WO2022202804A1 - Thermosetting resin composition, dielectric substrate, and microstrip antenna - Google Patents

Thermosetting resin composition, dielectric substrate, and microstrip antenna Download PDF

Info

Publication number
WO2022202804A1
WO2022202804A1 PCT/JP2022/013123 JP2022013123W WO2022202804A1 WO 2022202804 A1 WO2022202804 A1 WO 2022202804A1 JP 2022013123 W JP2022013123 W JP 2022013123W WO 2022202804 A1 WO2022202804 A1 WO 2022202804A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermosetting resin
curing agent
active ester
titanate
Prior art date
Application number
PCT/JP2022/013123
Other languages
French (fr)
Japanese (ja)
Inventor
俊次 木村
剛志 田中
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2023509190A priority Critical patent/JP7351434B2/en
Priority to CN202280023625.2A priority patent/CN117043218A/en
Priority to KR1020237036072A priority patent/KR20230160342A/en
Publication of WO2022202804A1 publication Critical patent/WO2022202804A1/en
Priority to JP2023142704A priority patent/JP2023164926A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium

Definitions

  • the present invention relates to a thermosetting resin composition, a dielectric substrate made of the thermosetting resin composition, and a microstrip antenna provided with the dielectric substrate.
  • Communication equipment can be made even more compact by increasing the dielectric constant of the antenna material (dielectric substrate) incorporated inside the communication equipment. Further, when the dielectric loss tangent of the dielectric substrate becomes small, the loss becomes low, which is advantageous for increasing the frequency. Therefore, if a dielectric substrate with a high dielectric constant and a small dielectric loss tangent can be used, it is possible to increase the frequency, shorten the circuit, and reduce the size of communication equipment.
  • Patent Document 1 a dielectric substrate which is a composite material containing a fluororesin and a glass cloth and an antenna whose two-dimensional roughness Ra of the surface in contact with the fluororesin is less than 0.2 ⁇ m is disclosed for a circuit.
  • An antenna having a substrate is disclosed.
  • the document describes the dielectric constant and dielectric loss tangent of the circuit board measured at 1 GHz.
  • Patent Document 2 discloses a resin composition containing a siloxane-modified polyamideimide resin, a high dielectric constant filler, and an epoxy resin, and having a cured product with a dielectric constant of 15 or more at 25°C and 1 MHz. Examples of the document describe an example of using barium titanate as the high dielectric constant filler.
  • Patent Document 3 discloses a resin composition containing an epoxy resin, a dielectric powder, a nonionic surfactant, and an active ester curing agent. This document describes that this resin composition can be used as a high dielectric constant insulating material for electronic parts used in a high frequency range and as a high dielectric constant insulating material for fingerprint sensors. Examples of the literature describe an example of using barium titanate as the dielectric powder.
  • Patent document 4 contains an epoxy resin, a curing agent, and an inorganic filler containing predetermined amounts of calcium titanate particles and strontium titanate particles, and the inorganic filler consists of silica particles and alumina particles.
  • a molding resin composition further containing at least one selected from the group and used for encapsulating electronic parts in high-frequency devices is disclosed.
  • the dielectric substrates described in Patent Documents 1 to 4 have problems with dielectric properties such as a high dielectric constant and a low dielectric loss tangent, and these problems are particularly noticeable in the high frequency band.
  • the present inventors have found that a dielectric substrate having excellent dielectric properties can be obtained by including a specific high dielectric constant filler, and have completed the first to fourth inventions. That is, the first to fourth inventions can be shown below.
  • thermosetting resin (A) a thermosetting resin; (C) a high dielectric constant filler;
  • the high dielectric constant filler (C) is calcium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, barium zirconate, zircon titanate.
  • a thermosetting resin composition comprising at least one selected from calcium acid, lead zirconate titanate, barium magnesium niobate, and calcium zirconate.
  • the active ester curing agent (B1) includes an active ester curing agent containing a dicyclopentadiene type diphenol structure, an active ester curing agent containing a naphthalene structure, an active ester curing agent containing an acetylated phenol novolac, and a phenol
  • the thermosetting resin composition according to [2] which contains at least one selected from active ester curing agents containing benzoylated novolaks.
  • A is a substituted or unsubstituted arylene group linked via an aliphatic cyclic hydrocarbon group
  • Ar′ is a substituted or unsubstituted aryl group
  • B is a structure represented by the following general formula (B)
  • Ar is a substituted or unsubstituted arylene group
  • Y is a single bond, a substituted or unsubstituted linear alkylene group having 1 to 6 carbon atoms, or a substituted or unsubstituted is a cyclic alkylene group having 3 to 6 carbon atoms, a substituted or unsubstituted divalent aromatic hydrocarbon group, an ether bond, a carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group, n is 0 is an integer between ⁇ 4.
  • k is the average value of repeating units and ranges from 0.25 to 3.5.
  • thermosetting resin composition according to any one of [1] to [6] which has a rectangular pressure of 0.1 MPa or more measured under the following conditions. (conditions) Using a low-pressure transfer molding machine, the resin composition was injected into a rectangular channel having a width of 13 mm, a thickness of 1 mm, and a length of 175 mm under conditions of a mold temperature of 175°C and an injection rate of 177 mm 3 /sec.
  • a pressure sensor embedded at a position 25 mm from the upstream end of the channel measures the change in pressure over time to calculate the minimum pressure when the resin composition flows, and this minimum pressure is defined as the rectangular pressure.
  • a cured product obtained by heating a resin composition containing a thermosetting resin (A) and a high dielectric constant filler (C) at 200° C. for 90 minutes at 18 GHz by a cavity resonator method.
  • a thermosetting resin composition having a dielectric constant at 10 or more and a dielectric loss tangent (tan ⁇ ) of 0.04 or less.
  • thermosetting resin (A) a thermosetting resin; (B) a curing agent; (C) a high dielectric constant filler; A thermosetting resin composition, wherein the high dielectric constant filler (C) contains magnesium titanate.
  • thermosetting resin composition according to [9] wherein the high dielectric constant filler (C) further contains calcium titanate.
  • the heat according to [9] or [10], wherein the high dielectric constant filler (C) is contained in an amount of 10% by mass or more and 90% by mass or less in 100% by mass of the thermosetting resin composition.
  • a curable resin composition (A) a thermosetting resin; (B) a curing agent; (C) a high dielectric constant filler; A thermosetting resin composition, wherein the high dielectric constant filler (C) contains magnesium titanate.
  • the thermosetting resin composition according to [9], wherein the high dielectric constant filler (C) further contains calcium titanate.
  • the heat according to [9] or [10] wherein the high dielectric constant filler (C) is
  • the curing agent (B) contains an active ester curing agent (B1),
  • the active ester curing agent (B1) includes an active ester curing agent containing a dicyclopentadiene type diphenol structure, an active ester curing agent containing a naphthalene structure, an active ester curing agent containing an acetylated product of phenol novolac, and a benzoyl of phenol novolak.
  • the thermosetting resin composition according to any one of [9] to [11], which contains at least one selected from active ester curing agents containing compounds.
  • the thermosetting resin composition according to [12], wherein the active ester curing agent (B1) has a structure represented by the following general formula (1).
  • A is a substituted or unsubstituted arylene group linked via an aliphatic cyclic hydrocarbon group
  • Ar′ is a substituted or unsubstituted aryl group
  • B is a structure represented by the following general formula (B)
  • Ar is a substituted or unsubstituted arylene group
  • Y is a single bond, a substituted or unsubstituted linear alkylene group having 1 to 6 carbon atoms, or a substituted or unsubstituted is a cyclic alkylene group having 3 to 6 carbon atoms, a substituted or unsubstituted divalent aromatic hydrocarbon group, an ether bond, a carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group, n is 0 is an integer between ⁇ 4.
  • k is the average value of repeating units and ranges from 0.25 to 3.5.
  • thermosetting resin composition according to any one of [9] to [13], further comprising a curing catalyst (D).
  • a thermosetting resin composition containing a thermosetting resin (A), a curing agent (B), and a high dielectric constant filler (C) was cured by heating at 200°C for 90 minutes.
  • thermosetting resin composition comprising (A) the thermosetting resin is an epoxy resin (A1),
  • the epoxy resin (A1) is a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a naphthalene type epoxy resin, a dicyclopentadiene type epoxy resin, a glycidylamine type epoxy resin, a naphthol aralkyl type epoxy resin, and a phenol aralkyl type epoxy resin.
  • the curing agent (B) comprises an active ester curing agent (B1) and/or a phenolic curing agent (B2)
  • the high dielectric constant filler (C) is calcium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, barium zirconate, zircon titanate.
  • a thermosetting resin composition comprising at least one selected from calcium acid, lead zirconate titanate, barium magnesium niobate, and calcium zirconate.
  • the active ester curing agent (B1) includes an active ester curing agent containing a dicyclopentadiene type diphenol structure, an active ester curing agent containing a naphthalene structure, an active ester curing agent containing an acetylated phenol novolak, and a phenol
  • A is a substituted or unsubstituted arylene group linked via an aliphatic cyclic hydrocarbon group
  • Ar′ is a substituted or unsubstituted aryl group
  • B is a structure represented by the following general formula (B)
  • Ar is a substituted or unsubstituted arylene group
  • Y is a single bond, a substituted or unsubstituted linear alkylene group having 1 to 6 carbon atoms, or a substituted or unsubstituted is a cyclic alkylene group having 3 to 6 carbon atoms, a substituted or unsubstituted divalent aromatic hydrocarbon group, an ether bond, a carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group, n is 0 is an integer between ⁇ 4.
  • k is the average value of repeating units and ranges from 0.25 to 3.5.
  • thermosetting resin (A) a thermosetting resin; (B) a curing agent; (C) a high dielectric constant filler; (A) the thermosetting resin is an epoxy resin (A1), The epoxy resin (A1) contains a naphthol aralkyl epoxy resin,
  • the high dielectric constant filler (C) is calcium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, barium zirconate, zircon titanate.
  • thermosetting resin composition comprising at least one selected from calcium acid, lead zirconate titanate, barium magnesium niobate, and calcium zirconate.
  • the curing agent (B) contains an active ester curing agent (B1) and/or a phenolic curing agent (B2).
  • thermosetting resin compositions of the first to fourth inventions can be used for applications described in [26] to [31] below.
  • the thermosetting resin composition according to any one of [1] to [25] which is used as a material for forming a microstrip antenna.
  • the thermosetting resin composition according to any one of [1] to [25] which is used as a material for forming a dielectric waveguide.
  • the thermosetting resin composition according to any one of [1] to [25] which is used as a material for forming an electromagnetic wave absorber.
  • a dielectric substrate obtained by curing the thermosetting resin composition according to any one of [1] to [25].
  • a microstrip antenna comprising: A microstrip antenna, wherein the high dielectric is composed of the dielectric substrate described in [29].
  • a resin composition from which a dielectric substrate excellent in high dielectric constant and low dielectric loss tangent can be obtained, a dielectric substrate made of the resin composition, and a microstrip antenna provided with the dielectric substrate are provided.
  • a thermosetting resin composition from which a dielectric substrate excellent in low dielectric loss tangent can be obtained, a dielectric substrate made of the resin composition, and a microstrip antenna provided with the dielectric substrate can provide.
  • thermosetting resin composition that provides a dielectric substrate excellent in high dielectric constant and low dielectric loss tangent, a dielectric substrate made of the resin composition, and a microstrip comprising the dielectric substrate Antenna can be provided.
  • thermosetting resin composition from which a dielectric substrate having excellent dielectric properties such as a low dielectric loss tangent can be obtained, a dielectric substrate made of the resin composition, and the dielectric substrate are provided.
  • a microstrip antenna can be provided.
  • FIG. 1 is a top perspective view showing a microstrip antenna of this embodiment
  • FIG. 4 is a cross-sectional view showing another aspect of the microstrip antenna of this embodiment
  • thermosetting resin composition of this embodiment is It contains a thermosetting resin (A) and a high dielectric constant filler (C). Each component is described below.
  • thermosetting resin (A) is a kind selected from cyanate resins, epoxy resins, resins having two or more radically polymerizable carbon-carbon double bonds in one molecule, and maleimide resins. Alternatively, two or more kinds can be used. Among these, it is particularly preferable to contain the epoxy resin (A1) from the viewpoint of improving the effects of the present invention and the adhesiveness of the thermally conductive paste.
  • epoxy resin (A1) any monomer, oligomer, or polymer having two or more epoxy groups in one molecule can be used, and its molecular weight and molecular structure are not limited.
  • the epoxy resin (A1) is, for example, a biphenyl type epoxy resin; a bisphenol type epoxy resin such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a tetramethylbisphenol F type epoxy resin; a stilbene type epoxy resin; a phenol novolac type epoxy resin; Novolak type epoxy resins such as cresol novolak type epoxy resins; Polyfunctional epoxy resins such as trisphenol type epoxy resins exemplified by triphenolmethane type epoxy resins and alkyl-modified triphenolmethane type epoxy resins; Phenol aralkyls having a phenylene skeleton type epoxy resin, naphthol aralkyl type epoxy resin having a phenylene skeleton, phenol aralkyl type epoxy resin having a biphenylene skeleton, phenol aralkyl type epoxy resin such as a naphthol aralkyl type epoxy resin having a biphenylene skeleton; Naph
  • the epoxy resin preferably contains one or more selected from the group consisting of ortho-cresol novolak-type epoxy resins, phenol aralkyl-type epoxy resins having a biphenylene skeleton, and triphenylmethane-type epoxy resins. More preferably, it contains one or more selected from the group consisting of ortho-cresol novolak-type epoxy resins and phenol aralkyl-type epoxy resins having a biphenylene skeleton.
  • the epoxy resin (A1) is preferably 3% by mass or more, more preferably 5% by mass or more, and still more preferably 10% by mass or more relative to the entire thermosetting resin composition. can be done. Also, the epoxy resin (A1) can typically be contained in an amount of 20% by mass or less, more preferably 18% by mass or less, and even more preferably 15% by mass or less.
  • the high dielectric constant filler (C) includes calcium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, and zirconate. Barium, calcium zirconate titanate, lead zirconate titanate, barium magnesium niobate, calcium zirconate, and the like can be mentioned, and one or more selected from these can be used. Since the thermosetting resin composition of the present embodiment contains these high dielectric constant fillers (C), it is excellent in high dielectric constant and low dielectric loss tangent, and is excellent in these effects even in a high frequency band.
  • high dielectric constant filler (C) calcium titanate and strontium titanate are more preferable from the viewpoint of the effects of the present invention, particularly from the viewpoint of low dielectric loss tangent.
  • the shape of the high dielectric constant filler (C) is granular, amorphous, flaky, etc., and high dielectric constant fillers of these shapes can be used at any ratio.
  • the average particle size of the high dielectric constant filler is preferably 0.1 ⁇ m or more and 50 ⁇ m or less, more preferably 0.3 ⁇ m or more and 20 ⁇ m or less, still more preferably 0, from the viewpoint of the effects of the present invention and fluidity/fillability. .5 ⁇ m or more and 10 ⁇ m or less.
  • the amount of the high dielectric constant filler (C) is preferably 20% by mass to 80% by mass, more preferably 30% by mass to 70% by mass, and still more preferably 40% by mass with respect to the entire thermosetting resin composition. % to 60% by mass.
  • the addition amount of the high dielectric constant filler (C) is within the above range, the dielectric constant of the resulting cured product is further lowered, and the production of molded articles is also excellent.
  • the thermosetting resin composition of the present embodiment can further contain an active ester curing agent (B1).
  • a compound having one or more active ester groups in one molecule can be used as the active ester curing agent (B1).
  • the active ester curing agent (B1) contains two highly reactive ester groups per molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds. Compounds having one or more are preferred.
  • the active ester curing agent (B1) include an active ester curing agent containing a dicyclopentadiene type diphenol structure, an active ester curing agent containing a naphthalene structure, an active ester curing agent containing an acetylated phenol novolac, and a phenol Active ester curatives including benzoylated novolacs can be included and at least one can be included. Among them, an active ester curing agent containing a naphthalene structure and an active ester curing agent containing a dicyclopentadiene type diphenol structure are more preferable.
  • "Dicyclopentadiene-type diphenol structure” represents a divalent structural unit consisting of phenylene-dicyclopentylene-phenylene.
  • the active ester curing agent (B1) can be, for example, a resin having a structure represented by the following general formula (1).
  • Ar is a substituted or unsubstituted arylene group.
  • Substituents of the substituted arylene group include alkyl groups having 1 to 4 carbon atoms, alkoxy groups having 1 to 4 carbon atoms, phenyl groups and aralkyl groups.
  • Y is a single bond, a substituted or unsubstituted linear alkylene group having 1 to 6 carbon atoms, or a substituted or unsubstituted cyclic alkylene group having 3 to 6 carbon atoms, or a substituted or unsubstituted divalent is an aromatic hydrocarbon group, an ether bond, a carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group.
  • Substituents for the aforementioned groups include alkyl groups having 1 to 4 carbon atoms, alkoxy groups having 1 to 4 carbon atoms, phenyl groups, aralkyl groups and the like.
  • Y include a single bond, a methylene group, —CH(CH 3 ) 2 —, an ether bond, an optionally substituted cycloalkylene group, an optionally substituted 9,9-fluorenylene group, and the like.
  • n is an integer of 0-4, preferably 0 or 1;
  • B is a structure represented by the following general formula (B1) or the following general formula (B2).
  • A is a substituted or unsubstituted arylene group linked via an aliphatic cyclic hydrocarbon group;
  • Ar' is a substituted or unsubstituted aryl group;
  • k is the average value of repeating units and ranges from 0.25 to 3.5.
  • thermosetting resin composition of the present embodiment contains a specific active ester curing agent, so that the resulting cured product can have excellent dielectric properties and excellent low dielectric loss tangent.
  • the active ester curing agent (B1) used in the thermosetting resin composition of this embodiment has an active ester group represented by formula (B).
  • the active ester group of the active ester curing agent reacts with the epoxy group of the epoxy resin to generate secondary hydroxyl groups. This secondary hydroxyl group is blocked by the ester residue of the active ester curing agent. Therefore, the dielectric loss tangent of the cured product is reduced.
  • the structure represented by formula (B) above is preferably at least one selected from the following formulas (B-1) to (B-6).
  • each R 1 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a phenyl group, or an aralkyl group;
  • Each R 2 is independently an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a phenyl group
  • X is a linear alkylene group having 2 to 6 carbon atoms, ether a bond, a carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group
  • n is an integer of 0-4
  • p is an integer of 1-4.
  • thermosetting resin Since the structures represented by the above formulas (B-1) to (B-6) are all highly oriented structures, when using an active ester curing agent containing this, the resulting thermosetting resin The cured product of the composition has a low dielectric loss tangent and excellent adhesion to metals, and therefore can be suitably used as a semiconductor encapsulating material.
  • an active ester curing agent having a structure represented by formula (B-2), formula (B-3) or formula (B-5) is preferable, and further formula (B-2) n is 0, a structure in which X in formula (B-3) is an ether bond, or an active ester having a structure in which two carbonyloxy groups are at the 4,4′-positions in formula (B-5) Curing agents are more preferred.
  • all R 1 in each formula are preferably hydrogen atoms.
  • Ar′ in formula (1) is an aryl group, such as a phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 3,5-xylyl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, 2-benzylphenyl group, 4-benzylphenyl group, 4-( ⁇ -cumyl)phenyl group, 1-naphthyl group, 2-naphthyl group and the like.
  • a 1-naphthyl group or a 2-naphthyl group is preferable because a cured product having a particularly low dielectric loss tangent can be obtained.
  • a in the active ester curing agent represented by formula (1) is a substituted or unsubstituted arylene group linked via an aliphatic cyclic hydrocarbon group, such an arylene group
  • arylene group examples thereof include a structure obtained by polyaddition reaction of an unsaturated aliphatic cyclic hydrocarbon compound containing two double bonds in one molecule and a phenolic compound.
  • the unsaturated aliphatic cyclic hydrocarbon compounds containing two double bonds in one molecule are, for example, dicyclopentadiene, cyclopentadiene oligomers, tetrahydroindene, 4-vinylcyclohexene, 5-vinyl-2-norbornene. , limonene, etc., and these may be used alone or in combination of two or more.
  • dicyclopentadiene is preferable because a cured product having excellent heat resistance can be obtained.
  • dicyclopentadiene is contained in petroleum distillates, industrial dicyclopentadiene may contain cyclopentadiene polymers and other aliphatic or aromatic diene compounds as impurities.
  • the phenolic compounds include, for example, phenol, cresol, xylenol, ethylphenol, isopropylphenol, butylphenol, octylphenol, nonylphenol, vinylphenol, isopropenylphenol, allylphenol, phenylphenol, benzylphenol, chlorophenol, bromophenol, 1-naphthol, 2-naphthol, 1,4-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene and the like, each alone You may use and you may use two or more types together. Among these, phenol is preferable because it is an active ester curing agent having high curability and excellent dielectric properties in the cured product.
  • "A" in the active ester curing agent represented by formula (1) has a structure represented by formula (A).
  • a thermosetting resin composition containing an active ester curing agent in which "A” in formula (1) has the following structure has a low dielectric loss tangent in the cured product and is excellent in adhesion to an insert.
  • each R 3 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a phenyl group, or an aralkyl group; l is 0 or 1, and m is an integer of 1 or more.
  • active ester curing agents represented by formula (1) more preferable ones include resins represented by the following formulas (1-1), (1-2) and (1-3), Especially preferred are resins represented by the following formula (1-3).
  • R 1 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a phenyl group, or an aralkyl group.
  • Z is a phenyl group, a naphthyl group, or a phenyl group or a naphthyl group having 1 to 3 alkyl groups having 1 to 4 carbon atoms on the aromatic nucleus
  • l is 0 or 1
  • k is a repeating unit is the average of 0.25 to 3.5.
  • R 1 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a phenyl group, or an aralkyl group.
  • Z is a phenyl group, a naphthyl group, or a phenyl group or a naphthyl group having 1 to 3 alkyl groups having 1 to 4 carbon atoms on the aromatic nucleus
  • l is 0 or 1
  • k is a repeating unit is the average of 0.25 to 3.5.
  • R 1 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a phenyl group, or an aralkyl group.
  • Z is a phenyl group, a naphthyl group, or a phenyl group or a naphthyl group having 1 to 3 alkyl groups having 1 to 4 carbon atoms on the aromatic nucleus
  • l is 0 or 1
  • k is a repeating unit is the average of 0.25 to 3.5.
  • the active ester curing agent (B1) used in the present invention comprises a phenolic compound (a) having a structure in which a plurality of aryl groups having phenolic hydroxyl groups are connected via an aliphatic cyclic hydrocarbon group, and an aromatic nucleus-containing dicarboxylic acid. It can be produced by a known method of reacting an acid or its halide (b) with an aromatic monohydroxy compound (c).
  • the reaction ratio of the phenolic compound (a), the aromatic nucleus-containing dicarboxylic acid or its halide (b), and the aromatic monohydroxy compound (c) can be appropriately adjusted according to the desired molecular design.
  • the phenolic compound (a ) since an active ester curing agent with higher curability can be obtained, the phenolic compound (a ) has a phenolic hydroxyl group in the range of 0.25 to 0.90 mol, and the hydroxyl group in the aromatic monohydroxy compound (c) has a range of 0.10 to 0.75 mol.
  • the phenolic hydroxyl group possessed by the phenolic compound (a) is in the range of 0.50 to 0.75 mol, and the hydroxyl group possessed by the aromatic monohydroxy compound (c) is 0.5 mol. It is more preferable to use each raw material in a ratio of 25 to 0.50 mol.
  • the functional group equivalent of the active ester curing agent (B1) is excellent in curability when the sum of the arylcarbonyloxy groups and phenolic hydroxyl groups in the resin structure is taken as the total number of functional groups in the resin, and the dielectric constant and dielectric loss tangent are good. It is preferably in the range of 200 g/eq or more and 230 g/eq or less, more preferably 210 g/eq or more and 220 g/eq or less, since a low cured product can be obtained.
  • the blending amount of the active ester curing agent (B1) and the epoxy resin (A1) is excellent in curability, and a cured product with a low dielectric loss tangent can be obtained. It is preferable that the ratio of the epoxy groups in the epoxy resin (A1) is 0.8 to 1.2 equivalents with respect to the total equivalent of active groups in the curing agent (B1).
  • the active groups in the active ester curing agent (B1) refer to arylcarbonyloxy groups and phenolic hydroxyl groups in the resin structure.
  • the active ester curing agent (B1) is preferably 0.2% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more, relative to the entire thermosetting resin composition. It is used in an amount of 10 mass % or less, more preferably 1.0 mass % or more and 7 mass % or less.
  • the obtained cured product can have more excellent dielectric properties and is further excellent in low dielectric loss tangent.
  • the resin blocker of the present embodiment is excellent in high dielectric constant and low dielectric loss tangent, even in a high frequency band. Excellent in these effects.
  • the active ester curing agent (B1) is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 2 parts by mass or more, relative to 100 parts by mass of the high dielectric constant filler (C). It can be contained in an amount of 20 parts by mass or less, more preferably 3 parts by mass or more and 15 parts by mass or less.
  • thermosetting resin composition containing an epoxy resin and a predetermined active ester curing agent in a semiconductor encapsulation application different from the present invention. developing things.
  • the present invention differs from the technique described in the publication in that it contains a high dielectric constant filler.
  • the effect of the combination of the active ester curing agent and the epoxy resin is also different in that it has a high dielectric constant and is excellent in high dielectric constant and low dielectric loss tangent in the high frequency band. ing.
  • thermosetting resin composition of this embodiment can further contain a curing agent other than the active ester curing agent (B1).
  • Curing agents include, for example, diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complexes, amine compounds such as guanidine derivatives; dicyandiamide, dimer of linolenic acid and ethylenediamine.
  • Amide compounds such as polyamide resins synthesized from; , Acid anhydrides such as methylhexahydrophthalic anhydride; phenol novolak resin, cresol novolak resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin, naphthol aralkyl resin, trimethylolmethane Resin, tetraphenylolethane resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenolic resin (polyhydric phenol compound with phenolic nucleus linked by bismethylene group), biphenyl-modified Polyhydric phenol compounds such as naphthol resin (polyhydric naphthol compound in which phenol nucleus is linked by bismethylene group), aminotriazine-modified phenol resin (pol
  • the amount of the other curing agent is preferably 0.5% by mass or more and 20% by mass or less, more preferably 1% by mass, based on the thermosetting resin. 0% by mass or more and 15% by mass or less, more preferably 2.0% by mass or more and 10% by mass or less.
  • the curing agent in an amount within the above range, a thermosetting resin composition having excellent curability can be obtained.
  • thermosetting resin composition of this embodiment can further contain a curing catalyst (D).
  • the curing catalyst (D) is sometimes called a curing accelerator or the like.
  • the curing catalyst (D) is not particularly limited as long as it accelerates the curing reaction of the thermosetting resin (A), and known curing catalysts can be used.
  • phosphorus atom-containing compounds such as organic phosphines, tetrasubstituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, adducts of phosphonium compounds and silane compounds; 2-methylimidazole, 2- imidazoles such as phenylimidazole (imidazole-based curing accelerators); Nitrogen atom-containing compounds such as salts can be mentioned, and only one type may be used, or two or more types may be used.
  • a phosphorus atom-containing compound such as a tetra-substituted phosphonium compound, a phosphobetaine compound, a phosphine compound and a quinone compound. It is more preferable to include latent compounds such as adducts of phosphonium compounds and silane compounds, tetrasubstituted phosphonium compounds, adducts of phosphine compounds and quinone compounds, and adducts of phosphonium compounds and silane compounds. Adducts are particularly preferred.
  • organic phosphines include primary phosphines such as ethylphosphine and phenylphosphine; secondary phosphines such as dimethylphosphine and diphenylphosphine; and tertiary phosphines such as trimethylphosphine, triethylphosphine, tributylphosphine and triphenylphosphine.
  • Examples of tetra-substituted phosphonium compounds include compounds represented by the following general formula (6).
  • P represents a phosphorus atom.
  • R 4 , R 5 , R 6 and R 7 each independently represent an aromatic group or an alkyl group.
  • A represents an anion of an aromatic organic acid having at least one functional group selected from a hydroxyl group, a carboxyl group and a thiol group on an aromatic ring.
  • AH represents an aromatic organic acid having at least one functional group selected from a hydroxyl group, a carboxyl group and a thiol group on an aromatic ring.
  • x and y are 1 to 3
  • z is 0 to 3
  • x y.
  • a compound represented by the general formula (6) is obtained, for example, as follows. First, a tetra-substituted phosphonium halide, an aromatic organic acid and a base are mixed in an organic solvent and uniformly mixed to generate an aromatic organic acid anion in the solution system. Water is then added to precipitate the compound represented by general formula (6).
  • R 4 , R 5 , R 6 and R 7 bonded to the phosphorus atom are phenyl groups
  • AH is a compound having a hydroxyl group in the aromatic ring, that is, a phenol.
  • A is preferably the anion of the phenol.
  • phenols examples include monocyclic phenols such as phenol, cresol, resorcin and catechol; condensed polycyclic phenols such as naphthol, dihydroxynaphthalene and anthraquinol; bisphenols such as bisphenol A, bisphenol F and bisphenol S; Examples include polycyclic phenols such as phenylphenol and biphenol.
  • Examples of phosphobetaine compounds include compounds represented by the following general formula (7).
  • P represents a phosphorus atom.
  • R 8 represents an alkyl group having 1 to 3 carbon atoms, and R 9 represents a hydroxyl group.
  • f is 0-5 and g is 0-3.
  • a compound represented by the general formula (7) is obtained, for example, as follows. First, the triaromatic-substituted phosphine, which is the third phosphine, is brought into contact with a diazonium salt to substitute the diazonium group of the triaromatic-substituted phosphine with the diazonium salt.
  • Examples of adducts of phosphine compounds and quinone compounds include compounds represented by the following general formula (8).
  • P represents a phosphorus atom.
  • R 10 , R 11 and R 12 each represent an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms and may be the same or different.
  • R 13 , R 14 and R 15 each represent a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms and may be the same or different, and R 14 and R 15 combine to form a cyclic structure.
  • the phosphine compound used for the adduct of the phosphine compound and the quinone compound includes, for example, triphenylphosphine, tris(alkylphenyl)phosphine, tris(alkoxyphenyl)phosphine, trinaphthylphosphine, tris(benzyl)phosphine and the like.
  • Substituents or those in which a substituent such as an alkyl group or an alkoxyl group is present are preferred, and examples of substituents such as an alkyl group or an alkoxyl group include those having 1 to 6 carbon atoms.
  • Triphenylphosphine is preferred from the viewpoint of availability.
  • the quinone compound used for the adduct of the phosphine compound and the quinone compound includes benzoquinone and anthraquinones, among which p-benzoquinone is preferable from the viewpoint of storage stability.
  • the adduct can be obtained by contacting and mixing in a solvent in which both the organic tertiary phosphine and the benzoquinones can be dissolved.
  • a solvent in which both the organic tertiary phosphine and the benzoquinones can be dissolved.
  • ketones such as acetone and methyl ethyl ketone, which have low solubility in the adduct, are preferred. However, it is not limited to this.
  • Examples of adducts of phosphonium compounds and silane compounds include compounds represented by the following general formula (9).
  • P represents a phosphorus atom and Si represents a silicon atom.
  • R 16 , R 17 , R 18 and R 19 each represent an aromatic or heterocyclic organic group or an aliphatic group, and may be the same or different.
  • R20 is an organic group that bonds with groups Y2 and Y3 .
  • R21 is an organic group that bonds with groups Y4 and Y5 .
  • Y2 and Y3 each represent a group formed by releasing protons from a proton - donating group , and the groups Y2 and Y3 in the same molecule combine with silicon atoms to form a chelate structure.
  • Y4 and Y5 represent a group formed by releasing protons from a proton - donating group, and the groups Y4 and Y5 in the same molecule bind to silicon atoms to form a chelate structure.
  • R 20 and R 21 may be the same or different, and Y 2 , Y 3 , Y 4 and Y 5 may be the same or different.
  • Z1 is an organic group having an aromatic or heterocyclic ring, or an aliphatic group.
  • R 16 , R 17 , R 18 and R 19 are, for example, phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, naphthyl group, hydroxynaphthyl group, benzyl group and methyl group. , ethyl group, n-butyl group, n-octyl group and cyclohexyl group. , an aromatic group having a substituent such as a hydroxyl group or an unsubstituted aromatic group is more preferable.
  • R20 is an organic group that bonds with Y2 and Y3 .
  • R 21 is an organic group that bonds with groups Y 4 and Y 5 .
  • Y2 and Y3 are groups formed by proton - releasing proton - donating groups , and the groups Y2 and Y3 in the same molecule bond with silicon atoms to form a chelate structure.
  • Y4 and Y5 are groups in which proton - donating groups release protons, and groups Y4 and Y5 in the same molecule bond with silicon atoms to form a chelate structure.
  • the groups R 20 and R 21 may be the same or different, and the groups Y 2 , Y 3 , Y 4 and Y5 may be the same or different.
  • the proton donor releases two protons
  • the proton donor is preferably an organic acid having at least two carboxyl groups or hydroxyl groups in the molecule, and furthermore, the adjacent carbon atoms constituting the aromatic ring have a carboxyl group or a hydroxyl group.
  • An aromatic compound having at least two hydroxyl groups is preferable, and an aromatic compound having at least two hydroxyl groups on adjacent carbon atoms constituting an aromatic ring is more preferable.
  • examples include alcohol, 1,2-cyclohexanediol, 1,2-propanediol and glycerin, and among these, catechol, 1,2-dihydroxynaphthalene and 2,3-dihydroxynaphthalene are more preferred.
  • Z 1 in general formula (9) represents an organic group or aliphatic group having an aromatic or heterocyclic ring, specific examples of which include a methyl group, an ethyl group, a propyl group, a butyl group and a hexyl group. and aliphatic hydrocarbon groups such as octyl group, aromatic hydrocarbon groups such as phenyl group, benzyl group, naphthyl group and biphenyl group, glycidyloxy groups such as glycidyloxypropyl group, mercaptopropyl group, aminopropyl group, mercapto groups, alkyl groups having amino groups, and reactive substituents such as vinyl groups.
  • a method for producing an adduct of a phosphonium compound and a silane compound is, for example, as follows.
  • a silane compound such as phenyltrimethoxysilane and a proton donor such as 2,3-dihydroxynaphthalene are added and dissolved in a flask containing methanol, and then a sodium methoxide-methanol solution is added dropwise while stirring at room temperature. Furthermore, when a solution prepared in advance by dissolving a tetrasubstituted phosphonium halide such as tetraphenylphosphonium bromide in methanol is added dropwise thereto while stirring at room temperature, crystals are precipitated. Precipitated crystals are filtered, washed with water and dried in a vacuum to obtain an adduct of a phosphonium compound and a silane compound.
  • the curing catalyst (D) When the curing catalyst (D) is used, its content is preferably 0.01 to 1% by mass, more preferably 0.02 to 0.8% by mass, relative to the entire thermosetting resin composition. By setting it to such a numerical range, a sufficient curing acceleration effect can be obtained without excessively deteriorating other performances.
  • thermosetting resin composition of the present embodiment can further contain an inorganic filler in addition to the high dielectric constant filler in order to reduce hygroscopicity, reduce the coefficient of linear expansion, improve thermal conductivity, and improve strength.
  • Inorganic fillers include fused silica, crystalline silica, alumina, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, Examples include powders of mullite, titania, etc., beads obtained by spheroidizing these powders, glass fibers, and the like. These inorganic fillers may be used alone or in combination of two or more. Among the above inorganic fillers, fused silica is preferable from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferable from the viewpoint of high thermal conductivity. is preferred.
  • the amount of the inorganic filler other than the high dielectric constant filler is preferably 15% by mass or more, 60 % by mass or less, more preferably 20% by mass or more and 50% by mass or less. If it is the said range, it will be excellent in thermal-expansion reduction and moldability.
  • thermosetting resin composition of the present embodiment may optionally contain various components such as a silane coupling agent, a release agent, a colorant, a dispersant, and a stress reducing agent. can.
  • thermosetting resin composition of this embodiment can be produced by uniformly mixing the components described above. Examples of the production method include a method of sufficiently mixing raw materials in a predetermined amount with a mixer or the like, melt-kneading the mixture with a mixing roll, kneader, extruder or the like, and then cooling and pulverizing the mixture.
  • the resulting thermosetting resin composition may, if desired, be tableted to a size and mass that are suitable for molding conditions.
  • thermosetting resin composition of the present embodiment has a spiral flow length of 50 cm or more, preferably 55 cm or more, and more preferably 60 cm or more. Therefore, the thermosetting resin composition of this embodiment has excellent moldability.
  • a mold temperature of 175 ° C. is injected into a mold for spiral flow measurement according to EMMI-1-66. This can be done by injecting the resin molding material under conditions of a pressure of 6.9 MPa and a curing time of 120 seconds and measuring the flow length.
  • thermosetting resin composition of the present embodiment has a rectangular pressure of 0.1 MPa or more, preferably 0.15 MPa or more, more preferably 0.20 MPa or more, measured under the following conditions. Rectangular pressure is a parameter of melt viscosity, and the smaller the numerical value, the lower the melt viscosity.
  • the thermosetting resin composition of the present embodiment has a rectangular pressure within the above range, and is therefore excellent in mold filling properties during molding.
  • thermosetting resin composition was injected into a rectangular flow path with a width of 13 mm, a thickness of 1 mm, and a length of 175 mm under conditions of a mold temperature of 175°C and an injection speed of 177 mm 3 /sec. Then, the change in pressure over time is measured with a pressure sensor embedded at a position 25 mm from the upstream end of the flow channel, the minimum pressure at the time of flow of the thermosetting resin composition is calculated, and this minimum pressure is measured as a rectangular pressure.
  • the thermosetting resin composition containing the thermosetting resin of the present embodiment and a high dielectric constant filler has the following dielectric constant and dielectric loss tangent ( tan ⁇ ).
  • the dielectric constant at 18 GHz by the cavity resonator method can be 10 or more, preferably 12 or more, more preferably 13 or more, and particularly preferably 14 or more.
  • the dielectric loss tangent (tan ⁇ ) at 18 GHz by the cavity resonator method can be 0.04 or less, preferably 0.03 or less, more preferably 0.02 or less, and particularly preferably 0.015 or less.
  • the cured product obtained from the resin composition of the present embodiment is excellent in high dielectric constant and low dielectric loss tangent in a high frequency band, it is possible to increase the frequency and shorten the circuit and reduce the size of communication equipment. It can be suitably used as a material for forming a strip antenna, a material for forming a dielectric waveguide, a material for forming an electromagnetic wave absorber, and the like.
  • thermosetting resin composition of this embodiment contains a thermosetting resin (A), a curing agent (B), and a high dielectric constant filler (C). Each component is described below.
  • thermosetting resin (A) is a kind selected from cyanate resins, epoxy resins, resins having two or more radically polymerizable carbon-carbon double bonds in one molecule, and maleimide resins. Alternatively, two or more kinds can be used. Among these, it is particularly preferable to contain the epoxy resin (A1) from the viewpoint of the effects of the present invention.
  • Preferred specific examples of the epoxy resin (A1) in the present embodiment include those described for the epoxy resin (A1) in the above-described first embodiment.
  • thermosetting resin (A) can be contained in an amount of 5% by mass or more, preferably 8% by mass or more, relative to the entire thermosetting resin composition. Also, the thermosetting resin (A) can typically be contained in an amount of 20% by mass or less, preferably 15% by mass or less.
  • the curing agent (B) may be a known curing agent within the scope of the effects of the present invention. can be done.
  • active ester curing agent (B1)) A compound having one or more active ester groups in one molecule can be used as the active ester curing agent (B1).
  • active ester curing agents include phenol esters, thiophenol esters, N-hydroxyamine esters, esters of heterocyclic hydroxy compounds, etc., which have two or more ester groups with high reaction activity per molecule. Compounds are preferred.
  • Preferred specific examples of the active ester curing agent (B1) include those described for the active ester curing agent (B1) in the first embodiment, and can be produced in the same manner.
  • the functional group equivalent of the active ester curing agent (B1) is a cured product with excellent curability and low dielectric loss tangent when the total number of functional groups of the resin is the arylcarbonyloxy group and phenolic hydroxyl group in the resin structure. is obtained, it is preferably in the range of 200 g/eq to 230 g/eq, more preferably in the range of 210 g/eq to 220 g/eq.
  • the blending amount of the active ester curing agent (B1) and the epoxy resin (A1) is excellent in curability, and a cured product with a low dielectric loss tangent can be obtained. It is preferable that the ratio of the epoxy groups in the epoxy resin (A1) is 0.8 to 1.2 equivalents with respect to the total equivalent of active groups in the curing agent (B1).
  • the active groups in the active ester curing agent (B1) refer to arylcarbonyloxy groups and phenolic hydroxyl groups in the resin structure.
  • the active ester curing agent (B1) is preferably 0.2% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more and 10% by mass, based on the total resin composition. Hereafter, it is more preferably used in an amount of 1.0% by mass or more and 7% by mass or less.
  • the obtained cured product can have more excellent dielectric properties and is further excellent in low dielectric loss tangent.
  • the resin composition of the present embodiment is excellent in low dielectric loss tangent by using a combination of the active ester curing agent (B1) and the high dielectric constant filler (C) described later, and exhibits these effects even in a high frequency band. Excellent.
  • the active ester curing agent (B1) is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 2 parts by mass or more, relative to 100 parts by mass of the high dielectric constant filler (C). It can be contained in an amount of 20 parts by mass or less, more preferably 3 parts by mass or more and 15 parts by mass or less.
  • the present applicant has developed a resin composition containing an epoxy resin and a predetermined active ester curing agent for semiconductor sealing applications different from the present invention. is doing.
  • the present invention differs from the technique described in the publication in that it contains a high dielectric constant filler.
  • a high dielectric constant filler is contained, the effects of the combination of the active ester curing agent and the thermosetting resin are also different in that they are excellent in low dielectric loss tangent in the high frequency band.
  • Phenol curing agents (B2) include phenol novolak resins, cresol novolac resins, aromatic hydrocarbon formaldehyde resin-modified phenol resins, dicyclopentadiene phenol addition type resins, phenol aralkyl resins, naphthol aralkyl resins, trimethylolmethane resins, tetraphenylene resins.
  • Roll ethane resin naphthol novolac resin, naphthol-phenol co-condensed novolac resin, naphthol-cresol co-condensed novolac resin, biphenyl-modified phenol resin (polyhydric phenol compound in which phenol nucleus is linked by bismethylene group), biphenyl-modified naphthol resin (bismethylene polyhydric phenol compounds such as polyhydric naphthol compounds in which phenol nuclei are linked by groups) and aminotriazine-modified phenol resins (polyhydric phenol compounds in which phenol nuclei are linked by melamine, benzoguanamine, etc.).
  • biphenyl-modified phenol resin polyhydric phenol compound in which phenol nucleus is linked by bismethylene group
  • biphenyl-modified naphthol resin bismethylene polyhydric phenol compounds such as polyhydric naphthol compounds in which phenol nuclei are linked by groups
  • the blending amount of the phenol curing agent (B2) is preferably 20% by mass or more and 70% by mass or less with respect to the thermosetting resin (A). By using the curing agent in an amount within the above range, a resin composition having excellent curability can be obtained.
  • the phenol curing agent (B2) is preferably 0.2% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more and 10% by mass, based on the total thermosetting resin composition. It is used in an amount of 1.0% by mass or more and 7% by mass or less, more preferably 1.0% by mass or less and 7% by mass or less.
  • the obtained cured product can have better dielectric properties and is further excellent in low dielectric loss tangent.
  • the curing agent (B) of the present embodiment can contain curing agents other than the active ester curing agent (B1) and the phenolic curing agent (B2).
  • Other curing agents include, for example, diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complex, amine compounds such as guanidine derivatives; dicyandiamide, dimer of linolenic acid.
  • Amide compounds such as polyamide resins synthesized from and ethylenediamine; acid anhydrides such as phthalic acid and methylhexahydrophthalic anhydride;
  • the high dielectric constant filler (C) comprises magnesium titanate. Since the thermosetting resin composition of the present embodiment contains magnesium titanate as the high dielectric constant filler (C), it has an excellent low dielectric loss tangent and exhibits excellent effects even in a high frequency band.
  • the high dielectric constant filler (C) preferably contains magnesium titanate and calcium titanate. As a result, the low dielectric loss tangent is further improved, and the effect is further improved even in a high frequency band.
  • the high dielectric constant filler (C) further includes barium titanate, strontium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, barium zirconate, and calcium zirconate titanate. , lead zirconate titanate, barium magnesium niobate, and calcium zirconate.
  • the shape of the high dielectric constant filler (C) is granular, amorphous, flaky, etc., and these shapes of the high dielectric constant filler (C) can be used at any ratio.
  • the average particle size of the high dielectric constant filler (C) is preferably 0.1 ⁇ m or more and 50 ⁇ m or less, more preferably 0.3 ⁇ m or more and 20 ⁇ m or less, and further preferably It is preferably 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the amount of the high dielectric constant filler (C) is preferably 10% by mass or more and 90% by mass or less, more preferably 20% by mass or more and 88% by mass or less, more preferably 100% by mass of the resin composition.
  • the range is 40% by mass or more and 85% by mass or less.
  • the content of magnesium titanate is preferably 30% by mass or more and 90% by mass or less, more preferably 35% by mass in 100% by mass of the resin composition.
  • the high dielectric constant filler (C) is composed of magnesium titanate and calcium titanate, the total amount of these is preferably 30% by mass or more and 90% by mass or less, or more, in 100% by mass of the resin composition.
  • the range is preferably 35% by mass or more and 88% by mass or less, more preferably 40% by mass or more and 85% by mass or less.
  • the thermosetting resin composition of this embodiment can further contain a curing catalyst (D).
  • the curing catalyst (D) is sometimes called a curing accelerator or the like.
  • the curing catalyst (D) is not particularly limited as long as it accelerates the curing reaction of the thermosetting resin (A), and known curing catalysts can be used.
  • Preferred specific examples of the curing catalyst (D) include those described for the curing catalyst (D) in the first embodiment, and can be produced in the same manner.
  • a curing catalyst (D) When using a curing catalyst (D), its content is preferably 0.01% by mass or more and 1% by mass or less, more preferably 0.02% by mass or more and 0 .8% by mass or less. By setting it to such a numerical range, a sufficient curing acceleration effect can be obtained without excessively deteriorating other performances.
  • thermosetting resin composition of the present embodiment further contains an inorganic filler in addition to the high dielectric constant filler (C) in order to reduce hygroscopicity, reduce the coefficient of linear expansion, improve thermal conductivity and improve strength. can be done.
  • Inorganic fillers include fused silica, crystalline silica, alumina, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, Examples include powders of mullite, titania, etc., beads obtained by spheroidizing these powders, glass fibers, and the like. These inorganic fillers may be used alone or in combination of two or more. Among the above inorganic fillers, fused silica is preferable from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferable from the viewpoint of high thermal conductivity. is preferred.
  • the amount of the inorganic filler other than the high dielectric constant filler (C) is preferably 15% by mass or more, 60 % by mass or less, more preferably 20% by mass or more and 50% by mass or less. If it is the said range, it will be excellent in thermal-expansion reduction and moldability.
  • thermosetting resin composition of the present embodiment may optionally contain various components such as a silane coupling agent, a release agent, a colorant, a dispersant, and a stress reducing agent. can.
  • thermosetting resin composition comprises the following thermosetting resin (A), the following active ester curing agent (B1) and / or the following phenol curing agent (B2) as the curing agent (B), and the following high and a dielectric constant filler (C).
  • thermosetting resin (A) Preferably, one or more selected from cyanate resins, epoxy resins, resins having two or more radically polymerizable carbon-carbon double bonds in one molecule, and maleimide resins. More preferably, it contains an epoxy resin.
  • active ester curing agent (B1)) selected from active ester curing agents containing a dicyclopentadiene type diphenol structure, active ester curing agents containing a naphthalene structure, active ester curing agents containing acetylated phenol novolacs, and active ester curing agents containing benzoylated phenol novolacs; contains at least one Preferably, it contains at least one selected from an active ester curing agent containing a naphthalene structure and an active ester curing agent containing a dicyclopentadiene type diphenol structure. More preferably, it is an active ester curing agent having a structure represented by the general formula (1).
  • the thermosetting resin (A) and the curing agent (B) containing the active ester curing agent (B1) can be combined arbitrarily.
  • Phenol novolak resin Phenol novolak resin, cresol novolak resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin, naphthol aralkyl resin, trimethylolmethane resin, tetraphenylol ethane resin, naphthol novolac resin, naphthol - Phenol co-condensed novolac resin, naphthol-cresol co-condensed novolac resin, biphenyl-modified phenol resin (polyhydric phenol compound with phenol nuclei linked by bismethylene groups), biphenyl-modified naphthol resin (polyphenol compounds with phenol nuclei linked by bismethylene groups) polyvalent naphthol compounds) and aminotriazine-modified phenolic resins (polyhydric phenol compounds in which the phenol nucleus is linked with melamine, benzoguan
  • High dielectric constant filler (C) Contains magnesium titanate. Preferably, it further contains calcium titanate.
  • thermosetting resin composition of the present embodiment is The thermosetting resin (A) can be contained in an amount of preferably 5% by mass or more and 20% by mass or less, more preferably 10% by mass or more and 15% by mass or less in 100% by mass of the composition, Active ester curing agent (B1) and / or phenolic curing agent (B2) in 100% by mass of the composition, preferably 0.2% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more and 10 % by mass or less, more preferably 1.0% by mass or more and 7% by mass or less, 10% by mass or more and 90% by mass or less, more preferably 20% by mass or more and 88% by mass or less, and still more preferably 40% by mass or more and 85% by mass of the high dielectric constant filler (C) in 100% by mass of the composition It can be included in the following amounts:
  • thermosetting resin (A) described above a curing agent (B) containing an active ester curing agent (B1) and/or a phenolic curing agent (B2), and a high dielectric constant filler (C)
  • a curing agent (B) containing an active ester curing agent (B1) and/or a phenolic curing agent (B2) a high dielectric constant filler (C)
  • thermosetting resin composition of this embodiment can be produced by uniformly mixing the components described above.
  • Examples of the production method include a method of sufficiently mixing raw materials in a predetermined amount with a mixer or the like, melt-kneading the mixture with a mixing roll, kneader, extruder or the like, and then cooling and pulverizing the mixture.
  • the resulting thermosetting resin composition may, if desired, be tableted to a size and mass that are suitable for molding conditions.
  • thermosetting resin composition of the present embodiment has a spiral flow length of 50 cm or more, preferably 55 cm or more, and more preferably 60 cm or more. Therefore, the thermosetting resin composition of this embodiment has excellent moldability.
  • a mold temperature of 175 ° C. is injected into a mold for spiral flow measurement according to EMMI-1-66. This can be done by injecting the resin molding material under conditions of a pressure of 6.9 MPa and a curing time of 120 seconds and measuring the flow length.
  • thermosetting resin composition of the present embodiment has a rectangular pressure of 0.1 MPa or more, preferably 0.15 MPa or more, more preferably 0.20 MPa or more, measured under the following conditions. Rectangular pressure is a parameter of melt viscosity, and the smaller the numerical value, the lower the melt viscosity.
  • the thermosetting resin composition of the present embodiment has a rectangular pressure within the above range, and is therefore excellent in mold filling properties during molding.
  • the resin composition was injected into a rectangular channel having a width of 13 mm, a thickness of 1 mm, and a length of 175 mm under conditions of a mold temperature of 175°C and an injection rate of 177 mm 3 /sec.
  • a pressure sensor embedded at a position 25 mm from the upstream end of the channel measures the change in pressure over time to calculate the minimum pressure when the resin composition flows, and this minimum pressure is defined as the rectangular pressure.
  • the resin composition containing the thermosetting resin (A) of the present embodiment, the active ester curing agent, and the high dielectric constant filler (C) is cured by heating at 200 ° C. for 90 minutes. , with a dielectric loss tangent (tan ⁇ ) of
  • the dielectric loss tangent (tan ⁇ ) at 25 GHz by the cavity resonator method can be 0.04 or less, preferably 0.03 or less, more preferably 0.02 or less, and particularly preferably 0.015 or less.
  • the cured product obtained from the thermosetting resin composition of the present embodiment is excellent in low dielectric loss tangent in the high frequency band, so it can be used for high frequencies, and is used as a material for forming microstrip antennas and dielectric waveguides. It can be suitably used as a material for forming an electromagnetic wave absorber, and the like.
  • the resin composition of this embodiment has the following dielectric constant in a cured product obtained by heating at 200° C. for 90 minutes.
  • the dielectric constant at 25 GHz by the cavity resonator method can be 2 or more, preferably 3 or more, more preferably 4 or more, and particularly preferably 5 or more.
  • thermosetting resin composition of this embodiment contains an epoxy resin (A1) as the thermosetting resin (A), a curing agent (B), and a high dielectric constant filler (C). Each component is described below.
  • Epoxy resin (A1) examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, glycidylamine type epoxy resin, naphthol aralkyl type epoxy resin, phenol aralkyl type epoxy resin, and the like. and includes at least one selected from these.
  • the phenol aralkyl epoxy resin does not include a biphenylene skeleton-containing phenol aralkyl epoxy resin.
  • the epoxy resin (A1) is preferably a naphthol aralkyl type epoxy resin or a dicyclopentadiene type epoxy resin, more preferably a naphthol aralkyl type epoxy resin, from the viewpoint of the effects of the present invention.
  • the epoxy resin (A1) can contain a combination of other epoxy resins such as a biphenylaralkyl type epoxy resin.
  • the epoxy resin (A1) can be contained in an amount of 5% by mass or more and 20% by mass or less, preferably 10% by mass or more and 15% by mass or less, relative to the entire thermosetting resin composition.
  • the curing agent (B) includes an active ester curing agent (B1) and/or a phenolic curing agent (B2).
  • active ester curing agent (B1) A compound having one or more active ester groups in one molecule can be used as the active ester curing agent (B1).
  • active ester curing agents include phenol esters, thiophenol esters, N-hydroxyamine esters, esters of heterocyclic hydroxy compounds, etc., which have two or more ester groups with high reaction activity per molecule. Compounds are preferred.
  • a dielectric excellent in high dielectric constant and low dielectric loss tangent by including the above-mentioned specific epoxy resin (A1) in combination with an active ester curing agent (B1) as a curing agent (B) A substrate can be obtained.
  • Preferred specific examples of the active ester curing agent (B1) include those described for the active ester curing agent (B1) in the first embodiment, and can be produced in the same manner.
  • the functional group equivalent of the active ester curing agent (B1) is excellent in curability and curing with a low dielectric loss tangent when the sum of the arylcarbonyloxy groups and phenolic hydroxyl groups in the resin structure is taken as the total number of functional groups in the resin. 200 g/eq or more and 230 g/eq or less, more preferably 210 g/eq or more and 220 g/eq or less.
  • the blending amount of the active ester curing agent (B1) and the epoxy resin (A1) is excellent in curability, and a cured product with a low dielectric loss tangent can be obtained. It is preferable that the ratio of the epoxy groups in the epoxy resin (A1) is 0.8 to 1.2 equivalents with respect to the total equivalent of active groups in the curing agent.
  • the active group in the active ester curing agent refers to an arylcarbonyloxy group and a phenolic hydroxyl group in the resin structure.
  • the active ester curing agent (B1) is preferably 0.2% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more, relative to the entire thermosetting resin composition. It is used in an amount of 10 mass % or less, more preferably 1.0 mass % or more and 7 mass % or less.
  • the obtained cured product can have more excellent dielectric properties and is further excellent in low dielectric loss tangent.
  • the resin composition of the present embodiment is excellent in high dielectric constant and low dielectric loss tangent by using a combination of the active ester curing agent (B1) and the high dielectric constant filler (C) described later, even in a high frequency band. Excellent in these effects.
  • the active ester curing agent (B1) is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 2 parts by mass or more, with respect to 100 parts by mass of the high dielectric constant filler (C) described later. It can be contained in an amount of 20 parts by mass or less, more preferably 3 parts by mass or more and 15 parts by mass or less.
  • the present applicant has developed a resin composition containing an epoxy resin and a predetermined active ester curing agent for semiconductor sealing applications different from the present invention. is doing.
  • the present invention differs from the technique described in the publication in that it contains a high dielectric constant filler.
  • the effect of the combination of the active ester curing agent and the epoxy resin is also different in that it has a high dielectric constant and is excellent in high dielectric constant and low dielectric loss tangent in the high frequency band. ing.
  • Phenol curing agents (B2) include phenol novolak resins, cresol novolac resins, aromatic hydrocarbon formaldehyde resin-modified phenol resins, dicyclopentadiene phenol addition type resins, phenol aralkyl resins, naphthol aralkyl resins, trimethylolmethane resins, tetraphenylene resins.
  • Roll ethane resin naphthol novolac resin, naphthol-phenol co-condensed novolac resin, naphthol-cresol co-condensed novolac resin, biphenyl-modified phenol resin (polyhydric phenol compound in which phenol nucleus is linked by bismethylene group), biphenyl-modified naphthol resin (bismethylene polyhydric phenol compounds such as polyhydric naphthol compounds in which phenol nuclei are linked by groups) and aminotriazine-modified phenol resins (polyhydric phenol compounds in which phenol nuclei are linked by melamine, benzoguanamine, etc.).
  • biphenyl-modified phenol resin polyhydric phenol compound in which phenol nucleus is linked by bismethylene group
  • biphenyl-modified naphthol resin bismethylene polyhydric phenol compounds such as polyhydric naphthol compounds in which phenol nuclei are linked by groups
  • the blending amount of the phenol curing agent (B2) is preferably 20% by mass or more and 70% by mass or less with respect to the epoxy resin (A1). By using the curing agent in an amount within the above range, a resin composition having excellent curability can be obtained.
  • the ratio of the content of the phenolic curing agent b to the active ester curing agent a can be preferably 0.5 or more and 8 or less, more preferably 1 or more and 5 or less, and still more preferably 1.5 or more and 3 or less.
  • the curing agent (B) containing the active ester curing agent (B1) and/or the phenolic curing agent (B2) is preferably 0.2 mass with respect to the entire thermosetting resin composition. % or more and 15 mass % or less, more preferably 0.5 mass % or more and 10 mass % or less, and still more preferably 1.0 mass % or more and 7 mass % or less.
  • the obtained cured product can have more excellent dielectric properties and is further excellent in low dielectric loss tangent.
  • the high dielectric constant filler (C) includes calcium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, and zirconate. Barium, calcium zirconate titanate, lead zirconate titanate, barium magnesium niobate, calcium zirconate and the like can be mentioned, and at least one selected from these can be included. From the viewpoint of the effects of the present invention, the high dielectric constant filler (C) is preferably at least one selected from calcium titanate, strontium titanate, and magnesium titanate. Magnesium is more preferred.
  • the shape of the high dielectric constant filler (C) is granular, amorphous, flaky, etc., and these shapes of the high dielectric constant filler (C) can be used at any ratio.
  • the average particle size of the high dielectric constant filler (C) is preferably 0.1 ⁇ m or more and 50 ⁇ m or less, more preferably 0.3 ⁇ m or more and 20 ⁇ m or less, and further preferably It is preferably 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the amount of the high dielectric constant filler (C) is preferably 40% by mass or more, more preferably 50% by mass or more, and still more preferably 60% by mass or more in 100% by mass of the thermosetting resin composition. be.
  • the upper limit is about 80% by mass or more.
  • the thermosetting resin composition of this embodiment can further contain a curing catalyst (D).
  • the curing catalyst (D) is sometimes called a curing accelerator or the like.
  • the curing catalyst (D) is not particularly limited as long as it accelerates the curing reaction of the thermosetting resin, and known curing catalysts can be used. Preferred specific examples of the curing catalyst (D) include those described for the curing catalyst (D) in the first embodiment, and can be produced in the same manner.
  • the curing catalyst (D) When using the curing catalyst (D), its content is preferably 0.01 to 1% by mass, more preferably 0.02 to 0.8% by mass, relative to the entire resin composition. By setting it to such a numerical range, a sufficient curing acceleration effect can be obtained without excessively deteriorating other performances.
  • thermosetting resin composition of the present embodiment further contains an inorganic filler in addition to the high dielectric constant filler (C) in order to reduce hygroscopicity, reduce the coefficient of linear expansion, improve thermal conductivity and improve strength. can be done.
  • Inorganic fillers include fused silica, crystalline silica, alumina, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, Examples include powders of mullite, titania, etc., beads obtained by spheroidizing these powders, glass fibers, and the like. These inorganic fillers may be used alone or in combination of two or more. Among the above inorganic fillers, fused silica is preferable from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferable from the viewpoint of high thermal conductivity. is preferred.
  • the amount of the inorganic filler other than the high dielectric constant filler (C) is preferably 15% by mass with respect to the entire thermosetting resin composition from the viewpoint of moldability, reduction of thermal expansion, and improvement of strength. Above, 60% by mass or less, more preferably 20% by mass or more and 50% by mass or less. If it is the said range, it will be excellent in thermal-expansion reduction and moldability.
  • thermosetting resin composition of the present embodiment may optionally contain various components such as a silane coupling agent, a release agent, a colorant, a dispersant, and a stress reducing agent. can.
  • thermosetting resin composition can contain the following epoxy resin (A1), the following curing agent (B), and the following high dielectric constant filler (C) in combination.
  • Epoxy resin (A1) At least one selected from the group consisting of bisphenol A type epoxy resins, bisphenol F type epoxy resins, naphthalene type epoxy resins, dicyclopentadiene type epoxy resins, glycidylamine type epoxy resins, and naphthol aralkyl type epoxy resins.
  • it contains at least one selected from the group consisting of dicyclopentadiene type epoxy resins and naphthol aralkyl type epoxy resins. Naphthol aralkyl type epoxy resins are more preferred.
  • (Curing agent (B)) Contains an active ester curing agent (B1) and/or a phenolic curing agent (B2). It preferably contains an active ester curing agent (B1).
  • At least one selected from an active ester curing agent containing a naphthalene structure and an active ester curing agent containing a dicyclopentadiene type diphenol structure is included. More preferably, it is an active ester curing agent having a structure represented by the general formula (1).
  • the epoxy resin (A1), the curing agent (B) containing the active ester curing agent (B1) and/or the phenolic curing agent (B2), and the high dielectric constant filler (C) are each can be combined arbitrarily.
  • thermosetting resin composition of the present embodiment is
  • the epoxy resin (A1) can be contained in an amount of preferably 5% by mass or more and 20% by mass or less, more preferably 10% by mass or more and 15% by mass or less, based on 100% by mass of the composition
  • Curing agent (B) in 100% by mass of the composition, preferably 0.2% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more and 10% by mass or less, still more preferably 1.0% by mass % or more and 7% by mass or less
  • the high dielectric constant filler (C) can be contained in 100% by mass of the composition in an amount of preferably 40% by mass or more, more preferably 50% by mass or more, and even more preferably 60% by mass or more.
  • the upper limit is 80% by mass.
  • thermosetting resin composition that gives a dielectric substrate excellent in dielectric constant and low dielectric loss tangent.
  • thermosetting resin composition of this embodiment can be produced by uniformly mixing the components described above.
  • Examples of the production method include a method of sufficiently mixing raw materials in a predetermined amount with a mixer or the like, melt-kneading the mixture with a mixing roll, kneader, extruder or the like, and then cooling and pulverizing the mixture.
  • the resulting thermosetting resin composition may, if desired, be tableted to a size and mass that are suitable for molding conditions.
  • thermosetting resin composition of the present embodiment has a spiral flow length of 50 cm or more, preferably 55 cm or more, and more preferably 60 cm or more. Therefore, the thermosetting resin composition of this embodiment has excellent moldability.
  • a mold temperature of 175 ° C. is injected into a mold for spiral flow measurement according to EMMI-1-66. This can be done by injecting the resin molding material under conditions of a pressure of 6.9 MPa and a curing time of 120 seconds and measuring the flow length.
  • thermosetting resin composition of the present embodiment has a rectangular pressure of 0.1 MPa or more, preferably 0.15 MPa or more, more preferably 0.20 MPa or more, measured under the following conditions. Rectangular pressure is a parameter of melt viscosity, and the smaller the numerical value, the lower the melt viscosity.
  • the thermosetting resin composition of the present embodiment has a rectangular pressure within the above range, and is therefore excellent in mold filling properties during molding.
  • thermosetting resin composition was injected into a rectangular flow path with a width of 13 mm, a thickness of 1 mm, and a length of 175 mm under conditions of a mold temperature of 175°C and an injection speed of 177 mm 3 /sec. Then, the change in pressure over time is measured with a pressure sensor embedded at a position 25 mm from the upstream end of the flow channel, the minimum pressure at the time of flow of the thermosetting resin composition is calculated, and this minimum pressure is measured as a rectangular pressure.
  • the thermosetting resin composition of the present embodiment has the following dielectric constant and dielectric loss tangent (tan ⁇ ) in a cured product obtained by heating at 200° C. for 90 minutes.
  • the dielectric constant at 25 GHz by the cavity resonator method can be 10 or more, preferably 12 or more, more preferably 13 or more, and particularly preferably 14 or more.
  • the dielectric loss tangent (tan ⁇ ) at 25 GHz by the cavity resonator method can be 0.04 or less, preferably 0.03 or less, more preferably 0.02 or less, and particularly preferably 0.015 or less.
  • thermosetting resin composition of the present embodiment Since the cured product obtained from the thermosetting resin composition of the present embodiment is excellent in high dielectric constant and low dielectric loss tangent in the high frequency band, it is possible to increase the frequency and shorten the circuit and reduce the size of communication equipment. It can be suitably used as a material for forming a microstrip antenna, a material for forming a dielectric waveguide, a material for forming an electromagnetic wave absorber, and the like.
  • thermosetting resin composition of this embodiment contains an epoxy resin (A1), a curing agent (B), and a high dielectric constant filler (C). Each component is described below.
  • the epoxy resin (A1) contains a naphthol aralkyl type epoxy resin.
  • the naphthol aralkyl type epoxy resin include epoxy resins represented by the following general formula (a).
  • each R independently represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, A hydrogen atom is more preferred.
  • n is an integer of 1-10, preferably an integer of 1-8.
  • the epoxy equivalent of the naphthol aralkyl epoxy resin is preferably 250 g/eq to 400 g/eq, more preferably 260 g/eq to 380 g/eq, and still more preferably 280 g/eq to 370 g. /eq or less.
  • the softening point of the naphthol aralkyl epoxy resin is preferably 40°C or higher and 150°C or lower, more preferably 50°C or higher and 120°C or lower, and still more preferably 60°C or higher and 100°C or lower.
  • the melt viscosity of the naphthol aralkyl epoxy resin at 150° C. is preferably 0.01 Pa s or more and 5 Pa s or less, more preferably 0.02 Pa s or more and 3 Pa s or less, and still more preferably 0.05 Pa s or more. It is 1 Pa ⁇ s or less.
  • the weight average molecular weight Mw of the naphthol aralkyl epoxy resin of the present embodiment is preferably 100 to 5000, more preferably 300 to 3000, and even more preferably 500 to 2000.
  • the degree of dispersion (weight average molecular weight Mw/number average molecular weight Mn) of the naphthol aralkyl epoxy resin is preferably 1 or more and 4 or less, more preferably 1.1 or more and 3 or less, and still more preferably 1.2 or more and 2 or less. be.
  • the degree of dispersion By appropriately adjusting the degree of dispersion, the physical properties of the epoxy resin can be made uniform, which is preferable.
  • the weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw/Mn) are, for example, polystyrene conversion values obtained from a standard polystyrene (PS) calibration curve obtained by GPC measurement.
  • Measurement conditions for GPC measurement are, for example, as follows.
  • the epoxy resin (A1) of the present embodiment can contain other epoxy resins in addition to the naphthol aralkyl type epoxy resin within a range that does not impair the effects of the present invention.
  • Other epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol aralkyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, glycidylamine type epoxy resin and the like.
  • Aralkyl type epoxy resins are preferred.
  • the content of the naphthol aralkyl epoxy resin in the epoxy resin (A1) (100% by mass) is preferably 2% by mass or more and 80% by mass. %, more preferably 5% by mass or more and 50% by mass or less, still more preferably 10% by mass or more and 40% by mass or less, and particularly preferably 12% by mass or more and 30% by mass or less.
  • the epoxy resin (A1) may contain only a naphthol aralkyl epoxy resin.
  • thermosetting resin composition (100% by mass) of the present embodiment preferably contains the epoxy resin (A1) in an amount of 2% by mass or more and 20% by mass or less, more preferably 3% by mass or more and 15% by mass. % by mass or less, more preferably 5% by mass or more and 12% by mass or less.
  • the curing agent (B) includes an active ester curing agent (B1) and/or a phenolic curing agent (B2).
  • active ester curing agent (B1) A compound having one or more active ester groups in one molecule can be used as the active ester curing agent (B1).
  • active ester curing agents include phenol esters, thiophenol esters, N-hydroxyamine esters, esters of heterocyclic hydroxy compounds, etc., which have two or more ester groups with high reaction activity per molecule. Compounds are preferred.
  • a dielectric substrate excellent in high dielectric constant and low dielectric loss tangent can be obtained by including the specific epoxy resin described above in combination with an active ester curing agent (B1) as a curing agent. .
  • Preferred specific examples of the active ester curing agent (B1) include those described for the active ester curing agent (B1) in the first embodiment, and can be produced in the same manner.
  • the functional group equivalent of the active ester curing agent (B1) is excellent in curability when the sum of the arylcarbonyloxy groups and phenolic hydroxyl groups in the resin structure is taken as the total number of functional groups in the resin, and the dielectric constant and dielectric loss tangent are good. It is preferably in the range of 200 g/eq or more and 230 g/eq or less, more preferably 210 g/eq or more and 220 g/eq or less, since a low cured product can be obtained.
  • the blending amount of the active ester curing agent (B1) and the epoxy resin (A1) is excellent in curability, and a cured product with a low dielectric constant and dielectric loss tangent can be obtained. It is preferable that the ratio of the epoxy groups in the epoxy resin (A1) is 0.8 to 1.2 equivalents per equivalent of the total active groups in the active ester curing agent (B1).
  • the active group in the active ester curing agent refers to an arylcarbonyloxy group and a phenolic hydroxyl group in the resin structure.
  • the active ester curing agent (B1) is preferably 0.2% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more, relative to the entire thermosetting resin composition. It is used in an amount of 10 mass % or less, more preferably 1.0 mass % or more and 7 mass % or less.
  • the obtained cured product can have more excellent dielectric properties and is further excellent in low dielectric loss tangent.
  • the resin composition of the present embodiment is excellent in high dielectric constant and low dielectric loss tangent by using a combination of the active ester curing agent (B1) and the high dielectric constant filler (C) described later, even in a high frequency band. Excellent in these effects.
  • the active ester curing agent (B1) is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 2 parts by mass or more and 20 parts by mass, with respect to 100 parts by mass of the high dielectric constant filler described later. It can be contained in an amount of 3 parts by mass or more and 15 parts by mass or less, more preferably 3 parts by mass or more and 15 parts by mass or less.
  • the present applicant has developed a resin composition containing an epoxy resin and a predetermined active ester curing agent for semiconductor sealing applications different from the present invention. is doing.
  • the present invention differs from the technique described in the publication in that it contains a high dielectric constant filler.
  • the effect of the combination of the active ester curing agent and the epoxy resin is also different in that it has a high dielectric constant and is excellent in high dielectric constant and low dielectric loss tangent in the high frequency band. ing.
  • Phenol curing agents include phenol novolak resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin, naphthol aralkyl resin, trimethylolmethane resin, tetraphenylolethane resin.
  • naphthol novolac resin naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolac resin, biphenyl-modified phenol resin (polyhydric phenol compound with phenol nucleus linked by bismethylene group), biphenyl-modified naphthol resin (phenol Polyhydric phenol compounds such as polyhydric naphthol compounds with linked nuclei) and aminotriazine-modified phenolic resins (polyhydric phenol compounds with phenolic nuclei linked with melamine, benzoguanamine, etc.).
  • biphenyl-modified phenol resin polyhydric phenol compound with phenol nucleus linked by bismethylene group
  • biphenyl-modified naphthol resin phenol Polyhydric phenol compounds such as polyhydric naphthol compounds with linked nuclei
  • aminotriazine-modified phenolic resins polyhydric phenol compounds with phenolic nuclei linked with melamine, be
  • the blending amount of the phenol curing agent (B2) is preferably 20% by mass or more and 70% by mass or less with respect to the thermosetting resin. By using the curing agent in an amount within the above range, a resin composition having excellent curability can be obtained.
  • the curing agent (B) of the present embodiment is preferably the active ester curing agent (B1).
  • the high dielectric constant filler (C) includes calcium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, and zirconate. Barium, calcium zirconate titanate, lead zirconate titanate, barium magnesium niobate, calcium zirconate, and the like can be mentioned, and at least one selected from these can be included. From the viewpoint of the effects of the present invention, the high dielectric constant filler (C) is preferably at least one selected from calcium titanate, strontium titanate, and magnesium titanate. More preferably, it is at least one selected from magnesium.
  • the shape of the high dielectric constant filler (C) is granular, amorphous, flaky, etc., and high dielectric constant fillers of these shapes can be used at any ratio.
  • the average particle size of the high dielectric constant filler is preferably 0.1 ⁇ m or more and 50 ⁇ m or less, more preferably 0.3 ⁇ m or more and 20 ⁇ m or less, still more preferably 0, from the viewpoint of the effects of the present invention and fluidity/fillability. .5 ⁇ m or more and 10 ⁇ m or less.
  • the amount of the high dielectric constant filler (C) is preferably 40% by mass or more, more preferably 50% by mass or more, and still more preferably 60% by mass or more in 100% by mass of the thermosetting resin composition. be.
  • the upper limit is about 90% by mass or more.
  • the thermosetting resin composition of this embodiment can further contain a curing catalyst (D).
  • the curing catalyst (D) is sometimes called a curing accelerator or the like.
  • the curing catalyst (D) is not particularly limited as long as it accelerates the curing reaction of the thermosetting resin, and known curing catalysts can be used. Preferred specific examples of the curing catalyst (D) include those described for the curing catalyst (D) in the first embodiment, and can be produced in the same manner.
  • the curing catalyst (D) When using the curing catalyst (D), its content is preferably 0.1 to 3% by mass, more preferably 0.5 to 2% by mass, relative to 100% by mass of the thermosetting resin composition. By setting it to such a numerical range, a sufficient curing acceleration effect can be obtained without excessively deteriorating other performances.
  • thermosetting resin composition of the present embodiment further contains an inorganic filler in addition to the high dielectric constant filler (C) in order to reduce hygroscopicity, reduce the coefficient of linear expansion, improve thermal conductivity and improve strength. can be done.
  • Inorganic fillers include fused silica, crystalline silica, alumina, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, Examples include powders of mullite, titania, etc., beads obtained by spheroidizing these powders, glass fibers, and the like. These inorganic fillers may be used alone or in combination of two or more. Among the above inorganic fillers, fused silica is preferable from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferable from the viewpoint of high thermal conductivity. is preferred.
  • the amount of the inorganic filler other than the high dielectric constant filler is preferably 3% by mass or more with respect to 100% by mass of the thermosetting resin composition, from the viewpoint of moldability, reduction in thermal expansion, and improvement in strength. , 40 mass % or less, more preferably 5 mass % or more and 30 mass % or less, and still more preferably 10 mass % or more and 25 mass % or less. If it is the said range, it will be excellent in thermal-expansion reduction and moldability.
  • thermosetting resin composition of the present embodiment may optionally contain various components such as a silane coupling agent, a release agent, a colorant, a dispersant, and a stress reducing agent. can.
  • the thermosetting resin composition of the present embodiment contains an epoxy resin (A1), a curing agent (B), and a high dielectric constant filler (C), and the epoxy resin (A1) is a naphthol aralkyl epoxy resin. including.
  • the thermosetting resin composition of the present embodiment which contains such components in combination, can provide a dielectric substrate having excellent dielectric properties such as a low dielectric loss tangent, and a microstrip antenna comprising the dielectric substrate. can be provided.
  • thermosetting resin composition of this embodiment is The epoxy resin (A1) in 100% by mass of the composition is preferably 2% by mass or more and 20% by mass or less, more preferably 3% by mass or more and 15% by mass or less, still more preferably 5% by mass or more and 12% by mass or less.
  • Curing agent (B) can contain an amount of Curing agent (B) in 100% by mass of the composition, preferably 0.2% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more and 10% by mass or less, still more preferably 1.0% by mass % or more and 7% by mass or less
  • the high dielectric constant filler (C) can be contained in an amount of preferably 40% by mass or more, more preferably 50% by mass or more, and still more preferably 60% by mass or more based on 100% by mass of the solid content of the composition.
  • the upper limit is 90% by mass.
  • thermosetting resin composition by including an epoxy resin (A1) containing a naphthol aralkyl epoxy resin, a curing agent (B), and a high dielectric constant filler (C) in combination, high dielectric constant and low dielectric constant It is possible to provide a thermosetting resin composition from which a dielectric substrate having excellent tangent can be obtained.
  • thermosetting resin composition of this embodiment can be produced by uniformly mixing the components described above.
  • Examples of the production method include a method of sufficiently mixing raw materials in a predetermined amount with a mixer or the like, melt-kneading the mixture with a mixing roll, kneader, extruder or the like, and then cooling and pulverizing the mixture.
  • the resulting thermosetting resin composition may, if desired, be tableted to a size and mass that are suitable for molding conditions.
  • thermosetting resin composition of the present embodiment has a spiral flow length of 50 cm or more, preferably 55 cm or more, and more preferably 60 cm or more. Therefore, the thermosetting resin composition of this embodiment has excellent moldability.
  • a mold temperature of 175 ° C. is injected into a mold for spiral flow measurement according to EMMI-1-66. This can be done by injecting the resin molding material under conditions of a pressure of 6.9 MPa and a curing time of 120 seconds and measuring the flow length.
  • the gel time of the thermosetting resin composition of the present embodiment is preferably 40 seconds or more and 150 seconds or less, more preferably 50 seconds or more and 120 seconds or less.
  • the thermosetting resin composition of the present embodiment has the following dielectric constant and dielectric loss tangent (tan ⁇ ) in a cured product obtained by heating at 200° C. for 90 minutes.
  • the dielectric constant at 25 GHz by the cavity resonator method can be 3 or more, preferably 4 or more, and more preferably 5 or more.
  • the dielectric loss tangent (tan ⁇ ) at 25 GHz by the cavity resonator method can be 0.04 or less, preferably 0.03 or less, more preferably 0.02 or less, and particularly preferably 0.015 or less.
  • thermosetting resin composition of the present embodiment Since the cured product obtained from the thermosetting resin composition of the present embodiment is excellent in high dielectric constant and low dielectric loss tangent in the high frequency band, it is possible to increase the frequency and shorten the circuit and reduce the size of communication equipment. It can be suitably used as a material for forming a microstrip antenna, a material for forming a dielectric waveguide, a material for forming an electromagnetic wave absorber, and the like.
  • a microstrip antenna 10 of this embodiment includes a dielectric substrate 12 formed by curing the resin composition described above, and a radiation conductor plate (radiation conductor plate) provided on one surface of the dielectric substrate 12 .
  • element 14 and a ground conductor plate 16 provided on the other surface of the dielectric substrate 12 . At least part of the radiation conductor plate 12 is embedded in the dielectric substrate 12 .
  • the shape of the radiation conductor plate can be rectangular or circular. In this embodiment, an example using a rectangular radiation conductor plate 14 will be described.
  • the radiation conductor plate 14 includes any one of a metal material, an alloy of metal materials, a hardened metal paste, and a conductive polymer.
  • Metallic materials include copper, silver, palladium, gold, platinum, aluminum, chromium, nickel, cadmium lead, selenium, manganese, tin, vanadium, lithium, cobalt, titanium, and the like.
  • An alloy includes multiple metallic materials.
  • the metal paste contains powder of a metal material kneaded with an organic solvent and a binder. Binders include epoxy resins, polyester resins, polyimide resins, polyamideimide resins, and polyetherimide resins.
  • Conductive polymers include polythiophene-based polymers, polyacetylene-based polymers, polyaniline-based polymers, polypyrrole-based polymers, and the like.
  • the microstrip antenna 10 of this embodiment has a radiation conductor plate 14 having a length L and a width W, and resonates at a frequency where L is an integer multiple of 1/2 wavelength.
  • L is an integer multiple of 1/2 wavelength.
  • the thickness h of the dielectric substrate 12 and the width W of the radiation conductor plate 14 are designed to be sufficiently small with respect to the wavelength.
  • the ground conductor plate 16 is a thin plate made of highly conductive metal such as copper, silver, and gold.
  • the thickness is sufficiently thin with respect to the central operating frequency of the antenna device, and may be about 1/50 to 1/1000 wavelength of the central operating frequency.
  • feeding methods for microstrip antennas include direct feeding methods such as rear coaxial feeding and coplanar feeding, and electromagnetic coupling feeding methods such as slot coupling feeding and proximity coupling feeding.
  • power can be fed from the back of the antenna to the radiating conductor plate 14 by using a coaxial line or connector passing through the ground conductor plate 16 and the dielectric substrate 12 .
  • the radiation conductor plate 14 can be fed with a microstrip line (not shown) arranged on the same plane as the radiation conductor plate 14 .
  • another dielectric substrate (not shown) is provided so as to sandwich the ground conductor plate 16, and the radiation conductor plate 14 and the microstrip line are formed on separate dielectric substrates.
  • the radiation conductor plate 14 is excited by electromagnetically coupling the radiation conductor plate 14 and the microstrip line through a slot formed in the ground conductor plate 16 .
  • the dielectric substrate 12 has a laminated structure, and the dielectric substrate on which the radiation conductor plate 14 is formed and the dielectric substrate on which the strip conductor of the microstrip line and the ground conductor plate 16 are arranged. It is layered.
  • the radiation conductor plate 14 is excited by extending the strip conductor of the microstrip line below the radiation conductor plate 14 and electromagnetically coupling the radiation conductor plate 14 and the microstrip line.
  • the microstrip antenna 20 includes a dielectric substrate 22, a radiation conductor plate 14 provided on one surface of the dielectric substrate 22, and a radiation conductor plate 14 provided on the other surface of the dielectric substrate 22. and a high dielectric substrate (high dielectric) 24 facing the radiation conductor plate 14 .
  • the dielectric substrate 22 and the radiation conductor plate 14 and the high dielectric substrate 24 can be configured to be separated from each other by a predetermined distance with spacers 26 interposed therebetween.
  • the dielectric substrate 22 is composed of a substrate having a low dielectric constant such as a Teflon substrate.
  • the high dielectric substrate 24 is composed of a dielectric substrate obtained by curing the resin composition described above.
  • the gap between the dielectric substrate 22 and the high dielectric substrate 24 may be a space or may be filled with a dielectric material.
  • a structure in which a high dielectric substrate 24 is brought into contact with the upper surface of the radiation conductor plate 14 can be employed.
  • the dielectric waveguide comprises a dielectric obtained by curing the resin composition of this embodiment, and a conductor film covering the surface of the dielectric.
  • a dielectric waveguide confines electromagnetic waves in a dielectric (dielectric medium) for transmission.
  • the conductor film can be made of a metal such as copper, an oxide high-temperature superconductor, or the like.
  • the electromagnetic wave absorber has a laminated structure of a support, a resistive film, a dielectric layer, and a reflective layer.
  • the electromagnetic wave absorber can be used as a ⁇ /4 type electromagnetic wave absorber having high electromagnetic wave absorption performance.
  • a resin base material etc. are mentioned as a support body.
  • the support can protect the resistive film and enhance the durability as a radio wave absorber.
  • Resistive films include indium tin oxide and molybdenum-containing resistive films.
  • the dielectric layer is formed by curing the resin composition of this embodiment. Its thickness is about 10 ⁇ m or more and 2000 ⁇ m or less.
  • the reflective layer can function as a radio wave reflective layer, and includes, for example, a metal film.
  • Example A shows an example of the first invention (claims 1 to 8 and 26 to 31 at the time of filing) and the first embodiment.
  • Example B shows an example of the second invention (claims 9 to 16 and 26 to 31 at the time of filing) and the second embodiment.
  • Example C shows an example of the third invention (claims 17 to 21 and 26 to 31 at the time of filing) and the third embodiment.
  • Example D shows an example according to the fourth invention (claims 22 to 25 and 26 to 31 at the time of filing) and the fourth embodiment.
  • Example A> (Examples A1 to A12, Comparative Example A1)
  • the following raw materials were mixed in a blending amount shown in Table 1 at room temperature using a mixer, and then roll-kneaded at 70 to 100°C. After cooling the obtained kneaded material, the kneaded material was pulverized to obtain a powdery resin composition. Subsequently, tablet-shaped resin composition was obtained by tablet-molding at high pressure.
  • High dielectric constant filler ⁇ High dielectric constant filler 1: barium titanate (BT-UP2, average particle size 2 ⁇ m, manufactured by Nippon Chemical Industry Co., Ltd.) ⁇ High dielectric constant filler 2: calcium titanate (CT, average particle size 2.0 ⁇ m, manufactured by Fuji Titanium Co., Ltd.) ⁇ High dielectric constant filler 3: Strontium titanate (ST-A, average particle size 1.6 ⁇ m, manufactured by Fuji Titanium Co., Ltd.) ⁇ High dielectric constant filler 4: Strontium titanate (STG, average particle size 0.9 ⁇ m, manufactured by Nippon Kagaku Kogyo Co., Ltd.)
  • Inorganic filler ⁇ Inorganic filler 1: alumina (K75-1V25F, manufactured by Denka Co., Ltd.) ⁇ Inorganic filler 2: Fused spherical silica (SC-2500-SQ, manufactured by Admatechs)
  • Coloring agent Black titanium oxide (manufactured by Ako Kasei Co., Ltd.)
  • Coupling agent 1 phenylaminopropyltrimethoxysilane (CF4083, manufactured by Dow Corning Toray Co., Ltd.)
  • Coupling agent 2 3-mercaptopropyltrimethoxysilane (Sila Ace, manufactured by JNC)
  • Epoxy resin (Epoxy resin) - Epoxy resin 1: biphenylene skeleton-containing phenol aralkyl type epoxy resin (NC3000L, manufactured by Nippon Kayaku Co., Ltd.) ⁇ Epoxy resin 2: Triphenol methane type epoxy resin (E1032H60, manufactured by Yuka Shell Epoxy Co., Ltd.)
  • Curing agent 1 biphenylene skeleton-containing phenol aralkyl type resin (MEH-7851SS, manufactured by Meiwa Kasei Co., Ltd.)
  • ⁇ Curing agent 2 Active ester curing agent prepared by the following preparation method (Preparation method of active ester curing agent) 279.1 g of biphenyl-4,4′-dicarboxylic acid dichloride (moles of acid chloride group: 2.0 mol) and 1338 g of toluene were placed in a flask equipped with a thermometer, dropping funnel, condenser, fractionating tube, and stirrer. was charged, and the inside of the system was replaced with nitrogen under reduced pressure to dissolve.
  • preparation method Preparation method of active ester curing agent 279.1 g of biphenyl-4,4′-dicarboxylic acid dichloride (moles of acid chloride group: 2.0 mol) and 1338 g of toluene were placed in a flask equipped with a thermometer, dropping funnel, condenser, fractionating tube, and stirrer. was charged, and the inside of the system was replaced with nitrogen under reduced pressure to dissolve.
  • ⁇ Curing agent 3 Active ester curing agent prepared by the following preparation method (Preparation method of active ester curing agent) A flask equipped with a thermometer, dropping funnel, condenser, fractionating tube and stirrer was charged with 203.0 g of 1,3-benzenedicarboxylic acid dichloride (moles of acid chloride group: 2.0 mol) and 1338 g of toluene. It was charged, and the inside of the system was replaced with nitrogen under reduced pressure to dissolve.
  • the average value k of repeating units of the active ester resin was in the range of 0.5 to 1.0 as calculated from the reaction equivalent ratio.
  • the obtained active ester resin specifically had a structure represented by the following chemical formula. In the following formula, the average value k of repeating units was 0.5 to 1.0.
  • Catalyst 1 Tetraphenylphosphonium-4,4′-sulfonyldiphenolate
  • Catalyst 2 Tetraphenylphosphonium bis(naphthalene-2,3-dioxy)phenylsilicate
  • Release agent Glycerin trimontanate (Rekolb WE-4, manufactured by Clariant Japan Co., Ltd.)
  • Release agent 2 Carnauba wax (TOWAX-132, manufactured by Toagosei Co., Ltd.)
  • Additive 1 3-amino-5-mercapto-1,2,4-triazole (manufactured by Nippon Carbide Industry Co., Ltd.)
  • Silicone 1 dimethylsiloxane-diglycidin ether copolymer (M69B, manufactured by Sumitomo Bakelite Co., Ltd.)
  • a test piece was obtained using the resin composition. Specifically, the resin compositions prepared in Examples and Comparative Examples were applied to a Si substrate and prebaked at 120° C. for 4 minutes to form a resin film having a coating thickness of 12 ⁇ m. This was heated in an oven at 200° C. for 90 minutes in a nitrogen atmosphere and hydrofluoric acid treatment (immersed in a 2 mass % hydrofluoric acid aqueous solution). After removing the substrate from the hydrofluoric acid, the cured film was peeled off from the Si substrate and used as a test piece.
  • a network analyzer HP8510C, a synthesized sweeper HP83651A, and a test set HP8517B were used as measuring devices. These devices and a cylindrical cavity resonator (inner diameter ⁇ 42 mm, height 30 mm) were set up. The resonance frequency, 3 dB bandwidth, transmitted power ratio, etc. were measured at a frequency of 18 GHz with and without inserting the test piece into the resonator. Then, by analytically calculating these measurement results with software, the dielectric properties such as dielectric constant (Dk) and dielectric loss tangent (Df) were determined.
  • the measurement mode was TE 011 mode.
  • Mold shrinkage rate For each example and comparative example, the molding shrinkage (after ASM) was measured after molding (ASM: as Mold) for the obtained resin composition, and after the molding, main curing was performed to form a dielectric substrate. The molding shrinkage rate (after PMC) was evaluated under heating conditions (PMC: Post Mold Cure) assuming the production of .
  • PMC Heating conditions
  • a test piece prepared using a low-pressure transfer molding machine ("KTS-15" manufactured by Kotaki Seiki Co., Ltd.) at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. Mold shrinkage (after ASM) was obtained according to K6911. Furthermore, the obtained test piece was heat-treated at 175° C. for 4 hours, and the molding shrinkage (after ASM) was measured according to JIS K 6911.
  • KTS-15 low-pressure transfer molding machine
  • the glass transition temperature (Tg) and linear expansion coefficients (CTE1, CTE2) of the cured resin composition obtained were measured as follows. First, using a low-pressure transfer molding machine (“KTS-15” manufactured by Kotaki Seiki Co., Ltd.), the encapsulating resin composition was injection molded at a mold temperature of 175° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. A test piece of 10 mm x 4 mm x 4 mm was obtained. Then, after post-curing the obtained test piece at 175 ° C.
  • KTS-15 low-pressure transfer molding machine
  • thermomechanical analyzer manufactured by Seiko Electronics Industries Co., Ltd., TMA100
  • the measurement temperature range is 0 ° C. to 320 ° C.
  • the heating rate is Measurement was performed under the condition of 5°C/min. From these measurement results, the glass transition temperature (Tg), the coefficient of linear expansion below the glass transition temperature (CTE1), and the coefficient of linear expansion above the glass transition temperature (CTE2) were calculated.
  • the bending strength (N/mm 2 ) and bending elastic modulus (N/mm 2 ) of the test piece at room temperature (25°C) or 260°C were measured in accordance with JIS K 6911 at a head speed of 5 mm/min. .
  • the rectangular pressure of the resin compositions of Examples and Comparative Examples was measured as follows. First, using a low-pressure transfer molding machine (manufactured by NEC Corporation, 40t manual press), a rectangular mold having a width of 13 mm, a thickness of 1 mm, and a length of 175 mm was molded under conditions of a mold temperature of 175°C and an injection rate of 177 mm 3 /sec. A resin composition was injected into the shaped channel. At this time, a pressure sensor embedded at a position 25 mm from the upstream end of the flow channel was used to measure the change in pressure over time, and the minimum pressure (MPa) during the flow of the resin composition was measured, which was defined as the rectangular pressure. Rectangular pressure is a parameter of melt viscosity, and a smaller numerical value indicates a lower melt viscosity.
  • the resin composition of the example according to the present invention has a high dielectric constant and a low dielectric constant due to the inclusion of a specific high dielectric constant filler.
  • a dielectric substrate was obtained which was excellent in tangent and also excellent in balance of other physical properties. It was speculated that a microstrip antenna provided with a dielectric substrate obtained by curing the resin composition would enable higher frequencies, shorten circuits, and reduce the size of communication equipment. Furthermore, it is presumed that the desired effects can be obtained in dielectric waveguides and electromagnetic wave absorbers provided with dielectrics (layers) obtained by curing the resin composition.
  • Example B> (Examples B1 to B9) The following raw materials were mixed in a blending amount shown in Table 2 at room temperature using a mixer, and then roll-kneaded at 70 to 100°C. After cooling the obtained kneaded material, the kneaded material was pulverized to obtain a powdery resin composition. Subsequently, tablet-shaped resin composition was obtained by tablet-molding at high pressure.
  • High dielectric constant filler ⁇ High dielectric constant filler 1: magnesium titanate (average particle size 0.8 ⁇ m) ⁇ High dielectric constant filler 2: calcium titanate (average particle size 2.0 ⁇ m)
  • Inorganic filler ⁇ Inorganic filler 1: alumina (average particle size 11 ⁇ m, manufactured by Denka Co., Ltd.) ⁇ Inorganic filler 2: Fused spherical silica (manufactured by Denka Co., Ltd.)
  • Coloring agent Black titanium oxide (manufactured by Ako Kasei Co., Ltd.)
  • Coupling agent 1 phenylaminopropyltrimethoxysilane (CF4083, manufactured by Dow Corning Toray Co., Ltd.)
  • Coupling agent 2 3-mercaptopropyltrimethoxysilane (Sila Ace, manufactured by JNC)
  • Epoxy resin (Epoxy resin) - Epoxy resin 1: biphenylene skeleton-containing phenol aralkyl type epoxy resin (NC3000L, manufactured by Nippon Kayaku Co., Ltd.) ⁇ Epoxy resin 2: naphthol aralkyl type epoxy resin (ESN-475V, manufactured by Nippon Steel Chemical Co., Ltd.) ⁇ Epoxy resin 3: biphenyl type epoxy resin (Mitsubishi Chemical Corporation, YX-4000K)
  • Curing agent 1 Active ester curing agent prepared by the following preparation method (Preparation method of active ester curing agent) 279.1 g of biphenyl-4,4′-dicarboxylic acid dichloride (moles of acid chloride group: 2.0 mol) and 1338 g of toluene were placed in a flask equipped with a thermometer, dropping funnel, condenser, fractionating tube, and stirrer. was charged, and the inside of the system was replaced with nitrogen under reduced pressure to dissolve.
  • ⁇ Curing agent 2 Active ester curing agent prepared by the following preparation method (Preparation method of active ester curing agent) A flask equipped with a thermometer, dropping funnel, condenser, fractionating tube and stirrer was charged with 203.0 g of 1,3-benzenedicarboxylic acid dichloride (moles of acid chloride group: 2.0 mol) and 1338 g of toluene. It was charged, and the inside of the system was replaced with nitrogen under reduced pressure to dissolve.
  • the average value k of repeating units of the active ester resin was in the range of 0.5 to 1.0 as calculated from the reaction equivalent ratio.
  • the obtained active ester resin specifically had a structure represented by the following chemical formula. In the following formula, the average value k of repeating units was 0.5 to 1.0.
  • Catalyst 1 Tetraphenylphosphonium-4,4′-sulfonyldiphenolate
  • Catalyst 2 Tetraphenylphosphonium bis(naphthalene-2,3-dioxy)phenylsilicate
  • Release agent ⁇ Releasing agent 1: Glycerin trimontanate (Rekolb WE-4, manufactured by Clariant Japan Co., Ltd.)
  • Silicone 1 dimethylsiloxane-diglycidin ether copolymer (M69B, manufactured by Sumitomo Bakelite Co., Ltd.)
  • a test piece was obtained using the resin composition. Specifically, the resin composition prepared in the example was applied to a Si substrate and prebaked at 120° C. for 4 minutes to form a resin film having a coating thickness of 12 ⁇ m. This was heated in an oven at 200° C. for 90 minutes in a nitrogen atmosphere and hydrofluoric acid treatment (immersed in a 2 mass % hydrofluoric acid aqueous solution). After removing the substrate from the hydrofluoric acid, the cured film was peeled off from the Si substrate and used as a test piece.
  • a network analyzer HP8510C, a synthesized sweeper HP83651A, and a test set HP8517B were used as measuring devices. These devices and a cylindrical cavity resonator (inner diameter ⁇ 42 mm, height 30 mm) were set up. The resonance frequency, 3 dB bandwidth, transmitted power ratio, etc. were measured at a frequency of 25 GHz with and without inserting the test piece into the resonator. Then, by analytically calculating these measurement results with software, the dielectric properties such as dielectric constant (Dk) and dielectric loss tangent (Df) were determined.
  • the measurement mode was TE 011 mode.
  • the bending strength (N/mm 2 ) and bending elastic modulus (N/mm 2 ) of the test piece at room temperature (25°C) or 260°C were measured in accordance with JIS K 6911 at a head speed of 5 mm/min. .
  • thermosetting resin compositions of the examples according to the present invention were excellent in low dielectric loss tangent due to the inclusion of the high dielectric constant filler, particularly due to the inclusion of magnesium titanate. From this, it has been clarified that the thermosetting resin composition of the present invention is suitably used as a material for forming a microstrip antenna, a material for forming a dielectric waveguide, and a material for forming an electromagnetic wave absorber. .
  • Example C> (Examples C1 to C17) The following raw materials were blended at room temperature using a mixer in the blending amounts shown in Table 3, and then roll-kneaded at 70 to 100°C. After cooling the obtained kneaded material, the kneaded material was pulverized to obtain a powdery resin composition. Subsequently, tablet-shaped resin composition was obtained by tablet-molding at high pressure.
  • Inorganic filler (Inorganic filler) ⁇ Inorganic filler 1: Fused spherical silica (manufactured by Denka Co., Ltd.)
  • High dielectric constant filler ⁇ High dielectric constant filler 1: calcium titanate (average particle size 2.0 ⁇ m) ⁇ High dielectric constant filler 2: Magnesium titanate (average particle size 0.8 ⁇ m, with surface treatment, manufactured by Titan Kogyo Co., Ltd.)
  • Coloring agent Black titanium oxide (manufactured by Ako Kasei Co., Ltd.)
  • Coupling agent 1 phenylaminopropyltrimethoxysilane (CF4083, manufactured by Dow Corning Toray Co., Ltd.)
  • Coupling agent 2 3-mercaptopropyltrimethoxysilane (Sila Ace, manufactured by JNC)
  • Epoxy resin - Epoxy resin 1: biphenylene skeleton-containing phenol aralkyl type epoxy resin (NC3000L, manufactured by Nippon Kayaku Co., Ltd.)
  • Epoxy resin 2 naphthol aralkyl type epoxy resin (ESN-475V, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
  • Epoxy resin 3 bisphenol A type epoxy resin (YL6810, manufactured by Mitsubishi Chemical Corporation)
  • Epoxy resin 4 bisphenol F type epoxy resin (jER806H, manufactured by Mitsubishi Chemical Corporation)
  • Epoxy resin 5 phenol aralkyl type epoxy resin (Milex E-XLC-4L (epoxy equivalent weight 238 g / eq, softening point 62 ° C.), manufactured by Mitsui Chemicals)
  • Epoxy resin 6 naphthalene type epoxy resin (EPICLON HP-4770, manufactured by DIC Corporation)
  • Epoxy resin 7 dicyclopentadiene type
  • Curing agent 1 Active ester curing agent prepared by the following preparation method (Preparation method of active ester curing agent) 279.1 g of biphenyl-4,4′-dicarboxylic acid dichloride (moles of acid chloride group: 2.0 mol) and 1338 g of toluene were placed in a flask equipped with a thermometer, dropping funnel, condenser, fractionating tube, and stirrer. was charged, and the inside of the system was replaced with nitrogen under reduced pressure to dissolve.
  • ⁇ Curing agent 2 Active ester curing agent prepared by the following preparation method (Preparation method of active ester curing agent) A flask equipped with a thermometer, dropping funnel, condenser, fractionating tube and stirrer was charged with 203.0 g of 1,3-benzenedicarboxylic acid dichloride (moles of acid chloride group: 2.0 mol) and 1338 g of toluene. It was charged, and the inside of the system was replaced with nitrogen under reduced pressure to dissolve.
  • the average value k of repeating units of the active ester resin was in the range of 0.5 to 1.0 as calculated from the reaction equivalent ratio.
  • the obtained active ester resin specifically had a structure represented by the following chemical formula. In the following formula, the average value k of repeating units was 0.5 to 1.0.
  • Silicone 1 dimethylsiloxane-diglycidin ether copolymer (M69B, manufactured by Sumitomo Bakelite Co., Ltd.)
  • a test piece was obtained using the resin composition. Specifically, the resin composition prepared in the example was applied to a Si substrate and prebaked at 120° C. for 4 minutes to form a resin film having a coating thickness of 12 ⁇ m. This was heated in an oven at 200° C. for 90 minutes in a nitrogen atmosphere and hydrofluoric acid treatment (immersed in a 2 mass % hydrofluoric acid aqueous solution). After removing the substrate from the hydrofluoric acid, the cured film was peeled off from the Si substrate and used as a test piece.
  • a network analyzer HP8510C, a synthesized sweeper HP83651A, and a test set HP8517B were used as measuring devices. These devices and a cylindrical cavity resonator (inner diameter ⁇ 42 mm, height 30 mm) were set up. The resonance frequency, 3 dB bandwidth, transmitted power ratio, etc. were measured at a frequency of 25 GHz with and without inserting the test piece into the resonator. Then, by analytically calculating these measurement results with software, the dielectric properties such as dielectric constant (Dk) and dielectric loss tangent (Df) were determined.
  • the measurement mode was TE 011 mode.
  • the bending strength (N/mm 2 ) and bending elastic modulus (N/mm 2 ) of the test piece at room temperature (25°C) or 260°C were measured in accordance with JIS K 6911 at a head speed of 5 mm/min. .
  • the rectangular pressure of the resin composition of the example was measured as follows. First, using a low-pressure transfer molding machine (manufactured by NEC Corporation, 40t manual press), a rectangular mold having a width of 13 mm, a thickness of 1 mm, and a length of 175 mm was molded under conditions of a mold temperature of 175°C and an injection rate of 177 mm 3 /sec. A resin composition was injected into the shaped channel. At this time, a pressure sensor embedded at a position 25 mm from the upstream end of the flow channel was used to measure the change in pressure over time, and the minimum pressure (MPa) during the flow of the resin composition was measured, which was defined as the rectangular pressure. Rectangular pressure is a parameter of melt viscosity, and a smaller numerical value indicates a lower melt viscosity.
  • thermosetting resin composition of the present invention by including the epoxy resin (A1), the curing agent (B) and the high dielectric constant filler (C), the specific epoxy resin It has been clarified that a dielectric substrate excellent in a high dielectric constant and a low dielectric loss tangent, in other words, a dielectric substrate excellent in balance of these characteristics can be obtained by using it.
  • Example D> (Examples D1 to D8) The following raw materials were blended at room temperature using a mixer in the blending amounts shown in Table 4, and then roll-kneaded at 70 to 100°C. After cooling the obtained kneaded material, the kneaded material was pulverized to obtain a powdery resin composition. Subsequently, tablet-shaped resin composition was obtained by tablet-molding at high pressure.
  • Inorganic filler (Inorganic filler) ⁇ Inorganic filler 1: Fused spherical silica (manufactured by Denka Co., Ltd.)
  • High dielectric constant filler ⁇ High dielectric constant filler 1: calcium titanate (average particle size 2.0 ⁇ m) ⁇ High dielectric constant filler 2: magnesium titanate (average particle size 0.8 ⁇ m) ⁇ High dielectric constant filler 3: Strontium titanate (average particle size 1.6 ⁇ m)
  • Coloring agent Black titanium oxide (manufactured by Ako Kasei Co., Ltd.)
  • Coupling agent 1 phenylaminopropyltrimethoxysilane (product name CF4083, manufactured by Dow Corning Toray Co., Ltd.)
  • Coupling agent 2 3-mercaptopropyltrimethoxysilane (product name: Sila Ace, manufactured by JNC)
  • Epoxy resin (Epoxy resin) ⁇
  • Epoxy resin 1 Biphenylene skeleton-containing phenol aralkyl type epoxy resin (product name NC3000L, manufactured by Nippon Kayaku Co., Ltd.)
  • Epoxy resin 2 naphthol aralkyl type epoxy resin (in the general formula (a), R is a hydrogen atom, epoxy equivalent: 310 to 350 g / eq, softening point: 70 to 90 ° C., 150 ° C. melt viscosity: 0.1 to 0 .4 Pa s) (product name ESN-475V, manufactured by Nippon Steel Chemical Co., Ltd.)
  • Curing agent an active ester curing agent prepared by the following preparation method (method for preparing an active ester curing agent) 279.1 g of biphenyl-4,4′-dicarboxylic acid dichloride (moles of acid chloride group: 2.0 mol) and 1338 g of toluene were placed in a flask equipped with a thermometer, dropping funnel, condenser, fractionating tube, and stirrer. was charged, and the inside of the system was replaced with nitrogen under reduced pressure to dissolve.
  • preparation method method for preparing an active ester curing agent
  • ⁇ Curing agent 2 Active ester curing agent prepared by the following preparation method (Preparation method of active ester curing agent) A flask equipped with a thermometer, dropping funnel, condenser, fractionating tube and stirrer was charged with 203.0 g of 1,3-benzenedicarboxylic acid dichloride (moles of acid chloride group: 2.0 mol) and 1338 g of toluene. It was charged, and the inside of the system was replaced with nitrogen under reduced pressure to dissolve.
  • the average value k of repeating units of the active ester resin was in the range of 0.5 to 1.0 as calculated from the reaction equivalent ratio.
  • the obtained active ester resin specifically had a structure represented by the following chemical formula. In the following formula, the average value k of repeating units was 0.5 to 1.0.
  • Catalyst 1 Tetraphenylphosphonium-4,4′-sulfonyldiphenolate
  • Catalyst 2 Tetraphenylphosphonium bis(naphthalene-2,3-dioxy)phenylsilicate
  • Release agent ⁇ Releasing agent 1: glycerin trimontanate (product name: Recolb WE-4, manufactured by Clariant Japan Co., Ltd.)
  • Silicone compound 1 dimethylsiloxane-diglycidin ether copolymer (product name: M69B, manufactured by Sumitomo Bakelite Co., Ltd.)
  • Low stress agent ⁇ Low stress agent 1: Carboxyl group-terminated butadiene acrylic rubber (product name: CTBN1008SP, manufactured by Ube Industries, Ltd.)
  • a test piece was obtained using the resin composition. Specifically, the resin composition prepared in the example was applied to a Si substrate and prebaked at 120° C. for 4 minutes to form a resin film having a coating thickness of 12 ⁇ m. This was heated in an oven at 200° C. for 90 minutes in a nitrogen atmosphere and hydrofluoric acid treatment (immersed in a 2 mass % hydrofluoric acid aqueous solution). After removing the substrate from the hydrofluoric acid, the cured film was peeled off from the Si substrate and used as a test piece.
  • a network analyzer HP8510C, a synthesized sweeper HP83651A, and a test set HP8517B were used as measuring devices. These devices and a cylindrical cavity resonator (inner diameter ⁇ 42 mm, height 30 mm) were set up. The resonance frequency, 3 dB bandwidth, transmitted power ratio, etc. were measured at a frequency of 25 GHz with and without inserting the test piece into the resonator. Then, by analytically calculating these measurement results with software, the dielectric properties such as dielectric constant (Dk) and dielectric loss tangent (Df) were determined.
  • the measurement mode was TE 011 mode.
  • the bending strength (N/mm 2 ) and bending elastic modulus (N/mm 2 ) of the test piece at room temperature (25°C) or 260°C were measured in accordance with JIS K 6911 at a head speed of 5 mm/min. .
  • thermosetting resin compositions of the examples according to the present invention were particularly naphthol aralkyl By containing the type epoxy resin, it was excellent in low dielectric loss tangent and had a high dielectric constant.
  • thermosetting resin composition of the present invention is excellent in balance between low dielectric loss tangent and high dielectric constant, and the thermosetting resin composition of the present invention forms a material for forming a microstrip antenna, a material for forming a dielectric waveguide, and an electromagnetic wave absorber. It became clear that it is suitably used as a material.
  • microstrip antenna 12 dielectric substrate 14 radiation conductor plate 16 ground conductor plate 20, 20' microstrip antenna 22 dielectric substrate 24 high dielectric substrate 26 spacer a void

Abstract

A thermosetting resin composition of the present invention comprises a thermosetting resin (A) and a high-dielectric constant filler (C). The high-dielectric constant filler (C) includes at least one selected from calcium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth zirconate, bismuth titanate, zirconium titanate, zinc titanate, barium zirconate, calcium zirconate titanate, lead zirconate titanate, barium magnesium niobate, and calcium zirconate.

Description

熱硬化性樹脂組成物、誘電体基板、およびマイクロストリップアンテナThermosetting resin composition, dielectric substrate, and microstrip antenna
 本発明は、熱硬化性樹脂組成物、当該熱硬化性樹脂組成物からなる誘電体基板、および当該誘電体基板を備えるマイクロストリップアンテナに関する。 The present invention relates to a thermosetting resin composition, a dielectric substrate made of the thermosetting resin composition, and a microstrip antenna provided with the dielectric substrate.
 近年、無線通信が高速化され、さらに使用される通信機器に対して高性能化および小型化が求められている。さらに、近年、無線通信の容量が急激に増大してきており、それに伴う伝送信号の使用周波数の広帯域化、高周波化が急速に進行している。そのため、通信機器の使用周波数帯は、従来使用されてきたマイクロ波帯だけでは対応できず、ミリ波帯にまで拡大されつつある。そのような背景から通信機器に搭載されるアンテナヘの高性能化が強く求められている。 In recent years, wireless communication has become faster, and there is a demand for higher performance and smaller size for the communication equipment used. Furthermore, in recent years, the capacity of wireless communication has increased rapidly, and along with this, the frequency band and frequency used for transmission signals are rapidly increasing. Therefore, the frequency band used by communication devices cannot be handled by the conventionally used microwave band alone, and is being expanded to include the millimeter wave band. Against this background, there is a strong demand for higher performance antennas mounted on communication devices.
 通信機器は、通信機器内部に組み込まれたアンテナ材料(誘電体基板)の誘電率が高くなると、より一層の小型化が図れる。また、誘電体基板の誘電正接が小さくなると、低損失になり、高周波化に有利となる。従って、誘電率が高く、誘電正接が小さい誘電体基板を使用できれば、高周波化ひいては回路の短縮化および通信機器の小型化が図ることができる。 Communication equipment can be made even more compact by increasing the dielectric constant of the antenna material (dielectric substrate) incorporated inside the communication equipment. Further, when the dielectric loss tangent of the dielectric substrate becomes small, the loss becomes low, which is advantageous for increasing the frequency. Therefore, if a dielectric substrate with a high dielectric constant and a small dielectric loss tangent can be used, it is possible to increase the frequency, shorten the circuit, and reduce the size of communication equipment.
 特許文献1には、フッ素樹脂とガラスクロスとを含む複合材料である誘電体基板と、フッ素樹脂に接する面の二次元粗度Raが0.2μm未満であるアンテナとの積層体である回路用基板を有するアンテナが開示されている。当該文献には、1GHzにて測定された回路用基板の誘電率および誘電正接が記載されている。 In Patent Document 1, a dielectric substrate which is a composite material containing a fluororesin and a glass cloth and an antenna whose two-dimensional roughness Ra of the surface in contact with the fluororesin is less than 0.2 μm is disclosed for a circuit. An antenna having a substrate is disclosed. The document describes the dielectric constant and dielectric loss tangent of the circuit board measured at 1 GHz.
 特許文献2には、シロキサン変性ポリアミドイミド樹脂と高誘電率充填剤とエポキシ樹脂とを含み、25℃、1MHzにおける硬化物の比誘電率が15以上である樹脂組成物が開示されている。当該文献の実施例には、この高誘電率充填剤としてチタン酸バリウムを用いた例が記載されている。 Patent Document 2 discloses a resin composition containing a siloxane-modified polyamideimide resin, a high dielectric constant filler, and an epoxy resin, and having a cured product with a dielectric constant of 15 or more at 25°C and 1 MHz. Examples of the document describe an example of using barium titanate as the high dielectric constant filler.
 特許文献3には、エポキシ樹脂、誘電体粉末、ノニオン性界面活性剤、及び活性エステル硬化剤を含有する樹脂組成物が開示されている。当該文献には、この樹脂組成物を、高周波領域で使用される電子部品の高誘電率絶縁材料や、指紋センサー用の高誘電率絶縁材料として用いることができると記載されている。当該文献の実施例には、この誘電体粉末としてチタン酸バリウムを用いた例が記載されている。 Patent Document 3 discloses a resin composition containing an epoxy resin, a dielectric powder, a nonionic surfactant, and an active ester curing agent. This document describes that this resin composition can be used as a high dielectric constant insulating material for electronic parts used in a high frequency range and as a high dielectric constant insulating material for fingerprint sensors. Examples of the literature describe an example of using barium titanate as the dielectric powder.
 特許文献4には、エポキシ樹脂と、硬化剤と、チタン酸カルシウム粒子及びチタン酸ストロンチウム粒子を所定の量で含む無機充填材と、を含み、前記無機充填材が、シリカ粒子及びアルミナ粒子からなる群より選択される少なくとも一種をさらに含有し、高周波デバイスにおける電子部品の封止に用いられる成形用樹脂組成物が開示されている。 Patent document 4 contains an epoxy resin, a curing agent, and an inorganic filler containing predetermined amounts of calcium titanate particles and strontium titanate particles, and the inorganic filler consists of silica particles and alumina particles. A molding resin composition further containing at least one selected from the group and used for encapsulating electronic parts in high-frequency devices is disclosed.
特開2018-41998号公報Japanese Patent Application Laid-Open No. 2018-41998 特開2004-315653号公報JP-A-2004-315653 特開2020-105523号公報JP 2020-105523 A 特許第6870778号公報Japanese Patent No. 6870778
 しかしながら、特許文献1~4に記載の誘電体基板は、高誘電率や低誘電正接等の誘電特性に課題があり、特に高周波帯域において当該課題は顕著であった。 However, the dielectric substrates described in Patent Documents 1 to 4 have problems with dielectric properties such as a high dielectric constant and a low dielectric loss tangent, and these problems are particularly noticeable in the high frequency band.
 本発明者らは、特定の高誘電率充填剤を含むことにより、誘電特性に優れた誘電体基板が得られることを見出し、第1~第4の発明を完成させた。
 すなわち、第1~第4の発明は、以下に示すことができる。
The present inventors have found that a dielectric substrate having excellent dielectric properties can be obtained by including a specific high dielectric constant filler, and have completed the first to fourth inventions.
That is, the first to fourth inventions can be shown below.
 第1の発明(出願時請求項1~8)は、以下の[1]~[8]に示すことができる。
[1](A)熱硬化性樹脂と、
(C)高誘電率充填剤と、を含み、
 前記高誘電率充填剤(C)が、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸マグネシウム、ジルコン酸マグネシウム、ジルコン酸ストロンチウム、チタン酸ビスマス、チタン酸ジルコニウム、チタン酸亜鉛、ジルコン酸バリウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸鉛、ニオブ酸マグネシウム酸バリウム、およびジルコン酸カルシウムから選択される少なくとも1種を含む、熱硬化性樹脂組成物。
[2] さらに活性エステル硬化剤(B1)を含む、[1]に記載の熱硬化性樹脂組成物。
[3] 前記活性エステル硬化剤(B1)は、ジシクロペンタジエン型ジフェノール構造を含む活性エステル硬化剤、ナフタレン構造を含む活性エステル硬化剤、フェノールノボラックのアセチル化物を含む活性エステル硬化剤、およびフェノールノボラックのベンゾイル化物を含む活性エステル硬化剤から選択される少なくとも1種を含む、[2]に記載の熱硬化性樹脂組成物。
[4] 前記活性エステル硬化剤(B1)は、下記一般式(1)で表される構造を備える、[2]または[3]に記載の熱硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-C000007
(一般式(1)中、Aは、脂肪族環状炭化水素基を介して連結された置換または非置換のアリーレン基であり、Ar’は、置換または非置換のアリール基であり、
Bは、下記一般式(B)で表される構造であり、
Figure JPOXMLDOC01-appb-C000008
(一般式(B)中、Arは、置換または非置換のアリーレン基であり、Yは、単結合、置換または非置換の炭素原子数1~6の直鎖のアルキレン基、または置換または非置換の炭素原子数3~6の環式のアルキレン基、置換または非置換の2価の芳香族炭化水素基、エーテル結合、カルボニル基、カルボニルオキシ基、スルフィド基、あるいはスルホン基である。nは0~4の整数である。)
 kは、繰り返し単位の平均値であり、0.25~3.5の範囲である。)
[5] さらに硬化触媒(D)を含む、[1]~[4]のいずれかに記載の熱硬化性樹脂組成物。
[6] 前記樹脂組成物のスパイラルフローの流動長が50cm以上である、[1]~[5]のいずれかに記載の熱硬化性樹脂組成物。
[7] 下記条件で測定された矩形圧が0.1MPa以上である、[1]~[6]のいずれかに記載の熱硬化性樹脂組成物。
(条件)
 低圧トランスファー成形機を用いて、金型温度175℃、注入速度177mm/秒の条件にて、幅13mm、厚さ1mm、長さ175mmの矩形状の流路に樹脂組成物を注入し、流路の上流先端から25mmの位置に埋設した圧力センサーにて圧力の経時変化を測定し、前記樹脂組成物の流動時における最低圧力を算出して、この最低圧力を矩形圧とする。
[8] 熱硬化性樹脂(A)と、高誘電率充填剤(C)と、を含む樹脂組成物を、200℃で90分加熱して硬化させた硬化物の、空洞共振器法による18GHzでの誘電率が10以上であり、誘電正接(tanδ)が0.04以下である、熱硬化性樹脂組成物。
The first invention (claims 1 to 8 at the time of filing) can be shown in the following [1] to [8].
[1] (A) a thermosetting resin;
(C) a high dielectric constant filler;
The high dielectric constant filler (C) is calcium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, barium zirconate, zircon titanate. A thermosetting resin composition comprising at least one selected from calcium acid, lead zirconate titanate, barium magnesium niobate, and calcium zirconate.
[2] The thermosetting resin composition according to [1], further comprising an active ester curing agent (B1).
[3] The active ester curing agent (B1) includes an active ester curing agent containing a dicyclopentadiene type diphenol structure, an active ester curing agent containing a naphthalene structure, an active ester curing agent containing an acetylated phenol novolac, and a phenol The thermosetting resin composition according to [2], which contains at least one selected from active ester curing agents containing benzoylated novolaks.
[4] The thermosetting resin composition according to [2] or [3], wherein the active ester curing agent (B1) has a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000007
(In general formula (1), A is a substituted or unsubstituted arylene group linked via an aliphatic cyclic hydrocarbon group, Ar′ is a substituted or unsubstituted aryl group,
B is a structure represented by the following general formula (B),
Figure JPOXMLDOC01-appb-C000008
(In the general formula (B), Ar is a substituted or unsubstituted arylene group, Y is a single bond, a substituted or unsubstituted linear alkylene group having 1 to 6 carbon atoms, or a substituted or unsubstituted is a cyclic alkylene group having 3 to 6 carbon atoms, a substituted or unsubstituted divalent aromatic hydrocarbon group, an ether bond, a carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group, n is 0 is an integer between ~4.)
k is the average value of repeating units and ranges from 0.25 to 3.5. )
[5] The thermosetting resin composition according to any one of [1] to [4], further comprising a curing catalyst (D).
[6] The thermosetting resin composition according to any one of [1] to [5], wherein the resin composition has a spiral flow length of 50 cm or more.
[7] The thermosetting resin composition according to any one of [1] to [6], which has a rectangular pressure of 0.1 MPa or more measured under the following conditions.
(conditions)
Using a low-pressure transfer molding machine, the resin composition was injected into a rectangular channel having a width of 13 mm, a thickness of 1 mm, and a length of 175 mm under conditions of a mold temperature of 175°C and an injection rate of 177 mm 3 /sec. A pressure sensor embedded at a position 25 mm from the upstream end of the channel measures the change in pressure over time to calculate the minimum pressure when the resin composition flows, and this minimum pressure is defined as the rectangular pressure.
[8] A cured product obtained by heating a resin composition containing a thermosetting resin (A) and a high dielectric constant filler (C) at 200° C. for 90 minutes at 18 GHz by a cavity resonator method. A thermosetting resin composition having a dielectric constant at 10 or more and a dielectric loss tangent (tan δ) of 0.04 or less.
 第2の発明(出願時請求項9~16)は、以下の[9]~[16]に示すことができる。
[9](A)熱硬化性樹脂と、
(B)硬化剤と、
(C)高誘電率充填剤と、を含み、
 前記高誘電率充填剤(C)がチタン酸マグネシウムを含む、熱硬化性樹脂組成物。
[10] 前記高誘電率充填剤(C)が、さらにチタン酸カルシウムを含む、[9]に記載の熱硬化性樹脂組成物。
[11] 前記熱硬化性樹脂組成物100質量%中に、前記高誘電率充填剤(C)を10質量%以上90質量%以下の量で含む、[9]または[10]に記載の熱硬化性樹脂組成物。
[12] 前記硬化剤(B)は活性エステル硬化剤(B1)を含み、
 前記活性エステル硬化剤(B1)は、ジシクロペンタジエン型ジフェノール構造を含む活性エステル硬化剤、ナフタレン構造を含む活性エステル硬化剤、フェノールノボラックのアセチル化物を含む活性エステル硬化剤、およびフェノールノボラックのベンゾイル化物を含む活性エステル硬化剤から選択される少なくとも1種を含む、[9]~[11]のいずれかに記載の熱硬化性樹脂組成物。
[13] 前記活性エステル硬化剤(B1)は、下記一般式(1)で表される構造を備える、[12]に記載の熱硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-C000009
(一般式(1)中、Aは、脂肪族環状炭化水素基を介して連結された置換または非置換のアリーレン基であり、Ar’は、置換または非置換のアリール基であり、
Bは、下記一般式(B)で表される構造であり、
Figure JPOXMLDOC01-appb-C000010
(一般式(B)中、Arは、置換または非置換のアリーレン基であり、Yは、単結合、置換または非置換の炭素原子数1~6の直鎖のアルキレン基、または置換または非置換の炭素原子数3~6の環式のアルキレン基、置換または非置換の2価の芳香族炭化水素基、エーテル結合、カルボニル基、カルボニルオキシ基、スルフィド基、あるいはスルホン基である。nは0~4の整数である。)
 kは、繰り返し単位の平均値であり、0.25~3.5の範囲である。)
[14] さらに硬化触媒(D)を含む、[9]~[13]のいずれかに記載の熱硬化性樹脂組成物。
[15] 前記熱硬化性樹脂組成物のスパイラルフローの流動長が50cm以上である、[9]~[14]のいずれかに記載の熱硬化性樹脂組成物。
[16] 熱硬化性樹脂(A)と、硬化剤(B)と、高誘電率充填剤(C)と、を含む熱硬化性樹脂組成物を、200℃で90分加熱して硬化させた硬化物の、空洞共振器法による25GHzでの誘電正接(tanδ)が0.04以下である、熱硬化性樹脂組成物。
The second invention (claims 9 to 16 at the time of filing) can be shown in the following [9] to [16].
[9] (A) a thermosetting resin;
(B) a curing agent;
(C) a high dielectric constant filler;
A thermosetting resin composition, wherein the high dielectric constant filler (C) contains magnesium titanate.
[10] The thermosetting resin composition according to [9], wherein the high dielectric constant filler (C) further contains calcium titanate.
[11] The heat according to [9] or [10], wherein the high dielectric constant filler (C) is contained in an amount of 10% by mass or more and 90% by mass or less in 100% by mass of the thermosetting resin composition. A curable resin composition.
[12] The curing agent (B) contains an active ester curing agent (B1),
The active ester curing agent (B1) includes an active ester curing agent containing a dicyclopentadiene type diphenol structure, an active ester curing agent containing a naphthalene structure, an active ester curing agent containing an acetylated product of phenol novolac, and a benzoyl of phenol novolak. The thermosetting resin composition according to any one of [9] to [11], which contains at least one selected from active ester curing agents containing compounds.
[13] The thermosetting resin composition according to [12], wherein the active ester curing agent (B1) has a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000009
(In general formula (1), A is a substituted or unsubstituted arylene group linked via an aliphatic cyclic hydrocarbon group, Ar′ is a substituted or unsubstituted aryl group,
B is a structure represented by the following general formula (B),
Figure JPOXMLDOC01-appb-C000010
(In the general formula (B), Ar is a substituted or unsubstituted arylene group, Y is a single bond, a substituted or unsubstituted linear alkylene group having 1 to 6 carbon atoms, or a substituted or unsubstituted is a cyclic alkylene group having 3 to 6 carbon atoms, a substituted or unsubstituted divalent aromatic hydrocarbon group, an ether bond, a carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group, n is 0 is an integer between ~4.)
k is the average value of repeating units and ranges from 0.25 to 3.5. )
[14] The thermosetting resin composition according to any one of [9] to [13], further comprising a curing catalyst (D).
[15] The thermosetting resin composition according to any one of [9] to [14], wherein the spiral flow length of the thermosetting resin composition is 50 cm or more.
[16] A thermosetting resin composition containing a thermosetting resin (A), a curing agent (B), and a high dielectric constant filler (C) was cured by heating at 200°C for 90 minutes. A thermosetting resin composition, the cured product of which has a dielectric loss tangent (tan δ) at 25 GHz measured by a cavity resonator method of 0.04 or less.
 第3の発明(出願時請求項17~21)は、以下の[17]~[21]に示すことができる。
[17](A)熱硬化性樹脂と、
(B)硬化剤と、
(C)高誘電率充填剤と、
を含む、熱硬化性樹脂組成物であって、
 前記(A)熱硬化性樹脂がエポキシ樹脂(A1)であり、
 前記エポキシ樹脂(A1)が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、およびフェノールアラルキル型エポキシ樹脂からなる群より選択される少なくとも1種を含み、
 前記硬化剤(B)が、活性エステル硬化剤(B1)および/またはフェノール硬化剤(B2)を含み、
 前記高誘電率充填剤(C)が、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸マグネシウム、ジルコン酸マグネシウム、ジルコン酸ストロンチウム、チタン酸ビスマス、チタン酸ジルコニウム、チタン酸亜鉛、ジルコン酸バリウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸鉛、ニオブ酸マグネシウム酸バリウム、およびジルコン酸カルシウムから選択される少なくとも1種を含む、熱硬化性樹脂組成物。
[18] 前記高誘電率充填剤(C)が、チタン酸カルシウム、チタン酸ストロンチウム、およびチタン酸マグネシウムから選択される少なくとも1種を含む、[17]に記載の熱硬化性樹脂組成物。
[19] 前記熱硬化性樹脂組成物100質量%中に、前記高誘電率充填剤(C)を40質量%以上の量で含む、[17]または[18]に記載の熱硬化性樹脂組成物。
[20] 前記活性エステル硬化剤(B1)は、ジシクロペンタジエン型ジフェノール構造を含む活性エステル硬化剤、ナフタレン構造を含む活性エステル硬化剤、フェノールノボラックのアセチル化物を含む活性エステル硬化剤、およびフェノールノボラックのベンゾイル化物を含む活性エステル硬化剤から選択される少なくとも1種を含む、[17]~[19]のいずれかに記載の熱硬化性樹脂組成物。
[21] 前記活性エステル硬化剤(B1)は、下記一般式(1)で表される構造を備える、[17]~[20]のいずれかに記載の熱硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-C000011
(一般式(1)中、Aは、脂肪族環状炭化水素基を介して連結された置換または非置換のアリーレン基であり、Ar’は、置換または非置換のアリール基であり、
Bは、下記一般式(B)で表される構造であり、
Figure JPOXMLDOC01-appb-C000012
(一般式(B)中、Arは、置換または非置換のアリーレン基であり、Yは、単結合、置換または非置換の炭素原子数1~6の直鎖のアルキレン基、または置換または非置換の炭素原子数3~6の環式のアルキレン基、置換または非置換の2価の芳香族炭化水素基、エーテル結合、カルボニル基、カルボニルオキシ基、スルフィド基、あるいはスルホン基である。nは0~4の整数である。)
 kは、繰り返し単位の平均値であり、0.25~3.5の範囲である。)
The third invention (claims 17 to 21 at the time of filing) can be shown in the following [17] to [21].
[17] (A) a thermosetting resin;
(B) a curing agent;
(C) a high dielectric constant filler;
A thermosetting resin composition comprising
(A) the thermosetting resin is an epoxy resin (A1),
The epoxy resin (A1) is a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a naphthalene type epoxy resin, a dicyclopentadiene type epoxy resin, a glycidylamine type epoxy resin, a naphthol aralkyl type epoxy resin, and a phenol aralkyl type epoxy resin. At least one selected from the group consisting of
The curing agent (B) comprises an active ester curing agent (B1) and/or a phenolic curing agent (B2),
The high dielectric constant filler (C) is calcium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, barium zirconate, zircon titanate. A thermosetting resin composition comprising at least one selected from calcium acid, lead zirconate titanate, barium magnesium niobate, and calcium zirconate.
[18] The thermosetting resin composition according to [17], wherein the high dielectric constant filler (C) contains at least one selected from calcium titanate, strontium titanate, and magnesium titanate.
[19] The thermosetting resin composition according to [17] or [18], wherein the high dielectric constant filler (C) is contained in an amount of 40% by mass or more in 100% by mass of the thermosetting resin composition. thing.
[20] The active ester curing agent (B1) includes an active ester curing agent containing a dicyclopentadiene type diphenol structure, an active ester curing agent containing a naphthalene structure, an active ester curing agent containing an acetylated phenol novolak, and a phenol The thermosetting resin composition according to any one of [17] to [19], which contains at least one selected from active ester curing agents containing benzoylated novolaks.
[21] The thermosetting resin composition according to any one of [17] to [20], wherein the active ester curing agent (B1) has a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000011
(In general formula (1), A is a substituted or unsubstituted arylene group linked via an aliphatic cyclic hydrocarbon group, Ar′ is a substituted or unsubstituted aryl group,
B is a structure represented by the following general formula (B),
Figure JPOXMLDOC01-appb-C000012
(In the general formula (B), Ar is a substituted or unsubstituted arylene group, Y is a single bond, a substituted or unsubstituted linear alkylene group having 1 to 6 carbon atoms, or a substituted or unsubstituted is a cyclic alkylene group having 3 to 6 carbon atoms, a substituted or unsubstituted divalent aromatic hydrocarbon group, an ether bond, a carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group, n is 0 is an integer between ~4.)
k is the average value of repeating units and ranges from 0.25 to 3.5. )
 第4の発明(出願時請求項22~25)は、以下の[22]~[25]に示すことができる。
[22](A)熱硬化性樹脂と、
(B)硬化剤と、
(C)高誘電率充填剤と、を含み、 
 前記(A)熱硬化性樹脂がエポキシ樹脂(A1)であり、
 前記エポキシ樹脂(A1)がナフトールアラルキル型エポキシ樹脂を含み、
 前記高誘電率充填剤(C)が、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸マグネシウム、ジルコン酸マグネシウム、ジルコン酸ストロンチウム、チタン酸ビスマス、チタン酸ジルコニウム、チタン酸亜鉛、ジルコン酸バリウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸鉛、ニオブ酸マグネシウム酸バリウム、およびジルコン酸カルシウムから選択される少なくとも1種を含む、熱硬化性樹脂組成物。
[23] 前記ナフトールアラルキル型エポキシ樹脂のエポキシ当量が250g/eq以上400g/eq以下である、[22]に記載の熱硬化性樹脂組成物。
[24] 硬化剤(B)が、活性エステル硬化剤(B1)および/またはフェノール硬化剤(B2)を含む、[22]または[23]に記載の熱硬化性樹脂組成物。
[25] さらに硬化触媒(D)を含む、[22]~[24]のいずれかに記載の熱硬化性樹脂組成物。
The fourth invention (claims 22 to 25 at the time of filing) can be shown in the following [22] to [25].
[22] (A) a thermosetting resin;
(B) a curing agent;
(C) a high dielectric constant filler;
(A) the thermosetting resin is an epoxy resin (A1),
The epoxy resin (A1) contains a naphthol aralkyl epoxy resin,
The high dielectric constant filler (C) is calcium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, barium zirconate, zircon titanate. A thermosetting resin composition comprising at least one selected from calcium acid, lead zirconate titanate, barium magnesium niobate, and calcium zirconate.
[23] The thermosetting resin composition according to [22], wherein the epoxy equivalent of the naphthol aralkyl epoxy resin is 250 g/eq or more and 400 g/eq or less.
[24] The thermosetting resin composition according to [22] or [23], wherein the curing agent (B) contains an active ester curing agent (B1) and/or a phenolic curing agent (B2).
[25] The thermosetting resin composition according to any one of [22] to [24], further comprising a curing catalyst (D).
 第1~第4の発明の熱硬化性樹脂組成物(出願時請求項1~25)は以下の[26]~[31]に記載の用途に用いることができる。
[26] マイクロストリップアンテナを形成する材料として用いられる、[1]~[25]のいずれかに記載の熱硬化性樹脂組成物。
[27] 誘電体導波路を形成する材料として用いられる、[1]~[25]のいずれかに記載の熱硬化性樹脂組成物。
[28] 電磁波吸収体を形成する材料として用いられる、[1]~[25]のいずれかに記載の熱硬化性樹脂組成物。
[29] [1]~[25]のいずれかに記載の熱硬化性樹脂組成物を硬化してなる誘電体基板。
[30] [29]に記載の誘電体基板と,
 前記誘電体基板の一方の面に設けられた放射導体板と、
 前記誘電体基板の他方の面に設けられた地導体板と、
を備える、マイクロストリップアンテナ。
[31] 誘電体基板と,
 前記誘電体基板の一方の面に設けられた放射導体板と、
 前記誘電体基板の他方の面に設けられた地導体板と、
 前記放射導体板に対向配置された高誘電体と、
を備える、マイクロストリップアンテナであって、
 前記高誘電体が、[29]に記載の誘電体基板により構成されている、マイクロストリップアンテナ。
The thermosetting resin compositions of the first to fourth inventions (claims 1 to 25 at the time of filing) can be used for applications described in [26] to [31] below.
[26] The thermosetting resin composition according to any one of [1] to [25], which is used as a material for forming a microstrip antenna.
[27] The thermosetting resin composition according to any one of [1] to [25], which is used as a material for forming a dielectric waveguide.
[28] The thermosetting resin composition according to any one of [1] to [25], which is used as a material for forming an electromagnetic wave absorber.
[29] A dielectric substrate obtained by curing the thermosetting resin composition according to any one of [1] to [25].
[30] The dielectric substrate according to [29];
a radiation conductor plate provided on one surface of the dielectric substrate;
a ground conductor plate provided on the other surface of the dielectric substrate;
a microstrip antenna.
[31] a dielectric substrate;
a radiation conductor plate provided on one surface of the dielectric substrate;
a ground conductor plate provided on the other surface of the dielectric substrate;
a high-dielectric material facing the radiation conductor plate;
A microstrip antenna comprising:
A microstrip antenna, wherein the high dielectric is composed of the dielectric substrate described in [29].
 第1の発明によれば、高誘電率および低誘電正接に優れた誘電体基板が得られる樹脂組成物および当該樹脂組成物からなる誘電体基板、および当該誘電体基板を備えるマイクロストリップアンテナを提供することができる。
 また、第2の発明によれば、低誘電正接に優れた誘電体基板が得られる熱硬化性樹脂組成物および当該樹脂組成物からなる誘電体基板、および当該誘電体基板を備えるマイクロストリップアンテナを提供することができる。
 第3の発明によれば、高誘電率および低誘電正接に優れた誘電体基板が得られる熱硬化性樹脂組成物および当該樹脂組成物からなる誘電体基板、および当該誘電体基板を備えるマイクロストリップアンテナを提供することができる。
 また、第4の発明によれば、低誘電正接等の誘電特性に優れた誘電体基板が得られる熱硬化性樹脂組成物および当該樹脂組成物からなる誘電体基板、および当該誘電体基板を備えるマイクロストリップアンテナを提供することができる。
According to a first invention, a resin composition from which a dielectric substrate excellent in high dielectric constant and low dielectric loss tangent can be obtained, a dielectric substrate made of the resin composition, and a microstrip antenna provided with the dielectric substrate are provided. can do.
Further, according to the second invention, there is provided a thermosetting resin composition from which a dielectric substrate excellent in low dielectric loss tangent can be obtained, a dielectric substrate made of the resin composition, and a microstrip antenna provided with the dielectric substrate. can provide.
According to the third invention, a thermosetting resin composition that provides a dielectric substrate excellent in high dielectric constant and low dielectric loss tangent, a dielectric substrate made of the resin composition, and a microstrip comprising the dielectric substrate Antenna can be provided.
Further, according to a fourth invention, a thermosetting resin composition from which a dielectric substrate having excellent dielectric properties such as a low dielectric loss tangent can be obtained, a dielectric substrate made of the resin composition, and the dielectric substrate are provided. A microstrip antenna can be provided.
本実施形態のマイクロストリップアンテナを示す上面斜視図である。1 is a top perspective view showing a microstrip antenna of this embodiment; FIG. 本実施形態のマイクロストリップアンテナの別の態様を示す断面図である。FIG. 4 is a cross-sectional view showing another aspect of the microstrip antenna of this embodiment;
 以下、第1の発明(出願時請求項1~8、26~31)を第1の実施の形態に基づいて、図面を参照しながら説明し、
 第2の発明(出願時請求項9~16、26~31)を第2の実施の形態に基づいて、図面を参照しながら説明し、
 第3の発明(出願時請求項17~21、26~31)を第3の実施の形態に基づいて、図面を参照しながら説明し、
 第4の発明(出願時請求項22~25、26~31)を第4の実施の形態に基づいて、図面を参照しながら説明する。
 尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、例えば「1~10」は特に断りがなければ「1以上」から「10以下」を表す。
Hereinafter, the first invention (claims 1 to 8 and 26 to 31 at the time of filing) will be described based on the first embodiment with reference to the drawings,
The second invention (claims 9 to 16, 26 to 31 at the time of filing) will be described based on the second embodiment with reference to the drawings,
The third invention (claims 17 to 21 and 26 to 31 at the time of filing) will be described based on the third embodiment with reference to the drawings,
A fourth invention (claims 22 to 25 and 26 to 31 at the time of filing) will be described based on a fourth embodiment with reference to the drawings.
In addition, in all the drawings, the same constituent elements are denoted by the same reference numerals, and the description thereof will be omitted as appropriate. Also, for example, "1 to 10" represents "1 or more" to "10 or less" unless otherwise specified.
<第1の実施形態>
 本実施形態の熱硬化性樹脂組成物は、
熱硬化性樹脂(A)と、高誘電率充填剤(C)と、を含む。
 以下、各成分について説明する
<First embodiment>
The thermosetting resin composition of this embodiment is
It contains a thermosetting resin (A) and a high dielectric constant filler (C).
Each component is described below.

[熱硬化性樹脂(A)]
 本実施形態において、熱硬化性樹脂(A)としては、シアネート樹脂、エポキシ樹脂、ラジカル重合性の炭素-炭素二重結合を1分子内に2つ以上有する樹脂、およびマレイミド樹脂から選択される一種または二種以上を用いることができる。これらの中でも、本発明の効果および熱伝導性ペーストの接着性を向上させる観点からは、エポキシ樹脂(A1)を含むことが特に好ましい。
.
[Thermosetting resin (A)]
In the present embodiment, the thermosetting resin (A) is a kind selected from cyanate resins, epoxy resins, resins having two or more radically polymerizable carbon-carbon double bonds in one molecule, and maleimide resins. Alternatively, two or more kinds can be used. Among these, it is particularly preferable to contain the epoxy resin (A1) from the viewpoint of improving the effects of the present invention and the adhesiveness of the thermally conductive paste.
 エポキシ樹脂(A1)は、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を用いることができ、その分子量や分子構造は限定されない。 For the epoxy resin (A1), any monomer, oligomer, or polymer having two or more epoxy groups in one molecule can be used, and its molecular weight and molecular structure are not limited.
 エポキシ樹脂(A1)は、例えばビフェニル型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;スチルベン型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等に例示されるトリスフェノール型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレン骨格を有するナフトールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂からなる群から選択される1種類または2種類以上を含む。 The epoxy resin (A1) is, for example, a biphenyl type epoxy resin; a bisphenol type epoxy resin such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a tetramethylbisphenol F type epoxy resin; a stilbene type epoxy resin; a phenol novolac type epoxy resin; Novolak type epoxy resins such as cresol novolak type epoxy resins; Polyfunctional epoxy resins such as trisphenol type epoxy resins exemplified by triphenolmethane type epoxy resins and alkyl-modified triphenolmethane type epoxy resins; Phenol aralkyls having a phenylene skeleton type epoxy resin, naphthol aralkyl type epoxy resin having a phenylene skeleton, phenol aralkyl type epoxy resin having a biphenylene skeleton, phenol aralkyl type epoxy resin such as a naphthol aralkyl type epoxy resin having a biphenylene skeleton; Naphthol-type epoxy resins such as epoxy resins obtained by glycidyl-etherifying dimers; Triazine nucleus-containing epoxy resins such as triglycidyl isocyanurate and monoallyl diglycidyl isocyanurate; Aribashi such as dicyclopentadiene-modified phenol-type epoxy resins It contains one or more selected from the group consisting of cyclic hydrocarbon compound-modified phenolic epoxy resins.
 本発明の効果の観点から、これらの内、ノボラック型エポキシ樹脂、多官能エポキシ樹脂、およびフェノールアラルキル型エポキシ樹脂を好ましく用いることができる。また、同様の観点から、エポキシ樹脂は、オルソクレゾールノボラック型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂およびトリフェニルメタン型エポキシ樹脂からなる群から選択される1種以上を含むことが好ましく、オルソクレゾールノボラック型エポキシ樹脂およびビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂からなる群から選択される1種以上を含むことがより好ましい。 From the viewpoint of the effects of the present invention, among these, novolac type epoxy resins, polyfunctional epoxy resins, and phenol aralkyl type epoxy resins can be preferably used. From the same viewpoint, the epoxy resin preferably contains one or more selected from the group consisting of ortho-cresol novolak-type epoxy resins, phenol aralkyl-type epoxy resins having a biphenylene skeleton, and triphenylmethane-type epoxy resins. More preferably, it contains one or more selected from the group consisting of ortho-cresol novolak-type epoxy resins and phenol aralkyl-type epoxy resins having a biphenylene skeleton.
 エポキシ樹脂(A1)は、本発明の効果の観点から、熱硬化性樹脂組成物全体に対して、好ましくは3質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上含むことができる。また、エポキシ樹脂(A1)は典型的には、20質量%以下、より好ましくは18質量%以下、さらに好ましくは15質量%以下含むことができる。 From the viewpoint of the effect of the present invention, the epoxy resin (A1) is preferably 3% by mass or more, more preferably 5% by mass or more, and still more preferably 10% by mass or more relative to the entire thermosetting resin composition. can be done. Also, the epoxy resin (A1) can typically be contained in an amount of 20% by mass or less, more preferably 18% by mass or less, and even more preferably 15% by mass or less.
[高誘電率充填剤(C)]
 本実施形態において、高誘電率充填剤(C)としては、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸マグネシウム、ジルコン酸マグネシウム、ジルコン酸ストロンチウム、チタン酸ビスマス、チタン酸ジルコニウム、チタン酸亜鉛、ジルコン酸バリウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸鉛、ニオブ酸マグネシウム酸バリウム、またはジルコン酸カルシウム等を挙げることができ、これらから選択される1種または2種以上を用いることができる。
 本実施形態の熱硬化性樹脂組成物は、これらの高誘電率充填剤(C)を含むことにより、高誘電率および低誘電正接に優れ、高周波帯においてもこれらの効果に優れる。
[High dielectric constant filler (C)]
In the present embodiment, the high dielectric constant filler (C) includes calcium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, and zirconate. Barium, calcium zirconate titanate, lead zirconate titanate, barium magnesium niobate, calcium zirconate, and the like can be mentioned, and one or more selected from these can be used.
Since the thermosetting resin composition of the present embodiment contains these high dielectric constant fillers (C), it is excellent in high dielectric constant and low dielectric loss tangent, and is excellent in these effects even in a high frequency band.
 高誘電率充填剤(C)としては、本発明の効果の観点、特に低誘電正接の観点から、チタン酸カルシウム、チタン酸ストロンチウムがより好ましい。  As the high dielectric constant filler (C), calcium titanate and strontium titanate are more preferable from the viewpoint of the effects of the present invention, particularly from the viewpoint of low dielectric loss tangent.
 高誘電率充填剤(C)の形状は、粒状、不定形、フレーク状などであり、これらの形状の高誘電率充填剤を任意の比率で用いることができる。高誘電率充填剤の平均粒子径は、本発明の効果の観点や流動性・充填性の観点から、好ましくは0.1μm以上50μm以下、より好ましくは0.3μm以上20μm以下、さらに好ましくは0.5μm以上10μm以下である。 The shape of the high dielectric constant filler (C) is granular, amorphous, flaky, etc., and high dielectric constant fillers of these shapes can be used at any ratio. The average particle size of the high dielectric constant filler is preferably 0.1 μm or more and 50 μm or less, more preferably 0.3 μm or more and 20 μm or less, still more preferably 0, from the viewpoint of the effects of the present invention and fluidity/fillability. .5 μm or more and 10 μm or less.
 高誘電率充填剤(C)の配合量は、熱硬化性樹脂組成物全体に対して、好ましくは20質量%~80質量%、より好ましくは30質量%~70質量%、さらに好ましくは40質量%~60質量%の範囲である。高誘電率充填剤(C)の添加量が上記範囲であると、得られる硬化物の誘電率がより低くなるとともに、成形品の製造にも優れる。 The amount of the high dielectric constant filler (C) is preferably 20% by mass to 80% by mass, more preferably 30% by mass to 70% by mass, and still more preferably 40% by mass with respect to the entire thermosetting resin composition. % to 60% by mass. When the addition amount of the high dielectric constant filler (C) is within the above range, the dielectric constant of the resulting cured product is further lowered, and the production of molded articles is also excellent.
[活性エステル硬化剤(B1)]
 本実施形態の熱硬化性樹脂組成物は、さらに活性エステル硬化剤(B1)を含むことができる。
 活性エステル硬化剤(B1)としては、1分子中に1個以上の活性エステル基を有する化合物を用いることができる。中でも、活性エステル硬化剤(B1)としては、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の、反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましい。
[Active ester curing agent (B1)]
The thermosetting resin composition of the present embodiment can further contain an active ester curing agent (B1).
A compound having one or more active ester groups in one molecule can be used as the active ester curing agent (B1). Among them, the active ester curing agent (B1) contains two highly reactive ester groups per molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds. Compounds having one or more are preferred.
 活性エステル硬化剤(B1)の好ましい具体例としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル硬化剤、ナフタレン構造を含む活性エステル硬化剤、フェノールノボラックのアセチル化物を含む活性エステル硬化剤、フェノールノボラックのベンゾイル化物を含む活性エステル硬化剤が挙げられ、少なくとも1種を含むことができる。中でも、ナフタレン構造を含む活性エステル硬化剤、ジシクロペンタジエン型ジフェノール構造を含む活性エステル硬化剤がより好ましい。「ジシクロペンタジエン型ジフェノール構造」とは、フェニレン-ジシクロペンチレン-フェニレンからなる2価の構造単位を表す。 Preferred specific examples of the active ester curing agent (B1) include an active ester curing agent containing a dicyclopentadiene type diphenol structure, an active ester curing agent containing a naphthalene structure, an active ester curing agent containing an acetylated phenol novolac, and a phenol Active ester curatives including benzoylated novolacs can be included and at least one can be included. Among them, an active ester curing agent containing a naphthalene structure and an active ester curing agent containing a dicyclopentadiene type diphenol structure are more preferable. "Dicyclopentadiene-type diphenol structure" represents a divalent structural unit consisting of phenylene-dicyclopentylene-phenylene.
 本実施形態において、活性エステル硬化剤(B1)は、例えば、以下の一般式(1)で表される構造を有する樹脂を用いることができる。 In this embodiment, the active ester curing agent (B1) can be, for example, a resin having a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 一般式(1)において、「B」は、一般式(B)で表される構造である。 In general formula (1), "B" is a structure represented by general formula (B).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 一般式(B)中、Arは、置換または非置換のアリーレン基である。置換されたアリーレン基の置換基は炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基、アラルキル基等が挙げられる。
 Yは、単結合、置換または非置換の炭素原子数1~6の直鎖のアルキレン基、または置換または非置換の炭素原子数3~6の環式のアルキレン基、置換または非置換の2価の芳香族炭化水素基、エーテル結合、カルボニル基、カルボニルオキシ基、スルフィド基、あるいはスルホン基である。前記基の置換基としては、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基、アラルキル基等が挙げられる。
 Yとして好ましくは、単結合、メチレン基、-CH(CH-、エーテル結合、置換されていてもよいシクロアルキレン基、置換されていてもよい9,9-フルオレニレン基等が挙げられる。
 nは0~4の整数であり、好ましくは0または1である。
 Bは、具体的には、下記一般式(B1)または下記一般式(B2)で表される構造である。
In general formula (B), Ar is a substituted or unsubstituted arylene group. Substituents of the substituted arylene group include alkyl groups having 1 to 4 carbon atoms, alkoxy groups having 1 to 4 carbon atoms, phenyl groups and aralkyl groups.
Y is a single bond, a substituted or unsubstituted linear alkylene group having 1 to 6 carbon atoms, or a substituted or unsubstituted cyclic alkylene group having 3 to 6 carbon atoms, or a substituted or unsubstituted divalent is an aromatic hydrocarbon group, an ether bond, a carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group. Substituents for the aforementioned groups include alkyl groups having 1 to 4 carbon atoms, alkoxy groups having 1 to 4 carbon atoms, phenyl groups, aralkyl groups and the like.
Preferred examples of Y include a single bond, a methylene group, —CH(CH 3 ) 2 —, an ether bond, an optionally substituted cycloalkylene group, an optionally substituted 9,9-fluorenylene group, and the like.
n is an integer of 0-4, preferably 0 or 1;
Specifically, B is a structure represented by the following general formula (B1) or the following general formula (B2).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記一般式(B1)および上記一般式(B2)中、ArおよびYは、一般式(B)と同義である。 In general formula (B1) and general formula (B2) above, Ar and Y have the same meanings as in general formula (B).
 Aは、脂肪族環状炭化水素基を介して連結された置換または非置換のアリーレン基であり、
 Ar’は、置換または非置換のアリール基であり、
 kは、繰り返し単位の平均値であり、0.25~3.5の範囲である。
A is a substituted or unsubstituted arylene group linked via an aliphatic cyclic hydrocarbon group;
Ar' is a substituted or unsubstituted aryl group;
k is the average value of repeating units and ranges from 0.25 to 3.5.
 本実施形態の熱硬化性樹脂組成物は、特定の活性エステル硬化剤を含むことにより、得られる硬化物は優れた誘電特性を有することができ、低誘電正接に優れる。 The thermosetting resin composition of the present embodiment contains a specific active ester curing agent, so that the resulting cured product can have excellent dielectric properties and excellent low dielectric loss tangent.
 本実施形態の熱硬化性樹脂組成物に用いられる活性エステル硬化剤(B1)は、式(B)で表される活性エステル基を有する。エポキシ樹脂と活性エステル硬化剤との硬化反応において、活性エステル硬化剤の活性エステル基はエポキシ樹脂のエポキシ基と反応して2級の水酸基を生じる。この2級の水酸基は、活性エステル硬化剤のエステル残基により封鎖される。そのため、硬化物の誘電正接が低減される。 The active ester curing agent (B1) used in the thermosetting resin composition of this embodiment has an active ester group represented by formula (B). In the curing reaction between the epoxy resin and the active ester curing agent, the active ester group of the active ester curing agent reacts with the epoxy group of the epoxy resin to generate secondary hydroxyl groups. This secondary hydroxyl group is blocked by the ester residue of the active ester curing agent. Therefore, the dielectric loss tangent of the cured product is reduced.
 一実施形態において、上記式(B)で表される構造は、以下の式(B-1)~式(B-6)から選択される少なくとも1つであることが好ましい。 In one embodiment, the structure represented by formula (B) above is preferably at least one selected from the following formulas (B-1) to (B-6).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(B-1)~(B-6)において、
 Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基、アラルキル基の何れかであり、
In formulas (B-1) to (B-6),
each R 1 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a phenyl group, or an aralkyl group;
 Rはそれぞれ独立に炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基の何れかであり、Xは炭素原子数2~6の直鎖のアルキレン基、エーテル結合、カルボニル基、カルボニルオキシ基、スルフィド基、スルホン基のいずれかであり、
 nは0~4の整数であり、pは1~4の整数である。
Each R 2 is independently an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a phenyl group, and X is a linear alkylene group having 2 to 6 carbon atoms, ether a bond, a carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group,
n is an integer of 0-4 and p is an integer of 1-4.
 上記式(B-1)~(B-6)で表される構造は、いずれも配向性が高い構造であることから、これを含む活性エステル硬化剤を用いた場合、得られる熱硬化性樹脂組成物の硬化物は、低誘電正接を有するとともに、金属に対する密着性に優れ、そのため半導体封止材料として好適に用いることができる。
 中でも、低誘電正接の観点から、式(B-2)、式(B-3)または式(B-5)で表される構造を有する活性エステル硬化剤が好ましく、さらに式(B-2)のnが0である構造、式(B-3)のXがエーテル結合である構造、または式(B-5)において二つのカルボニルオキシ基が4,4’-位にある構造を有する活性エステル硬化剤がより好ましい。また各式中のRはすべて水素原子であることが好ましい。
Since the structures represented by the above formulas (B-1) to (B-6) are all highly oriented structures, when using an active ester curing agent containing this, the resulting thermosetting resin The cured product of the composition has a low dielectric loss tangent and excellent adhesion to metals, and therefore can be suitably used as a semiconductor encapsulating material.
Among them, from the viewpoint of low dielectric loss tangent, an active ester curing agent having a structure represented by formula (B-2), formula (B-3) or formula (B-5) is preferable, and further formula (B-2) n is 0, a structure in which X in formula (B-3) is an ether bond, or an active ester having a structure in which two carbonyloxy groups are at the 4,4′-positions in formula (B-5) Curing agents are more preferred. Moreover, all R 1 in each formula are preferably hydrogen atoms.
 式(1)における「Ar’」はアリール基であり、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、3,5-キシリル基、o-ビフェニル基、m-ビフェニル基、p-ビフェニル基、2-ベンジルフェニル基、4-ベンジルフェニル基、4-(α-クミル)フェニル基、1-ナフチル基、2-ナフチル基等であり得る。中でも、特に誘電正接の低い硬化物が得られることから、1-ナフチル基または2-ナフチル基であることが好ましい。 “Ar′” in formula (1) is an aryl group, such as a phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 3,5-xylyl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, 2-benzylphenyl group, 4-benzylphenyl group, 4-(α-cumyl)phenyl group, 1-naphthyl group, 2-naphthyl group and the like. Among them, a 1-naphthyl group or a 2-naphthyl group is preferable because a cured product having a particularly low dielectric loss tangent can be obtained.
 本実施形態において、式(1)で表される活性エステル硬化剤における「A」は、脂肪族環状炭化水素基を介して連結された置換または非置換のアリーレン基であり、このようなアリーレン基としては、例えば、1分子中に二重結合を2個含有する不飽和脂肪族環状炭化水素化合物と、フェノール性化合物とを重付加反応させて得られる構造が挙げられる。 In this embodiment, "A" in the active ester curing agent represented by formula (1) is a substituted or unsubstituted arylene group linked via an aliphatic cyclic hydrocarbon group, such an arylene group Examples thereof include a structure obtained by polyaddition reaction of an unsaturated aliphatic cyclic hydrocarbon compound containing two double bonds in one molecule and a phenolic compound.
 前記1分子中に二重結合を2個含有する不飽和脂肪族環状炭化水素化合物は、例えば、ジシクロペンタジエン、シクロペンタジエンの多量体、テトラヒドロインデン、4-ビニルシクロヘキセン、5-ビニル-2-ノルボルネン、リモネン等が挙げられ、これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。これらの中でも、耐熱性に優れる硬化物が得られることからジシクロペンタジエンが好ましい。尚、ジシクロペンタジエンは石油留分中に含まれることから、工業用ジシクロペンタジエンにはシクロペンタジエンの多量体や、他の脂肪族或いは芳香族性ジエン化合物等が不純物として含有されることがあるが、耐熱性、硬化性、成形性等の性能を考慮すると、ジシクロペンタジエンの純度90質量%以上の製品を用いることが望ましい。 The unsaturated aliphatic cyclic hydrocarbon compounds containing two double bonds in one molecule are, for example, dicyclopentadiene, cyclopentadiene oligomers, tetrahydroindene, 4-vinylcyclohexene, 5-vinyl-2-norbornene. , limonene, etc., and these may be used alone or in combination of two or more. Among these, dicyclopentadiene is preferable because a cured product having excellent heat resistance can be obtained. Since dicyclopentadiene is contained in petroleum distillates, industrial dicyclopentadiene may contain cyclopentadiene polymers and other aliphatic or aromatic diene compounds as impurities. However, considering performance such as heat resistance, curability and moldability, it is desirable to use dicyclopentadiene products with a purity of 90% by mass or more.
 一方、前記フェノール性化合物は、例えば、フェノール、クレゾール、キシレノール、エチルフェノール、イソプロピルフェノール、ブチルフェノール、オクチルフェノール、ノニルフェノール、ビニルフェノール、イソプロペニルフェノール、アリルフェノール、フェニルフェノール、ベンジルフェノール、クロルフェノール、ブロムフェノール、1-ナフトール、2-ナフトール、1,4-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等が挙げられ、それぞれ単独で用いても良いし、2種類以上を併用しても良い。これらの中でも、硬化性が高く硬化物における誘電特性に優れる活性エステル硬化剤となることからフェノールが好ましい。 On the other hand, the phenolic compounds include, for example, phenol, cresol, xylenol, ethylphenol, isopropylphenol, butylphenol, octylphenol, nonylphenol, vinylphenol, isopropenylphenol, allylphenol, phenylphenol, benzylphenol, chlorophenol, bromophenol, 1-naphthol, 2-naphthol, 1,4-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene and the like, each alone You may use and you may use two or more types together. Among these, phenol is preferable because it is an active ester curing agent having high curability and excellent dielectric properties in the cured product.
 好ましい実施形態において、式(1)で表される活性エステル硬化剤における「A」は、式(A)で表される構造を有する。式(1)における「A」が以下の構造である活性エステル硬化剤を含む熱硬化性樹脂組成物は、その硬化物が低誘電正接であり、インサート品に対する密着性に優れる。 In a preferred embodiment, "A" in the active ester curing agent represented by formula (1) has a structure represented by formula (A). A thermosetting resin composition containing an active ester curing agent in which "A" in formula (1) has the following structure has a low dielectric loss tangent in the cured product and is excellent in adhesion to an insert.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(A)において、
はそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基、アラルキル基の何れかであり、
lは0または1であり、mは1以上の整数である。
In formula (A),
each R 3 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a phenyl group, or an aralkyl group;
l is 0 or 1, and m is an integer of 1 or more.
 式(1)で表される活性エステル硬化剤のうち、より好ましいものとして、下記式(1-1)、式(1-2)および式(1-3)で表される樹脂が挙げられ、特に好ましいものとして、下記式(1-3)で表される樹脂が挙げられる。 Among the active ester curing agents represented by formula (1), more preferable ones include resins represented by the following formulas (1-1), (1-2) and (1-3), Especially preferred are resins represented by the following formula (1-3).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式(1-1)中、R及びRはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基、アラルキル基の何れかであり、Zはフェニル基、ナフチル基、又は、芳香核上に炭素原子数1~4のアルキル基を1~3個有するフェニル基或いはナフチル基であり、lは0又は1であり、kは繰り返し単位の平均であり、0.25~3.5である。 In formula (1-1), R 1 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a phenyl group, or an aralkyl group. , Z is a phenyl group, a naphthyl group, or a phenyl group or a naphthyl group having 1 to 3 alkyl groups having 1 to 4 carbon atoms on the aromatic nucleus, l is 0 or 1, k is a repeating unit is the average of 0.25 to 3.5.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(1-2)中、R及びRはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基、アラルキル基の何れかであり、Zはフェニル基、ナフチル基、又は、芳香核上に炭素原子数1~4のアルキル基を1~3個有するフェニル基或いはナフチル基であり、lは0又は1であり、kは繰り返し単位の平均であり、0.25~3.5である。 In formula (1-2), R 1 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a phenyl group, or an aralkyl group. , Z is a phenyl group, a naphthyl group, or a phenyl group or a naphthyl group having 1 to 3 alkyl groups having 1 to 4 carbon atoms on the aromatic nucleus, l is 0 or 1, k is a repeating unit is the average of 0.25 to 3.5.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式(1-3)中、R及びRはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基、アラルキル基の何れかであり、Zはフェニル基、ナフチル基、又は、芳香核上に炭素原子数1~4のアルキル基を1~3個有するフェニル基或いはナフチル基であり、lは0又は1であり、kは繰り返し単位の平均であり、0.25~3.5である。 In formula (1-3), R 1 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a phenyl group, or an aralkyl group. , Z is a phenyl group, a naphthyl group, or a phenyl group or a naphthyl group having 1 to 3 alkyl groups having 1 to 4 carbon atoms on the aromatic nucleus, l is 0 or 1, k is a repeating unit is the average of 0.25 to 3.5.
 本発明で用いられる活性エステル硬化剤(B1)は、脂肪族環状炭化水素基を介してフェノール性水酸基を有するアリール基が複数結節された構造を有するフェノール性化合物(a)と、芳香核含有ジカルボン酸又はそのハライド(b)と、芳香族モノヒドロキシ化合物(c)とを反応させる、公知の方法により製造することができる。 The active ester curing agent (B1) used in the present invention comprises a phenolic compound (a) having a structure in which a plurality of aryl groups having phenolic hydroxyl groups are connected via an aliphatic cyclic hydrocarbon group, and an aromatic nucleus-containing dicarboxylic acid. It can be produced by a known method of reacting an acid or its halide (b) with an aromatic monohydroxy compound (c).
 上記フェノール性化合物(a)と、芳香核含有ジカルボン酸又はそのハライド(b)と、芳香族モノヒドロキシ化合物(c)との反応割合は、所望の分子設計に応じて適宜調整することができるが、中でも、より硬化性の高い活性エステル硬化剤が得られることから、芳香核含有ジカルボン酸又はそのハライド(b)が有するカルボキシル基又は酸ハライド基の合計1モルに対し、前記フェノール性化合物(a)が有するフェノール性水酸基が0.25~0.90モルの範囲となり、かつ、前記芳香族モノヒドロキシ化合物(c)が有するヒドロキシル基が0.10~0.75モルの範囲となる割合で各原料を用いることが好ましく、前記フェノール性化合物(a)が有するフェノール性水酸基が0.50~0.75モルの範囲となり、かつ、前記芳香族モノヒドロキシ化合物(c)が有するヒドロキシル基が0.25~0.50モルの範囲となる割合で各原料を用いることがより好ましい。 The reaction ratio of the phenolic compound (a), the aromatic nucleus-containing dicarboxylic acid or its halide (b), and the aromatic monohydroxy compound (c) can be appropriately adjusted according to the desired molecular design. Among them, since an active ester curing agent with higher curability can be obtained, the phenolic compound (a ) has a phenolic hydroxyl group in the range of 0.25 to 0.90 mol, and the hydroxyl group in the aromatic monohydroxy compound (c) has a range of 0.10 to 0.75 mol. It is preferable to use raw materials, and the phenolic hydroxyl group possessed by the phenolic compound (a) is in the range of 0.50 to 0.75 mol, and the hydroxyl group possessed by the aromatic monohydroxy compound (c) is 0.5 mol. It is more preferable to use each raw material in a ratio of 25 to 0.50 mol.
 また、活性エステル硬化剤(B1)の官能基当量は、樹脂構造中に有するアリールカルボニルオキシ基およびフェノール性水酸基の合計を樹脂の官能基数とした場合、硬化性に優れ、誘電率及び誘電正接の低い硬化物が得られることから、200g/eq以上230g/eq以下の範囲であることが好ましく、210g/eq以上220g/eq以下の範囲であることがより好ましい。 In addition, the functional group equivalent of the active ester curing agent (B1) is excellent in curability when the sum of the arylcarbonyloxy groups and phenolic hydroxyl groups in the resin structure is taken as the total number of functional groups in the resin, and the dielectric constant and dielectric loss tangent are good. It is preferably in the range of 200 g/eq or more and 230 g/eq or less, more preferably 210 g/eq or more and 220 g/eq or less, since a low cured product can be obtained.
 本実施形態の熱硬化性樹脂組成物において、活性エステル硬化剤(B1)とエポキシ樹脂(A1)との配合量は、硬化性に優れ、誘電正接の低い硬化物が得られることから、活性エステル硬化剤(B1)中の活性基の合計1当量に対して、エポキシ樹脂(A1)中のエポキシ基が0.8~1.2当量となる割合であることが好ましい。ここで、活性エステル硬化剤(B1)中の活性基とは、樹脂構造中に有するアリールカルボニルオキシ基及びフェノール性水酸基を指す。 In the thermosetting resin composition of the present embodiment, the blending amount of the active ester curing agent (B1) and the epoxy resin (A1) is excellent in curability, and a cured product with a low dielectric loss tangent can be obtained. It is preferable that the ratio of the epoxy groups in the epoxy resin (A1) is 0.8 to 1.2 equivalents with respect to the total equivalent of active groups in the curing agent (B1). Here, the active groups in the active ester curing agent (B1) refer to arylcarbonyloxy groups and phenolic hydroxyl groups in the resin structure.
 本実施形態の組成物において、活性エステル硬化剤(B1)は、熱硬化性樹脂組成物全体に対して、好ましくは0.2質量%以上15質量%以下、より好ましくは0.5質量%以上10質量%以下、さらに好ましくは1.0質量%以上7質量%以下の量で用いられる。
 特定の活性エステル硬化剤を上記範囲で含むことにより、得られる硬化物はより優れた誘電特性を有することができ、低誘電正接にさらに優れる。
In the composition of the present embodiment, the active ester curing agent (B1) is preferably 0.2% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more, relative to the entire thermosetting resin composition. It is used in an amount of 10 mass % or less, more preferably 1.0 mass % or more and 7 mass % or less.
By containing the specific active ester curing agent in the above range, the obtained cured product can have more excellent dielectric properties and is further excellent in low dielectric loss tangent.
 本実施形態の樹脂阻止物は、活性エステル硬化剤(B1)と、上述の高誘電率充填剤(C)とを組み合わせて用いることにより、高誘電率および低誘電正接により優れ、高周波帯においてもこれらの効果に優れる。
 上記効果の観点から、活性エステル硬化剤(B1)は、上述の高誘電率充填剤(C)100質量部に対して、好ましくは1質量部以上30質量部以下、より好ましくは2質量部以上20質量部以下、さらに好ましくは3質量部以上15質量部以下となるように含むことができる。
By using a combination of the active ester curing agent (B1) and the above-described high dielectric constant filler (C), the resin blocker of the present embodiment is excellent in high dielectric constant and low dielectric loss tangent, even in a high frequency band. Excellent in these effects.
From the viewpoint of the above effects, the active ester curing agent (B1) is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 2 parts by mass or more, relative to 100 parts by mass of the high dielectric constant filler (C). It can be contained in an amount of 20 parts by mass or less, more preferably 3 parts by mass or more and 15 parts by mass or less.
 なお、本出願人は、特開2020-90615号公報に記載のように、本発明とは異なる半導体封止用途において、エポキシ樹脂と、所定の活性エステル硬化剤と、を含む熱硬化性樹脂組成物を開発している。本発明は、同公報記載の技術に対して、高誘電率充填剤を含有する点で相違している。また、高誘電率充填剤を含有するため、活性エステル硬化剤とエポキシ樹脂の組み合わせによる作用効果も、高誘電率を有する点、さらに高周波帯において高誘電率および低誘電正接に優れる点で相違している。 In addition, as described in JP-A-2020-90615, the present applicant has proposed a thermosetting resin composition containing an epoxy resin and a predetermined active ester curing agent in a semiconductor encapsulation application different from the present invention. developing things. The present invention differs from the technique described in the publication in that it contains a high dielectric constant filler. In addition, since it contains a high dielectric constant filler, the effect of the combination of the active ester curing agent and the epoxy resin is also different in that it has a high dielectric constant and is excellent in high dielectric constant and low dielectric loss tangent in the high frequency band. ing.
[その他の硬化剤]
 本実施形態の熱硬化性樹脂組成物は、さらに活性エステル硬化剤(B1)以外の他の硬化剤を含むことができる。
 硬化剤としては、例えば、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ-ル、BF-アミン錯体、グアニジン誘導体等のアミン化合物;ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等のアミド化合物;無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等の酸無水物;フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミンやベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられ、フェノールアラルキル樹脂が好ましい。
[Other curing agents]
The thermosetting resin composition of this embodiment can further contain a curing agent other than the active ester curing agent (B1).
Curing agents include, for example, diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complexes, amine compounds such as guanidine derivatives; dicyandiamide, dimer of linolenic acid and ethylenediamine. Amide compounds such as polyamide resins synthesized from; , Acid anhydrides such as methylhexahydrophthalic anhydride; phenol novolak resin, cresol novolak resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin, naphthol aralkyl resin, trimethylolmethane Resin, tetraphenylolethane resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenolic resin (polyhydric phenol compound with phenolic nucleus linked by bismethylene group), biphenyl-modified Polyhydric phenol compounds such as naphthol resin (polyhydric naphthol compound in which phenol nucleus is linked by bismethylene group), aminotriazine-modified phenol resin (polyhydric phenol compound in which phenol nucleus is linked by melamine, benzoguanamine, etc.), Phenolic aralkyl resins are preferred.
 活性エステル硬化剤(B1)とともに他の硬化剤を用いる場合、他の硬化剤の配合量は、熱硬化性樹脂に対して、好ましくは0.5質量%以上20質量%以下、より好ましくは1.0質量%以上15質量%以下、さらに好ましくは2.0質量%以上10質量%以下の量である。上記範囲の量で硬化剤を使用することにより、優れた硬化性を有する熱硬化性樹脂組成物が得られる。 When another curing agent is used together with the active ester curing agent (B1), the amount of the other curing agent is preferably 0.5% by mass or more and 20% by mass or less, more preferably 1% by mass, based on the thermosetting resin. 0% by mass or more and 15% by mass or less, more preferably 2.0% by mass or more and 10% by mass or less. By using the curing agent in an amount within the above range, a thermosetting resin composition having excellent curability can be obtained.
[硬化触媒(D)]
 本実施形態の熱硬化性樹脂組成物は、さらに硬化触媒(D)を含むことができる。
 硬化触媒(D)は、硬化促進剤などと呼ばれる場合もある。硬化触媒(D)は、熱硬化性樹脂(A)の硬化反応を早めるものである限り特に限定されず、公知の硬化触媒を用いることができる。
[Curing catalyst (D)]
The thermosetting resin composition of this embodiment can further contain a curing catalyst (D).
The curing catalyst (D) is sometimes called a curing accelerator or the like. The curing catalyst (D) is not particularly limited as long as it accelerates the curing reaction of the thermosetting resin (A), and known curing catalysts can be used.
 具体的には、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;2-メチルイミダゾール、2-フェニルイミダゾール等のイミダゾール類(イミダゾール系硬化促進剤);1,8-ジアザビシクロ[5.4.0]ウンデセン-7、ベンジルジメチルアミン等が例示されるアミジンや3級アミン、アミジンやアミンの4級塩等の窒素原子含有化合物などを挙げることができ、1種のみを用いてもよいし、2種以上を用いてもよい。 Specifically, phosphorus atom-containing compounds such as organic phosphines, tetrasubstituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, adducts of phosphonium compounds and silane compounds; 2-methylimidazole, 2- imidazoles such as phenylimidazole (imidazole-based curing accelerators); Nitrogen atom-containing compounds such as salts can be mentioned, and only one type may be used, or two or more types may be used.
 これらの中でも、硬化性を向上させ、曲げ強度などの機械強度に優れた磁性材料を得る観点からはリン原子含有化合物を含むことが好ましく、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等の潜伏性を有するものを含むことがより好ましく、テトラ置換ホスホニウム化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物が特に好ましい。 Among these, from the viewpoint of improving curability and obtaining a magnetic material having excellent mechanical strength such as bending strength, it is preferable to contain a phosphorus atom-containing compound, such as a tetra-substituted phosphonium compound, a phosphobetaine compound, a phosphine compound and a quinone compound. It is more preferable to include latent compounds such as adducts of phosphonium compounds and silane compounds, tetrasubstituted phosphonium compounds, adducts of phosphine compounds and quinone compounds, and adducts of phosphonium compounds and silane compounds. Adducts are particularly preferred.
 一般式(1)で表される活性エステル硬化剤(B1)と潜伏性を有する硬化触媒とを組み合わせて用いることにより、成形性により優れるとともに、曲げ強度などの機械強度により優れた磁性材料を得ることができる。 By using a combination of the active ester curing agent (B1) represented by the general formula (1) and a latent curing catalyst, a magnetic material having excellent moldability and mechanical strength such as bending strength can be obtained. be able to.
 有機ホスフィンとしては、例えばエチルホスフィン、フェニルホスフィン等の第1ホスフィン;ジメチルホスフィン、ジフェニルホスフィン等の第2ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等の第3ホスフィンが挙げられる。
 テトラ置換ホスホニウム化合物としては、例えば下記一般式(6)で表される化合物等が挙げられる。
Examples of organic phosphines include primary phosphines such as ethylphosphine and phenylphosphine; secondary phosphines such as dimethylphosphine and diphenylphosphine; and tertiary phosphines such as trimethylphosphine, triethylphosphine, tributylphosphine and triphenylphosphine.
Examples of tetra-substituted phosphonium compounds include compounds represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 一般式(6)において、
 Pはリン原子を表す。
 R、R、RおよびRは、それぞれ独立に、芳香族基またはアルキル基を表す。
 Aはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸のアニオンを表す。
In general formula (6),
P represents a phosphorus atom.
R 4 , R 5 , R 6 and R 7 each independently represent an aromatic group or an alkyl group.
A represents an anion of an aromatic organic acid having at least one functional group selected from a hydroxyl group, a carboxyl group and a thiol group on an aromatic ring.
 AHはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸を表す。
 x、yは1~3、zは0~3であり、かつx=yである。
AH represents an aromatic organic acid having at least one functional group selected from a hydroxyl group, a carboxyl group and a thiol group on an aromatic ring.
x and y are 1 to 3, z is 0 to 3, and x=y.
 一般式(6)で表される化合物は、例えば、以下のようにして得られる。
 まず、テトラ置換ホスホニウムハライドと芳香族有機酸と塩基を有機溶剤に混ぜ均一に混合し、その溶液系内に芳香族有機酸アニオンを発生させる。次いで水を加えると、一般式(6)で表される化合物を沈殿させることができる。一般式(6)で表される化合物において、リン原子に結合するR、R、RおよびRがフェニル基であり、かつAHはヒドロキシル基を芳香環に有する化合物、すなわちフェノール類であり、かつAは該フェノール類のアニオンであるのが好ましい。上記フェノール類としては、フェノール、クレゾール、レゾルシン、カテコールなどの単環式フェノール類、ナフトール、ジヒドロキシナフタレン、アントラキノールなどの縮合多環式フェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールSなどのビスフェノール類、フェニルフェノール、ビフェノールなどの多環式フェノール類などが例示される。
A compound represented by the general formula (6) is obtained, for example, as follows.
First, a tetra-substituted phosphonium halide, an aromatic organic acid and a base are mixed in an organic solvent and uniformly mixed to generate an aromatic organic acid anion in the solution system. Water is then added to precipitate the compound represented by general formula (6). In the compound represented by the general formula (6), R 4 , R 5 , R 6 and R 7 bonded to the phosphorus atom are phenyl groups, and AH is a compound having a hydroxyl group in the aromatic ring, that is, a phenol. and A is preferably the anion of the phenol. Examples of the phenols include monocyclic phenols such as phenol, cresol, resorcin and catechol; condensed polycyclic phenols such as naphthol, dihydroxynaphthalene and anthraquinol; bisphenols such as bisphenol A, bisphenol F and bisphenol S; Examples include polycyclic phenols such as phenylphenol and biphenol.
 ホスホベタイン化合物としては、例えば、下記一般式(7)で表される化合物等が挙げられる。 Examples of phosphobetaine compounds include compounds represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 一般式(7)において、
 Pはリン原子を表す。
 Rは炭素数1~3のアルキル基、Rはヒドロキシル基を表す。
 fは0~5であり、gは0~3である。
In general formula (7),
P represents a phosphorus atom.
R 8 represents an alkyl group having 1 to 3 carbon atoms, and R 9 represents a hydroxyl group.
f is 0-5 and g is 0-3.
 一般式(7)で表される化合物は、例えば以下のようにして得られる。
 まず、第三ホスフィンであるトリ芳香族置換ホスフィンとジアゾニウム塩とを接触させ、トリ芳香族置換ホスフィンとジアゾニウム塩が有するジアゾニウム基とを置換させる工程を経て得られる。
A compound represented by the general formula (7) is obtained, for example, as follows.
First, the triaromatic-substituted phosphine, which is the third phosphine, is brought into contact with a diazonium salt to substitute the diazonium group of the triaromatic-substituted phosphine with the diazonium salt.
 ホスフィン化合物とキノン化合物との付加物としては、例えば、下記一般式(8)で表される化合物等が挙げられる。 Examples of adducts of phosphine compounds and quinone compounds include compounds represented by the following general formula (8).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 一般式(8)において、
 Pはリン原子を表す。
 R10、R11およびR12は、炭素数1~12のアルキル基または炭素数6~12のアリール基を表し、互いに同一であっても異なっていてもよい。
In general formula (8),
P represents a phosphorus atom.
R 10 , R 11 and R 12 each represent an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms and may be the same or different.
 R13、R14およびR15は水素原子または炭素数1~12の炭化水素基を表し、互いに同一であっても異なっていてもよく、R14とR15が結合して環状構造となっていてもよい。 R 13 , R 14 and R 15 each represent a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms and may be the same or different, and R 14 and R 15 combine to form a cyclic structure. may
 ホスフィン化合物とキノン化合物との付加物に用いるホスフィン化合物としては、例えばトリフェニルホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリナフチルホスフィン、トリス(ベンジル)ホスフィン等の芳香環に無置換またはアルキル基、アルコキシル基等の置換基が存在するものが好ましく、アルキル基、アルコキシル基等の置換基としては1~6の炭素数を有するものが挙げられる。入手しやすさの観点からはトリフェニルホスフィンが好ましい。 The phosphine compound used for the adduct of the phosphine compound and the quinone compound includes, for example, triphenylphosphine, tris(alkylphenyl)phosphine, tris(alkoxyphenyl)phosphine, trinaphthylphosphine, tris(benzyl)phosphine and the like. Substituents or those in which a substituent such as an alkyl group or an alkoxyl group is present are preferred, and examples of substituents such as an alkyl group or an alkoxyl group include those having 1 to 6 carbon atoms. Triphenylphosphine is preferred from the viewpoint of availability.
 また、ホスフィン化合物とキノン化合物との付加物に用いるキノン化合物としては、ベンゾキノン、アントラキノン類が挙げられ、中でもp-ベンゾキノンが保存安定性の点から好ましい。 The quinone compound used for the adduct of the phosphine compound and the quinone compound includes benzoquinone and anthraquinones, among which p-benzoquinone is preferable from the viewpoint of storage stability.
 ホスフィン化合物とキノン化合物との付加物の製造方法としては、有機第三ホスフィンとベンゾキノン類の両者が溶解することができる溶媒中で接触、混合させることにより付加物を得ることができる。溶媒としてはアセトンやメチルエチルケトン等のケトン類で付加物への溶解性が低いものがよい。しかしこれに限定されるものではない。 As a method for producing the adduct of the phosphine compound and the quinone compound, the adduct can be obtained by contacting and mixing in a solvent in which both the organic tertiary phosphine and the benzoquinones can be dissolved. As the solvent, ketones such as acetone and methyl ethyl ketone, which have low solubility in the adduct, are preferred. However, it is not limited to this.
 一般式(8)で表される化合物において、リン原子に結合するR10、R11およびR12がフェニル基であり、かつR13、R14およびR15が水素原子である化合物、すなわち1,4-ベンゾキノンとトリフェニルホスフィンを付加させた化合物が封止用樹脂組成物の硬化物の熱時弾性率を低下させる点で好ましい。 Compounds represented by the general formula (8) in which R 10 , R 11 and R 12 bonded to the phosphorus atom are phenyl groups, and R 13 , R 14 and R 15 are hydrogen atoms, namely 1, A compound obtained by adding 4-benzoquinone and triphenylphosphine is preferable in that it lowers the thermal elastic modulus of the cured product of the encapsulating resin composition.
 ホスホニウム化合物とシラン化合物との付加物としては、例えば下記一般式(9)で表される化合物等が挙げられる。 Examples of adducts of phosphonium compounds and silane compounds include compounds represented by the following general formula (9).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 一般式(9)において、
 Pはリン原子を表し、Siは珪素原子を表す。
In general formula (9),
P represents a phosphorus atom and Si represents a silicon atom.
 R16、R17、R18およびR19は、それぞれ、芳香環または複素環を有する有機基、あるいは脂肪族基を表し、互いに同一であっても異なっていてもよい。
 R20は、基YおよびYと結合する有機基である。
 R21は、基YおよびYと結合する有機基である。
R 16 , R 17 , R 18 and R 19 each represent an aromatic or heterocyclic organic group or an aliphatic group, and may be the same or different.
R20 is an organic group that bonds with groups Y2 and Y3 .
R21 is an organic group that bonds with groups Y4 and Y5 .
 YおよびYは、プロトン供与性基がプロトンを放出してなる基を表し、同一分子内の基YおよびYが珪素原子と結合してキレート構造を形成するものである。 Y2 and Y3 each represent a group formed by releasing protons from a proton - donating group , and the groups Y2 and Y3 in the same molecule combine with silicon atoms to form a chelate structure.
 YおよびYはプロトン供与性基がプロトンを放出してなる基を表し、同一分子内の基YおよびYが珪素原子と結合してキレート構造を形成するものである。
 R20、およびR21は互いに同一であっても異なっていてもよく、Y、Y、YおよびYは互いに同一であっても異なっていてもよい。
 Z1は芳香環または複素環を有する有機基、あるいは脂肪族基である。
Y4 and Y5 represent a group formed by releasing protons from a proton - donating group, and the groups Y4 and Y5 in the same molecule bind to silicon atoms to form a chelate structure.
R 20 and R 21 may be the same or different, and Y 2 , Y 3 , Y 4 and Y 5 may be the same or different.
Z1 is an organic group having an aromatic or heterocyclic ring, or an aliphatic group.
 一般式(9)において、R16、R17、R18およびR19としては、例えば、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ナフチル基、ヒドロキシナフチル基、ベンジル基、メチル基、エチル基、n-ブチル基、n-オクチル基およびシクロヘキシル基等が挙げられ、これらの中でも、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ヒドロキシナフチル基等のアルキル基、アルコキシ基、水酸基などの置換基を有する芳香族基もしくは無置換の芳香族基がより好ましい。 In general formula (9), R 16 , R 17 , R 18 and R 19 are, for example, phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, naphthyl group, hydroxynaphthyl group, benzyl group and methyl group. , ethyl group, n-butyl group, n-octyl group and cyclohexyl group. , an aromatic group having a substituent such as a hydroxyl group or an unsubstituted aromatic group is more preferable.
 一般式(9)において、R20は、YおよびYと結合する有機基である。同様に、R21は、基YおよびYと結合する有機基である。YおよびYはプロトン供与性基がプロトンを放出してなる基であり、同一分子内の基YおよびYが珪素原子と結合してキレート構造を形成するものである。同様にYおよびYはプロトン供与性基がプロトンを放出してなる基であり、同一分子内の基YおよびYが珪素原子と結合してキレート構造を形成するものである。基R20およびR21は互いに同一であっても異なっていてもよく、基Y、Y、Y、およびY5は互いに同一であっても異なっていてもよい。このような一般式(9)中の-Y-R20-Y-、およびY-R21-Y-で表される基は、プロトン供与体が、プロトンを2個放出してなる基で構成されるものであり、プロトン供与体としては、分子内にカルボキシル基、または水酸基を少なくとも2個有する有機酸が好ましく、さらには芳香環を構成する隣接する炭素にカルボキシル基または水酸基を少なくとも2個有する芳香族化合物が好ましく、芳香環を構成する隣接する炭素に水酸基を少なくとも2個有する芳香族化合物がより好ましく、例えば、カテコール、ピロガロール、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,2'-ビフェノール、1,1'-ビ-2-ナフトール、サリチル酸、1-ヒドロキシ-2-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、クロラニル酸、タンニン酸、2-ヒドロキシベンジルアルコール、1,2-シクロヘキサンジオール、1,2-プロパンジオールおよびグリセリン等が挙げられるが、これらの中でも、カテコール、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレンがより好ましい。 In general formula (9), R20 is an organic group that bonds with Y2 and Y3 . Likewise, R 21 is an organic group that bonds with groups Y 4 and Y 5 . Y2 and Y3 are groups formed by proton - releasing proton - donating groups , and the groups Y2 and Y3 in the same molecule bond with silicon atoms to form a chelate structure. Similarly, Y4 and Y5 are groups in which proton - donating groups release protons, and groups Y4 and Y5 in the same molecule bond with silicon atoms to form a chelate structure. The groups R 20 and R 21 may be the same or different, and the groups Y 2 , Y 3 , Y 4 and Y5 may be the same or different. In the groups represented by -Y 2 -R 20 -Y 3 - and Y 4 -R 21 -Y 5 - in the general formula (9), the proton donor releases two protons The proton donor is preferably an organic acid having at least two carboxyl groups or hydroxyl groups in the molecule, and furthermore, the adjacent carbon atoms constituting the aromatic ring have a carboxyl group or a hydroxyl group. An aromatic compound having at least two hydroxyl groups is preferable, and an aromatic compound having at least two hydroxyl groups on adjacent carbon atoms constituting an aromatic ring is more preferable. Naphthalene, 2,2'-biphenol, 1,1'-bi-2-naphthol, salicylic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, chloranilic acid, tannic acid, 2-hydroxybenzyl Examples include alcohol, 1,2-cyclohexanediol, 1,2-propanediol and glycerin, and among these, catechol, 1,2-dihydroxynaphthalene and 2,3-dihydroxynaphthalene are more preferred.
 一般式(9)中のZは、芳香環または複素環を有する有機基または脂肪族基を表し、これらの具体的な例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基およびオクチル基等の脂肪族炭化水素基や、フェニル基、ベンジル基、ナフチル基およびビフェニル基等の芳香族炭化水素基、グリシジルオキシプロピル基、メルカプトプロピル基、アミノプロピル基等のグリシジルオキシ基、メルカプト基、アミノ基を有するアルキル基およびビニル基等の反応性置換基等が挙げられるが、これらの中でも、メチル基、エチル基、フェニル基、ナフチル基およびビフェニル基が熱安定性の面から、より好ましい。
 ホスホニウム化合物とシラン化合物との付加物の製造方法は、例えば以下である。
Z 1 in general formula (9) represents an organic group or aliphatic group having an aromatic or heterocyclic ring, specific examples of which include a methyl group, an ethyl group, a propyl group, a butyl group and a hexyl group. and aliphatic hydrocarbon groups such as octyl group, aromatic hydrocarbon groups such as phenyl group, benzyl group, naphthyl group and biphenyl group, glycidyloxy groups such as glycidyloxypropyl group, mercaptopropyl group, aminopropyl group, mercapto groups, alkyl groups having amino groups, and reactive substituents such as vinyl groups. preferable.
A method for producing an adduct of a phosphonium compound and a silane compound is, for example, as follows.
 メタノールを入れたフラスコに、フェニルトリメトキシシラン等のシラン化合物、2,3-ジヒドロキシナフタレン等のプロトン供与体を加えて溶かし、次に室温攪拌下ナトリウムメトキシド-メタノール溶液を滴下する。さらにそこへ予め用意したテトラフェニルホスホニウムブロマイド等のテトラ置換ホスホニウムハライドをメタノールに溶かした溶液を室温攪拌下滴下すると結晶が析出する。析出した結晶を濾過、水洗、真空乾燥すると、ホスホニウム化合物とシラン化合物との付加物が得られる。 A silane compound such as phenyltrimethoxysilane and a proton donor such as 2,3-dihydroxynaphthalene are added and dissolved in a flask containing methanol, and then a sodium methoxide-methanol solution is added dropwise while stirring at room temperature. Furthermore, when a solution prepared in advance by dissolving a tetrasubstituted phosphonium halide such as tetraphenylphosphonium bromide in methanol is added dropwise thereto while stirring at room temperature, crystals are precipitated. Precipitated crystals are filtered, washed with water and dried in a vacuum to obtain an adduct of a phosphonium compound and a silane compound.
 硬化触媒(D)を用いる場合、その含有量は、熱硬化性樹脂組成物全体に対して、好ましくは0.01~1質量%、より好ましくは0.02~0.8質量%である。このような数値範囲とすることにより、他の性能を過度に悪くすることなく、十分に硬化促進効果が得られる。 When the curing catalyst (D) is used, its content is preferably 0.01 to 1% by mass, more preferably 0.02 to 0.8% by mass, relative to the entire thermosetting resin composition. By setting it to such a numerical range, a sufficient curing acceleration effect can be obtained without excessively deteriorating other performances.
[無機充填剤]
 本実施形態の熱硬化性樹脂組成物は、さらに、吸湿性低減、線膨張係数低減、熱伝導性向上および強度向上のために、高誘電率充填剤以外に無機充填剤を含むことができる。
[Inorganic filler]
The thermosetting resin composition of the present embodiment can further contain an inorganic filler in addition to the high dielectric constant filler in order to reduce hygroscopicity, reduce the coefficient of linear expansion, improve thermal conductivity, and improve strength.
 無機充填剤としては、溶融シリカ、結晶シリカ、アルミナ、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、またはこれらを球形化したビーズ、ガラス繊維などが挙げられる。これらの無機充填材は単独で用いても2種以上を組み合わせて用いてもよい。上記の無機充填材の中で、線膨張係数低減の観点からは溶融シリカが、高熱伝導性の観点からはアルミナが好ましく、充填材形状は成形時の流動性および金型摩耗性の点から球形が好ましい。 Inorganic fillers include fused silica, crystalline silica, alumina, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, Examples include powders of mullite, titania, etc., beads obtained by spheroidizing these powders, glass fibers, and the like. These inorganic fillers may be used alone or in combination of two or more. Among the above inorganic fillers, fused silica is preferable from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferable from the viewpoint of high thermal conductivity. is preferred.
 高誘電率充填剤以外の無機充填材の配合量は、成形性、熱膨張性の低減、および強度向上の観点から、熱硬化性樹脂組成物全体に対して、好ましくは15質量%以上、60質量%以下、より好ましくは20質量%以上、50質量%以下の範囲とすることができる。上記範囲であれば、熱膨張性低減および成形性に優れる。 The amount of the inorganic filler other than the high dielectric constant filler is preferably 15% by mass or more, 60 % by mass or less, more preferably 20% by mass or more and 50% by mass or less. If it is the said range, it will be excellent in thermal-expansion reduction and moldability.
[その他の成分]
 本実施形態の熱硬化性樹脂組成物は、上記成分に加え、必要に応じて、シランカップリング剤、離型剤、着色剤、分散剤、低応力化剤等の種々の成分を含むことができる。
[Other ingredients]
In addition to the above components, the thermosetting resin composition of the present embodiment may optionally contain various components such as a silane coupling agent, a release agent, a colorant, a dispersant, and a stress reducing agent. can.
[熱硬化性樹脂組成物]
 本実施形態の熱硬化性樹脂組成物は、上述の各成分を均一に混合することにより製造できる。製造方法としては、所定の配合量の原材料をミキサー等によって十分混合した後、ミキシングロール、ニーダ、押出機等によって溶融混練した後、冷却、粉砕する方法を挙げることができる。得られた熱硬化性樹脂組成物は、必要に応じて、成形条件に合うような寸法および質量でタブレット化してもよい。
[Thermosetting resin composition]
The thermosetting resin composition of this embodiment can be produced by uniformly mixing the components described above. Examples of the production method include a method of sufficiently mixing raw materials in a predetermined amount with a mixer or the like, melt-kneading the mixture with a mixing roll, kneader, extruder or the like, and then cooling and pulverizing the mixture. The resulting thermosetting resin composition may, if desired, be tableted to a size and mass that are suitable for molding conditions.
 本実施形態の熱硬化性樹脂組成物は、スパイラルフローの流動長が50cm以上、好ましくは55cm以上、さらに好ましくは60cm以上である。したがって、本実施形態の熱硬化性樹脂組成物は、成形性に優れる。 The thermosetting resin composition of the present embodiment has a spiral flow length of 50 cm or more, preferably 55 cm or more, and more preferably 60 cm or more. Therefore, the thermosetting resin composition of this embodiment has excellent moldability.
 スパイラルフロー試験は、たとえば低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて、EMMI-1-66に準じたスパイラルフロー測定用の金型に金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で樹脂成形材料を注入し、流動長を測定することにより行うことができる。 In the spiral flow test, for example, using a low-pressure transfer molding machine ("KTS-15" manufactured by Kotaki Seiki Co., Ltd.), a mold temperature of 175 ° C. is injected into a mold for spiral flow measurement according to EMMI-1-66. This can be done by injecting the resin molding material under conditions of a pressure of 6.9 MPa and a curing time of 120 seconds and measuring the flow length.
 また、本実施形態の熱硬化性樹脂組成物は、下記条件で測定された矩形圧が0.1MPa以上、好ましくは0.15MPa以上、さらに好ましくは0.20MPa以上である。
 矩形圧は、溶融粘度のパラメータであり、数値が小さい方が、溶融粘度が低い。本実施形態の熱硬化性樹脂組成物は、矩形圧が上記範囲であることにより、成形時における金型充填性に優れる。
In addition, the thermosetting resin composition of the present embodiment has a rectangular pressure of 0.1 MPa or more, preferably 0.15 MPa or more, more preferably 0.20 MPa or more, measured under the following conditions.
Rectangular pressure is a parameter of melt viscosity, and the smaller the numerical value, the lower the melt viscosity. The thermosetting resin composition of the present embodiment has a rectangular pressure within the above range, and is therefore excellent in mold filling properties during molding.
(条件)
 低圧トランスファー成形機を用いて、金型温度175℃、注入速度177mm/秒の条件にて、幅13mm、厚さ1mm、長さ175mmの矩形状の流路に熱硬化性樹脂組成物を注入し、流路の上流先端から25mmの位置に埋設した圧力センサーにて圧力の経時変化を測定し、前記熱硬化性樹脂組成物の流動時における最低圧力を算出して、この最低圧力を矩形圧とする。
(conditions)
Using a low-pressure transfer molding machine, the thermosetting resin composition was injected into a rectangular flow path with a width of 13 mm, a thickness of 1 mm, and a length of 175 mm under conditions of a mold temperature of 175°C and an injection speed of 177 mm 3 /sec. Then, the change in pressure over time is measured with a pressure sensor embedded at a position 25 mm from the upstream end of the flow channel, the minimum pressure at the time of flow of the thermosetting resin composition is calculated, and this minimum pressure is measured as a rectangular pressure. and
 本実施形態の熱硬化性樹脂と、高誘電率充填剤と、を含む熱硬化性樹脂組成物は、200℃で90分加熱して硬化させた硬化物において、以下の誘電率および誘電正接(tanδ)を有する。
 空洞共振器法による18GHzでの誘電率が10以上、好ましくは12以上、より好ましくは13以上、特に好ましくは14以上とすることができる。
 空洞共振器法による18GHzでの誘電正接(tanδ)が0.04以下、好ましくは0.03以下、より好ましくは0.02以下、特に好ましくは0.015以下とすることができる。
The thermosetting resin composition containing the thermosetting resin of the present embodiment and a high dielectric constant filler has the following dielectric constant and dielectric loss tangent ( tan δ).
The dielectric constant at 18 GHz by the cavity resonator method can be 10 or more, preferably 12 or more, more preferably 13 or more, and particularly preferably 14 or more.
The dielectric loss tangent (tan δ) at 18 GHz by the cavity resonator method can be 0.04 or less, preferably 0.03 or less, more preferably 0.02 or less, and particularly preferably 0.015 or less.
 本実施形態の樹脂組成物から得られる硬化物は、高周波帯において高誘電率および低誘電正接に優れることから、高周波化ひいては回路の短縮化および通信機器等の小型化を図ることができ、マイクロストリップアンテナを形成する材料、誘電体導波路を形成する材料、さらに電磁波吸収体を形成する材料等として好適に用いることができる。 Since the cured product obtained from the resin composition of the present embodiment is excellent in high dielectric constant and low dielectric loss tangent in a high frequency band, it is possible to increase the frequency and shorten the circuit and reduce the size of communication equipment. It can be suitably used as a material for forming a strip antenna, a material for forming a dielectric waveguide, a material for forming an electromagnetic wave absorber, and the like.
<第2の実施形態>
 本実施形態の熱硬化性樹脂組成物は、熱硬化性樹脂(A)と、硬化剤(B)と、高誘電率充填剤(C)と、を含む。
 以下、各成分について説明する
<Second embodiment>
The thermosetting resin composition of this embodiment contains a thermosetting resin (A), a curing agent (B), and a high dielectric constant filler (C).
Each component is described below.
[熱硬化性樹脂(A)]
 本実施形態において、熱硬化性樹脂(A)としては、シアネート樹脂、エポキシ樹脂、ラジカル重合性の炭素-炭素二重結合を1分子内に2つ以上有する樹脂、およびマレイミド樹脂から選択される一種または二種以上を用いることができる。これらの中でも、本発明の効果の観点からは、エポキシ樹脂(A1)を含むことが特に好ましい。
 本実施形態において、エポキシ樹脂(A1)の好ましい具体例としては、上述の第1の実施形態におけるエポキシ樹脂(A1)に記載したものが挙げられる。
[Thermosetting resin (A)]
In the present embodiment, the thermosetting resin (A) is a kind selected from cyanate resins, epoxy resins, resins having two or more radically polymerizable carbon-carbon double bonds in one molecule, and maleimide resins. Alternatively, two or more kinds can be used. Among these, it is particularly preferable to contain the epoxy resin (A1) from the viewpoint of the effects of the present invention.
Preferred specific examples of the epoxy resin (A1) in the present embodiment include those described for the epoxy resin (A1) in the above-described first embodiment.
 熱硬化性樹脂(A)は、本発明の効果の観点から、熱硬化性樹脂組成物全体に対して、5質量%以上、好ましくは8質量%以上含むことができる。また、熱硬化性樹脂(A)は典型的には、20質量%以下、好ましくは15質量%以下含むことができる。 From the viewpoint of the effects of the present invention, the thermosetting resin (A) can be contained in an amount of 5% by mass or more, preferably 8% by mass or more, relative to the entire thermosetting resin composition. Also, the thermosetting resin (A) can typically be contained in an amount of 20% by mass or less, preferably 15% by mass or less.
[硬化剤(B)]
 本実施形態において、硬化剤(B)は、本発明の効果を奏する範囲で公知の硬化剤を用いることができるが、活性エステル硬化剤(B1)および/またはフェノール硬化剤(B2)を含むことができる。
[Curing agent (B)]
In the present embodiment, the curing agent (B) may be a known curing agent within the scope of the effects of the present invention. can be done.
(活性エステル硬化剤(B1))
 活性エステル硬化剤(B1)としては、1分子中に1個以上の活性エステル基を有する化合物を用いることができる。中でも、活性エステル硬化剤としては、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の、反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましい。
(Active ester curing agent (B1))
A compound having one or more active ester groups in one molecule can be used as the active ester curing agent (B1). Among them, active ester curing agents include phenol esters, thiophenol esters, N-hydroxyamine esters, esters of heterocyclic hydroxy compounds, etc., which have two or more ester groups with high reaction activity per molecule. Compounds are preferred.
 活性エステル硬化剤(B1)の好ましい具体例としては、上述の第1の実施形態における活性エステル硬化剤(B1)に記載したものが挙げられ、同様に製造することができる。 Preferred specific examples of the active ester curing agent (B1) include those described for the active ester curing agent (B1) in the first embodiment, and can be produced in the same manner.
 また、活性エステル硬化剤(B1)の官能基当量は、樹脂構造中に有するアリールカルボニルオキシ基およびフェノール性水酸基の合計を樹脂の官能基数とした場合、硬化性に優れ、誘電正接の低い硬化物が得られることから、200g/eq以上230g/eq以下の範囲であることが好ましく、210g/eq以上220g/eq以下の範囲であることがより好ましい。 In addition, the functional group equivalent of the active ester curing agent (B1) is a cured product with excellent curability and low dielectric loss tangent when the total number of functional groups of the resin is the arylcarbonyloxy group and phenolic hydroxyl group in the resin structure. is obtained, it is preferably in the range of 200 g/eq to 230 g/eq, more preferably in the range of 210 g/eq to 220 g/eq.
 本実施形態の熱硬化性樹脂組成物において、活性エステル硬化剤(B1)とエポキシ樹脂(A1)との配合量は、硬化性に優れ、誘電正接の低い硬化物が得られることから、活性エステル硬化剤(B1)中の活性基の合計1当量に対して、エポキシ樹脂(A1)中のエポキシ基が0.8~1.2当量となる割合であることが好ましい。ここで、活性エステル硬化剤(B1)中の活性基とは、樹脂構造中に有するアリールカルボニルオキシ基及びフェノール性水酸基を指す。 In the thermosetting resin composition of the present embodiment, the blending amount of the active ester curing agent (B1) and the epoxy resin (A1) is excellent in curability, and a cured product with a low dielectric loss tangent can be obtained. It is preferable that the ratio of the epoxy groups in the epoxy resin (A1) is 0.8 to 1.2 equivalents with respect to the total equivalent of active groups in the curing agent (B1). Here, the active groups in the active ester curing agent (B1) refer to arylcarbonyloxy groups and phenolic hydroxyl groups in the resin structure.
 本実施形態の組成物において、活性エステル硬化剤(B1)は、樹脂組成物全体に対して、好ましくは0.2質量%以上15質量%以下、より好ましくは0.5質量%以上10質量%以下、さらに好ましくは1.0質量%以上7質量%以下の量で用いられる。
 特定の活性エステル硬化剤(B1)を上記範囲で含むことにより、得られる硬化物はより優れた誘電特性を有することができ、低誘電正接にさらに優れる。
In the composition of the present embodiment, the active ester curing agent (B1) is preferably 0.2% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more and 10% by mass, based on the total resin composition. Hereafter, it is more preferably used in an amount of 1.0% by mass or more and 7% by mass or less.
By containing the specific active ester curing agent (B1) in the above range, the obtained cured product can have more excellent dielectric properties and is further excellent in low dielectric loss tangent.
 本実施形態の樹脂組成物は、活性エステル硬化剤(B1)と、後述の高誘電率充填剤(C)とを組み合わせて用いることにより、低誘電正接により優れ、高周波帯においてもこれらの効果に優れる。
 上記効果の観点から、活性エステル硬化剤(B1)は、上述の高誘電率充填剤(C)100質量部に対して、好ましくは1質量部以上30質量部以下、より好ましくは2質量部以上20質量部以下、さらに好ましくは3質量部以上15質量部以下となるように含むことができる。
The resin composition of the present embodiment is excellent in low dielectric loss tangent by using a combination of the active ester curing agent (B1) and the high dielectric constant filler (C) described later, and exhibits these effects even in a high frequency band. Excellent.
From the viewpoint of the above effects, the active ester curing agent (B1) is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 2 parts by mass or more, relative to 100 parts by mass of the high dielectric constant filler (C). It can be contained in an amount of 20 parts by mass or less, more preferably 3 parts by mass or more and 15 parts by mass or less.
 なお、本出願人は、特開2020-90615号公報に記載のように、本発明とは異なる半導体封止用途において、エポキシ樹脂と、所定の活性エステル硬化剤と、を含む樹脂組成物を開発している。本発明は、同公報記載の技術に対して、高誘電率充填剤を含有する点で相違している。また、高誘電率充填剤を含有するため、活性エステル硬化剤と熱硬化性樹脂の組み合わせによる作用効果も、高周波帯において低誘電正接に優れる点で相違している。 In addition, as described in JP-A-2020-90615, the present applicant has developed a resin composition containing an epoxy resin and a predetermined active ester curing agent for semiconductor sealing applications different from the present invention. is doing. The present invention differs from the technique described in the publication in that it contains a high dielectric constant filler. In addition, since a high dielectric constant filler is contained, the effects of the combination of the active ester curing agent and the thermosetting resin are also different in that they are excellent in low dielectric loss tangent in the high frequency band.
(フェノール硬化剤(B2))
 フェノール硬化剤(B2)としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミンやベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
(Phenolic curing agent (B2))
Phenol curing agents (B2) include phenol novolak resins, cresol novolac resins, aromatic hydrocarbon formaldehyde resin-modified phenol resins, dicyclopentadiene phenol addition type resins, phenol aralkyl resins, naphthol aralkyl resins, trimethylolmethane resins, tetraphenylene resins. Roll ethane resin, naphthol novolac resin, naphthol-phenol co-condensed novolac resin, naphthol-cresol co-condensed novolac resin, biphenyl-modified phenol resin (polyhydric phenol compound in which phenol nucleus is linked by bismethylene group), biphenyl-modified naphthol resin (bismethylene polyhydric phenol compounds such as polyhydric naphthol compounds in which phenol nuclei are linked by groups) and aminotriazine-modified phenol resins (polyhydric phenol compounds in which phenol nuclei are linked by melamine, benzoguanamine, etc.).
 フェノール硬化剤(B2)の配合量は、熱硬化性樹脂(A)に対して、好ましくは、20質量%以上70質量%以下の量である。上記範囲の量で硬化剤を使用することにより、優れた硬化性を有する樹脂組成物が得られる。 The blending amount of the phenol curing agent (B2) is preferably 20% by mass or more and 70% by mass or less with respect to the thermosetting resin (A). By using the curing agent in an amount within the above range, a resin composition having excellent curability can be obtained.
 本実施形態の組成物において、フェノール硬化剤(B2)は、熱硬化性樹脂組成物全体に対して、好ましくは0.2質量%以上15質量%以下、より好ましくは0.5質量%以上10質量%以下、さらに好ましくは1.0質量%以上7質量%以下の量で用いられる。
 特定のフェノール硬化剤(B2)を上記範囲で含むことにより、得られる硬化物はより優れた誘電特性を有することができ、低誘電正接にさらに優れる。
In the composition of the present embodiment, the phenol curing agent (B2) is preferably 0.2% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more and 10% by mass, based on the total thermosetting resin composition. It is used in an amount of 1.0% by mass or more and 7% by mass or less, more preferably 1.0% by mass or less and 7% by mass or less.
By including the specific phenolic curing agent (B2) in the above range, the obtained cured product can have better dielectric properties and is further excellent in low dielectric loss tangent.
 本実施形態の硬化剤(B)は、活性エステル硬化剤(B1)およびフェノール硬化剤(B2)以外の他の硬化剤を含むことができる。
 他の硬化剤としては、例えば、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ-ル、BF-アミン錯体、グアニジン誘導体等のアミン化合物;ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等のアミド化合物;無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等の酸無水物;等が挙げられる。
The curing agent (B) of the present embodiment can contain curing agents other than the active ester curing agent (B1) and the phenolic curing agent (B2).
Other curing agents include, for example, diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complex, amine compounds such as guanidine derivatives; dicyandiamide, dimer of linolenic acid. Amide compounds such as polyamide resins synthesized from and ethylenediamine; acid anhydrides such as phthalic acid and methylhexahydrophthalic anhydride;
[高誘電率充填剤(C)]
 本実施形態において、高誘電率充填剤(C)は、チタン酸マグネシウムを含む。
 本実施形態の熱硬化性樹脂組成物は、高誘電率充填剤(C)としてチタン酸マグネシウムを含むことにより、低誘電正接に優れ、高周波帯においても当該効果に優れる。
 前記高誘電率充填剤(C)は、チタン酸マグネシウムとともに、さらにチタン酸カルシウムを含むことが好ましい。これにより、低誘電正接にさらに優れ、高周波帯においても当該効果にさらに優れる。
[High dielectric constant filler (C)]
In this embodiment, the high dielectric constant filler (C) comprises magnesium titanate.
Since the thermosetting resin composition of the present embodiment contains magnesium titanate as the high dielectric constant filler (C), it has an excellent low dielectric loss tangent and exhibits excellent effects even in a high frequency band.
The high dielectric constant filler (C) preferably contains magnesium titanate and calcium titanate. As a result, the low dielectric loss tangent is further improved, and the effect is further improved even in a high frequency band.
 前記高誘電率充填剤(C)は、さらに、チタン酸バリウム、チタン酸ストロンチウム、ジルコン酸マグネシウム、ジルコン酸ストロンチウム、チタン酸ビスマス、チタン酸ジルコニウム、チタン酸亜鉛、ジルコン酸バリウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸鉛、ニオブ酸マグネシウム酸バリウム、およびジルコン酸カルシウム等から選択される少なくとも1種を含むことができる。 The high dielectric constant filler (C) further includes barium titanate, strontium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, barium zirconate, and calcium zirconate titanate. , lead zirconate titanate, barium magnesium niobate, and calcium zirconate.
 高誘電率充填剤(C)の形状は、粒状、不定形、フレーク状などであり、これらの形状の高誘電率充填剤(C)を任意の比率で用いることができる。高誘電率充填剤(C)の平均粒子径は、本発明の効果の観点や流動性・充填性の観点から、好ましくは0.1μm以上50μm以下、より好ましくは0.3μm以上20μm以下、さらに好ましくは0.5μm以上10μm以下である。 The shape of the high dielectric constant filler (C) is granular, amorphous, flaky, etc., and these shapes of the high dielectric constant filler (C) can be used at any ratio. The average particle size of the high dielectric constant filler (C) is preferably 0.1 μm or more and 50 μm or less, more preferably 0.3 μm or more and 20 μm or less, and further preferably It is preferably 0.5 μm or more and 10 μm or less.
 高誘電率充填剤(C)の配合量は、樹脂組成物100質量%中に、好ましくは10質量%以上、90質量%以下、より好ましくは20質量%以上、88質量%以下、さらに好ましくは40質量%以上、85質量%以下の範囲である。高誘電率充填剤(C)の添加量が上記範囲であると、得られる硬化物の誘電正接がより低くなるとともに、成形品の製造にも優れる。
 高誘電率充填剤(C)がチタン酸マグネシウムのみからなる場合、チタン酸マグネシウムの配合量は、樹脂組成物100質量%中に、好ましくは30質量%以上、90質量%以下、より好ましくは35質量%以上、88質量%以下、さらに好ましくは40質量%以上、85質量%以下の範囲である。
 高誘電率充填剤(C)がチタン酸マグネシウムおよびチタン酸カルシウムからなる場合、これらの合計の配合量は、樹脂組成物100質量%中に、好ましくは30質量%以上、90質量%以下、より好ましくは35質量%以上、88質量%以下、さらに好ましくは40質量%以上、85質量%以下の範囲である。
The amount of the high dielectric constant filler (C) is preferably 10% by mass or more and 90% by mass or less, more preferably 20% by mass or more and 88% by mass or less, more preferably 100% by mass of the resin composition. The range is 40% by mass or more and 85% by mass or less. When the amount of the high-dielectric-constant filler (C) is within the above range, the resulting cured product has a lower dielectric loss tangent and is excellent in the production of molded articles.
When the high dielectric constant filler (C) consists of only magnesium titanate, the content of magnesium titanate is preferably 30% by mass or more and 90% by mass or less, more preferably 35% by mass in 100% by mass of the resin composition. It is in the range of 40% by mass or more and 85% by mass or less, more preferably 40% by mass or more and 85% by mass or less.
When the high dielectric constant filler (C) is composed of magnesium titanate and calcium titanate, the total amount of these is preferably 30% by mass or more and 90% by mass or less, or more, in 100% by mass of the resin composition. The range is preferably 35% by mass or more and 88% by mass or less, more preferably 40% by mass or more and 85% by mass or less.
[硬化触媒(D)]
 本実施形態の熱硬化性樹脂組成物は、さらに硬化触媒(D)を含むことができる。
 硬化触媒(D)は、硬化促進剤などと呼ばれる場合もある。硬化触媒(D)は、熱硬化性樹脂(A)の硬化反応を早めるものである限り特に限定されず、公知の硬化触媒を用いることができる。
 硬化触媒(D)の好ましい具体例としては、上述の第1の実施形態における硬化触媒(D)に記載したものが挙げられ、同様に製造することができる。
[Curing catalyst (D)]
The thermosetting resin composition of this embodiment can further contain a curing catalyst (D).
The curing catalyst (D) is sometimes called a curing accelerator or the like. The curing catalyst (D) is not particularly limited as long as it accelerates the curing reaction of the thermosetting resin (A), and known curing catalysts can be used.
Preferred specific examples of the curing catalyst (D) include those described for the curing catalyst (D) in the first embodiment, and can be produced in the same manner.
 硬化触媒(D)を用いる場合、その含有量は、熱硬化性樹脂組成物全体に対して、好ましくは0.01質量%以上、1質量%以下、より好ましくは0.02質量%以上、0.8質量%以下である。このような数値範囲とすることにより、他の性能を過度に悪くすることなく、十分に硬化促進効果が得られる。 When using a curing catalyst (D), its content is preferably 0.01% by mass or more and 1% by mass or less, more preferably 0.02% by mass or more and 0 .8% by mass or less. By setting it to such a numerical range, a sufficient curing acceleration effect can be obtained without excessively deteriorating other performances.
[無機充填剤]
 本実施形態の熱硬化性樹脂組成物は、さらに、吸湿性低減、線膨張係数低減、熱伝導性向上および強度向上のために、高誘電率充填剤(C)以外に無機充填剤を含むことができる。
[Inorganic filler]
The thermosetting resin composition of the present embodiment further contains an inorganic filler in addition to the high dielectric constant filler (C) in order to reduce hygroscopicity, reduce the coefficient of linear expansion, improve thermal conductivity and improve strength. can be done.
 無機充填剤としては、溶融シリカ、結晶シリカ、アルミナ、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、またはこれらを球形化したビーズ、ガラス繊維などが挙げられる。これらの無機充填材は単独で用いても2種以上を組み合わせて用いてもよい。上記の無機充填材の中で、線膨張係数低減の観点からは溶融シリカが、高熱伝導性の観点からはアルミナが好ましく、充填材形状は成形時の流動性および金型摩耗性の点から球形が好ましい。 Inorganic fillers include fused silica, crystalline silica, alumina, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, Examples include powders of mullite, titania, etc., beads obtained by spheroidizing these powders, glass fibers, and the like. These inorganic fillers may be used alone or in combination of two or more. Among the above inorganic fillers, fused silica is preferable from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferable from the viewpoint of high thermal conductivity. is preferred.
 高誘電率充填剤(C)以外の無機充填材の配合量は、成形性、熱膨張性の低減、および強度向上の観点から、樹脂組成物全体に対して、好ましくは15質量%以上、60質量%以下、より好ましくは20質量%以上、50質量%以下の範囲とすることができる。上記範囲であれば、熱膨張性低減および成形性に優れる。 The amount of the inorganic filler other than the high dielectric constant filler (C) is preferably 15% by mass or more, 60 % by mass or less, more preferably 20% by mass or more and 50% by mass or less. If it is the said range, it will be excellent in thermal-expansion reduction and moldability.
[その他の成分]
 本実施形態の熱硬化性樹脂組成物は、上記成分に加え、必要に応じて、シランカップリング剤、離型剤、着色剤、分散剤、低応力化剤等の種々の成分を含むことができる。
[Other ingredients]
In addition to the above components, the thermosetting resin composition of the present embodiment may optionally contain various components such as a silane coupling agent, a release agent, a colorant, a dispersant, and a stress reducing agent. can.
[熱硬化性樹脂組成物]
 本実施形態の熱硬化性樹脂組成物は、下記熱硬化性樹脂(A)と、硬化剤(B)として下記活性エステル硬化剤(B1)および/または下記フェノール硬化剤(B2)と、下記高誘電率充填剤(C)と、を組み合わせて含むことができる。
(熱硬化性樹脂(A))
 好ましくは、シアネート樹脂、エポキシ樹脂、ラジカル重合性の炭素-炭素二重結合を1分子内に2つ以上有する樹脂、およびマレイミド樹脂から選択される一種または二種以上を含む。
 さらに好ましくは、エポキシ樹脂を含む。
[Thermosetting resin composition]
The thermosetting resin composition of the present embodiment comprises the following thermosetting resin (A), the following active ester curing agent (B1) and / or the following phenol curing agent (B2) as the curing agent (B), and the following high and a dielectric constant filler (C).
(Thermosetting resin (A))
Preferably, one or more selected from cyanate resins, epoxy resins, resins having two or more radically polymerizable carbon-carbon double bonds in one molecule, and maleimide resins.
More preferably, it contains an epoxy resin.
(活性エステル硬化剤(B1))
 ジシクロペンタジエン型ジフェノール構造を含む活性エステル硬化剤、ナフタレン構造を含む活性エステル硬化剤、フェノールノボラックのアセチル化物を含む活性エステル硬化剤、およびフェノールノボラックのベンゾイル化物を含む活性エステル硬化剤から選択される少なくとも1種を含む。
 好ましくは、ナフタレン構造を含む活性エステル硬化剤、およびジシクロペンタジエン型ジフェノール構造を含む活性エステル硬化剤から選択される少なくとも1種を含む。
 さらに好ましくは、前記一般式(1)で表される構造を備える活性エステル硬化剤である。
 なお、上述の熱硬化性樹脂(A)と、活性エステル硬化剤(B1)を含む硬化剤(B)とは、各々の例示を任意に組み合わせることができる。
(Active ester curing agent (B1))
selected from active ester curing agents containing a dicyclopentadiene type diphenol structure, active ester curing agents containing a naphthalene structure, active ester curing agents containing acetylated phenol novolacs, and active ester curing agents containing benzoylated phenol novolacs; contains at least one
Preferably, it contains at least one selected from an active ester curing agent containing a naphthalene structure and an active ester curing agent containing a dicyclopentadiene type diphenol structure.
More preferably, it is an active ester curing agent having a structure represented by the general formula (1).
The thermosetting resin (A) and the curing agent (B) containing the active ester curing agent (B1) can be combined arbitrarily.
(フェノール硬化剤(B2))
 フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、およびアミノトリアジン変性フェノール樹脂(メラミンやベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)の多価フェノール化合物から選択される少なくとも1種を含む。
(Phenolic curing agent (B2))
Phenol novolak resin, cresol novolak resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin, naphthol aralkyl resin, trimethylolmethane resin, tetraphenylol ethane resin, naphthol novolac resin, naphthol - Phenol co-condensed novolac resin, naphthol-cresol co-condensed novolac resin, biphenyl-modified phenol resin (polyhydric phenol compound with phenol nuclei linked by bismethylene groups), biphenyl-modified naphthol resin (polyphenol compounds with phenol nuclei linked by bismethylene groups) polyvalent naphthol compounds) and aminotriazine-modified phenolic resins (polyhydric phenol compounds in which the phenol nucleus is linked with melamine, benzoguanamine, etc.).
(高誘電率充填剤(C))
 チタン酸マグネシウムを含む。
 好ましくは、さらにチタン酸カルシウムを含む。
(High dielectric constant filler (C))
Contains magnesium titanate.
Preferably, it further contains calcium titanate.
 さらに、本実施形態の熱硬化性樹脂組成物は、
熱硬化性樹脂(A)を、当該組成物100質量%中に、好ましくは5質量%以上20質量%以下、より好ましくは10質量%以上15質量%以下の量で含むことができ、
活性エステル硬化剤(B1)および/またはフェノール硬化剤(B2)を、当該組成物100質量%中に、好ましくは0.2質量%以上15質量%以下、より好ましくは0.5質量%以上10質量%以下、さらに好ましくは1.0質量%以上7質量%以下の量で含むことができ、
高誘電率充填剤(C)を、当該組成物100質量%中に、10質量%以上90質量%以下、より好ましくは20質量%以上88質量%以下、さらに好ましくは40質量%以上85質量%以下の量で含むことができる。
Furthermore, the thermosetting resin composition of the present embodiment is
The thermosetting resin (A) can be contained in an amount of preferably 5% by mass or more and 20% by mass or less, more preferably 10% by mass or more and 15% by mass or less in 100% by mass of the composition,
Active ester curing agent (B1) and / or phenolic curing agent (B2) in 100% by mass of the composition, preferably 0.2% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more and 10 % by mass or less, more preferably 1.0% by mass or more and 7% by mass or less,
10% by mass or more and 90% by mass or less, more preferably 20% by mass or more and 88% by mass or less, and still more preferably 40% by mass or more and 85% by mass of the high dielectric constant filler (C) in 100% by mass of the composition It can be included in the following amounts:
 本実施形態においては、上述の熱硬化性樹脂(A)と、活性エステル硬化剤(B1)および/またはフェノール硬化剤(B2)を含む硬化剤(B)と、高誘電率充填剤(C)と、を組み合わせて含むことにより、低誘電正接により優れた誘電体基板が得られる熱硬化性樹脂組成物を提供することができる。 In the present embodiment, the thermosetting resin (A) described above, a curing agent (B) containing an active ester curing agent (B1) and/or a phenolic curing agent (B2), and a high dielectric constant filler (C) By combining and including, it is possible to provide a thermosetting resin composition that provides a dielectric substrate excellent in low dielectric loss tangent.
 本実施形態の熱硬化性樹脂組成物は、上述の各成分を均一に混合することにより製造できる。製造方法としては、所定の配合量の原材料をミキサー等によって十分混合した後、ミキシングロール、ニーダ、押出機等によって溶融混練した後、冷却、粉砕する方法を挙げることができる。得られた熱硬化性樹脂組成物は、必要に応じて、成形条件に合うような寸法および質量でタブレット化してもよい。 The thermosetting resin composition of this embodiment can be produced by uniformly mixing the components described above. Examples of the production method include a method of sufficiently mixing raw materials in a predetermined amount with a mixer or the like, melt-kneading the mixture with a mixing roll, kneader, extruder or the like, and then cooling and pulverizing the mixture. The resulting thermosetting resin composition may, if desired, be tableted to a size and mass that are suitable for molding conditions.
 本実施形態の熱硬化性樹脂組成物は、スパイラルフローの流動長が50cm以上、好ましくは55cm以上、さらに好ましくは60cm以上である。したがって、本実施形態の熱硬化性樹脂組成物は、成形性に優れる。 The thermosetting resin composition of the present embodiment has a spiral flow length of 50 cm or more, preferably 55 cm or more, and more preferably 60 cm or more. Therefore, the thermosetting resin composition of this embodiment has excellent moldability.
 スパイラルフロー試験は、たとえば低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて、EMMI-1-66に準じたスパイラルフロー測定用の金型に金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で樹脂成形材料を注入し、流動長を測定することにより行うことができる。 In the spiral flow test, for example, using a low-pressure transfer molding machine ("KTS-15" manufactured by Kotaki Seiki Co., Ltd.), a mold temperature of 175 ° C. is injected into a mold for spiral flow measurement according to EMMI-1-66. This can be done by injecting the resin molding material under conditions of a pressure of 6.9 MPa and a curing time of 120 seconds and measuring the flow length.
 また、本実施形態の熱硬化性樹脂組成物は、下記条件で測定された矩形圧が0.1MPa以上、好ましくは0.15MPa以上、さらに好ましくは0.20MPa以上である。
 矩形圧は、溶融粘度のパラメータであり、数値が小さい方が、溶融粘度が低い。本実施形態の熱硬化性樹脂組成物は、矩形圧が上記範囲であることにより、成形時における金型充填性に優れる。
In addition, the thermosetting resin composition of the present embodiment has a rectangular pressure of 0.1 MPa or more, preferably 0.15 MPa or more, more preferably 0.20 MPa or more, measured under the following conditions.
Rectangular pressure is a parameter of melt viscosity, and the smaller the numerical value, the lower the melt viscosity. The thermosetting resin composition of the present embodiment has a rectangular pressure within the above range, and is therefore excellent in mold filling properties during molding.
(条件)
 低圧トランスファー成形機を用いて、金型温度175℃、注入速度177mm/秒の条件にて、幅13mm、厚さ1mm、長さ175mmの矩形状の流路に樹脂組成物を注入し、流路の上流先端から25mmの位置に埋設した圧力センサーにて圧力の経時変化を測定し、前記樹脂組成物の流動時における最低圧力を算出して、この最低圧力を矩形圧とする。
(conditions)
Using a low-pressure transfer molding machine, the resin composition was injected into a rectangular channel having a width of 13 mm, a thickness of 1 mm, and a length of 175 mm under conditions of a mold temperature of 175°C and an injection rate of 177 mm 3 /sec. A pressure sensor embedded at a position 25 mm from the upstream end of the channel measures the change in pressure over time to calculate the minimum pressure when the resin composition flows, and this minimum pressure is defined as the rectangular pressure.
 本実施形態の熱硬化性樹脂(A)と、活性エステル硬化剤と、高誘電率充填剤(C)と、を含む樹脂組成物は、200℃で90分加熱して硬化させた硬化物において、以下の誘電正接(tanδ)を有する。
 空洞共振器法による25GHzでの誘電正接(tanδ)が0.04以下、好ましくは0.03以下、より好ましくは0.02以下、特に好ましくは0.015以下とすることができる。
The resin composition containing the thermosetting resin (A) of the present embodiment, the active ester curing agent, and the high dielectric constant filler (C) is cured by heating at 200 ° C. for 90 minutes. , with a dielectric loss tangent (tan δ) of
The dielectric loss tangent (tan δ) at 25 GHz by the cavity resonator method can be 0.04 or less, preferably 0.03 or less, more preferably 0.02 or less, and particularly preferably 0.015 or less.
 本実施形態の熱硬化性樹脂組成物から得られる硬化物は、高周波帯において低誘電正接に優れることから、高周波化を図ることができ、マイクロストリップアンテナを形成する材料、誘電体導波路を形成する材料、さらに電磁波吸収体を形成する材料等として好適に用いることができる。 The cured product obtained from the thermosetting resin composition of the present embodiment is excellent in low dielectric loss tangent in the high frequency band, so it can be used for high frequencies, and is used as a material for forming microstrip antennas and dielectric waveguides. It can be suitably used as a material for forming an electromagnetic wave absorber, and the like.
 本実施形態の樹脂組成物は、200℃で90分加熱して硬化させた硬化物において、以下の誘電率を有する。
 空洞共振器法による25GHzでの誘電率が2以上、好ましくは3以上、より好ましくは4以上、特に好ましくは5以上とすることができる。
The resin composition of this embodiment has the following dielectric constant in a cured product obtained by heating at 200° C. for 90 minutes.
The dielectric constant at 25 GHz by the cavity resonator method can be 2 or more, preferably 3 or more, more preferably 4 or more, and particularly preferably 5 or more.
<第3の実施形態>
 本実施形態の熱硬化性樹脂組成物は、熱硬化性樹脂(A)としてエポキシ樹脂(A1)と、硬化剤(B)と、高誘電率充填剤(C)と、を含む。
 以下、各成分について説明する
<Third Embodiment>
The thermosetting resin composition of this embodiment contains an epoxy resin (A1) as the thermosetting resin (A), a curing agent (B), and a high dielectric constant filler (C).
Each component is described below.
[エポキシ樹脂(A1)]
 エポキシ樹脂(A1)としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂等を挙げることができ、これらから選択される少なくとも1種を含む。なお、フェノールアラルキル型エポキシ樹脂は、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂を含まない。
 本実施形態において、エポキシ樹脂(A1)は、本発明の効果の観点から、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂が好ましく、ナフトールアラルキル型エポキシ樹脂がより好ましい。
 エポキシ樹脂(A1)は、その他のエポキシ樹脂として、ビフェニルアラルキル型エポキシ樹脂等を組み合わせて含むことができる。
[Epoxy resin (A1)]
Examples of the epoxy resin (A1) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, glycidylamine type epoxy resin, naphthol aralkyl type epoxy resin, phenol aralkyl type epoxy resin, and the like. and includes at least one selected from these. The phenol aralkyl epoxy resin does not include a biphenylene skeleton-containing phenol aralkyl epoxy resin.
In the present embodiment, the epoxy resin (A1) is preferably a naphthol aralkyl type epoxy resin or a dicyclopentadiene type epoxy resin, more preferably a naphthol aralkyl type epoxy resin, from the viewpoint of the effects of the present invention.
The epoxy resin (A1) can contain a combination of other epoxy resins such as a biphenylaralkyl type epoxy resin.
 エポキシ樹脂(A1)は、本発明の効果の観点から、熱硬化性樹脂組成物全体に対して、5質量%以上20質量%以下、好ましくは10質量%以上15質量%以下含むことができる。 From the viewpoint of the effects of the present invention, the epoxy resin (A1) can be contained in an amount of 5% by mass or more and 20% by mass or less, preferably 10% by mass or more and 15% by mass or less, relative to the entire thermosetting resin composition.
[硬化剤(B)]
 本実施形態において、硬化剤(B)は、活性エステル硬化剤(B1)および/またはフェノール硬化剤(B2)を含む。
(活性エステル硬化剤(B1))
 活性エステル硬化剤(B1)としては、1分子中に1個以上の活性エステル基を有する化合物を用いることができる。中でも、活性エステル硬化剤としては、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の、反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましい。
 本実施形態においては、前述の特定のエポキシ樹脂(A1)と、硬化剤(B)として活性エステル硬化剤(B1)とを組み合わせて含むことにより、高誘電率および低誘電正接に優れた誘電体基板を得ることができる。
[Curing agent (B)]
In this embodiment, the curing agent (B) includes an active ester curing agent (B1) and/or a phenolic curing agent (B2).
(Active ester curing agent (B1))
A compound having one or more active ester groups in one molecule can be used as the active ester curing agent (B1). Among them, active ester curing agents include phenol esters, thiophenol esters, N-hydroxyamine esters, esters of heterocyclic hydroxy compounds, etc., which have two or more ester groups with high reaction activity per molecule. Compounds are preferred.
In the present embodiment, a dielectric excellent in high dielectric constant and low dielectric loss tangent by including the above-mentioned specific epoxy resin (A1) in combination with an active ester curing agent (B1) as a curing agent (B) A substrate can be obtained.
 活性エステル硬化剤(B1)の好ましい具体例としては、上述の第1の実施形態における活性エステル硬化剤(B1)に記載したものが挙げられ、同様に製造することができる。 Preferred specific examples of the active ester curing agent (B1) include those described for the active ester curing agent (B1) in the first embodiment, and can be produced in the same manner.
 また、活性エステル系硬化剤(B1)の官能基当量は、樹脂構造中に有するアリールカルボニルオキシ基およびフェノール性水酸基の合計を樹脂の官能基数とした場合、硬化性に優れ、誘電正接の低い硬化物が得られることから、200g/eq以上230g/eq以下の範囲であることが好ましく、210g/eq以上220g/eq以下の範囲であることがより好ましい。 In addition, the functional group equivalent of the active ester curing agent (B1) is excellent in curability and curing with a low dielectric loss tangent when the sum of the arylcarbonyloxy groups and phenolic hydroxyl groups in the resin structure is taken as the total number of functional groups in the resin. 200 g/eq or more and 230 g/eq or less, more preferably 210 g/eq or more and 220 g/eq or less.
 本実施形態の熱硬化性樹脂組成物において、活性エステル硬化剤(B1)とエポキシ樹脂(A1)との配合量は、硬化性に優れ、誘電正接の低い硬化物が得られることから、活性エステル硬化剤中の活性基の合計1当量に対して、エポキシ樹脂(A1)中のエポキシ基が0.8~1.2当量となる割合であることが好ましい。ここで、活性エステル硬化剤中の活性基とは、樹脂構造中に有するアリールカルボニルオキシ基及びフェノール性水酸基を指す。 In the thermosetting resin composition of the present embodiment, the blending amount of the active ester curing agent (B1) and the epoxy resin (A1) is excellent in curability, and a cured product with a low dielectric loss tangent can be obtained. It is preferable that the ratio of the epoxy groups in the epoxy resin (A1) is 0.8 to 1.2 equivalents with respect to the total equivalent of active groups in the curing agent. Here, the active group in the active ester curing agent refers to an arylcarbonyloxy group and a phenolic hydroxyl group in the resin structure.
 本実施形態の組成物において、活性エステル硬化剤(B1)は、熱硬化性樹脂組成物全体に対して、好ましくは0.2質量%以上15質量%以下、より好ましくは0.5質量%以上10質量%以下、さらに好ましくは1.0質量%以上7質量%以下の量で用いられる。
 特定の活性エステル硬化剤(B1)を上記範囲で含むことにより、得られる硬化物はより優れた誘電特性を有することができ、低誘電正接にさらに優れる。
In the composition of the present embodiment, the active ester curing agent (B1) is preferably 0.2% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more, relative to the entire thermosetting resin composition. It is used in an amount of 10 mass % or less, more preferably 1.0 mass % or more and 7 mass % or less.
By containing the specific active ester curing agent (B1) in the above range, the obtained cured product can have more excellent dielectric properties and is further excellent in low dielectric loss tangent.
 本実施形態の樹脂組成物は、活性エステル硬化剤(B1)と、後述の高誘電率充填剤(C)とを組み合わせて用いることにより、高誘電率および低誘電正接により優れ、高周波帯においてもこれらの効果に優れる。
 上記効果の観点から、活性エステル硬化剤(B1)は、後述の高誘電率充填剤(C)100質量部に対して、好ましくは1質量部以上30質量部以下、より好ましくは2質量部以上20質量部以下、さらに好ましくは3質量部以上15質量部以下となるように含むことができる。
The resin composition of the present embodiment is excellent in high dielectric constant and low dielectric loss tangent by using a combination of the active ester curing agent (B1) and the high dielectric constant filler (C) described later, even in a high frequency band. Excellent in these effects.
From the viewpoint of the above effect, the active ester curing agent (B1) is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 2 parts by mass or more, with respect to 100 parts by mass of the high dielectric constant filler (C) described later. It can be contained in an amount of 20 parts by mass or less, more preferably 3 parts by mass or more and 15 parts by mass or less.
 なお、本出願人は、特開2020-90615号公報に記載のように、本発明とは異なる半導体封止用途において、エポキシ樹脂と、所定の活性エステル硬化剤と、を含む樹脂組成物を開発している。本発明は、同公報記載の技術に対して、高誘電率充填剤を含有する点で相違している。また、高誘電率充填剤を含有するため、活性エステル硬化剤とエポキシ樹脂の組み合わせによる作用効果も、高誘電率を有する点、さらに高周波帯において高誘電率および低誘電正接に優れる点で相違している。 In addition, as described in JP-A-2020-90615, the present applicant has developed a resin composition containing an epoxy resin and a predetermined active ester curing agent for semiconductor sealing applications different from the present invention. is doing. The present invention differs from the technique described in the publication in that it contains a high dielectric constant filler. In addition, since it contains a high dielectric constant filler, the effect of the combination of the active ester curing agent and the epoxy resin is also different in that it has a high dielectric constant and is excellent in high dielectric constant and low dielectric loss tangent in the high frequency band. ing.
(フェノール硬化剤(B2))
 フェノール硬化剤(B2)としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミンやベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
(Phenolic curing agent (B2))
Phenol curing agents (B2) include phenol novolak resins, cresol novolac resins, aromatic hydrocarbon formaldehyde resin-modified phenol resins, dicyclopentadiene phenol addition type resins, phenol aralkyl resins, naphthol aralkyl resins, trimethylolmethane resins, tetraphenylene resins. Roll ethane resin, naphthol novolac resin, naphthol-phenol co-condensed novolac resin, naphthol-cresol co-condensed novolac resin, biphenyl-modified phenol resin (polyhydric phenol compound in which phenol nucleus is linked by bismethylene group), biphenyl-modified naphthol resin (bismethylene polyhydric phenol compounds such as polyhydric naphthol compounds in which phenol nuclei are linked by groups) and aminotriazine-modified phenol resins (polyhydric phenol compounds in which phenol nuclei are linked by melamine, benzoguanamine, etc.).
 フェノール硬化剤(B2)の配合量は、エポキシ樹脂(A1)に対して、好ましくは、20質量%以上70質量%以下の量である。上記範囲の量で硬化剤を使用することにより、優れた硬化性を有する樹脂組成物が得られる。 The blending amount of the phenol curing agent (B2) is preferably 20% by mass or more and 70% by mass or less with respect to the epoxy resin (A1). By using the curing agent in an amount within the above range, a resin composition having excellent curability can be obtained.
 硬化剤(B)が活性エステル硬化剤(B1)およびフェノール硬化剤(B2)を含む場合、活性エステル硬化剤aに対するフェノール硬化剤bの含有量の比(b(質量部)/a(質量部))は、好ましくは0.5以上8以下、より好ましくは1以上5以下、さらに好ましくは1.5以上3以下とすることができる。
 活性エステル硬化剤(B1)およびフェノール硬化剤(B2)を上記の比で含むことにより、得られる硬化物はより優れた誘電特性を有することができ、低誘電正接にさらに優れる。
When the curing agent (B) contains the active ester curing agent (B1) and the phenolic curing agent (B2), the ratio of the content of the phenolic curing agent b to the active ester curing agent a (b (parts by mass) / a (parts by mass )) can be preferably 0.5 or more and 8 or less, more preferably 1 or more and 5 or less, and still more preferably 1.5 or more and 3 or less.
By containing the active ester curing agent (B1) and the phenolic curing agent (B2) in the above ratio, the obtained cured product can have better dielectric properties and is further excellent in low dielectric loss tangent.
 本実施形態の組成物において、活性エステル硬化剤(B1)および/またはフェノール硬化剤(B2)を含む硬化剤(B)は、熱硬化性樹脂組成物全体に対して、好ましくは0.2質量%以上15質量%以下、より好ましくは0.5質量%以上10質量%以下、さらに好ましくは1.0質量%以上7質量%以下の量で用いられる。
 硬化剤(B)を上記範囲で含むことにより、得られる硬化物はより優れた誘電特性を有することができ、低誘電正接にさらに優れる。
In the composition of the present embodiment, the curing agent (B) containing the active ester curing agent (B1) and/or the phenolic curing agent (B2) is preferably 0.2 mass with respect to the entire thermosetting resin composition. % or more and 15 mass % or less, more preferably 0.5 mass % or more and 10 mass % or less, and still more preferably 1.0 mass % or more and 7 mass % or less.
By including the curing agent (B) in the above range, the obtained cured product can have more excellent dielectric properties and is further excellent in low dielectric loss tangent.
[高誘電率充填剤(C)]
 本実施形態において、高誘電率充填剤(C)としては、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸マグネシウム、ジルコン酸マグネシウム、ジルコン酸ストロンチウム、チタン酸ビスマス、チタン酸ジルコニウム、チタン酸亜鉛、ジルコン酸バリウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸鉛、ニオブ酸マグネシウム酸バリウム、ジルコン酸カルシウム等を挙げることができ、これらから選択される少なくとも1種を含むことができる。
 本発明の効果の観点から、高誘電率充填剤(C)としては、チタン酸カルシウム、チタン酸ストロンチウム、およびチタン酸マグネシウムから選択される少なくとも1種であることが好ましく、チタン酸カルシウム、チタン酸マグネシウムがさらに好ましい。
[High dielectric constant filler (C)]
In the present embodiment, the high dielectric constant filler (C) includes calcium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, and zirconate. Barium, calcium zirconate titanate, lead zirconate titanate, barium magnesium niobate, calcium zirconate and the like can be mentioned, and at least one selected from these can be included.
From the viewpoint of the effects of the present invention, the high dielectric constant filler (C) is preferably at least one selected from calcium titanate, strontium titanate, and magnesium titanate. Magnesium is more preferred.
 高誘電率充填剤(C)の形状は、粒状、不定形、フレーク状などであり、これらの形状の高誘電率充填剤(C)を任意の比率で用いることができる。高誘電率充填剤(C)の平均粒子径は、本発明の効果の観点や流動性・充填性の観点から、好ましくは0.1μm以上50μm以下、より好ましくは0.3μm以上20μm以下、さらに好ましくは0.5μm以上10μm以下である。 The shape of the high dielectric constant filler (C) is granular, amorphous, flaky, etc., and these shapes of the high dielectric constant filler (C) can be used at any ratio. The average particle size of the high dielectric constant filler (C) is preferably 0.1 μm or more and 50 μm or less, more preferably 0.3 μm or more and 20 μm or less, and further preferably It is preferably 0.5 μm or more and 10 μm or less.
 高誘電率充填剤(C)の配合量は、熱硬化性樹脂組成物100質量%中に、好ましくは40質量%以上、より好ましくは50質量%以上、さらに好ましくは60質量%以上の範囲である。上限値は80質量%以程度である。
 高誘電率充填剤(C)の添加量が上記範囲であると、得られる硬化物の高誘電率および低誘電正接により優れるとともに、成形品の製造にも優れる。
The amount of the high dielectric constant filler (C) is preferably 40% by mass or more, more preferably 50% by mass or more, and still more preferably 60% by mass or more in 100% by mass of the thermosetting resin composition. be. The upper limit is about 80% by mass or more.
When the amount of the high-dielectric-constant filler (C) is within the above range, the resulting cured product is excellent in high dielectric constant and low dielectric loss tangent, and is also excellent in production of molded articles.
[硬化触媒(D)]
 本実施形態の熱硬化性樹脂組成物は、さらに硬化触媒(D)を含むことができる。
 硬化触媒(D)は、硬化促進剤などと呼ばれる場合もある。硬化触媒(D)は、熱硬化性樹脂の硬化反応を早めるものである限り特に限定されず、公知の硬化触媒を用いることができる。
 硬化触媒(D)の好ましい具体例としては、上述の第1の実施形態における硬化触媒(D)に記載したものが挙げられ、同様に製造することができる。
[Curing catalyst (D)]
The thermosetting resin composition of this embodiment can further contain a curing catalyst (D).
The curing catalyst (D) is sometimes called a curing accelerator or the like. The curing catalyst (D) is not particularly limited as long as it accelerates the curing reaction of the thermosetting resin, and known curing catalysts can be used.
Preferred specific examples of the curing catalyst (D) include those described for the curing catalyst (D) in the first embodiment, and can be produced in the same manner.
 本実施形態において、一般式(1)で表される活性エステル硬化剤と潜伏性を有する硬化触媒とを組み合わせて用いることにより、成形性により優れるとともに、曲げ強度などの機械強度により優れた磁性材料を得ることができる。 In the present embodiment, by using a combination of an active ester curing agent represented by the general formula (1) and a latent curing catalyst, a magnetic material having excellent moldability and mechanical strength such as bending strength is obtained. can be obtained.
 硬化触媒(D)を用いる場合、その含有量は、樹脂組成物全体に対して、好ましくは0.01~1質量%、より好ましくは0.02~0.8質量%である。このような数値範囲とすることにより、他の性能を過度に悪くすることなく、十分に硬化促進効果が得られる。 When using the curing catalyst (D), its content is preferably 0.01 to 1% by mass, more preferably 0.02 to 0.8% by mass, relative to the entire resin composition. By setting it to such a numerical range, a sufficient curing acceleration effect can be obtained without excessively deteriorating other performances.
[無機充填剤]
 本実施形態の熱硬化性樹脂組成物は、さらに、吸湿性低減、線膨張係数低減、熱伝導性向上および強度向上のために、高誘電率充填剤(C)以外に無機充填剤を含むことができる。
[Inorganic filler]
The thermosetting resin composition of the present embodiment further contains an inorganic filler in addition to the high dielectric constant filler (C) in order to reduce hygroscopicity, reduce the coefficient of linear expansion, improve thermal conductivity and improve strength. can be done.
 無機充填剤としては、溶融シリカ、結晶シリカ、アルミナ、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、またはこれらを球形化したビーズ、ガラス繊維などが挙げられる。これらの無機充填材は単独で用いても2種以上を組み合わせて用いてもよい。上記の無機充填材の中で、線膨張係数低減の観点からは溶融シリカが、高熱伝導性の観点からはアルミナが好ましく、充填材形状は成形時の流動性および金型摩耗性の点から球形が好ましい。 Inorganic fillers include fused silica, crystalline silica, alumina, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, Examples include powders of mullite, titania, etc., beads obtained by spheroidizing these powders, glass fibers, and the like. These inorganic fillers may be used alone or in combination of two or more. Among the above inorganic fillers, fused silica is preferable from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferable from the viewpoint of high thermal conductivity. is preferred.
 高誘電率充填剤(C)以外の無機充填材の配合量は、成形性、熱膨張性の低減、および強度向上の観点から、熱硬化性樹脂組成物全体に対して、好ましくは15質量%以上、60質量%以下、より好ましくは20質量%以上、50質量%以下の範囲とすることができる。上記範囲であれば、熱膨張性低減および成形性に優れる。 The amount of the inorganic filler other than the high dielectric constant filler (C) is preferably 15% by mass with respect to the entire thermosetting resin composition from the viewpoint of moldability, reduction of thermal expansion, and improvement of strength. Above, 60% by mass or less, more preferably 20% by mass or more and 50% by mass or less. If it is the said range, it will be excellent in thermal-expansion reduction and moldability.
[その他の成分]
 本実施形態の熱硬化性樹脂組成物は、上記成分に加え、必要に応じて、シランカップリング剤、離型剤、着色剤、分散剤、低応力化剤等の種々の成分を含むことができる。
[Other ingredients]
In addition to the above components, the thermosetting resin composition of the present embodiment may optionally contain various components such as a silane coupling agent, a release agent, a colorant, a dispersant, and a stress reducing agent. can.
[熱硬化性樹脂組成物]
 本実施形態の熱硬化性樹脂組成物は、下記エポキシ樹脂(A1)と、下記硬化剤(B)と、下記高誘電率充填剤(C)と、を組み合わせて含むことができる。
(エポキシ樹脂(A1))
 ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、およびナフトールアラルキル型エポキシ樹脂、からなる群より選択される少なくとも1種を含む。
 好ましくは、ジシクロペンタジエン型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂からなる群より選択される少なくとも1種を含む。
 さらに好ましくは、ナフトールアラルキル型エポキシ樹脂である。
[Thermosetting resin composition]
The thermosetting resin composition of the present embodiment can contain the following epoxy resin (A1), the following curing agent (B), and the following high dielectric constant filler (C) in combination.
(Epoxy resin (A1))
At least one selected from the group consisting of bisphenol A type epoxy resins, bisphenol F type epoxy resins, naphthalene type epoxy resins, dicyclopentadiene type epoxy resins, glycidylamine type epoxy resins, and naphthol aralkyl type epoxy resins.
Preferably, it contains at least one selected from the group consisting of dicyclopentadiene type epoxy resins and naphthol aralkyl type epoxy resins.
Naphthol aralkyl type epoxy resins are more preferred.
(硬化剤(B))
 活性エステル系硬化剤(B1)および/またはフェノール系硬化剤(B2)を含む。
 好ましくは活性エステル系硬化剤(B1)を含む。
(活性エステル系硬化剤(B1))
 ジシクロペンタジエン型ジフェノール構造を含む活性エステル系硬化剤、ナフタレン構造を含む活性エステル系硬化剤、フェノールノボラックのアセチル化物を含む活性エステル系硬化剤、およびフェノールノボラックのベンゾイル化物を含む活性エステル系硬化剤から選択される少なくとも1種を含む。
 好ましくは、ナフタレン構造を含む活性エステル系硬化剤、およびジシクロペンタジエン型ジフェノール構造を含む活性エステル系硬化剤から選択される少なくとも1種を含む。
 さらに好ましくは、前記一般式(1)で表される構造を備える活性エステル系硬化剤である。
(Curing agent (B))
Contains an active ester curing agent (B1) and/or a phenolic curing agent (B2).
It preferably contains an active ester curing agent (B1).
(Active ester curing agent (B1))
Active ester curing agent containing dicyclopentadiene type diphenol structure, active ester curing agent containing naphthalene structure, active ester curing agent containing acetylated phenol novolac, and active ester curing agent containing benzoylated phenol novolac at least one selected from agents.
Preferably, at least one selected from an active ester curing agent containing a naphthalene structure and an active ester curing agent containing a dicyclopentadiene type diphenol structure is included.
More preferably, it is an active ester curing agent having a structure represented by the general formula (1).
(高誘電率充填剤(C))
 チタン酸カルシウム、チタン酸ストロンチウム、チタン酸マグネシウム、ジルコン酸マグネシウム、ジルコン酸ストロンチウム、チタン酸ビスマス、チタン酸ジルコニウム、チタン酸亜鉛、ジルコン酸バリウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸鉛、ニオブ酸マグネシウム酸バリウム、およびジルコン酸カルシウムから選択される少なくとも1種を含む。
 好ましくは、チタン酸カルシウム、チタン酸ストロンチウム、およびチタン酸マグネシウムから選択される少なくとも1種を含む。
 さらに好ましくは、チタン酸カルシウム、チタン酸マグネシウムから選択される少なくとも1種を含む。
 なお、上述のエポキシ樹脂(A1)と、活性エステル系硬化剤(B1)および/またはフェノール系硬化剤(B2)を含む硬化剤(B)と、高誘電率充填剤(C)とは、各々の例示を任意に組み合わせることができる。
(High dielectric constant filler (C))
Calcium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, barium zirconate, calcium zirconate titanate, lead zirconate titanate, niobate It contains at least one selected from barium magnesiumate and calcium zirconate.
Preferably, it contains at least one selected from calcium titanate, strontium titanate, and magnesium titanate.
More preferably, it contains at least one selected from calcium titanate and magnesium titanate.
The epoxy resin (A1), the curing agent (B) containing the active ester curing agent (B1) and/or the phenolic curing agent (B2), and the high dielectric constant filler (C) are each can be combined arbitrarily.
 さらに、本実施形態の熱硬化性樹脂組成物は、
エポキシ樹脂(A1)を、当該組成物100質量%中に、好ましくは5質量%以上20質量%以下、より好ましくは10質量%以上15質量%以下の量で含むことができ、
硬化剤(B)を、当該組成物100質量%中に、好ましくは0.2質量%以上15質量%以下、より好ましくは0.5質量%以上10質量%以下、さらに好ましくは1.0質量%以上7質量%以下の量で含むことができ、
高誘電率充填剤(C)を、当該組成物100質量%中に、好ましくは40質量%以上、より好ましくは50質量%以上、さらに好ましくは60質量%以上含むことができ。上限値は80質量%である。
Furthermore, the thermosetting resin composition of the present embodiment is
The epoxy resin (A1) can be contained in an amount of preferably 5% by mass or more and 20% by mass or less, more preferably 10% by mass or more and 15% by mass or less, based on 100% by mass of the composition,
Curing agent (B) in 100% by mass of the composition, preferably 0.2% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more and 10% by mass or less, still more preferably 1.0% by mass % or more and 7% by mass or less,
The high dielectric constant filler (C) can be contained in 100% by mass of the composition in an amount of preferably 40% by mass or more, more preferably 50% by mass or more, and even more preferably 60% by mass or more. The upper limit is 80% by mass.
 本実施形態においては、上述のエポキシ樹脂(A1)と、活性エステル系硬化剤(B1)を含む硬化剤(B)と、高誘電率充填剤(C)と、を組み合わせて含むことにより、高誘電率および低誘電正接により優れた誘電体基板が得られる熱硬化性樹脂組成物を提供することができる。 In the present embodiment, by including the epoxy resin (A1), the curing agent (B) containing the active ester curing agent (B1), and the high dielectric constant filler (C) in combination, It is possible to provide a thermosetting resin composition that gives a dielectric substrate excellent in dielectric constant and low dielectric loss tangent.
 本実施形態の熱硬化性樹脂組成物は、上述の各成分を均一に混合することにより製造できる。製造方法としては、所定の配合量の原材料をミキサー等によって十分混合した後、ミキシングロール、ニーダ、押出機等によって溶融混練した後、冷却、粉砕する方法を挙げることができる。得られた熱硬化性樹脂組成物は、必要に応じて、成形条件に合うような寸法および質量でタブレット化してもよい。 The thermosetting resin composition of this embodiment can be produced by uniformly mixing the components described above. Examples of the production method include a method of sufficiently mixing raw materials in a predetermined amount with a mixer or the like, melt-kneading the mixture with a mixing roll, kneader, extruder or the like, and then cooling and pulverizing the mixture. The resulting thermosetting resin composition may, if desired, be tableted to a size and mass that are suitable for molding conditions.
 本実施形態の熱硬化性樹脂組成物は、スパイラルフローの流動長が50cm以上、好ましくは55cm以上、さらに好ましくは60cm以上である。したがって、本実施形態の熱硬化性樹脂組成物は、成形性に優れる。 The thermosetting resin composition of the present embodiment has a spiral flow length of 50 cm or more, preferably 55 cm or more, and more preferably 60 cm or more. Therefore, the thermosetting resin composition of this embodiment has excellent moldability.
 スパイラルフロー試験は、たとえば低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて、EMMI-1-66に準じたスパイラルフロー測定用の金型に金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で樹脂成形材料を注入し、流動長を測定することにより行うことができる。 In the spiral flow test, for example, using a low-pressure transfer molding machine ("KTS-15" manufactured by Kotaki Seiki Co., Ltd.), a mold temperature of 175 ° C. is injected into a mold for spiral flow measurement according to EMMI-1-66. This can be done by injecting the resin molding material under conditions of a pressure of 6.9 MPa and a curing time of 120 seconds and measuring the flow length.
 また、本実施形態の熱硬化性樹脂組成物は、下記条件で測定された矩形圧が0.1MPa以上、好ましくは0.15MPa以上、さらに好ましくは0.20MPa以上である。
 矩形圧は、溶融粘度のパラメータであり、数値が小さい方が、溶融粘度が低い。本実施形態の熱硬化性樹脂組成物は、矩形圧が上記範囲であることにより、成形時における金型充填性に優れる。
In addition, the thermosetting resin composition of the present embodiment has a rectangular pressure of 0.1 MPa or more, preferably 0.15 MPa or more, more preferably 0.20 MPa or more, measured under the following conditions.
Rectangular pressure is a parameter of melt viscosity, and the smaller the numerical value, the lower the melt viscosity. The thermosetting resin composition of the present embodiment has a rectangular pressure within the above range, and is therefore excellent in mold filling properties during molding.
(条件)
 低圧トランスファー成形機を用いて、金型温度175℃、注入速度177mm/秒の条件にて、幅13mm、厚さ1mm、長さ175mmの矩形状の流路に熱硬化性樹脂組成物を注入し、流路の上流先端から25mmの位置に埋設した圧力センサーにて圧力の経時変化を測定し、前記熱硬化性樹脂組成物の流動時における最低圧力を算出して、この最低圧力を矩形圧とする。
(conditions)
Using a low-pressure transfer molding machine, the thermosetting resin composition was injected into a rectangular flow path with a width of 13 mm, a thickness of 1 mm, and a length of 175 mm under conditions of a mold temperature of 175°C and an injection speed of 177 mm 3 /sec. Then, the change in pressure over time is measured with a pressure sensor embedded at a position 25 mm from the upstream end of the flow channel, the minimum pressure at the time of flow of the thermosetting resin composition is calculated, and this minimum pressure is measured as a rectangular pressure. and
 本実施形態の熱硬化性樹脂組成物は、200℃で90分加熱して硬化させた硬化物において、以下の誘電率および誘電正接(tanδ)を有する。
 空洞共振器法による25GHzでの誘電率が10以上、好ましくは12以上、より好ましくは13以上、特に好ましくは14以上とすることができる。
 空洞共振器法による25GHzでの誘電正接(tanδ)が0.04以下、好ましくは0.03以下、より好ましくは0.02以下、特に好ましくは0.015以下とすることができる。
The thermosetting resin composition of the present embodiment has the following dielectric constant and dielectric loss tangent (tan δ) in a cured product obtained by heating at 200° C. for 90 minutes.
The dielectric constant at 25 GHz by the cavity resonator method can be 10 or more, preferably 12 or more, more preferably 13 or more, and particularly preferably 14 or more.
The dielectric loss tangent (tan δ) at 25 GHz by the cavity resonator method can be 0.04 or less, preferably 0.03 or less, more preferably 0.02 or less, and particularly preferably 0.015 or less.
 本実施形態の熱硬化性樹脂組成物から得られる硬化物は、高周波帯において高誘電率および低誘電正接に優れることから、高周波化ひいては回路の短縮化および通信機器等の小型化を図ることができ、マイクロストリップアンテナを形成する材料、誘電体導波路を形成する材料、さらに電磁波吸収体を形成する材料等として好適に用いることができる。 Since the cured product obtained from the thermosetting resin composition of the present embodiment is excellent in high dielectric constant and low dielectric loss tangent in the high frequency band, it is possible to increase the frequency and shorten the circuit and reduce the size of communication equipment. It can be suitably used as a material for forming a microstrip antenna, a material for forming a dielectric waveguide, a material for forming an electromagnetic wave absorber, and the like.
<第4の実施形態>
 本実施形態の熱硬化性樹脂組成物は、エポキシ樹脂(A1)と、硬化剤(B)と、高誘電率充填剤(C)と、を含む。
 以下、各成分について説明する
<Fourth Embodiment>
The thermosetting resin composition of this embodiment contains an epoxy resin (A1), a curing agent (B), and a high dielectric constant filler (C).
Each component is described below.
[エポキシ樹脂(A1)]
 本実施形態において、エポキシ樹脂(A1)はナフトールアラルキル型エポキシ樹脂を含む。
 前記ナフトールアラルキル型エポキシ樹脂としては、下記一般式(a)で表すエポキシ樹脂を挙げることができる。
[Epoxy resin (A1)]
In this embodiment, the epoxy resin (A1) contains a naphthol aralkyl type epoxy resin.
Examples of the naphthol aralkyl type epoxy resin include epoxy resins represented by the following general formula (a).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 一般式(a)中、Rは各々独立に、水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を示し、好ましくは水素原子または炭素数1~3のアルキル基、より好ましくは水素原子である。nは1~10の整数であり、好ましくは1~8の整数である。 In general formula (a), each R independently represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, A hydrogen atom is more preferred. n is an integer of 1-10, preferably an integer of 1-8.
 前記ナフトールアラルキル型エポキシ樹脂のエポキシ当量は、本発明の効果の観点から、好ましくは250g/eq以上400g/eq以下、より好ましくは260g/eq以上380g/eq以下、さらに好ましくは280g/eq以上370g/eq以下である。 From the viewpoint of the effect of the present invention, the epoxy equivalent of the naphthol aralkyl epoxy resin is preferably 250 g/eq to 400 g/eq, more preferably 260 g/eq to 380 g/eq, and still more preferably 280 g/eq to 370 g. /eq or less.
 前記ナフトールアラルキル型エポキシ樹脂の軟化点は、好ましくは40℃以上150℃以下、より好ましくは50℃以上120℃以下、さらに好ましくは60℃以上100℃以下である。 The softening point of the naphthol aralkyl epoxy resin is preferably 40°C or higher and 150°C or lower, more preferably 50°C or higher and 120°C or lower, and still more preferably 60°C or higher and 100°C or lower.
  前記ナフトールアラルキル型エポキシ樹脂の150℃における溶融粘度は、好ましくは0.01Pa・s以上5Pa・s以下、より好ましくは0.02Pa・s以上3Pa・s以下、さらに好ましくは0.05Pa・s以上1Pa・s以下である。 The melt viscosity of the naphthol aralkyl epoxy resin at 150° C. is preferably 0.01 Pa s or more and 5 Pa s or less, more preferably 0.02 Pa s or more and 3 Pa s or less, and still more preferably 0.05 Pa s or more. It is 1 Pa·s or less.
 本実施形態のナフトールアラルキル型エポキシ樹脂の重量平均分子量Mwは、好ましくは100以上5000以下、より好ましくは300以上3000以下、さらに好ましくは500以上2000以下である。 The weight average molecular weight Mw of the naphthol aralkyl epoxy resin of the present embodiment is preferably 100 to 5000, more preferably 300 to 3000, and even more preferably 500 to 2000.
 また、ナフトールアラルキル型エポキシ樹脂の分散度(重量平均分子量Mw/数平均分子量Mn)は、好ましくは1以上4以下、より好ましくは1.1以上3以下、さらに好ましくは1.2以上2以下である。分散度を適切に調整することで、エポキシ樹脂の物性を均質にすることができ、好ましい。 Further, the degree of dispersion (weight average molecular weight Mw/number average molecular weight Mn) of the naphthol aralkyl epoxy resin is preferably 1 or more and 4 or less, more preferably 1.1 or more and 3 or less, and still more preferably 1.2 or more and 2 or less. be. By appropriately adjusting the degree of dispersion, the physical properties of the epoxy resin can be made uniform, which is preferable.
 重量平均分子量(Mw)、数平均分子量(Mn)、および分子量分布(Mw/Mn)は、例えば、GPC測定により得られる標準ポリスチレン(PS)の検量線から求めた、ポリスチレン換算値を用いる。GPC測定の測定条件は、例えば、以下の通りである。
 東ソー社製ゲルパーミエーションクロマトグラフィー装置HLC-8320GPC
 カラム:東ソー社製TSK-GEL Supermultipore HZ-M
 検出器:液体クロマトグラム用RI検出器
 測定温度:40℃
 溶剤:THF
 試料濃度:2.0mg/ミリリットル
The weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw/Mn) are, for example, polystyrene conversion values obtained from a standard polystyrene (PS) calibration curve obtained by GPC measurement. Measurement conditions for GPC measurement are, for example, as follows.
Gel permeation chromatography device HLC-8320GPC manufactured by Tosoh Corporation
Column: TSK-GEL Supermultipore HZ-M manufactured by Tosoh Corporation
Detector: RI detector for liquid chromatogram Measurement temperature: 40°C
Solvent: THF
Sample concentration: 2.0 mg/ml
 本実施形態のエポキシ樹脂(A1)はナフトールアラルキル型エポキシ樹脂以外に、本発明の効果を損なわない範囲でその他のエポキシ樹脂を含むことができる。
 その他のエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂等を挙げることができ、フェノールアラルキル型エポキシ樹脂が好ましい。
The epoxy resin (A1) of the present embodiment can contain other epoxy resins in addition to the naphthol aralkyl type epoxy resin within a range that does not impair the effects of the present invention.
Other epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol aralkyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, glycidylamine type epoxy resin and the like. Aralkyl type epoxy resins are preferred.
 エポキシ樹脂(A1)がナフトールアラルキル型エポキシ樹脂とその他のエポキシ樹脂を含む場合、エポキシ樹脂(A1)(100質量%)中のナフトールアラルキル型エポキシ樹脂の含有量は、好ましくは2質量%以上80質量%以下、より好ましくは5質量%以上50質量%以下、さらに好ましくは10質量%以上40質量%以下であり、特に好ましくは12質量%以上30質量%以下である。
 本実施形態において、エポキシ樹脂(A1)はナフトールアラルキル型エポキシ樹脂のみを含んでいてもよい。
When the epoxy resin (A1) contains a naphthol aralkyl epoxy resin and other epoxy resins, the content of the naphthol aralkyl epoxy resin in the epoxy resin (A1) (100% by mass) is preferably 2% by mass or more and 80% by mass. %, more preferably 5% by mass or more and 50% by mass or less, still more preferably 10% by mass or more and 40% by mass or less, and particularly preferably 12% by mass or more and 30% by mass or less.
In this embodiment, the epoxy resin (A1) may contain only a naphthol aralkyl epoxy resin.
 本実施形態の熱硬化性樹脂組成物(100質量%)は、本発明の効果の観点から、エポキシ樹脂(A1)を好ましくは2質量%以上20質量%以下、より好ましくは3質量%以上15質量%以下、さらに好ましくは5質量%以上12質量%以下の量で含むことができる。 From the viewpoint of the effect of the present invention, the thermosetting resin composition (100% by mass) of the present embodiment preferably contains the epoxy resin (A1) in an amount of 2% by mass or more and 20% by mass or less, more preferably 3% by mass or more and 15% by mass. % by mass or less, more preferably 5% by mass or more and 12% by mass or less.
[硬化剤(B)]
 本実施形態において、硬化剤(B)は、活性エステル硬化剤(B1)および/またはフェノール硬化剤(B2)を含む。
[Curing agent (B)]
In this embodiment, the curing agent (B) includes an active ester curing agent (B1) and/or a phenolic curing agent (B2).
(活性エステル硬化剤(B1))
 活性エステル硬化剤(B1)としては、1分子中に1個以上の活性エステル基を有する化合物を用いることができる。中でも、活性エステル硬化剤としては、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の、反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましい。
 本実施形態においては、前述の特定のエポキシ樹脂と、硬化剤として活性エステル硬化剤(B1)とを組み合わせて含むことにより、高誘電率および低誘電正接に優れた誘電体基板を得ることができる。
(Active ester curing agent (B1))
A compound having one or more active ester groups in one molecule can be used as the active ester curing agent (B1). Among them, active ester curing agents include phenol esters, thiophenol esters, N-hydroxyamine esters, esters of heterocyclic hydroxy compounds, etc., which have two or more ester groups with high reaction activity per molecule. Compounds are preferred.
In the present embodiment, a dielectric substrate excellent in high dielectric constant and low dielectric loss tangent can be obtained by including the specific epoxy resin described above in combination with an active ester curing agent (B1) as a curing agent. .
 活性エステル硬化剤(B1)の好ましい具体例としては、上述の第1の実施形態における活性エステル硬化剤(B1)に記載したものが挙げられ、同様に製造することができる。 Preferred specific examples of the active ester curing agent (B1) include those described for the active ester curing agent (B1) in the first embodiment, and can be produced in the same manner.
 また、活性エステル硬化剤(B1)の官能基当量は、樹脂構造中に有するアリールカルボニルオキシ基およびフェノール性水酸基の合計を樹脂の官能基数とした場合、硬化性に優れ、誘電率及び誘電正接の低い硬化物が得られることから、200g/eq以上230g/eq以下の範囲であることが好ましく、210g/eq以上220g/eq以下の範囲であることがより好ましい。 In addition, the functional group equivalent of the active ester curing agent (B1) is excellent in curability when the sum of the arylcarbonyloxy groups and phenolic hydroxyl groups in the resin structure is taken as the total number of functional groups in the resin, and the dielectric constant and dielectric loss tangent are good. It is preferably in the range of 200 g/eq or more and 230 g/eq or less, more preferably 210 g/eq or more and 220 g/eq or less, since a low cured product can be obtained.
 本実施形態の熱硬化性樹脂組成物において、活性エステル硬化剤(B1)とエポキシ樹脂(A1)との配合量は、硬化性に優れ、誘電率及び誘電正接の低い硬化物が得られることから、活性エステル硬化剤(B1)中の活性基の合計1当量に対して、エポキシ樹脂(A1)中のエポキシ基が0.8~1.2当量となる割合であることが好ましい。ここで、活性エステル硬化剤中の活性基とは、樹脂構造中に有するアリールカルボニルオキシ基及びフェノール性水酸基を指す。 In the thermosetting resin composition of the present embodiment, the blending amount of the active ester curing agent (B1) and the epoxy resin (A1) is excellent in curability, and a cured product with a low dielectric constant and dielectric loss tangent can be obtained. It is preferable that the ratio of the epoxy groups in the epoxy resin (A1) is 0.8 to 1.2 equivalents per equivalent of the total active groups in the active ester curing agent (B1). Here, the active group in the active ester curing agent refers to an arylcarbonyloxy group and a phenolic hydroxyl group in the resin structure.
 本実施形態の組成物において、活性エステル硬化剤(B1)は、熱硬化性樹脂組成物全体に対して、好ましくは0.2質量%以上15質量%以下、より好ましくは0.5質量%以上10質量%以下、さらに好ましくは1.0質量%以上7質量%以下の量で用いられる。
 特定の活性エステル硬化剤を上記範囲で含むことにより、得られる硬化物はより優れた誘電特性を有することができ、低誘電正接にさらに優れる。
In the composition of the present embodiment, the active ester curing agent (B1) is preferably 0.2% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more, relative to the entire thermosetting resin composition. It is used in an amount of 10 mass % or less, more preferably 1.0 mass % or more and 7 mass % or less.
By containing the specific active ester curing agent in the above range, the obtained cured product can have more excellent dielectric properties and is further excellent in low dielectric loss tangent.
 本実施形態の樹脂組成物は、活性エステル硬化剤(B1)と、後述の高誘電率充填剤(C)とを組み合わせて用いることにより、高誘電率および低誘電正接により優れ、高周波帯においてもこれらの効果に優れる。
 上記効果の観点から、活性エステル硬化剤(B1)は、後述の高誘電率充填剤100質量部に対して、好ましくは1質量部以上30質量部以下、より好ましくは2質量部以上20質量部以下、さらに好ましくは3質量部以上15質量部以下となるように含むことができる。
The resin composition of the present embodiment is excellent in high dielectric constant and low dielectric loss tangent by using a combination of the active ester curing agent (B1) and the high dielectric constant filler (C) described later, even in a high frequency band. Excellent in these effects.
From the viewpoint of the above effect, the active ester curing agent (B1) is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 2 parts by mass or more and 20 parts by mass, with respect to 100 parts by mass of the high dielectric constant filler described later. It can be contained in an amount of 3 parts by mass or more and 15 parts by mass or less, more preferably 3 parts by mass or more and 15 parts by mass or less.
 なお、本出願人は、特開2020-90615号公報に記載のように、本発明とは異なる半導体封止用途において、エポキシ樹脂と、所定の活性エステル硬化剤と、を含む樹脂組成物を開発している。本発明は、同公報記載の技術に対して、高誘電率充填剤を含有する点で相違している。また、高誘電率充填剤を含有するため、活性エステル硬化剤とエポキシ樹脂の組み合わせによる作用効果も、高誘電率を有する点、さらに高周波帯において高誘電率および低誘電正接に優れる点で相違している。 In addition, as described in JP-A-2020-90615, the present applicant has developed a resin composition containing an epoxy resin and a predetermined active ester curing agent for semiconductor sealing applications different from the present invention. is doing. The present invention differs from the technique described in the publication in that it contains a high dielectric constant filler. In addition, since it contains a high dielectric constant filler, the effect of the combination of the active ester curing agent and the epoxy resin is also different in that it has a high dielectric constant and is excellent in high dielectric constant and low dielectric loss tangent in the high frequency band. ing.
(フェノール硬化剤(B2))
 フェノール硬化剤としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミンやベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
(Phenolic curing agent (B2))
Phenol curing agents include phenol novolak resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin, naphthol aralkyl resin, trimethylolmethane resin, tetraphenylolethane resin. , naphthol novolac resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolac resin, biphenyl-modified phenol resin (polyhydric phenol compound with phenol nucleus linked by bismethylene group), biphenyl-modified naphthol resin (phenol Polyhydric phenol compounds such as polyhydric naphthol compounds with linked nuclei) and aminotriazine-modified phenolic resins (polyhydric phenol compounds with phenolic nuclei linked with melamine, benzoguanamine, etc.).
 フェノール硬化剤(B2)の配合量は、熱硬化性樹脂に対して、好ましくは、20質量%以上70質量%以下の量である。上記範囲の量で硬化剤を使用することにより、優れた硬化性を有する樹脂組成物が得られる。 The blending amount of the phenol curing agent (B2) is preferably 20% by mass or more and 70% by mass or less with respect to the thermosetting resin. By using the curing agent in an amount within the above range, a resin composition having excellent curability can be obtained.
 本実施形態の硬化剤(B)は、本発明の効果の観点から、活性エステル硬化剤(B1)であることが好ましい。 From the viewpoint of the effect of the present invention, the curing agent (B) of the present embodiment is preferably the active ester curing agent (B1).
[高誘電率充填剤(C)]
 本実施形態において、高誘電率充填剤(C)としては、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸マグネシウム、ジルコン酸マグネシウム、ジルコン酸ストロンチウム、チタン酸ビスマス、チタン酸ジルコニウム、チタン酸亜鉛、ジルコン酸バリウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸鉛、ニオブ酸マグネシウム酸バリウム、およびジルコン酸カルシウム等を挙げることができ、これらから選択される少なくとも1種を含むことができる。
 本発明の効果の観点から、高誘電率充填剤(C)としては、チタン酸カルシウム、チタン酸ストロンチウム、およびチタン酸マグネシウムから選択される少なくとも1種であることが好ましく、チタン酸カルシウムおよびチタン酸マグネシウムから選択される少なくとも1種であることがさらに好ましい。
[High dielectric constant filler (C)]
In the present embodiment, the high dielectric constant filler (C) includes calcium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, and zirconate. Barium, calcium zirconate titanate, lead zirconate titanate, barium magnesium niobate, calcium zirconate, and the like can be mentioned, and at least one selected from these can be included.
From the viewpoint of the effects of the present invention, the high dielectric constant filler (C) is preferably at least one selected from calcium titanate, strontium titanate, and magnesium titanate. More preferably, it is at least one selected from magnesium.
 高誘電率充填剤(C)の形状は、粒状、不定形、フレーク状などであり、これらの形状の高誘電率充填剤を任意の比率で用いることができる。高誘電率充填剤の平均粒子径は、本発明の効果の観点や流動性・充填性の観点から、好ましくは0.1μm以上50μm以下、より好ましくは0.3μm以上20μm以下、さらに好ましくは0.5μm以上10μm以下である。 The shape of the high dielectric constant filler (C) is granular, amorphous, flaky, etc., and high dielectric constant fillers of these shapes can be used at any ratio. The average particle size of the high dielectric constant filler is preferably 0.1 μm or more and 50 μm or less, more preferably 0.3 μm or more and 20 μm or less, still more preferably 0, from the viewpoint of the effects of the present invention and fluidity/fillability. .5 μm or more and 10 μm or less.
 高誘電率充填剤(C)の配合量は、熱硬化性樹脂組成物100質量%中に、好ましくは40質量%以上、より好ましくは50質量%以上、さらに好ましくは60質量%以上の範囲である。上限値は90質量%以程度である。
 高誘電率充填剤(C)の添加量が上記範囲であると、得られる硬化物の誘電率がより低くなるとともに、成形品の製造にも優れる。
The amount of the high dielectric constant filler (C) is preferably 40% by mass or more, more preferably 50% by mass or more, and still more preferably 60% by mass or more in 100% by mass of the thermosetting resin composition. be. The upper limit is about 90% by mass or more.
When the addition amount of the high dielectric constant filler (C) is within the above range, the dielectric constant of the resulting cured product is further lowered, and the production of molded articles is also excellent.
[硬化触媒(D)]
 本実施形態の熱硬化性樹脂組成物は、さらに硬化触媒(D)を含むことができる。
 硬化触媒(D)は、硬化促進剤などと呼ばれる場合もある。硬化触媒(D)は、熱硬化性樹脂の硬化反応を早めるものである限り特に限定されず、公知の硬化触媒を用いることができる。
 硬化触媒(D)の好ましい具体例としては、上述の第1の実施形態における硬化触媒(D)に記載したものが挙げられ、同様に製造することができる。
[Curing catalyst (D)]
The thermosetting resin composition of this embodiment can further contain a curing catalyst (D).
The curing catalyst (D) is sometimes called a curing accelerator or the like. The curing catalyst (D) is not particularly limited as long as it accelerates the curing reaction of the thermosetting resin, and known curing catalysts can be used.
Preferred specific examples of the curing catalyst (D) include those described for the curing catalyst (D) in the first embodiment, and can be produced in the same manner.
 本実施形態において、ナフトールアラルキル型エポキシ樹脂を含むエポキシ樹脂(A1)と潜伏性を有する硬化触媒とを組み合わせて用いることにより、成形性により優れるとともに、曲げ強度などの機械強度により優れた磁性材料を得ることができる。 In the present embodiment, by combining the epoxy resin (A1) containing a naphthol aralkyl epoxy resin and a latent curing catalyst, a magnetic material having excellent moldability and mechanical strength such as bending strength can be obtained. Obtainable.
 硬化触媒(D)を用いる場合、その含有量は、熱硬化性樹脂組成物100質量%に対して、好ましくは0.1~3質量%、より好ましくは0.5~2質量%である。このような数値範囲とすることにより、他の性能を過度に悪くすることなく、十分に硬化促進効果が得られる。 When using the curing catalyst (D), its content is preferably 0.1 to 3% by mass, more preferably 0.5 to 2% by mass, relative to 100% by mass of the thermosetting resin composition. By setting it to such a numerical range, a sufficient curing acceleration effect can be obtained without excessively deteriorating other performances.
[無機充填剤]
 本実施形態の熱硬化性樹脂組成物は、さらに、吸湿性低減、線膨張係数低減、熱伝導性向上および強度向上のために、高誘電率充填剤(C)以外に無機充填剤を含むことができる。
[Inorganic filler]
The thermosetting resin composition of the present embodiment further contains an inorganic filler in addition to the high dielectric constant filler (C) in order to reduce hygroscopicity, reduce the coefficient of linear expansion, improve thermal conductivity and improve strength. can be done.
 無機充填剤としては、溶融シリカ、結晶シリカ、アルミナ、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、またはこれらを球形化したビーズ、ガラス繊維などが挙げられる。これらの無機充填材は単独で用いても2種以上を組み合わせて用いてもよい。上記の無機充填材の中で、線膨張係数低減の観点からは溶融シリカが、高熱伝導性の観点からはアルミナが好ましく、充填材形状は成形時の流動性および金型摩耗性の点から球形が好ましい。 Inorganic fillers include fused silica, crystalline silica, alumina, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, Examples include powders of mullite, titania, etc., beads obtained by spheroidizing these powders, glass fibers, and the like. These inorganic fillers may be used alone or in combination of two or more. Among the above inorganic fillers, fused silica is preferable from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferable from the viewpoint of high thermal conductivity. is preferred.
 高誘電率充填剤以外の無機充填材の配合量は、成形性、熱膨張性の低減、および強度向上の観点から、熱硬化性樹脂組成物100質量%に対して、好ましくは3質量%以上、40質量%以下、より好ましくは5質量%以上、30質量%以下、さらに好ましくは10質量%以上、25質量%以下の範囲とすることができる。上記範囲であれば、熱膨張性低減および成形性に優れる。 The amount of the inorganic filler other than the high dielectric constant filler is preferably 3% by mass or more with respect to 100% by mass of the thermosetting resin composition, from the viewpoint of moldability, reduction in thermal expansion, and improvement in strength. , 40 mass % or less, more preferably 5 mass % or more and 30 mass % or less, and still more preferably 10 mass % or more and 25 mass % or less. If it is the said range, it will be excellent in thermal-expansion reduction and moldability.
[その他の成分]
 本実施形態の熱硬化性樹脂組成物は、上記成分に加え、必要に応じて、シランカップリング剤、離型剤、着色剤、分散剤、低応力化剤等の種々の成分を含むことができる。
[Other ingredients]
In addition to the above components, the thermosetting resin composition of the present embodiment may optionally contain various components such as a silane coupling agent, a release agent, a colorant, a dispersant, and a stress reducing agent. can.
 本実施形態の熱硬化性樹脂組成物は、エポキシ樹脂(A1)と、硬化剤(B)と、高誘電率充填剤(C)と、を含み、エポキシ樹脂(A1)がナフトールアラルキル型エポキシ樹脂を含む。
 このような成分を組み合わせて含む本実施形態の熱硬化性樹脂組成物は、低誘電正接等の誘電特性に優れた誘電体基板を提供することができ、さらに当該誘電体基板を備えるマイクロストリップアンテナを提供することができる。
The thermosetting resin composition of the present embodiment contains an epoxy resin (A1), a curing agent (B), and a high dielectric constant filler (C), and the epoxy resin (A1) is a naphthol aralkyl epoxy resin. including.
The thermosetting resin composition of the present embodiment, which contains such components in combination, can provide a dielectric substrate having excellent dielectric properties such as a low dielectric loss tangent, and a microstrip antenna comprising the dielectric substrate. can be provided.
 本実施形態の熱硬化性樹脂組成物は、
 エポキシ樹脂(A1)を、当該組成物100質量%中に、好ましくは2質量%以上20質量%以下、より好ましくは3質量%以上15質量%以下、さらに好ましくは5質量%以上12質量%以下の量で含むことができ、
 硬化剤(B)を、当該組成物100質量%中に、好ましくは0.2質量%以上15質量%以下、より好ましくは0.5質量%以上10質量%以下、さらに好ましくは1.0質量%以上7質量%以下の量で含むことができ、
 高誘電率充填剤(C)を、当該組成物の固形分100質量%中に、好ましくは40質量%以上、より好ましくは50質量%以上、さらに好ましくは60質量%以上含むことができ。上限値は90質量%である。
The thermosetting resin composition of this embodiment is
The epoxy resin (A1) in 100% by mass of the composition is preferably 2% by mass or more and 20% by mass or less, more preferably 3% by mass or more and 15% by mass or less, still more preferably 5% by mass or more and 12% by mass or less. can contain an amount of
Curing agent (B) in 100% by mass of the composition, preferably 0.2% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more and 10% by mass or less, still more preferably 1.0% by mass % or more and 7% by mass or less,
The high dielectric constant filler (C) can be contained in an amount of preferably 40% by mass or more, more preferably 50% by mass or more, and still more preferably 60% by mass or more based on 100% by mass of the solid content of the composition. The upper limit is 90% by mass.
 本実施形態においては、ナフトールアラルキル型エポキシ樹脂を含むエポキシ樹脂(A1)と、硬化剤(B)と、高誘電率充填剤(C)と、を組み合わせて含むことにより、高誘電率および低誘電正接により優れた誘電体基板が得られる熱硬化性樹脂組成物を提供することができる。 In the present embodiment, by including an epoxy resin (A1) containing a naphthol aralkyl epoxy resin, a curing agent (B), and a high dielectric constant filler (C) in combination, high dielectric constant and low dielectric constant It is possible to provide a thermosetting resin composition from which a dielectric substrate having excellent tangent can be obtained.
 本実施形態の熱硬化性樹脂組成物は、上述の各成分を均一に混合することにより製造できる。製造方法としては、所定の配合量の原材料をミキサー等によって十分混合した後、ミキシングロール、ニーダ、押出機等によって溶融混練した後、冷却、粉砕する方法を挙げることができる。得られた熱硬化性樹脂組成物は、必要に応じて、成形条件に合うような寸法および質量でタブレット化してもよい。 The thermosetting resin composition of this embodiment can be produced by uniformly mixing the components described above. Examples of the production method include a method of sufficiently mixing raw materials in a predetermined amount with a mixer or the like, melt-kneading the mixture with a mixing roll, kneader, extruder or the like, and then cooling and pulverizing the mixture. The resulting thermosetting resin composition may, if desired, be tableted to a size and mass that are suitable for molding conditions.
 本実施形態の熱硬化性樹脂組成物は、スパイラルフローの流動長が50cm以上、好ましくは55cm以上、さらに好ましくは60cm以上である。したがって、本実施形態の熱硬化性樹脂組成物は、成形性に優れる。 The thermosetting resin composition of the present embodiment has a spiral flow length of 50 cm or more, preferably 55 cm or more, and more preferably 60 cm or more. Therefore, the thermosetting resin composition of this embodiment has excellent moldability.
 スパイラルフロー試験は、たとえば低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて、EMMI-1-66に準じたスパイラルフロー測定用の金型に金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で樹脂成形材料を注入し、流動長を測定することにより行うことができる。 In the spiral flow test, for example, using a low-pressure transfer molding machine ("KTS-15" manufactured by Kotaki Seiki Co., Ltd.), a mold temperature of 175 ° C. is injected into a mold for spiral flow measurement according to EMMI-1-66. This can be done by injecting the resin molding material under conditions of a pressure of 6.9 MPa and a curing time of 120 seconds and measuring the flow length.
 本実施形態の熱硬化性樹脂組成物のゲルタイムは、40秒以上150秒以下であることが好ましく、50秒以上120秒以下がより好ましい。
 熱硬化性樹脂組成物のゲルタイムを上記下限値以上とすることにより、充填性に優れ、上記上限値以下とすることにより、成形性が良好となる。
The gel time of the thermosetting resin composition of the present embodiment is preferably 40 seconds or more and 150 seconds or less, more preferably 50 seconds or more and 120 seconds or less.
By setting the gel time of the thermosetting resin composition to the above lower limit or more, the filling property is excellent, and by setting the gel time to the above upper limit or less, moldability is improved.
 本実施形態の熱硬化性樹脂組成物は、200℃で90分加熱して硬化させた硬化物において、以下の誘電率および誘電正接(tanδ)を有する。
 空洞共振器法による25GHzでの誘電率を3以上、好ましくは4以上、より好ましくは5以上とすることができる。
 空洞共振器法による25GHzでの誘電正接(tanδ)を0.04以下、好ましくは0.03以下、より好ましくは0.02以下、特に好ましくは0.015以下とすることができる。
The thermosetting resin composition of the present embodiment has the following dielectric constant and dielectric loss tangent (tan δ) in a cured product obtained by heating at 200° C. for 90 minutes.
The dielectric constant at 25 GHz by the cavity resonator method can be 3 or more, preferably 4 or more, and more preferably 5 or more.
The dielectric loss tangent (tan δ) at 25 GHz by the cavity resonator method can be 0.04 or less, preferably 0.03 or less, more preferably 0.02 or less, and particularly preferably 0.015 or less.
 本実施形態の熱硬化性樹脂組成物から得られる硬化物は、高周波帯において高誘電率および低誘電正接に優れることから、高周波化ひいては回路の短縮化および通信機器等の小型化を図ることができ、マイクロストリップアンテナを形成する材料、誘電体導波路を形成する材料、さらに電磁波吸収体を形成する材料等として好適に用いることができる。 Since the cured product obtained from the thermosetting resin composition of the present embodiment is excellent in high dielectric constant and low dielectric loss tangent in the high frequency band, it is possible to increase the frequency and shorten the circuit and reduce the size of communication equipment. It can be suitably used as a material for forming a microstrip antenna, a material for forming a dielectric waveguide, a material for forming an electromagnetic wave absorber, and the like.
<マイクロストリップアンテナ>
 図1に示すように、本実施形態のマイクロストリップアンテナ10は、上述の樹脂組成物を硬化してなる誘電体基板12と,誘電体基板12の一方の面に設けられた放射導体板(放射素子)14と、誘電体基板12の他方の面に設けられた地導体板16と、を備える。放射導体板12の少なくとも一部は、誘電体基板12中に埋設されている。
<Microstrip Antenna>
As shown in FIG. 1, a microstrip antenna 10 of this embodiment includes a dielectric substrate 12 formed by curing the resin composition described above, and a radiation conductor plate (radiation conductor plate) provided on one surface of the dielectric substrate 12 . element) 14 and a ground conductor plate 16 provided on the other surface of the dielectric substrate 12 . At least part of the radiation conductor plate 12 is embedded in the dielectric substrate 12 .
 放射導体板の形状は矩形または円形が挙げられる。本実施形態においては、矩形の放射導体板14を用いた例によって説明する。 The shape of the radiation conductor plate can be rectangular or circular. In this embodiment, an example using a rectangular radiation conductor plate 14 will be described.
 放射導体板14は、金属材料、金属材料の合金、金属ペーストの硬化物、および導電性高分子のいずれかを含む。金属材料は、銅、銀、パラジウム、金、白金、アルミニウム、クロム、ニッケル、カドミウム鉛、セレン、マンガン、錫、バナジウム、リチウム、コバルト、およびチタン等を含む。合金は、複数の金属材料を含む。金属ペースト剤は、金属材料の粉末を有機溶剤、およびバインダとともに混練したものを含む。バインダは、エポキシ樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂を含む。導電性ポリマーは、ポリチオフェン系ポリマー、ポリアセチレン系ポリマー、ポリアニリン系ポリマー、ポリピロール系ポリマー等を含む。 The radiation conductor plate 14 includes any one of a metal material, an alloy of metal materials, a hardened metal paste, and a conductive polymer. Metallic materials include copper, silver, palladium, gold, platinum, aluminum, chromium, nickel, cadmium lead, selenium, manganese, tin, vanadium, lithium, cobalt, titanium, and the like. An alloy includes multiple metallic materials. The metal paste contains powder of a metal material kneaded with an organic solvent and a binder. Binders include epoxy resins, polyester resins, polyimide resins, polyamideimide resins, and polyetherimide resins. Conductive polymers include polythiophene-based polymers, polyacetylene-based polymers, polyaniline-based polymers, polypyrrole-based polymers, and the like.
 本実施形態のマイクロストリップアンテナ10は、図1に示すように、長さL、幅Wの放射導体板14を有しており、Lが1/2波長の整数倍に一致する周波数で共振する。本実施形態のように、高誘電率である誘電体基板12を用いる場合、誘電体基板12の厚さhと放射導体板14の幅Wは波長に対して十分小さくなるように設計される。 As shown in FIG. 1, the microstrip antenna 10 of this embodiment has a radiation conductor plate 14 having a length L and a width W, and resonates at a frequency where L is an integer multiple of 1/2 wavelength. . When the dielectric substrate 12 having a high dielectric constant is used as in this embodiment, the thickness h of the dielectric substrate 12 and the width W of the radiation conductor plate 14 are designed to be sufficiently small with respect to the wavelength.
 地導体板16は、銅や銀、金などの導電性の高い金属で構成される薄い板である。その厚さは、アンテナ装置の中心動作周波数に対して十分薄く、中心動作周波数の50分の1波長から1000分の1波長程度であればよい。 The ground conductor plate 16 is a thin plate made of highly conductive metal such as copper, silver, and gold. The thickness is sufficiently thin with respect to the central operating frequency of the antenna device, and may be about 1/50 to 1/1000 wavelength of the central operating frequency.
 マイクロストリップアンテナの給電方法としては,背面同軸給電および共平面給電のような直接給電方式や、スロット結合給電および近接結合給電のような電磁結合給電方式が挙げられる。 Examples of feeding methods for microstrip antennas include direct feeding methods such as rear coaxial feeding and coplanar feeding, and electromagnetic coupling feeding methods such as slot coupling feeding and proximity coupling feeding.
 背面同軸給電は、地導体板16と誘電体基板12を貫く同軸線路やコネクタを用いてアンテナ背面から放射導体板14に給電することができる。
 共平面給電は、放射導体板14と同一面上に配置されたマイクロストリップ線路(不図示)で放射導体板14に給電することができる。
In the back coaxial feeding, power can be fed from the back of the antenna to the radiating conductor plate 14 by using a coaxial line or connector passing through the ground conductor plate 16 and the dielectric substrate 12 .
In coplanar feeding, the radiation conductor plate 14 can be fed with a microstrip line (not shown) arranged on the same plane as the radiation conductor plate 14 .
 スロット結合給電においては,地導体板16を挟み込む形でさらに別の誘電体基板(不図示)を設け、放射導体板14とマイクロストリップ線路とを別々の誘電体基板に形成する。地導体板16に空けられたスロットを介して,放射導体板14とマイクロストリップ線路とを電磁結合させることによって放射導体板14が励振される。 In the slot coupling power supply, another dielectric substrate (not shown) is provided so as to sandwich the ground conductor plate 16, and the radiation conductor plate 14 and the microstrip line are formed on separate dielectric substrates. The radiation conductor plate 14 is excited by electromagnetically coupling the radiation conductor plate 14 and the microstrip line through a slot formed in the ground conductor plate 16 .
 近接結合給電においては、誘電体基板12が積層構造を有し、放射導体板14が形成された誘電体基板と,マイクロストリップ線路のストリップ導体および地導体板16が配置された誘電体基板とが積層されている.マイクロストリップ線路のストリップ導体を放射導体板14の下部に延長し、放射導体板14とマイクロストリップ線路を電磁結合させることにより、放射導体板14が励振される。 In the proximity coupling feeding, the dielectric substrate 12 has a laminated structure, and the dielectric substrate on which the radiation conductor plate 14 is formed and the dielectric substrate on which the strip conductor of the microstrip line and the ground conductor plate 16 are arranged. It is layered. The radiation conductor plate 14 is excited by extending the strip conductor of the microstrip line below the radiation conductor plate 14 and electromagnetically coupling the radiation conductor plate 14 and the microstrip line.
 図2(a)(b)に、他のマイクロストリップアンテナの態様を示す。なお、図1と同一の構成には同一の番号を付して適宜説明を省略する。
 図2(a)に示すように、マイクロストリップアンテナ20は、誘電体基板22と、誘電体基板22の一方の面に設けられた放射導体板14と、誘電体基板22の他方の面に設けられた地導体板16と、放射導体板14に対向配置された高誘電体基板(高誘電体)24と、を備える。誘電体基板22および放射導体板14と、高誘電体基板24とは、スペーサー26を介して所定距離離間するように構成することができる。
 誘電体基板22としては、テフロン基板等の低誘電率の基板から構成される。
 高誘電体基板24は、上述の樹脂組成物を硬化してなる誘電体基板により構成されている。
 誘電体基板22と高誘電体基板24との空隙部は空間であってもよく、誘電体材料が充填されていてもよい。
 また、図2(b)のマイクロストリップアンテナ20'に示されるように、放射導体板14の上面に高誘電体基板24を当接させた構造とすることもできる。
2(a) and 2(b) show another mode of microstrip antenna. The same numbers are given to the same configurations as in FIG. 1, and the description thereof is omitted as appropriate.
As shown in FIG. 2A, the microstrip antenna 20 includes a dielectric substrate 22, a radiation conductor plate 14 provided on one surface of the dielectric substrate 22, and a radiation conductor plate 14 provided on the other surface of the dielectric substrate 22. and a high dielectric substrate (high dielectric) 24 facing the radiation conductor plate 14 . The dielectric substrate 22 and the radiation conductor plate 14 and the high dielectric substrate 24 can be configured to be separated from each other by a predetermined distance with spacers 26 interposed therebetween.
The dielectric substrate 22 is composed of a substrate having a low dielectric constant such as a Teflon substrate.
The high dielectric substrate 24 is composed of a dielectric substrate obtained by curing the resin composition described above.
The gap between the dielectric substrate 22 and the high dielectric substrate 24 may be a space or may be filled with a dielectric material.
Further, as shown in a microstrip antenna 20' in FIG. 2B, a structure in which a high dielectric substrate 24 is brought into contact with the upper surface of the radiation conductor plate 14 can be employed.
<誘電体導波路>
 本実施形態において、誘電体導波路は、本実施形態の樹脂組成物を硬化してなる誘電体と、当該誘電体の表面を覆う導体膜と、を備える。誘電体導波路は、電磁波を誘電体(誘電体媒質)中に閉じこめて伝送させるものである。
 前記導体膜は、銅等の金属や、酸化物高温超伝導体等から構成することができる。
<Dielectric waveguide>
In this embodiment, the dielectric waveguide comprises a dielectric obtained by curing the resin composition of this embodiment, and a conductor film covering the surface of the dielectric. A dielectric waveguide confines electromagnetic waves in a dielectric (dielectric medium) for transmission.
The conductor film can be made of a metal such as copper, an oxide high-temperature superconductor, or the like.
<電磁波吸収体>
 本実施形態において、電磁波吸収体は、支持体、抵抗皮膜、誘電体層、及び反射層が積層した構造を備える。当該電磁波吸収体は、高い電波吸収性能を備えるλ/4型電波吸収体として用いることができる。
 支持体としては樹脂基材等が挙げられる。支持体により、抵抗皮膜を保護することができ、電波吸収体としての耐久性を高めることができる。
 抵抗皮膜としては、酸化インジウムスズ、モリブデン含有抵抗皮膜等が挙げられる。
 誘電体層は本実施形態の樹脂組成物を硬化してなる。その厚みは、10μm以上2000μm以下程度である。
 反射層は電波の反射層として機能し得るものであり、例えば金属膜が挙げられる。
<Electromagnetic wave absorber>
In this embodiment, the electromagnetic wave absorber has a laminated structure of a support, a resistive film, a dielectric layer, and a reflective layer. The electromagnetic wave absorber can be used as a λ/4 type electromagnetic wave absorber having high electromagnetic wave absorption performance.
A resin base material etc. are mentioned as a support body. The support can protect the resistive film and enhance the durability as a radio wave absorber.
Resistive films include indium tin oxide and molybdenum-containing resistive films.
The dielectric layer is formed by curing the resin composition of this embodiment. Its thickness is about 10 μm or more and 2000 μm or less.
The reflective layer can function as a radio wave reflective layer, and includes, for example, a metal film.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、本発明の効果を損なわない範囲で、上記以外の様々な構成を採用することができる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than those described above can be adopted within the scope that does not impair the effects of the present invention.
 以下に、実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
 第1の発明(出願時請求項1~8、26~31)および第1の実施形態に係る実施例を、実施例Aに示す。
 第2の発明(出願時請求項9~16、26~31)および第2の実施形態に係る実施例を、実施例Bに示す。
 第3の発明(出願時請求項17~21、26~31)および第3の実施形態に係る実施例を、実施例Cに示す。
 第4の発明(出願時請求項22~25、26~31)および第4の実施形態に係る実施例を、実施例Dに示す。
EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these.
Example A shows an example of the first invention (claims 1 to 8 and 26 to 31 at the time of filing) and the first embodiment.
Example B shows an example of the second invention (claims 9 to 16 and 26 to 31 at the time of filing) and the second embodiment.
Example C shows an example of the third invention (claims 17 to 21 and 26 to 31 at the time of filing) and the third embodiment.
Example D shows an example according to the fourth invention (claims 22 to 25 and 26 to 31 at the time of filing) and the fourth embodiment.
<実施例A>
(実施例A1~A12、比較例A1)
 以下の原料を表1に示す配合量で、常温でミキサーを用いて混合した後、70~100℃でロール混錬した。次いで、得られた混錬物を冷却した後、これを粉砕して粉粒状の樹脂組成物を得た。ついで、高圧で打錠成形することにより、タブレット状の樹脂組成物を得た。
<Example A>
(Examples A1 to A12, Comparative Example A1)
The following raw materials were mixed in a blending amount shown in Table 1 at room temperature using a mixer, and then roll-kneaded at 70 to 100°C. After cooling the obtained kneaded material, the kneaded material was pulverized to obtain a powdery resin composition. Subsequently, tablet-shaped resin composition was obtained by tablet-molding at high pressure.
 (高誘電率充填剤)
・高誘電率充填剤1:チタン酸バリウム(BT-UP2、平均粒子径2μm、日本化学工業社製)
・高誘電率充填剤2:チタン酸カルシウム(CT、平均粒子径2.0μm、富士チタン社製)
・高誘電率充填剤3:チタン酸ストロンチウム(ST-A、平均粒子径1.6μm、富士チタン社製)
・高誘電率充填剤4:チタン酸ストロンチウム(STG、平均粒子径0.9μm、日本化学工業社製)
(High dielectric constant filler)
・ High dielectric constant filler 1: barium titanate (BT-UP2, average particle size 2 μm, manufactured by Nippon Chemical Industry Co., Ltd.)
・High dielectric constant filler 2: calcium titanate (CT, average particle size 2.0 μm, manufactured by Fuji Titanium Co., Ltd.)
・High dielectric constant filler 3: Strontium titanate (ST-A, average particle size 1.6 μm, manufactured by Fuji Titanium Co., Ltd.)
・High dielectric constant filler 4: Strontium titanate (STG, average particle size 0.9 μm, manufactured by Nippon Kagaku Kogyo Co., Ltd.)
 (無機充填剤)
・無機充填剤1:アルミナ(K75-1V25F、デンカ株式会社製)
・無機充填剤2:溶融球状シリカ(SC-2500-SQ、アドマテックス社製)
(Inorganic filler)
・ Inorganic filler 1: alumina (K75-1V25F, manufactured by Denka Co., Ltd.)
・Inorganic filler 2: Fused spherical silica (SC-2500-SQ, manufactured by Admatechs)
 (着色剤)
・着色剤1:黒色酸化チタン(赤穂化成社製)
(coloring agent)
・ Coloring agent 1: Black titanium oxide (manufactured by Ako Kasei Co., Ltd.)
 (カップリング剤)
・カップリング剤1:フェニルアミノプロピルトリメトキシシラン(CF4083、東レ・ダウコーニング社製)
・カップリング剤2:3-メルカプトプロピルトリメトキシシラン(サイラエース、JNC社製)
(coupling agent)
Coupling agent 1: phenylaminopropyltrimethoxysilane (CF4083, manufactured by Dow Corning Toray Co., Ltd.)
・ Coupling agent 2: 3-mercaptopropyltrimethoxysilane (Sila Ace, manufactured by JNC)
 (エポキシ樹脂)
・エポキシ樹脂1:ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂(NC3000L、日本化薬社製)
・エポキシ樹脂2:トリフェノールメタン型エポキシ樹脂(E1032H60、油化シェルエポキシ社製)
(Epoxy resin)
- Epoxy resin 1: biphenylene skeleton-containing phenol aralkyl type epoxy resin (NC3000L, manufactured by Nippon Kayaku Co., Ltd.)
・ Epoxy resin 2: Triphenol methane type epoxy resin (E1032H60, manufactured by Yuka Shell Epoxy Co., Ltd.)
 (硬化剤)
・硬化剤1:ビフェニレン骨格含有フェノールアラルキル型樹脂(MEH-7851SS、明和化成社製)
(curing agent)
・ Curing agent 1: biphenylene skeleton-containing phenol aralkyl type resin (MEH-7851SS, manufactured by Meiwa Kasei Co., Ltd.)
・硬化剤2:下記調製方法で調製した活性エステル硬化剤
 (活性エステル硬化剤の調製方法)
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、ビフェニル-4,4’-ジカルボン酸ジクロライド279.1g(酸クロリド基のモル数:2.0モル)とトルエン1338gとを仕込み、系内を減圧窒素置換して溶解させた。次いで、α-ナフトール96.5g(0.67モル)、ジシクロペンタジエンフェノール樹脂を219.5g(フェノール性水酸基のモル数:1.33モル)を仕込み、系内を減圧窒素置換して溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し不揮発分65%のトルエン溶液状態にある活性エステル樹脂を得た。得られた活性エステル樹脂の構造を確認したところ、上述の式(1-1)においてR及びRが水素原子、Zがナフチル基、lが0の構造を有していた。さらに、繰り返し単位の平均値kは、反応等量比から算出したところ0.5~1.0の範囲であった。
・ Curing agent 2: Active ester curing agent prepared by the following preparation method (Preparation method of active ester curing agent)
279.1 g of biphenyl-4,4′-dicarboxylic acid dichloride (moles of acid chloride group: 2.0 mol) and 1338 g of toluene were placed in a flask equipped with a thermometer, dropping funnel, condenser, fractionating tube, and stirrer. was charged, and the inside of the system was replaced with nitrogen under reduced pressure to dissolve. Next, 96.5 g (0.67 mol) of α-naphthol and 219.5 g of dicyclopentadiene phenolic resin (number of moles of phenolic hydroxyl groups: 1.33 mol) were charged, and the system was decompressed and replaced with nitrogen to dissolve. rice field. Thereafter, while purging with nitrogen gas, the inside of the system was controlled at 60° C. or less, and 400 g of a 20% sodium hydroxide aqueous solution was added dropwise over 3 hours. Stirring was then continued under these conditions for 1.0 hour. After completion of the reaction, the mixture was allowed to stand still for liquid separation, and the aqueous layer was removed. Further, water was added to the toluene phase in which the reactants were dissolved, and the mixture was stirred and mixed for about 15 minutes, and the mixture was allowed to stand still for liquid separation to remove the aqueous layer. This operation was repeated until the pH of the aqueous layer reached 7. Thereafter, water was removed by decanter dehydration to obtain an active ester resin in the form of a toluene solution having a non-volatile content of 65%. When the structure of the obtained active ester resin was confirmed, it had a structure in which R 1 and R 3 were hydrogen atoms, Z was a naphthyl group, and 1 was 0 in the above formula (1-1). Furthermore, the average value k of the repeating units was in the range of 0.5 to 1.0 as calculated from the reaction equivalence ratio.
・硬化剤3:下記調製方法で調製した活性エステル硬化剤
 (活性エステル硬化剤の調製方法)
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、1,3-ベンゼンジカルボン酸ジクロリド203.0g(酸クロリド基のモル数:2.0モル)とトルエン1338gとを仕込み、系内を減圧窒素置換して溶解させた。次いで、α-ナフトール96.5g(0.67モル)、ジシクロペンタジエンフェノール樹脂を219.5g(フェノール性水酸基のモル数:1.33モル)を仕込み、系内を減圧窒素置換して溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し不揮発分65%のトルエン溶液状態にある活性エステル樹脂を得た。得られた活性エステル樹脂の構造を確認したところ、上述の式(1-3)においてR及びRが水素原子、Zがナフチル基、lが0の構造を有していた。活性エステル樹脂の繰り返し単位の平均値kは、反応等量比から算出したところ0.5~1.0の範囲であった。得られた活性エステル樹脂は具体的に以下の化学式で表される構造を有していた。下記式中、繰り返し単位の平均値kは0.5~1.0であった。
Figure JPOXMLDOC01-appb-C000026
・ Curing agent 3: Active ester curing agent prepared by the following preparation method (Preparation method of active ester curing agent)
A flask equipped with a thermometer, dropping funnel, condenser, fractionating tube and stirrer was charged with 203.0 g of 1,3-benzenedicarboxylic acid dichloride (moles of acid chloride group: 2.0 mol) and 1338 g of toluene. It was charged, and the inside of the system was replaced with nitrogen under reduced pressure to dissolve. Next, 96.5 g (0.67 mol) of α-naphthol and 219.5 g of dicyclopentadiene phenolic resin (number of moles of phenolic hydroxyl groups: 1.33 mol) were charged, and the system was decompressed and replaced with nitrogen to dissolve. rice field. Thereafter, while purging with nitrogen gas, the inside of the system was controlled at 60° C. or less, and 400 g of a 20% sodium hydroxide aqueous solution was added dropwise over 3 hours. Stirring was then continued under these conditions for 1.0 hour. After completion of the reaction, the mixture was allowed to stand still for liquid separation, and the aqueous layer was removed. Further, water was added to the toluene phase in which the reactants were dissolved, and the mixture was stirred and mixed for about 15 minutes, and the mixture was allowed to stand still for liquid separation to remove the aqueous layer. This operation was repeated until the pH of the aqueous layer reached 7. Thereafter, water was removed by decanter dehydration to obtain an active ester resin in the form of a toluene solution having a non-volatile content of 65%. When the structure of the obtained active ester resin was confirmed, it had a structure in which R 1 and R 3 were hydrogen atoms, Z was a naphthyl group, and 1 was 0 in the above formula (1-3). The average value k of repeating units of the active ester resin was in the range of 0.5 to 1.0 as calculated from the reaction equivalent ratio. The obtained active ester resin specifically had a structure represented by the following chemical formula. In the following formula, the average value k of repeating units was 0.5 to 1.0.
Figure JPOXMLDOC01-appb-C000026
 (触媒)
・触媒1:テトラフェニルフォスフォニウム-4,4’-スルフォニルジフェノラート
・触媒2:テトラフェニルホスホニウムビス(ナフタレン-2,3-ジオキシ)フェニルシリケート
(catalyst)
・Catalyst 1: Tetraphenylphosphonium-4,4′-sulfonyldiphenolate ・Catalyst 2: Tetraphenylphosphonium bis(naphthalene-2,3-dioxy)phenylsilicate
 (離型剤)
・離型剤1:グリセリントリモンタン酸エステル(リコルブWE-4、クラリアントジャパン社製)
・離型剤2:カルナバワックス(TOWAX-132、東亜合成社製)
(Release agent)
・Releasing agent 1: Glycerin trimontanate (Rekolb WE-4, manufactured by Clariant Japan Co., Ltd.)
・ Release agent 2: Carnauba wax (TOWAX-132, manufactured by Toagosei Co., Ltd.)
 (添加剤)
・添加剤1: 3-アミノ-5-メルカプト-1,2,4-トリアゾール(日本カーバイド工業社製)
・シリコーン1:ジメチルシロキサン-ジグリシジンエーテル共重合体(M69B、住友ベークライト社製)
(Additive)
・ Additive 1: 3-amino-5-mercapto-1,2,4-triazole (manufactured by Nippon Carbide Industry Co., Ltd.)
・ Silicone 1: dimethylsiloxane-diglycidin ether copolymer (M69B, manufactured by Sumitomo Bakelite Co., Ltd.)
 (低応力剤)
・低応力剤1:カルボキシル基末端ブタジエンアクリルゴム(CTBN1008SP、宇部興産社製)
(Low stress agent)
・Low stress agent 1: Carboxyl group-terminated butadiene acrylic rubber (CTBN1008SP, manufactured by Ube Industries, Ltd.)
(空洞共振器法による誘電率および誘電正接の評価)
 まず、樹脂組成物を用いて、試験片を得た。
 具体的には、実施例および比較例で調製した樹脂組成物を、Si基板に塗布し、120℃で4分間プリベークを行い、塗布膜厚12μmの樹脂膜を形成した。
 これを、窒素雰囲気下、オーブンを用いて200℃で90分加熱し、フッ酸処理(2質量%フッ酸水溶液に浸漬)した。フッ酸から基板を取り出した後に、硬化膜をSi基板から剥離して、これを試験片とした。
 測定装置は、ネットワークアナライザHP8510C、シンセサイズドスイーパHP83651AおよびテストセットHP8517B(全てアジレント・テクノロジー社製)を用いた。これら装置と、円筒空洞共振器(内径φ42mm、高さ30mm)とを、セットアップした。
 上記共振器内に試験片を挿入した状態と、未挿入状態とで、共振周波数、3dB帯域幅、透過電力比などを、周波数18GHzで測定した。そして、これら測定結果をソフトウェアで解析的に計算することで、誘電率(Dk)および誘電正接(Df)の誘電特性を求めた。なお、測定モードはTE011モードとした。
(Evaluation of permittivity and dielectric loss tangent by cavity resonator method)
First, a test piece was obtained using the resin composition.
Specifically, the resin compositions prepared in Examples and Comparative Examples were applied to a Si substrate and prebaked at 120° C. for 4 minutes to form a resin film having a coating thickness of 12 μm.
This was heated in an oven at 200° C. for 90 minutes in a nitrogen atmosphere and hydrofluoric acid treatment (immersed in a 2 mass % hydrofluoric acid aqueous solution). After removing the substrate from the hydrofluoric acid, the cured film was peeled off from the Si substrate and used as a test piece.
A network analyzer HP8510C, a synthesized sweeper HP83651A, and a test set HP8517B (all manufactured by Agilent Technologies) were used as measuring devices. These devices and a cylindrical cavity resonator (inner diameter φ42 mm, height 30 mm) were set up.
The resonance frequency, 3 dB bandwidth, transmitted power ratio, etc. were measured at a frequency of 18 GHz with and without inserting the test piece into the resonator. Then, by analytically calculating these measurement results with software, the dielectric properties such as dielectric constant (Dk) and dielectric loss tangent (Df) were determined. The measurement mode was TE 011 mode.
(スパイラルフローの測定)
 低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて、EMMI-1-66に準じたスパイラルフロー測定用の金型に金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で、実施例および比較例で得られた樹脂組成物を注入し、流動長を測定した。
(Spiral flow measurement)
Using a low-pressure transfer molding machine ("KTS-15" manufactured by Kotaki Seiki Co., Ltd.), a mold for spiral flow measurement according to EMMI-1-66 was placed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and cured. The resin compositions obtained in Examples and Comparative Examples were injected under the condition of 120 seconds, and the flow length was measured.
(ゲルタイム(GT))
 175℃に加熱した熱板上で実施例および比較例の樹脂組成物をそれぞれ溶融後、へらで練りながら硬化するまでの時間(単位:秒)を測定した。
(Gel Time (GT))
After each of the resin compositions of Examples and Comparative Examples was melted on a hot plate heated to 175° C., the time (unit: seconds) until curing was measured while kneading with a spatula.
(成形収縮率)
 各実施例および比較例について、得られた樹脂組成物について、成形(ASM:as Mold)を行った後の成形収縮率(ASM後)を測定し、当該成形後、本硬化させて誘電体基板を作製することを想定した加熱条件(PMC:Post Mold Cure)で成形収縮率(PMC後)を評価した。
 まず、低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で作製した試験片に対して、JIS K 6911に準じて成形収縮率(ASM後)を得た。
 さらに、得られた試験片を175℃で4時間加熱処理し、JIS K 6911に準じて成形収縮率(ASM後)を測定した。
(Molding shrinkage rate)
For each example and comparative example, the molding shrinkage (after ASM) was measured after molding (ASM: as Mold) for the obtained resin composition, and after the molding, main curing was performed to form a dielectric substrate. The molding shrinkage rate (after PMC) was evaluated under heating conditions (PMC: Post Mold Cure) assuming the production of .
First, a test piece prepared using a low-pressure transfer molding machine ("KTS-15" manufactured by Kotaki Seiki Co., Ltd.) at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. Mold shrinkage (after ASM) was obtained according to K6911.
Furthermore, the obtained test piece was heat-treated at 175° C. for 4 hours, and the molding shrinkage (after ASM) was measured according to JIS K 6911.
(ガラス転移温度、線膨張係数)
 各実施例および比較例について、得られた樹脂組成物の硬化物のガラス転移温度(Tg)、線膨張係数(CTE1、CTE2)を、以下のように測定した。まず、低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて金型温度175℃、注入圧力6.9MPa、硬化時間120秒で封止用樹脂組成物を注入成形し、10mm×4mm×4mmの試験片を得た。次いで、得られた試験片を175℃、4時間で後硬化した後、熱機械分析装置(セイコー電子工業(株)製、TMA100)を用いて、測定温度範囲0℃~320℃、昇温速度5℃/分の条件下で測定を行った。この測定結果から、ガラス転移温度(Tg)、ガラス転移温度以下における線膨張係数(CTE1)、ガラス転移温度超過における線膨張係数(CTE2)を算出した。
(Glass transition temperature, coefficient of linear expansion)
For each example and comparative example, the glass transition temperature (Tg) and linear expansion coefficients (CTE1, CTE2) of the cured resin composition obtained were measured as follows. First, using a low-pressure transfer molding machine (“KTS-15” manufactured by Kotaki Seiki Co., Ltd.), the encapsulating resin composition was injection molded at a mold temperature of 175° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. A test piece of 10 mm x 4 mm x 4 mm was obtained. Then, after post-curing the obtained test piece at 175 ° C. for 4 hours, using a thermomechanical analyzer (manufactured by Seiko Electronics Industries Co., Ltd., TMA100), the measurement temperature range is 0 ° C. to 320 ° C., and the heating rate is Measurement was performed under the condition of 5°C/min. From these measurement results, the glass transition temperature (Tg), the coefficient of linear expansion below the glass transition temperature (CTE1), and the coefficient of linear expansion above the glass transition temperature (CTE2) were calculated.
(機械強度の評価(曲げ強度/曲げ弾性率))
 実施例および比較例の樹脂組成物を、低圧トランスファー成形機(コータキ精機株式会社製「KTS-30」)を用いて、金型温度130℃、注入圧力9.8MPa、硬化時間300秒の条件で金型に注入成形した。これにより、幅10mm、厚み4mm、長さ80mmの成形品を得た。次いで、得られた成形品を175℃、4時間の条件で後硬化させた。これにより、機械的強度の評価用の試験片を作製した。そして、試験片の室温(25℃)または260℃における曲げ強度(N/mm)および曲げ弾性率(N/mm)を、JIS K 6911に準拠して、ヘッドスピード5mm/minで測定した。
(Evaluation of mechanical strength (flexural strength/flexural modulus))
The resin compositions of Examples and Comparative Examples were molded using a low-pressure transfer molding machine (“KTS-30” manufactured by Kotaki Seiki Co., Ltd.) under conditions of a mold temperature of 130° C., an injection pressure of 9.8 MPa, and a curing time of 300 seconds. Injection molded into a mold. As a result, a molded article having a width of 10 mm, a thickness of 4 mm and a length of 80 mm was obtained. The resulting molded article was then post-cured at 175° C. for 4 hours. This produced a test piece for evaluation of mechanical strength. Then, the bending strength (N/mm 2 ) and bending elastic modulus (N/mm 2 ) of the test piece at room temperature (25°C) or 260°C were measured in accordance with JIS K 6911 at a head speed of 5 mm/min. .
(矩形圧の測定)
 実施例および比較例の樹脂組成物の矩形圧を次のように測定した。まず、低圧トランスファー成形機(NEC(株)製、40tマニュアルプレス)を用いて、金型温度175℃、注入速度177mm/秒の条件にて、幅13mm、厚さ1mm、長さ175mmの矩形状の流路に樹脂組成物を注入した。このとき、流路の上流先端から25mmの位置に埋設した圧力センサーにて圧力の経時変化を測定し、樹脂組成物の流動時における最低圧力(MPa)を測定し、これを矩形圧とした。矩形圧は、溶融粘度のパラメータであり、数値が小さい方が、溶融粘度が低いことを示す。
(Measurement of rectangular pressure)
The rectangular pressure of the resin compositions of Examples and Comparative Examples was measured as follows. First, using a low-pressure transfer molding machine (manufactured by NEC Corporation, 40t manual press), a rectangular mold having a width of 13 mm, a thickness of 1 mm, and a length of 175 mm was molded under conditions of a mold temperature of 175°C and an injection rate of 177 mm 3 /sec. A resin composition was injected into the shaped channel. At this time, a pressure sensor embedded at a position 25 mm from the upstream end of the flow channel was used to measure the change in pressure over time, and the minimum pressure (MPa) during the flow of the resin composition was measured, which was defined as the rectangular pressure. Rectangular pressure is a parameter of melt viscosity, and a smaller numerical value indicates a lower melt viscosity.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表1に記載のように、チタン酸バリウムを用いた比較例に比べ、本発明に係る実施例の樹脂組成物によれば、特定の高誘電率充填剤を含むことにより高誘電率および低誘電正接に優れ、さらにその他の物性のバランスにも優れた誘電体基板が得られた。当該樹脂組成物を硬化してなる誘電体基板を備えるマイクロストリップアンテナは、高周波化ひいては回路の短縮化および通信機器の小型化が可能になると推察された。さらに、当該樹脂組成物を硬化してなる誘電体(層)を備える誘電体導波路や電磁波吸収体においても所望の効果が得られることが推察された。 As shown in Table 1, compared with the comparative example using barium titanate, the resin composition of the example according to the present invention has a high dielectric constant and a low dielectric constant due to the inclusion of a specific high dielectric constant filler. A dielectric substrate was obtained which was excellent in tangent and also excellent in balance of other physical properties. It was speculated that a microstrip antenna provided with a dielectric substrate obtained by curing the resin composition would enable higher frequencies, shorten circuits, and reduce the size of communication equipment. Furthermore, it is presumed that the desired effects can be obtained in dielectric waveguides and electromagnetic wave absorbers provided with dielectrics (layers) obtained by curing the resin composition.
<実施例B>
(実施例B1~B9)
 以下の原料を表2に示す配合量で、常温でミキサーを用いて混合した後、70~100℃でロール混錬した。次いで、得られた混錬物を冷却した後、これを粉砕して粉粒状の樹脂組成物を得た。ついで、高圧で打錠成形することにより、タブレット状の樹脂組成物を得た。
<Example B>
(Examples B1 to B9)
The following raw materials were mixed in a blending amount shown in Table 2 at room temperature using a mixer, and then roll-kneaded at 70 to 100°C. After cooling the obtained kneaded material, the kneaded material was pulverized to obtain a powdery resin composition. Subsequently, tablet-shaped resin composition was obtained by tablet-molding at high pressure.
 (高誘電率充填剤)
・高誘電率充填剤1:チタン酸マグネシウム(平均粒子径0.8μm)
・高誘電率充填剤2:チタン酸カルシウム(平均粒子径2.0μm)
(High dielectric constant filler)
・High dielectric constant filler 1: magnesium titanate (average particle size 0.8 μm)
・High dielectric constant filler 2: calcium titanate (average particle size 2.0 μm)
 (無機充填剤)
・無機充填剤1:アルミナ(平均粒子径11μm、デンカ株式会社製)
・無機充填剤2:溶融球状シリカ(デンカ株式会社製)
(Inorganic filler)
・ Inorganic filler 1: alumina (average particle size 11 μm, manufactured by Denka Co., Ltd.)
・ Inorganic filler 2: Fused spherical silica (manufactured by Denka Co., Ltd.)
 (着色剤)
・着色剤1:黒色酸化チタン(赤穂化成社製)
(coloring agent)
・ Coloring agent 1: Black titanium oxide (manufactured by Ako Kasei Co., Ltd.)
 (カップリング剤)
・カップリング剤1:フェニルアミノプロピルトリメトキシシラン(CF4083、東レ・ダウコーニング社製)
・カップリング剤2:3-メルカプトプロピルトリメトキシシラン(サイラエース、JNC社製)
(coupling agent)
Coupling agent 1: phenylaminopropyltrimethoxysilane (CF4083, manufactured by Dow Corning Toray Co., Ltd.)
・ Coupling agent 2: 3-mercaptopropyltrimethoxysilane (Sila Ace, manufactured by JNC)
 (エポキシ樹脂)
・エポキシ樹脂1:ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂(NC3000L、日本化薬社製)
・エポキシ樹脂2:ナフトールアラルキル型エポキシ樹脂(ESN-475V、日鉄ケミカル社製)
・エポキシ樹脂3:ビフェニル型エポキシ樹脂(三菱ケミカル株式会社、YX-4000K)
(Epoxy resin)
- Epoxy resin 1: biphenylene skeleton-containing phenol aralkyl type epoxy resin (NC3000L, manufactured by Nippon Kayaku Co., Ltd.)
・ Epoxy resin 2: naphthol aralkyl type epoxy resin (ESN-475V, manufactured by Nippon Steel Chemical Co., Ltd.)
・ Epoxy resin 3: biphenyl type epoxy resin (Mitsubishi Chemical Corporation, YX-4000K)
 (硬化剤)
・硬化剤1:下記調製方法で調製した活性エステル硬化剤
 (活性エステル硬化剤の調製方法)
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、ビフェニル-4,4’-ジカルボン酸ジクロライド279.1g(酸クロリド基のモル数:2.0モル)とトルエン1338gとを仕込み、系内を減圧窒素置換して溶解させた。次いで、α-ナフトール96.5g(0.67モル)、ジシクロペンタジエンフェノール樹脂を219.5g(フェノール性水酸基のモル数:1.33モル)を仕込み、系内を減圧窒素置換して溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し不揮発分65%のトルエン溶液状態にある活性エステル樹脂を得た。得られた活性エステル樹脂の構造を確認したところ、上述の式(1-1)においてR及びRが水素原子、Zがナフチル基、lが0の構造を有していた。さらに、繰り返し単位の平均値kは、反応等量比から算出したところ0.5~1.0の範囲であった。
(curing agent)
・ Curing agent 1: Active ester curing agent prepared by the following preparation method (Preparation method of active ester curing agent)
279.1 g of biphenyl-4,4′-dicarboxylic acid dichloride (moles of acid chloride group: 2.0 mol) and 1338 g of toluene were placed in a flask equipped with a thermometer, dropping funnel, condenser, fractionating tube, and stirrer. was charged, and the inside of the system was replaced with nitrogen under reduced pressure to dissolve. Next, 96.5 g (0.67 mol) of α-naphthol and 219.5 g of dicyclopentadiene phenolic resin (number of moles of phenolic hydroxyl groups: 1.33 mol) were charged, and the system was decompressed and replaced with nitrogen to dissolve. rice field. Thereafter, while purging with nitrogen gas, the inside of the system was controlled at 60° C. or less, and 400 g of a 20% sodium hydroxide aqueous solution was added dropwise over 3 hours. Stirring was then continued under these conditions for 1.0 hour. After completion of the reaction, the mixture was allowed to stand still for liquid separation, and the aqueous layer was removed. Further, water was added to the toluene phase in which the reactants were dissolved, and the mixture was stirred and mixed for about 15 minutes, and the mixture was allowed to stand still for liquid separation to remove the aqueous layer. This operation was repeated until the pH of the aqueous layer reached 7. Thereafter, water was removed by decanter dehydration to obtain an active ester resin in the form of a toluene solution having a non-volatile content of 65%. When the structure of the obtained active ester resin was confirmed, it had a structure in which R 1 and R 3 were hydrogen atoms, Z was a naphthyl group, and 1 was 0 in the above formula (1-1). Furthermore, the average value k of the repeating units was in the range of 0.5 to 1.0 as calculated from the reaction equivalence ratio.
・硬化剤2:下記調製方法で調製した活性エステル硬化剤
 (活性エステル硬化剤の調製方法)
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、1,3-ベンゼンジカルボン酸ジクロリド203.0g(酸クロリド基のモル数:2.0モル)とトルエン1338gとを仕込み、系内を減圧窒素置換して溶解させた。次いで、α-ナフトール96.5g(0.67モル)、ジシクロペンタジエンフェノール樹脂を219.5g(フェノール性水酸基のモル数:1.33モル)を仕込み、系内を減圧窒素置換して溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し不揮発分65%のトルエン溶液状態にある活性エステル樹脂を得た。得られた活性エステル樹脂の構造を確認したところ、上述の式(1-3)においてR及びRが水素原子、Zがナフチル基、lが0の構造を有していた。活性エステル樹脂の繰り返し単位の平均値kは、反応等量比から算出したところ0.5~1.0の範囲であった。得られた活性エステル樹脂は具体的に以下の化学式で表される構造を有していた。下記式中、繰り返し単位の平均値kは0.5~1.0であった。
Figure JPOXMLDOC01-appb-C000028
・ Curing agent 2: Active ester curing agent prepared by the following preparation method (Preparation method of active ester curing agent)
A flask equipped with a thermometer, dropping funnel, condenser, fractionating tube and stirrer was charged with 203.0 g of 1,3-benzenedicarboxylic acid dichloride (moles of acid chloride group: 2.0 mol) and 1338 g of toluene. It was charged, and the inside of the system was replaced with nitrogen under reduced pressure to dissolve. Next, 96.5 g (0.67 mol) of α-naphthol and 219.5 g of dicyclopentadiene phenolic resin (number of moles of phenolic hydroxyl groups: 1.33 mol) were charged, and the system was decompressed and replaced with nitrogen to dissolve. rice field. Thereafter, while purging with nitrogen gas, the inside of the system was controlled at 60° C. or less, and 400 g of a 20% sodium hydroxide aqueous solution was added dropwise over 3 hours. Stirring was then continued under these conditions for 1.0 hour. After completion of the reaction, the mixture was allowed to stand still for liquid separation, and the aqueous layer was removed. Further, water was added to the toluene phase in which the reactants were dissolved, and the mixture was stirred and mixed for about 15 minutes, and the mixture was allowed to stand still for liquid separation to remove the aqueous layer. This operation was repeated until the pH of the aqueous layer reached 7. Thereafter, water was removed by decanter dehydration to obtain an active ester resin in the form of a toluene solution having a non-volatile content of 65%. When the structure of the obtained active ester resin was confirmed, it had a structure in which R 1 and R 3 were hydrogen atoms, Z was a naphthyl group, and 1 was 0 in the above formula (1-3). The average value k of repeating units of the active ester resin was in the range of 0.5 to 1.0 as calculated from the reaction equivalent ratio. The obtained active ester resin specifically had a structure represented by the following chemical formula. In the following formula, the average value k of repeating units was 0.5 to 1.0.
Figure JPOXMLDOC01-appb-C000028
 (触媒)
・触媒1:テトラフェニルフォスフォニウム-4,4’-スルフォニルジフェノラート
・触媒2:テトラフェニルホスホニウムビス(ナフタレン-2,3-ジオキシ)フェニルシリケート
(catalyst)
・Catalyst 1: Tetraphenylphosphonium-4,4′-sulfonyldiphenolate ・Catalyst 2: Tetraphenylphosphonium bis(naphthalene-2,3-dioxy)phenylsilicate
 (離型剤)
・離型剤1:グリセリントリモンタン酸エステル(リコルブWE-4、クラリアントジャパン社製)
(Release agent)
・Releasing agent 1: Glycerin trimontanate (Rekolb WE-4, manufactured by Clariant Japan Co., Ltd.)
 (添加剤)
・シリコーン1:ジメチルシロキサン-ジグリシジンエーテル共重合体(M69B、住友ベークライト社製)
(Additive)
・ Silicone 1: dimethylsiloxane-diglycidin ether copolymer (M69B, manufactured by Sumitomo Bakelite Co., Ltd.)
 (低応力剤)
・低応力剤1:カルボキシル基末端ブタジエンアクリルゴム(CTBN1008SP、宇部興産社製)
(Low stress agent)
・Low stress agent 1: Carboxyl group-terminated butadiene acrylic rubber (CTBN1008SP, manufactured by Ube Industries, Ltd.)
(空洞共振器法による誘電率および誘電正接の評価)
 まず、樹脂組成物を用いて、試験片を得た。
 具体的には、実施例で調製した樹脂組成物を、Si基板に塗布し、120℃で4分間プリベークを行い、塗布膜厚12μmの樹脂膜を形成した。
 これを、窒素雰囲気下、オーブンを用いて200℃で90分加熱し、フッ酸処理(2質量%フッ酸水溶液に浸漬)した。フッ酸から基板を取り出した後に、硬化膜をSi基板から剥離して、これを試験片とした。
 測定装置は、ネットワークアナライザHP8510C、シンセサイズドスイーパHP83651AおよびテストセットHP8517B(全てアジレント・テクノロジー社製)を用いた。これら装置と、円筒空洞共振器(内径φ42mm、高さ30mm)とを、セットアップした。
 上記共振器内に試験片を挿入した状態と、未挿入状態とで、共振周波数、3dB帯域幅、透過電力比などを、周波数25GHzで測定した。そして、これら測定結果をソフトウェアで解析的に計算することで、誘電率(Dk)および誘電正接(Df)の誘電特性を求めた。なお、測定モードはTE011モードとした。
(Evaluation of permittivity and dielectric loss tangent by cavity resonator method)
First, a test piece was obtained using the resin composition.
Specifically, the resin composition prepared in the example was applied to a Si substrate and prebaked at 120° C. for 4 minutes to form a resin film having a coating thickness of 12 μm.
This was heated in an oven at 200° C. for 90 minutes in a nitrogen atmosphere and hydrofluoric acid treatment (immersed in a 2 mass % hydrofluoric acid aqueous solution). After removing the substrate from the hydrofluoric acid, the cured film was peeled off from the Si substrate and used as a test piece.
A network analyzer HP8510C, a synthesized sweeper HP83651A, and a test set HP8517B (all manufactured by Agilent Technologies) were used as measuring devices. These devices and a cylindrical cavity resonator (inner diameter φ42 mm, height 30 mm) were set up.
The resonance frequency, 3 dB bandwidth, transmitted power ratio, etc. were measured at a frequency of 25 GHz with and without inserting the test piece into the resonator. Then, by analytically calculating these measurement results with software, the dielectric properties such as dielectric constant (Dk) and dielectric loss tangent (Df) were determined. The measurement mode was TE 011 mode.
(スパイラルフローの測定)
 低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて、EMMI-1-66に準じたスパイラルフロー測定用の金型に金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で、実施例で得られた樹脂組成物を注入し、流動長を測定した。
(Spiral flow measurement)
Using a low-pressure transfer molding machine ("KTS-15" manufactured by Kotaki Seiki Co., Ltd.), a mold for spiral flow measurement according to EMMI-1-66 was placed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and cured. The resin composition obtained in the example was injected under the condition of 120 seconds, and the flow length was measured.
(ゲルタイム(GT))
 175℃に加熱した熱板上で実施例の樹脂組成物をそれぞれ溶融後、へらで練りながら硬化するまでの時間(単位:秒)を測定した。
(Gel Time (GT))
After each resin composition of the example was melted on a hot plate heated to 175° C., the time (unit: seconds) until curing was measured while kneading with a spatula.
(機械強度の評価(曲げ強度/曲げ弾性率))
 実施例の樹脂組成物を、低圧トランスファー成形機(コータキ精機株式会社製「KTS-30」)を用いて、金型温度130℃、注入圧力9.8MPa、硬化時間300秒の条件で金型に注入成形した。これにより、幅10mm、厚み4mm、長さ80mmの成形品を得た。次いで、得られた成形品を175℃、4時間の条件で後硬化させた。これにより、機械的強度の評価用の試験片を作製した。そして、試験片の室温(25℃)または260℃における曲げ強度(N/mm)および曲げ弾性率(N/mm)を、JIS K 6911に準拠して、ヘッドスピード5mm/minで測定した。
(Evaluation of mechanical strength (flexural strength/flexural modulus))
Using a low-pressure transfer molding machine ("KTS-30" manufactured by Kotaki Seiki Co., Ltd.), the resin composition of the example is placed in a mold under the conditions of a mold temperature of 130 ° C., an injection pressure of 9.8 MPa, and a curing time of 300 seconds. Injection molded. As a result, a molded article having a width of 10 mm, a thickness of 4 mm and a length of 80 mm was obtained. The resulting molded article was then post-cured at 175° C. for 4 hours. This produced a test piece for evaluation of mechanical strength. Then, the bending strength (N/mm 2 ) and bending elastic modulus (N/mm 2 ) of the test piece at room temperature (25°C) or 260°C were measured in accordance with JIS K 6911 at a head speed of 5 mm/min. .
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表2に示すように、本発明に係る実施例の熱硬化性樹脂組成物は、高誘電率充填剤を含むことにより、特にチタン酸マグネシウムを含むことにより、低誘電正接に優れていた。このことから、本発明の熱硬化性樹脂組成物は、マイクロストリップアンテナを形成する材料、誘電体導波路を形成する材料、電磁波吸収体を形成する材料として好適に用いられることが明らかとなった。 As shown in Table 2, the thermosetting resin compositions of the examples according to the present invention were excellent in low dielectric loss tangent due to the inclusion of the high dielectric constant filler, particularly due to the inclusion of magnesium titanate. From this, it has been clarified that the thermosetting resin composition of the present invention is suitably used as a material for forming a microstrip antenna, a material for forming a dielectric waveguide, and a material for forming an electromagnetic wave absorber. .
<実施例C>
(実施例C1~C17)
 以下の原料を表3に示す配合量で、常温でミキサーを用いて混合した後、70~100℃でロール混錬した。次いで、得られた混錬物を冷却した後、これを粉砕して粉粒状の樹脂組成物を得た。ついで、高圧で打錠成形することにより、タブレット状の樹脂組成物を得た。
<Example C>
(Examples C1 to C17)
The following raw materials were blended at room temperature using a mixer in the blending amounts shown in Table 3, and then roll-kneaded at 70 to 100°C. After cooling the obtained kneaded material, the kneaded material was pulverized to obtain a powdery resin composition. Subsequently, tablet-shaped resin composition was obtained by tablet-molding at high pressure.
 (無機充填剤)
・無機充填剤1:溶融球状シリカ(デンカ株式会社製)
(Inorganic filler)
・ Inorganic filler 1: Fused spherical silica (manufactured by Denka Co., Ltd.)
 (高誘電率充填剤)
・高誘電率充填剤1:チタン酸カルシウム(平均粒子径2.0μm) 
・高誘電率充填剤2:チタン酸マグネシウム、(平均粒径0.8μm、表面処理あり、チタン工業社製) 
(High dielectric constant filler)
・High dielectric constant filler 1: calcium titanate (average particle size 2.0 μm)
・High dielectric constant filler 2: Magnesium titanate (average particle size 0.8 μm, with surface treatment, manufactured by Titan Kogyo Co., Ltd.)
 (着色剤)
・着色剤1:黒色酸化チタン(赤穂化成社製)
(coloring agent)
・ Coloring agent 1: Black titanium oxide (manufactured by Ako Kasei Co., Ltd.)
 (カップリング剤)
・カップリング剤1:フェニルアミノプロピルトリメトキシシラン(CF4083、東レ・ダウコーニング社製)
・カップリング剤2:3-メルカプトプロピルトリメトキシシラン(サイラエース、JNC社製)
(coupling agent)
Coupling agent 1: phenylaminopropyltrimethoxysilane (CF4083, manufactured by Dow Corning Toray Co., Ltd.)
・ Coupling agent 2: 3-mercaptopropyltrimethoxysilane (Sila Ace, manufactured by JNC)
 (エポキシ樹脂)
・エポキシ樹脂1:ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂(NC3000L、日本化薬社製)
・エポキシ樹脂2:ナフトールアラルキル型エポキシ樹脂(ESN-475V、新日鉄住金化学社製) 
・エポキシ樹脂3:ビスフェノールA型エポキシ樹脂(YL6810、三菱化学社製)
・エポキシ樹脂4:ビスフェノールF型エポキシ樹脂(jER806H、三菱ケミカル社製)
・エポキシ樹脂5:フェノールアラルキル型エポキシ樹脂(ミレックスE-XLC-4L(エポキシ等量238g/eq, 軟化点62℃)、三井化学社製)
・エポキシ樹脂6:ナフタレン型エポキシ樹脂(EPICLON HP-4770、DIC社製)
・エポキシ樹脂7:ジシクロペンタジエン型エポキシ樹脂(EPICLON HP-7200L、DIC社製)
・エポキシ樹脂8:グリシジルアミン型エポキシ樹脂(jER603、三菱ケミカル社製)
(Epoxy resin)
- Epoxy resin 1: biphenylene skeleton-containing phenol aralkyl type epoxy resin (NC3000L, manufactured by Nippon Kayaku Co., Ltd.)
・ Epoxy resin 2: naphthol aralkyl type epoxy resin (ESN-475V, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
・ Epoxy resin 3: bisphenol A type epoxy resin (YL6810, manufactured by Mitsubishi Chemical Corporation)
・ Epoxy resin 4: bisphenol F type epoxy resin (jER806H, manufactured by Mitsubishi Chemical Corporation)
・ Epoxy resin 5: phenol aralkyl type epoxy resin (Milex E-XLC-4L (epoxy equivalent weight 238 g / eq, softening point 62 ° C.), manufactured by Mitsui Chemicals)
・ Epoxy resin 6: naphthalene type epoxy resin (EPICLON HP-4770, manufactured by DIC Corporation)
・ Epoxy resin 7: dicyclopentadiene type epoxy resin (EPICLON HP-7200L, manufactured by DIC)
・ Epoxy resin 8: glycidylamine type epoxy resin (jER603, manufactured by Mitsubishi Chemical Corporation)
 (硬化剤)
・硬化剤1:下記調製方法で調製した活性エステル硬化剤
 (活性エステル硬化剤の調製方法)
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、ビフェニル-4,4’-ジカルボン酸ジクロライド279.1g(酸クロリド基のモル数:2.0モル)とトルエン1338gとを仕込み、系内を減圧窒素置換して溶解させた。次いで、α-ナフトール96.5g(0.67モル)、ジシクロペンタジエンフェノール樹脂を219.5g(フェノール性水酸基のモル数:1.33モル)を仕込み、系内を減圧窒素置換して溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し不揮発分65%のトルエン溶液状態にある活性エステル樹脂を得た。得られた活性エステル樹脂の構造を確認したところ、上述の式(1-1)においてR及びRが水素原子、Zがナフチル基、lが0の構造を有していた。さらに、繰り返し単位の平均値kは、反応等量比から算出したところ0.5~1.0の範囲であった。
(curing agent)
・ Curing agent 1: Active ester curing agent prepared by the following preparation method (Preparation method of active ester curing agent)
279.1 g of biphenyl-4,4′-dicarboxylic acid dichloride (moles of acid chloride group: 2.0 mol) and 1338 g of toluene were placed in a flask equipped with a thermometer, dropping funnel, condenser, fractionating tube, and stirrer. was charged, and the inside of the system was replaced with nitrogen under reduced pressure to dissolve. Next, 96.5 g (0.67 mol) of α-naphthol and 219.5 g of dicyclopentadiene phenolic resin (number of moles of phenolic hydroxyl groups: 1.33 mol) were charged, and the system was decompressed and replaced with nitrogen to dissolve. rice field. Thereafter, while purging with nitrogen gas, the inside of the system was controlled at 60° C. or less, and 400 g of a 20% sodium hydroxide aqueous solution was added dropwise over 3 hours. Stirring was then continued under these conditions for 1.0 hour. After completion of the reaction, the mixture was allowed to stand still for liquid separation, and the aqueous layer was removed. Further, water was added to the toluene phase in which the reactants were dissolved, and the mixture was stirred and mixed for about 15 minutes, and the mixture was allowed to stand still for liquid separation to remove the aqueous layer. This operation was repeated until the pH of the aqueous layer reached 7. Thereafter, water was removed by decanter dehydration to obtain an active ester resin in the form of a toluene solution having a non-volatile content of 65%. When the structure of the obtained active ester resin was confirmed, it had a structure in which R 1 and R 3 were hydrogen atoms, Z was a naphthyl group, and 1 was 0 in the above formula (1-1). Furthermore, the average value k of the repeating units was in the range of 0.5 to 1.0 as calculated from the reaction equivalence ratio.
・硬化剤2:下記調製方法で調製した活性エステル硬化剤
 (活性エステル硬化剤の調製方法)
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、1,3-ベンゼンジカルボン酸ジクロリド203.0g(酸クロリド基のモル数:2.0モル)とトルエン1338gとを仕込み、系内を減圧窒素置換して溶解させた。次いで、α-ナフトール96.5g(0.67モル)、ジシクロペンタジエンフェノール樹脂を219.5g(フェノール性水酸基のモル数:1.33モル)を仕込み、系内を減圧窒素置換して溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し不揮発分65%のトルエン溶液状態にある活性エステル樹脂を得た。得られた活性エステル樹脂の構造を確認したところ、上述の式(1-3)においてR及びRが水素原子、Zがナフチル基、lが0の構造を有していた。活性エステル樹脂の繰り返し単位の平均値kは、反応等量比から算出したところ0.5~1.0の範囲であった。得られた活性エステル樹脂は具体的に以下の化学式で表される構造を有していた。下記式中、繰り返し単位の平均値kは0.5~1.0であった。
Figure JPOXMLDOC01-appb-C000030
・ Curing agent 2: Active ester curing agent prepared by the following preparation method (Preparation method of active ester curing agent)
A flask equipped with a thermometer, dropping funnel, condenser, fractionating tube and stirrer was charged with 203.0 g of 1,3-benzenedicarboxylic acid dichloride (moles of acid chloride group: 2.0 mol) and 1338 g of toluene. It was charged, and the inside of the system was replaced with nitrogen under reduced pressure to dissolve. Next, 96.5 g (0.67 mol) of α-naphthol and 219.5 g of dicyclopentadiene phenolic resin (number of moles of phenolic hydroxyl groups: 1.33 mol) were charged, and the system was decompressed and replaced with nitrogen to dissolve. rice field. Thereafter, while purging with nitrogen gas, the inside of the system was controlled at 60° C. or less, and 400 g of a 20% sodium hydroxide aqueous solution was added dropwise over 3 hours. Stirring was then continued under these conditions for 1.0 hour. After completion of the reaction, the mixture was allowed to stand still for liquid separation, and the aqueous layer was removed. Further, water was added to the toluene phase in which the reactants were dissolved, and the mixture was stirred and mixed for about 15 minutes, and the mixture was allowed to stand still for liquid separation to remove the aqueous layer. This operation was repeated until the pH of the aqueous layer reached 7. Thereafter, water was removed by decanter dehydration to obtain an active ester resin in the form of a toluene solution having a non-volatile content of 65%. When the structure of the obtained active ester resin was confirmed, it had a structure in which R 1 and R 3 were hydrogen atoms, Z was a naphthyl group, and 1 was 0 in the above formula (1-3). The average value k of repeating units of the active ester resin was in the range of 0.5 to 1.0 as calculated from the reaction equivalent ratio. The obtained active ester resin specifically had a structure represented by the following chemical formula. In the following formula, the average value k of repeating units was 0.5 to 1.0.
Figure JPOXMLDOC01-appb-C000030
 (硬化触媒)
・硬化触媒1:テトラフェニルフォスフォニウム-4,4’-スルフォニルジフェノラート
(Curing catalyst)
- Curing catalyst 1: tetraphenylphosphonium-4,4'-sulfonyl diphenolate
 (添加剤)
・シリコーン1:ジメチルシロキサン-ジグリシジンエーテル共重合体(M69B、住友ベークライト社製)
(Additive)
・ Silicone 1: dimethylsiloxane-diglycidin ether copolymer (M69B, manufactured by Sumitomo Bakelite Co., Ltd.)
 (低応力剤)
・低応力剤1:カルボキシル基末端ブタジエンアクリルゴム(CTBN1008SP、宇部興産社製)
(Low stress agent)
・Low stress agent 1: Carboxyl group-terminated butadiene acrylic rubber (CTBN1008SP, manufactured by Ube Industries, Ltd.)
(空洞共振器法による誘電率および誘電正接の評価)
 まず、樹脂組成物を用いて、試験片を得た。
 具体的には、実施例で調製した樹脂組成物を、Si基板に塗布し、120℃で4分間プリベークを行い、塗布膜厚12μmの樹脂膜を形成した。
 これを、窒素雰囲気下、オーブンを用いて200℃で90分加熱し、フッ酸処理(2質量%フッ酸水溶液に浸漬)した。フッ酸から基板を取り出した後に、硬化膜をSi基板から剥離して、これを試験片とした。
 測定装置は、ネットワークアナライザHP8510C、シンセサイズドスイーパHP83651AおよびテストセットHP8517B(全てアジレント・テクノロジー社製)を用いた。これら装置と、円筒空洞共振器(内径φ42mm、高さ30mm)とを、セットアップした。
 上記共振器内に試験片を挿入した状態と、未挿入状態とで、共振周波数、3dB帯域幅、透過電力比などを、周波数25GHzで測定した。そして、これら測定結果をソフトウェアで解析的に計算することで、誘電率(Dk)および誘電正接(Df)の誘電特性を求めた。なお、測定モードはTE011モードとした。
(Evaluation of permittivity and dielectric loss tangent by cavity resonator method)
First, a test piece was obtained using the resin composition.
Specifically, the resin composition prepared in the example was applied to a Si substrate and prebaked at 120° C. for 4 minutes to form a resin film having a coating thickness of 12 μm.
This was heated in an oven at 200° C. for 90 minutes in a nitrogen atmosphere and hydrofluoric acid treatment (immersed in a 2 mass % hydrofluoric acid aqueous solution). After removing the substrate from the hydrofluoric acid, the cured film was peeled off from the Si substrate and used as a test piece.
A network analyzer HP8510C, a synthesized sweeper HP83651A, and a test set HP8517B (all manufactured by Agilent Technologies) were used as measuring devices. These devices and a cylindrical cavity resonator (inner diameter φ42 mm, height 30 mm) were set up.
The resonance frequency, 3 dB bandwidth, transmitted power ratio, etc. were measured at a frequency of 25 GHz with and without inserting the test piece into the resonator. Then, by analytically calculating these measurement results with software, the dielectric properties such as dielectric constant (Dk) and dielectric loss tangent (Df) were determined. The measurement mode was TE 011 mode.
(スパイラルフローの測定)
 低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて、EMMI-1-66に準じたスパイラルフロー測定用の金型に金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で、実施例で得られた樹脂組成物を注入し、流動長を測定した。
(Spiral flow measurement)
Using a low-pressure transfer molding machine ("KTS-15" manufactured by Kotaki Seiki Co., Ltd.), a mold for spiral flow measurement according to EMMI-1-66 was placed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and cured. The resin composition obtained in the example was injected under the condition of 120 seconds, and the flow length was measured.
(ゲルタイム(GT))
 175℃に加熱した熱板上で実施例の樹脂組成物をそれぞれ溶融後、へらで練りながら硬化するまでの時間(単位:秒)を測定した。
(Gel Time (GT))
After each resin composition of the example was melted on a hot plate heated to 175° C., the time (unit: seconds) until curing was measured while kneading with a spatula.
(機械強度の評価(曲げ強度/曲げ弾性率))
 実施例の樹脂組成物を、低圧トランスファー成形機(コータキ精機株式会社製「KTS-30」)を用いて、金型温度130℃、注入圧力9.8MPa、硬化時間300秒の条件で金型に注入成形した。これにより、幅10mm、厚み4mm、長さ80mmの成形品を得た。次いで、得られた成形品を175℃、4時間の条件で後硬化させた。これにより、機械的強度の評価用の試験片を作製した。そして、試験片の室温(25℃)または260℃における曲げ強度(N/mm)および曲げ弾性率(N/mm)を、JIS K 6911に準拠して、ヘッドスピード5mm/minで測定した。
(Evaluation of mechanical strength (flexural strength/flexural modulus))
Using a low-pressure transfer molding machine ("KTS-30" manufactured by Kotaki Seiki Co., Ltd.), the resin composition of the example is placed in a mold under the conditions of a mold temperature of 130 ° C., an injection pressure of 9.8 MPa, and a curing time of 300 seconds. Injection molded. As a result, a molded article having a width of 10 mm, a thickness of 4 mm and a length of 80 mm was obtained. The resulting molded article was then post-cured at 175° C. for 4 hours. This produced a test piece for evaluation of mechanical strength. Then, the bending strength (N/mm 2 ) and bending elastic modulus (N/mm 2 ) of the test piece at room temperature (25°C) or 260°C were measured in accordance with JIS K 6911 at a head speed of 5 mm/min. .
(矩形圧の測定)
 実施例の樹脂組成物の矩形圧を次のように測定した。まず、低圧トランスファー成形機(NEC(株)製、40tマニュアルプレス)を用いて、金型温度175℃、注入速度177mm/秒の条件にて、幅13mm、厚さ1mm、長さ175mmの矩形状の流路に樹脂組成物を注入した。このとき、流路の上流先端から25mmの位置に埋設した圧力センサーにて圧力の経時変化を測定し、樹脂組成物の流動時における最低圧力(MPa)を測定し、これを矩形圧とした。矩形圧は、溶融粘度のパラメータであり、数値が小さい方が、溶融粘度が低いことを示す。
(Measurement of rectangular pressure)
The rectangular pressure of the resin composition of the example was measured as follows. First, using a low-pressure transfer molding machine (manufactured by NEC Corporation, 40t manual press), a rectangular mold having a width of 13 mm, a thickness of 1 mm, and a length of 175 mm was molded under conditions of a mold temperature of 175°C and an injection rate of 177 mm 3 /sec. A resin composition was injected into the shaped channel. At this time, a pressure sensor embedded at a position 25 mm from the upstream end of the flow channel was used to measure the change in pressure over time, and the minimum pressure (MPa) during the flow of the resin composition was measured, which was defined as the rectangular pressure. Rectangular pressure is a parameter of melt viscosity, and a smaller numerical value indicates a lower melt viscosity.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 表3の結果から、本発明の熱硬化性樹脂組成物によれば、エポキシ樹脂(A1)、硬化剤(B)および高誘電率充填剤(C)を含むことにより、特に特定のエポキシ樹脂を用いることにより、高誘電率および低誘電正接に優れた誘電体基板、言い換えればこれらの特性のバランスに優れた誘電体基板が得られることが明らかとなった。 From the results of Table 3, according to the thermosetting resin composition of the present invention, by including the epoxy resin (A1), the curing agent (B) and the high dielectric constant filler (C), the specific epoxy resin It has been clarified that a dielectric substrate excellent in a high dielectric constant and a low dielectric loss tangent, in other words, a dielectric substrate excellent in balance of these characteristics can be obtained by using it.
<実施例D>
(実施例D1~D8)
 以下の原料を表4に示す配合量で、常温でミキサーを用いて混合した後、70~100℃でロール混錬した。次いで、得られた混錬物を冷却した後、これを粉砕して粉粒状の樹脂組成物を得た。ついで、高圧で打錠成形することにより、タブレット状の樹脂組成物を得た。
<Example D>
(Examples D1 to D8)
The following raw materials were blended at room temperature using a mixer in the blending amounts shown in Table 4, and then roll-kneaded at 70 to 100°C. After cooling the obtained kneaded material, the kneaded material was pulverized to obtain a powdery resin composition. Subsequently, tablet-shaped resin composition was obtained by tablet-molding at high pressure.
(無機充填剤)
・無機充填剤1:溶融球状シリカ(デンカ株式会社製)
(Inorganic filler)
・ Inorganic filler 1: Fused spherical silica (manufactured by Denka Co., Ltd.)
(高誘電率充填剤)
・高誘電率充填剤1:チタン酸カルシウム(平均粒子径2.0μm)
・高誘電率充填剤2:チタン酸マグネシウム(平均粒子径0.8μm)
・高誘電率充填剤3:チタン酸ストロンチウム(平均粒子径1.6μm)
(High dielectric constant filler)
・High dielectric constant filler 1: calcium titanate (average particle size 2.0 μm)
・High dielectric constant filler 2: magnesium titanate (average particle size 0.8 μm)
・High dielectric constant filler 3: Strontium titanate (average particle size 1.6 μm)
(着色剤)
・着色剤1:黒色酸化チタン(赤穂化成社製)
(coloring agent)
・ Coloring agent 1: Black titanium oxide (manufactured by Ako Kasei Co., Ltd.)
(カップリング剤)
・カップリング剤1:フェニルアミノプロピルトリメトキシシラン(製品名CF4083、東レ・ダウコーニング社製)
・カップリング剤2:3-メルカプトプロピルトリメトキシシラン(製品名サイラエース、JNC社製)
(coupling agent)
Coupling agent 1: phenylaminopropyltrimethoxysilane (product name CF4083, manufactured by Dow Corning Toray Co., Ltd.)
・ Coupling agent 2: 3-mercaptopropyltrimethoxysilane (product name: Sila Ace, manufactured by JNC)
(エポキシ樹脂)
・エポキシ樹脂1:ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂(製品名NC3000L、日本化薬社製)
・エポキシ樹脂2:ナフトールアラルキル型エポキシ樹脂(前記一般式(a)においてRが水素原子、エポキシ当量:310~350g/eq、軟化点:70~90℃、150℃溶融粘度:0.1~0.4Pa・s)(製品名ESN-475V、日鉄ケミカル社製、)
(Epoxy resin)
・ Epoxy resin 1: Biphenylene skeleton-containing phenol aralkyl type epoxy resin (product name NC3000L, manufactured by Nippon Kayaku Co., Ltd.)
・ Epoxy resin 2: naphthol aralkyl type epoxy resin (in the general formula (a), R is a hydrogen atom, epoxy equivalent: 310 to 350 g / eq, softening point: 70 to 90 ° C., 150 ° C. melt viscosity: 0.1 to 0 .4 Pa s) (product name ESN-475V, manufactured by Nippon Steel Chemical Co., Ltd.)
(硬化剤)
・硬化剤1:下記調製方法で調製した活性エステル硬化剤
(活性エステル硬化剤の調製方法)
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、ビフェニル-4,4’-ジカルボン酸ジクロライド279.1g(酸クロリド基のモル数:2.0モル)とトルエン1338gとを仕込み、系内を減圧窒素置換して溶解させた。次いで、α-ナフトール96.5g(0.67モル)、ジシクロペンタジエンフェノール樹脂を219.5g(フェノール性水酸基のモル数:1.33モル)を仕込み、系内を減圧窒素置換して溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し不揮発分65%のトルエン溶液状態にある活性エステル樹脂を得た。得られた活性エステル樹脂の構造を確認したところ、上述の式(1-1)においてR及びRが水素原子、Zがナフチル基、lが0の構造を有していた。さらに、繰り返し単位の平均値kは、反応等量比から算出したところ0.5~1.0の範囲であった。
(curing agent)
- Curing agent 1: an active ester curing agent prepared by the following preparation method (method for preparing an active ester curing agent)
279.1 g of biphenyl-4,4′-dicarboxylic acid dichloride (moles of acid chloride group: 2.0 mol) and 1338 g of toluene were placed in a flask equipped with a thermometer, dropping funnel, condenser, fractionating tube, and stirrer. was charged, and the inside of the system was replaced with nitrogen under reduced pressure to dissolve. Next, 96.5 g (0.67 mol) of α-naphthol and 219.5 g of dicyclopentadiene phenolic resin (number of moles of phenolic hydroxyl groups: 1.33 mol) were charged, and the system was decompressed and replaced with nitrogen to dissolve. rice field. Thereafter, while purging with nitrogen gas, the inside of the system was controlled at 60° C. or less, and 400 g of a 20% sodium hydroxide aqueous solution was added dropwise over 3 hours. Stirring was then continued under these conditions for 1.0 hour. After completion of the reaction, the mixture was allowed to stand still for liquid separation, and the aqueous layer was removed. Further, water was added to the toluene phase in which the reactants were dissolved, and the mixture was stirred and mixed for about 15 minutes, and the mixture was allowed to stand still for liquid separation to remove the aqueous layer. This operation was repeated until the pH of the aqueous layer reached 7. Thereafter, water was removed by decanter dehydration to obtain an active ester resin in the form of a toluene solution having a non-volatile content of 65%. When the structure of the obtained active ester resin was confirmed, it had a structure in which R 1 and R 3 were hydrogen atoms, Z was a naphthyl group, and l was 0 in the above formula (1-1). Furthermore, the average value k of the repeating units was in the range of 0.5 to 1.0 as calculated from the reaction equivalence ratio.
・硬化剤2:下記調製方法で調製した活性エステル硬化剤
 (活性エステル硬化剤の調製方法)
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、1,3-ベンゼンジカルボン酸ジクロリド203.0g(酸クロリド基のモル数:2.0モル)とトルエン1338gとを仕込み、系内を減圧窒素置換して溶解させた。次いで、α-ナフトール96.5g(0.67モル)、ジシクロペンタジエンフェノール樹脂を219.5g(フェノール性水酸基のモル数:1.33モル)を仕込み、系内を減圧窒素置換して溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し不揮発分65%のトルエン溶液状態にある活性エステル樹脂を得た。得られた活性エステル樹脂の構造を確認したところ、上述の式(1-3)においてR及びRが水素原子、Zがナフチル基、lが0の構造を有していた。活性エステル樹脂の繰り返し単位の平均値kは、反応等量比から算出したところ0.5~1.0の範囲であった。得られた活性エステル樹脂は具体的に以下の化学式で表される構造を有していた。下記式中、繰り返し単位の平均値kは0.5~1.0であった。
Figure JPOXMLDOC01-appb-C000033
・ Curing agent 2: Active ester curing agent prepared by the following preparation method (Preparation method of active ester curing agent)
A flask equipped with a thermometer, dropping funnel, condenser, fractionating tube and stirrer was charged with 203.0 g of 1,3-benzenedicarboxylic acid dichloride (moles of acid chloride group: 2.0 mol) and 1338 g of toluene. It was charged, and the inside of the system was replaced with nitrogen under reduced pressure to dissolve. Next, 96.5 g (0.67 mol) of α-naphthol and 219.5 g of dicyclopentadiene phenolic resin (number of moles of phenolic hydroxyl groups: 1.33 mol) were charged, and the system was decompressed and replaced with nitrogen to dissolve. rice field. Thereafter, while purging with nitrogen gas, the inside of the system was controlled at 60° C. or less, and 400 g of a 20% sodium hydroxide aqueous solution was added dropwise over 3 hours. Stirring was then continued under these conditions for 1.0 hour. After completion of the reaction, the mixture was allowed to stand still for liquid separation, and the aqueous layer was removed. Further, water was added to the toluene phase in which the reactants were dissolved, and the mixture was stirred and mixed for about 15 minutes, and the mixture was allowed to stand still for liquid separation to remove the aqueous layer. This operation was repeated until the pH of the aqueous layer reached 7. Thereafter, water was removed by decanter dehydration to obtain an active ester resin in the form of a toluene solution having a non-volatile content of 65%. When the structure of the obtained active ester resin was confirmed, it had a structure in which R 1 and R 3 were hydrogen atoms, Z was a naphthyl group, and 1 was 0 in the above formula (1-3). The average value k of repeating units of the active ester resin was in the range of 0.5 to 1.0 as calculated from the reaction equivalent ratio. The obtained active ester resin specifically had a structure represented by the following chemical formula. In the following formula, the average value k of repeating units was 0.5 to 1.0.
Figure JPOXMLDOC01-appb-C000033
(触媒)
・触媒1:テトラフェニルフォスフォニウム-4,4’-スルフォニルジフェノラート
・触媒2:テトラフェニルホスホニウムビス(ナフタレン-2,3-ジオキシ)フェニルシリケート
(catalyst)
・Catalyst 1: Tetraphenylphosphonium-4,4′-sulfonyldiphenolate ・Catalyst 2: Tetraphenylphosphonium bis(naphthalene-2,3-dioxy)phenylsilicate
(離型剤)
・離型剤1:グリセリントリモンタン酸エステル(製品名:リコルブWE-4、クラリアントジャパン社製)
(Release agent)
・Releasing agent 1: glycerin trimontanate (product name: Recolb WE-4, manufactured by Clariant Japan Co., Ltd.)
(シリコーン化合物)
・シリコーン化合物1:ジメチルシロキサン-ジグリシジンエーテル共重合体(製品名:M69B、住友ベークライト社製)
(silicone compound)
・ Silicone compound 1: dimethylsiloxane-diglycidin ether copolymer (product name: M69B, manufactured by Sumitomo Bakelite Co., Ltd.)
(低応力剤)
・低応力剤1:カルボキシル基末端ブタジエンアクリルゴム(製品名:CTBN1008SP、宇部興産社製)
(Low stress agent)
・Low stress agent 1: Carboxyl group-terminated butadiene acrylic rubber (product name: CTBN1008SP, manufactured by Ube Industries, Ltd.)
(空洞共振器法による誘電率および誘電正接の評価)
 まず、樹脂組成物を用いて、試験片を得た。
 具体的には、実施例で調製した樹脂組成物を、Si基板に塗布し、120℃で4分間プリベークを行い、塗布膜厚12μmの樹脂膜を形成した。
 これを、窒素雰囲気下、オーブンを用いて200℃で90分加熱し、フッ酸処理(2質量%フッ酸水溶液に浸漬)した。フッ酸から基板を取り出した後に、硬化膜をSi基板から剥離して、これを試験片とした。
 測定装置は、ネットワークアナライザHP8510C、シンセサイズドスイーパHP83651AおよびテストセットHP8517B(全てアジレント・テクノロジー社製)を用いた。これら装置と、円筒空洞共振器(内径φ42mm、高さ30mm)とを、セットアップした。
 上記共振器内に試験片を挿入した状態と、未挿入状態とで、共振周波数、3dB帯域幅、透過電力比などを、周波数25GHzで測定した。そして、これら測定結果をソフトウェアで解析的に計算することで、誘電率(Dk)および誘電正接(Df)の誘電特性を求めた。なお、測定モードはTE011モードとした。
(Evaluation of permittivity and dielectric loss tangent by cavity resonator method)
First, a test piece was obtained using the resin composition.
Specifically, the resin composition prepared in the example was applied to a Si substrate and prebaked at 120° C. for 4 minutes to form a resin film having a coating thickness of 12 μm.
This was heated in an oven at 200° C. for 90 minutes in a nitrogen atmosphere and hydrofluoric acid treatment (immersed in a 2 mass % hydrofluoric acid aqueous solution). After removing the substrate from the hydrofluoric acid, the cured film was peeled off from the Si substrate and used as a test piece.
A network analyzer HP8510C, a synthesized sweeper HP83651A, and a test set HP8517B (all manufactured by Agilent Technologies) were used as measuring devices. These devices and a cylindrical cavity resonator (inner diameter φ42 mm, height 30 mm) were set up.
The resonance frequency, 3 dB bandwidth, transmitted power ratio, etc. were measured at a frequency of 25 GHz with and without inserting the test piece into the resonator. Then, by analytically calculating these measurement results with software, the dielectric properties such as dielectric constant (Dk) and dielectric loss tangent (Df) were determined. The measurement mode was TE 011 mode.
(スパイラルフロー)
 低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて、EMMI-1-66に準じたスパイラルフロー測定用の金型に金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で、実施例で得られた樹脂組成物を注入し、流動長を測定した。
(spiral flow)
Using a low-pressure transfer molding machine ("KTS-15" manufactured by Kotaki Seiki Co., Ltd.), a mold for spiral flow measurement according to EMMI-1-66 was placed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and cured. The resin composition obtained in the example was injected under the condition of 120 seconds, and the flow length was measured.
(ゲルタイム(GT))
 175℃に加熱した熱板上で実施例の樹脂組成物をそれぞれ溶融後、へらで練りながら硬化するまでの時間(単位:秒)を測定した。
(Gel Time (GT))
After each resin composition of the example was melted on a hot plate heated to 175° C., the time (unit: seconds) until curing was measured while kneading with a spatula.
(機械強度の評価(曲げ強度/曲げ弾性率))
 実施例の樹脂組成物を、低圧トランスファー成形機(コータキ精機株式会社製「KTS-30」)を用いて、金型温度130℃、注入圧力9.8MPa、硬化時間300秒の条件で金型に注入成形した。これにより、幅10mm、厚み4mm、長さ80mmの成形品を得た。次いで、得られた成形品を175℃、4時間の条件で後硬化させた。これにより、機械的強度の評価用の試験片を作製した。そして、試験片の室温(25℃)または260℃における曲げ強度(N/mm)および曲げ弾性率(N/mm)を、JIS K 6911に準拠して、ヘッドスピード5mm/minで測定した。
(Evaluation of mechanical strength (flexural strength/flexural modulus))
Using a low-pressure transfer molding machine ("KTS-30" manufactured by Kotaki Seiki Co., Ltd.), the resin composition of the example is placed in a mold under the conditions of a mold temperature of 130 ° C., an injection pressure of 9.8 MPa, and a curing time of 300 seconds. Injection molded. As a result, a molded article having a width of 10 mm, a thickness of 4 mm and a length of 80 mm was obtained. The resulting molded article was then post-cured at 175° C. for 4 hours. This produced a test piece for evaluation of mechanical strength. Then, the bending strength (N/mm 2 ) and bending elastic modulus (N/mm 2 ) of the test piece at room temperature (25°C) or 260°C were measured in accordance with JIS K 6911 at a head speed of 5 mm/min. .
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 表4に示すように、本発明に係る実施例の熱硬化性樹脂組成物は、エポキシ樹脂(A1)、硬化剤(B)および高誘電率充填剤(C)を含むことにより、特にナフトールアラルキル型エポキシ樹脂を含むことにより、低誘電正接に優れ、高誘電率であった。言い換えれば、低誘電正接および高誘電率のバランスに優れており、本発明の熱硬化性樹脂組成物はマイクロストリップアンテナを形成する材料、誘電体導波路を形成する材料、電磁波吸収体を形成する材料として好適に用いられることが明らかとなった。 As shown in Table 4, the thermosetting resin compositions of the examples according to the present invention were particularly naphthol aralkyl By containing the type epoxy resin, it was excellent in low dielectric loss tangent and had a high dielectric constant. In other words, the thermosetting resin composition of the present invention is excellent in balance between low dielectric loss tangent and high dielectric constant, and the thermosetting resin composition of the present invention forms a material for forming a microstrip antenna, a material for forming a dielectric waveguide, and an electromagnetic wave absorber. It became clear that it is suitably used as a material.
 この出願は、2021年3月25日に出願された日本出願特願2021-051748号、2021年10月21日に出願された日本出願特願2021-172197号、2021年12月6日に出願された日本出願特願2021-197667号、2021年12月6日に出願された日本出願特願2021-197669号、2021年12月6日に出願された日本出願特願2021-197679号、2021年12月6日に出願された日本出願特願2021-197720号および2021年12月6日に出願された日本出願特願2021-197731号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application is Japanese application No. 2021-051748 filed on March 25, 2021, Japanese application No. 2021-172197 filed on October 21, 2021, filed on December 6, 2021 Japanese application No. 2021-197667, Japanese application No. 2021-197669 filed on December 6, 2021, Japanese application No. 2021-197679 filed on December 6, 2021, 2021 Claiming priority based on Japanese Patent Application No. 2021-197720 filed on December 6, 2021 and Japanese Patent Application No. 2021-197731 filed on December 6, 2021, and all disclosures thereof is taken here.
10   マイクロストリップアンテナ
12   誘電体基板
14   放射導体板
16   地導体板
20、20'   マイクロストリップアンテナ
22   誘電体基板
24   高誘電体基板
26   スペーサー
a    空隙部
10 microstrip antenna 12 dielectric substrate 14 radiation conductor plate 16 ground conductor plate 20, 20' microstrip antenna 22 dielectric substrate 24 high dielectric substrate 26 spacer a void

Claims (31)

  1. (A)熱硬化性樹脂と、
    (C)高誘電率充填剤と、を含み、
     前記高誘電率充填剤(C)が、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸マグネシウム、ジルコン酸マグネシウム、ジルコン酸ストロンチウム、チタン酸ビスマス、チタン酸ジルコニウム、チタン酸亜鉛、ジルコン酸バリウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸鉛、ニオブ酸マグネシウム酸バリウム、およびジルコン酸カルシウムから選択される少なくとも1種を含む、熱硬化性樹脂組成物。
    (A) a thermosetting resin;
    (C) a high dielectric constant filler;
    The high dielectric constant filler (C) is calcium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, barium zirconate, zircon titanate. A thermosetting resin composition comprising at least one selected from calcium acid, lead zirconate titanate, barium magnesium niobate, and calcium zirconate.
  2.  さらに活性エステル硬化剤(B1)を含む、請求項1に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1, further comprising an active ester curing agent (B1).
  3.  前記活性エステル硬化剤(B1)は、ジシクロペンタジエン型ジフェノール構造を含む活性エステル硬化剤、ナフタレン構造を含む活性エステル硬化剤、フェノールノボラックのアセチル化物を含む活性エステル硬化剤、およびフェノールノボラックのベンゾイル化物を含む活性エステル硬化剤から選択される少なくとも1種を含む、請求項2に記載の熱硬化性樹脂組成物。 The active ester curing agent (B1) includes an active ester curing agent containing a dicyclopentadiene type diphenol structure, an active ester curing agent containing a naphthalene structure, an active ester curing agent containing an acetylated product of phenol novolac, and a benzoyl of phenol novolak. 3. The thermosetting resin composition according to claim 2, comprising at least one selected from active ester curing agents containing compounds.
  4.  前記活性エステル硬化剤(B1)は、下記一般式(1)で表される構造を備える、請求項2または3に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Aは、脂肪族環状炭化水素基を介して連結された置換または非置換のアリーレン基であり、Ar’は、置換または非置換のアリール基であり、
    Bは、下記一般式(B)で表される構造であり、
    Figure JPOXMLDOC01-appb-C000002
    (一般式(B)中、Arは、置換または非置換のアリーレン基であり、Yは、単結合、置換または非置換の炭素原子数1~6の直鎖のアルキレン基、または置換または非置換の炭素原子数3~6の環式のアルキレン基、置換または非置換の2価の芳香族炭化水素基、エーテル結合、カルボニル基、カルボニルオキシ基、スルフィド基、あるいはスルホン基である。nは0~4の整数である。)
     kは、繰り返し単位の平均値であり、0.25~3.5の範囲である。)
    The thermosetting resin composition according to claim 2 or 3, wherein the active ester curing agent (B1) has a structure represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In general formula (1), A is a substituted or unsubstituted arylene group linked via an aliphatic cyclic hydrocarbon group, Ar′ is a substituted or unsubstituted aryl group,
    B is a structure represented by the following general formula (B),
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (B), Ar is a substituted or unsubstituted arylene group, Y is a single bond, a substituted or unsubstituted linear alkylene group having 1 to 6 carbon atoms, or a substituted or unsubstituted is a cyclic alkylene group having 3 to 6 carbon atoms, a substituted or unsubstituted divalent aromatic hydrocarbon group, an ether bond, a carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group, n is 0 is an integer between ~4.)
    k is the average value of repeating units and ranges from 0.25 to 3.5. )
  5.  さらに硬化触媒(D)を含む、請求項1~4のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 4, further comprising a curing catalyst (D).
  6.  前記熱硬化性樹脂組成物のスパイラルフローの流動長が50cm以上である、請求項1~5のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 5, wherein the flow length of the spiral flow of the thermosetting resin composition is 50 cm or more.
  7.  下記条件で測定された矩形圧が0.1MPa以上である、請求項1~6のいずれか一項に記載の熱硬化性樹脂組成物。
    (条件)
     低圧トランスファー成形機を用いて、金型温度175℃、注入速度177mm/秒の条件にて、幅13mm、厚さ1mm、長さ175mmの矩形状の流路に樹脂組成物を注入し、流路の上流先端から25mmの位置に埋設した圧力センサーにて圧力の経時変化を測定し、前記樹脂組成物の流動時における最低圧力を算出して、この最低圧力を矩形圧とする。
    The thermosetting resin composition according to any one of claims 1 to 6, wherein the rectangular pressure measured under the following conditions is 0.1 MPa or more.
    (conditions)
    Using a low-pressure transfer molding machine, the resin composition was injected into a rectangular channel having a width of 13 mm, a thickness of 1 mm, and a length of 175 mm under conditions of a mold temperature of 175°C and an injection rate of 177 mm 3 /sec. A pressure sensor embedded at a position 25 mm from the upstream end of the channel measures the change in pressure over time to calculate the minimum pressure when the resin composition flows, and this minimum pressure is defined as the rectangular pressure.
  8.  熱硬化性樹脂(A)と、高誘電率充填剤(C)と、を含む樹脂組成物を、200℃で90分加熱して硬化させた硬化物の、空洞共振器法による18GHzでの誘電率が10以上であり、誘電正接(tanδ)が0.04以下である、熱硬化性樹脂組成物。 A resin composition containing a thermosetting resin (A) and a high dielectric constant filler (C) was cured by heating at 200° C. for 90 minutes. Dielectricity at 18 GHz by cavity resonator method A thermosetting resin composition having a modulus of 10 or more and a dielectric loss tangent (tan δ) of 0.04 or less.
  9. (A)熱硬化性樹脂と、
    (B)硬化剤と、
    (C)高誘電率充填剤と、を含み、
     前記高誘電率充填剤(C)がチタン酸マグネシウムを含む、請求項1に記載の熱硬化性樹脂組成物。
    (A) a thermosetting resin;
    (B) a curing agent;
    (C) a high dielectric constant filler;
    2. The thermosetting resin composition according to claim 1, wherein said high dielectric constant filler (C) comprises magnesium titanate.
  10.  前記高誘電率充填剤(C)が、さらにチタン酸カルシウムを含む、請求項9に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 9, wherein the high dielectric constant filler (C) further contains calcium titanate.
  11.  前記熱硬化性樹脂組成物100質量%中に、前記高誘電率充填剤(C)を10質量%以上90質量%以下の量で含む、請求項9または10に記載の熱硬化性樹脂組成物。 11. The thermosetting resin composition according to claim 9, wherein the high dielectric constant filler (C) is contained in an amount of 10% by mass or more and 90% by mass or less in 100% by mass of the thermosetting resin composition. .
  12.  前記硬化剤(B)は活性エステル硬化剤(B1)を含み、
     前記活性エステル硬化剤(B1)は、ジシクロペンタジエン型ジフェノール構造を含む活性エステル硬化剤、ナフタレン構造を含む活性エステル硬化剤、フェノールノボラックのアセチル化物を含む活性エステル硬化剤、およびフェノールノボラックのベンゾイル化物を含む活性エステル硬化剤から選択される少なくとも1種を含む、請求項9~11のいずれか一項に記載の熱硬化性樹脂組成物。
    The curing agent (B) contains an active ester curing agent (B1),
    The active ester curing agent (B1) includes an active ester curing agent containing a dicyclopentadiene type diphenol structure, an active ester curing agent containing a naphthalene structure, an active ester curing agent containing an acetylated product of phenol novolac, and a benzoyl of phenol novolak. The thermosetting resin composition according to any one of claims 9 to 11, comprising at least one selected from active ester curing agents containing compounds.
  13.  前記活性エステル硬化剤(B1)は、下記一般式(1)で表される構造を備える、請求項12に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(1)中、Aは、脂肪族環状炭化水素基を介して連結された置換または非置換のアリーレン基であり、Ar’は、置換または非置換のアリール基であり、
    Bは、下記一般式(B)で表される構造であり、
    Figure JPOXMLDOC01-appb-C000004
    (一般式(B)中、Arは、置換または非置換のアリーレン基であり、Yは、単結合、置換または非置換の炭素原子数1~6の直鎖のアルキレン基、または置換または非置換の炭素原子数3~6の環式のアルキレン基、置換または非置換の2価の芳香族炭化水素基、エーテル結合、カルボニル基、カルボニルオキシ基、スルフィド基、あるいはスルホン基である。nは0~4の整数である。)
     kは、繰り返し単位の平均値であり、0.25~3.5の範囲である。)
    The thermosetting resin composition according to claim 12, wherein the active ester curing agent (B1) has a structure represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000003
    (In general formula (1), A is a substituted or unsubstituted arylene group linked via an aliphatic cyclic hydrocarbon group, Ar′ is a substituted or unsubstituted aryl group,
    B is a structure represented by the following general formula (B),
    Figure JPOXMLDOC01-appb-C000004
    (In the general formula (B), Ar is a substituted or unsubstituted arylene group, Y is a single bond, a substituted or unsubstituted linear alkylene group having 1 to 6 carbon atoms, or a substituted or unsubstituted is a cyclic alkylene group having 3 to 6 carbon atoms, a substituted or unsubstituted divalent aromatic hydrocarbon group, an ether bond, a carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group, n is 0 is an integer between ~4.)
    k is the average value of repeating units and ranges from 0.25 to 3.5. )
  14.  さらに硬化触媒(D)を含む、請求項9~13のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 9 to 13, further comprising a curing catalyst (D).
  15.  前記熱硬化性樹脂組成物のスパイラルフローの流動長が50cm以上である、請求項9~14のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 9 to 14, wherein the spiral flow length of said thermosetting resin composition is 50 cm or more.
  16.  熱硬化性樹脂(A)と、硬化剤(B)と、高誘電率充填剤(C)と、を含む熱硬化性樹脂組成物を、200℃で90分加熱して硬化させた硬化物の、空洞共振器法による25GHzでの誘電正接(tanδ)が0.04以下である、熱硬化性樹脂組成物。 A cured product obtained by heating and curing a thermosetting resin composition containing a thermosetting resin (A), a curing agent (B), and a high dielectric constant filler (C) at 200° C. for 90 minutes. , a thermosetting resin composition having a dielectric loss tangent (tan δ) at 25 GHz by the cavity resonator method of 0.04 or less.
  17. (A)熱硬化性樹脂と、
    (B)硬化剤と、
    (C)高誘電率充填剤と、
    を含む、熱硬化性樹脂組成物であって、
     前記熱硬化性樹脂(A)がエポキシ樹脂(A1)であり、
     前記エポキシ樹脂(A1)が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、およびフェノールアラルキル型エポキシ樹脂からなる群より選択される少なくとも1種を含み、
     前記硬化剤(B)が、活性エステル硬化剤(B1)および/またはフェノール硬化剤(B2)を含み、
     前記高誘電率充填剤(C)が、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸マグネシウム、ジルコン酸マグネシウム、ジルコン酸ストロンチウム、チタン酸ビスマス、チタン酸ジルコニウム、チタン酸亜鉛、ジルコン酸バリウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸鉛、ニオブ酸マグネシウム酸バリウム、およびジルコン酸カルシウムから選択される少なくとも1種を含む、請求項1に記載の熱硬化性樹脂組成物。
    (A) a thermosetting resin;
    (B) a curing agent;
    (C) a high dielectric constant filler;
    A thermosetting resin composition comprising
    The thermosetting resin (A) is an epoxy resin (A1),
    The epoxy resin (A1) is a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a naphthalene type epoxy resin, a dicyclopentadiene type epoxy resin, a glycidylamine type epoxy resin, a naphthol aralkyl type epoxy resin, and a phenol aralkyl type epoxy resin. At least one selected from the group consisting of
    The curing agent (B) comprises an active ester curing agent (B1) and/or a phenolic curing agent (B2),
    The high dielectric constant filler (C) is calcium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, barium zirconate, zircon titanate. 2. The thermosetting resin composition according to claim 1, comprising at least one selected from calcium acid, lead zirconate titanate, barium magnesium niobate, and calcium zirconate.
  18.  前記高誘電率充填剤(C)が、チタン酸カルシウム、チタン酸ストロンチウム、およびチタン酸マグネシウムから選択される少なくとも1種を含む、請求項17に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 17, wherein the high dielectric constant filler (C) contains at least one selected from calcium titanate, strontium titanate, and magnesium titanate.
  19.  前記熱硬化性樹脂組成物100質量%中に、前記高誘電率充填剤(C)を40質量%以上の量で含む、請求項17または18に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 17 or 18, wherein the high dielectric constant filler (C) is contained in an amount of 40% by mass or more in 100% by mass of the thermosetting resin composition.
  20.  前記活性エステル硬化剤(B1)は、ジシクロペンタジエン型ジフェノール構造を含む活性エステル硬化剤、ナフタレン構造を含む活性エステル硬化剤、フェノールノボラックのアセチル化物を含む活性エステル硬化剤、およびフェノールノボラックのベンゾイル化物を含む活性エステル硬化剤から選択される少なくとも1種を含む、請求項17~19のいずれか一項に記載の熱硬化性樹脂組成物。 The active ester curing agent (B1) includes an active ester curing agent containing a dicyclopentadiene type diphenol structure, an active ester curing agent containing a naphthalene structure, an active ester curing agent containing an acetylated product of phenol novolac, and a benzoyl of phenol novolak. The thermosetting resin composition according to any one of claims 17 to 19, comprising at least one selected from active ester curing agents containing compounds.
  21.  前記活性エステル硬化剤(B1)は、下記一般式(1)で表される構造を備える、請求項17~20のいずれか一項に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(1)中、Aは、脂肪族環状炭化水素基を介して連結された置換または非置換のアリーレン基であり、Ar’は、置換または非置換のアリール基であり、
    Bは、下記一般式(B)で表される構造であり、
    Figure JPOXMLDOC01-appb-C000006
    (一般式(B)中、Arは、置換または非置換のアリーレン基であり、Yは、単結合、置換または非置換の炭素原子数1~6の直鎖のアルキレン基、または置換または非置換の炭素原子数3~6の環式のアルキレン基、置換または非置換の2価の芳香族炭化水素基、エーテル結合、カルボニル基、カルボニルオキシ基、スルフィド基、あるいはスルホン基である。nは0~4の整数である。)
     kは、繰り返し単位の平均値であり、0.25~3.5の範囲である。)
    The thermosetting resin composition according to any one of claims 17 to 20, wherein the active ester curing agent (B1) has a structure represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000005
    (In general formula (1), A is a substituted or unsubstituted arylene group linked via an aliphatic cyclic hydrocarbon group, Ar′ is a substituted or unsubstituted aryl group,
    B is a structure represented by the following general formula (B),
    Figure JPOXMLDOC01-appb-C000006
    (In the general formula (B), Ar is a substituted or unsubstituted arylene group, Y is a single bond, a substituted or unsubstituted linear alkylene group having 1 to 6 carbon atoms, or a substituted or unsubstituted is a cyclic alkylene group having 3 to 6 carbon atoms, a substituted or unsubstituted divalent aromatic hydrocarbon group, an ether bond, a carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group, n is 0 is an integer between ~4.)
    k is the average value of repeating units and ranges from 0.25 to 3.5. )
  22. (A)熱硬化性樹脂と、
    (B)硬化剤と、
    (C)高誘電率充填剤と、を含み、 
     前記熱硬化性樹脂(A)がエポキシ樹脂(A1)であり、
     前記エポキシ樹脂(A1)がナフトールアラルキル型エポキシ樹脂を含み、
     前記高誘電率充填剤(C)が、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸マグネシウム、ジルコン酸マグネシウム、ジルコン酸ストロンチウム、チタン酸ビスマス、チタン酸ジルコニウム、チタン酸亜鉛、ジルコン酸バリウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸鉛、ニオブ酸マグネシウム酸バリウム、およびジルコン酸カルシウムから選択される少なくとも1種を含む、請求項1に記載の熱硬化性樹脂組成物。
    (A) a thermosetting resin;
    (B) a curing agent;
    (C) a high dielectric constant filler;
    The thermosetting resin (A) is an epoxy resin (A1),
    The epoxy resin (A1) contains a naphthol aralkyl epoxy resin,
    The high dielectric constant filler (C) is calcium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, barium zirconate, zircon titanate. 2. The thermosetting resin composition according to claim 1, comprising at least one selected from calcium acid, lead zirconate titanate, barium magnesium niobate, and calcium zirconate.
  23.  前記ナフトールアラルキル型エポキシ樹脂のエポキシ当量が250g/eq以上400g/eq以下である、請求項22に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 22, wherein the naphthol aralkyl epoxy resin has an epoxy equivalent of 250 g/eq or more and 400 g/eq or less.
  24.  硬化剤(B)が、活性エステル硬化剤(B1)および/またはフェノール硬化剤(B2)を含む、請求項22または23に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 22 or 23, wherein the curing agent (B) contains an active ester curing agent (B1) and/or a phenolic curing agent (B2).
  25.  さらに硬化触媒(D)を含む、請求項22~24のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 22 to 24, further comprising a curing catalyst (D).
  26.  マイクロストリップアンテナを形成する材料として用いられる、請求項1~25のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 25, which is used as a material for forming a microstrip antenna.
  27.  誘電体導波路を形成する材料として用いられる、請求項1~25のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 25, which is used as a material for forming a dielectric waveguide.
  28.  電磁波吸収体を形成する材料として用いられる、請求項1~25のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 25, which is used as a material for forming an electromagnetic wave absorber.
  29.  請求項1~25のいずれか一項に記載の熱硬化性樹脂組成物を硬化してなる誘電体基板。 A dielectric substrate obtained by curing the thermosetting resin composition according to any one of claims 1 to 25.
  30.  請求項29に記載の誘電体基板と,
     前記誘電体基板の一方の面に設けられた放射導体板と、
     前記誘電体基板の他方の面に設けられた地導体板と、
    を備える、マイクロストリップアンテナ。
    a dielectric substrate according to claim 29;
    a radiation conductor plate provided on one surface of the dielectric substrate;
    a ground conductor plate provided on the other surface of the dielectric substrate;
    a microstrip antenna.
  31.  誘電体基板と,
     前記誘電体基板の一方の面に設けられた放射導体板と、
     前記誘電体基板の他方の面に設けられた地導体板と、
     前記放射導体板に対向配置された高誘電体と、
    を備える、マイクロストリップアンテナであって、
     前記高誘電体が、請求項29に記載の誘電体基板により構成されている、マイクロストリップアンテナ。
    a dielectric substrate;
    a radiation conductor plate provided on one surface of the dielectric substrate;
    a ground conductor plate provided on the other surface of the dielectric substrate;
    a high-dielectric material facing the radiation conductor plate;
    A microstrip antenna comprising:
    30. A microstrip antenna, wherein the high dielectric is composed of the dielectric substrate according to claim 29.
PCT/JP2022/013123 2021-03-25 2022-03-22 Thermosetting resin composition, dielectric substrate, and microstrip antenna WO2022202804A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023509190A JP7351434B2 (en) 2021-03-25 2022-03-22 Thermosetting resin composition, dielectric substrate, and microstrip antenna
CN202280023625.2A CN117043218A (en) 2021-03-25 2022-03-22 Thermosetting resin composition, dielectric substrate and microstrip antenna
KR1020237036072A KR20230160342A (en) 2021-03-25 2022-03-22 Thermosetting resin composition, dielectric substrate, and microstrip antenna
JP2023142704A JP2023164926A (en) 2021-03-25 2023-09-04 Thermosetting resin composition, dielectric substrate, and microstrip antenna

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2021-051748 2021-03-25
JP2021051748 2021-03-25
JP2021-172197 2021-10-21
JP2021172197 2021-10-21
JP2021197679 2021-12-06
JP2021-197731 2021-12-06
JP2021-197679 2021-12-06
JP2021-197669 2021-12-06
JP2021197667 2021-12-06
JP2021197720 2021-12-06
JP2021197731 2021-12-06
JP2021-197720 2021-12-06
JP2021197669 2021-12-06
JP2021-197667 2021-12-06

Publications (1)

Publication Number Publication Date
WO2022202804A1 true WO2022202804A1 (en) 2022-09-29

Family

ID=83395876

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2022/013057 WO2022202781A1 (en) 2021-03-25 2022-03-22 Thermosetting resin composition, high frequency device, dielectric substrate, and microstrip antenna
PCT/JP2022/013094 WO2022202792A1 (en) 2021-03-25 2022-03-22 Thermosetting resin composition, high-frequency device, dielectric substrate, and microstrip antenna
PCT/JP2022/013123 WO2022202804A1 (en) 2021-03-25 2022-03-22 Thermosetting resin composition, dielectric substrate, and microstrip antenna

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/013057 WO2022202781A1 (en) 2021-03-25 2022-03-22 Thermosetting resin composition, high frequency device, dielectric substrate, and microstrip antenna
PCT/JP2022/013094 WO2022202792A1 (en) 2021-03-25 2022-03-22 Thermosetting resin composition, high-frequency device, dielectric substrate, and microstrip antenna

Country Status (4)

Country Link
JP (6) JP7351434B2 (en)
KR (3) KR20230160342A (en)
TW (3) TW202248340A (en)
WO (3) WO2022202781A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145327A1 (en) * 2022-01-26 2023-08-03 株式会社レゾナック Thermosetting resin composition, prepreg, resin film, laminate, printed wiring board, antenna device, antenna module and communication device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241853A (en) * 1994-03-08 1995-09-19 Kinugawa Rubber Ind Co Ltd Induction heating mold
JP2005038821A (en) * 2003-04-04 2005-02-10 Toray Ind Inc Paste composition and dielectric composition using this
CN103351578A (en) * 2013-07-19 2013-10-16 广东生益科技股份有限公司 Resin composition used for forming dielectric layer of dielectric substrate for antenna and application of resin composition
US20150183987A1 (en) * 2013-12-31 2015-07-02 Taiwan Union Technology Corporation Resin composition and uses of the same
JP6870778B1 (en) * 2020-12-11 2021-05-12 昭和電工マテリアルズ株式会社 Resin composition for molding and electronic component equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124066A (en) * 2002-08-07 2004-04-22 Toray Ind Inc High dielectric composition
JP2004315653A (en) 2003-04-16 2004-11-11 Hitachi Chem Co Ltd Resin composition and its use
JP2008106106A (en) 2006-10-24 2008-05-08 Hitachi Chem Co Ltd Resin composition having high permittivity, prepreg and laminated plate used for printed wiring board
JP6066865B2 (en) 2013-08-15 2017-01-25 信越化学工業株式会社 High dielectric constant epoxy resin composition and semiconductor device
JP2018041998A (en) 2015-01-28 2018-03-15 日本化薬株式会社 Antenna and electronic device including the same
JP7067576B2 (en) 2020-02-21 2022-05-16 味の素株式会社 Resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241853A (en) * 1994-03-08 1995-09-19 Kinugawa Rubber Ind Co Ltd Induction heating mold
JP2005038821A (en) * 2003-04-04 2005-02-10 Toray Ind Inc Paste composition and dielectric composition using this
CN103351578A (en) * 2013-07-19 2013-10-16 广东生益科技股份有限公司 Resin composition used for forming dielectric layer of dielectric substrate for antenna and application of resin composition
US20150183987A1 (en) * 2013-12-31 2015-07-02 Taiwan Union Technology Corporation Resin composition and uses of the same
JP6870778B1 (en) * 2020-12-11 2021-05-12 昭和電工マテリアルズ株式会社 Resin composition for molding and electronic component equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145327A1 (en) * 2022-01-26 2023-08-03 株式会社レゾナック Thermosetting resin composition, prepreg, resin film, laminate, printed wiring board, antenna device, antenna module and communication device

Also Published As

Publication number Publication date
WO2022202781A1 (en) 2022-09-29
WO2022202792A1 (en) 2022-09-29
KR20230160869A (en) 2023-11-24
JP7347713B2 (en) 2023-09-20
JPWO2022202781A1 (en) 2022-09-29
TW202248273A (en) 2022-12-16
KR20230161473A (en) 2023-11-27
JP2024014929A (en) 2024-02-01
JP7351434B2 (en) 2023-09-27
JP2023164926A (en) 2023-11-14
TW202248340A (en) 2022-12-16
KR20230160342A (en) 2023-11-23
JPWO2022202804A1 (en) 2022-09-29
TW202248274A (en) 2022-12-16
JPWO2022202792A1 (en) 2022-09-29
JP7396534B2 (en) 2023-12-12
JP2023179419A (en) 2023-12-19

Similar Documents

Publication Publication Date Title
JP5330013B2 (en) Epoxy resin composition and cured product
TWI619738B (en) Phenolic resin composition
TW201815872A (en) Phenol novolak resin, curable resin composition, and cured product thereof
JP5664817B2 (en) Phenolic hydroxyl group-containing compound, phenol resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP2024014929A (en) Thermosetting resin compositions, high frequency devices, dielectric substrates, and microstrip antennas
JP2024026589A (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP6192523B2 (en) Epoxy resin curing agent, production method, and use thereof
KR100376776B1 (en) Cyclopentylene compounds and intermediates thereof, epoxy resin composition, molding material, and resin-sealed electronic device
JP5682805B1 (en) Phenolic hydroxyl group-containing compound, phenol resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP6052868B2 (en) Epoxy resin curing agent, production method, and use thereof
TWI820139B (en) Resin composition, resin member, resin sheet, b-stage sheet, c-stage sheet, metal foil with resin, metal substrate and power semiconductor device
JP2019151754A (en) Resin composition film, resin sheet, b stage sheet, c stage sheet, metal foil with resin, metal substrate and power semiconductor device
CN117043218A (en) Thermosetting resin composition, dielectric substrate and microstrip antenna
KR20220000829A (en) Polyhydric hydroxy resin, method of producing same and epoxy resin composition containing same, and cured epoxy resin
JP2024008617A (en) Molding resin composition, dielectric substrate, and microstrip antenna
JP3933763B2 (en) Epoxy resin composition and electronic component
JP2022093030A (en) Resin composition and high-frequency device
JP2024021200A (en) Thermosetting resin composition for LDS and its uses
JP2024021201A (en) Thermosetting resin composition for LDS and its uses
JP5682804B1 (en) Phenolic hydroxyl group-containing compound, phenol resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
WO2023238950A1 (en) Molding resin composition and electronic component device
WO2023238951A1 (en) Resin composition for molding and electronic component device
JP2022096238A (en) Thermosetting resin composition for lds, and electronic device
JP2024055668A (en) Molding resin composition and electronic component device
JP2022165611A (en) Phenoxy resin, thermosetting resin composition, thermally conductive sheet, resin substrate, laminate, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509190

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280023625.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237036072

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237036072

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775587

Country of ref document: EP

Kind code of ref document: A1