交する方向の側方から見た内燃機関の概略構成図である。FIG. 1(a) is a schematic configuration diagram of the internal combustion engine according to the embodiment viewed in the axial direction of the output shaft, and FIG. 1(b) is a side view in a direction orthogonal to FIG. 1(a). 1 is a schematic configuration diagram of an internal combustion engine; FIG. 図2は、実施形態に係る内燃機関における歯車の構成を説明するための概略図である。FIG. 2 is a schematic diagram for explaining the configuration of gears in the internal combustion engine according to the embodiment. 図3は、実施形態に係る内燃機関の動作の状態について、ピストンの1往復期間をクランク角45°ピッチで示す概略構成図である。FIG. 3 is a schematic configuration diagram showing one reciprocating period of a piston at a pitch of 45° crank angle, regarding the state of operation of the internal combustion engine according to the embodiment. 図4は、大端部中心軸の軌跡の長手方向とシリンダ軸とがなす角度の変化に対する、ピストンから出力軸に伝達される仕事量の変化を表す図表である。FIG. 4 is a chart showing changes in the amount of work transmitted from the piston to the output shaft with respect to changes in the angle between the longitudinal direction of the trajectory of the big end central axis and the cylinder axis. 図5は、実施形態の変形例1に係る内燃機関について、図1(b)と同一方向から、内燃機関を見た概略構成図である。FIG. 5 is a schematic configuration diagram of the internal combustion engine according to Modification 1 of the embodiment, viewed from the same direction as FIG. 1(b). 図6は、実施形態の変形例2に係る内燃機関について、図1(b)と同一方向から、内燃機関を見た概略構成図である。FIG. 6 is a schematic configuration diagram of an internal combustion engine according to Modification 2 of the embodiment, viewed from the same direction as FIG. 1(b). 図7は、実施形態の変形例3に係る内燃機関について、図1(b)と同一方向から、内燃機関を見た概略構成図である。FIG. 7 is a schematic configuration diagram of an internal combustion engine according to Modification 3 of the embodiment, viewed from the same direction as FIG. 1(b). 図8(a)は、実施形態の変形例4に係る内燃機関を出力軸の軸方向に見た概略構成図であり、図8(b)は、図8(a)とは直交する方向の側方から見た内燃機関の概略構成図である。FIG. 8(a) is a schematic configuration diagram of an internal combustion engine according to Modification 4 of the embodiment viewed in the axial direction of the output shaft, and FIG. 1 is a schematic configuration diagram of an internal combustion engine viewed from the side; FIG. 図9は、実施形態の変形例4に係る内燃機関の動作のうち上死点付近の動作を説明するための概略図である。FIG. 9 is a schematic diagram for explaining the operation near the top dead center of the operation of the internal combustion engine according to Modification 4 of the embodiment. 図10は、実施形態の変形例4に係る内燃機関の動作のうち下死点に近づく動作を説明するための概略図である。FIG. 10 is a schematic diagram for explaining the operation of approaching the bottom dead center among the operations of the internal combustion engine according to Modification 4 of the embodiment. 図11は、実施形態の変形例4に係る内燃機関の動作のうち上死点に近づく動作を説明するための概略図である。FIG. 11 is a schematic diagram for explaining the operation of approaching the top dead center among the operations of the internal combustion engine according to Modification 4 of the embodiment. 図12は、実施形態の変形例4に係る内燃機関の補助機構の動作を説明するための概略図である。FIG. 12 is a schematic diagram for explaining the operation of the auxiliary mechanism of the internal combustion engine according to Modification 4 of the embodiment. 図13は、実施形態の変形例4に係る内燃機関の第2増幅部を説明するための概略図である。FIG. 13 is a schematic diagram for explaining a second amplification section of an internal combustion engine according to Modification 4 of the embodiment. 図14は、実施形態の変形例4に係る内燃機関のコンロッドの大端部の中心軸の軌跡を説明するための概略図である。FIG. 14 is a schematic diagram for explaining the trajectory of the central axis of the large end of the connecting rod of the internal combustion engine according to Modification 4 of the embodiment. 図15(a)は、実施形態の変形例5に係る内燃機関を出力軸の軸方向に見た概略構成図であり、図15(b)は、図15(a)とは直交する方向の側方から見た内燃機関の概略構成図である。FIG. 15(a) is a schematic configuration diagram of an internal combustion engine according to Modification 5 of the embodiment viewed in the axial direction of the output shaft, and FIG. 1 is a schematic configuration diagram of an internal combustion engine viewed from the side; FIG. 図16(a)は、実施形態の変形例5に係る内燃機関について、上死点の手前と上死点のそれぞれでのピストンの位置等を表す概略構成図であり、図16(b)は、上死点の手前での伸縮機構の状態を表す概略構成図であり、図16(c)は、上死点での伸縮機構の状態を表す概略構成図である。FIG. 16(a) is a schematic configuration diagram showing the position of the piston before the top dead center and the top dead center of the internal combustion engine according to Modification 5 of the embodiment, and FIG. 16(c) is a schematic configuration diagram showing the state of the telescopic mechanism before the top dead center. FIG. 図17(a)は、実施形態の変形例6に係る内燃機関について、上死点の手前での伸縮機構の状態を表す概略構成図であり、図17(b)は、上死点での伸縮機構の状態を表す概略構成図である。FIG. 17(a) is a schematic configuration diagram showing the state of the telescopic mechanism before the top dead center of the internal combustion engine according to Modification 6 of the embodiment, and FIG. It is a schematic block diagram showing the state of an expansion-contraction mechanism. 図18は、実施形態の変形例7に係る内燃機関について、上死点と上死点45°後のそれぞれでのピストンの位置等を表す概略構成図である。18A and 18B are schematic configuration diagrams showing the positions of the piston at the top dead center and after 45° from the top dead center in an internal combustion engine according to Modification 7 of the embodiment.
 以下、図面を参照しながら、本発明の実施形態を詳細に説明する。なお、以下の実施形態は、本発明の一例であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are examples of the present invention, and are not intended to limit the scope of the present invention, its applications, or its uses.
 各実施形態に係る内燃機関10は、レシプロタイプの単気筒又は多気筒エンジンである。内燃機関10は、例えば、自動車や船などの移動体か、固定発電機などの動力源として用いられる。以下では、単気筒内燃機関10の場合を例にして説明を行う。 The internal combustion engine 10 according to each embodiment is a reciprocating single-cylinder or multi-cylinder engine. The internal combustion engine 10 is used, for example, in mobile objects such as automobiles and ships, or as a power source such as a stationary power generator. Below, the case of the single-cylinder internal combustion engine 10 will be described as an example.
[内燃機関の構成について]
 本実施形態に係る内燃機関10は、図1(a)及び図1(b)に示すように、略円筒状のシリンダ11と、シリンダ11内を往復運動する略円柱状のピストン12と、ピストン12に回転自在に連結されたコンロッド13と、コンロッド13が回転自在に連結されてピストン12の往復運動を回転運動に変換するクランク機構14と、内燃機関10の設置箇所に固定されたエンジンブロック(クランクケースを含む固定部分)16とを備えている。シリンダ11内には、ピストン12により燃焼室5が区画形成される。また、クランク機構14により変換された回転運動は、出力軸15から動力として出力される。エンジンブロック16には、出力軸15と同軸に設けられたシャフト17が固定されている。
[Regarding the configuration of the internal combustion engine]
As shown in FIGS. 1(a) and 1(b), an internal combustion engine 10 according to the present embodiment includes a substantially cylindrical cylinder 11, a substantially cylindrical piston 12 reciprocating within the cylinder 11, a piston A connecting rod 13 rotatably connected to 12, a crank mechanism 14 to which the connecting rod 13 is rotatably connected to convert the reciprocating motion of the piston 12 into rotary motion, and an engine block ( (fixed part including crankcase) 16. A combustion chamber 5 is defined in the cylinder 11 by a piston 12 . Also, the rotary motion converted by the crank mechanism 14 is output as power from the output shaft 15 . A shaft 17 provided coaxially with the output shaft 15 is fixed to the engine block 16 .
 なお、内燃機関10における燃焼室5の天井面には、吸気弁により開閉される吸気ポートと、排気弁により開閉される排気ポートが形成されているが、図示は省略する。 An intake port that is opened and closed by an intake valve and an exhaust port that is opened and closed by an exhaust valve are formed on the ceiling surface of the combustion chamber 5 in the internal combustion engine 10, but are not shown.
 コンロッド13は、真っすぐな棒状の部品である。コンロッド13では、一端側のリング状の小端部13aに、ピストン12のピストンピン12aが回転自在に挿通され、他端側のリング状の大端部13bに、後述する第2クランク22が回転自在に挿通されている(図1(b)参照)。なお、本実施形態では、シリンダ軸(シリンダ11の軸心)CAに対するコンロッド13の傾斜角θbの最大値が90°弱となり比較的大きい(図3(a)参照)。そのため、シリンダ11のスカート部には、コンロッド13との接触を避けるための切れ込み(図示省略)を設ける。 The connecting rod 13 is a straight rod-shaped component. In the connecting rod 13, a piston pin 12a of the piston 12 is rotatably inserted into a ring-shaped small end portion 13a on one end side, and a second crank 22, which will be described later, rotates on a ring-shaped large end portion 13b on the other end side. It is freely inserted (see FIG. 1(b)). In this embodiment, the maximum value of the inclination angle θb of the connecting rod 13 with respect to the cylinder axis (the axis of the cylinder 11) CA is slightly less than 90°, which is relatively large (see FIG. 3A). Therefore, the skirt portion of the cylinder 11 is provided with a notch (not shown) for avoiding contact with the connecting rod 13 .
 クランク機構14は、出力軸15と、出力軸15の軸心A1を中心に回転移動するクランクピン28を有する第1クランク21と、クランクピン28に回転自在に連結された親軸A2と、コンロッド13の大端部13bに回転自在に連結された子軸A3とを有する第2クランク22とを備えている。第2クランク22は、コンロッド13の他端部に可動に連結され、クランクピン28に回転自在に連結された可動部材に相当する。第2クランク22では、コンロッドの大端部13bが、親軸A2から離間した子軸A3を中心に回転自在に連結されている。以下では、出力軸15の径方向において、出力軸15側を「内側」、その反対側を「外側」と言う場合がある。 The crank mechanism 14 includes an output shaft 15, a first crank 21 having a crank pin 28 that rotates around an axis A1 of the output shaft 15, a master shaft A2 rotatably connected to the crank pin 28, and a connecting rod. a second crank 22 having a slave shaft A3 rotatably connected to the large end 13b of the crank 22; The second crank 22 corresponds to a movable member movably connected to the other end of the connecting rod 13 and rotatably connected to the crank pin 28 . The large end 13b of the connecting rod is connected to the second crank 22 so as to be rotatable around a child shaft A3 spaced apart from the master shaft A2. Below, in the radial direction of the output shaft 15, the output shaft 15 side may be called "inner side", and the opposite side may be called "outer side".
 第1クランク21は、出力軸15と同軸のシャフト17に回転自在に支持されている。第1クランク21は、上述の出力軸15及びクランクピン28に加え、シャフト17とクランクピン28間を延びる第1アーム26と、出力軸15とクランクピン28間を延びる第2アーム27とを備えている。第1クランク21では、クランクピン28が、出力軸15の外側の位置で出力軸15に平行に設けられている。第1クランク21では出力軸15、第1アーム26、第2アーム27及びクランクピン28が一体化されており、シャフト17を中心に第1アーム26、第2アーム27、クランクピン28及び出力軸15が一体で回転する。 The first crank 21 is rotatably supported by a shaft 17 coaxial with the output shaft 15 . In addition to the output shaft 15 and the crank pin 28 described above, the first crank 21 includes a first arm 26 extending between the shaft 17 and the crank pin 28 and a second arm 27 extending between the output shaft 15 and the crank pin 28. ing. In the first crank 21 , a crankpin 28 is provided parallel to the output shaft 15 at a position outside the output shaft 15 . In the first crank 21, the output shaft 15, the first arm 26, the second arm 27, and the crank pin 28 are integrated. 15 rotate together.
 第1アーム26は、シャフト17に垂直に設けられている。第1アーム26は、シャフト17を回転自在に支持する第1軸受部26aと、後述する第2歯車32のシャフト18を回転自在に支持する第2軸受部26bとを有する。第2軸受部26bは、第1アーム26において第1軸受部26aとクランクピン28の固定箇所との間に位置している。第2歯車32のシャフト18の軸心は、シャフト17の軸心A1とクランクピン28の軸心A2とを結ぶ直線上か、或いは、これらの軸心A1,A2と三角形をなす。 The first arm 26 is provided perpendicular to the shaft 17. The first arm 26 has a first bearing portion 26a that rotatably supports the shaft 17, and a second bearing portion 26b that rotatably supports the shaft 18 of the second gear 32, which will be described later. The second bearing portion 26b is located between the first bearing portion 26a and the fixed portion of the crankpin 28 on the first arm 26. As shown in FIG. The axis of the shaft 18 of the second gear 32 is on a straight line connecting the axis A1 of the shaft 17 and the axis A2 of the crank pin 28, or forms a triangle with these axes A1 and A2.
 第2アーム27は、出力軸15に垂直に設けられている。第2アーム27は、クランクピン28を介して第1アーム26に一体化されている。第2アーム27は、第1アーム26と平行に設けられている。第2アーム27の内側部分は、出力軸15に一体化されている。クランクピン28は、真っすぐな棒材である。第1クランク21では、出力軸15の軸心A1から、クランクピン28の軸心A2までの距離L1が、クランク長(以下、「第1クランク長」と言う。)となる。 The second arm 27 is provided perpendicular to the output shaft 15. The second arm 27 is integrated with the first arm 26 via a crankpin 28 . The second arm 27 is provided parallel to the first arm 26 . An inner portion of the second arm 27 is integrated with the output shaft 15 . The crank pin 28 is a straight bar. In the first crank 21, the distance L1 from the axis A1 of the output shaft 15 to the axis A2 of the crank pin 28 is the crank length (hereinafter referred to as "first crank length").
 第2クランク22は、クランクピン28を中心に偏心回転する円盤状の部品である。第2クランク22は、コンロッド13の大端部13bの内側に、回転自在に挿通されている。第2クランク22では、その中心の子軸A3から偏心した位置に、ピン軸受部22aが形成され、ピン軸受部22aでクランクピン28に回転自在に支持される。第2クランク22では、ピン軸受部22aの軸心(親軸)A2から第2クランク22の中心(子軸)A3までの距離L2が、クランク長(以下、「第2クランク長」と言う。)となる。第2クランク長L2は、第1クランク長L1よりも長くてもよい。なお、第2クランク22は、第1クランク21のような門型形状に形成されてもよい。 The second crank 22 is a disc-shaped component that rotates eccentrically around the crank pin 28 . The second crank 22 is rotatably inserted inside the large end portion 13b of the connecting rod 13 . In the second crank 22, a pin bearing portion 22a is formed at a position eccentric from the center child shaft A3, and is rotatably supported by the crank pin 28 at the pin bearing portion 22a. In the second crank 22, the distance L2 from the axis (parent shaft) A2 of the pin bearing portion 22a to the center (child shaft) A3 of the second crank 22 is the crank length (hereinafter referred to as "second crank length"). ). The second crank length L2 may be longer than the first crank length L1. It should be noted that the second crank 22 may be formed in a portal shape like the first crank 21 .
 クランク機構14は、第2クランク22の親軸A2を中心に第2クランク22と共に回転する第1歯車31と、第1クランク21の内側の位置で第1クランク21に回転自在に支持されて第1歯車31と噛み合う第2歯車32と、第2歯車32に一体化されて第2歯車32と共通の回転軸を中心に回転する第3歯車33と、第1クランク21の内側でシャフト17に一体化されて第3歯車33と噛み合う第4歯車34とを、さらに備えている。各歯車31~34の回転軸は、出力軸15に平行である。クランク機構14は、第1歯車31、第2歯車32、第3歯車33及び第4歯車34を介して、ピストン12のトルクを出力軸15に伝達する。 The crank mechanism 14 includes a first gear 31 that rotates together with the second crank 22 about the parent shaft A2 of the second crank 22, and a first gear 31 that is rotatably supported by the first crank 21 at a position inside the first crank 21 to rotate therewith. A second gear 32 that meshes with the first gear 31, a third gear 33 that is integrated with the second gear 32 and rotates about a common rotation axis with the second gear 32, and a shaft 17 inside the first crank 21. It further comprises a fourth gear 34 that is integrated and meshes with the third gear 33 . A rotation axis of each gear 31 to 34 is parallel to the output shaft 15 . The crank mechanism 14 transmits the torque of the piston 12 to the output shaft 15 via the first gear 31 , the second gear 32 , the third gear 33 and the fourth gear 34 .
 クランク機構14は、可動部材22に固定された固定歯車31を含む複数の歯車31~34を介して、第1クランク21の回転力を可動部材22に伝達することにより、コンロッド13に対し可動部材22を動かし、且つ、第1クランク21に対し可動部材22を回転させる伝達機構に相当する。この点は、変形例1も同様である。また、伝達機構14は、第1クランク21と第2クランク22とが同じ回転数(同速)で且つ反対方向に回転するように第1クランク21と第2クランク22を係合させる。この点は、変形例1-3も同様である。 The crank mechanism 14 transmits the rotational force of the first crank 21 to the movable member 22 via a plurality of gears 31 to 34 including a fixed gear 31 fixed to the movable member 22, thereby moving the movable member relative to the connecting rod 13. 22 and a transmission mechanism for rotating the movable member 22 with respect to the first crank 21 . This point is the same for Modified Example 1 as well. Further, the transmission mechanism 14 engages the first crank 21 and the second crank 22 so that the first crank 21 and the second crank 22 rotate at the same number of revolutions (same speed) and in opposite directions. This point is the same for modification 1-3.
 第1歯車31は、第2クランク22の親軸と同軸に配置されて第2クランク22に一体化されている。第1歯車31は、第2クランク22とともに、クランクピン28に対し回転自在に支持されている。第1歯車31は、自転しながら出力軸15回りを公転(回転移動)する遊星歯車である。第1歯車31は、例えば円形歯車である。 The first gear 31 is arranged coaxially with the parent shaft of the second crank 22 and integrated with the second crank 22 . The first gear 31 is rotatably supported by the crank pin 28 together with the second crank 22 . The first gear 31 is a planetary gear that revolves (rotates) around the output shaft 15 while rotating. The first gear 31 is, for example, a circular gear.
 第2歯車32は、第1クランク21の第2軸受部26bに回転自在に支持されたシャフト18に固定されている。第2歯車32は、自転をしながら出力軸15回りを公転する遊星歯車である。第2歯車32は、第1歯車31と同一歯数の円形歯車である。第2歯車32は、例えば第1歯車31と同じ大きさである。第1歯車31が1回転すると、第2歯車32もちょうど1回転するように設計されている。 The second gear 32 is fixed to the shaft 18 rotatably supported by the second bearing portion 26b of the first crank 21. The second gear 32 is a planetary gear that revolves around the output shaft 15 while rotating. The second gear 32 is a circular gear having the same number of teeth as the first gear 31 . The second gear 32 has the same size as the first gear 31, for example. It is designed so that when the first gear 31 makes one rotation, the second gear 32 also makes exactly one rotation.
 第3歯車33は、シャフト18に固定されて、第2歯車32に一体化されている。第3歯車33は、第2歯車32と同様に、自転をしながら出力軸15回りを公転する遊星歯車である。 The third gear 33 is fixed to the shaft 18 and integrated with the second gear 32 . Like the second gear 32, the third gear 33 is a planetary gear that revolves around the output shaft 15 while rotating.
 第4歯車34は、シャフト17を介してエンジンブロックに固定された太陽外歯車である。第4歯車34の歯数は、第3歯車33の歯数と同一である。シャフト17は、エンジンブロック16に固定されており、第4歯車34は回転不能である。本実施形態では、第1歯車31に対し第2歯車32を噛み合わせ、太陽外歯車34に対し第3歯車33を噛み合わせることで、第1クランク21の角度(以下、「クランク角」と言う。)に対応する第2クランク22の角度が特定される。 The fourth gear 34 is a sun external gear fixed to the engine block via the shaft 17. The number of teeth of the fourth gear 34 is the same as the number of teeth of the third gear 33 . The shaft 17 is fixed to the engine block 16 and the fourth gear 34 cannot rotate. In this embodiment, by meshing the second gear 32 with the first gear 31 and meshing the third gear 33 with the sun external gear 34, the angle of the first crank 21 (hereinafter referred to as "crank angle") ) is identified.
 第3歯車33と第4歯車34の各々は、図2に示すように、周方向に回転軸GA1,GA2から外周までの距離が変化する非円形歯車である。第3歯車33と第4歯車34とは、第3歯車33が1回転すると、第4歯車34もちょうど1回転するように設計されている。第3歯車33及び第4歯車34の1回転中に、第3歯車33と第4歯車34とが噛み合う接合点Cから第3歯車33の回転軸GA1までの距離X1と、接合点Cから第4歯車34の回転軸GA2までの距離X2とは、それぞれ変化するが、距離X1と距離X2の合計長さは一定である。 Each of the third gear 33 and the fourth gear 34 is a non-circular gear whose distance from the rotation axes GA1 and GA2 to the outer periphery changes in the circumferential direction, as shown in FIG. The third gear 33 and the fourth gear 34 are designed so that when the third gear 33 makes one rotation, the fourth gear 34 also makes exactly one rotation. During one rotation of the third gear 33 and the fourth gear 34, the distance X1 from the junction C where the third gear 33 and the fourth gear 34 mesh to the rotation axis GA1 of the third gear 33, and the distance X1 from the junction C to the rotation axis GA1 of the third gear 33. The distance X2 from the 4-gear 34 to the rotation axis GA2 varies, but the total length of the distance X1 and the distance X2 is constant.
 第3歯車33及び第4歯車34の一例について説明を行う。第3歯車33は、外周形状が略楕円形の偏心歯車である。第3歯車33の回転軸GA1は、楕円の焦点の位置にある。第4歯車34も外周形状が略楕円形の偏心歯車である。第4歯車34は、第3歯車33と同一形状である。第4歯車34の外周長は、第3歯車33の外周長に等しい。第4歯車34の回転軸GA2は、楕円の焦点の位置にある。 An example of the third gear 33 and the fourth gear 34 will be explained. The third gear 33 is an eccentric gear having a substantially elliptical outer peripheral shape. The rotation axis GA1 of the third gear 33 is located at the focal point of the ellipse. The fourth gear 34 is also an eccentric gear having a substantially elliptical outer peripheral shape. The fourth gear 34 has the same shape as the third gear 33 . The outer peripheral length of the fourth gear 34 is equal to the outer peripheral length of the third gear 33 . The rotation axis GA2 of the fourth gear 34 is located at the focal point of the ellipse.
 ここで、出力軸15及び第1クランク21が1回転すると、第4歯車34と同一歯数の第3歯車33と、第3歯車33に一体化された第2歯車32と、第2歯車32と同一歯数の第1歯車31とは、何れも1回転し、ピストン12は1往復する。その間、第1クランク21の回転速度が一定の場合でも、第3歯車33の回転速度は、距離X1と距離X2の変化に伴って変化する。そして、この変化に伴って、第2クランク22の回転速度も同様に変化する。本実施形態では、ピストン12の1往復期間に、第1クランク21の回転速度に対する第2クランク22の回転速度が変化する。これにより、第2クランク22が連結されたコンロッド13の大端部13bの回転軸(中心)A3の軌跡(「大端部中心の軌跡」と言う)Kcは、図1(a)に示すように、8の字を描く。 Here, when the output shaft 15 and the first crank 21 make one rotation, the third gear 33 having the same number of teeth as the fourth gear 34, the second gear 32 integrated with the third gear 33, and the second gear 32 The first gear 31 having the same number of teeth as the first gear 31 rotates once, and the piston 12 reciprocates once. During that time, even if the rotation speed of the first crank 21 is constant, the rotation speed of the third gear 33 changes as the distance X1 and the distance X2 change. Along with this change, the rotation speed of the second crank 22 also changes. In this embodiment, the rotation speed of the second crank 22 changes with respect to the rotation speed of the first crank 21 during one reciprocating period of the piston 12 . As a result, the trajectory Kc of the rotation axis (center) A3 of the big end 13b of the connecting rod 13 to which the second crank 22 is connected (referred to as "the trajectory of the center of the big end") is as shown in FIG. 1(a). Draw the number 8 on the
 また、クランクピン28がシリンダ軸CAから最も離れるタイミング(図3(a)のタイミング)では、第3歯車33の外周のうち回転軸GA1に対して近い側が、第4歯車34の外周のうち回転軸GA2に対して遠い側と噛み合う。第3歯車33の距離X1は、その変化範囲の中で下限側の値となり、第4歯車34の距離X2は、その変化範囲の中で上限側の値となる。このタイミングでは、ピストン12が下死点付近にあり、第3歯車33の回転速度は、ピストン12の1往復期間において相対的に大きくなり、第1クランク21の回転速度に対する第2クランク22の回転速度もこの1往復期間において相対的に大きくなる。 Also, at the timing when the crankpin 28 is most distant from the cylinder axis CA (the timing in FIG. 3A), the side of the outer circumference of the third gear 33 that is closer to the rotation axis GA1 rotates out of the outer circumference of the fourth gear 34. It meshes with the far side with respect to the axis GA2. The distance X1 of the third gear 33 has a value on the lower limit side within the range of change, and the distance X2 of the fourth gear 34 has a value on the upper limit side of the range of change. At this timing, the piston 12 is near the bottom dead center, the rotation speed of the third gear 33 is relatively large during one reciprocating period of the piston 12, and the rotation speed of the second crank 22 relative to the rotation speed of the first crank 21 is The speed also becomes relatively large in this one reciprocation period.
 一方、クランクピン28がシリンダ11軸CAに最も近づくタイミング(図3(e)のタイミング)では、第3歯車33の外周のうち回転軸GA1に対して遠い側が、第4歯車34の外周のうち回転軸GA2に対して近い側と噛み合う。第3歯車33の距離X1は、その変化範囲の中で上限側の値となり、第4歯車34の距離X2は、その変化範囲の中で下限側の値となる。このタイミングでは、ピストン12が上死点後45°付近にあり、第3歯車33の回転速度は、ピストン12の1往復期間において相対的に小さくなり、第1クランク21の回転速度に対する第2クランク22の回転速度もこの1往復期間において相対的に小さくなる。 On the other hand, at the timing when the crankpin 28 comes closest to the cylinder 11 axis CA (timing in FIG. 3(e)), the side of the outer circumference of the third gear 33 farther from the rotation axis GA1 It meshes with the side closer to the rotating shaft GA2. The distance X1 of the third gear 33 has a value on the upper limit side within the range of change, and the distance X2 of the fourth gear 34 has a value on the side of the lower limit within that range of change. At this timing, the piston 12 is in the vicinity of 45° after the top dead center, the rotational speed of the third gear 33 is relatively small during one reciprocating period of the piston 12, and the rotational speed of the first crank 21 is relatively low. The rotation speed of 22 also becomes relatively small during this one reciprocation period.
 本実施形態では、ピストン12の1往復の期間に、ピストン12の上死点側で第3歯車33の回転速度が低下し、下死点側で第3歯車33の回転速度が増加するように第3歯車33と第4歯車34とが噛み合わされている。そのため、ピストン12の1往復期間に、第1クランク21の回転速度を定速とみなした場合、第1クランク21の回転速度に対する第2クランク22の回転速度が、上死点側より下死点側の方が大きくなる。 In this embodiment, during one reciprocating period of the piston 12, the rotation speed of the third gear 33 decreases on the top dead center side of the piston 12 and increases on the bottom dead center side. The third gear 33 and the fourth gear 34 are meshed. Therefore, when the rotational speed of the first crank 21 is assumed to be constant during one reciprocating period of the piston 12, the rotational speed of the second crank 22 relative to the rotational speed of the first crank 21 is higher than that of the bottom dead center. side is larger.
[内燃機関の動作について]
 図3を参照しながら、内燃機関10の動作について説明を行う。内燃機関10では、ピストン12の1往復期間に、第1クランク21、第2クランク22及びコンロッド13がそれぞれ1回転する。なお、図3(a)~(h)は、内燃機関10の動作の状態について、ピストンの1往復期間をクランク角45°ピッチで示す。図3に記載の矢印は、第1クランク21の回転方向を表す。図3において、第1クランク21のクランクピン28は、出力軸15を中心とする円形の軌跡K1上を時計回りに回転移動する。また、図3には吸排気ポートや吸排気バルブを図示しないが、図3(a)~(h)に示すピストンの1往復期間には、圧縮行程から爆発行程(又は、排気工程から吸気工程)が行われるものとする。以下では、図3における向きにて「左」、「右」を用いる。
[About the operation of the internal combustion engine]
The operation of the internal combustion engine 10 will be described with reference to FIG. In the internal combustion engine 10 , each of the first crank 21 , the second crank 22 and the connecting rod 13 rotates once during one reciprocating period of the piston 12 . 3(a) to 3(h) show the state of operation of the internal combustion engine 10 during one reciprocating period of the piston at a pitch of 45° crank angle. Arrows shown in FIG. 3 indicate the rotation direction of the first crank 21 . In FIG. 3, the crankpin 28 of the first crank 21 rotates clockwise on a circular locus K1 centered on the output shaft 15 . In addition, although intake/exhaust ports and intake/exhaust valves are not shown in FIG. 3, in one reciprocating period of the piston shown in FIGS. ) shall be performed. Hereinafter, "left" and "right" are used for directions in FIG.
 図3(a)の状態では、ピストン12が下死点に位置している。クランクピン28は、出力軸15の左側に位置している。第2クランク22は子軸A3が親軸A2の左側に位置するように偏心し、大端部13bの中心A3はクランクピン28の左側に位置している。 In the state of FIG. 3(a), the piston 12 is positioned at the bottom dead center. The crankpin 28 is positioned on the left side of the output shaft 15 . The second crank 22 is eccentric so that the child shaft A3 is located on the left side of the main shaft A2, and the center A3 of the big end 13b is located on the left side of the crank pin 28.
 図3(a)の状態から第1クランク21が時計回りに回転すると、第4歯車34により第2歯車32及び第3歯車33が時計回りに回転し、この回転に伴って第1歯車31及び第2クランク22が反時計回りに回転する。これにより、コンロッド13の大端部13bが、回転軸A3を中心に反時計回りに回転しながら、シリンダ軸CAに対するコンロッド13の傾斜角θbは小さくなってゆき、ピストン12が上死点に近づいてゆく。なお、図3(a)等において円K2は、第2歯車32の軸心の移動軌跡を表す。 When the first crank 21 rotates clockwise from the state of FIG. 3( a ), the second gear 32 and the third gear 33 rotate clockwise by the fourth gear 34 . The second crank 22 rotates counterclockwise. As a result, the large end 13b of the connecting rod 13 rotates counterclockwise about the rotation axis A3, and the inclination angle θb of the connecting rod 13 with respect to the cylinder axis CA decreases, causing the piston 12 to approach the top dead center. to go A circle K2 in FIG.
 そして、図3(a)の状態から第1クランク21が時計回りに135°回転した状態(図3(d)の状態)で、コンロッド13の軸線が、大端部中心の軌跡Kcの接線に鉛直になり、ピストン12が上死点に到達する。 When the first crank 21 is rotated 135 degrees clockwise from the state shown in FIG. 3(a) (the state shown in FIG. 3(d)), the axis of the connecting rod 13 is tangent to the locus Kc at the center of the big end. It becomes vertical and the piston 12 reaches the top dead center.
 図3(d)の状態から第1クランク21が時計回りに45°回転すると、図3(e)に示すように、コンロッド13がシリンダ軸CAに対して右側に振れる。図3(e)の状態では、クランクピン28が出力軸15の右側に位置している。また、第2クランク22は子軸A3が親軸A2の右側に位置するように偏心し、大端部13bの中心A3はクランクピン28の右側に位置している。コンロッド13は、図3(a)の状態から図3(e)の状態までの期間は、回転軸A3を中心に反時計回りに回転する。 When the first crank 21 rotates 45 degrees clockwise from the state shown in FIG. 3(d), the connecting rod 13 swings to the right with respect to the cylinder axis CA as shown in FIG. 3(e). In the state of FIG. 3(e), the crankpin 28 is positioned on the right side of the output shaft 15. As shown in FIG. The second crank 22 is eccentric so that the child shaft A3 is positioned on the right side of the main shaft A2, and the center A3 of the big end 13b is positioned on the right side of the crank pin 28. The connecting rod 13 rotates counterclockwise about the rotation axis A3 during the period from the state shown in FIG. 3(a) to the state shown in FIG. 3(e).
 図3(e)の状態から第1クランク21が時計回りにさらに回転すると、図3(a)の状態から図3(e)の状態までの期間と同様に、第2歯車32及び第3歯車33は時計回りに回転し、第1歯車31及び第2クランク22は反時計回りに回転するが、コンロッド13は、回転軸A3を中心に時計回りに回転する。 When the first crank 21 further rotates clockwise from the state shown in FIG. 3(e), the second gear 32 and the third gear rotate similarly to the period from the state shown in FIG. 3(a) to the state shown in FIG. 3(e). 33 rotates clockwise, the first gear 31 and the second crank 22 rotate counterclockwise, but the connecting rod 13 rotates clockwise about the rotation axis A3.
 図3(f)の状態では、コンロッド13の軸線が、大端部中心の軌跡Kcの接線に鉛直になり、そして、図3(f)の状態から第1クランク21が時計回りにさらに回転すると、コンロッド13がシリンダ軸CAに対して左側に振れる。そして、第1クランク21の回転に伴って、シリンダ軸CAに対するコンロッド13の傾斜角θbは大きくなってゆき、ピストン12は下死点に近づいてゆく。 In the state of FIG. 3(f), the axis of the connecting rod 13 is perpendicular to the line tangent to the locus Kc of the center of the big end, and when the first crank 21 further rotates clockwise from the state of FIG. , the connecting rod 13 swings to the left with respect to the cylinder axis CA. As the first crank 21 rotates, the inclination angle θb of the connecting rod 13 with respect to the cylinder axis CA increases, and the piston 12 approaches the bottom dead center.
 なお、本実施形態では、コンロッド13の軸線がシリンダ軸CAに平行になるタイミング(図3(d)、図3(f)のタイミング)のコンロッド13の軸線が、大端部中心の軌跡Kcに交差する位置で、軌跡Kcの接線に直交するように、軌跡Kcの形状が設計されている。 In the present embodiment, the axis of the connecting rod 13 at the timing when the axis of the connecting rod 13 becomes parallel to the cylinder axis CA (the timing of Figs. The shape of the locus Kc is designed so that it is perpendicular to the tangent line of the locus Kc at the intersecting position.
[本実施形態の効果等]
 本実施形態では、第1クランク21と第2クランク22とが同じ回転数で且つ反対方向に回転するように、第2クランク22が、歯車31~34を介して第1クランク21に係合し、第1クランク21と第2クランク22の各回転は互いに拘束される。そのため、コンロッド13に子軸A3で連結された第2クランク22と共に第1クランク21が、ピストン12の往復運動に伴って回転し、第1クランク21の回転に伴って出力軸15が回転する。本実施形態では、ピストン12の往復運動が、第1クランク21及び第2クランク22の回転運動に変換されて、各クランク21,22の回転トルクが出力軸に伝達される。
[Effects of this embodiment, etc.]
In this embodiment, the second crank 22 is engaged with the first crank 21 via the gears 31 to 34 so that the first crank 21 and the second crank 22 rotate at the same speed and in opposite directions. , the rotations of the first crank 21 and the second crank 22 are constrained to each other. Therefore, the first crank 21 rotates with the reciprocating motion of the piston 12 together with the second crank 22 connected to the connecting rod 13 by the slave shaft A3, and the output shaft 15 rotates with the rotation of the first crank 21. In this embodiment, the reciprocating motion of the piston 12 is converted into rotational motion of the first crank 21 and the second crank 22, and the rotational torque of each crank 21, 22 is transmitted to the output shaft.
 また、本実施形態では、図1(a)の正面図においてピストン12の真下にクランク機構14が位置しておらず、シリンダ11軸CAと出力軸15の軸心A1との距離が、少なくとも第1クランク長L1よりも長く、第1クランク長L1と第2クランク長L2との合計長さよりも短い。そして、クランクピン28がシリンダ軸CAから最も離れるタイミング(図3(a)のタイミング)では、大端部13bの中心A3がクランクピン28の左側に位置し、クランクピン28がシリンダ軸CAに最も近づくタイミング(図3(e)のタイミング)では、大端部13bの中心A3がクランクピン28の右側に位置する。 Further, in the present embodiment, the crank mechanism 14 is not positioned directly below the piston 12 in the front view of FIG. It is longer than one crank length L1 and shorter than the total length of the first crank length L1 and the second crank length L2. At the timing when the crankpin 28 is farthest from the cylinder axis CA (timing in FIG. 3A), the center A3 of the big end 13b is positioned to the left of the crankpin 28, and the crankpin 28 is furthest from the cylinder axis CA. The center A3 of the big end 13b is located on the right side of the crankpin 28 at the approaching timing (timing in FIG. 3(e)).
 そのため、コンロッド13の大端部13bの中心A3は、ピストン12が1往復する間に、図3(a)のタイミングにおける大端部13bの中心A3と、図3(e)のタイミングにおける大端部13bの中心A3とを結ぶ線が長軸となる形状の軌跡(大端部中心の軌跡)Kcを描く。大端部中心の軌跡Kcの長手方向は、ピストン12の往復方向(シリンダ軸CAの方向)に対し傾斜又は直交している。そして、この傾斜又は直交に伴って、上死点のタイミングにおける第2クランク22の子軸A3と出力軸15の軸心A1とを結ぶ線は、シリンダ軸CAの方向に対し傾斜又は直交する。また、上死点のタイミングにおいて、コンロッド13と第2クランク22のなす角度θ(例えば、図3(d)参照)が、略90°であり、90°±70°(好ましくは、90°±50°)の角度範囲にある。 Therefore, during one reciprocating motion of the piston 12, the center A3 of the big end 13b of the connecting rod 13 is the center A3 of the big end 13b at the timing of FIG. 3(a) and the big end at the timing of FIG. A trajectory (trajectory at the center of the big end) Kc is drawn with a long axis extending from the line connecting the center A3 of the portion 13b. The longitudinal direction of the trajectory Kc of the center of the big end is inclined or perpendicular to the reciprocating direction of the piston 12 (the direction of the cylinder axis CA). Along with this inclination or orthogonality, the line connecting the slave shaft A3 of the second crank 22 and the axial center A1 of the output shaft 15 at the timing of the top dead center is inclined or orthogonal to the direction of the cylinder axis CA. Further, at the timing of the top dead center, the angle θ formed between the connecting rod 13 and the second crank 22 (see, for example, FIG. 3D) is approximately 90°, 90°±70° (preferably 90°± 50°).
 この場合、従来の内燃機関に比べて、上死点におけるクランクピン28の運動方向がシリンダ軸CAの方向に近くなる。従って、ピストン12から、第1クランク21及び第2クランク22へのトルクの伝達率が向上し、出力軸15へのトルクの伝達率も向上する。特に本実施形態のようにθ=略90°の場合、ピストン12に対しその往復方向に伝達される燃焼圧のうち、第2クランク22の子軸A3が出力軸15の軸心A1を回転させる分圧が、限りなく10割に近づき、ピストン12から出力軸15に対しトルクを効率よく伝達することができる。 In this case, the direction of movement of the crankpin 28 at top dead center is closer to the direction of the cylinder axis CA than in conventional internal combustion engines. Therefore, the torque transmission rate from the piston 12 to the first crank 21 and the second crank 22 is improved, and the torque transmission rate to the output shaft 15 is also improved. Especially when θ=approximately 90° as in the present embodiment, among the combustion pressure transmitted to the piston 12 in the reciprocating direction, the child shaft A3 of the second crank 22 rotates the axial center A1 of the output shaft 15. The partial pressure is infinitely close to 100%, and torque can be efficiently transmitted from the piston 12 to the output shaft 15 .
 なお、大端部中心の軌跡Kcの長手方向とシリンダ軸CAがなす角度のうち、ピストン12側で且つ出力軸15側の角度(図1において左上の角度θa)は、本実施形態のように45°以上の角度(θa=90°)にしてもよいが、20°<θa<160°の関係を満たせばよい。また、角度θaを90°よりもさらに大きくした場合、ピストン12から出力軸15へのトルクの伝達率は徐々に小さくなるが、ピストン12のストロークが徐々に大きくなる。そのため、ピストン12から出力軸15へのトルク伝達率は、図4に示すように、130°付近のピークまで増加し、そのピークから急に減少する。図4に基づいて設計を行う場合、角度θaは、90°以上150°以下の範囲から選択することができ、110°以上140°以下が好ましく、120°以上130°以下がさらに好ましい。 Of the angle formed by the longitudinal direction of the locus Kc of the center of the big end and the cylinder axis CA, the angle on the piston 12 side and the output shaft 15 side (angle θa on the upper left in FIG. 1) is as in the present embodiment. An angle of 45° or more (θa=90°) may be used as long as the relationship of 20°<θa<160° is satisfied. Further, when the angle θa is made larger than 90°, the torque transmission rate from the piston 12 to the output shaft 15 gradually decreases, but the stroke of the piston 12 gradually increases. Therefore, the torque transmission rate from the piston 12 to the output shaft 15, as shown in FIG. 4, increases to a peak near 130° and then suddenly decreases from that peak. When designing based on FIG. 4, the angle θa can be selected from the range of 90° or more and 150° or less, preferably 110° or more and 140° or less, more preferably 120° or more and 130° or less.
 また、本実施形態では、第1クランク長L1よりも第2クランク長L2が長い。そのため、図3(d)から図3(f)までの期間では、ピストン12が上死点からほとんど離れておらず、上死点のクランクピン28の位置から第1クランク21が90°進む期間(図3(d)から図3(f)までの期間)は、第1クランク21のクランク角の変化量に対するピストン12の移動量が小さい。従って、ピストン12に作用する燃焼圧が大きい上死点直後の燃焼圧低下の抑制により、出力軸15の回転運動に変換できる動力が多くなる。本実施形態によれば、第2クランク22が無いエンジンよりも少ない排気量で、多くの動力を出すことができる。なお、ピストン12のストロークに対し、上死点直後におけるピストン12の移動量が小さいほど、定量燃料に対する出力量は大きくなる。 Also, in this embodiment, the second crank length L2 is longer than the first crank length L1. Therefore, in the period from FIG. 3(d) to FIG. 3(f), the piston 12 is hardly separated from the top dead center, and the first crank 21 advances 90° from the position of the crankpin 28 at the top dead center. During the period from FIG. 3(d) to FIG. 3(f), the amount of movement of the piston 12 relative to the amount of change in the crank angle of the first crank 21 is small. Therefore, by suppressing a decrease in combustion pressure immediately after the top dead center when the combustion pressure acting on the piston 12 is high, the power that can be converted into rotational motion of the output shaft 15 increases. According to this embodiment, more power can be produced with a smaller displacement than an engine without the second crank 22 . Note that the smaller the amount of movement of the piston 12 immediately after the top dead center relative to the stroke of the piston 12, the larger the output amount for the fixed amount of fuel.
 また、本実施形態では、角度θaが90°であり、下死点における角度θbは90°に近い値となり、ピストン12が下死点から上死点に向かい始める時に、シリンダ11に対しピストン12が直角に押す大きな分圧が発生する。しかし、大端部中心の軌跡Kcが8の字を描くように構成されている。そのため、ピストン12が下死点から上死点に向かい始める時に、コンロッド13の大端部13bの中心が、ピストンピン12a及び小端部13aを中心に反時計回りに大きく回転し(図3(a)-(b))、尚且つピストン12が下死点から上死点に向かい始める移動距離は少なく、角度θbを減少させるように、大端部中心の軌跡Kcが描かれ始め、上述の分圧が小さくなる。従って、シリンダ11とピストン12が受けるダメージを低減することができる。なお、大端部中心の軌跡Kcを8の字状とする以外に、コンロッド13を長くしたり、角度θaを90°よりも大きくしたりすることによっても、シリンダ11とピストン12が受けるダメージを低減することができる。 Further, in this embodiment, the angle θa is 90° and the angle θb at the bottom dead center is close to 90°. generates a large partial pressure that pushes perpendicularly. However, the trajectory Kc of the center of the big end is configured to draw a figure of eight. Therefore, when the piston 12 starts moving from the bottom dead center to the top dead center, the center of the large end 13b of the connecting rod 13 rotates largely counterclockwise around the piston pin 12a and the small end 13a (Fig. 3 ( a)-(b)), and the moving distance at which the piston 12 begins to move from the bottom dead center to the top dead center is small, and the trajectory Kc of the center of the big end portion begins to be drawn so as to reduce the angle θb. The partial pressure becomes smaller. Therefore, damage to the cylinder 11 and the piston 12 can be reduced. In addition to making the trajectory Kc of the center of the big end into a figure-of-eight shape, the damage to the cylinder 11 and the piston 12 can be reduced by lengthening the connecting rod 13 or making the angle θa greater than 90°. can be reduced.
 なお、本実施形態では、第3歯車33と第4歯車34に非円形歯車を用いたが、円形歯車を用いてもよい。円形歯車の第3歯車33と第4歯車34の各々では、中心に回転軸がある。この場合、大端部中心の軌跡Kcの形状は、本実施形態とは異なり8の字状にはならないが、8の字状に起因する効果以外の効果は、本実施形態と同様に得られる。 Although non-circular gears are used for the third gear 33 and the fourth gear 34 in this embodiment, circular gears may be used. Each of the third gear 33 and the fourth gear 34, which are circular gears, has a rotation axis at the center. In this case, unlike the present embodiment, the shape of the locus Kc of the center of the big end portion is not a figure 8 shape, but the effects other than the effect due to the figure 8 shape are obtained in the same manner as in the present embodiment. .
 本実施形態において、内燃機関10に接続された2次熱機関を設けてもよい。この場合に、内燃機関10の燃焼室5と2次熱機関の燃焼室とをつなぐ接続経路に、制御弁を設ける。制御弁は、ピストン12からクランクピン28及び出力軸15に動力を効率的に伝達できる期間(例えば、上死点+45°までの期間)が終わって、動力伝達効率が低下し始める時に、開弁するように制御される。内燃機関10では、上述の動力を効率的に伝達できる期間の終了時に、動力が出力軸15に十分に伝達されているにも拘わらず、燃焼室5は高圧状態である。この変形例は、その高圧を2次熱機関で有効利用するものである。2次熱機関は、燃料を燃焼させることなく、内燃機関10から供給された高圧ガスを2サイクルとして利用する。また、本段落の2次熱機関は、後述する変形例に係る内燃機関10でも利用することができる。 In this embodiment, a secondary heat engine connected to the internal combustion engine 10 may be provided. In this case, a control valve is provided in the connection path connecting the combustion chamber 5 of the internal combustion engine 10 and the combustion chamber of the secondary heat engine. The control valve opens when the power transmission efficiency begins to decline after the period (for example, the period up to +45° top dead center) during which power can be efficiently transmitted from the piston 12 to the crankpin 28 and the output shaft 15. controlled to In the internal combustion engine 10, the combustion chamber 5 is in a high pressure state even though the power is sufficiently transmitted to the output shaft 15 at the end of the period in which the power can be efficiently transmitted. This modification makes effective use of the high pressure in the secondary heat engine. The secondary heat engine uses the high pressure gas supplied from the internal combustion engine 10 as two cycles without burning fuel. Further, the secondary heat engine in this paragraph can also be used in an internal combustion engine 10 according to a modified example described later.
<実施形態の変形例1>
 本変形例は、上述の実施形態の変形例である。本変形例では、クランク機構14における歯車の配置が、上述の実施形態とは異なる。以下では、実施形態とは異なる点を中心に説明を行う。
<Modification 1 of Embodiment>
This modification is a modification of the above-described embodiment. In this modified example, the arrangement of gears in the crank mechanism 14 is different from that in the above-described embodiment. The following description focuses on points that differ from the embodiment.
 本変形例では、図5に示すように、第1クランク21の回転範囲外に、第2歯車32と共通のシャフト18に固定された第3歯車33と、第3歯車33と噛み合う第4歯車34とが配置されている。第4歯車34は、エンジンブロック16に固定されている。また、エンジンブロック16内には、シャフト17を回転自在に支持する軸受部16aが設けられている。本変形例では、シャフト17も出力軸として機能するため、本変形例に係る内燃機関10を多気筒エンジンに利用することができる。 In this modification, as shown in FIG. 5, a third gear 33 fixed to a shaft 18 common to the second gear 32 and a fourth gear meshing with the third gear 33 are provided outside the rotation range of the first crank 21. 34 are arranged. A fourth gear 34 is fixed to the engine block 16 . A bearing portion 16 a is provided in the engine block 16 to rotatably support the shaft 17 . In this modification, the shaft 17 also functions as an output shaft, so the internal combustion engine 10 according to this modification can be used as a multi-cylinder engine.
<実施形態の変形例2>
 本変形例は、上述の実施形態の変形例である。本変形例では、クランク機構14における歯車の配置及び個数が、上述の実施形態とは異なる。以下では、実施形態とは異なる点を中心に説明を行う。
<Modification 2 of Embodiment>
This modification is a modification of the above-described embodiment. In this modified example, the arrangement and number of gears in the crank mechanism 14 are different from those in the above-described embodiment. The following description focuses on points that differ from the embodiment.
 本変形例では、図6に示すように、第2歯車32と第3歯車33とが、シャフト17に回転自在に支持されている。シャフト17は、第1アーム26と一体化されて、出力軸15と一体で回転する。また、第3歯車33に噛み合う第4歯車34が、第1クランク21のクランクピン28に回転自在に支持されている。 In this modified example, the second gear 32 and the third gear 33 are rotatably supported by the shaft 17 as shown in FIG. The shaft 17 is integrated with the first arm 26 and rotates together with the output shaft 15 . A fourth gear 34 meshing with the third gear 33 is rotatably supported by the crank pin 28 of the first crank 21 .
 また、クランク機構14は、第4歯車34に一体化されてクランクピン28に回転自在に支持された第5歯車35と、第5歯車35に噛み合う第6歯車36とをさらに備えている。第6歯車36は、筒体の内周面に歯が形成された太陽内歯車である。第6歯車36は、クランクピン28の回転外の位置に配置されて、エンジンブロック16に固定されている。 The crank mechanism 14 further includes a fifth gear 35 integrated with the fourth gear 34 and rotatably supported by the crank pin 28 and a sixth gear 36 meshing with the fifth gear 35 . The sixth gear 36 is a sun internal gear having teeth formed on the inner peripheral surface of a cylindrical body. The sixth gear 36 is fixed to the engine block 16 at a position out of rotation of the crankpin 28 .
 クランク機構14は、固定歯車31を含む複数の歯車31~36を介して、第1クランク21の回転力を可動部材22に伝達することにより、コンロッド13に対し可動部材22を動かし、且つ、第1クランク21に対し可動部材22を回転させる伝達機構に相当する。この点は、変形例3も同様である。 The crank mechanism 14 transmits the rotational force of the first crank 21 to the movable member 22 via a plurality of gears 31 to 36 including the fixed gear 31, thereby moving the movable member 22 with respect to the connecting rod 13, It corresponds to a transmission mechanism that rotates the movable member 22 with respect to one crank 21 . This point is the same for Modification 3 as well.
 第5歯車35は、第1クランク21の回転数の自然数倍(例えば、2倍又は3倍)の回転数で回転する非円形歯車である。第5歯車35においてその回転軸から第6歯車36に噛み合う接合点までの距離の変化に応じて、第6歯車36の内周面が凹凸に波打つように形成することで、第6歯車36は第5歯車35に噛み合う。 The fifth gear 35 is a non-circular gear that rotates at a rotation speed that is a natural number multiple (for example, two or three times) the rotation speed of the first crank 21 . By forming the inner peripheral surface of the sixth gear 36 to undulate in accordance with the change in the distance from the rotational axis of the fifth gear 35 to the joint point that meshes with the sixth gear 36, the sixth gear 36 is It meshes with the fifth gear 35 .
 また、本変形例では、第3歯車33に対する第4歯車34のギア比と、第6歯車36に対する第5歯車35のギア比とが等しくなるように設計されている。そのため、第1クランク21と第2クランク22とは、エンジンブロック16に対して同一回転数で、互いに反対方向に回転する。例えば、第1クランク21と第2クランク22とは、ピストン12の1往復期間に1回転する。 Also, in this modified example, the gear ratio of the fourth gear 34 to the third gear 33 and the gear ratio of the fifth gear 35 to the sixth gear 36 are designed to be equal. Therefore, the first crank 21 and the second crank 22 rotate at the same rotational speed with respect to the engine block 16 and in opposite directions. For example, the first crank 21 and the second crank 22 rotate once during one reciprocating period of the piston 12 .
<実施形態の変形例3>
 本変形例は、上述の実施形態の変形例である。本変形例では、第4歯車34と第5歯車35が、変形例2と同様に第1クランク21に回転自在に支持されているが、変形例2とは第1クランク21において支持されている箇所が異なる。
<Modification 3 of Embodiment>
This modification is a modification of the above-described embodiment. In this modified example, the fourth gear 34 and the fifth gear 35 are rotatably supported by the first crank 21 as in the second modified example, but are supported by the first crank 21 in the second modified example. The location is different.
 本変形例では、図7に示すように、第1アーム26が、シャフト17とクランクピン28の間に形成された第1軸受部26aと、クランクピン28よりも外側に形成された第2軸受部26bとを有する。第1軸受部26aは、第2歯車32と第3歯車33に共通のシャフト18を回転自在に支持している。第2軸受部26bは、第4歯車34と第5歯車35に共通のシャフト19を回転自在に支持している。 In this modification, as shown in FIG. 7, the first arm 26 includes a first bearing portion 26a formed between the shaft 17 and the crankpin 28 and a second bearing portion 26a formed outside the crankpin 28. and a portion 26b. The first bearing portion 26a rotatably supports the shaft 18 common to the second gear 32 and the third gear 33 . The second bearing portion 26b rotatably supports the shaft 19 common to the fourth gear 34 and the fifth gear 35. As shown in FIG.
 第5歯車35は、変形例2と同様に、第1クランク21の回転数の自然数倍(例えば、2倍又は3倍)の回転数で回転する非円形歯車である。第6歯車36は、クランクピン28の回転外の位置に配置された太陽内歯車である。第5歯車35においてその回転軸から第6歯車36に噛み合う接合点までの距離の変化に応じて、第6歯車36の内周面が凹凸に波打つように形成することで、第6歯車36は第5歯車35に噛み合う。 As in Modification 2, the fifth gear 35 is a non-circular gear that rotates at a rotation speed that is a natural number multiple (for example, two or three times) the rotation speed of the first crank 21 . The sixth gear 36 is an internal sun gear positioned out of rotation of the crankpin 28 . By forming the inner peripheral surface of the sixth gear 36 to undulate in accordance with the change in the distance from the rotational axis of the fifth gear 35 to the joint point that meshes with the sixth gear 36, the sixth gear 36 is It meshes with the fifth gear 35 .
 また、変形例2と同様に、第3歯車33に対する第4歯車34のギア比と、第6歯車36に対する第5歯車35のギア比とが等しくなるように設計されている。そのため、第1クランク21と第2クランク22とは、エンジンブロック16に対して同一回転数で、互いに反対方向に回転する。例えば、第1クランク21と第2クランク22とは、ピストン12の1往復期間に1回転する。 Also, as in Modification 2, the gear ratio of the fourth gear 34 to the third gear 33 and the gear ratio of the fifth gear 35 to the sixth gear 36 are designed to be equal. Therefore, the first crank 21 and the second crank 22 rotate at the same rotational speed with respect to the engine block 16 and in opposite directions. For example, the first crank 21 and the second crank 22 rotate once during one reciprocating period of the piston 12 .
<実施形態の変形例4>
 本変形例は、上述の実施形態の変形例である。本変形例は、ピストン12が上死点に達する前に燃焼室5で着火がなされる場合(以下、「上死点前着火」と言う場合がある。)に、ピストン12の上死点側への移動を補助する力が得られるように構成されている。なお、上死点前着火の場合、ピストン12が着火時点から上死点に至るまでの間、ピストン12には、移動方向とは反対方向に燃焼圧が作用する。
<Modification 4 of Embodiment>
This modification is a modification of the above-described embodiment. In this modification, when the combustion chamber 5 is ignited before the piston 12 reaches the top dead center (hereinafter sometimes referred to as "pre-top dead center ignition"), It is configured to provide a force that assists movement to. In the case of ignition before top dead center, the combustion pressure acts on the piston 12 in the direction opposite to the moving direction from the time of ignition until the piston 12 reaches the top dead center.
 本変形例に係る内燃機関100は、図8に示すように、略円筒状のシリンダ11と、シリンダ11内を往復運動する略円柱状のピストン12と、ピストン12に回転自在に連結されたコンロッド13と、コンロッド13が回転自在に連結されてピストン12の往復運動を回転運動に変換するクランク機構91と、上死点前着火の場合にピストン12の上死点側への移動を補助する補助機構92とを備えている。なお、本変形例では、後述するように一部の歯車に非円形の歯車が使用される。 As shown in FIG. 8, an internal combustion engine 100 according to this modification includes a substantially cylindrical cylinder 11, a substantially cylindrical piston 12 that reciprocates within the cylinder 11, and a connecting rod rotatably connected to the piston 12. 13, a crank mechanism 91 to which the connecting rod 13 is rotatably connected and converts the reciprocating motion of the piston 12 into a rotary motion, and an auxiliary that assists the movement of the piston 12 to the top dead center side in the case of ignition before top dead center. A mechanism 92 is provided. In addition, in this modified example, non-circular gears are used for some of the gears, as will be described later.
 クランク機構91は、第1クランクピン128を有する第1クランク101と、第1クランクピン128に回転自在に連結された親軸A2と、コンロッド13の大端部(他端部)13bに回転自在に連結された子軸A3とを有する第2クランク(可動部材)102とを備えている。ピストン12の往復運動は、第1及び第2クランク101,102の回転運動に変換される。また、クランク機構91は、第1固定歯車131、歯車(中央側歯車)118、歯車部117及び歯車部116を有する伝達機構をさらに備えている。なお、本変形例では、複数の歯車により構成された部分を「歯車部」と言う。 The crank mechanism 91 includes a first crank 101 having a first crank pin 128, a parent shaft A2 rotatably connected to the first crank pin 128, and a large end (other end) 13b of the connecting rod 13. a second crank (movable member) 102 having a slave shaft A3 connected to the second crank (movable member) 102; The reciprocating motion of the piston 12 is converted into rotational motion of the first and second cranks 101,102. Moreover, the crank mechanism 91 further includes a transmission mechanism having a first fixed gear 131 , a gear (central side gear) 118 , a gear portion 117 and a gear portion 116 . In addition, in this modified example, a portion configured by a plurality of gears is called a "gear portion".
 伝達機構は、歯車116-118,131を介して第1クランク101の回転力を可動部材102に伝達することにより、コンロッド13に対し可動部材102を動かし、且つ、第1クランク101に対し可動部材102を回転させる。また、伝達機構は、第1クランク21と第2クランク22とが同じ回転数で且つ反対方向に回転するように第1クランク21と第2クランク22を係合させる。 The transmission mechanism transmits the rotational force of the first crank 101 to the movable member 102 via the gears 116-118, 131, thereby moving the movable member 102 relative to the connecting rod 13 and the movable member relative to the first crank 101. 102 is rotated. Further, the transmission mechanism engages the first crank 21 and the second crank 22 so that the first crank 21 and the second crank 22 rotate at the same number of revolutions and in opposite directions.
 第1固定歯車131は、第2クランク102の親軸A2と同軸に第2クランク102に固定されている。第1固定歯車131は、第1クランク101の一端(図8(b)において上端)から延びる第1クランク101の第1クランクピン128に回転自在に支持され、第1クランク101の回転に従って回転移動するように第1クランク101に係合している。 The first fixed gear 131 is fixed to the second crank 102 coaxially with the parent shaft A2 of the second crank 102. The first fixed gear 131 is rotatably supported by a first crankpin 128 of the first crank 101 extending from one end of the first crank 101 (upper end in FIG. 8(b)), and rotationally moves as the first crank 101 rotates. It is engaged with the first crank 101 so as to do so.
 歯車118は、第1クランク101の第1回転軸141に回転自在に支持され、第1固定歯車131に噛み合う。歯車118は、第1クランク101の2本のクランクアームの内側(第1クランクの回転範囲内)に配置されている(図8(b)参照)。歯車部117は、第1回転軸141から第1クランク101とは反対方向に延びる延長部材105に回転自在に支持され、歯車118に噛み合う歯車117aと、後述する歯車116aに噛み合う歯車117bとを備えている。歯車117aは、歯車118を挟んで第1固定歯車131とは反対側の位置で、第1クランク101に一体化された延長部材105に回転自在に支持された対極歯車に相当する。歯車117aと歯車117bとは、互いに同軸に設けられ、延長部材105に回転自在に支持されたシャフトにより連結されている。歯車部117は、第1固定歯車131と同様に、第1クランク101の回転に従って回転移動するように第1クランク101に係合している。本変形例では、第1クランク101及び第2クランク102が同じ回転数で且つ反対方向に回転するように、第1固定歯車131が、歯車118、歯車部117及び延長部材105を介して第1クランク101に係合し、第1クランク101と第2クランク102の各回転は互いに拘束される。 The gear 118 is rotatably supported by the first rotating shaft 141 of the first crank 101 and meshes with the first fixed gear 131 . The gear 118 is arranged inside the two crank arms of the first crank 101 (within the rotational range of the first crank) (see FIG. 8(b)). The gear portion 117 is rotatably supported by the extension member 105 extending from the first rotating shaft 141 in the opposite direction to the first crank 101, and includes a gear 117a meshing with the gear 118 and a gear 117b meshing with the gear 116a described later. ing. The gear 117 a corresponds to a counter gear rotatably supported by an extension member 105 integrated with the first crank 101 at a position opposite to the first fixed gear 131 with the gear 118 interposed therebetween. The gear 117a and the gear 117b are provided coaxially with each other and connected by a shaft rotatably supported by the extension member 105. As shown in FIG. As with the first fixed gear 131 , the gear portion 117 is engaged with the first crank 101 so as to rotate according to the rotation of the first crank 101 . In this modified example, the first fixed gear 131 rotates through the gear 118, the gear portion 117 and the extension member 105 so that the first crank 101 and the second crank 102 rotate at the same speed and in opposite directions. The crank 101 is engaged and each rotation of the first crank 101 and the second crank 102 is restrained.
 歯車部116は、第1クランク101の2本のクランクアームの外側(第1クランクの回転範囲外)に配置されている。歯車部116は、第1クランク101と後述する第3クランク103との間で、第1回転軸141に回転自在に支持されている。歯車部116は、歯車117bに噛み合う歯車116aと、歯車116aと一体化された歯車116bとを備えている。歯車116aと歯車116bとは、互いに同軸に設けられている。歯車部116には、歯車118及び歯車部117を介して、第1固定歯車131の回転トルクが伝達される。 The gear portion 116 is arranged outside the two crank arms of the first crank 101 (outside the rotation range of the first crank). The gear portion 116 is rotatably supported by the first rotating shaft 141 between the first crank 101 and a third crank 103 which will be described later. The gear portion 116 includes a gear 116a meshing with the gear 117b and a gear 116b integrated with the gear 116a. The gear 116a and the gear 116b are provided coaxially with each other. The rotational torque of the first fixed gear 131 is transmitted to the gear portion 116 via the gear 118 and the gear portion 117 .
 クランク機構91では、歯車部116が、第1クランク101の2倍速にて同じ方向に回転する。歯車117は、第1クランク101の回転範囲外の歯車部116から、回転範囲内の歯車118へ動力を伝達する中継歯車として機能する。歯車118は、中継歯車117を介して歯車116と同じ回転数かつ同じ方向に回転する。第1固定歯車131は、歯車118と同じ径で同一歯数の歯車であり、歯車118とは反対方向に回転する。これらの構成により、クランク機構91は、エンジンブロック16に対して第1クランク101及び第2クランク102を、同じ回転数かつ反対方向に回転させて、一体のクランクとして機能させる。本変形例のクランク機構91は、上述の実施形態のようにエンジンブロック16に固定した太陽歯車を使うことなく、第1クランク101及び第2クランク102を一体のクランクとして機能させる。 In the crank mechanism 91, the gear portion 116 rotates in the same direction at twice the speed of the first crank 101. The gear 117 functions as a relay gear that transmits power from the gear portion 116 outside the rotation range of the first crank 101 to the gear 118 inside the rotation range. Gear 118 rotates at the same speed and in the same direction as gear 116 via intermediate gear 117 . The first fixed gear 131 has the same diameter and the same number of teeth as the gear 118 and rotates in the opposite direction to the gear 118 . With these configurations, the crank mechanism 91 rotates the first crank 101 and the second crank 102 at the same rotational speed and in opposite directions with respect to the engine block 16 to function as an integrated crank. The crank mechanism 91 of this modification allows the first crank 101 and the second crank 102 to function as an integrated crank without using the sun gear fixed to the engine block 16 as in the above embodiment.
 また、クランク機構91は、第1回転軸141に固定された第1伝達歯車120と、出力軸15に固定された第2伝達歯車121とを備えている。第1伝達歯車120と第2伝達歯車121とは互いに噛み合う。これにより、第1クランク101の回転トルクが、第1伝達歯車120及び第2伝達歯車121を介して、出力軸15に伝達される。なお、第1回転軸141及び出力軸15は、エンジンブロック16に回転自在にそれぞれ支持されている。 The crank mechanism 91 also includes a first transmission gear 120 fixed to the first rotating shaft 141 and a second transmission gear 121 fixed to the output shaft 15 . The first transmission gear 120 and the second transmission gear 121 mesh with each other. Thereby, the rotational torque of the first crank 101 is transmitted to the output shaft 15 via the first transmission gear 120 and the second transmission gear 121 . The first rotating shaft 141 and the output shaft 15 are rotatably supported by the engine block 16, respectively.
 補助機構92は、第1回転軸141の回転トルクが伝達されてそれぞれ回転する第3クランク103及び第4クランク104を備えている。本実施形態では、第3クランク103が、第1回転軸141に固定されている。第4クランク104には、第4クランク104のクランクピン104aと同軸に、第2固定歯車132が固定されている。第2固定歯車132は、第4クランク104の回転軸142を中心に公転する。 The auxiliary mechanism 92 includes a third crank 103 and a fourth crank 104 that are rotated by transmission of the rotational torque of the first rotating shaft 141 . In this embodiment, the third crank 103 is fixed to the first rotating shaft 141 . A second fixed gear 132 is fixed to the fourth crank 104 coaxially with the crank pin 104 a of the fourth crank 104 . The second fixed gear 132 revolves around the rotating shaft 142 of the fourth crank 104 .
 第4クランク104は、複数の歯車120~122を介して第1回転軸141の回転トルクが伝達される。歯車122は、歯車120と同じ径で同一歯数であり、第2回転軸142に固定されている。第3クランク103のクランク長(回転軸からクランクピン103aの軸心までの距離)は、第4クランク104のクランク長(回転軸からクランクピン104aの軸心までの距離)に等しい(図8(b)参照)。なお、第2回転軸142は、エンジンブロック16に回転自在に支持されている。 The rotational torque of the first rotating shaft 141 is transmitted to the fourth crank 104 via a plurality of gears 120-122. The gear 122 has the same diameter and number of teeth as the gear 120 and is fixed to the second rotating shaft 142 . The crank length of the third crank 103 (the distance from the rotary shaft to the axial center of the crank pin 103a) is equal to the crank length of the fourth crank 104 (the distance from the rotary shaft to the axial center of the crank pin 104a) (Fig. 8 ( b) see). Note that the second rotating shaft 142 is rotatably supported by the engine block 16 .
 補助機構92は、第1クランク101(或いは、第3クランク103、第4クランク104)の回転速度に対し2倍速の回転速度を持つ歯車部114と、歯車部114に対してクランク機構91の歯車部116を接続する歯車115をさらに備えている。歯車115は、エンジンブロック16に回転自在に支持され、歯車116bに噛み合う。歯車部114は、歯車115に噛み合う歯車114aと、エンジンブロック16に回転自在に支持されたシャフトを介して歯車114aと一体化された歯車114bとを備えている。歯車114aと歯車114bとは、互いに同軸に設けられている。歯車114bは、近位側歯車に相当する歯車113aと噛み合い、歯車113aを公転させる2倍速歯車に相当する。歯車114bは、複数の歯車を介して第1固定歯車131と繋がっており、第1固定歯車131と同じ回転数で、且つ、第1固定歯車131とは反対方向に回転する。 The auxiliary mechanism 92 includes a gear portion 114 having a rotational speed twice as high as the rotational speed of the first crank 101 (or the third crank 103 or the fourth crank 104), and a gear portion of the crank mechanism 91 for the gear portion 114. It further comprises a gear 115 connecting the portions 116 . Gear 115 is rotatably supported by engine block 16 and meshes with gear 116b. The gear portion 114 includes a gear 114a that meshes with the gear 115, and a gear 114b that is integrated with the gear 114a via a shaft that is rotatably supported by the engine block 16. As shown in FIG. The gear 114a and the gear 114b are provided coaxially with each other. The gear 114b corresponds to a double speed gear that meshes with the gear 113a corresponding to the proximal side gear and causes the gear 113a to revolve. The gear 114 b is connected to the first fixed gear 131 via a plurality of gears, and rotates at the same rotational speed as the first fixed gear 131 and in the opposite direction to the first fixed gear 131 .
 補助機構92は、第3クランク103と第4クランク104とを連結する連結ロッド(連結部材)130と、連結ロッド130に回転自在に支持されて第2固定歯車132に噛み合う歯車111(遠位側歯車)と、歯車111の回転トルクを第1クランク101側に伝達させる中継歯車機構140とをさらに備えている。連結ロッド130は、第3クランク103の第3クランクピン103aと第4クランク104の第4クランクピン104aとの各々に回転自在に支持されている。第3クランク103と第4クランク104は、回転角度位置が常に同じになる。歯車111は、連結ロッド130に回転自在に支持され、後述する歯車112及び第2固定歯車132にそれぞれ噛み合う。 The auxiliary mechanism 92 includes a connecting rod (connecting member) 130 that connects the third crank 103 and the fourth crank 104, and a gear 111 (distal side) that is rotatably supported by the connecting rod 130 and meshes with the second fixed gear 132. gear) and a relay gear mechanism 140 that transmits the rotational torque of the gear 111 to the first crank 101 side. The connecting rod 130 is rotatably supported by the third crankpin 103a of the third crank 103 and the fourth crankpin 104a of the fourth crank 104, respectively. The rotation angle positions of the third crank 103 and the fourth crank 104 are always the same. The gear 111 is rotatably supported by the connecting rod 130 and meshes with a gear 112 and a second fixed gear 132, which will be described later.
 中継歯車機構140は、クランク機構91の歯車114bに噛み合う歯車部113と、歯車部113と歯車111にそれぞれ噛み合う歯車112とを備えている。歯車部113は、歯車114bに噛み合う歯車113aと、連結ロッド130に回転自在に支持されたシャフトを介して歯車113aと一体化された歯車113bとを備えている。歯車113aと歯車113bとは、互いに同軸に設けられている。歯車113aは、歯車114bと同じ径で同一歯数である。また、歯車113aの回転軸と歯車114bの回転軸の距離は、第3クランク103(或いは第4クランク104)の半径に等しい。歯車113bは、第2固定歯車132と同一歯数である。歯車部113は、連結ロッド130の移動に伴って、歯車部114の回転軸を中心にして第3クランク103(或いは第4クランク104)と同じ方向に公転しながら、公転方向とは反対方向に自転する。歯車部114と歯車部113の回転数の比率は、2:1となる。歯車部114は、歯車部113の公転と自転の合算により、第3クランク103(或いは第4クランク104)の回転速度(歯車部113の公転速度)の2倍の速度で回転する。 The relay gear mechanism 140 includes a gear portion 113 that meshes with the gear 114b of the crank mechanism 91, and gears 112 that mesh with the gear portion 113 and the gear 111, respectively. The gear portion 113 includes a gear 113a that meshes with the gear 114b, and a gear 113b that is integrated with the gear 113a via a shaft that is rotatably supported by the connecting rod . The gear 113a and the gear 113b are provided coaxially with each other. The gear 113a has the same diameter and the same number of teeth as the gear 114b. Also, the distance between the rotation axis of the gear 113a and the rotation axis of the gear 114b is equal to the radius of the third crank 103 (or fourth crank 104). The gear 113 b has the same number of teeth as the second fixed gear 132 . As the connecting rod 130 moves, the gear portion 113 revolves around the rotation axis of the gear portion 114 in the same direction as the third crank 103 (or the fourth crank 104), while rotating in the direction opposite to the revolving direction. rotate. The ratio of the rotation speeds of the gear portion 114 and the gear portion 113 is 2:1. The gear portion 114 rotates at twice the rotation speed of the third crank 103 (or the fourth crank 104) (revolution speed of the gear portion 113) due to the sum of the revolution and rotation of the gear portion 113.
 歯車112は、連結ロッド130に回転自在に支持され、歯車111と歯車113bに噛み合う。これらの構成により、補助機構92は、第2固定歯車132の公転によって歯車111に回転力を発生させてその回転力を第1クランク101側に伝達させる。歯車111における回転力の発生は、公転する第2固定歯車132に遊星歯車の様に噛み合うことで発生する。また歯車111は、連結ロッド130の移動に伴って第2固定歯車132と共に公転すると共に、第2固定歯車132が1回公転すると1回自転する。 The gear 112 is rotatably supported by the connecting rod 130 and meshes with the gear 111 and the gear 113b. With these configurations, the auxiliary mechanism 92 causes the gear 111 to generate rotational force through the revolution of the second fixed gear 132 and transmits the rotational force to the first crank 101 side. A rotational force is generated in the gear 111 by meshing with the revolving second fixed gear 132 like a planetary gear. The gear 111 revolves together with the second fixed gear 132 as the connecting rod 130 moves, and rotates once when the second fixed gear 132 revolves once.
[内燃機構の動作について]
 図9-11を参照しながら、内燃機関100の動作について説明を行う。内燃機関100では、ピストン12の1往復期間に、第1-4クランク101-104及びコンロッド13がそれぞれ1回転する。その際、第1クランク101に連結された歯車120の回転トルクが、歯車121を介して出力軸15に伝達される。なお、図9-11は、内燃機関100の動作の状態について、ピストンの1往復期間をクランク角45°ピッチで示す。図9(a)に記載の矢印は、各クランク及び各歯車の回転方向を表す。また、図9-11では、図面を見やすくするために、第3クランク103、第4クランク104及び連結ロッド130を破線で表す。また、図9-11には吸排気ポートや吸排気バルブを図示しないが、図9-11(a)~(h)に示すピストンの1往復期間には、圧縮行程から爆発行程(又は、排気工程から吸気工程)が行われるものとする。
[Regarding the operation of the internal combustion mechanism]
The operation of internal combustion engine 100 will now be described with reference to FIGS. 9-11. In the internal combustion engine 100, each of the first to fourth cranks 101 to 104 and the connecting rod 13 makes one revolution during one reciprocating period of the piston 12. As shown in FIG. At that time, the rotational torque of the gear 120 connected to the first crank 101 is transmitted to the output shaft 15 via the gear 121 . 9 to 11 show the state of operation of the internal combustion engine 100 during one reciprocating period of the piston at a pitch of 45° crank angle. The arrows shown in FIG. 9(a) represent the directions of rotation of each crank and each gear. Also, in FIGS. 9-11, the third crank 103, the fourth crank 104 and the connecting rod 130 are represented by dashed lines for clarity of illustration. Although the intake/exhaust ports and intake/exhaust valves are not shown in FIG. 9-11, during one reciprocating period of the piston shown in FIGS. process to intake process) are performed.
<<第1-2クランク、コンロッド、ピストンの動作>>
 図9(a)は、上死点前45°の着火点のタイミングにおける内燃機関100の状態を表す。上述したように、本変形例では、燃焼室5において上死点の手前で着火される。この状態から第1クランク101が時計回りに回転すると、第1固定歯車131が公転(回転移動)し、その公転に伴って第2クランク102が反時計回りに回転する。これにより、コンロッド13の大端部13bが反時計回りに回転しながら、ピストン12が上死点に近づいてゆく。
<<1st-2nd crank, connecting rod, piston movement>>
FIG. 9(a) shows the state of the internal combustion engine 100 at an ignition point timing of 45° before top dead center. As described above, in this modified example, the combustion chamber 5 is ignited before the top dead center. When the first crank 101 rotates clockwise from this state, the first fixed gear 131 revolves (rotates), and the second crank 102 rotates counterclockwise along with the revolution. As a result, the piston 12 approaches the top dead center while the large end 13b of the connecting rod 13 rotates counterclockwise.
 図9(b)は、ピストン12が上死点に位置する状態を表す。この状態から第1クランク101が時計回りに回転すると、第2クランク102は反時計回りに回転し続けるが、コンロッド13の大端部13bは、図9(c)のタイミング付近で、回転方向が切り替わり、時計回りに回転し始める。ピストン12は、図9(b)の状態から図9(f)の状態まで、下死点に近づいてゆく。図9(f)は、ピストン12が下死点に位置する状態を表す。そして、コンロッド13の大端部13bは、図9(f)のタイミング付近で、回転方向が切り替わり、反時計回りに回転し始め、ピストン12が上死点に近づいてゆく。 FIG. 9(b) shows the state where the piston 12 is positioned at the top dead center. When the first crank 101 rotates clockwise from this state, the second crank 102 continues to rotate counterclockwise. Switch and start rotating clockwise. The piston 12 approaches the bottom dead center from the state of FIG. 9(b) to the state of FIG. 9(f). FIG. 9(f) shows a state where the piston 12 is positioned at the bottom dead center. 9(f), the direction of rotation of the large end 13b of the connecting rod 13 is switched and it begins to rotate counterclockwise, and the piston 12 approaches the top dead center.
 なお、第1クランク101の一端側から延びる第1クランクピン128は、第2クランク102に固定された第1固定歯車131の内側に挿通されているため、第1クランク101及び第2クランク102は、互いの回転トルクと回転タイミングが作用し合う関係にあり、第1クランク101及び第2クランク102は、同期して回転する。そして、コンロッド13と第2クランク102がなす角度θ(図9(b)参照)が、上死点において、90°±70°の角度範囲(好ましくは、90°±45°の角度範囲)にあることで、ピストン12から第1クランク101の回転軸に対しトルクを効率よく伝達することができ、それにより出力軸15に対してもトルクを効率よく伝達することができる。なお、図9(b)では、上死点において、コンロッド13の大端部13bとピストンピン12aを結ぶ線が、シリンダ中心軸CAと一致しているが、必ずしも一致するとは限らない In addition, since the first crank pin 128 extending from one end side of the first crank 101 is inserted through the inside of the first fixed gear 131 fixed to the second crank 102, the first crank 101 and the second crank 102 are , the rotation torque and the rotation timing interact with each other, and the first crank 101 and the second crank 102 rotate synchronously. Then, the angle θ formed by the connecting rod 13 and the second crank 102 (see FIG. 9B) is within the angle range of 90°±70° (preferably, the angle range of 90°±45°) at the top dead center. As a result, torque can be efficiently transmitted from the piston 12 to the rotating shaft of the first crank 101 , and torque can also be efficiently transmitted to the output shaft 15 . In FIG. 9B, the line connecting the big end 13b of the connecting rod 13 and the piston pin 12a at the top dead center coincides with the cylinder central axis CA, but this does not necessarily mean that they coincide.
<<第3-4クランクの動作>>
 第3クランク103は、第1クランク101と同じ回転軸141に連結されているため(図8(b)参照)、第1クランク101と同じ方向に同じ回転数で回転する。つまり、第3クランク103は、図9-11において時計回りに回転する。
<<Operation of the 3rd and 4th cranks>>
Since the third crank 103 is connected to the same rotating shaft 141 as the first crank 101 (see FIG. 8B), it rotates in the same direction as the first crank 101 at the same number of revolutions. That is, the third crank 103 rotates clockwise in FIGS. 9-11.
 他方、第4クランク104には、第1クランク101に連結された歯車120の回転トルクが歯車121及び歯車122を介して伝達される。そして、歯車120と歯車122は、歯数が互いに等しい。そのため、第4クランク104も、第1クランク101と同じ方向に同じ回転数で回転する。つまり、第4クランク104は、図9-11において時計回りに回転する。 On the other hand, the rotational torque of the gear 120 connected to the first crank 101 is transmitted to the fourth crank 104 via gears 121 and 122 . Gears 120 and 122 have the same number of teeth. Therefore, the fourth crank 104 also rotates in the same direction as the first crank 101 at the same number of revolutions. That is, the fourth crank 104 rotates clockwise in FIGS. 9-11.
 第3クランク103及び第4クランク104の回転に伴って、両方のクランクピン103a,104a(図8(b)参照)に相対的に同じ位置関係に、回転自在に連結された連結ロッド130は回転移動する。第3クランク103及び第4クランク104は、連結ロッド130で連結されているため、互いの回転トルクと回転タイミングが作用し合う関係にある。 As the third crank 103 and the fourth crank 104 rotate, the connecting rod 130, which is rotatably connected to both crank pins 103a and 104a (see FIG. 8(b)), rotates. Moving. Since the third crank 103 and the fourth crank 104 are connected by the connecting rod 130, their rotational torque and rotational timing interact with each other.
<<補助機構の動作>>
 上述したように、上死点前着火の場合、ピストン12が着火時点から上死点に至るまでの間、ピストン12には、移動方向とは反対方向に燃焼圧が作用する。補助機構92は、ピストン12の往復運動を妨げる燃焼圧を、ピストン12の上死点側への移動を補助する力に変換する機構である。
<<Operation of auxiliary mechanism>>
As described above, in the case of the ignition before top dead center, the combustion pressure acts on the piston 12 in the direction opposite to the movement direction from the time of ignition until the piston 12 reaches the top dead center. The assist mechanism 92 is a mechanism that converts the combustion pressure that hinders the reciprocating motion of the piston 12 into a force that assists the movement of the piston 12 toward the top dead center side.
 図12(a)は、上死点手前45°における着火直後の状態を表す。着火後燃焼圧が発生し、上死点に向かうピストン12は、燃焼圧により下死点側に押される。ピストン12には、燃焼圧に起因して、移動方向とは反対方向の力P1(以下、「移動抵抗力」と言う)が作用する。 Fig. 12(a) shows the state immediately after ignition at 45 degrees before the top dead center. Combustion pressure is generated after ignition, and the piston 12 heading for top dead center is pushed toward the bottom dead center side by the combustion pressure. Due to the combustion pressure, the piston 12 is acted upon by a force P1 in a direction opposite to the movement direction (hereinafter referred to as "movement resistance force").
 上死点手前45°における着火直後のコンロッド13は、移動抵抗力P1により矢印Yの方向に力を受ける。そして、第2クランク102は、その回転方向R2とは反対方向(以下、「反回転方向」と言う。)に力を受ける。すなわち、移動抵抗力P1は、第2クランク102を、親軸を中心として回転方向R2とは反対方向に回そうとする。第2クランク102には第1固定歯車131が一体化されているため、移動抵抗力P1は、第1固定歯車131、歯車118、歯車117a,117b、歯車116a,116b、歯車115、歯車114a,114b、歯車113a,113b及び歯車112を介して、歯車111に伝達される。この時、移動抵抗力P1は、歯車118、歯車116a,116b、歯車114a,114b及び歯車112を反時計回りに回転させようとし、歯車117a,117b、歯車115、歯車113a,113b、歯車111を時計回りに回転させようとする。本変形例では、時計回りに第1固定歯車131を回転させようとする燃焼圧が、第2固定歯車の132の手前の歯車111が時計回りに回転するように伝達される。なお、図12(a)において、各歯車に付された矢印は、移動抵抗力P1が回転させようとする方向を表す。 Immediately after ignition at 45° before the top dead center, the connecting rod 13 receives force in the direction of arrow Y due to movement resistance P1. Then, the second crank 102 receives a force in a direction opposite to the rotation direction R2 (hereinafter referred to as "anti-rotation direction"). That is, the movement resistance force P1 tends to rotate the second crank 102 about the master shaft in the direction opposite to the rotation direction R2. Since the first fixed gear 131 is integrated with the second crank 102, the movement resistance P1 is generated by 114 b , gears 113 a and 113 b and gear 112 to gear 111 . At this time, the movement resistance force P1 tries to rotate the gear 118, the gears 116a, 116b, the gears 114a, 114b, and the gear 112 counterclockwise, causing the gears 117a, 117b, the gear 115, the gears 113a, 113b, and the gear 111 to rotate. Try to rotate clockwise. In this modification, the combustion pressure to rotate the first fixed gear 131 clockwise is transmitted so that the gear 111 before the second fixed gear 132 rotates clockwise. In addition, in FIG. 12(a), the arrow attached to each gear represents the direction in which the movement resistance force P1 tries to rotate.
 図12(a)の上死点手前45°着火の場合、歯車111と第2固定歯車132との噛み合い点Bで、矢印Zの方向に力が作用して、第4クランク104を時計回り、つまりエンジン(内燃機関)の回転方向に回転させようとする。その結果、連結ロッド130を介して(歯車120~122を介して)、第3クランク103及び第1クランク101も、エンジンの回転方向に力を受けることになり、上死点方向にピストン12を押し上げる力となる。そのため、ピストン12は、上死点に到達するまで燃焼圧を受けるものの、ノッキングが生じることなく、ピストン12は円滑に上死点を乗り越える。 In the case of ignition at 45 degrees before the top dead center in FIG. In other words, it tries to rotate in the rotational direction of the engine (internal combustion engine). As a result, via the connecting rod 130 (via the gears 120 to 122), the third crank 103 and the first crank 101 also receive force in the rotational direction of the engine, moving the piston 12 toward top dead center. force to push up. Therefore, although the piston 12 receives combustion pressure until it reaches the top dead center, the piston 12 smoothly passes the top dead center without knocking.
 ここで、第3クランク103の軸と第4クランク104の軸とを結ぶ線Gに対し第4クランク104の軸において垂直に交差する線を「基準線S」とした場合に、噛み合い点Bが、第3クランク103側から見て基準線Sを超えた位置にある第1期間(図11(h)の状態から図10(d)までの期間)は、移動抵抗力P1による噛み合い点Bにおける力の作用方向(矢印Zの方向)は、第4クランク104をエンジンの実際の回転方向に回転させようとする方向である(図12(a)参照)。つまり、補助機構92は、ピストン12の上死点側への移動を補助する機構として働く。それに対し、噛み合い点Bが基準線S上にある時は、補助機構92としての働きはなされず、噛み合い点Bが基準線Sと第3クランク103の間にある第2期間(図10(d)の状態から図11(h)までの期間)は、第4クランク104の回転を妨げる方向にトルクが働く(図12(b)参照)。しかし、第2期間は、下死点に向かうピストン12に対し移動抵抗力P1が作用するものの、燃焼室5において排気弁が開いており、移動抵抗力P1は極めて小さくキャンセルされる。従って、移動抵抗力P1による影響は軽微であり、ピストン12は円滑に往復運動を行う。 Here, when the line perpendicularly intersecting the axis of the fourth crank 104 with respect to the line G connecting the axis of the third crank 103 and the axis of the fourth crank 104 is defined as the "reference line S", the engagement point B is , the first period (period from the state of FIG. 11(h) to FIG. 10(d)) at a position beyond the reference line S when viewed from the third crank 103 side, at the engagement point B by the movement resistance P1 The direction in which the force acts (direction of arrow Z) is the direction in which the fourth crank 104 is rotated in the actual rotation direction of the engine (see FIG. 12(a)). That is, the assist mechanism 92 functions as a mechanism that assists the movement of the piston 12 to the top dead center side. On the other hand, when the engagement point B is on the reference line S, the auxiliary mechanism 92 does not work, and the engagement point B is between the reference line S and the third crank 103 during the second period (Fig. 10(d)). ) to FIG. 11(h)), torque acts in a direction that prevents the rotation of the fourth crank 104 (see FIG. 12(b)). However, in the second period, although the movement resistance P1 acts on the piston 12 moving toward the bottom dead center, the exhaust valve is open in the combustion chamber 5, and the movement resistance P1 is very small and canceled. Therefore, the influence of the movement resistance P1 is slight, and the piston 12 smoothly reciprocates.
 また、本変形例では、補助機構92などにより第2クランク102から第4クランク104に伝達されるトルクが、第1増幅部として、「第2クランク102の半径を歯車111の半径により除した値」に比例して増幅される。また、第2クランク102から第4クランク104に伝達されるトルクは、第2増幅部として、「基準線Sと噛み合い点Bとの距離h2(図13(a)参照)を歯車111の半径h1により除した値」に比例して増幅される。第2増幅部は、第4クランク104の回転に伴う距離h2の変化に伴って、増幅率が変化する。第2増幅部の増幅率は、連結ロッド30が第4クランク104の軸上を通る状態(図13(a)の状態)で最大となる。なお、第4クランク104の直径に対する、歯車111及び第2固定歯車132の直径の比率を小さくすることで、第2増幅部の増幅率を大きくすることができる。図13(a)の増幅率は2である。図13(b)の増幅率は1である。第2クランク102から第4クランク104までの合計増幅率は、第1増幅部の増幅率と第2増幅部の増幅率の積となる。なお、図13では、便宜的に歯車112などの記載を省略している。 In addition, in this modification, the torque transmitted from the second crank 102 to the fourth crank 104 by the auxiliary mechanism 92 or the like is "a value obtained by dividing the radius of the second crank 102 by the radius of the gear 111 ” is amplified in proportion to Further, the torque transmitted from the second crank 102 to the fourth crank 104 is calculated by the second amplifying part, which is defined as the distance h2 between the reference line S and the engagement point B (see FIG. 13(a)) and the radius h1 of the gear 111. is amplified in proportion to the value divided by The amplification factor of the second amplification section changes as the distance h2 changes as the fourth crank 104 rotates. The amplification factor of the second amplification section is maximized when the connecting rod 30 passes over the axis of the fourth crank 104 (state shown in FIG. 13(a)). By reducing the ratio of the diameters of the gear 111 and the second fixed gear 132 to the diameter of the fourth crank 104, the amplification factor of the second amplification section can be increased. The gain in FIG. 13(a) is two. The gain in FIG. 13(b) is one. The total gain from the second crank 102 to the fourth crank 104 is the product of the gain of the first amplifier and the gain of the second amplifier. In addition, in FIG. 13, description of the gear 112 etc. is abbreviate|omitted for convenience.
 本変形例では、上死点に対し数十度手前における着火燃焼においても、次の式1に示す値Xがゼロ以上の時に、ピストン12が上死点を乗り越えるまでピストン12を押し上げる。その時にも、内燃機関100において動力が発生する。
  式1:X=A×RT2-RT1
   A:増幅率 (A=A1×A2)
   A1:第1増幅部の増幅率
   A2:第2増幅部の増幅率
   RT1:第1回転軸141を支点として子軸A3に受ける燃焼圧による、上述の一体のクランクとしての回転トルク
   RT2:親軸A2を支点として子軸A3に受ける燃焼圧による第2クランク102の回転トルク
In this modification, even in ignition combustion at several tens of degrees before the top dead center, the piston 12 is pushed up until the piston 12 passes the top dead center when the value X shown in the following equation 1 is zero or more. Power is also generated in the internal combustion engine 100 at this time.
Formula 1: X = A x RT2 - RT1
A: amplification factor (A=A1×A2)
A1: Amplification factor of the first amplifying section A2: Amplification factor of the second amplifying section RT1: Rotational torque as the above-described integral crank due to combustion pressure applied to slave shaft A3 with first rotating shaft 141 as a fulcrum RT2: Master shaft Rotational torque of the second crank 102 due to combustion pressure applied to the child shaft A3 with A2 as a fulcrum
 なお、本変形例について、第2固定歯車132~歯車113bまでを同径とする構成1、歯車114aと歯車116bを同径とする構成2、又は、歯車116a~歯車117bを同径とする構成3とした場合に、構成1~3の何れか1つを選択してもよく、そして、選択した構成において、互いに噛み合う各歯車に非円形の歯車を用いてもよい。 Regarding this modified example, configuration 1 in which the second fixed gear 132 to the gear 113b have the same diameter, configuration 2 in which the gear 114a and the gear 116b have the same diameter, or configuration in which the gear 116a to the gear 117b have the same diameter. 3, any one of configurations 1-3 may be selected, and non-circular gears may be used for each meshing gear in the selected configuration.
<<コンロッドの大端部の回転軸の軌跡>>
 本変形例では、上述の構成1を構成する第2固定歯車132、歯車111、歯車112、及び歯車113bの各回転軸が、自身の中心に対し偏心している。歯車111、歯車112、及び歯車113bは、偏心回転する。なお、本変形例では、これらの歯車111~113b,132に非円形の歯車を用いてもよい。互いに噛み合う非円形の歯車としては、図2(b)と同じ構成を用いることができる。
<<Locus of Rotational Axis at Big End of Connecting Rod>>
In this modified example, the rotation shafts of the second fixed gear 132, the gear 111, the gear 112, and the gear 113b that constitute Configuration 1 are eccentric with respect to their own centers. Gears 111, 112, and 113b rotate eccentrically. In addition, in this modified example, non-circular gears may be used for these gears 111 to 113b and 132. FIG. As non-circular gears that mesh with each other, the same configuration as in FIG. 2(b) can be used.
 これらの歯車111~113,132の噛み合せについて、上死点側では、図12(a)に示すように、第2固定歯車132の外周のうち第4クランク104のクランクピン104aに対して最も近い部位が、歯車111の外周のうち回転軸に対して最も遠い部位と噛み合い、歯車111の外周のうち回転軸に対して最も近い部位が、歯車112の外周のうち回転軸に対して最も遠い部位と噛み合い、歯車112の外周のうち回転軸に対して最も近い部位が、歯車113bの外周のうち回転軸に対して最も遠い部位と噛み合う第1噛合せ状態となる。一方、下死点側では、図12(b)に示すように、第2固定歯車132の外周のうち第4クランク104のクランクピン104aに対して最も遠い部位が、歯車111の外周のうち回転軸に対して最も近い部位と噛み合い、歯車111の外周のうち回転軸に対して最も遠い部位が、歯車112の外周のうち回転軸に対して最も近い部位と噛み合い、歯車112の外周のうち回転軸に対して最も遠い部位が、歯車113bの外周のうち回転軸に対して最も近い部位と噛み合う第2噛合せ状態となる。 Regarding the meshing of these gears 111 to 113 and 132, on the top dead center side, as shown in FIG. The part meshes with the part of the outer periphery of gear 111 that is farthest from the rotation axis, and the part of the outer periphery of gear 111 that is closest to the rotation axis is the part of the outer periphery of gear 112 that is farthest from the rotation axis. , and the portion of the outer periphery of the gear 112 closest to the rotation shaft is in a first meshing state in which the portion of the outer periphery of the gear 113b that is farthest from the rotation shaft meshes. On the other hand, on the bottom dead center side, as shown in FIG. The portion closest to the shaft is meshed, and the portion of the outer periphery of the gear 111 farthest from the rotation axis is meshed with the portion of the outer periphery of the gear 112 closest to the rotation shaft, and the portion of the outer periphery of the gear 112 is rotated. A second meshing state is achieved in which the portion farthest from the shaft meshes with the portion of the outer circumference of the gear 113b that is closest to the rotating shaft.
 そのため、第4クランク104が定速回転をする時に、歯車111の回転速度は増減を繰り返し、第2クランク102の回転速度も同期して増減する。具体的に、上死点側で第2クランク102の回転速度は遅くなり、下死点側で第2クランク102の回転速度は速くなる。そのため、図14に示すように、コンロッド103の大端部13bの回転軸(中心)の軌跡Kcは、下死点側で輪が大きく上死点側で輪が小さくなる8の字状を描く。なお、本変形例でも、第2クランク長は第1クランク長よりも長い。 Therefore, when the fourth crank 104 rotates at a constant speed, the rotational speed of the gear 111 repeatedly increases and decreases, and the rotational speed of the second crank 102 also increases and decreases synchronously. Specifically, the rotation speed of the second crank 102 becomes slow on the top dead center side, and the rotation speed of the second crank 102 becomes fast on the bottom dead center side. Therefore, as shown in FIG. 14, the trajectory Kc of the rotation axis (center) of the large end 13b of the connecting rod 103 draws a figure 8 shape with a large ring on the bottom dead center side and a small ring on the top dead center side. . Also in this modified example, the second crank length is longer than the first crank length.
 また、本変形例では、第2噛合せ状態(図12(b)参照)の第1クランク101のクランク角が、ピストン12が下死点の第1クランク101のクランク角に対し45°ずれており、このずれ角度は、5°以上90°以下である。クランクピン128(図12(a)参照)或いは子軸A3が、下死点から180°回転した位置から45°手前で第1噛合せ状態となる。そのため、軌跡Kcは、図14に示すように、第2クランク102の回転速度が遅くなる時に折れ曲がる。本変形例によれば、第3クランク103と第4クランク104が一直線になるタイミング(図10(f))のコンロッド103とシリンダ軸CAとの角度θbを構造的に無理のない小さい角度に設定でき、着火から排気弁が開くまでの間(この間の、第1クランク101の回転角度は120°~150°(図9(a)-図10(d))に、高い燃焼圧を保ちつつ、高いトルク伝達率を維持できる高効率の内燃機関100を実現することができる。なお、このクランク角をずらすことについて上述の実施形態に適用する場合は、非円形歯車を用いた一対の歯車33,34(図1参照)において、エンジンブロック16に固定された第4歯車34の外周のうち回転軸に対して最も遠い部位が、第3歯車33の外周のうち回転軸に対して最も近い部位と噛み合う状態の第1クランク21のクランク角が、ピストン12が下死点の第1クランク21のクランク角に対し、5°以上90°以下ずれるようにする。また、本変形例の場合も上述の実施形態の場合も、第1クランク21,101のクランク角のずれは、15°以上75°以下が好ましく、30°以上60°以下がさらに好ましい。また、このクランク角をずらすことを適用せずに、クランクピン128(A2)或いは子軸A3が、下死点から180°回転した位置、又は、下死点からは対極の位置で、第1噛合せ状態となり、下死点で第2噛合せ状態となるように構成してもよく、この場合は、軌跡Kcは8の字状を描くものの折れ曲がることない。 Further, in this modification, the crank angle of the first crank 101 in the second meshing state (see FIG. 12(b)) is shifted by 45° from the crank angle of the first crank 101 in which the piston 12 is at the bottom dead center. , and the deviation angle is 5° or more and 90° or less. The crank pin 128 (see FIG. 12(a)) or the slave shaft A3 enters the first engagement state 45 degrees before the position rotated 180 degrees from the bottom dead center. Therefore, as shown in FIG. 14, the locus Kc bends when the rotation speed of the second crank 102 slows down. According to this modification, the angle θb between the connecting rod 103 and the cylinder axis CA at the timing when the third crank 103 and the fourth crank 104 are aligned (Fig. 10(f)) is set to a small angle that is structurally reasonable. During the period from ignition to opening of the exhaust valve (during this period, the rotation angle of the first crank 101 is 120° to 150° (FIGS. 9(a) to 10(d)), while maintaining a high combustion pressure, It is possible to realize a highly efficient internal combustion engine 100 that can maintain a high torque transmission rate.When applying this crank angle shift to the above-described embodiment, the pair of gears 33 and 33 using non-circular gears are used. 34 (see FIG. 1), the portion of the outer periphery of the fourth gear 34 fixed to the engine block 16 that is the farthest from the rotation axis is the portion of the outer periphery of the third gear 33 that is closest to the rotation axis. The crank angle of the first crank 21 in the meshing state is deviated from the crank angle of the first crank 21 at the bottom dead center of the piston 12 by 5° or more and 90° or less. Also in the case of the embodiment, the deviation of the crank angles of the first cranks 21, 101 is preferably 15° or more and 75° or less, more preferably 30° or more and 60° or less. At the position where the crank pin 128 (A2) or the slave shaft A3 is rotated by 180° from the bottom dead center, or at the position opposite to the bottom dead center, the first meshing state is established, and the second meshing is performed at the bottom dead center. It may be constructed so as to be in a bent state. In this case, the trajectory Kc draws a figure 8 shape but does not bend.
<実施形態の変形例5>
[内燃機関の構成について]
 本変形例に係る内燃機関10は、棒状の可動部材93がコンロッド13にスライド自在に連結され、コンロッド13及び可動部材93により構成された伸縮部材13,93が伸縮可能に構成されている。。内燃機関10は、図15(a)及び図15(b)に示すように、略円筒状のシリンダ11と、シリンダ11内を往復運動する略円柱状のピストン12と、一端部13aがピストン12に回転自在に連結されたコンロッド13と、コンロッド13の他端部が可動に連結されてピストン12の往復運動を回転運動に変換するクランク機構20とを備えている。
<Variation 5 of Embodiment>
[Regarding the configuration of the internal combustion engine]
In the internal combustion engine 10 according to this modification, a rod-shaped movable member 93 is slidably connected to the connecting rod 13, and the expansion members 13, 93 formed by the connecting rod 13 and the movable member 93 are configured to be expandable and contractible. . As shown in FIGS. 15(a) and 15(b), the internal combustion engine 10 includes a substantially cylindrical cylinder 11, a substantially cylindrical piston 12 reciprocating within the cylinder 11, and one end 13a of the piston 12. and a crank mechanism 20 movably connected to the other end of the connecting rod 13 to convert the reciprocating motion of the piston 12 into rotary motion.
 クランク機構20は、クランク21に加え、コンロッド13の他端部にスライド自在に連結され、クランク21のクランクピン28に回転自在に連結された可動部材93とを備えている。クランク21は、クランク機構20により変換される回転運動を動力として出力する出力軸15と、出力軸15の軸心A1を中心に回転移動するクランクピン28を有する。クランクピン28には、可動部材93の大端部93bが回転自在に連結されている。内燃機関10では、出力軸15の回転に伴ってクランクピン28が回転移動し、ピストン12が往復運動する。 In addition to the crank 21 , the crank mechanism 20 includes a movable member 93 slidably connected to the other end of the connecting rod 13 and rotatably connected to the crank pin 28 of the crank 21 . The crank 21 has an output shaft 15 that outputs rotational motion converted by the crank mechanism 20 as power, and a crank pin 28 that rotates about the axis A1 of the output shaft 15 . A large end portion 93b of a movable member 93 is rotatably connected to the crank pin 28 . In the internal combustion engine 10, the crank pin 28 rotates as the output shaft 15 rotates, and the piston 12 reciprocates.
 本変形例では、コンロッド13及び可動部材93が、互いに同一方向に伸びており、長さ方向に伸縮可能な伸縮部材を構成している。内燃機関10は、クランク角に応じて伸縮部材13,93を伸縮させる伸縮機構50をさらに備えている。伸縮機構50は、図16に示すように、ピストン12が上死点の手前から上死点に近づくに従って(例えば、クランクピン28が燃焼室5の天井面5aに最も近づいた状態(図16(a)において破線の状態)の手前から、クランク角が進むに従って)、クランク21の回転力を利用して伸縮部材13,93を伸長させる。伸縮機構50は、例えば、出力軸15の軸心とクランクピン28の軸心を結ぶ直線がコンロッド13と一直線になった状態(以下、図16(a)の破線の状態であり、「クランク-コンロッド直線状態」と言う。)から、上死点までの期間に、伸縮部材13,93を伸長させる。なお、伸縮機構50は、ピストン12が上死点の手前から上死点に近づくに従って、クランク21の回転力を利用して伸縮部材13,93を短縮させるように構成してもよい。 In this modified example, the connecting rod 13 and the movable member 93 extend in the same direction and constitute an elastic member that can expand and contract in the length direction. The internal combustion engine 10 further includes an expansion mechanism 50 that expands and contracts the expansion members 13 and 93 according to the crank angle. As shown in FIG. 16, the telescopic mechanism 50 moves from before the top dead center to near the top dead center (for example, when the crank pin 28 is closest to the ceiling surface 5a of the combustion chamber 5 (see FIG. 16 ( In (a), the elastic members 13 and 93 are extended using the rotational force of the crank 21 as the crank angle progresses from before the state shown by the broken line). The telescopic mechanism 50 is, for example, in a state in which a straight line connecting the axial center of the output shaft 15 and the axial center of the crank pin 28 is aligned with the connecting rod 13 (hereinafter, the broken line in FIG. 16A). The extensible members 13 and 93 are extended during the period from the connecting rod straight line state to the top dead center. The telescopic mechanism 50 may be configured so that the telescopic members 13 and 93 are shortened using the rotational force of the crank 21 as the piston 12 approaches the top dead center from before the top dead center.
 具体的に、コンロッド13は、ピストン12に回転自在に連結された小端部13aを有する。可動部材93は、クランクピン28に回転自在に連結された大端部93bを有する(図15(b)参照)。コンロッド13は、可動部材93に対し、コンロッド13の軸方向(長さ方向)にスライド可能に取り付けられている。例えば、コンロッド13は、可動部材93に設けられたスライド溝80(図16参照)に嵌め込まれ、スライド溝80に沿って可動部材93に対しスライド自在になっている。 Specifically, the connecting rod 13 has a small end 13a rotatably connected to the piston 12. The movable member 93 has a large end 93b rotatably connected to the crankpin 28 (see FIG. 15(b)). The connecting rod 13 is attached to the movable member 93 so as to be slidable in the axial direction (longitudinal direction) of the connecting rod 13 . For example, the connecting rod 13 is fitted into a slide groove 80 (see FIG. 16) provided in the movable member 93 and is slidable relative to the movable member 93 along the slide groove 80 .
 伸縮機構50(図16参照)は、クランク21の子軸(クランクピン28)に固定されてクランク21と共に出力軸15を中心に回転移動する固定歯車61と、可動部材93に回転自在に支持されて固定歯車61と噛み合う伸縮用歯車62と、伸縮用歯車62の回転軸62aを中心に回転移動する円形の第1ピン71と、コンロッド13のクランクピン28側(他端部)に一体化された円形の第2ピン72と、第1ピン71と第2ピン72とにそれぞれ連結されて第1ピン71の回転移動に伴って揺動して可動部材93に対しコンロッド13を進退させる揺動部材75とを備えている。伸縮機構50は、コンロッド13に対し可動部材93を動かし、且つ、クランク21に対し可動部材93を回転させる伝達機構に相当する。伝達機構は、固定歯車61を伸縮用歯車62に噛み合せることにより揺動部材75を揺動させることで、クランク21の回転力を可動部材93に伝達させる。 The telescopic mechanism 50 (see FIG. 16) is rotatably supported by a fixed gear 61 that is fixed to a child shaft (crank pin 28) of the crank 21 and rotates about the output shaft 15 together with the crank 21, and a movable member 93. A telescopic gear 62 that meshes with the fixed gear 61, a circular first pin 71 that rotates around a rotating shaft 62a of the telescopic gear 62, and a connecting rod 13 integrated with the crank pin 28 side (the other end). The connecting rod 13 is connected to the circular second pin 72 and the first pin 71 and the second pin 72 , and is swung with the rotational movement of the first pin 71 to move the connecting rod 13 forward and backward with respect to the movable member 93 . A member 75 is provided. The telescopic mechanism 50 corresponds to a transmission mechanism that moves the movable member 93 with respect to the connecting rod 13 and rotates the movable member 93 with respect to the crank 21 . The transmission mechanism transmits the rotational force of the crank 21 to the movable member 93 by causing the swinging member 75 to swing by meshing the fixed gear 61 with the telescopic gear 62 .
 固定歯車61は、クランクピン28と同軸になるようにクランク21に固定されている。固定歯車61は、自転をすることなく、出力軸15回りを公転する歯車である。伸縮用歯車62は、固定歯車61と同一歯数の歯車である。固定歯車61が1回転すると、伸縮用歯車62もちょうど1回転するように設計されている。伸縮用歯車62の回転軸62aは、固定歯車61の軸心61aと、第2ピン72の軸心とを通る直線上、又は、この直線上以外に配置することができる。 The fixed gear 61 is fixed to the crank 21 so as to be coaxial with the crank pin 28. The fixed gear 61 is a gear that revolves around the output shaft 15 without rotating. The expansion gear 62 is a gear having the same number of teeth as the fixed gear 61 . It is designed so that when the fixed gear 61 makes one rotation, the telescopic gear 62 also makes exactly one rotation. The rotating shaft 62a of the telescopic gear 62 can be arranged on a straight line passing through the axial center 61a of the fixed gear 61 and the axial center of the second pin 72, or on a position other than this straight line.
 第1ピンは、伸縮用歯車62とは軸心が一致しないように、伸縮用歯車62に一体化されたピン部材(円柱状の部材)である。第1ピン71は、伸縮用歯車62の回転軸62aと同軸の主軸71aと、主軸71aから離れた位置の副軸71bとを有する。副軸71bは、第1ピン71の中心に位置する。第1ピン71の副軸(中心)71bは、伸縮用歯車62の中心62aから見て偏心した位置にある。第1ピン71は、伸縮用歯車62の回転に伴って、主軸71aを中心に回転移動する。 The first pin is a pin member (columnar member) integrated with the telescopic gear 62 so that the axis does not coincide with the telescopic gear 62 . The first pin 71 has a main shaft 71a coaxial with the rotating shaft 62a of the telescopic gear 62, and a sub-shaft 71b positioned away from the main shaft 71a. The secondary shaft 71 b is positioned at the center of the first pin 71 . A secondary shaft (center) 71b of the first pin 71 is located eccentrically when viewed from the center 62a of the telescopic gear 62 . The first pin 71 rotates about the main shaft 71a as the telescopic gear 62 rotates.
 揺動部材75は、例えば、伸縮部材13,93の機能部品である。揺動部材75は、第1ピン71と第2ピン72の各々に回転自在に支持されている。揺動部材75では、クランクピン28側の貫通孔75aに第1ピン71が、ピストン12側の貫通孔75bに第2ピン72がそれぞれ回転自在に挿通されている。 The rocking member 75 is, for example, a functional part of the elastic members 13, 93. The rocking member 75 is rotatably supported by each of the first pin 71 and the second pin 72 . In the swinging member 75, the first pin 71 and the second pin 72 are rotatably inserted into the through hole 75a on the crank pin 28 side and the through hole 75b on the piston 12 side, respectively.
 なお。本変形例では、固定歯車61と伸縮用歯車62が、同回転数にて噛み合う円形歯車であるが、複数倍回転数にて噛み合う円形歯車であってもよいし、同回転数又は複数倍回転数にて噛み合う非円形歯車であってもよい。 note that. In this modification, the fixed gear 61 and the expansion gear 62 are circular gears that mesh at the same number of revolutions, but they may be circular gears that mesh at multiple times the number of revolutions, or may rotate at the same number of revolutions or multiple times. Non-circular gears that mesh in numbers may also be used.
[内燃機関の動作について]
 図16(a)においてピストン12が破線の位置にあるタイミングでは、伸縮機構50等が、図16(b)に示す状態となる。この状態から、クランクピン28が時計回りに回転移動すると、固定歯車61も回転移動し、その回転移動に伴って伸縮用歯車62が反時計回りに回転する。これにより、図16(c)に示すように、第1ピン71の副軸71bは、主軸71aを中心に反時計回りに回転移動する。そして、この回転移動に伴って、第2ピン72及びコンロッド13がピストン12側に移動し、伸縮部材13,93が伸びる。
[About the operation of the internal combustion engine]
At the timing when the piston 12 is at the position indicated by the dashed line in FIG. 16(a), the telescopic mechanism 50 and the like are in the state shown in FIG. 16(b). From this state, when the crankpin 28 rotates clockwise, the fixed gear 61 also rotates, and the expansion gear 62 rotates counterclockwise along with the rotation. As a result, as shown in FIG. 16(c), the secondary shaft 71b of the first pin 71 rotates counterclockwise about the main shaft 71a. Along with this rotational movement, the second pin 72 and the connecting rod 13 move toward the piston 12, and the extensible members 13 and 93 extend.
 本変形例では、第1ピン71の副軸71bが、コンロッド13の軸線Xs上の、固定歯車61側の位置から、軸線Xs上の、第2ピン72側の位置まで移動する期間に、コンロッド13は伸びる。一方、第1ピン71の副軸71bが、コンロッド13の軸線Xs上の、第2ピン72側の位置から、軸線Xs上の、固定歯車61側の位置まで移動する期間に、伸縮部材13,93は縮む。 In this modification, during the period in which the secondary shaft 71b of the first pin 71 moves from the position on the axis Xs of the connecting rod 13 on the fixed gear 61 side to the position on the axis Xs on the second pin 72 side, the connecting rod 13 grows. On the other hand, during the period in which the secondary shaft 71b of the first pin 71 moves from the second pin 72 side position on the axis Xs of the connecting rod 13 to the fixed gear 61 side position on the axis Xs, the expansion member 13, 93 shrinks.
 ここで、図16(a)における破線の状態からクランク角が進むと、伸縮部材13,93が伸びる一方で、クランクピン28及び可動部材93の大端部93bは、燃焼室5の天井面5aから遠ざかる。本変形例では、伸縮部材13,93が伸びる途中に、ピストン12は上死点となる。そして、ピストン12が上死点から下死点に向かう期間の前半にも、伸縮部材13,93が伸びる。そのため、上死点後にピストン12の下降速度を減少させることができる。 Here, when the crank angle advances from the broken line state in FIG. move away from In this modification, the piston 12 reaches the top dead center while the expandable members 13 and 93 are being extended. The expandable members 13 and 93 also extend during the first half of the period when the piston 12 moves from the top dead center to the bottom dead center. Therefore, the descending speed of the piston 12 can be reduced after the top dead center.
[本変形例の効果等]
 本変形例では、クランク-コンロッド直線状態から上死点までの期間に、伸縮部材13,93が伸長する。ここで、伸縮部材13,93が伸長せずにクランク-コンロッド直線状態で上死点となる場合、上死点で、ピストンピンとコンロッドの大端部と出力軸が直線上に並び、燃焼圧の回転出力への伝達率は、限りなくゼロに近くなる。また、上死点以後、クランク角が20°から30°進む期間も、回転出力への伝達率は極めて小さくなる。そして、回転出力への伝達率の有効化が始まる頃には、燃焼圧が着火燃焼圧から大きく低下している。
[Effects of this modified example, etc.]
In this modified example, the extensible members 13 and 93 extend during the period from the crank-connecting rod straight line state to the top dead center. Here, when the extensible members 13 and 93 are not extended and the crank-connecting rod is in a straight line state at the top dead center, the piston pin, the large end of the connecting rod and the output shaft are aligned on a straight line at the top dead center, and the combustion pressure increases. The transmissibility to the rotational output becomes infinitely close to zero. Also, the transmission rate to the rotational output is extremely small during the period in which the crank angle advances by 20° to 30° after the top dead center. By the time the transfer rate to the rotational output becomes effective, the combustion pressure is greatly reduced from the ignition combustion pressure.
 それに対し、本変形例では、伸縮部材13,93が伸長するため、上死点のタイミングにおけるクランクピン28の運動方向は、シリンダ軸CAの方向に近づく。本変形例では、上死点において、コンロッド13と可動部材93のなす角度θ’(図16(a)参照)が、90°±70°の角度範囲(好ましくは、90°±45°の角度範囲)にある。そのため、上死点における燃焼圧の回転出力への伝達率は改善される。さらに、上死点以後も、回転出力への伝達率が改善される。例えば、上死点からクランク角が20°から30°進む期間、伝達率は限りなく10割に近づく。本変形例によれば、ピストン12からクランクピン28に対しトルクを効率的に伝達することができる。 On the other hand, in this modified example, since the expandable members 13 and 93 are extended, the movement direction of the crank pin 28 at the timing of the top dead center approaches the direction of the cylinder axis CA. In this modification, at the top dead center, the angle θ′ (see FIG. 16A) formed by the connecting rod 13 and the movable member 93 is within an angle range of 90°±70° (preferably an angle of 90°±45°). range). Therefore, the transmissibility of the combustion pressure to the rotational output at top dead center is improved. Furthermore, even after top dead center, the transmission rate to the rotational output is improved. For example, while the crank angle advances from top dead center by 20° to 30°, the transmission rate approaches 100%. According to this modification, torque can be efficiently transmitted from the piston 12 to the crankpin 28 .
<実施形態の変形例6>
 本変形例は、変形例5の変形例である。本変形例では、図17(a)及び図17(b)に示すように、第2歯車62から突出する突出部81が設けられ、第1ピン71の副軸71bが突出部81に設けられている。第1ピン71の主軸71aは、変形例5と同様に、伸縮用歯車62の回転軸62aと同軸である。また、揺動部材75では、クランクピン28側の貫通孔75aに第1ピン71の副軸(ピン)71bが、ピストン12側の貫通孔75bに第2ピン72がそれぞれ回転自在に挿通されている。
<Modification 6 of Embodiment>
This modified example is a modified example of the fifth modified example. In this modification, as shown in FIGS. 17(a) and 17(b), a projecting portion 81 projecting from the second gear 62 is provided, and the secondary shaft 71b of the first pin 71 is provided on the projecting portion 81. ing. The main shaft 71a of the first pin 71 is coaxial with the rotating shaft 62a of the expansion gear 62, as in the fifth modification. In the rocking member 75, the secondary shaft (pin) 71b of the first pin 71 is rotatably inserted into the through hole 75a on the crank pin 28 side, and the second pin 72 is rotatably inserted into the through hole 75b on the piston 12 side. there is
 本変形例でも、第1ピン71の副軸71bが、コンロッド13の軸線Xs上における固定歯車61側に最も近い第1位置から、軸線Xs上における第2ピン72側に最も遠い第2位置まで移動する期間に、伸縮部材13,93は伸びる。一方、第1ピン71の副軸71bがコンロッド13の軸線Xs上における第2位置から第1位置まで移動する期間に、伸縮部材13,93は縮む。 Also in this modification, the secondary shaft 71b of the first pin 71 extends from the first position closest to the fixed gear 61 on the axis Xs of the connecting rod 13 to the second position farthest from the second pin 72 on the axis Xs. During the period of movement, the telescopic members 13, 93 are stretched. On the other hand, while the secondary shaft 71b of the first pin 71 moves from the second position to the first position on the axis Xs of the connecting rod 13, the expandable members 13 and 93 contract.
<実施形態の変形例7>
 変形例5-6の伸縮機構50は、実施形態及びその変形例1-4に適用してもよい。この場合、固定歯車61は、第2クランク22の子軸A3に固定される。つまり、固定歯車61は、第2クランク22の中心A3と同軸となるように第2クランク22に固定される。伸縮機構50は、図18に示すように、ピストン12が上死点の手前から上死点に近づくに従って、第2クランク22の回転力を利用して伸縮部材13,93を短縮させる。なお、伸縮機構50は、ピストン12が上死点の手前から上死点に近づくに従って、第2クランク22の回転力を利用して伸縮部材13,93を伸長させるように構成してもよい。
<Modification 7 of Embodiment>
The telescopic mechanism 50 of Modified Example 5-6 may be applied to the embodiment and its Modified Example 1-4. In this case, the fixed gear 61 is fixed to the child shaft A3 of the second crank 22 . That is, the fixed gear 61 is fixed to the second crank 22 so as to be coaxial with the center A3 of the second crank 22 . As shown in FIG. 18, the telescopic mechanism 50 shortens the telescopic members 13 and 93 using the rotational force of the second crank 22 as the piston 12 approaches the top dead center from before the top dead center. Note that the telescopic mechanism 50 may be configured to extend the telescopic members 13 and 93 using the rotational force of the second crank 22 as the piston 12 approaches the top dead center from before the top dead center.
 本変形例では、伸縮部材13,93の伸縮量、伸縮部材13,93の伸縮タイミング、歯車(例えば非円形歯車)61,62の形状、及び、各歯車61,62の大きさの最適化により、大端部中心の軌跡Kcの接線との鉛直方向に束縛されず、シリンダ軸CAの傾斜角θa(図1参照)を最適化することができる。 In this modified example, by optimizing the expansion/contraction amount of the expansion/ contraction members 13 and 93, the expansion/contraction timing of the expansion/ contraction members 13 and 93, the shape of the gears (for example, non-circular gears) 61 and 62, and the size of each gear 61 and 62, , the inclination angle .theta.a (see FIG. 1) of the cylinder axis CA can be optimized without being constrained by the vertical direction to the tangent line of the locus Kc of the center of the big end.
 本発明は、レシプロタイプの内燃機関又は圧縮機等に適用可能である。 The present invention is applicable to reciprocating internal combustion engines, compressors, and the like.
 10,100  内燃機関
 11      シリンダ
 12      ピストン
 13      コンロッド
 14      クランク機構
 15      出力軸
 21,101  第1クランク
 22,102  第2クランク
 31,131  第1歯車(固定歯車)
 32      第2歯車
Reference Signs List 10, 100 internal combustion engine 11 cylinder 12 piston 13 connecting rod 14 crank mechanism 15 output shaft 21, 101 first crank 22, 102 second crank 31, 131 first gear (fixed gear)
32 second gear

Claims (10)

  1.  シリンダ内を往復運動するピストンと、
     一端部が前記ピストンに回転自在に連結されたコンロッドと、
     前記コンロッドの他端部が連結されて、前記ピストンの往復運動を回転運動に変換するクランク機構と、
     前記クランク機構によって変換された回転運動による動力で回転する出力軸とを備え、
     前記クランク機構は、
      クランクピンを有するクランクと、
      前記コンロッドの他端部に可動に連結され、前記クランクピンに回転自在に連結された可動部材と、
      前記可動部材又は前記クランクピンの一方に固定された固定歯車を含み、前記固定歯車を介して前記クランクの回転力を前記可動部材に伝達することにより、前記コンロッドに対し前記可動部材を動かし、且つ、前記クランクに対し前記可動部材を回転させる伝達機構とを有し、
      前記固定歯車が前記可動部材に固定されている場合は、前記可動部材は前記コンロッドの他端部に回転自在に連結され、上死点において、前記コンロッドと前記可動部材のなす角度が、90°±70°の角度範囲にあり、
      前記固定歯車が前記クランクピンに固定されている場合は、前記可動部材は前記コンロッドの他端部にスライド自在に連結され、上死点において、前記コンロッドと前記クランクのなす角度が、90°±70°の角度範囲にある、内燃機関。
    a piston that reciprocates within a cylinder;
    a connecting rod having one end rotatably connected to the piston;
    a crank mechanism to which the other end of the connecting rod is connected to convert the reciprocating motion of the piston into rotary motion;
    An output shaft rotated by power generated by the rotary motion converted by the crank mechanism,
    The crank mechanism is
    a crank having a crankpin;
    a movable member movably connected to the other end of the connecting rod and rotatably connected to the crankpin;
    a fixed gear fixed to one of the movable member or the crank pin, wherein rotational force of the crank is transmitted to the movable member through the fixed gear to move the movable member relative to the connecting rod; , and a transmission mechanism for rotating the movable member with respect to the crank,
    When the fixed gear is fixed to the movable member, the movable member is rotatably connected to the other end of the connecting rod, and the angle formed by the connecting rod and the movable member is 90° at top dead center. Within an angular range of ±70°,
    When the fixed gear is fixed to the crank pin, the movable member is slidably connected to the other end of the connecting rod, and the angle formed by the connecting rod and the crank at top dead center is 90°± An internal combustion engine in an angular range of 70°.
  2.  前記固定歯車が前記可動部材に固定され、
     前記クランクを第1クランクとした場合に、前記可動部材は、前記クランクピンに回転自在に連結された親軸と、前記コンロッドの他端部に回転自在に連結された子軸とを有する第2クランクを構成し、
     前記固定歯車は、前記第2クランクの親軸と同軸に前記第2クランクに固定され、
     前記伝達機構は、前記第1クランクと前記第2クランクとが同じ回転数で且つ反対方向に回転するように前記第1クランクと前記第2クランクを係合させる、請求項1に記載の内燃機関。
    the fixed gear is fixed to the movable member;
    When the crank is a first crank, the movable member is a second crank having a master shaft rotatably connected to the crank pin and a slave shaft rotatably connected to the other end of the connecting rod. configure the crank,
    The fixed gear is fixed to the second crank coaxially with the master shaft of the second crank,
    2. The internal combustion engine according to claim 1, wherein said transmission mechanism engages said first crank and said second crank so that said first crank and said second crank rotate at the same speed and in opposite directions. .
  3.  前記伝達機構は、前記固定歯車に噛み合う歯車を含む複数の歯車を介して、エンジンブロックに固定された歯車に対し、前記第2クランクの回転トルクが伝達されるように構成され、
     前記複数の歯車のうち互いに噛み合う一組の歯車は、互いに同じ回転数となるように噛み合う非円形歯車であり、
     前記第2クランクの長さは、前記1クランクの長さよりも長く、
     前記コンロッドの他端部の中心軸が8の字状の軌跡を描く、請求項2に記載の内燃機関。
    The transmission mechanism is configured to transmit the rotational torque of the second crank to a gear fixed to the engine block via a plurality of gears including a gear that meshes with the fixed gear,
    A set of gears that mesh with each other among the plurality of gears are non-circular gears that mesh with each other at the same number of rotations,
    the length of the second crank is longer than the length of the first crank;
    3. The internal combustion engine according to claim 2, wherein the central axis of the other end of said connecting rod draws a figure-eight locus.
  4.  前記伝達機構は、前記固定歯車に噛み合う歯車を含む複数の歯車を介して、エンジンブロックに固定された歯車に対し、前記第2クランクの回転トルクが伝達されるように構成され、
     前記エンジンブロックに固定された歯車は、内歯車であり、
     前記複数の歯車のうち前記内歯車に噛み合う歯車は、非円形歯車であり、
     前記非円形歯車においてその回転軸から前記内歯車に噛み合う接合点までの距離の変化に応じて、前記内歯車の内周面が凹凸に波打つように形成することで、前記内歯車が前記非円形歯車に噛み合い、
     前記第2クランクの長さは、前記1クランクの長さよりも長く、
     前記コンロッドの他端部の中心軸が8の字状の軌跡を描く、請求項2に記載の内燃機関。
     
    The transmission mechanism is configured to transmit the rotational torque of the second crank to a gear fixed to the engine block via a plurality of gears including a gear that meshes with the fixed gear,
    the gear fixed to the engine block is an internal gear;
    A gear that meshes with the internal gear among the plurality of gears is a non-circular gear,
    By forming the inner peripheral surface of the internal gear to undulate in accordance with a change in the distance from the rotation axis of the non-circular gear to a joint point that meshes with the internal gear, the internal gear is formed to be non-circular. meshing with gears,
    the length of the second crank is longer than the length of the first crank;
    3. The internal combustion engine according to claim 2, wherein the central axis of the other end of said connecting rod draws a figure-eight locus.
  5.  前記伝達機構は、前記固定歯車に噛み合う歯車を含む複数の歯車を介して、エンジンブロックに固定された歯車に対し、前記第2クランクの回転トルクが伝達されるように構成され、
     前記複数の歯車のうち互いに噛み合う一組の歯車は、互いに同じ回転数となるように噛み合う非円形歯車であり、一方の歯車がエンジンブロックに固定され、
     前記第2クランクの長さは、前記1クランクの長さよりも長く、
     前記一方の歯車の外周のうち回転軸に対して最も遠い部位が、前記一組の歯車のうち他方の歯車の外周のうち回転軸に対して最も近い部位と噛み合う状態の前記第1クランクのクランク角は、前記ピストンが下死点における前記第1クランクのクランク角に対し5°以上90°以下ずれている、請求項2に記載の内燃機関。
    The transmission mechanism is configured to transmit the rotational torque of the second crank to a gear fixed to the engine block via a plurality of gears including a gear that meshes with the fixed gear,
    A set of gears that mesh with each other among the plurality of gears are non-circular gears that mesh with each other so that the number of rotations is the same, one of the gears is fixed to the engine block,
    the length of the second crank is longer than the length of the first crank;
    The crank of the first crank in which the portion of the outer circumference of one gear that is farthest from the rotation axis is in mesh with the portion of the outer circumference of the other gear that is closest to the rotation axis of the pair of gears. 3. The internal combustion engine according to claim 2, wherein said piston deviates from the crank angle of said first crank at bottom dead center by 5[deg.] or more and 90[deg.] or less.
  6.  前記クランク機構は、
      前記固定歯車に噛み合い、前記第1クランクの回転軸に回転自在に支持された中央側歯車と、
      前記中央側歯車に噛み合い、前記中央側歯車を挟んで前記固定歯車とは反対側の位置で、前記第1クランクの延長部材に回転自在に支持された対極歯車とを備えている、請求項2に記載の内燃機関。
    The crank mechanism is
    a central side gear that meshes with the fixed gear and is rotatably supported by the rotation shaft of the first crank;
    and a counter-electrode gear that meshes with the central gear and is rotatably supported by an extension member of the first crank at a position opposite to the fixed gear with the central gear interposed therebetween. The internal combustion engine described in .
  7.  前記シリンダ内の燃焼室において上死点手前で着火がなされる場合に、前記ピストンの上死点側への移動を補助する補助機構を備え、
     前記補助機構は、
      前記第1クランクの回転軸の回転トルクが伝達されてそれぞれ回転する第3クランク及び第4クランクと、
      前記第3クランクのクランクピンと前記第4クランクのクランクピンとに回転自在に支持されて、前記第3クランクと前記第4クランクとを連結する連結部材と、
      前記第4クランクのクランクピンに固定された第2固定歯車と、
      前記第2固定歯車に噛み合い、前記連結部材に回転自在に支持された遠位側歯車と、
      前記遠位側歯車と噛み合う歯車を含む複数の歯車を有し、該複数の歯車の各々が前記連結部材に回転自在に支持された中継歯車機構と、
      前記中継歯車機構の複数の歯車のうち、前記第3クランク側に設けられた近位側歯車に噛み合い、前記近位側歯車を公転させると共に、自らは前記第1クランクの2倍速で回転し、エンジンブロックに回転自在に支持される2倍速歯車と、
      前記2倍速歯車の回転トルクを前記対極歯車に伝達させる歯車とを備えている、請求項6に記載の内燃機関。
    An auxiliary mechanism that assists the movement of the piston to the top dead center side when ignition is performed in the combustion chamber in the cylinder before the top dead center,
    The auxiliary mechanism is
    a third crank and a fourth crank that are respectively rotated by transmission of rotational torque of the rotating shaft of the first crank;
    a connecting member rotatably supported by the crank pin of the third crank and the crank pin of the fourth crank and connecting the third crank and the fourth crank;
    a second fixed gear fixed to the crankpin of the fourth crank;
    a distal side gear that meshes with the second fixed gear and is rotatably supported by the connecting member;
    a relay gear mechanism having a plurality of gears including a gear that meshes with the distal side gear, each of the plurality of gears being rotatably supported by the connecting member;
    Among the plurality of gears of the intermediate gear mechanism, it meshes with the proximal side gear provided on the third crank side, revolves the proximal side gear, and rotates itself at twice the speed of the first crank, a double speed gear rotatably supported by the engine block;
    7. The internal combustion engine according to claim 6, further comprising a gear for transmitting rotational torque of said double speed gear to said opposite gear.
  8.  前記第2固定歯車と前記遠位側歯車とは、互いに同じ回転数となるように噛み合う非円形歯車であり、
     前記第2固定歯車の外周のうち回転軸に対して最も遠い部位が、前記遠位側歯車の外周のうち回転軸に対して最も近い部位と噛み合う状態の前記第1クランクのクランク角は、前記ピストンが下死点における前記第1クランクのクランク角に対し5°以上90°以下ずれている、請求項7に記載の内燃機関。
    The second fixed gear and the distal side gear are non-circular gears that mesh with each other so as to have the same number of rotations,
    The crank angle of the first crank in a state where the part of the outer circumference of the second fixed gear that is farthest from the rotation axis meshes with the part of the circumference of the distal side gear that is closest to the rotation axis is 8. The internal combustion engine according to claim 7, wherein the piston deviates from the crank angle of said first crank at bottom dead center by 5[deg.] or more and 90[deg.] or less.
  9.  前記固定歯車が前記クランクピンに固定され、
     前記可動部材が前記コンロッドの他端部にスライド自在に連結されることで、前記コンロッドと前記可動部材は、伸縮可能な伸縮部材を構成し、
     前記ピストンが上死点の手前から上死点に近づくに従って、前記クランクの回転力を利用して前記伸縮部材を伸長させる伸縮機構をさらに備えている、請求項1に記載の内燃機関。
    the fixed gear is fixed to the crankpin;
    The movable member is slidably connected to the other end of the connecting rod, so that the connecting rod and the movable member constitute an extendable and retractable member,
    2. The internal combustion engine according to claim 1, further comprising an expansion and contraction mechanism that expands said expansion and contraction member using a rotational force of said crank as said piston approaches from before top dead center to near top dead center.
  10.  前記伸縮機構は、
      前記可動部材に回転自在に支持されて、前記固定歯車と噛み合う伸縮用歯車と、
      前記伸縮用歯車の回転軸と同軸の主軸と、該主軸から偏心した位置の副軸とを有し、前記伸縮用歯車の回転に伴って前記主軸を中心に回転移動する伸縮用クランクと、
      前記伸縮用クランクの副軸に回転自在に支持されると共に、前記コンロッドにも回転自在に支持されて、前記伸縮用歯車の回転移動に伴って揺動して、前記可動部材に対し前記コンロッドを進退させる揺動部材とを備えている、請求項9に記載の内燃機関。
    The expansion and contraction mechanism is
    an expansion gear rotatably supported by the movable member and meshing with the fixed gear;
    a telescopic crank having a main shaft coaxial with the rotating shaft of the telescopic gear and a sub shaft positioned eccentrically from the main shaft, and rotationally moving about the main shaft as the telescopic gear rotates;
    It is rotatably supported by the auxiliary shaft of the telescopic crank and also rotatably supported by the connecting rod, and swings with the rotational movement of the telescopic gear to move the connecting rod with respect to the movable member. 10. The internal combustion engine according to claim 9, comprising a rocking member that moves back and forth.
PCT/JP2022/013285 2021-03-24 2022-03-22 Internal combustion engine WO2022202843A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022518891A JPWO2022202843A1 (en) 2021-03-24 2022-03-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021049655 2021-03-24
JP2021-049655 2021-03-24

Publications (1)

Publication Number Publication Date
WO2022202843A1 true WO2022202843A1 (en) 2022-09-29

Family

ID=83395602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013285 WO2022202843A1 (en) 2021-03-24 2022-03-22 Internal combustion engine

Country Status (2)

Country Link
JP (1) JPWO2022202843A1 (en)
WO (1) WO2022202843A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080901A (en) * 1998-07-10 2000-03-21 Kayseven Co Ltd Reciprocating internal combustion engine and compressor as well as those of pistons therewith
JP2008151152A (en) * 2004-11-01 2008-07-03 Hiroshi Morikawa Conversion method between linear/rotational motion of reciprocal engine
JP2008196358A (en) * 2007-02-12 2008-08-28 Shinji Oketa Internal combustion engine
JP2019027362A (en) * 2017-07-31 2019-02-21 株式会社エッチ・ケー・エス Four cycle engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080901A (en) * 1998-07-10 2000-03-21 Kayseven Co Ltd Reciprocating internal combustion engine and compressor as well as those of pistons therewith
JP2008151152A (en) * 2004-11-01 2008-07-03 Hiroshi Morikawa Conversion method between linear/rotational motion of reciprocal engine
JP2008196358A (en) * 2007-02-12 2008-08-28 Shinji Oketa Internal combustion engine
JP2019027362A (en) * 2017-07-31 2019-02-21 株式会社エッチ・ケー・エス Four cycle engine

Also Published As

Publication number Publication date
JPWO2022202843A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
JP2010502877A (en) Improved opposed piston combustion engine
CN103244260A (en) Compression ratio variable and expansion ratio variable device
JP2002531744A (en) Reciprocating rotary piston system, pressure pump and internal combustion engine using the same
WO2017159340A1 (en) Actuator for internal combustion engine link mechanism and wave gear speed reducer
CN102979619B (en) Arbitrary-tooth difference rolling transmission internal combustion engine
JP2009036030A (en) Crankshaft structure of high expansion ratio engine
WO2022202843A1 (en) Internal combustion engine
CN105604696A (en) Internal combustion engine driven by needle roller block with any tooth difference
CN102937048B (en) Two-phase outer cam shock wave rolling transmission internal combustion engine
CN102877942A (en) Two-phase outer cam sleeve type high-rotational-speed internal-combustion engine
JP7224704B1 (en) internal combustion engine
TW202000404A (en) Manipulator and flexing meshing gear device wherein the manipulator includes a first arm member, a second arm member, and a driving device
CN107709732B (en) Variable compression ratio internal combustion engine and its learning method
JP6990059B2 (en) 4-cycle engine
JP2009114959A (en) Crank device
US3277743A (en) Crankshaft with floating crank throws
US20110226199A1 (en) Radial internal combustion engine with different stroke volumes
JP4994495B2 (en) Rotating piston engine
CN103790700B (en) For the piston-engined power transfering device of birotor
JP2018159458A (en) Wave gear reducer, and actuator for variable compression device of internal combustion engine
CN102828825A (en) Symmetrical biphase cam swing type internal combustion engine with high rotating speed
CN103089418A (en) Apparatus for reducing engine torque fluctuations
JP5786697B2 (en) Continuously variable transmission with adjustable gear ratio using slider link mechanism
WO2019059078A1 (en) Wave-motion gear device and actuator for variable compression ratio mechanism of internal combustion engine
CN105697144A (en) Internal-bi-phase cam driven roller needle roller block type internal combustion engine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022518891

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775625

Country of ref document: EP

Kind code of ref document: A1