WO2022202632A1 - 加熱処理装置及び加熱処理物の製造方法 - Google Patents

加熱処理装置及び加熱処理物の製造方法 Download PDF

Info

Publication number
WO2022202632A1
WO2022202632A1 PCT/JP2022/012436 JP2022012436W WO2022202632A1 WO 2022202632 A1 WO2022202632 A1 WO 2022202632A1 JP 2022012436 W JP2022012436 W JP 2022012436W WO 2022202632 A1 WO2022202632 A1 WO 2022202632A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat treatment
container
treatment apparatus
chamber
Prior art date
Application number
PCT/JP2022/012436
Other languages
English (en)
French (fr)
Inventor
哲也 吉田
伸彦 加藤
聡 淀川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023509110A priority Critical patent/JPWO2022202632A1/ja
Priority to EP22775420.7A priority patent/EP4296598A4/en
Priority to CN202280023359.3A priority patent/CN117098967A/zh
Publication of WO2022202632A1 publication Critical patent/WO2022202632A1/ja
Priority to US18/471,520 priority patent/US20240009897A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/045Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using gas or flames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/02Conditioning or physical treatment of the material to be shaped by heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/222Gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/06Conditioning or physical treatment of the material to be shaped by drying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/06Chambers, containers, or receptacles
    • F26B25/066Movable chambers, e.g. collapsible, demountable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/06Chambers, containers, or receptacles
    • F26B25/08Parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/06Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/18Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact
    • F26B3/22Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source and the materials or objects to be dried being in relative motion, e.g. of vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B9/00Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards
    • F26B9/06Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards in stationary drums or chambers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • A61L2300/414Growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/045Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using gas or flames
    • B29C2035/047Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using gas or flames other than air
    • B29C2035/048Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using gas or flames other than air inert gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/048Expandable particles, beads or granules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/06Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators
    • F24H3/08Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes
    • F24H3/081Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2200/00Drying processes and machines for solid materials characterised by the specific requirements of the drying good
    • F26B2200/02Biomass, e.g. waste vegetative matter, straw
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2200/00Drying processes and machines for solid materials characterised by the specific requirements of the drying good
    • F26B2200/08Granular materials

Definitions

  • the present disclosure relates to a heat treatment apparatus and a method for producing a heat-treated product.
  • Heat treatment equipment is widely used for many purposes, such as drying and cross-linking objects to be heat treated.
  • a heat treatment apparatus a shelf-type heat treatment apparatus (oven) is known, and is disclosed in, for example, International Publication No. 2014/141877.
  • the present disclosure has been made in view of such circumstances, and a problem to be solved by one embodiment of the present disclosure is to provide a heat processing apparatus that can take out heat-processed materials while suppressing contamination by foreign substances. to provide.
  • a problem to be solved by another embodiment of the present disclosure is to provide a method for producing a heat-treated product using the heat treatment apparatus.
  • a heat treatment apparatus comprising a container including a first chamber and a second chamber connected via a split valve, and an air supply port and an exhaust port through which heated gas flows.
  • the heat treatment apparatus according to ⁇ 1> wherein the container is cylindrical.
  • the heat treatment apparatus according to ⁇ 1> or ⁇ 2> further comprising a temperature control member arranged outside the container and detachably attached to the heat treatment apparatus.
  • the temperature control member includes at least one of a jacket heater and a metal member.
  • the metal member is made of stainless steel or aluminum.
  • ⁇ 6> The heat treatment apparatus according to any one of ⁇ 1> to ⁇ 5>, including a holding member for holding the object to be heated between the air supply port and the exhaust port.
  • the holding member is a porous plate, mesh plate, punching metal, or air-permeable bag.
  • the split valve is a split butterfly valve.
  • ⁇ 10> The method for producing a heat-treated product according to ⁇ 9>, wherein the heat treatment apparatus includes a temperature control member, and includes a step of heating the container with the temperature control member.
  • the temperature control member includes stainless steel and a heater for heating stainless steel.
  • ⁇ 12> The method for producing a heat-treated product according to ⁇ 10> or ⁇ 11>, wherein at least part of the step of circulating the heated gas and at least part of the step of heating the container are performed simultaneously.
  • ⁇ 13> The method for producing a heat-treated product according to any one of ⁇ 9> to ⁇ 12>, wherein the heat-treated product is a polymeric porous material of collagen or gelatin.
  • the heat-treated product is a polymeric porous material of collagen or gelatin.
  • the heated gas is an inert gas.
  • a heat treatment apparatus that can take out a heat-treated object while suppressing contamination by foreign matter.
  • a method for producing a heat-treated product using the heat treatment apparatus is provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of a heat treatment apparatus.
  • FIG. 2 is a schematic cross-sectional view showing an example of how the first chamber and the second chamber are separated.
  • FIG. 3 is a schematic cross-sectional view showing an example of how the split valve is opened.
  • FIG. 4 is a schematic cross-sectional view showing an example of a heat treatment apparatus.
  • FIG. 5 is a schematic cross-sectional view showing an example of a heat treatment apparatus.
  • FIG. 6 is a schematic cross-sectional view showing an example of a heat treatment apparatus.
  • FIG. 7 is a schematic cross-sectional view showing an example of a heat treatment apparatus.
  • a numerical range indicated using “to” means a range including the numerical values before and after “to” as the minimum and maximum values, respectively.
  • upper or lower limits described in a certain numerical range may be replaced with upper or lower limits of other numerical ranges described step by step.
  • upper or lower limits described in a certain numerical range may be replaced with values shown in Examples.
  • a combination of two or more preferred aspects is a more preferred aspect.
  • the amount of each component means the total amount of the multiple types of substances unless otherwise specified when there are multiple types of substances corresponding to each component.
  • the term "process” includes not only an independent process, but also if the intended purpose of the process is achieved, even if it cannot be clearly distinguished from other processes. .
  • the amino acid sequences of polypeptides are referred to by single-letter (e.g., "G” for glycine residues) or three-letter (e.g., "Gly” for glycine residues) abbreviations well known in the art. It may be expressed using In the present disclosure, "%" for amino acid sequences of polypeptides is based on the number of amino acid (or imino acid) residues unless otherwise specified.
  • identity with respect to the amino acid sequences of two polypeptides to be compared refers to the value calculated by the following formula.
  • the comparison (alignment) of multiple polypeptides should be carried out according to a conventional method so as to maximize the number of identical amino acid residues.
  • Identity (%) ⁇ (number of identical amino acid residues) / (alignment length) ⁇ x 100
  • a heat treatment apparatus includes a container including a first chamber and a second chamber connected via a split valve, and an air supply port and an exhaust port through which heated gas flows.
  • the heat treatment apparatus may include an air supply port located in the first chamber and an air exhaust port located in the second chamber.
  • a shelf-type heat treatment device As a heat treatment device, a shelf-type heat treatment device (oven) is known.
  • the shelf plate type heating apparatus After the object to be heated is subjected to heat treatment to obtain the object to be heated, the door is opened to take out the object to be heated. At that time, the heat-treated product will be exposed to the external environment
  • an object to be heat-treated is stored in a container including a first chamber and a second chamber connected via a split valve, and heated gas is introduced into the container.
  • the container After circulating and heat-treating, the container is separated into a first chamber and a second chamber which are sealed with a split valve.
  • the chamber After connecting the chamber (for example, the first chamber) containing the heat-treated material and sealed with the dividing valve to the external space (for example, another container, device, room, etc.) via the dividing valve, the chamber is divided.
  • the chamber for example, the first chamber
  • the heat treatment apparatus can suppress the contamination of foreign substances (eg, water, bacteria, etc.), and is therefore suitable for maintaining the moisture content of the heat-treated product, sterilizing it, and the like.
  • the heat-treated product is a biocompatible polymer such as collagen or gelatin or a porous crosslinked polymer thereof, it is beneficial to take it out in a sterilized state. workability is high because it can be connected to the external space in an aseptic state via the
  • the heat-treated material is housed in the chamber sealed by the split valve, it is easy to store and transport while suppressing contamination by foreign matter.
  • the heat treatment is not particularly limited, and includes, for example, drying, cross-linking, humidity control, and reaction.
  • the orientation of the heat treatment apparatus illustrated in the drawings is irrelevant to the actual installation direction of the heat treatment apparatus.
  • the heat treatment apparatus may be installed in a direction in which the ventilation direction (longitudinal direction of the container) is along the vertical direction (i.e., the vertical direction), and the direction in which the ventilation direction in the container is perpendicular to the vertical direction (i.e., , laterally).
  • the container includes a first chamber and a second chamber connected via a split valve, and an air supply port and an exhaust port through which the heated gas flows.
  • a split valve For example, in the container 60 of the heat treatment apparatus 100 shown in FIG. Chambers 20 are connected via a dividing valve 30 .
  • the material of the container is not particularly limited, but from the viewpoint of pressure resistance, it is preferably made of metal, for example, it may be made of stainless steel.
  • metal When the container is made of metal, it has high pressure resistance and can circulate heated gas in the container at high pressure, so that the object to be heated can be heat-treated in a shorter time.
  • the shape of the container is not particularly limited, it is preferably cylindrical, and the cross section perpendicular to the longitudinal direction of the cylinder may be circular, elliptical, rectangular, trapezoidal, or the like.
  • the shape of the container may be, for example, a cylindrical shape, an elliptical cylindrical shape, or the like, and a cylindrical shape is more preferable.
  • the filling rate of the object to be heat-treated can be increased, so heat treatment can be performed efficiently. Furthermore, by increasing the filling rate, the size can be reduced compared to, for example, a shelf type device.
  • the heat treatment apparatus according to the present disclosure is effective in terms of miniaturization as compared with such a heat treatment apparatus. As a result, handling of the heat treatment apparatus (eg, storage, transportation, application to subsequent processes (eg, cooling, freezing, filling into a hopper, etc.), etc.) becomes easier.
  • the filling rate is the ratio (volume %) of the volume of the material to be heat-treated to the internal capacity of the container.
  • the flow of the heated gas flowing through the container becomes more uniform, which makes it easier to uniformly heat the object to be heated.
  • the pressure resistance is high, and the heated gas can be circulated in the container at high pressure.
  • a heat treatment can be applied to the heat-treated product.
  • the flow rate of the carrier gas that is, the heated gas
  • the removal of the liquid content can be promoted more.
  • the ratio (aspect ratio) of the maximum length of the profile of the cross section is preferably 0.5 to 3.0, more preferably 1.0 to 2.5. is more preferable.
  • the maximum length of the cross-sectional contour perpendicular to the height direction is, for example, the diameter of a circle if the container is cylindrical, the major axis of the ellipse if the container is elliptical, and is the maximum diagonal.
  • the maximum length of the contour of the container is not particularly limited, and may be approximately the same as the diameter of the split valve, or may be larger than the diameter of the split valve.
  • the number of air supply ports and exhaust ports is not particularly limited, and may be appropriately selected according to the design of the heat treatment apparatus.
  • the positions of the air supply port and the exhaust port are not particularly limited, and may be appropriately selected according to the design of the heat treatment apparatus.
  • the object to be heat-treated may be housed in any chamber, may be housed only in the first chamber or the second chamber, or may be housed in both chambers. good.
  • the container may have one or more chambers connected via a split valve in addition to the first and second chambers. Further, the container may include a supply port for containing the object to be heat-treated. Thereby, the object to be heat-treated can be accommodated in the container while the first chamber and the second chamber are connected via the dividing valve.
  • a “split valve” is a valve that can split two chambers in a sealed state when separating two chambers connected via the split valve. "Dividing the chamber in a closed state” means dividing the chamber in a closed state, preferably dividing the chamber in a sealed state. Moreover, the split valve before and after splitting may be referred to as a "split valve” without distinction.
  • Split valves include, for example, split butterfly valves, two-disc split valves, two-leaf split butterfly valves, split valves, and the like. Also, the split valve may be fixed to the container or may be detachably attached to the container.
  • the first chamber 10 and the second chamber 20 can be separated in a sealed state by the split valve 30 respectively.
  • the split valve 30 has a split valve 31 on the first chamber side and a split valve 32 on the second chamber side, and as shown in FIG. It can be performed.
  • the first chamber 10 after separation is sealed by a split valve 31
  • the second chamber 20 after separation is sealed by a split valve 32 .
  • the first chamber 10 and the second chamber 20 can be connected via the split valve 30 .
  • the split valve 31 and the split valve 32 are connected, but from the viewpoint of more easily suppressing foreign matter from entering, the split valve 31 and the split valve 32 may be subjected to a vacuum evacuation process.
  • the heat treatment apparatus 100 shown in FIG. 1 is installed such that the air supply port 40 faces downward and the exhaust port 50 faces upward, with the ventilation direction extending along the vertical direction.
  • An object to be heated is stored in the first chamber 10, and as shown in FIG.
  • the gas heated via 50 is discharged from the container 60 .
  • the heated gas can be circulated in the container 60, and the object to be heat-treated can be heat-treated.
  • the object to be heated is heated by the heated gas, and, for example, moisture in the object to be heated is removed and exhausted, so that the object to be heated is dried.
  • the material constituting the object to be heat-treated can be crosslinked to obtain a crosslinked body of the object to be heat-treated.
  • the first chamber 10 and the second chamber 20 are separated, the first chamber 10 sealed by the split valve 31 is connected to the external space via the split valve 31, and then the split valve 31 is opened. , the heat-treated material can be taken out from the first chamber 10 to the external space.
  • the heat treatment apparatus 100 shown in FIG. 1 is installed with the ventilation direction along the vertical direction so that the exhaust port 50 faces downward and the air supply port 40 faces upward.
  • An object to be heated is stored in the second chamber 20, and with the split valve 30 open, heated gas is flowed into the container 60 through the air supply port 40 and heated through the exhaust port 50. The gas is allowed to flow out from inside the container 60 .
  • the increased distance between the air supply port 40 and the object to be heated makes the contact between the heated gas and the object to be heated mild. Therefore, such an embodiment is preferable when flow, scattering, or the like of the object to be heated due to the heated gas becomes a problem.
  • the heat treatment apparatus 100 shown in FIG. 1 is installed in a direction in which the ventilation direction is perpendicular to the vertical direction.
  • Both the first chamber 10 and the second chamber 20 contain objects to be heated, and with the split valve 30 opened as shown in FIG. , and the heated gas may flow out of the container 60 through the exhaust port 50 .
  • the heated gas can be circulated in the container 60, and the object to be heat-treated can be heat-treated.
  • the first chamber 10 and the second chamber 20 are separated, and the first chamber 10 sealed by the split valve 31 and the second chamber 20 sealed by the split valve 32 are separated by the split valve 31 and the split valve 32, respectively.
  • the heat-treated material can be taken out to the outer space.
  • the heat-treated material can be taken out to the outer space.
  • a large amount of the same heat-treated object can be produced.
  • different heat-treated objects can be manufactured collectively.
  • the first chamber 10 is provided with both the air supply port 40 and the exhaust port 50 .
  • the heat treatment apparatus 200 is installed such that the air supply port 40 faces downward and the ventilation direction (longitudinal direction of the container) is along the vertical direction.
  • the second chamber 20 containing the object to be heated is connected to the empty first chamber, the split valve 30 is opened, and part of the object to be heated contained in the second chamber 20 is transferred to the first chamber. , the split valve 30 is closed. With the dividing valve 30 closed, the heated gas is allowed to flow into the container 60 through the air supply port 40 and the heated gas is allowed to flow out of the container 60 through the exhaust port 50 .
  • the heated gas can be circulated in the container 60, and the object to be heat-treated can be heat-treated.
  • the first chamber 10 and the second chamber 20 are separated, and the first chamber 10 sealed by the split valve 31 is connected to the outside via the split valve 31, and then the split valve 31 is opened.
  • the heat-treated material can be taken out from the first chamber 10 .
  • the heat-treated product can be obtained in the same manner as described above.
  • Such heat treatment is effective when producing heat-treated products in small quantities.
  • the objects to be heated can be held in a state of being sealed by the dividing valve 32. As compared with the case where the object to be heat-treated is stored in the first chamber 10, it is possible to easily suppress foreign matter from entering the object to be heat-treated.
  • the heat treatment device it is easy to keep the inside of the container at a positive pressure by sealing with a split valve after the heat treatment by circulating the heated gas. Therefore, for example, it is effective for maintaining a dry state, a sterile state, and the like.
  • the heat treatment apparatus of the present disclosure can heat the object to be heat treated in a stationary state, and can adjust the conditions such as the temperature of the heated gas. It is possible to suppress the generation of static electricity in the object to be heat-treated, as compared with an apparatus in which a container such as the one operates. Therefore, the heat treatment apparatus of the present disclosure can be suitably used for heat treatment of objects to be heat treated, such as powders and granules, which tend to generate static electricity. Moreover, when the object to be heat-treated is porous, it is difficult to remove static electricity from the pores, so it is effective to suppress the generation of static electricity.
  • the heat treatment apparatus of the present disclosure can be used with the object to be heat treated standing still, for example, compared to an apparatus in which a container operates such as a fluidized drying type or a vibration drying type, the heated Aggregation of the processed material is suppressed, making it difficult for the processed material to coarsen, and unnecessary refinement can be suppressed, so that it is easy to obtain a heat-processed material having a desired size.
  • the heat treatment device may comprise a temperature regulating member located outside the container and removably attached to the heat treatment device.
  • the temperature control member By using the temperature control member, the temperature inside the container can be controlled through the container, so that it becomes easier to uniformly heat the object to be heat-treated. Further, after the heat treatment, the heat treatment apparatus can be handled more easily by removing the temperature control member from the heat treatment apparatus.
  • the temperature control member is not particularly limited as long as it can control the temperature inside the container via the outside of the container.
  • the temperature control member may be in contact with the outside of the container, or may be out of contact with the outside of the container.
  • the temperature regulating member may be positioned over or near the outside of the container.
  • the temperature control member may be arranged on a part of the outside of the container, or may be arranged over the entire circumference of the outside of the container.
  • temperature control members 70, 70A and 70B may be positioned outside container 60 across the airflow direction.
  • the temperature control member may be, for example, a heater equipped with a heating wire, such as a jacket-type heater.
  • a heating wire such as a jacket-type heater.
  • the heated gas can be circulated inside the container while raising the temperature inside the container through the outside of the container, so that it becomes easier to uniformly heat the object to be heated.
  • a jacket heater it is easy to change the pitch of the heating wires to obtain a desired heating wire pattern and change the thickness of the jacket (for example, to make it thinner).
  • the temperature control member may be, for example, a metal member formed from a metal plate or the like.
  • the metal member has higher thermal conductivity than air, and the temperature unevenness on the outside of the container is smaller, so it is easier to make the temperature inside the container more uniform, and it is easier to heat the object to be heated evenly. becomes.
  • the metal member is preferably made of a metal plate having a certain thickness (for example, more than 20 mm).
  • the thickness may be appropriately adjusted according to the type of metal, etc., and the shape processing may be performed as appropriate so as to be suitable for the shape of the container.
  • the metal member when the temperature control member is a metal member, the metal member may be provided with a heater inside or outside thereof in order to impart heat generation.
  • the metal member may be connected to an external heat source or may be a cast-in heater.
  • the thickness of the cast-in heater is preferably larger than the pitch of the heater wires.
  • the material is not particularly limited, but it is preferably made of stainless steel or aluminum. Since stainless steel has a large heat capacity, temperature changes are small, and heat conduction is likely to be uniform. In addition, aluminum can be heated quickly because it conducts heat quickly.
  • the number of temperature control members may be one, or two or more.
  • the temperature control member may include at least one of a jacket heater and a metal member.
  • Member 70B may cover temperature regulating member 70A.
  • the temperature inside the container can be increased more uniformly through the outside of the container while the temperature unevenness on the outside of the container is reduced, so that it becomes easier to uniformly heat the object to be heated. .
  • the heat treatment apparatus may include a holding member that holds the object to be heated between the air supply port and the exhaust port. This facilitates holding of the object to be heat-treated in the container.
  • the material, shape, etc. of the holding member are not particularly limited, and may be appropriately selected according to the type of the object to be heat-treated.
  • the holding member may be made of, for example, ceramic or metal (such as SUS304). From the viewpoint of heating the object to be heated more uniformly, it is preferable that the holding member has ventilation holes and has air permeability. It's okay.
  • the opening ratio is not particularly limited, but may be about 5% to 30%.
  • the holding member can function as a rectifying member. That is, the flow of the heated gas can be regulated by passing the heated gas flowing through the container through the holding member through the ventilation hole of the holding member.
  • the holding member is preferably plate-shaped. As a result, the flow (resistance) of the heated gas flowing through the container can be sufficiently received, and the linear velocity of the heated gas can be made uniform from the central portion to the peripheral portion of the holding member.
  • the heat-treated material can be heated more uniformly.
  • the holding member preferably has a certain thickness (for example, 1/2 to 3 times the diameter of the vent hole).
  • the container may have a rectifying member having the same configuration as the holding member having air permeability.
  • the holding member has air permeability, it also serves as a rectifying member, so that the object to be heated can be heated more uniformly.
  • the positions and number of the holding member and the rectifying member are not particularly limited, and may be appropriately selected according to the design of the heat treatment apparatus.
  • the heat treatment apparatus 400 shown in FIG. It may have a member 90 .
  • the heat treatment apparatus shown in FIG. 6 can be controlled such that the heated gas flows in the vertical direction of the surface of the holding member (holding surface).
  • the container by arranging the container so that the ventilation direction (longitudinal direction of the container) is along the vertical direction, the flow of the heated gas flowing through the container becomes more uniform. Therefore, it becomes easier to uniformly heat the object to be heated. Furthermore, by installing the container in the vertical direction (that is, the direction in which the ventilation direction is along the vertical direction), the filling rate of the material to be heated can be further increased, for example, 70% to 90% (most preferably 100% %) filling rate.
  • Heated gas Although the gas is not particularly limited, it is preferably an inert gas such as nitrogen or argon. Moreover, it is preferable to use a gas having a moisture content of 0.000613 g/m 3 (dew point: ⁇ 80° C.) to 4.85 g/m 3 (dew point: 0° C.). A heated gas may be obtained by heating the gas by known methods.
  • the object to be heat-treated is not particularly limited, and may be solid. Powders, granules, and the like are examples of solid materials to be heat-treated.
  • the heat treatment apparatus according to the present disclosure can be suitably used to heat-treat a biocompatible polymer such as collagen or gelatin or a porous polymer body thereof to produce a porous crosslinked polymer body.
  • the heat treatment device may include a valve for controlling the flow of heated gas.
  • a valve may be arranged near the air supply port, near the exhaust port, or the like.
  • the heat treatment device may also include a sterile filter.
  • a sterile filter may be placed near the air supply port, near the exhaust port, or the like.
  • the heat treatment apparatus may include a pump or air supply fan, or may be connected to an external pump or air supply fan, for circulating heated air to the container.
  • the air supply source may be a compressor, a compression cylinder, or the like.
  • a method for producing a heat-treated product according to the present disclosure includes a step of accommodating a heat-treated product in a container of a heat treatment apparatus according to the present disclosure (hereinafter sometimes referred to as a “accommodation step”), and an air supply port. and a step of circulating the heated gas in the container through the exhaust port (hereinafter sometimes referred to as a “heated gas circulating step”) including.
  • the object to be heat-treated can be heat-treated, and the heat-treated object can be manufactured.
  • the method for producing a heat-treated product according to the present disclosure may include a step of collecting the heat-treated product by closing the split valve after the heated gas circulation step (hereinafter sometimes referred to as a "recovery step"). As a result, it is possible to take out the heat-treated material while suppressing contamination by foreign matter.
  • the object to be heated and the heated gas are as described above.
  • the method of accommodating the object to be heat-treated in the container is not particularly limited.
  • the split valve may be opened, or the split valve may be removed from the container, and the object to be heat-treated may be placed in the container.
  • the object to be heat-treated may be stored in the container through a supply port provided in the container.
  • the temperature of the heated gas and the treatment time are not particularly limited, and may be selected as appropriate in consideration of the purpose of the heat treatment.
  • the inflow speed and the inflow amount of the heated gas are not particularly limited, and may be appropriately selected according to the properties of the material to be heated, the purpose of the heat treatment, and the like.
  • the material to be heated may be made to flow by increasing at least one of the inflow speed and the inflow amount of the gas.
  • a porous polymer body is placed in a container of a heat treatment apparatus, and a heated gas is passed through an air supply port and an exhaust port.
  • the porous polymer body (substance to be heat-treated) can be heat-treated and crosslinked, and a crosslinked porous polymer substance (heat-treated substance) can be produced.
  • the cross-linking temperature (that is, the temperature of the heated gas) is preferably 100°C to 200°C, more preferably 120°C to 170°C, even more preferably 130°C to 160°C.
  • the use of a cross-linking agent can be avoided by employing a thermal cross-linking method.
  • the treatment time for thermal cross-linking varies depending on the cross-linking temperature, the type of polymer, and the degree of decomposability to be maintained.
  • a pump provided in the heat treatment device or an external pump connected to the heat treatment device may be used to circulate heated air through the container.
  • the method for producing a heat-treated product may include a step in which the heat treatment apparatus is provided with a temperature control member, and the container is heated by the temperature control member. As a result, the temperature inside the container can be adjusted, making it easier to uniformly heat the object to be heat-treated.
  • the temperature control member may include stainless steel and a heater that heats the stainless steel.
  • at least part of the step of circulating the heated gas and at least part of the step of heating the container may be performed simultaneously.
  • the temperature inside the container can be increased more uniformly through the outside of the container while the temperature unevenness on the outside of the container is reduced, so that it becomes easier to uniformly heat the object to be heated.
  • the temperature inside the container can be adjusted via the outside of the container using the temperature control member, it becomes easier to uniformly heat the object to be heat-treated. From the viewpoint of heating the object to be heat-treated more uniformly, it is preferable that the step of circulating the heated gas is performed at the same time as the step of heating the container.
  • the porous polymer body (object to be heat-treated) is preferably a porous block made of a polymer.
  • the porous polymer body is obtained by placing an aqueous polymer solution containing a polymer in a liquid container and subjecting it to a freezing step to obtain a frozen aqueous polymer solution. It is obtained by subjecting a frozen polymer aqueous solution to a water removal step to remove water.
  • the porous polymer body may be further subjected to a pulverization step, a classification step, and the like, which will be described later. This makes it possible to process granules of various sizes. Further, the porous polymer body may be further subjected to a filling step or the like, which will be described later.
  • the thermal cross-linking conditions when using the recombinant peptide CBE3 as human-derived recombinant gelatin are as follows.
  • the time is preferably 2 hours to 20 hours, more preferably 3 hours to 18 hours, even more preferably 4 hours to 8 hours.
  • the thermal cross-linking treatment is preferably performed in an inert gas (that is, heated gas) atmosphere.
  • an inert gas that is, heated gas
  • porous crosslinked polymer- The porous crosslinked polymer obtained as described above is suitable as a cell scaffold, a member for transplantation, a tissue repair material, and the like.
  • the porous crosslinked polymer preferably exhibits a predetermined acid residual rate.
  • the acid residual rate by decomposition treatment for 3 hours using 1 mol/L hydrochloric acid is preferably 30% to 70%, more preferably 35% to 65%, more preferably 45% on a mass basis. More preferably ⁇ 65%.
  • the "acid residual rate" of the porous crosslinked polymer is a physical characteristic value measured as follows.
  • the mass of a microtube for measurement (trade name Mini Super Tube, manufactured by Ibis, capacity 2 ml, hereinafter referred to as tube) is measured (A).
  • A The mass of a microtube for measurement
  • a cylindrical specimen is prepared, the mass is measured (B), and the measurement tube is filled. 1.7 ml of 1 mol/L HCl is added to the tube containing the crosslinked porous polymer, and the tube is left to stand at a constant temperature of 37 ⁇ 0.5° C.
  • the tube is placed on ice to stop the reaction, and centrifuged at 10,000 xg for 1 minute in a centrifuge preliminarily set at 4°C.
  • the supernatant is aspirated, ultrapure water that has been chilled on ice in advance is added, and centrifugation is performed again under the same conditions as above.
  • the supernatant is sucked off, ultrapure water is added again, and centrifugation is performed again under the same conditions as above, which is repeated two more times. After aspirating the supernatant, it is freeze-dried.
  • the acid residual rate of the porous crosslinked polymer varies depending on the components contained in the porous crosslinked polymer, particularly the type and form of the granules. etc., and if the treatment time is shortened, the acid residual rate tends to be low.
  • the porous crosslinked polymer may be stored in a container.
  • the container is not particularly limited, but for example, a glass vial sealed with a rubber stopper and an aluminum cap can be used.
  • the size of the glass vial is not particularly limited.
  • the glass vial may be subjected to silicone resin coating using dimethylpolysiloxane or the like, fluorine resin coating, silica coating, dealkalization, or the like. Effects such as antistatic, antiadhesion, and water repellency can be imparted by these various coatings or dealkalization treatments.
  • an aluminum pouch can be used.
  • a macromolecule refers to a molecule with a high molecular weight that has a structure composed of multiple repetitions of units derived substantially or conceptually from a molecule with a low molecular weight.
  • examples include polyamines, cellulose, amylose, starch, chitin, polypeptides, proteins, DNA and RNA.
  • the macromolecules are water soluble, more preferably polypeptides and proteins.
  • collagen and gelatin are particularly preferred.
  • the ratio of hydrophilic repeating units in the polymer is preferably 50% or less, more preferably 30% or less. If the hydrophilic unit ratio is higher than this, the free water around the polymer is reduced and freezing is inhibited.
  • the ratio of hydrophilic repeating units refers to the ratio of repeating units having ionic groups and/or hydroxyl groups in the polymer.
  • the aforementioned gelatin means a polypeptide containing 6 or more consecutive sequences represented by Gly-XY, and having 1 or more amino acid residues other than the sequence represented by Gly-XY in the polypeptide. You may have The sequence represented by Gly-XY is a sequence corresponding to an amino acid sequence derived from a partial amino acid sequence of collagen, and repetition of this sequence means a sequence characteristic of collagen.
  • a plurality of Gly-XY may be the same or different.
  • X and Y in the Gly-XY sequence are independent for each repeating unit and may be the same or different.
  • Gly-XY Gly represents a glycine residue
  • X and Y represent arbitrary amino acid residues other than glycine residues.
  • X and Y preferably contain many imino acid residues, ie, proline residues or oxyproline residues. The content of such imino acid residues preferably accounts for 10% to 45% of the gelatin as a whole.
  • the content of Gly-XY in the gelatin is preferably 80% or more, more preferably 95% or more, and most preferably 99% or more.
  • the above gelatin may be either a natural type or a mutant type that differs from the natural type in at least one amino acid residue.
  • Natural gelatin means gelatin made from naturally occurring collagen, or a polypeptide having the same amino acid sequence as gelatin made from naturally occurring collagen. Unless otherwise specified, mutant or recombinant gelatins are collectively referred to as recombinant gelatins in this disclosure.
  • Examples of natural gelatin or recombinant gelatin thereof include those derived from animals such as fish and mammals, and natural gelatin of mammals or recombinant gelatin thereof is preferable. Examples of mammalian animals include humans, horses, pigs, mice, rats and the like, with humans or pigs being more preferred.
  • the natural gelatin is preferably derived from porcine or human, and the recombinant gelatin is preferably human-derived recombinant gelatin.
  • one or more bases or amino acid residues are added to the base sequence or amino acid sequence of the collagen-encoding gene having 6 or more consecutive sequences represented by Gly-XY.
  • Recombinant gelatin obtained by introducing a modified base sequence or amino acid sequence into an appropriate host and expressing it by a conventional method is preferred.
  • the (bone) tissue repair ability can be enhanced, and various properties can be expressed as compared with the case of using natural gelatin. It has the advantage of being able to avoid adverse effects.
  • the recombinant gelatin examples include, for example, European Publication No. 1014176, US Pat. Those disclosed in JP-A-2010-518833, JP-A-2010-519251, WO 2010/128672 and WO 2010/147109 can be particularly preferably used.
  • the recombinant gelatin preferably has a molecular weight of 2 kDa or more and 100 kDa or less, more preferably 5 kDa or more and 90 kDa or less, and more preferably 10 kDa or more and 90 kDa or less.
  • the recombinant gelatin preferably further contains a cell adhesion signal, and the recombinant gelatin preferably has two or more cell adhesion signals per molecule. , more preferred.
  • cell adhesion signals include the RGD, LDV, REDV, YIGSR, PDSGR, RYVVLPR, LGTIPG, RNIAEIIKDI, IKVAV, LRE, DGEA, and HAV sequences.
  • RGD sequence, YIGSR sequence, PDSGR sequence, LGTIPG sequence, IKVAV sequence and HAV sequence are preferred, and RGD sequence is particularly preferred.
  • the ERGD sequence is more preferred.
  • the number of amino acid residues between RGDs is preferably 0-100, more preferably 25-60. Moreover, it is preferable that the RGD sequences are arranged non-uniformly within such a range of amino acid residue numbers.
  • the ratio of the RGD sequence to the total number of amino acid residues in the recombinant gelatin is preferably at least 0.4%, and when the recombinant gelatin contains 350 or more amino acid residues, each Preferably the stretch contains at least one RGD sequence.
  • the recombinant gelatin preferably contains at least 2 RGD sequences, more preferably at least 3 RGD sequences, and even more preferably at least 4 RGD sequences per 250 amino acid residues.
  • the sequence of the recombinant gelatin preferably has the following aspects: (1) does not contain serine residues and threonine residues, (2) serine residues, threonine residues, asparagine residues, and tyrosine residues. (3) does not contain the amino acid sequence represented by Asp-Arg-Gly-Asp.
  • the above-mentioned recombinant gelatin may have aspects (1) to (3) of this preferred sequence alone, or may have two or more aspects in combination. Also, the recombinant gelatin may be partially hydrolyzed.
  • the recombinant gelatin preferably has a repeating structure of A-[(Gly-XY)n]mB.
  • m represents 2 to 10, preferably 3 to 5.
  • a and B represent any amino acid or amino acid sequence.
  • n represents 3 to 100, preferably 15 to 70, more preferably 50 to 60.
  • the recombinant gelatin has the formula: Gly-Ala-Pro-[(Gly-X-Y)63]3-Gly (wherein each of the 63 Xs independently represents any amino acid residue, Each of the 63 Ys independently represents an amino acid residue, and the three (Gly-X-Y)63s may be the same or different.).
  • a plurality of naturally occurring collagen sequence units are bound to the recombinant gelatin repeating unit.
  • the naturally occurring collagens referred to herein preferably include types I, II, III, IV and V. More preferably, it can be type I, type II or type III.
  • Collagen is preferably derived from humans, horses, pigs, mice, and rats, with human beings being more preferred.
  • the isoelectric point of the recombinant gelatin is preferably 5-10, more preferably 6-10, still more preferably 7-9.5.
  • Preferred embodiments of the recombinant gelatin include the following: (1) carbamoyl groups are not hydrolyzed, (2) no procollagen, (3) no telopeptides. (4) Substantially pure collagen materials prepared with nucleic acids encoding native collagen.
  • the above-mentioned recombinant gelatin may have these preferred aspects (1) to (4) alone, or may have two or more aspects in combination.
  • the above recombinant gelatin is preferably any one of the following (A) to (C) because of its high ability to repair (bone) tissue.
  • A a polypeptide represented by SEQ ID NO: 1 below; GAP(GAPGLQGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGPAGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPP) 3G (SEQ ID NO: 1)
  • B having a partial sequence having 80% or more sequence identity with the partial amino acid sequence consisting of the 4th to 192nd amino acid residues in the amino acid sequence of (A), and (bone) tissue repair ability a polypeptide having
  • C A polypeptide comprising an amino acid sequence in which one or several amino acid residues are deleted, substituted or added
  • sequence identity in (B) above is more preferably 90% or more, more preferably 95% or more, from the viewpoint of the (bone) tissue repair ability of the recombinant gelatin.
  • the partial amino acid sequence in the sequence (B) above is a partial amino acid sequence corresponding to the repeating unit of the sequence shown in SEQ ID NO:1.
  • the polypeptide should contain one, preferably two or more repeating units with sequence identity of 80% or more. be able to.
  • polypeptide defined in (B) above is a partial sequence having a sequence identity of 80% or more with the partial amino acid sequence corresponding to the repeating unit, as the total number of amino acid residues, preferably contains 80% or more of
  • the length of the polypeptide defined in (B) above can be 151 to 2260 amino acid residues, and from the viewpoint of post-crosslinking degradation, 193 or more, and from the viewpoint of stability. , preferably 944 or less amino acid residues, more preferably 380 to 756 amino acid residues.
  • polypeptide defined in (C) above consists of an amino acid sequence in which one or several amino acid residues are deleted, substituted or added with respect to the amino acid sequence (A) above, and has tissue repair ability.
  • the number of amino acid residues to be deleted, substituted, or added in the polypeptide defined in (C) above may be one or several, and varies depending on the total number of amino acid residues of the recombinant gelatin. , 2 to 15, preferably 2 to 5.
  • the recombinant gelatin can be produced by genetic recombination techniques known to those skilled in the art, for example, EP 1014176, US Pat. It can be produced according to the method described in . Specifically, a gene encoding a given recombinant gelatin amino acid sequence is obtained, incorporated into an expression vector to prepare a recombinant expression vector, and introduced into an appropriate host to prepare a transformant. do. Recombinant gelatin is produced by culturing the resulting transformant in an appropriate medium, and the recombinant gelatin used in the present disclosure is prepared by recovering the recombinant gelatin produced from the culture. be able to.
  • the aqueous polymer solution contains one or more polymers.
  • the polymer concentration in the aqueous polymer solution is preferably 0.1% by mass or more, more preferably 1% by mass or more, and particularly preferably 5% by mass or more. If the concentration is lower than 0.1% by mass, it is difficult to maintain the structure of the porous polymer after removing water. It is preferable that the aqueous polymer solution gels at a freezing temperature or higher.
  • the upper limit of the polymer concentration in the aqueous polymer solution is not particularly limited as long as the polymer can be dissolved, but is generally 40% by mass or less, and may be 30% by mass or less, or 20% by mass or less.
  • An aqueous polymer solution is prepared by purifying and concentrating a solution containing a polymer, or by dissolving a dry polymer in an aqueous medium. (1) It may be adjusted for use, or (2) it may be prepared and used in advance. (3) An aqueous polymer solution may be prepared by freeze-drying the aqueous polymer solution obtained by purification and concentration, and adding an aqueous medium to the resulting freeze-dried product to redissolve it. Alternatively, (4) the aqueous polymer solution obtained by purification and concentration may be frozen, and the obtained frozen body may be thawed to prepare the aqueous polymer solution. The frozen material is preferably thawed at 30 to 40° C.
  • the above method (4) is preferable from the viewpoints of reducing the time and effort of making arrangements, convenience of transportation and storage, and reducing air bubbles and insoluble matter in the aqueous polymer solution.
  • Air bubbles and insoluble matter dispersed in the aqueous polymer solution are preferably removed before the freezing step by operations such as filtration, centrifugation, pressure reduction, and defoaming. As a result, the yield of the frozen macromolecule solution with low anisotropy is improved. Removal of air bubbles and insoluble matter can be evaluated by turbidity measurement. Alternatively, it can be evaluated by visual inspection with an optical microscope. For example, the number of bubbles and undesired substances reflected in the field of view of an optical microscope can be calculated, and the number of bubbles and insoluble substances in 1 ⁇ L of the aqueous polymer solution can be evaluated.
  • the number of bubbles and insoluble matter in the aqueous polymer solution is preferably 0.5/ ⁇ L or less, more preferably 0.3/ ⁇ L or less, and further preferably 0.1/ ⁇ L or less. 0 cells/ ⁇ L is particularly preferable.
  • Components other than the polymer may be added to the aqueous polymer solution for the purpose of adding predetermined properties.
  • Such other ingredients include, for example, ingredients related to bone regeneration or osteogenesis, such as osteoinductive agents.
  • osteoinductive drugs include BMP (bone morphogenetic factor) and bFGF (basic fibroblast growth factor), but are not particularly limited.
  • Other examples include polypeptide or protein cross-linking agents.
  • the aqueous medium for the aqueous polymer solution is not particularly limited as long as it can dissolve the polymer and can be used for living tissue. Examples include water, physiological saline, phosphate buffer and the like. can be listed.
  • the gelatin concentration in the gelatin solution is not particularly limited as long as it is a concentration at which gelatin can be dissolved.
  • the gelatin concentration in the gelatin solution is, for example, preferably 0.5% by mass to 20% by mass, more preferably 2% by mass to 16% by mass, and 4% by mass to 12% by mass. More preferred.
  • the gelatin solution may be defoamed before the freezing step. This makes it easier to uniformly form ice crystals.
  • the defoaming method is not particularly limited, but for example, vacuum centrifugal defoaming can be performed at a pressure of 2 to 10 kPa.
  • the gelatin solution may be filtered to remove undissolved particles.
  • the filtering method is not particularly limited, for example, pressure filtering is performed using a filter with a pore size of 0.22 to 0.45 ⁇ m.
  • the material of the filter there are no particular restrictions on the material of the filter, and polytetrafluoroethylene, polyethersulfone, cellulose acetate, polyvinylidene fluoride, etc. can be used. is preferred.
  • the temperature at which the gelatin solution is prepared is not particularly limited, and may be a commonly used temperature, for example, 0°C to 60°C, preferably 3°C to 40°C.
  • the inner surface of the liquid container may be coated with a member (coating member) that is the same as or different from the member that constitutes the liquid container.
  • a cover member made of the same or different member as the member constituting the liquid container may be spread over the inner surface of the liquid container, or a cylindrical cover member may be installed.
  • a member constituting the liquid container is also referred to as a main member of the liquid container to distinguish it from the coating member and the cover member. Any combination of the main member of the liquid container, the coating member, and the cover member may be used. That is, the liquid container includes (1) only the main member of the liquid container, (2) the main member and the coating member of the liquid container, (3) the main member and the cover member of the liquid container, and (4) the main member and the coating of the liquid container. Any combination of members and cover members may be used.
  • the inner surface of the liquid container that is, the surface that comes into contact with the aqueous polymer solution when it is placed in the liquid container, is made of tetrafluoroethylene/hexafluoropropylene copolymer (also called perfluoroethylene propene copolymer) (FEP).
  • FEP tetrafluoroethylene/hexafluoropropylene copolymer
  • the main member of the liquid container is FEP
  • at least the coating member is FEP
  • at least the cover member is FEP
  • (4) ) at least the cover member is FEP;
  • the material of the main member of the liquid container there are no particular restrictions on the material of the main member of the liquid container, and examples thereof include aluminum.
  • the main component of the liquid container is FEP.
  • the material of the main member of the liquid container preferably has a coefficient of linear expansion (also referred to as a coefficient of thermal expansion) of 10 ⁇ 10 ⁇ 5 /K or less, more preferably 50 ⁇ 10 ⁇ 6 /K or less. It is particularly preferable to be x10 -6 /K or less.
  • the cover member may be evenly spread over the inner surface of the container, and there are no restrictions on the shape and thickness of the cover member. If the cover member is in contact with the aqueous polymer solution, the cover member is FEP.
  • the coating member may coat the inner surface of the container uniformly, and the thickness of the coating film is not limited. The thickness of the coating film is preferably 20 ⁇ m or more, more preferably 50 ⁇ m or more. When the coated member is in contact with the aqueous polymer solution, the coated member is FEP.
  • a step of freezing the aqueous polymer solution contained in the liquid container (hereinafter sometimes referred to as a “freezing step”) is performed. Thereby, a frozen polymer aqueous solution can be obtained.
  • freezing may be performed using a device such as a refrigerator or a freeze dryer. In the case of freezing with a freeze dryer, water can be continuously removed (freeze-dried) from the frozen polymer aqueous solution using the same apparatus.
  • the temperature in the freezing process varies depending on the type of polymer and the concentration of the aqueous polymer solution, but the difference between the temperature of the hottest part of the solution immediately before the heat of solidification and the coldest part of the solution is Preferably the difference is 2.5°C or less.
  • the "temperature difference immediately before the generation of the heat of solidification” means the temperature difference at which the temperature difference is greatest between 1 second and 10 seconds before the generation of the heat of solidification.
  • the temperature of the lowest liquid temperature portion in the solution is preferably ⁇ 8° C. or less and ⁇ 15° C. or more, more preferably ⁇ 10° C. or less and ⁇ 15° C. or more.
  • the “anisotropy” of the frozen polymer aqueous solution means physical properties measured as follows. After freeze-drying the frozen aqueous polymer solution, the freeze-dried body (porous polymer body) is horizontally and vertically cut in the vicinity of its center. Each section is then stained and a defined area (2.0 mm x 2.0 mm or 2.5 mm x 2.5 mm) is observed under an optical microscope. Among the rectangles circumscribing the area surrounded by the dyed material in the observation area, the circumscribing rectangle having the maximum distance between two opposite sides of the rectangle is selected.
  • the length of the long side of the circumscribing rectangle where the distance between the two opposing sides is the maximum is measured for 50 pieces within the observation area in each of the horizontal cross section and the vertical cross section, and the average is the frozen body. It is the average value of the major diameter of the mesh. For each mesh at this time, the smaller one of the major diameter (average value) of the horizontal cross section and the major diameter (average value) of the vertical cross section is d1, and the other is d2. direction”.
  • the anisotropy of 3 or less is defined as "low anisotropy".
  • the yield of the frozen polymer aqueous solution with low anisotropy be 90% or more.
  • a step of removing water from the frozen aqueous polymer solution (hereinafter sometimes referred to as a "moisture removing step") is carried out. Thereby, a polymer porous body can be obtained.
  • the means for removing water is not particularly limited, and includes a method of melting ice in the frozen polymer aqueous solution, a method of sublimation (freeze-drying), etc. Freeze-drying is preferred.
  • the freeze-drying period can be, for example, 0.5 hours to 300 hours. There are no particular restrictions on the freeze dryer that can be used.
  • the porous polymer body is pulverized to obtain a pulverized product.
  • pulverizers such as hammer mills and screen mills can be applied, and since the particles pulverized to a certain size are collected at any time, the screen mill ( For example, Comil manufactured by Quadro) is preferable.
  • the method of cutting is preferable to the method of crushing in order to maintain the structure of the surface of the pulverized product.
  • a classification process After the pulverization process, a classification process can be included for the purpose of sizing. Thereby, a polymer pulverized product having a uniform particle size can be obtained. For example, it is preferable to use a sieve with an opening of 300 ⁇ m to 1400 ⁇ m for classification of ground gelatin.
  • a step of filling the ground material into vials can be included.
  • the method of filling the gelatin pulverized product is not particularly limited, but a mass feedback type table feeder can be used.
  • the vial to be filled with the pulverized gelatin is also not particularly limited, but, for example, a glass vial having a silicone-coated inner surface can be used.
  • Heat treatment device A heat treatment apparatus 500 shown in FIG. 7 was manufactured in the following manner.
  • the third cylindrical member C3 consists of a cylindrical member C31 (length in ventilation direction: 7 cm) and a cylindrical member C32 (length in ventilation direction: 7 cm) closed by split valve 30 after splitting. : 8 cm).
  • ⁇ Temperature control member 70A Made of SUS304, thickness: 30mm ⁇ Temperature control member 70B Jacket type heater/holding member 80, rectifying member 90 Punching metal made of SUS304, opening ratio: 10%, vent hole diameter: 0.5 mm, thickness: 0.2 mm
  • a holding member 80 is arranged near the air supply port 40 in the first cylindrical member C1.
  • the cylindrical member C31 portion of the third cylindrical member C3 provided with the split valve 30 was connected to the cylindrical portion of the first cylindrical member C1. This formed the first chamber 10 (the length of the cylindrical portion in the ventilation direction: 27 cm).
  • a rectifying member 90 is arranged near the exhaust port 50 in the second cylindrical member C2.
  • the cylindrical member C32 portion of the third cylindrical member C3 was connected to the cylindrical portion of the second cylindrical member C2. This formed the second chamber 20 (the length of the cylindrical portion in the ventilation direction: 18 cm).
  • a temperature control member 70A and a temperature control member 70B were detachably attached to the outside of the container 60 containing the first chamber 10 and the second chamber 20 .
  • the heating chamber 60 includes the first chamber 10 and the second chamber 20 connected via the split valve 30, and the air supply port 40 and the exhaust port 50 through which the heated gas flows.
  • a processing device 500 was created. When separating the first chamber 10 and the second chamber 20 which are connected via the dividing valve 30, the two chambers can be divided into two in a sealed state.
  • a porous polymer body was prepared as an object to be heat-treated in the following manner.
  • CBE3 As a recombinant gelatin, the following recombinant peptide CBE3 (described in International Publication No. 2008/103041) was prepared.
  • the amino acid sequence of CBE3 does not contain serine, threonine, asparagine, tyrosine and cysteine residues.
  • CBE3 has an ERGD sequence. Isoelectric point: 9.34 The proportion of hydrophilic repeating units in the polymer is 26.1%.
  • Amino acid sequence SEQ ID NO: 1
  • the gelatin aqueous solution was sampled in a polystyrene transparent container so as to have a liquid thickness of 2.5 mm, and was observed with an optical microscope in a field of view of 2.5 mm ⁇ 2.5 mm from the bottom surface to the top surface of the liquid at intervals of 100 ⁇ m. Observation of 10 fields of view was performed, and the average number of bubbles and insoluble matter was calculated.
  • the linear expansion coefficient of the main material (aluminum alloy (A5056)) of the cylindrical cup-shaped container used is 24.3 ⁇ 10 ⁇ 6 /K.
  • This frozen gelatin product was freeze-dried using a freeze dryer (ULVAC, DFR-5N-B) to remove moisture, thereby producing a polymer porous product (freeze-dried product).
  • the porous polymer material was pulverized with a screen pulverizer (Quadro, Comil U10) using 0.079 inch and then 0.040 inch screens (1 inch is about 2.45 cm). A porous polymer material that passed through a sieve with an opening of 1400 ⁇ m but did not pass through a sieve with an opening of 300 ⁇ m was obtained.
  • the heat treatment apparatus 500 is installed so that the first chamber 10 faces downward and the ventilation direction is along the vertical direction. It was housed in the first chamber 10 so as to have a height of .
  • the second chamber 20 was attached to the first chamber 10 and the split valve 30 was opened.
  • Heated gas flow process Heated nitrogen at 135° C. was passed through the container 60 of the heat treatment apparatus 500 through the air supply port 40 and the exhaust port 50 .
  • the stainless steel plate 70A was heated by the jacket heater 70B to heat the container 60.
  • the temperature of the porous polymer material reached 135°C, the temperature was maintained for 5 hours.
  • the porous crosslinked polymer of the example was produced.
  • the nitrogen heating was stopped, the nitrogen flow was continued, and the jacket heater was allowed to cool.
  • the temperature of the crosslinked porous polymer body became 40° C. or lower, the porous crosslinked polymer body was taken out from the first chamber 10 .
  • a total of 6 locations, 3 levels in the height direction and 2 levels in the radial direction, of the first chamber 10 were randomly selected, and 100 mg of the porous crosslinked polymer was sampled from each of the 6 locations.
  • a granular porous polymer material (heat-treated material) was prepared in the same manner as in Examples.
  • the porous polymer material was pulverized with a screen pulverizer (Quadro, Comil U10) using 0.079 inch and then 0.040 inch screens (1 inch is about 2.45 cm).
  • a porous polymer material that passed through a sieve with an opening of 1400 ⁇ m but did not pass through a sieve with an opening of 300 ⁇ m was collected and charged into a 10 mL glass vial with a filling machine (TF-70AD, Aisin Nano Technologies). 09 g was filled.
  • the filled vial was placed in a clean oven (NCO-500A600L-WS, manufactured by Nitto Rika Kogyo Co., Ltd.) and heat-treated at 135° C. for 5 hours in a nitrogen atmosphere to prepare a porous crosslinked polymer material of Comparative Example.
  • the acid residual ratio and the amount of water elution components were measured in the following manner.
  • A The mass of a microtube for measurement (trade name Mini Super Tube, manufactured by Ibis, volume 2 ml, hereinafter referred to as tube) was measured (A).
  • 1.7 ml of 1 mol/L HCl was added to the tube containing the crosslinked porous polymer, and the tube was allowed to stand at a constant temperature of 37 ⁇ 0.5° C. for 3 hours. After a specified time, the tube was placed on ice to stop the reaction, and centrifuged at 10,000 xg for 1 minute in a centrifuge previously set at 4°C.
  • the porous crosslinked polymer body which is the object to be heat treated, is housed in the first chamber of the container in a state of being sealed with a split valve. After connecting the first chamber to the external space via the split valve, the heat-treated material can be taken out from the first chamber by opening the split valve. Therefore, it is possible to take out the heat-treated material from the container while suppressing contamination by foreign matter.
  • the porous crosslinked polymer of the example had an acid residual rate in the range of 45% to 60% at the above six locations.
  • the porous crosslinked polymer of the comparative example also had an acid residual rate of 45% to 60%.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

本開示は、分割弁を介して連結した第1室及び第2室と、加熱された気体が流通する給気口及び排気口とを含む容器を備えた、加熱処理装置及び加熱処理物の製造方法を提供する。

Description

加熱処理装置及び加熱処理物の製造方法
 本開示は、加熱処理装置及び加熱処理物の製造方法に関する。
 加熱処理装置は、被加熱処理物の乾燥、架橋等の多くの用途で広く用いられている。このような加熱処理装置として、棚板式の加熱処理装置(オーブン)が知られており、例えば、国際公開第2014/141877号に開示されている。
 加熱処理装置から加熱処理物(すなわち、加熱処理により得られた物)を取り出す際、加熱処理物への異物の混入を抑制する技術が求められている。
 本開示は、このような状況を鑑みてなされたものであり、本開示の一実施形態が解決しようとする課題は、異物の混入を抑制しながら加熱処理物を取り出すことができる加熱処理装置を提供することである。
 本開示の他の実施形態が解決しようとする課題は、上記加熱処理装置を用いた加熱処理物の製造方法を提供することである。
 本開示は、以下の態様を含む。
<1> 分割弁を介して連結した第1室及び第2室と、加熱された気体が流通する給気口及び排気口とを含む容器を備えた、加熱処理装置。
<2> 容器が、筒状である、<1>に記載の加熱処理装置。
<3> 容器の外側に配置され、かつ、加熱処理装置に取り外し可能に取り付けられた温度調節部材を備えた、<1>又は<2>に記載の加熱処理装置。
<4> 温度調節部材が、ジャケット式ヒーター及び金属部材の少なくとも一方を含む、<3>に記載の加熱処理装置。
<5> 金属部材が、ステンレス製又はアルミニウム製である、<4>に記載の加熱処理装置。
<6> 給気口と排気口との間に、被加熱処理物を保持する保持部材を含む、<1>~<5>のいずれか1つに記載の加熱処理装置。
<7> 保持部材が、多孔質板、メッシュ板、パンチングメタル又は通気性袋である、<6>に記載の加熱処理装置。
<8> 分割弁は、スプリットバタフライバルブである、<1>~<7>のいずれか1つに記載の加熱処理装置。
<9> <1>~<8>のいずれか1つに記載の加熱処理装置の容器内に、被加熱処理物を収容する工程、及び
 給気口及び排気口を介して容器内に加熱された気体を流通させる工程
を含む、加熱処理物の製造方法。
<10> 加熱処理装置が温度調節部材を備え、温度調節部材により容器を加熱する工程を含む、<9>に記載の加熱処理物の製造方法。
<11> 温度調節部材がステンレス及びステンレスを加熱するヒーターを含む、<10>に記載の加熱処理物の製造方法。
<12> 加熱された気体を流通させる工程の少なくとも一部と、容器を加熱する工程の少なくとも一部とを同時に行う、<10>又は<11>に記載の加熱処理物の製造方法。
<13> 被加熱処理物が、コラーゲン又はゼラチンの高分子多孔質体である、<9>~<12>のいずれか1つ項に記載の加熱処理物の製造方法。
<14> 加熱された気体が、不活性ガスである、<9>~<13>のいずれか1つに記載の加熱処理物の製造方法。
<15> 加熱された気体を流通させる工程後、分割弁を閉鎖して加熱処理物を回収する工程を含む、<9>~<14>のいずれか1つに記載の加熱処理物の製造方法。
 本開示の一実施形態によれば、異物の混入を抑制しながら加熱処理物を取り出すことができる加熱処理装置が提供される。
 本開示の他の実施形態によれば、上記加熱処理装置を用いた加熱処理物の製造方法が提供される。
図1は、加熱処理装置の一例を示す概略的断面図である。 図2は、第1室と第2室とを分離した様子の一例を示す概略的断面図である。 図3は、分割弁を開放した様子の一例を示す概略的断面図である。 図4は、加熱処理装置の一例を示す概略的断面図である。 図5は、加熱処理装置の一例を示す概略的断面図である。 図6は、加熱処理装置の一例を示す概略的断面図である。 図7は、加熱処理装置の一例を示す概略的断面図である。
 以下、本開示に係る加熱処理装置及び加熱処理物の製造方法の詳細を説明する。
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、各成分の量は、各成分に該当する物質が複数種存在する場合には、特に断らない限り、複数種の物質の合計量を意味する。
 本開示において、「工程」という語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、ポリペプチドのアミノ酸配列を、本技術分野で周知の一文字表記(例えば、グリシン残基の場合は「G」)又は三文字表記(例えば、グリシン残基の場合は「Gly」)を用いて表現する場合がある。
 本開示において、ポリペプチドのアミノ酸配列に関する「%」は、特に断らない限り、アミノ酸(又はイミノ酸)残基の個数を基準とする。本発明において、対比される2種のポリペプチドのアミノ酸配列に関する「同一性」とは、以下の式で計算される値を指す。
なお、複数のポリペプチドの対比(アライメント)は、同一となるアミノ酸残基の数が最も多くなるように常法に従って行うものとする。
同一性(%)={(同一となるアミノ酸残基の数)/(アラインメント長)}×100
 以下の説明において参照する図面は、例示的、かつ、概略的に示されたものであり、本開示は、これらの図面に限定されない。同じ符号は、同じ構成要素を示す。また、図面の符号は省略することがある。
<加熱処理装置>
 本開示に係る加熱処理装置は、分割弁を介して連結した第1室及び第2室と、加熱された気体が流通する給気口及び排気口とを含む容器を備える。好ましい態様において、加熱処理装置は、第1室に配置された給気口と、第2室に配置された排気口とを含んでよい。
 加熱処理装置として、棚板式の加熱処理装置(オーブン)が知られている。棚板式の加熱装置の場合、被加熱処理物に熱処理を施して加熱処理物を得た後、加熱処理物を取り出すために扉を開放する。その際、加熱処理物が外部環境に曝されることとなる
 これに対して、本開示に係る加熱処理装置は、分割弁を介して連結した第1室と第2室とを含む容器に被加熱処理物を収容して、容器内に加熱された気体を流通させて加熱処理を行った後、容器を分割弁で密閉した状態の第1室と第2室とに分離する。そして、加熱処理物を収容して分割弁で密閉された室(例えば、第1室)を、分割弁を介して外部空間(例えば、他の容器、装置、部屋等)に接続した後、分割弁を開放することにより、室(例えば、第1室)から加熱処理物を外部に取り出すことができる。そのため、異物の混入を抑制しながら加熱処理物を容器から取り出すことができる。
 このように、本開示に係る加熱処理装置は、異物(例えば、水、菌等)の混入を抑制することができるため、加熱処理物の水分量の保持、無菌化等に好適である。とりわけ、加熱処理物が、コラーゲン、ゼラチン等の生体親和性高分子又はその高分子多孔質架橋体である場合、無菌化状態で取り出すことは有益であり、また、パスボックスを介することなく分割弁を介して無菌状態で外部空間に接続することができるため、作業性が高い。更に、加熱処理物が分割弁で密閉された室に収容されているため、異物の混入を抑制しつつ、保管及び輸送することが容易である。
 加熱処理は特に限定されず、例えば、乾燥、架橋、調湿、反応等が挙げられる。
 図面に例示される加熱処理装置の記載方向は、加熱処理装置の実際の設置方向とは無関係である。例えば、加熱処理装置は、通気方向(容器の長手方向)が鉛直方向に沿う方向(すなわち、縦方向)に設置してよく、また、容器内の通気方向が鉛直方向と垂直となる方向(すなわち、横方向)に設置してよい。
[容器]
 容器は、分割弁を介して連結した第1室及び第2室と、加熱された気体が流通する給気口及び排気口とを含む容器を含む。例えば、図1に示される加熱処理装置100の容器60では、第1室10に給気口40が設けられ、第2室20に排気口50が設けられており、第1室10及び第2室20が分割弁30を介して連結されている。
 容器の材質は特に限定されないが、耐圧性の観点から、金属製であることが好ましく、例えば、ステンレス製であってよい。容器が金属製である場合、耐圧性が高く、高い圧力で容器内に加熱された気体を流通させることができるため、より短時間で被加熱処理物に加熱処理を施すことができる。
 容器の形状は特に限定されないが、筒状であることが好ましく、筒の長手方向と直行する断面は、円形、楕円形、矩形、台形等のいずれであってもよい。容器の形状は、例えば、円筒状、楕円筒状等であってよく、円筒状であることがより好ましい。
 容器が筒状である場合、例えば、棚板式の装置と比較して、被加熱処理物の充填率を高めることができるため、効率よく加熱処理を施すことができる。
 更に、充填率を高めることにより、例えば、棚板式の装置と比較して小型化することができる。棚板式の装置の場合には、内部に制御装置を備えているタイプもあるため、そのような加熱処理装置と比較して、本開示に係る加熱処理装置は小型化の観点で有効である。これにより、加熱処理装置の取り回し(例えば、保管、運搬、次工程(例えば、冷却、冷凍、ホッパーへの充填等)への適用等)がより容易となる。充填率とは、容器の内部容量に対する被加熱処理物の体積の割合(体積%)である。
 また、容器が筒状である場合、容器内を流通する加熱された気体の流れがより均一となるため、被加熱処理物を均一に加熱することがより容易となる。
 更に、容器が筒状である場合、耐圧性が高く、高圧で容器内に加熱された気体を流通させることができるため、供給熱量及び加熱された気体の流量の増加により、より短時間で被加熱処理物に加熱処理を施すことができる。被加熱処理物を乾燥する場合には、キャリアガス(すなわち、加熱された気体)の流量が増加するため、液分の除去をより促進することができる。
 被加熱処理物をより均一に加熱する観点から、容器が筒状である場合、被加熱処理物を収納する部分の筒の通気方向(高さ方向)の長さに対する、高さ方向に垂直な断面の輪郭の最大長(すなわち、輪郭の任意の2点を結ぶ直線の最大値)の比率(アスペクト比)は、0.5~3.0であることが好ましく、1.0~2.5であることがより好ましい。高さ方向に垂直な断面の輪郭の最大長は、例えば、容器が円筒状である場合には円の直径であり、容器が楕円状である場合には楕円の長径であり、矩形の場合には最大の対角線である。
 容器の上記輪郭の最大長は特に限定されず、分割弁の径と同程度であってよく、分割弁の径より大きくてもよい。
 給気口及び排気口の数は特に限定されず、加熱処理装置の設計等に応じて適宜選択してよい。
 給気口及び排気口の位置は特に限定されず、加熱処理装置の設計等に応じて適宜選択してよい。また、加熱処理装置の設計等に応じて、被加熱処理物をどの室に収容するかを選択してよく、第1室若しくは第2室のみに収容してよく、又は両方に収容してもよい。
 容器は、第1室及び第2室以外に、分割弁を介して連結した1つ以上の室を有してよい。
 また、容器は、被加熱処理物を内部に収容するための供給口を含んでよい。これにより、第1室と第2室とを分割弁を介して連結した状態で、被加熱処理物を容器の内部に収容することができる。
[分割弁]
 本開示において、「分割弁」とは、分割弁を介して連結した2つの室を分離する際、上記2つの室をそれぞれ密閉した状態で2つに分割することができる弁である。「室を密閉した状態で分割する」とは、室を閉塞した状態で分割すること、好ましくは、室を密封した状態で分割することを意味する。また、分割前後の分割弁を、区別することなく「分割弁」と呼ぶことがある。
 分割弁は、例えば、スプリットバタフライバルブ、ディスク2枚分割弁、二葉式分割バタフライ弁、スプリット弁等が含まれる。
 また、分割弁は、容器に固定されたものであってよく、容器に取り外し可能に取り付けられたものであってもよい。
 例えば、図1に示される加熱処理装置100では、第1室10及び第2室20をそれぞれ分割弁30で密閉した状態で分離することができる。分割弁30は、図2に示すように、第1室側の分割弁31と第2室側の分割弁32とを有し、図3に示すように、一体となって弁としても開閉動作を行うことができる。分離後の第1室10は、分割した分割弁31で密閉されており、一方、分離後の第2室20は、分割した分割弁32で密閉されている。
 また、分割弁30を介して、第1室10及び第2室20を連結することができる。その際、分割した分割弁31と分割弁32とが連結されるが、異物の混入をより容易に抑制する観点から、分割弁31と分割弁32との間に真空排気処理を施してよい。
 例えば、図1に示される加熱処理装置100を、給気口40が下方となり、かつ、排気口50が上方となるように、通気方向が鉛直方向に沿う方向に設置する。第1室10に被加熱処理物を収容し、図3に示すように、分割弁30を開放した状態で、給気口40を介して加熱された気体を容器60内に流入させ、排気口50を介して加熱された気体を容器60内から流出させる。これにより、容器60内に加熱された気体を流通させ、被加熱処理物に加熱処理を施すことができる。その際、加熱された気体により被加熱処理物が加熱され、かつ、例えば、被加熱処理物中の水分が奪われて排気されるため、被加熱処理物が乾燥される。また、例えば、被加熱処理物を構成する材料が架橋して、被加熱処理物の架橋体を得ることができる。
 その後、第1室10と第2室20とを分離し、分割弁31で密閉された第1室10を、分割弁31を介して外部空間に接続した後、分割弁31を開放することにより、第1室10から加熱処理物を外部空間に取り出すことができる。
 また、例えば、図1に示される加熱処理装置100を、排気口50が下方となり、かつ、給気口40が上方となるように、通気方向が鉛直方向に沿う方向に設置する。第2室20に被加熱処理物を収容し、分割弁30を開放した状態で、給気口40を介して加熱された気体を容器60内に流入させ、排気口50を介して加熱された気体を容器60内から流出させる。この実施形態では、給気口40と被加熱処理物との距離が離れることにより、加熱された気体と被加熱処理物の接触が穏やかになる。そのため、加熱された気体による被加熱処理物の流動、飛散等が問題になる場合は、このような実施形態が好ましい。
 また、例えば、図1に示される加熱処理装置100を、通気方向が鉛直方向と垂直となる方向に設置する。第1室10及び第2室20の両方に被加熱処理物を収容し、図3に示すように分割弁30を開放した状態で、給気口40を介して加熱された気体を容器60内に流入させ、排気口50を介して加熱された気体を容器60内から流出させてもよい。これにより、容器60内に加熱された気体を流通させ、被加熱処理物に加熱処理を施すことができる。その後、第1室10と第2室20とを分離し、分割弁31で密閉された第1室10、分割弁32で密閉された第2室20を、それぞれ分割弁31及び分割弁32を介して外部空間に接続した後、分割弁31及び分割弁32を開放することにより、第1室10及び第2室20から加熱処理物を外部空間に取り出すことができる。
 例えば、第1室10及び第2室20に同一の被加熱処理物を収容することにより、同一の加熱処理物を多量に製造することができる。また、第1室10及び第2室20に異なる被加熱処理物を収容することにより、異なる加熱処理物を一括して製造することができる。
 例えば、図4に示される加熱処理装置200の容器60では、第1室10に給気口40及び排気口50の両方が設けられている。
 例えば、加熱処理装置200を、給気口40が下方となるように、通気方向(容器の長手方向)が鉛直方向に沿う方向に設置する。被加熱処理物が収容された第2室20と空の第1室とを連結し、分割弁30を開放して、第2室20に収容された被加熱処理物の一部を第1室に収容した後、分割弁30を閉鎖する。分割弁30を閉鎖した状態で、給気口40を介して加熱された気体を容器60内に流入させ、排気口50を介して加熱された気体を容器60内から流出させる。これにより、容器60内に加熱された気体を流通させ、被加熱処理物に加熱処理を施すことができる。その後、第1室10と第2室20とを分離し、分割弁31で密閉された第1室10を、分割弁31を介して外部に接続した後、分割弁31を開放することにより、第1室10から加熱処理物を外部に取り出すことができる。
 更に、加熱処理物を取り出した後の第1室10を第2室20に再び連結させることにより、上記と同様にして加熱処理物を得ることができる。このような加熱処理は、少量ずつ加熱処理物を製造する際に有効である。また、第2室20に予め多くの被加熱処理物を収容しておくことで、分割弁32で密閉した状態で被加熱処理物を保持することができるため、加熱処理の度に外部から被加熱処理物を第1室10に収容する場合と比較して、被加熱処理物への異物の混入も容易に抑制することができる。
 加熱処理装置は、加熱された気体の流通による加熱処理後、分割弁で密閉することにより、容器内を陽圧で保持することが容易である。そのため、例えば、乾燥状態、無菌状態の保持等に有効である。
 本開示の加熱処理装置は、被加熱処理物を静置した状態で加熱することができ、加熱された気体の温度等の条件を調節することができるため、例えば、流動乾燥式、振動乾燥式等の容器が動作する装置と比較して、被加熱処理物の静電気の発生を抑制することができる。そのため、本開示の加熱処理装置は、静電気が発生し易い粉体、顆粒等の被加熱処理物を加熱処理するのに好適に用いることができる。また、被加熱処理物が多孔質である場合、孔の静電気の除去は難しいため、静電気の発生を抑制することは有効である。
 また、本開示の加熱処理装置は、被加熱処理物を静置した状態で使用することができるため、例えば、流動乾燥式、振動乾燥式等の容器が動作する装置と比較して、被加熱処理物の凝集が抑制されて粗大化しにくく、また、不要な微細化を抑制することができるため、所望の大きさを有する加熱処理物を得ることが容易である。
[温度調節部材]
 加熱処理装置は、容器の外側に配置され、かつ、加熱処理装置に取り外し可能に取り付けられた温度調節部材を備えてよい。温度調節部材を用いることにより、容器を介して、容器内部の温度を調節することができるため、被加熱処理物を均一に加熱することがより容易となる。また、加熱処理後、加熱処理装置から温度調節部材を取り外すことにより、加熱処理装置の取り回しがより容易となる。
 温度調節部材は、容器の外側を介して容器内部の温度を調節することができる限りは特に限定されない。
 温度調節部材は、容器の外側に接するものであってよく、容器の外側と非接触のものであってもよい。温度調節部材は、容器の外側を覆うように、又は容器の外側近傍に配置されてよい。
 また、温度調節部材は、容器の外側の一部に配置されてよく、容器の外側の全周に亘って配置されていてもよい。例えば、図5及び図6にそれぞれ示される加熱処理装置300及び400のように、温度調節部材70、70A及び70Bは、通気方向に亘って容器60の外側に配置されてよい。
 温度調節部材は、例えば、電熱線を備えるヒーターであってよく、例えば、ジャケット式ヒーター等であってよい。これにより、容器の外側を介して容器内部の温度を高めつつ、容器内部に加熱された気体を流通させることができるため、被加熱処理物を均一に加熱することがより容易となる。ジャケット式ヒーターは、電熱線のピッチを変化させて所望の電熱線パターンを得て、ジャケットの厚みを変化させる(例えば、薄くする)ことが容易である。
 温度調節部材は、例えば、金属板等から形成された金属部材であってよい。金属部材は、空気と比較して熱伝導性が高く、容器の外側の温度ムラがより小さくなるため、容器内部の温度をより均一にし易く、被加熱処理物を均一に加熱することがより容易となる。
 温度ムラをより小さくする観点から、温度調節部材が金属部材である場合、金属部材は、ある程度の厚み(例えば、20mm超)を有する金属板から形成されたものであることが好ましい。金属部材が金属板から形成されたものである場合、厚みは、金属の種類等に応じて適宜調整してよく、また、容器の形状に適するように適宜形状加工が施されてよい。
 また、温度調節部材が金属部材である場合、発熱性を付与するため、金属部材は、その内側又は外側にヒーターを備えてよい。例えば、金属部材は、外部の熱源が接続されていてよく、また、鋳込みヒーターであってよい。金属部材が鋳込みヒーターである場合、鋳込みヒーターの厚みは、ヒーター線のピッチよりも大きいことが好ましい。
 温度調節部材が金属部材である場合、材質は特に限定されないが、ステンレス製又はアルミニウム製であることが好ましい。
 ステンレスは、熱容量が大きいため、温度の変化が小さく、熱伝導が均一になり易い。また、アルミニウムは、熱伝導が速いため、迅速に加熱することができる。
 温度調節部材は、1つであってよく、2つ以上であってもよい。
 温度調節部材は、ジャケット式ヒーター及び金属部材の少なくとも一方を含んでよい。
 例えば、図6に示される加熱処理装置400のように、容器60の外側を覆う金属板である温度調節部材70Aを容器60の外側を覆うように配置し、更に、ジャケット式ヒーターである温度調節部材70Bで温度調節部材70Aを覆ってよい。これにより、容器の外側の温度ムラをより小さくしながら、容器の外側を介して容器内部の温度をより均一に高めることができるため、被加熱処理物を均一に加熱することがより容易となる。
[保持部材、整流部材]
 加熱処理装置は、給気口と排気口との間に、被加熱処理物を保持する保持部材を含んでよい。これにより、容器内での被加熱処理物の保持が容易となる。
 保持部材の材質、形状等は特に限定されず、被加熱処理物の種類等に応じて適宜選択してよい。保持部材は、例えば、セラミック製、金属製(例えば、SUS304等)等であってよい。被加熱処理物をより均一に加熱する観点から、保持部材は、通気孔を備え、通気性を有することが好ましく、例えば、保持部材は、多孔質板、メッシュ板、パンチングメタル又は通気性袋であってよい。
 保持部材が通気孔を備える場合、開口率は特に限定されないが、5%~30%程度であってよい。
 保持部材は、通気性を有する場合、整流部材として機能し得る。すなわち、容器内を流通する加熱された気体が保持部材の通気孔を介して保持部材を通過することにより、加熱された気体の流れを整えることができる。
 保持部材が整流部材として機能する場合、保持部材は、板状であることが好ましい。これにより、容器内を流通する加熱された気体の流れ(抵抗)を十分に受け止め、保持部材の中央部から周辺部に亘って加熱された気体の線速度を均一にすることができるため、被加熱処理物をより均一に加熱することができる。整流効果をより高める観点から、保持部材は、ある程度の厚さ(例えば、通気孔の径の1/2倍から3倍)を有することが好ましい。
 容器は、保持部材とは別に、通気性を有する保持部材と同様の構成を有する整流部材を有してよい。保持部材が通気性を有する場合、整流部材と兼ねることにより、被加熱処理物をより均一に加熱することができる。
 保持部材及び整流部材の位置及び数は特に限定されず、加熱処理装置の設計等に応じて適宜選択してよい。例えば、図6に示される加熱処理装置400のように、第1室10の給気口40近傍に保持部材80(整流部材を兼ねる)を有し、第2室20の排気口50近傍に整流部材90を有してよい。図6に示される加熱処理装置は、加熱された気体が保持部材表面(保持面)の垂直方向に流通するように制御することができる。
 また、容器を通気方向(容器の長手方向)が鉛直方向に沿う方向に設置することにより、容器内を流通する加熱された気体の流れがより均一となる。そのため、被加熱処理物を均一に加熱することがより容易となる。
 更に、容器を縦方向(すなわち、通気方向が鉛直方向に沿う方向)に設置することにより、被加熱処理物の充填率をより高めることができ、例えば、70%~90%(最も好ましくは100%)の充填率とすることが容易となる。
[加熱された気体]
 気体は特に限定されないが、窒素、アルゴン等の不活性ガスであることが好ましい。また、水分含有量が、0.000613g/m(露点:-80℃)~4.85g/m(露点:0℃)である気体を用いることが好ましい。公知の方法により、気体を加熱することで、加熱された気体を得てよい。
[被加熱処理物]
 被加熱処理物は特に限定されず、固体であってよい。固体の被加熱処理物として、粉末、顆粒等が挙げられる。
 本開示に係る加熱処理装置は、コラーゲン、ゼラチン等の生体親和性高分子又はその高分子多孔質体を加熱処理して、高分子多孔質架橋体を製造するのに好適に用いることができる。
[その他]
 加熱処理装置は、加熱された気体の流れを制御するためのバルブを含んでよい。例えば、給気口の近傍、排気口の近傍等にバルブを配置してよい。
 また、加熱処理装置は、無菌フィルターを含んでよい。例えば、給気口の近傍、排気口の近傍等に無菌フィルターを配置してよい。
 加熱処理装置は、加熱空気を容器に流通させるため、ポンプ又は給気ファンを含んでよく、また、外部のポンプ又は給気ファンが接続されていてよい。また、給気源は、圧縮機(コンプレッサー)であってよく、圧縮ボンベ等であってもよい。
<加熱処理物の製造方法>
 本開示に係る加熱処理物の製造方法は、本開示に係る加熱処理装置の容器内に、被加熱処理物を収容する工程(以下、「収容工程」と呼ぶことがある)、及び
 給気口及び排気口を介して容器内に加熱された気体を流通させる工程(以下、「加熱気体流通工程」と呼ぶことがある)
を含む。これにより、被加熱処理物に熱処理を施すことができ、加熱処理物を製造することができる。
 本開示に係る加熱処理物の製造方法は、加熱気体流通工程後、分割弁を閉鎖して加熱処理物を回収する工程(以下、「回収工程」と呼ぶことがある)を含んでよい。これにより、異物の混入を抑制しながら加熱処理物を取り出すことができる。
 被加熱処理物及び加熱された気体については、上述の通りである。
[収容工程]
 収容工程において、被加熱処理物を容器に収容する方法は特に限定されない。例えば、分割弁を開放し、または、分割弁を容器から取り外して、被加熱処理物を容器に収容してよい。また、例えば、容器に設けられた供給口を介して、被加熱処理物を容器に収容してよい。
[加熱気体流通工程]
 加熱された気体の温度、及び処理時間(すなわち、加熱された気体の流通時間)は特に限定されず、加熱処理の目的等を考慮し、適宜選択してよい。
 加熱された気体の流入速度及び流入量は特に限定されず、被加熱処理物の性質、加熱処理の目的等に応じて、適宜選択してよい。例えば、気体の流入速度及び流入量の少なくとも一方を上げることで、被加熱処理物を流動させてもよい。
 高分子多孔質体を加熱処理装置の容器内に入れ、給気口及び排気口を介して加熱された気体を流通させる。これにより、高分子多孔質体(被加熱処理物)に熱処理を施して架橋することができ、高分子多孔質架橋体(加熱処理物)を製造することができる。
 架橋温度(すなわち、加熱気体の温度)は、100℃~200℃であることが好ましく、120℃~170℃であることがより好ましく、130℃~160℃であることが更に好ましい。熱架橋法を採用することにより、架橋剤の使用を回避することができる。熱架橋の処理時間としては、架橋温度、高分子の種類やどの程度の分解性を保持させるかによって異なる。
 加熱空気を容器に流通させるため、加熱処理装置に備えられたポンプ、または、加熱処理装置に接続された外部のポンプを用いてよい。
 加熱処理物の製造方法は、加熱処理装置が温度調節部材を備え、温度調節部材により容器を加熱する工程を含んでよい。これにより、容器内部の温度を調節することができるため、被加熱処理物を均一に加熱することがより容易となる。
 加熱処理物の製造方法において、温度調節部材はステンレス及びステンレスを加熱するヒーターを含んでよい。また、加熱された気体を流通させる工程の少なくとも一部と、容器を加熱する工程の少なくとも一部とを同時に行ってよい。これにより、容器の外側の温度ムラをより小さくしながら、容器の外側を介して容器内部の温度をより均一に高めることができるため、被加熱処理物を均一に加熱することがより容易となる。また、温度調節部材を用いて、容器の外側を介して、容器内部の温度を調節することができるため、被加熱処理物を均一に加熱することがより容易となる。
 被加熱処理物をより均一に加熱する観点から、加熱された気体を流通させる工程は、容器を加熱する工程と同時に行うことが好ましい。
 以下、ゼラチン、コラーゲン等の生体親和性高分子の高分子多孔質体(被加熱処理物)を加熱処理して、高分子多孔質架橋体(加熱処理物)を製造する場合を例に挙げ、本開示に係る加熱処理物の製造方法を更に説明する。
-高分子多孔質体-
 高分子多孔質体(被加熱処理物)は、高分子からなる多孔質ブロックであることが好ましい。
 製造方法について後述するように、高分子多孔質体は、高分子が含まれる高分子水溶液を液体容器に入れて凍結工程を施して高分子水溶液が凍結した高分子水溶液凍結体を得た後、高分子水溶液凍結体に水分除去工程を施して水分を除去することにより得られる。
 高分子多孔質体は、更に、後述の粉砕工程、分級工程等が施されてよい。これにより、種々の大きさの顆粒に加工することができる。また、高分子多孔質体は、更に、後述の充填工程等が施されてよい。
 例えば、ヒト由来組換えゼラチンとしてリコンビナントペプチドCBE3を用いた場合の熱架橋条件は、次のとおりである。実温約135℃のとき、2時間~20時間であることが好ましく、3時間~18時間であることがより好ましく、4時間~8時間であることが更に好ましい。熱架橋の処理は、酸化防止の観点から、不活性ガス(すなわち、加熱された気体)雰囲気下で行うことが好ましい。例えば、130℃~150℃で窒素雰囲気下3時間~7時間の熱架橋を行うことが好ましい。不活性ガスとして窒素又はアルゴンが好ましく、均一な加熱の観点より真空下より不活性ガス雰囲気下での架橋が好ましい。
-高分子多孔質架橋体-
 以上のようにして得られた高分子多孔質架橋体は、細胞足場、移植用部材、組織修復材等として好適である。
(酸残存率)
 高分子多孔質架橋体は、所定の酸残存率を示すことが好ましい。例えば、1モル/Lの塩酸を用いた3時間の分解処理による酸残存率が、質量基準で30%~70%であることが好ましく、35%~65%であることがより好ましく、45%~65%であることが更に好ましい。
 高分子多孔質架橋体の「酸残存率」とは、以下のようにして測定される物理的特性値である。測定用のマイクロチューブ(商品名ミニスーパーチューブ、アイビス社製、容量2ml、以下チューブと称する)の質量を測定する(A)。顆粒状の高分子多孔質架橋体については加工せず15.0(±0.2)mgを秤量(n=3)、ブロック状の高分子多孔質架橋体については、直径6mm×厚み約1mmの円柱の検体を作製し、質量を測定し(B)、測定用チューブに充填する。高分子多孔質架橋体入りのチューブに、1モル/LのHClを1.7ml添加し、37±0.5℃にて、3時間恒温静置させる。規定時間後、チューブを氷上に立て反応を止め、あらかじめ4℃に設定した遠心器で10,000×g、1分間遠心する。組織修復材が沈殿していることを確認し、上清を吸い取り、あらかじめ氷上で冷やしておいた超純水を添加して、上記と同一の条件で再度、遠心する。上清を吸い取り、再度超純水を加え、上記と同一の条件で再度遠心することを、あと2回繰り返す。上清を吸い取ったのち、凍結乾燥する。凍結乾燥機から取り出した後、空気中の水分を高分子多孔質架橋体が吸い取るのを防ぐためすばやくチューブのキャップを閉める。チューブごと質量を測定し(C)、下記計算式を用いて酸残存率を算出する。
酸残存率=(C-A)/B×100(%)
 高分子多孔質架橋体の酸残存率は、高分子多孔質架橋体に含まれる成分、特に顆粒の種類及び形態によって異なるが、例えば、架橋工程(すなわち、加熱気体流通工程)の温度、処理時間等によって調整することができ、処理時間を短くすると、酸残存率が低くなる傾向がある。
 高分子多孔質架橋体は、容器に保存してもよい。例えば、ゼラチンからなる高分子多孔質架橋体の場合、容器については特に制限されないが、例えば、ガラスバイアルにゴム栓とアルミキャップで密封したものを用いることができる。ガラスバイアルのサイズは特に制限されない。ガラスバイアルにはジメチルポリシロキサンなどを用いたシリコーン樹脂コーティングや、フッ素樹脂コーティング、シリカコーティング、脱アルカリ処理などを施しても良い。これら各種コーティング又は脱アルカリ処理により、帯電防止、付着防止、撥水などの効果を与えることができる。また、上記の容器を更に包装してもよい。包装についても特に制限はないが、例えば、アルミパウチを用いることができる。
 以下、高分子多孔質体(被加熱処理物)の製造方法の一例を示す。
[高分子多孔質の製造例]
(高分子)
 本開示において高分子とは、分子量が大きい分子で、分子量が小さい分子から実質的又は概念的に得られる単位の多数回の繰り返しで構成した構造を有する分子を言う。例えば、ポリアミン、セルロース、アミロース、デンプン、キチン、ポリペプチド、タンパク質、DNA及びRNA等が挙げられる。高分子は水溶性であることが好ましく、ポリペプチド及びタンパク質が更に好ましい。ポリペプチド及びタンパク質の中では、コラーゲン及びゼラチンが特に好ましい。
 高分子中の親水性繰り返し単位比率は、50%以下であることが好ましく、30%以下であることが更に好ましい。これよりも親水性単位比率が高いと、高分子周囲の自由水が減少し凍結が阻害される。ここで、親水性繰り返し単位比率とは、高分子中に占めるイオン性基、及び/又は水酸基を有する繰り返し単位の比率をいう。
 上記ゼラチンは、Gly-X-Yで示される配列を連続して6以上含むポリペプチドを意味し、ポリペプチド中にGly-X-Yで示される配列以外に他のアミノ酸残基を1以上有していてもよい。Gly-X-Yで示される配列は、コラーゲンの部分アミノ酸配列に由来するアミノ酸配列に相当する配列であり、この配列の繰り返しはコラーゲンに特徴的な配列を意味する。
 複数個のGly-X-Yは、それぞれ同一であってもよく、異なってもよい。また、Gly-X-Y配列中X及びYは繰返し単位ごとに独立であり、同一でも異なっていてもよい。Gly-X-YにおいてGlyはグリシン残基、X及びYは、グリシン残基以外の任意のアミノ酸残基を表す。X及びYとしては、イミノ酸残基、即ちプロリン残基又はオキシプロリン残基が多く含まれることが好ましい。このようなイミノ酸残基の含有率は、上記ゼラチン全体の10%~45%を占めることが好ましい。上記ゼラチン中のGly-X-Yの含有率としては、全体の80%以上であることが好ましく、95%以上であることが更に好ましく、99%以上であることが最も好ましい。
 上記ゼラチンとしては、天然型であっても、天然型とは少なくとも1つのアミノ酸残基が異なる変異型であってもよい。天然型のゼラチンとは、天然で生じたコラーゲンを原料とするゼラチン、又は天然で生じたコラーゲンを原料とするゼラチンと同一のアミノ酸配列を有するポリペプチドを意味する。特に断らない限り、本開示では変異型又は組換え体のゼラチンを総称して、組換えゼラチンと称する。天然型のゼラチン又はその組換えゼラチンは、例えば、魚類、哺乳類等の動物に由来するものが挙げられるが、哺乳類の動物の天然型ゼラチン又はその組換えゼラチンであることが好ましい。哺乳類の動物としては、例えば、ヒト、ウマ、ブタ、マウス、ラット等が挙げられ、ヒト又はブタであることがより好ましい。天然型ゼラチンとしてはブタ又はヒトに由来するものであることが好ましく、組換えゼラチンとしてはヒト由来組換えゼラチンであることが好ましい。
 また、上記ゼラチンとしては、上記Gly-X-Yで示される配列を連続して6以上有する上記コラーゲンをコードする遺伝子の塩基配列又はアミノ酸配列に対して、1つ以上の塩基又はアミノ酸残基の変更を加えた塩基配列又はアミノ酸配列を、常法により、適当な宿主に導入し発現させて得られた組換えゼラチンであることが好ましい。このような組換えゼラチンを用いることにより、(骨)組織修復能を高めると共に、天然のゼラチンを用いる場合と比較して種々の特性を発現させることができ、例えば、生体による拒絶反応などの不都合な影響を回避することができるなどの利点を有する。
 上記組換えゼラチンとしては、例えば、欧州公開1014176号、米国特許第6992172号、国際公開第2004/85473号、国際公開第2008/103041号、特表2010-519293号公報、特表2010-519252号公報、特表2010-518833号公報、特表2010-519251号公報、国際公開第2010/128672号及び国際公開第2010/147109号等に開示されているものを特に好ましく用いることができる。また、上記組換えゼラチンは、2kDa以上100kDa以下の分子量であることが好ましく、5kDa以上90kDa以下であることがより好ましく、10kDa以上90kDa以下であることがより好ましい。
 上記組換えゼラチンは、生体親和性の点で、細胞接着シグナルを更に含むものであることが好ましく、上記組換えゼラチン中に存在する細胞接着シグナルが一分子中に2つ以上有することものであることが、より好ましい。このような細胞接着シグナルとしては、RGD配列、LDV配列、REDV配列、YIGSR配列、PDSGR配列、RYVVLPR配列、LGTIPG配列、RNIAEIIKDI配列、IKVAV配列、LRE配列、DGEA配列、及びHAV配列の各配列を挙げることができ、好ましくは、RGD配列、YIGSR配列、PDSGR配列、LGTIPG配列、IKVAV配列及びHAV配列を挙げることができ、RGD配列であることが特に好ましい。RGD配列のうち、ERGD配列であることが更に好ましい。
 上記組換えゼラチンにおけるRGD配列の配置としては、RGD間のアミノ酸残基数が0~100であることが好ましく、25~60であることが更に好ましい。また、RGD配列は、このようなアミノ酸残基数の範囲内で不均一に配置されていることが好ましい。また、上記組換えゼラチンにおけるアミノ酸残基の総数に対するRGD配列の割合は、少なくとも0.4%であることが好ましく、組換えゼラチンが350以上のアミノ酸残基を含む場合、350アミノ酸残基の各ストレッチが少なくとも1つのRGD配列を含むことが好ましい。
 上記組換えゼラチンは、250のアミノ酸残基あたり少なくとも2つのRGD配列を含むことが好ましく、少なくとも3つRGD配列を含むことがより好ましく、少なくとも4つのRGD配列を含むことが更に好ましい。ただし、上記組換えゼラチンの配列は、以下の態様であることが好ましい:(1)セリン残基及びスレオニン残基を含まない、(2)セリン残基、スレオニン残基、アスパラギン残基、チロシン残基、及びシステイン残基を含まない、(3)Asp-Arg-Gly-Aspで示されるアミノ酸配列を含まない。上記組換えゼラチンは、この好ましい配列の態様(1)~(3)を単独で備えたものであってよく、2つ以上の態様を組み合わせて備えたものであってもよい。また、上記組換えゼラチンは部分的に加水分解されていてもよい。
 上記組換えゼラチンは、A-[(Gly-X-Y)n]m-Bの繰り返し構造を有することが好ましい。mは、2~10を表し、3~5を表すことが好ましい。A及びBは、任意のアミノ酸又はアミノ酸配列を表す。nは3~100を表し、15~70を表すことが好ましく、50~60を表すことがより好ましい。
 好ましくは、組換えゼラチンは、式:Gly-Ala-Pro-[(Gly-X-Y)63]3-Gly(式中、63個のXはそれぞれ独立にアミノ酸残基の何れかを示し、63個のYはそれぞれ独立にアミノ酸残基の何れかを示す。なお、3個の(Gly-X-Y)63はそれぞれ同一でも異なっていてもよい。)で示される。
 上記組換えゼラチンの繰り返し単位には、天然に存在するコラーゲンの配列単位を複数結合することが好ましい。ここで言う天然に存在するコラーゲンとしては、好ましくはI型、II型、III型、IV型及びV型が挙げられる。より好ましくは、I型、II型又はIII型とすることができる。コラーゲンの由来としては、好ましくは、ヒト、ウマ、ブタ、マウス、ラットを挙げることができ、ヒトであることがより好ましい。
 上記組換えゼラチンの等電点は、好ましくは5~10であり、より好ましくは6~10であり、更に好ましくは7~9.5とすることができる。
 上記組換えゼラチンの好ましい態様としては以下のものを挙げることができる:(1)カルバモイル基が加水分解されていない、(2)プロコラーゲンを有さない、(3)テロペプタイドを有さない、(4)天然コラーゲンをコードする核酸により調製された実質的に純粋なコラーゲン用材料である。上記組換えゼラチンは、この好ましい態様(1)~(4)を単独で備えたものであってよく、2つ以上の態様を組み合わせて備えたものものであってもよい。
 上記組換えゼラチンは、(骨)組織修復能の高さから、好ましくは、以下(A)~(C)のいずれかとすることができる。
 (A) 下記配列番号1で示されるポリペプチド、
GAP(GAPGLQGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGPAGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPP)3G(配列番号1)
 (B) 上記(A)のアミノ酸配列中、第4番目~第192番目のアミノ酸残基からなる部分アミノ酸配列と80%以上の配列同一性を有する部分配列を有すると共に、(骨)組織修復能を有するポリペプチド、
 (C) 上記(A)のアミノ酸配列に対して1個若しくは数個のアミノ酸残基が欠失、置換若しくは付加されたアミノ酸配列からなり、(骨)組織修復能を有するポリペプチド。
 上記(B)における配列同一性としては、組換えゼラチンの(骨)組織修復能の観点から、より好ましくは90%以上とすることができ、更に好ましくは95%以上とすることができる。
 上記(B)の配列における上記部分アミノ酸配列は、配列番号1で示される配列の繰り返し単位に相当する部分アミノ酸配列である。上記(B)のポリペプチドに上記繰り返し単位に相当する部分アミノ酸配列が複数存在する場合には、配列同一性が80%以上となる繰り返し単位を1つ、好ましくは2つ以上含むポリペプチドとすることができる。
 また、上記(B)で規定されるポリペプチドは、上記繰り返し単位に相当する部分アミノ酸配列と80%以上の配列同一性を有する部分配列を、合計のアミノ酸残基数として、全アミノ酸残基数の80%以上含むことが好ましい。
 上記(B)で規定されるポリペプチドの長さとしては、151個~2260個のアミノ酸残基数とすることができ、架橋後の分解性の観点から、193個以上、安定性の観点から、944個以下のアミノ酸残基数であることが好ましく、380個~756個のアミノ酸残基数であることがより好ましい。
 また、上記(C)で規定されるポリペプチドは、上記(A)のアミノ酸配列に対して1個若しくは数個のアミノ酸残基が欠失、置換若しくは付加されたアミノ酸配列からなり、組織修復能を有するポリペプチドであってもよい。
 上記(C)で規定されるポリペプチドにおいて欠失、置換若しくは付加されるアミノ酸残基数としては、1個又は数個であればよく、組換えゼラチンの総アミノ酸残基数によって異なるが、例えば、2個~15個、好ましくは2個~5個とすることができる。
 上記組換えゼラチンは、当業者に公知の遺伝子組換え技術によって製造することができ、例えば欧州公開1014176号、米国特許第6992172号、国際公開第2004/85473号、国際公開第2008/103041号等に記載の方法に準じて製造することができる。具体的には、所定の組換えゼラチンのアミノ酸配列をコードする遺伝子を取得し、これを発現ベクターに組み込んで、組み換え発現ベクターを作製し、これを適当な宿主に導入して形質転換体を作製する。得られた形質転換体を適当な培地で培養することにより、組換えゼラチンが産生されるので、培養物から産生された組換えゼラチンを回収することにより、本開示で用いる組換えゼラチンを調製することができる。
(高分子水溶液)
 高分子水溶液は、一種以上の高分子が含まれる。高分子水溶における高分子濃度は、0.1質量%以上であることが好ましく、1質量%以上であることが更に好ましく、5質量%以上であることが特に好ましい。0.1質量%よりも濃度が低いと、水分を除去したのちに高分子多孔質体の構造を維持することが困難である。高分子水溶液は、凍結温度以上でゲル化することが好ましい。高分子水溶液における高分子濃度の上限は、高分子が溶解できる限り特に限定されないが、一般的には40質量%以下であり、30質量%以下、又は20質量%以下でもよい。
 高分子水溶液は、高分子を含む溶液を精製及び濃縮すること、又は乾燥状態の高分子を水性媒体に溶解することにより調製する。(1)用事調整してもよいし、(2)予め調整済みのものを準備して用いてもよい。(3)精製及び濃縮により得られた高分子水溶液を凍結乾燥し、得られた凍結乾燥体に水性媒体を加えて再溶解することで高分子水溶液を調整してもよい。または、(4)精製及び濃縮により得られた高分子水溶液を凍結し、得られた凍結体を解凍することで高分子水溶液を調整してもよい。凍結体の解凍は、気泡や不溶物(凍結体の溶け残り)の発生を低減する観点から、30~40℃で15~20時間かけて解凍することが好ましい。用事調整の手間削減、輸送や保管の便宜、高分子水溶液中の気泡や不溶物を低減する観点から、上記(4)の方法が好ましい。
 高分子水溶液中に分散した気泡や不溶物は、濾過、遠心、減圧、脱泡等の操作により、凍結工程前に除去することが好ましい。これにより、異方性が低い高分子水溶液凍結体の得率が向上する。気泡や不溶物が除かれていることは、濁度測定により評価できる。又は、光学顕微鏡による目視検査によっても評価できる。例えば、光学顕微鏡の視野に映る気泡及び不要物の個数を計算し、高分子水溶液1μL中の気泡及び不溶物の個数で評価できる。高分子水溶液中の気泡や不溶物は、0.5個/μL以下であることが好ましく、0.3個/μL以下であることがより好ましく、0.1個/μL以下であることが更に好ましく、0個/μLであることが特に好ましい。
 高分子水溶液には、所定の特性を付加する目的で、高分子以外の成分を添加してよい。このような他の成分としては、例えば、骨誘導薬剤等の骨再生又は骨新生に関する成分を挙げることができる。骨誘導薬剤としては、例えばBMP(骨形成因子)やbFGF(塩基性線維芽細胞増殖因子)が挙げられるが、特に限定はされない。他に例えば、ポリペプチド又はタンパク質の架橋剤を挙げることができる。
 高分子水溶液の水性媒体としては、高分子を溶解可能であり、生体組織に対して使用可能なものであれば特に制限はなく、例えば、水、生理食塩水、リン酸緩衝液等、当分野で通常使用可能なものを挙げることができる。
 高分子としてゼラチンを用いる場合、ゼラチン溶液におけるゼラチン濃度については、ゼラチンが溶解可能な濃度であればよく、特に制限はない。ゼラチン溶液中のゼラチン濃度は、例えば、0.5質量%~20質量%とすることが好ましく、2質量%~16質量%であることがより好ましく、4質量%~12質量%であることが更に好ましい。また、ゼラチン溶液は、凍結工程の前に脱泡処理してもよい。これにより、氷晶形成を均一に生じやすくさせることができる。脱泡方法については特に制限はないが、例えば、2~10kPaの圧力で真空遠心脱泡することができる。
 ゼラチン溶液は、溶解していない粒子を除くためにろ過をしてもよい。ろ過方法は特に制限されないが、例えば、孔径0.22~0.45μmのフィルターを用いて加圧ろ過する。フィルターの材質についても特に制限はなく、ポリテトラフルオロエチレン、ポリエーテルスルホン、セルロースアセテート、ポリビニリデンフルオライドなどを用いることができるが、ゼラチンの吸着性が低く溶出物が少ないという観点から、セルロースアセテートが好ましい。ゼラチン溶液を調製する際の温度については、特に制限はなく、通常用いられる温度、例えば、0℃~60℃、好ましくは、3℃~40℃程度であればよい。
(液体容器)
 液体容器とは、高分子水溶液を入れて、冷却・凍結するための容器である。容器の形状は例えば、皿状、円筒カップ状が挙げられる。円筒カップ状が好ましい。容器内部は高い曲率を持たないことが好ましい。具体的にはR1mm以上であることが好ましく、R2mm以上であることが更に好ましい(Rは曲率半径を意味する)。容器の大きさは特に限定されないが、円筒カップ状容器の場合、内径200mm以下であることが好ましく、150mm以下であることが更に好ましい。
 液体容器は、液体容器を構成する部材と同一又は別の部材(コート部材)で、液体容器の内面をコートしてもよい。また、液体容器を構成する部材と同一又は別の部材からなるカバー部材を液体容器の内面に敷き詰めたり、円筒状のカバー部材を設置したりしてもよい。コート部材やカバー部材と区別して、液体容器を構成する部材を液体容器の主たる部材とも称する。液体容器の主たる部材、コート部材、カバー部材の組み合わせは問わない。即ち、液体容器は、(1)液体容器の主たる部材のみ、(2)液体容器の主たる部材及びコート部材、(3)液体容器の主たる部材及びカバー部材、(4)液体容器の主たる部材、コート部材及びカバー部材、のいずれの組み合わせでもよい。
 液体容器の内面、即ち、高分子水溶液を液体容器に入れた時に高分子水溶液の接する面は、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(パーフルオロエチレンプロペンコポリマーとも言う)(FEP)である。例えば、上記(1)~(4)に即して言えば、(1)液体容器の主たる部材がFEP、(2)少なくとも、コート部材がFEP、(3)少なくとも、カバー部材がFEP、(4)少なくとも、カバー部材がFEP、である。
 液体容器の主たる部材の材質に特に制限はなく、例えば、アルミニウムが挙げられる。液体容器の主たる部材が高分子水溶液と接する場合、液体容器の主たる部材はFEPである。液体容器の主たる部材の材質は、線膨張係数(熱膨張係数とも言う)が10×10-5/K以下であることが好ましく、50×10-6/K以下であることが更に好ましく、25×10-6/K以下であることが特に好ましい。
 カバー部材は、容器内面に一様に敷き詰められていればよく、カバー部材の形状、厚さに制限はない。カバー部材が高分子水溶液と接する場合、カバー部材はFEPである。コート部材は、容器内面に一様にコートしていればよく、塗膜の厚さに制限はない。塗膜は20μm以上であることが好ましく、50μm以上であることが更に好ましい。コート部材が高分子水溶液と接する場合、コート部材はFEPである。
(凍結工程)
 液体容器に収容した高分子水溶液を凍結する工程(以下、「凍結工程」と呼ぶことがある)を行う。これにより、高分子水溶液凍結体を得ることができる。凍結手段に特に制限はなく、例えば、冷凍機、凍結乾燥機等の装置で凍結すればよい。凍結乾燥機で凍結する場合、同一の装置で連続的に、高分子水溶液凍結体からの水分除去(凍結乾燥)が可能である。
 凍結工程の温度は、高分子の種類、高分子水溶液の濃度によって異なるが、凝固熱発生直前の溶液内で最も液温の高い部分の温度と溶液内で最も液温の低い部分の温度との差が2.5℃以下であることが好ましい。ここで「凝固熱発生直前の温度差」とは、凝固熱発生時の1秒前~10秒前の間で最も温度差が大きくなるときの温度差を意味する。また、溶液内で最も液温の低い部分の温度は-8℃以下-15℃以上であることが好ましく、更に好ましくは-10℃以下-15℃以上である。
 また、以上のようにして高分子水溶液凍結体を製造することで、異方性が低い高分子水溶液凍結体が得られる確率を向上させることができる。
 高分子水溶液凍結体の「異方性」とは、以下のようにして測定される物理的特性を意味する。高分子水溶液凍結体を凍結乾燥後、凍結乾燥体(高分子多孔質体)の中央付近を水平及び垂直方向に切断する。次いで各断面を染色し、一定(2.0mm×2.0mmや2.5mm×2.5mm)の領域を光学顕微鏡で観察する。観察領域内における、染色された材料で囲まれた領域に外接する長方形のうち、長方形の対向する二辺の距離が最大となる外接長方形を選択する。この対向する二辺の距離が最大となる外接長方形の長辺の長さを、水平方向の断面及び垂直方向の断面のそれぞれにおける観察領域内において、50個ずつ計測し、その平均を当該凍結体の網目の長径の平均値とする。
 このときの個々の網目について、水平方向の断面の長径(平均値)と垂直方向の断面の長径(平均値)のうち小さい方をd1、他方をd2として得られた比率d2/d1を「異方性」と定義する。この異方性が3以下のものを「異方性が低い」と定義する。
 異方性が低い高分子水溶液凍結体の得率は、製造効率の観点から、90%以上となることが好ましい。
(水分除去工程)
 高分子水溶液凍結体から水分を除去する工程(以下、「水分除去工程」と呼ぶことがある)を行う。これにより、高分子多孔質体を得ることができる。水分を除去する手段に特に制限はなく、高分子水溶液凍結体中の氷を融解させる方法、昇華させる方法(凍結乾燥)等があり、凍結乾燥が好ましい。凍結乾燥の期間としては、例えば、0.5時間~300時間とすることができる。使用可能な凍結乾燥機について特に制限はない。
(粉砕工程)
 粉砕工程では、高分子多孔質体を粉砕して粉砕物を得る。粉砕は、ハンマーミルやスクリーンミル等の粉砕機を適用可能であり、一定の大きさに粉砕されたものから随時回収されるため試験ごとの粒径分布のばらつきが小さいという観点から、スクリーンミル(例えばクアドロ社製コーミル)が好ましい。粉砕の条件としては、粉砕物表面の構造を維持するため、破砕する方式より切断する方式のほうが好ましい。また、顆粒内部の構造を維持するため、粉砕中に強い圧縮がかからない方式とすることが好ましい。
(分級工程)
 粉砕工程の後には、整粒を目的として分級工程を含むことができる。これにより、均一な粒子径を有する高分子粉砕物を得ることができる。例えば、ゼラチン粉砕物の分級には、目開き300μm~1400μmのふるいを用いることが好ましい。
(充填工程)
 粉砕工程の後には、粉砕物をバイアルに充填する工程を含むことができる。例えば、ゼラチン粉砕物の充填方法は特に制限されないが、質量フィードバック方式のテーブルフィーダーを用いることができる。ゼラチン粉砕物を充填するバイアルについても特に制限されないが、例えば、内面をシリコーン加工されたガラスバイアルを用いることができる。
 以下、実施例を挙げて本開示をより具体的に説明する。但し、本開示は、これらの実施例に限定されない。
[実施例]
(加熱処理装置)
 図7に示される加熱処理装置500を以下の要領で作製した。
-部材の準備-
・給気口40を有する第1円筒状部材C1
 SUS304製、厚み:3mm、円筒部分の通気方向の長さ:20cm、円筒部分の内径:15cm
・排気口50を有する第2円筒状部材C2
 SUS304製、厚み:3mm、円筒部分の通気方向の長さ:10cm、円筒部分の内径:15cm
・分割弁30が設けられた第3円筒状部材C3
 Charge Point社製「PS150」、通気方向の長さ:15cm
 第3円筒状部材C3は、分割弁30の分割に伴い、分割後の分割弁30で閉鎖された円筒状部材C31(通気方向の長さ:7cm)及び円筒状部材C32(通気方向の長さ:8cm)に分離する。
・温度調節部材70A
 SUS304製、厚み:30mm
・温度調節部材70B
 ジャケット式ヒーター
・保持部材80、整流部材90
 SUS304製のパンチングメタル、開口率:10%、通気孔の径:0.5mm、厚み:0.2mm
-作製-
 第1円筒状部材C1内の給気口40の近傍に保持部材80を配置した。第1円筒状部材C1の円筒部分に、分割弁30が設けられた第3円筒状部材C3の円筒状部材C31部分を接続した。これにより、第1室10(円筒部分の通気方向の長さ:27cm)を形成した。
 第2円筒状部材C2内の排気口50の近傍に整流部材90を配置した。第2円筒状部材C2の円筒部分に、第3円筒状部材C3の円筒状部材C32部分を接続した。これにより、第2室20(円筒部分の通気方向の長さ:18cm)を形成した。
 第1室10及び第2室20を含む容器60の外側に、取り外し可能な状態で温度調節部材70A及び温度調節部材70Bを取り付けた。
 以上のようにして、分割弁30を介して連結した第1室10及び第2室20と、加熱された気体が流通する給気口40及び排気口50とを含む容器60を備えた、加熱処理装置500を作成した。分割弁30を介して連結した第1室10及び第2室20を分離する際、これら2つの室をそれぞれ密閉した状態で2つに分割することができた。
(被加熱処理物)
 被加熱処理物として、以下の要領で、高分子多孔質体を準備した。
 組換えゼラチンとして、以下のリコンビナントペプチドCBE3(国際公開第2008/103041号に記載)を用意した。
CBE3分子量:51.6kD構造:GAP[(GXY)63]3G
アミノ酸数:571個
RGD配列:12個
イミノ酸含量:33%
ほぼ100%のアミノ酸がGXYの繰り返し構造である。CBE3のアミノ酸配列には、セリン残基、スレオニン残基、アスパラギン残基、チロシン残基及びシステイン残基は含まれていない。CBE3はERGD配列を有している。
等電点:9.34高分子中の親水性繰り返し単位比率は26.1%である。
アミノ酸配列(配列番号1)
 上記組換えゼラチンを含む溶液を精製後、30℃にて4.0質量%まで限外ろ過により濃縮した。得られたゼラチン水溶液を凍結乾燥した後、凍結乾燥体に注射用水を加えて30分かけて37℃まで昇温して再溶解し、7.5質量%のゼラチン水溶液を改めて得た。このゼラチン水溶液を、0.22μmのセルロースアセテート膜フィルターでろ過し、真空脱泡機(倉敷紡績、KK-V300SS-I)を用いて4.0kPaにおいて180秒間真空遠心脱泡した。ゼラチン水溶液を、液厚2.5mmとなるようポリスチレン製透明容器にサンプリングし、光学顕微鏡を用いて2.5mm×2.5mmの視野で、液下面から液上面まで100μm刻みで観察した。10視野観察し、平均の気泡及び不溶物の個数を算出したところ、気泡は0.42個/μL、不溶物は0個/μLだった。このゼラチン水溶液を、内径104mm、底厚5mm、底面内周をR2mmで面取りし、内面がFEP(日本フッ素、NF-004A)でコートされたアルミ合金(A5056)製円筒カップ状容器に約20g流し込んだ後、約-35℃に予冷した350×634×20mmアルミ板上に1mm厚のガラス板を介して14個設置し、蓋をして1時間静置することによって凍結したゼラチン凍結体を得た。なお、用いた円筒カップ状容器の主たる部材の材質(アルミ合金(A5056))の線膨張係数は24.3×10-6/Kである。このゼラチン凍結体を、凍結乾燥機(アルバック、DFR-5N-B)を用いて凍結乾燥して水分を除去することにより、高分子多孔質体(凍結乾燥体)を作製した。
 高分子多孔質体をスクリーン粉砕機(クワドロ、コーミルU10)により、0.079inch、次いで0.040inchのスクリーンを用いて粉砕した(1inchは約2.45cm)。目開き1400μmのふるいを通過し、かつ、目開き300μmのふるいを通過しない高分子多孔質体を得た。
(収容工程)
 加熱処理装置500を第1室10が下方となるように通気方向が鉛直方向に沿うように設置し、顆粒状の高分子多孔質体(被加熱処理物)を、保持部材80の表面から10cmの高さとなるように第1室10内に収容した。第1室10に第2室20を取り付け、分割弁30を開放した。
(加熱気体流通工程)
 加熱処理装置500の容器60内に、給気口40及び排気口50を介して、135℃の加熱窒素を流通させた。それと同時に、ジャケット式ヒーター70Bでステンレス板70Aを加熱して、容器60の加熱を行い、高分子多孔質体の温度が135℃に到達後、5時間保持した。以上のようにして、実施例の高分子多孔質架橋体を作製した。
 その後、窒素の加熱を停止して窒素の流通を継続し、また、ジャケット式ヒーターを放冷した。高分子多孔質架橋体の温度が40℃以下となった後、第1室10から高分子多孔質架橋体を取り出した。その際、第1室10の高さ方向3水準、半径方向2水準の合計6カ所を無作為に選択し、上記6カ所からそれぞれ100mgの高分子多孔質架橋体を採取した。
[比較例]
 実施例と同様にして顆粒状の高分子多孔質体(被加熱処理物)を準備した。高分子多孔質体をスクリーン粉砕機(クワドロ、コーミルU10)により、0.079inch、次いで0.040inchのスクリーンを用いて粉砕した(1inchは約2.45cm)。目開き1400μmのふるいを通過し、かつ、目開き300μmのふるいを通過しない高分子多孔質体を回収し、充填機(アイシンナノテクノロジーズ、TF-70AD)を用いて10mLのガラスバイアルに約0.09g充填した。充填したバイアルをクリーンオーブン(日東理科工業、NCO-500A600L-WS)に設置し、窒素雰囲気下135℃で5時間加熱処理して比較例の高分子多孔質架橋体を作製した。
 得られた高分子多孔質架橋体を用いて、以下の要領で酸残存率及び水溶出成分量を測定した。
[酸残存率]
 測定用のマイクロチューブ(商品名ミニスーパーチューブ、アイビス社製、容量2ml、以下チューブと称する)の質量を測定した(A)。高分子多孔質架橋体15.0(±0.2)mgを秤量(n=3)し、測定用チューブに充填した。高分子多孔質架橋体入りのチューブに、1モル/LのHClを1.7ml添加し、37±0.5℃にて、3時間恒温静置させた。規定時間後、チューブを氷上に立て反応を止め、あらかじめ4℃に設定した遠心器で10,000×g、1分間遠心した。組織修復材が沈殿していることを確認し、上清を吸い取り、あらかじめ氷上で冷やしておいた超純水を添加して、上記と同一の条件で再度、遠心した。上清を吸い取り、再度超純水を加え、上記と同一の条件で再度遠心することを、2回繰り返した。上清を吸い取ったのち、凍結乾燥した。凍結乾燥機から取り出した後、空気中の水分を高分子多孔質架橋体が吸い取るのを防ぐためすばやくチューブのキャップを閉めた。チューブごと質量を測定し(C)、下記計算式を用いて酸残存率を算出した。
酸残存率=(C-A)/B×100(%)・・・・(3)
 本開示に係る加熱処理装置を用いた実施例では、加熱処理物である高分子多孔質架橋体は、分割弁で密閉された状態で容器の第1室に収容されている。分割弁を介して第1室を外部空間に接続した後、分割弁を開放することにより、第1室から加熱処理物を外部に取り出すことができる。そのため、異物の混入を抑制しながら加熱処理物を容器から取り出すことができる。
 実施例の高分子多孔質架橋体は、上記6カ所において、酸残存率が45%~60%の範囲であった。また、比較例の高分子多孔質架橋体も、酸残存率が45%~60%であった。
 以上の結果より、本開示に係る加熱処理装置は、小容量のバイアルを用いて加熱処理を行う比較例に対して、大容量の容器を用いることにより、多くの高分子多孔体の顆粒を一括して熱処理でき、かつ、比較例と同等の酸残存率を達成できることが確認された。
 2021年3月24日に出願された日本国特許出願2021-050325号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。

Claims (15)

  1.  分割弁を介して連結した第1室及び第2室と、加熱された気体が流通する給気口及び排気口とを含む容器を備えた、加熱処理装置。
  2.  前記容器が、筒状である、請求項1に記載の加熱処理装置。
  3.  前記容器の外側に配置され、かつ、前記加熱処理装置に取り外し可能に取り付けられた温度調節部材を備えた、請求項1又は請求項2に記載の加熱処理装置。
  4.  前記温度調節部材が、ジャケット式ヒーター及び金属部材の少なくとも一方を含む、請求項3に記載の加熱処理装置。
  5.  前記金属部材が、ステンレス製又はアルミニウム製である、請求項4に記載の加熱処理装置。
  6.  前記給気口と前記排気口との間に、被加熱処理物を保持する保持部材を含む、請求項1~請求項5のいずれか1項に記載の加熱処理装置。
  7.  前記保持部材が、多孔質板、メッシュ板、パンチングメタル又は通気性袋である、請求項6に記載の加熱処理装置。
  8.  前記分割弁は、スプリットバタフライバルブである、請求項1~請求項7のいずれか1項に記載の加熱処理装置。
  9.  請求項1~請求項8のいずれか1項に記載の加熱処理装置の前記容器内に、被加熱処理物を収容する工程、及び
     前記給気口及び前記排気口を介して容器内に前記加熱された気体を流通させる工程
    を含む、加熱処理物の製造方法。
  10.  前記加熱処理装置が温度調節部材を備え、前記温度調節部材により前記容器を加熱する工程を含む、請求項9に記載の加熱処理物の製造方法。
  11.  前記温度調節部材がステンレス及び前記ステンレスを加熱するヒーターを含む、請求項10に記載の加熱処理物の製造方法。
  12.  前記加熱された気体を流通させる工程の少なくとも一部と、前記容器を加熱する工程の少なくとも一部とを同時に行う、請求項10又は請求項11に記載の加熱処理物の製造方法。
  13.  前記被加熱処理物が、コラーゲン又はゼラチンの高分子多孔質体である、請求項9~請求項12のいずれか1項に記載の加熱処理物の製造方法。
  14.  前記加熱された気体が、不活性ガスである、請求項9~請求項13のいずれか1項に記載の加熱処理物の製造方法。
  15.  前記加熱された気体を流通させる工程後、前記分割弁を閉鎖して加熱処理物を回収する工程を含む、請求項9~請求項14のいずれか1項に記載の加熱処理物の製造方法。
PCT/JP2022/012436 2021-03-24 2022-03-17 加熱処理装置及び加熱処理物の製造方法 WO2022202632A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023509110A JPWO2022202632A1 (ja) 2021-03-24 2022-03-17
EP22775420.7A EP4296598A4 (en) 2021-03-24 2022-03-17 HEAT TREATMENT DEVICE AND METHOD FOR PRODUCING A HEAT TREATMENT OBJECT
CN202280023359.3A CN117098967A (zh) 2021-03-24 2022-03-17 加热处理装置及加热处理物的制造方法
US18/471,520 US20240009897A1 (en) 2021-03-24 2023-09-21 Heating treatment apparatus and manufacturing method of heating treatment object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-050325 2021-03-24
JP2021050325 2021-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/471,520 Continuation US20240009897A1 (en) 2021-03-24 2023-09-21 Heating treatment apparatus and manufacturing method of heating treatment object

Publications (1)

Publication Number Publication Date
WO2022202632A1 true WO2022202632A1 (ja) 2022-09-29

Family

ID=83395803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012436 WO2022202632A1 (ja) 2021-03-24 2022-03-17 加熱処理装置及び加熱処理物の製造方法

Country Status (5)

Country Link
US (1) US20240009897A1 (ja)
EP (1) EP4296598A4 (ja)
JP (1) JPWO2022202632A1 (ja)
CN (1) CN117098967A (ja)
WO (1) WO2022202632A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627432A (ja) * 1985-05-29 1987-01-14 ダヴイツド ダグロ−サ 固形材料のか焼方法及び装置
WO2004085473A2 (en) 2003-03-28 2004-10-07 Fuji Photo Film B.V. Rgd-enriched gelatine-like proteins with enhanced cell binding
US6992172B1 (en) 1999-11-12 2006-01-31 Fibrogen, Inc. Recombinant gelatins
WO2008103041A1 (en) 2007-02-21 2008-08-28 Fujifilm Manufacturing Europe B.V. Recombinant gelatins
EP1014176B1 (en) 1998-12-23 2009-04-29 FUJIFILM Manufacturing Europe B.V. Silver halide emulsions containing recombinant gelatin-like proteins
WO2010128672A1 (ja) 2009-05-07 2010-11-11 富士フイルム株式会社 遺伝子組み換えゼラチンを含む血管新生誘導剤
WO2010147109A1 (ja) 2009-06-15 2010-12-23 富士フイルム株式会社 遺伝子組み換えゼラチン及び塩基性線維芽細胞増殖因子を含む血管新生誘導剤
WO2014141877A1 (ja) 2013-03-12 2014-09-18 富士フイルム株式会社 組織修復材
WO2019189411A1 (ja) * 2018-03-30 2019-10-03 東邦チタニウム株式会社 金属塩化物生成装置、および金属粉体の製造方法
JP2021050325A (ja) 2019-09-23 2021-04-01 インディアン オイル コーポレーション リミテッド ディレードコーカーユニットにおける廃プラスチックの同時変換のためのプロセス及び装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911076B1 (ja) * 1970-07-17 1974-03-14
JPS59176571A (ja) * 1983-03-25 1984-10-05 デンカエンジニアリング 株式会社 多段流動乾燥装置
DD228039A1 (de) * 1984-09-07 1985-10-02 Schwerin Plastmaschinen Vorrichtung zum trocknen von koernigem material
US7234247B2 (en) * 2000-06-16 2007-06-26 Maguire Stephen B Low pressure dryer
US10539366B2 (en) * 2014-04-30 2020-01-21 Stephen B. Maguire Method and apparatus for vacuum drying granular resin material
JP3930005B2 (ja) * 2004-08-30 2007-06-13 昭 藤山 成形材料真空乾燥装置
CN2916544Y (zh) * 2006-04-26 2007-06-27 厦门金鹭特种合金有限公司 一种气固流态化的颗粒/粉末干燥机
GB201119173D0 (en) * 2011-11-07 2011-12-21 Fujifilm Mfg Europe Bv Porous tissue scaffolds

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627432A (ja) * 1985-05-29 1987-01-14 ダヴイツド ダグロ−サ 固形材料のか焼方法及び装置
EP1014176B1 (en) 1998-12-23 2009-04-29 FUJIFILM Manufacturing Europe B.V. Silver halide emulsions containing recombinant gelatin-like proteins
US6992172B1 (en) 1999-11-12 2006-01-31 Fibrogen, Inc. Recombinant gelatins
WO2004085473A2 (en) 2003-03-28 2004-10-07 Fuji Photo Film B.V. Rgd-enriched gelatine-like proteins with enhanced cell binding
JP2010519252A (ja) 2007-02-21 2010-06-03 フジフィルム・マニュファクチュアリング・ヨーロッパ・ベスローテン・フエンノートシャップ Rgdを含有する組換えゼラチン
JP2010519251A (ja) 2007-02-21 2010-06-03 フジフィルム・マニュファクチュアリング・ヨーロッパ・ベスローテン・フエンノートシャップ 組換えゼラチン
WO2008103041A1 (en) 2007-02-21 2008-08-28 Fujifilm Manufacturing Europe B.V. Recombinant gelatins
JP2010518833A (ja) 2007-02-21 2010-06-03 フジフィルム・マニュファクチュアリング・ヨーロッパ・ベスローテン・フエンノートシャップ 高い安定性を有する組換えxrgd富化ゼラチン
JP2010519293A (ja) 2007-02-21 2010-06-03 フジフィルム・マニュファクチュアリング・ヨーロッパ・ベスローテン・フエンノートシャップ 機能性が増大した非天然の組換えゼラチン
WO2010128672A1 (ja) 2009-05-07 2010-11-11 富士フイルム株式会社 遺伝子組み換えゼラチンを含む血管新生誘導剤
WO2010147109A1 (ja) 2009-06-15 2010-12-23 富士フイルム株式会社 遺伝子組み換えゼラチン及び塩基性線維芽細胞増殖因子を含む血管新生誘導剤
WO2014141877A1 (ja) 2013-03-12 2014-09-18 富士フイルム株式会社 組織修復材
WO2019189411A1 (ja) * 2018-03-30 2019-10-03 東邦チタニウム株式会社 金属塩化物生成装置、および金属粉体の製造方法
JP2021050325A (ja) 2019-09-23 2021-04-01 インディアン オイル コーポレーション リミテッド ディレードコーカーユニットにおける廃プラスチックの同時変換のためのプロセス及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4296598A4

Also Published As

Publication number Publication date
EP4296598A4 (en) 2024-08-07
EP4296598A1 (en) 2023-12-27
CN117098967A (zh) 2023-11-21
US20240009897A1 (en) 2024-01-11
JPWO2022202632A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
CN108885057B (zh) 冷冻干燥方法和装置
US12006085B2 (en) Fill-finish process for peptide solutions
Rodrigues et al. Preparation and characterization of collagen‐nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications
CN111032099B (zh) 细胞移植用设备及其制造方法
US10960106B2 (en) Tissue repair material
CN1774256A (zh) 干燥的血浆产品
EP2599820A1 (en) Collagen powder and/or collagen-derived powder, and production method for same
EP1087990A1 (en) Method and apparatus for the production of purified plasma proteins
WO2022202632A1 (ja) 加熱処理装置及び加熱処理物の製造方法
WO2013137268A1 (ja) 組織修復材の製造方法
RU2594427C1 (ru) Композиция для формирования макропористого носителя, используемого при трехмерном культивировании клеток животных или человека, и способ получения указанного носителя
US20240053099A1 (en) Freeze-drying container
CA2983050C (en) Method for sterilizing a chromatography material and subsequently sterilized chromatography material
JP6019506B1 (ja) 高分子量シルクフィブロイン水溶液の製造方法および高分子量シルクフィブロイン粉末の製造方法
JP2002186847A (ja) ハイドロゲルの製造方法および細胞培養支持体
US11471564B2 (en) Angiogenic agent and method of manufacturing the same
JP7426484B2 (ja) 高分子水溶液凍結体の製造方法及び高分子多孔質体の製造方法
CN110066418B (zh) 一种活性丝素多孔材料或活性丝素膜及其制备方法
CN104644673B (zh) 一种转移因子的制备方法及其注射剂的制备方法
EP3272370A1 (en) Cartilage-regenerating material
JP2023118002A (ja) 組織修復材およびその製造方法
ALBU et al. Preparation and characterization of collagen matrices obtained at different freezing temperatures
JP2023130851A (ja) 組織修復材の製造方法
JPS5810055A (ja) 免疫吸着器の製造方法
CN115887731B (zh) β乳球蛋白纤维-聚乙烯醇气凝胶的制备方法及其在制备皮肤敷料中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509110

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280023359.3

Country of ref document: CN

Ref document number: 2022775420

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022775420

Country of ref document: EP

Effective date: 20230921

NENP Non-entry into the national phase

Ref country code: DE