WO2022202629A1 - Polyester elastomer resin composition and cable cover material comprising same - Google Patents

Polyester elastomer resin composition and cable cover material comprising same Download PDF

Info

Publication number
WO2022202629A1
WO2022202629A1 PCT/JP2022/012425 JP2022012425W WO2022202629A1 WO 2022202629 A1 WO2022202629 A1 WO 2022202629A1 JP 2022012425 W JP2022012425 W JP 2022012425W WO 2022202629 A1 WO2022202629 A1 WO 2022202629A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester elastomer
mass
resin composition
polyester
parts
Prior art date
Application number
PCT/JP2022/012425
Other languages
French (fr)
Japanese (ja)
Inventor
勇気 玉城
卓也 赤石
伸治 原田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022555724A priority Critical patent/JPWO2022202629A1/ja
Publication of WO2022202629A1 publication Critical patent/WO2022202629A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a polyester elastomer composition suitable for extrusion molding, which is excellent in acid resistance and heat aging resistance.
  • thermoplastic polyester elastomers As thermoplastic polyester elastomers, crystalline polyesters such as polybutylene terephthalate (PBT) and polybutylene naphthalate (PBN) have been used as hard segments, and polyoxyalkylene glycols such as polytetramethylene glycol (PTMG) and / Or those having an aliphatic polyester such as polycaprolactone (PCL) and polybutylene adipate (PBA) as a soft segment are known and put into practical use.
  • PBT polybutylene terephthalate
  • PBN polybutylene naphthalate
  • polyoxyalkylene glycols such as polytetramethylene glycol (PTMG) and / Or those having an aliphatic polyester such as polycaprolactone (PCL) and polybutylene adipate (PBA) as a soft segment are known and put into practical use.
  • PCL polycaprolactone
  • PBA polybutylene adipate
  • polyester polyether type elastomers using polyoxyalkylene glycols in the soft segment are excellent in water resistance and low temperature properties, but are inferior in heat aging resistance
  • polyester polyester type elastomers using aliphatic polyester in the soft segment Elastomers are known to have excellent resistance to heat aging, although they are somewhat inferior in water resistance and low-temperature properties.
  • polyester-polycarbonate elastomers using polycarbonate for soft segments have been proposed (see, for example, Patent Documents 1 to 5).
  • polyester-polycarbonate type elastomers disclosed in these patent documents are used in applications requiring high heat aging resistance, such as engine peripheral parts for automobiles, taking advantage of their excellent features. ing.
  • the present invention was invented in view of the current state of the prior art, and its purpose is to provide a polyester elastomer composition suitable for extrusion molding, which has excellent acid resistance and heat aging resistance.
  • polyester elastomer resin composition containing 0 to 5 parts by mass of an acid terminal blocking agent (C), wherein the carboxyl group concentration in the resin composition is 10 eq/ton or less.
  • the polyester elastomer (A) is a copolymer containing terephthalic acid, 1,4-butanediol and aliphatic polycarbonate diol as main components and having a melting point of 150 to 230° C.
  • the polyester elastomer resin composition according to any one of the above.
  • the polyester elastomer resin composition according to any one of [1] to [7] which is used for cable coating.
  • a cable covering material comprising the polyester elastomer resin composition according to any one of [1] to [7].
  • the polyester elastomer resin composition of the present invention has excellent acid resistance and heat aging resistance, and also has good outer diameter stability and surface smoothness even in extrusion molding.
  • the polyester elastomer (A) used in the present invention consists of hard segments and soft segments.
  • the hard segment consists of polyester.
  • the aromatic dicarboxylic acid constituting the polyester of the hard segment is widely used and is not particularly limited. - naphthalenedicarboxylic acid is preferred).
  • the content of terephthalic acid or naphthalene dicarboxylic acid is preferably 70 mol % or more, more preferably 80 mol % or more, of all the dicarboxylic acids constituting the hard segment polyester.
  • dicarboxylic acid components include aromatic dicarboxylic acids such as diphenyldicarboxylic acid, isophthalic acid and 5-sodiumsulfoisophthalic acid, alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid and tetrahydrophthalic anhydride, succinic acid, glutaric acid, Aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, dimer acid, hydrogenated dimer acid, and the like are included. These are used within a range that does not greatly lower the melting point of the polyester elastomer (A), and the amount thereof is preferably 30 mol % or less, more preferably 20 mol % or less, of the total acid component.
  • polyester elastomer (A) used in the present invention general aliphatic or alicyclic diols are widely used as the aliphatic or alicyclic diol constituting the hard segment polyester, and are not particularly limited, but are mainly Alkylene glycols having 2 to 8 carbon atoms are desirable. Specific examples include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol and 1,4-cyclohexanedimethanol. Among these, either ethylene glycol or 1,4-butanediol is preferable for imparting heat resistance.
  • the components constituting the hard segment polyester include butylene terephthalate units (units composed of terephthalic acid and 1,4-butanediol) or butylene naphthalate units (2,6-naphthalenedicarboxylic acid and 1,4-butanediol unit) is preferable from the point of view of physical properties, moldability and cost performance.
  • the aromatic polyester is a normal polyester can be easily obtained according to the manufacturing method of Moreover, such polyester preferably has a number average molecular weight of 10,000 to 40,000.
  • the soft segment of the polyester elastomer (A) used in the present invention is at least one selected from aliphatic polyesters and aliphatic polycarbonates.
  • Aliphatic polyesters include poly( ⁇ -caprolactone), polyenantholactone, polycaprylollactone, and polybutylene adipate. Among these, poly( ⁇ -caprolactone) and polybutylene adipate are preferred in terms of elastic properties.
  • the aliphatic polycarbonate preferably consists mainly of aliphatic diol residues having 2 to 12 carbon atoms.
  • these aliphatic diols include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2, 2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8- octanediol and the like.
  • aliphatic diols having 5 to 12 carbon atoms are preferred from the viewpoint of the flexibility and low-temperature properties of the resulting polyester elastomer.
  • These components may be used alone, or two or more of them may be used in combination according to the cases described below.
  • aliphatic polycarbonate diol having good low-temperature properties which constitutes the soft segment of the polyester elastomer (A) in the present invention
  • one having a low melting point (for example, 70°C or lower) and a low glass transition temperature is preferred.
  • Aliphatic polycarbonate diols composed of 1,6-hexanediol, which is generally used to form the soft segment of polyester elastomers have a low glass transition temperature of around -60°C and a melting point of around 50°C. will be good.
  • an aliphatic polycarbonate diol obtained by copolymerizing an appropriate amount of, for example, 3-methyl-1,5-pentanediol with the above aliphatic polycarbonate diol has a glass transition point higher than that of the original aliphatic polycarbonate diol. is slightly higher, but the melting point is lowered or becomes amorphous.
  • an aliphatic polycarbonate diol composed of 1,9-nonanediol and 2-methyl-1,8-octanediol has a melting point of about 30° C. and a glass transition temperature of about ⁇ 70° C., which are sufficiently low. corresponds to a good aliphatic polycarbonate diol.
  • aliphatic polycarbonate diol is preferable as the soft segment of the polyester elastomer (A).
  • a copolymer containing terephthalic acid, 1,4-butanediol and aliphatic polycarbonate diol as main components and having a melting point of 150 to 230° C. is preferred.
  • the content of terephthalic acid is preferably 70 mol % or more based on the total dicarboxylic acid components constituting the polyester elastomer (A), and 1,4-butanediol and aliphatic polycarbonate diol based on the total diol components. is preferably 70 mol % or more.
  • the melting point of the polyester elastomer (A) is more preferably 190 to 220°C, even more preferably 200 to 218°C.
  • the mass ratio of the hard segment to the soft segment is generally preferably from 30:70 to 95:5, more preferably from 40:60. 90:10, more preferably 45:55 to 90:10, particularly preferably 50:50 to 90:10, most preferably 60:40 to 80:20.
  • the mass ratio of the hard segment to the soft segment in the polyester elastomer is preferably within the range described above.
  • polyester elastomer (A) used in the present invention hard segments and soft segments are bonded.
  • bonded means that the hard segment and soft segment are not bonded by a chain extender such as an isocyanate compound, but the units that make up the hard segment or soft segment are directly bonded by an ester bond or a carbonate bond. It is preferable that For example, it is preferable to obtain the polyester constituting the hard segment and the polycarbonate constituting the soft segment by repeating transesterification reaction and depolymerization reaction for a certain period of time while melting.
  • the polyester elastomer (A) used in the present invention can be produced by a known method.
  • a lower alcohol diester of a dicarboxylic acid, an excess amount of a low molecular weight glycol, and a soft segment component are transesterified in the presence of a catalyst, and the resulting reaction product is polycondensed, or a dicarboxylic acid and an excess amount of glycol and
  • a hard segment polyester is prepared in advance, a soft segment component is added to this, and a random reaction is performed by transesterification.
  • a method of converting the hard segment and the soft segment with a chain linking agent, and when poly( ⁇ -caprolactone) is used for the soft segment, addition reaction of ⁇ -caprolactone monomer to the hard segment can be used. good.
  • polyester elastomer (A) used in the present invention is a polyester elastomer containing terephthalic acid, 1,4-butanediol and aliphatic polycarbonate diol as main components
  • its production is described in Japanese Patent No. 4244067 (Patent Document 5 above).
  • the method described in can be adopted.
  • the polyester elastomer (A) produced by this method was heated from room temperature to 300°C at a temperature increase rate of 20°C/min using a differential scanning calorimeter, held at 300°C for 3 minutes, and then cooled at a temperature decrease rate of 100°C/min.
  • the melting point difference (Tm1-Tm3) between the melting point (Tm1) obtained in the first measurement and the melting point (Tm3) obtained in the third measurement when the cycle of cooling to room temperature in minutes is repeated three times is 0 to 50. °C.
  • the olefinic elastomer of the unmodified olefinic elastomer (B) in the present invention refers to a block copolymer containing an olefinic compound as a constituent component.
  • the olefin compounds include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1- Pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl- ⁇ -olefins such as 1-hexene, 9-methyl-1-decene, 11-
  • the olefinic elastomer includes vinyl aromatic monomers such as styrene, methylstyrene, dimethylstyrene and ethylstyrene, vinyl cyanide monomers such as acrylonitrile, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl A (meth)acrylic acid ester-based monomer such as methacrylate may be included as a constituent component.
  • the term “unmodified” means that the olefin-based elastomer obtained from the above constituents has a carboxyl group that is a terminal functional group of the polyester elastomer (A), a carboxyl group that reacts with a hydroxyl group, an acid anhydride group, an epoxy group, It means that it is not modified with a compound containing a functional group such as a hydroxyl group, a carbodiimide group, or an oxazoline group, that is, it is not copolymerized with a compound containing the above functional group. Modification does not include hydrogenation of the remaining double bonds in the olefinic elastomer.
  • "unmodified olefinic elastomer (B)" may be referred to as “olefinic elastomer (B)".
  • the unmodified olefinic elastomer (B) used in the present invention is more preferably an elastomer containing styrene as a copolymerization component, a so-called styrene elastomer.
  • a styrene elastomer is a hydrogenated styrene-conjugated diene block copolymer (hydrogenated styrene-diene block copolymer).
  • a styrene-conjugated diene block copolymer is a block copolymer composed of a styrene block and a diene block, and includes diblock copolymers, triblock copolymers, radial block copolymers, and the like. Moreover, a butadiene block and an isoprene block are mentioned as a diene block component.
  • hydrogenated styrene-diene block copolymers include styrene-butadiene-styrene block copolymer (SBS) hydrogenated styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene- Styrene-ethylene/propylene-styrene block copolymer (SEPS), which is a hydrogenated product of isoprene-styrene block copolymer (SIS), hydrogenated product of styrene-butadiene/isoprene-styrene block copolymer (SBIS) styrene-ethylene-ethylene-propylene-styrene block copolymer (SEEPS).
  • the number average molecular weight of the styrene elastomer used in the present invention is preferably 30,000 to 80,000, more preferably 40,000 to 60,000.
  • the reason why the olefinic elastomer (B) is unmodified is that it does not react with the acid end-blocking agent (C), which will be described later. If the acid-modified olefinic elastomer is blended, the reaction between the acid end-blocking agent (C) and the acid-modified portion of the olefinic elastomer, or between the acid end-blocking agent (C) and the acid end of the polyester elastomer (A) will occur. This is not preferable because it occurs in a complex manner and causes an extreme increase in viscosity and the occurrence of gelation, which results in deterioration of the appearance of the extruded product.
  • the mass ratio (( A)/(B)) is preferably 90/10 to 50/50.
  • the mass ratio is preferably 80/20 to 55/45, more preferably 75/25 to 55/45, further preferably 70/30 to 55/45, and 70 /30 to 60/40 is particularly preferred. If the content of the olefinic elastomer (B) is small, the acid resistance will be insufficient, and if it is large, the heat aging resistance and extrusion moldability of the polyester elastomer resin composition will be insufficient.
  • the acid terminal blocking agent (C) used in the present invention is a compound having a functional group capable of reacting with the terminal functional group of the polyester elastomer (A).
  • the terminal functional groups of the polyester elastomer (A) are carboxyl groups and/or hydroxyl groups.
  • the functional group capable of reacting with the acid terminal functional group of the polyester elastomer (A) includes a carboxyl group, an acid anhydride group, an epoxy group, a hydroxyl group, a carbodiimide group, an oxazoline group, and the like.
  • the functional group of the acid end-blocking agent (C) is preferably an epoxy group or a carbodiimide group in view of change in melt viscosity during melt retention and reactivity with the acid end functional group of the polyester elastomer (A). Therefore, the acid terminal blocking agent (C) is preferably an epoxy compound and/or a carbodiimide compound.
  • the epoxy compound used as the acid end-blocking agent (C) is a compound different from the epoxy group-containing polyolefin (D) described later, is a compound having no polyolefin skeleton, and has a molecular weight of 10,000 or less. is preferred.
  • Epoxy compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, hexanediol diglycidyl ether, glycerin diglycidyl ether.
  • Aliphatic epoxy compounds such as glycidyl ether, trimethylolpropane triglycidyl ether, diglycerin tetraglycidyl ether, dicyclopentadiene dioxide, epoxycyclohexenecarboxylic acid ethylene glycol diester, 3,4-epoxycyclohexenylmethyl-3'-4' - alicyclic epoxy compounds such as epoxycyclohexene carboxylate, 1,2:8,9-diepoxylimonene, bisphenol F-type diepoxy compounds, bisphenol A-type diepoxy compounds, epoxy compounds obtained by reacting polyphenol compounds with epichlorohydrin, and Hydrogenated compounds thereof, aromatic or heterocyclic epoxy compounds such as diglycidyl phthalate and triglycidyl isocyanurate, compounds having an epoxy group at the end of silicone oil, compounds having an alkoxysilane and an epoxy group, and the like.
  • the epoxy compound is preferably a diepoxy compound from the viewpoint of reaction control and extrusion moldability.
  • Monoepoxy compounds have no effect of chain elongation and are poor in the effect of imparting extrudability.
  • many of them have a low volatilization temperature, and gas, etc. during molding may pose a problem.
  • an epoxy compound having a functionality of 3 or more is highly effective in imparting melt viscosity, but it may be difficult to control the reaction and maintain the fluidity.
  • a bisphenol F type diepoxy compound is preferable.
  • Bisphenol F-type epoxy compounds have an excellent balance between epoxy equivalent and low volatility compared to other epoxy compounds, so that while maintaining reactivity with the terminal functional groups of the polyester elastomer (A), decomposition gas and problems associated with it, such as poor appearance, are less likely to occur.
  • those that are liquid under normal temperature and normal pressure have the advantage of exhibiting a plasticizing effect at the same time as the effect of chain elongation, so they tend to exhibit bending fatigue resistance while maintaining fluidity. is preferably used.
  • Epiclon 830 manufactured by DIC Corporation, jER4004P, jER4005P, and jER4010P manufactured by Mitsubishi Chemical Corporation can be used as such an epoxy compound.
  • carbodiimide compounds include diphenylcarbodiimide, di-cyclohexylcarbodiimide, di-2,6-dimethylphenylcarbodiimide, diisopropylcarbodiimide, dioctyldecylcarbodiimide, di-o-toluylcarbodiimide, di-p-toluylcarbodiimide, di-p- Nitrophenylcarbodiimide, di-p-aminophenylcarbodiimide, di-p-hydroxyphenylcarbodiimide, di-p-chlorophenylcarbodiimide, di-o-chlorophenylcarbodiimide, di-3,4-dichlorophenylcarbodiimide, di-2 ,5-dichlorophenylcarbodiimide, p-phenylene-bis-o-toluylcarbodiimide, p-phenylene-bis-dicyclo
  • N,N'-di-2,6-diisopropylphenylcarbodiimide, 2,6,2',6'-tetraisopropyldiphenylcarbodiimide and polycarbodiimide are preferable, and more preferably poly(1,6-hexamethylenecarbodiimide ), poly(4,4′-methylenebiscyclohexylcarbodiimide), poly(1,3-cyclohexylenecarbodiimide), poly(1,4-cyclohexylenecarbodiimide), poly(4,4′-diphenylmethanecarbodiimide), poly( 3,3′-dimethyl-4,4′-diphenylmethanecarbodiimide), poly(naphthylenecarbodiimide), poly(p-phenylenecarbodiimide), poly(m-phenylenecarbodiimide), poly(toluylcarbodiimide), poly(diisopropylcarbodiimide), poly
  • polycarbodiimide is preferred from the viewpoint of improving heat aging resistance and hydrolysis resistance, and reactivity with acid terminals, and particularly preferred are poly(1,4-cyclohexylenecarbodiimide) and poly(triisopropyl). phenylene carbodiimide).
  • the content is preferably 0.1 to 5 parts by mass with respect to the total 100 parts by mass of the polyester elastomer (A) and the unmodified olefinic elastomer (B). , more preferably 0.1 to 4 parts by mass, more preferably 0.5 to 3.5 parts by mass.
  • This component is added for the purpose of improving hydrolysis resistance and bending fatigue resistance due to chain elongation. , and if it exceeds 5 parts by mass, the flame retardancy may be lowered and the mechanical properties may be lowered due to foreign matter effects.
  • the acid end-blocking The agent (C) may be 0 parts by mass.
  • Epoxy group-containing polyolefin (D) The epoxy group-containing polyolefin (D) used in the present invention is an epoxy-modified polyolefin resin, and preferably has an epoxy value of 0.01 to 0.5 meq/g.
  • the epoxy group-containing polyolefin (D) reacts with the terminal groups of the polyester elastomer (A) to form the polyester elastomer (A) and the unmodified olefinic elastomer (B ) as a compatibilizing agent.
  • the epoxy group-containing polyolefin (D) contributes to stabilization of the melt viscosity of the resin composition during melt retention due to its moderate epoxy value.
  • the epoxy value of the epoxy group-containing polyolefin (D) is more preferably 0.05 to 0.5 meq/g, still more preferably 0.1 to 0.5 meq/g.
  • the epoxy value is less than 0.01 meq/g, the compatibility with the polyester elastomer (A) is lowered, and the role as a compatibilizer is insufficient, which may cause pulsation during extrusion molding.
  • the epoxy value exceeds 0.5 meq/g, the melt viscosity increases during heat retention, and they themselves gradually become coarse cross-linking points, which may cause gelation.
  • epoxy group-containing polyolefin (D) a terpolymer composed of an ⁇ -olefin, an unsaturated compound other than the ⁇ -olefin, and a glycidyl ester of an ⁇ , ⁇ -unsaturated acid is preferable.
  • the ⁇ -olefin include ethylene, propylene, butene-1, etc. Among them, ethylene is preferably used.
  • unsaturated compounds other than ⁇ -olefins include vinyl ethers, vinyl esters such as vinyl acetate and vinyl propionate, esters of acrylic acid and methacrylic acid such as methyl, ethyl, propyl and butyl, acrylonitrile and styrene.
  • butyl acrylate, methyl acrylate and methyl methacrylate are preferably used.
  • glycidyl esters of ⁇ , ⁇ -unsaturated acids include glycidyl acrylate, glycidyl methacrylate, and glycidyl ethacrylate, among which glycidyl methacrylate is preferably used.
  • the compounding (content) amount is preferably 1 to 10 parts by mass with respect to a total of 100 parts by mass of the polyester elastomer (A) and the unmodified olefinic elastomer (B). It is more preferably 1 to 9 parts by mass, still more preferably 2 to 8 parts by mass, and particularly preferably 3 to 7 parts by mass. If the amount is less than 1 part by mass, the effect as a compatibilizing agent is not exhibited, and if the amount exceeds 10 parts by mass, the acid terminal of the polyester elastomer (A) reacts with the epoxy group during retention, causing gelation.
  • halogen flame retardant Either a halogen flame retardant or a non-halogen flame retardant may be used in the polyester elastomer resin composition of the present invention, if desired.
  • Brominated flame retardants (E) may be mentioned as examples of the halogen-based flame retardants used in the present invention.
  • Brominated flame retardants (E) include hexabromocyclododecane, decabromodiphenyl oxide, octabromodiphenyl oxide, tetrabromobisphenol A, bis(tribromophenoxy)ethane, bis(pentabromophenoxy)ethane, and tetrabromobisphenol A.
  • an antimony oxide compound is preferably used as the auxiliary flame retardant (F).
  • Antimony oxide compounds include antimony trioxide, antimony pentoxide, sodium antimonate, and the like.
  • the total content of the brominated flame retardant (E) and the flame retardant auxiliary (F) is 5 parts per 100 parts by mass of the polyester elastomer (A) and the unmodified olefin elastomer (B). It is preferably to 30 parts by mass.
  • Phosphorus flame retardant (G) examples of non-halogen flame retardants used in the present invention include phosphorus flame retardants.
  • phosphorus-based flame retardants include organic phosphorus-based compounds and inorganic phosphorus-based compounds.
  • the phosphorus-based flame retardant (G) used in the present invention is roughly classified into organic phosphorus-based compounds and inorganic phosphorus-based compounds.
  • organic phosphorus compounds include phosphates, phosphonates, phosphinates, phosphites, specifically trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, octyldiphenyl phosphate, tri cresyl phosphate, cresyl diphenyl phosphate, triphenyl phosphate, trixylenyl phosphate, tris-isopropylphenyl phosphate, diethyl-N,N-bis(2-hydroxyethyl)aminomethylphosphonate, bis(1,3-phenylenediphenyl) Phosphate and the like.
  • inorganic phosphorus compounds include red phosphorus compounds and inorganic phosphate compounds such as ammonium (poly)phosphate, melamine (poly)phosphate, and piperazine (poly)phosphate.
  • a phosphorus-based flame retardant having an average particle diameter D50 of 20 ⁇ m or less and a phosphorus concentration of 15% by mass or more can be used.
  • the average particle size D50 the use of particles with a large particle size tends to deteriorate the surface smoothness of the extruded product.
  • flame retardants with a low phosphorus concentration tend to be poor in the effect of imparting flame retardancy, so a large amount must be added, making it difficult to achieve both flame retardancy and other properties.
  • the average particle diameter D50 which is also called median diameter, can be measured and analyzed by a laser diffraction particle size distribution meter, and the phosphorus concentration can be measured (calculated) by ICP emission spectrometry.
  • the average particle diameter D50 is preferably 16 ⁇ m or less, more preferably 12 ⁇ m or less. Although the lower limit of the average particle diameter D50 is not particularly limited, it is preferably 0.1 ⁇ m or more.
  • the phosphorus concentration is preferably 18% by mass or more, more preferably 20% by mass or more. Although the upper limit of the phosphorus concentration is not particularly limited, it is preferably 30% by mass or less.
  • the content of the phosphorus-based flame retardant (B) is preferably 5 to 50 parts by mass with respect to a total of 100 parts by mass of the polyester elastomer (A) and the unmodified olefinic elastomer (B). 40 parts by mass is more preferable, 10 to 35 parts by mass is more preferable, and 15 to 30 parts by mass is particularly preferable. If the content of the phosphorus-based flame retardant (B) is less than 5 parts by mass, flame retardancy is insufficient, and if the content exceeds 50 parts by mass, problems such as deterioration of mechanical properties may occur.
  • the polyester elastomer resin composition of the present invention may contain a non-halogen flame retardant other than the phosphorus flame retardant, if necessary.
  • non-halogen flame retardants other than phosphorus flame retardants include nitrogen flame retardants, silicon flame retardants, metal hydroxides, metal borates, and the like.
  • the carboxyl group concentration in the polyester elastomer resin composition of the present invention is 10 eq/ton or less.
  • the carboxyl group concentration is preferably 7 eq/ton or less, more preferably 5 eq/ton or less. It is also a preferred embodiment that the carboxyl group concentration in the polyester elastomer resin composition is 0 eq/ton. If the carboxyl group concentration exceeds 10 eq/ton, the hydrolysis resistance is impaired, which is not preferable.
  • the polyester elastomer resin composition of the present invention may optionally contain general-purpose antioxidants such as aromatic amine-based, hindered phenol-based, phosphorus-based, and sulfur-based antioxidants.
  • polyester elastomer resin composition of the present invention requires weather resistance, it is preferable to add an ultraviolet absorber and/or a hindered amine compound.
  • an ultraviolet absorber and/or a hindered amine compound for example, benzophenone-based, benzotriazole-based, triazole-based, nickel-based, and salicyl-based light stabilizers can be used.
  • additives can be added to the polyester elastomer resin composition of the present invention.
  • resins other than the polyester elastomer (A) inorganic fillers, stabilizers, and anti-aging agents can be added within limits that do not impair the characteristics of the present invention.
  • coloring pigments, inorganic and organic fillers, coupling agents, tackiness improvers, quenchers, stabilizers such as metal deactivators, flame retardants, and the like can also be added. .
  • the polyester elastomer resin composition of the present invention is the sum of the polyester elastomer (A), the unmodified olefinic elastomer (B), the acid terminal blocking agent (C), and the epoxy group-containing polyolefin resin (D) (acid terminal blocking agent ( C) and the epoxy group-containing polyolefin resin (D) are optional components) preferably occupy 75% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more. .
  • the polyester elastomer resin composition obtained by the present invention has excellent acid resistance and heat aging resistance, as well as flexibility inherent in polyester elastomers, moldability, chemical resistance, bending fatigue resistance, and abrasion resistance. Since it is possible to maintain properties, electrical properties, and other properties, it can be applied to a wide range of applications, such as various parts of electrical products, hoses, tubes, and cable covering materials. In particular, development for cable coating is useful.
  • the polyester elastomer resin composition obtained by the present invention can be molded into various shapes by injection molding, transfer molding, blow molding, and the like.
  • Terminal acid value The terminal acid value (eq/t) of the polyester elastomer (A) was obtained by dissolving 200 mg of a sufficiently dried sample (polyester elastomer) in 10 mL of hot benzyl alcohol, cooling the resulting solution, and adding 10 mL of chloroform and phenol red. was added, and titration was performed with a 1/25 N KOH ethanol solution.
  • Raw materials used in the examples are as follows.
  • [Polyester elastomer (A)] (Polyester elastomer A-1) 100 parts by mass of aliphatic polycarbonate diol (carbonate diol UH-CARB200, molecular weight 2000, 1,6-hexanediol type manufactured by Ube Industries, Ltd.) and 8.9 parts by mass of diphenyl carbonate were charged and reacted at a temperature of 205° C. and 130 Pa. rice field. After 2 hours, the content was cooled to obtain an aliphatic polycarbonate diol (number average molecular weight: 12,000).
  • This polyester elastomer A-1 had a melting point of 207° C., a reduced viscosity of 1.21 dl/g, and a terminal acid value of 44 eq/ton.
  • Polyethylene elastomer A-2 100 parts by mass of aliphatic polycarbonate diol (carbonate diol UH-CARB200, molecular weight 2000, 1,6-hexanediol type manufactured by Ube Industries, Ltd.) and 8.9 parts by mass of diphenyl carbonate were charged and reacted at a temperature of 205° C. and 130 Pa. rice field. After 1 hour, the content was cooled to obtain an aliphatic polycarbonate diol (number average molecular weight: 12,000).
  • This polyester elastomer A-2 had a melting point of 208° C., a reduced viscosity of 1.21 dl/g, and a terminal acid value of 7 eq/ton.
  • Polyethylene elastomer A-3 100 parts by mass of aliphatic polycarbonate diol (carbonate diol UH-CARB200, molecular weight 2000, 1,6-hexanediol type manufactured by Ube Industries, Ltd.) and 8.6 parts by mass of diphenyl carbonate were charged and reacted at a temperature of 205° C. and 130 Pa. rice field. After 2 hours, the content was cooled to obtain an aliphatic polycarbonate diol (number average molecular weight: 10,000).
  • This polyester elastomer A-3 had a melting point of 212° C., a reduced viscosity of 1.20 dl/g, and a terminal acid value of 41 eq/ton.
  • This polyester elastomer A-4 had a melting point of 203° C., a reduced viscosity of 1.75 dl/g, and a terminal acid value of 50 eq/ton.
  • polyester elastomer A-5 100 parts by mass of polybutylene terephthalate and 46 parts by mass of ⁇ -caprolactone are heated and mixed at 250° C., and the lactone undergoes ring-opening polymerization and transesterification reaction in a reactor for 60 minutes to obtain a polyester/polyester block copolymer ( A polyester elastomer A-5) was produced.
  • the melting point was 214° C.
  • the reduced viscosity was 1.30 dl/g
  • the terminal acid value was 60 eq/ton.
  • Table 1 shows the physical properties of each polyester elastomer.
  • C-1 Alicyclic polycarbodiimide: Carbodilite HMV-15CA, manufactured by Nisshinbo Chemical Co., Ltd.
  • C-2 Bisphenol F type diepoxy compound: Epiclon 830, manufactured by DIC Corporation
  • Epoxy group-containing polyolefin (D)] (D-1) Epoxy group-containing olefin copolymer: Bondfast BF-7M, manufactured by Sumitomo Chemical Co., Ltd., epoxy value: 0.4 meq/g
  • [Phosphorus flame retardant (G)] (G-1) Aluminum diethylphosphinate: EXOLIT OP930, D50 is 4 ⁇ m, phosphorus concentration is 23% by mass, manufactured by Clariant Co., Ltd. (G-2) Aluminum diethylphosphinate: EXOLIT OP1230, D50 is 30 ⁇ m, phosphorus concentration is 23 mass %, manufactured by Clariant Co., Ltd.
  • the average particle diameter D50 is a value measured by a laser diffraction particle size distribution meter, and the phosphorus concentration is a value measured (calculated) by an ICP emission spectroscopic analysis method.
  • a JIS dumbbell-shaped No. 3 test piece was left in a 170° C. environment for a predetermined time, then taken out, and the tensile elongation at break was measured according to JIS K6251:2010.
  • the test piece was obtained by using an injection molding machine (manufactured by Yamashiro Seiki Co., Ltd., model-SAV) to obtain pellets of a resin composition dried under reduced pressure at 100 ° C. for 8 hours at a cylinder temperature (Tm + 20 ° C.) and a mold temperature of 30 ° C. After injection molding into a flat plate of 100 mm ⁇ 100 mm ⁇ 2 mm, a No.
  • the retention rate of tensile elongation at break was calculated by the following formula, and the time (tensile elongation half-life) when the value reached 50% was used as an index of heat aging resistance.
  • the initial tensile elongation at break is the tensile elongation at break before heat treatment.
  • Retention rate of tensile elongation at break (%) tensile elongation at break after heat treatment/initial tensile elongation at break x 100
  • a 37% aqueous solution of sulfuric acid was dropped onto a 3 mm-thick plate-shaped molded product, and heat treatment was performed at 90°C for 8 hours. This cycle was defined as 1 cycle, and a total of 2 cycles of treatment were performed. Carbonization of the molded article progressed at the dripping point due to the sulfuric acid concentrated by the heat treatment, and the depth of erosion caused by this was measured from the cross section.
  • a flat plate-shaped molded product is obtained by using an injection molding machine (manufactured by Yamashiro Seiki Co., Ltd., model-SAV) to mold pellets of a resin composition dried under reduced pressure at 100 ° C. for 8 hours at a cylinder temperature (Tm + 20 ° C.) and a mold temperature of 30 ° C. , obtained by injection molding into a flat plate of 100 mm x 100 mm x 3 mm.
  • the carboxyl group concentration (eq/t) of the polyester elastomer resin composition was obtained by dissolving 200 mg of a sufficiently dried sample in 10 mL of hot benzyl alcohol and cooling the resulting solution, as with the terminal acid value of the polyester elastomer (A). After that, 10 mL of chloroform and phenol red were added, and it was determined by a dissolution titration method in which titration was performed with a 1/25 N KOH ethanol solution.
  • the polyester elastomer resin compositions of the present invention shown in Examples 1 to 13 have excellent acid resistance and heat aging resistance, and also have extrusion moldability. I can see it. Especially from the comparison of Examples 2 and 6, it can be seen that the effect of further improving the acid resistance is obtained by increasing the hard segment ratio in the polyester elastomer. Moreover, in Example 8, the result was that some pulsation phenomenon was observed, although the level was not such that extrusion molding was not possible depending on the type of olefinic elastomer (B). , it can be seen that by using the epoxy group-containing polyolefin (D) in combination, the extrusion moldability can be improved.
  • Example 12 a slight decrease in smoothness is observed, but this is not due to the combination of formulations, but due to the large particle size of the phosphorus-based flame retardant (G), uniform smoothness like texturing This indicates that some roughness is observed.
  • the compositions of Comparative Examples 1 to 5, which do not satisfy the conditions of the present invention are inferior to the compositions of the present invention in extrusion moldability, acid resistance, or heat aging resistance.
  • Comparative Example 1 in which the olefinic elastomer (B) is not added, is inferior in acid resistance.
  • Comparative Example 2 in which an excessive amount of the olefinic elastomer (B) was added, although the acid resistance was good, the pulsation phenomenon occurred during extrusion molding, and the heat aging resistance was greatly deteriorated. decline is seen.
  • Comparative Example 3 which uses a polyester elastomer in which the soft segment is composed of an aliphatic polyether, is inferior in heat aging resistance.
  • the polyester elastomer resin composition of the present invention is excellent in acid resistance and heat aging resistance, and has good outer diameter stability and surface smoothness even in extrusion molding. Therefore, it can be applied to a wide range of parts such as various parts of electric appliances, hoses, tubes, and cable covering materials.
  • the resin composition obtained by the present invention can be molded into various shapes by injection molding, transfer molding, blow molding and the like.

Abstract

The present invention is a polyester elastomer resin composition that has superior strong acid resistance and thermal aging resistance and is suitable for extrusion molding, said polyester elastomer resin composition including: 50-90 parts by mass of a polyester elastomer (A) that is obtained by bonding a hard segment, which comprises a polyester having an aromatic dicarboxylic acid and an aliphatic and/or alicyclic diol as structural components thereof, and at least one type of soft segment selected from an aliphatic polyester and an aliphatic polycarbonate; 10-50 parts by mass of an unmodified olefinic elastomer (B); and furthermore, 0-5 parts by mass of an acid end capping agent (C) per total 100 parts by mass of the polyester elastomer (A) and the unmodified olefinic elastomer (B), wherein the carboxyl group concentration in the polyester elastomer resin composition is 10 eq/ton or less.

Description

ポリエステルエラストマー樹脂組成物及びそれからなるケーブル被覆材Polyester elastomer resin composition and cable covering material comprising the same
 本発明は、耐酸性と耐熱老化性に優れる、押出成形に適したポリエステルエラストマー組成物に関する。 The present invention relates to a polyester elastomer composition suitable for extrusion molding, which is excellent in acid resistance and heat aging resistance.
 熱可塑性ポリエステルエラストマーとしては、以前よりポリブチレンテレフタレート(PBT)、ポリブチレンナフタレート(PBN)をはじめとする結晶性ポリエステルをハードセグメントとし、ポリテトラメチレングリコール(PTMG)などのポリオキシアルキレングリコール類及び/又はポリカプロラクトン(PCL)、ポリブチレンアジペート(PBA)などの脂肪族ポリエステルをソフトセグメントとするものなどが知られ、実用化されている。 As thermoplastic polyester elastomers, crystalline polyesters such as polybutylene terephthalate (PBT) and polybutylene naphthalate (PBN) have been used as hard segments, and polyoxyalkylene glycols such as polytetramethylene glycol (PTMG) and / Or those having an aliphatic polyester such as polycaprolactone (PCL) and polybutylene adipate (PBA) as a soft segment are known and put into practical use.
 しかしながら、ソフトセグメントにポリオキシアルキレングリコール類を用いたポリエステルポリエーテル型エラストマーは、耐水性及び低温特性には優れるものの耐熱老化性に劣ることが、またソフトセグメントに脂肪族ポリエステルを用いたポリエステルポリエステル型エラストマーは、耐水性及び低温特性がやや劣るものの、耐熱老化性に優れることが知られている。 However, polyester polyether type elastomers using polyoxyalkylene glycols in the soft segment are excellent in water resistance and low temperature properties, but are inferior in heat aging resistance, and polyester polyester type elastomers using aliphatic polyester in the soft segment Elastomers are known to have excellent resistance to heat aging, although they are somewhat inferior in water resistance and low-temperature properties.
 上記欠点を解決することを目的として、ソフトセグメントにポリカーボネートを用いたポリエステルポリカーボネート型エラストマーが提案されている(例えば、特許文献1~5参照)。 For the purpose of solving the above drawbacks, polyester-polycarbonate elastomers using polycarbonate for soft segments have been proposed (see, for example, Patent Documents 1 to 5).
 これにより、上記の課題は解決され、これらの特許文献において開示されているポリエステルポリカーボネート型エラストマーは、その優れた特徴を活かし、自動車のエンジン周辺部材などの高い耐熱老化性が求められる用途に使用されている。 As a result, the above problems have been solved, and the polyester-polycarbonate type elastomers disclosed in these patent documents are used in applications requiring high heat aging resistance, such as engine peripheral parts for automobiles, taking advantage of their excellent features. ing.
 今後の自動車業界においては、従来のガソリン車から電気自動車が主流となっていくことが予想されるが、これに伴い、車載ケーブルの増加が見込まれ、先述のポリエステルポリカーボネート型エラストマーは、その高い耐熱老化性と柔軟性から、次世代車載ケーブル被覆用材料として期待されている。しかしながら、同用途における必須項目として、バッテリー液(硫酸)滴下試験への合格があり、従来のポリエステルエラストマーでは本試験の合格は達成できていなかったのが実情であった。その高い耐熱老化性と柔軟性を維持したまま、耐酸性を向上させることが望まれていた。 In the future, the automotive industry is expected to shift from conventional gasoline vehicles to electric vehicles. Due to its aging resistance and flexibility, it is expected to be a next-generation in-vehicle cable coating material. However, passing a battery liquid (sulfuric acid) dropping test is an essential item for the same application, and the actual situation was that conventional polyester elastomers could not achieve the passing of this test. It has been desired to improve the acid resistance while maintaining the high heat aging resistance and flexibility.
特公平7-39480号公報Japanese Patent Publication No. 7-39480 特開平10-182782号公報JP-A-10-182782 特開2001-206939号公報JP-A-2001-206939 特開2001-240663号公報Japanese Patent Application Laid-Open No. 2001-240663 特許第4244067号公報Japanese Patent No. 4244067
 本発明はかかる従来技術の現状に鑑み創案されたものであり、その目的とするところは優れた耐酸性と耐熱老化性を有する、押出成形に適したポリエステルエラストマー組成物を提供することにある。特に、押出成形によるケーブル被覆材に好適なポリエステルエラストマー組成物を提供することを目的とする。 The present invention was invented in view of the current state of the prior art, and its purpose is to provide a polyester elastomer composition suitable for extrusion molding, which has excellent acid resistance and heat aging resistance. In particular, it is an object of the present invention to provide a polyester elastomer composition suitable for extruded cable covering materials.
 本発明者は上記目的を達成するために耐酸性と耐熱老化性に優れるポリエステルエラストマー組成物について鋭意検討した結果、遂に本発明の完成に至った。 In order to achieve the above object, the present inventors have made intensive studies on polyester elastomer compositions that are excellent in acid resistance and heat aging resistance, and as a result, have finally completed the present invention.
 即ち、本発明は、以下の通りである。
[1] 芳香族ジカルボン酸と脂肪族及び/又は脂環族ジオールを構成成分とするポリエステルからなるハードセグメントと、脂肪族ポリエステル及び脂肪族ポリカーボネートから選ばれる少なくとも1種のソフトセグメントが結合してなるポリエステルエラストマー(A)50~90質量部、未変性のオレフィン系エラストマー(B)10~50質量部、さらに、ポリエステルエラストマー(A)と未変性のオレフィン系エラストマー(B)の合計100質量部に対して、酸末端封鎖剤(C)0~5質量部を含有しているポリエステルエラストマー樹脂組成物であって、該樹脂組成物中のカルボキシル基濃度が10eq/tоn以下であるポリエステルエラストマー樹脂組成物。
[2] ポリエステルエラストマー(A)と未変性のオレフィン系エラストマー(B)の合計100質量部に対して、さらにエポキシ基含有ポリオレフィン(D)1~10質量部を含有している、[1]に記載のポリエステルエラストマー樹脂組成物。
[3] 前記未変性のオレフィン系エラストマー(B)が、スチレンを共重合成分として含むエラストマーである[1]または[2]に記載のポリエステルエラストマー樹脂組成物。
[4] 前記ポリエステルエラストマー(A)が、テレフタル酸、1,4-ブタンジオール及び脂肪族ポリカーボネートジオールを主たる成分とする、150~230℃の融点を有する共重合体である[1]~[3]のいずれかに記載のポリエステルエラストマー樹脂組成物。
[5] ポリエステルエラストマー(A)と未変性のオレフィン系エラストマー(B)の合計100質量部に対して、さらに臭素系難燃剤(E)及び難燃助剤(F)の合計5~30質量部を含有している、[1]~[4]のいずれかに記載のポリエステルエラストマー樹脂組成物。
[6] ポリエステルエラストマー(A)と未変性のオレフィン系エラストマー(B)の合計100質量部に対して、さらにリン系難燃剤(G)5~30質量部を含有している、[1]~[4]のいずれかに記載のポリエステルエラストマー樹脂組成物。
[7] 前記リン系難燃剤(G)が、平均粒子径D50が20μm以下であり、且つ15質量%以上のリン濃度を有する、[6]に記載のポリエステルエラストマー樹脂組成物。
[8] ケーブル被覆用である[1]~[7]のいずれかに記載のポリエステルエラストマー樹脂組成物。
[9] [1]~[7]のいずれかに記載のポリエステルエラストマー樹脂組成物からなるケーブル被覆材。
That is, the present invention is as follows.
[1] A hard segment composed of a polyester composed of an aromatic dicarboxylic acid and an aliphatic and/or alicyclic diol, and at least one soft segment selected from aliphatic polyesters and aliphatic polycarbonates are bonded. 50 to 90 parts by mass of polyester elastomer (A), 10 to 50 parts by mass of unmodified olefinic elastomer (B), and a total of 100 parts by mass of polyester elastomer (A) and unmodified olefinic elastomer (B) A polyester elastomer resin composition containing 0 to 5 parts by mass of an acid terminal blocking agent (C), wherein the carboxyl group concentration in the resin composition is 10 eq/ton or less.
[2] In [1], further containing 1 to 10 parts by mass of an epoxy group-containing polyolefin (D) with respect to a total of 100 parts by mass of the polyester elastomer (A) and the unmodified olefin elastomer (B). The polyester elastomer resin composition described.
[3] The polyester elastomer resin composition according to [1] or [2], wherein the unmodified olefinic elastomer (B) is an elastomer containing styrene as a copolymer component.
[4] The polyester elastomer (A) is a copolymer containing terephthalic acid, 1,4-butanediol and aliphatic polycarbonate diol as main components and having a melting point of 150 to 230° C. [1] to [3] ] The polyester elastomer resin composition according to any one of the above.
[5] A total of 5 to 30 parts by mass of a brominated flame retardant (E) and a flame retardant aid (F) with respect to a total of 100 parts by mass of the polyester elastomer (A) and the unmodified olefinic elastomer (B). The polyester elastomer resin composition according to any one of [1] to [4], containing
[6] Further containing 5 to 30 parts by mass of a phosphorus-based flame retardant (G) with respect to a total of 100 parts by mass of the polyester elastomer (A) and the unmodified olefin elastomer (B), [1]- The polyester elastomer resin composition according to any one of [4].
[7] The polyester elastomer resin composition according to [6], wherein the phosphorus-based flame retardant (G) has an average particle size D50 of 20 μm or less and a phosphorus concentration of 15% by mass or more.
[8] The polyester elastomer resin composition according to any one of [1] to [7], which is used for cable coating.
[9] A cable covering material comprising the polyester elastomer resin composition according to any one of [1] to [7].
 本発明のポリエステルエラストマー樹脂組成物は、耐酸性と耐熱老化性に優れながら、かつ押出成形においても良好な外径安定性と表面平滑性を有している。 The polyester elastomer resin composition of the present invention has excellent acid resistance and heat aging resistance, and also has good outer diameter stability and surface smoothness even in extrusion molding.
[ポリエステルエラストマー(A)]
 本発明で使用するポリエステルエラストマー(A)は、ハードセグメントとソフトセグメントからなる。ハードセグメントは、ポリエステルからなる。ハードセグメントのポリエステルを構成する芳香族ジカルボン酸は通常の芳香族ジカルボン酸が広く用いられ、特に限定されないが、主たる芳香族ジカルボン酸としてはテレフタル酸又はナフタレンジカルボン酸(異性体の中では2,6-ナフタレンジカルボン酸が好ましい)であることが望ましい。ハードセグメントのポリエステルを構成する全ジカルボン酸中、テレフタル酸又はナフタレンジカルボン酸は、70モル%以上であることが好ましく、80モル%以上であることがより好ましい。その他のジカルボン酸成分としては、ジフェニルジカルボン酸、イソフタル酸、5-ナトリウムスルホイソフタル酸などの芳香族ジカルボン酸、シクロヘキサンジカルボン酸、テトラヒドロ無水フタル酸などの脂環族ジカルボン酸、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、ダイマー酸、水添ダイマー酸などの脂肪族ジカルボン酸などが挙げられる。これらはポリエステルエラストマー(A)の融点を大きく低下させない範囲で用いられ、その量は全酸成分の30モル%以下が好ましく、より好ましくは20モル%以下である。
[Polyester elastomer (A)]
The polyester elastomer (A) used in the present invention consists of hard segments and soft segments. The hard segment consists of polyester. The aromatic dicarboxylic acid constituting the polyester of the hard segment is widely used and is not particularly limited. - naphthalenedicarboxylic acid is preferred). The content of terephthalic acid or naphthalene dicarboxylic acid is preferably 70 mol % or more, more preferably 80 mol % or more, of all the dicarboxylic acids constituting the hard segment polyester. Other dicarboxylic acid components include aromatic dicarboxylic acids such as diphenyldicarboxylic acid, isophthalic acid and 5-sodiumsulfoisophthalic acid, alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid and tetrahydrophthalic anhydride, succinic acid, glutaric acid, Aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, dimer acid, hydrogenated dimer acid, and the like are included. These are used within a range that does not greatly lower the melting point of the polyester elastomer (A), and the amount thereof is preferably 30 mol % or less, more preferably 20 mol % or less, of the total acid component.
 また、本発明で使用するポリエステルエラストマー(A)において、ハードセグメントのポリエステルを構成する脂肪族又は脂環族ジオールは、一般の脂肪族又は脂環族ジオールが広く用いられ、特に限定されないが、主として炭素数2~8のアルキレングリコール類であることが望ましい。具体的にはエチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノールなどが挙げられる。これらの中でも、耐熱性を付与する上でエチレングリコール、1,4-ブタンジオールのいずれかであることが好ましい。 In addition, in the polyester elastomer (A) used in the present invention, general aliphatic or alicyclic diols are widely used as the aliphatic or alicyclic diol constituting the hard segment polyester, and are not particularly limited, but are mainly Alkylene glycols having 2 to 8 carbon atoms are desirable. Specific examples include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol and 1,4-cyclohexanedimethanol. Among these, either ethylene glycol or 1,4-butanediol is preferable for imparting heat resistance.
 上記のハードセグメントのポリエステルを構成する成分としては、ブチレンテレフタレート単位(テレフタル酸と1,4-ブタンジオールからなる単位)あるいはブチレンナフタレート単位(2,6-ナフタレンジカルボン酸と1,4-ブタンジオールからなる単位)よりなるものが物性、成形性、コストパフォーマンスの点より好ましい。 The components constituting the hard segment polyester include butylene terephthalate units (units composed of terephthalic acid and 1,4-butanediol) or butylene naphthalate units (2,6-naphthalenedicarboxylic acid and 1,4-butanediol unit) is preferable from the point of view of physical properties, moldability and cost performance.
 また、本発明で使用するポリエステルエラストマー(A)におけるハードセグメントを構成するポリエステルとして好適な芳香族ポリエステルを事前に製造し、その後ソフトセグメント成分と共重合させる場合、該芳香族ポリエステルは、通常のポリエステルの製造法に従って容易に得ることができる。また、かかるポリエステルは、数平均分子量10000~40000を有しているものが望ましい。 Further, when an aromatic polyester suitable as a polyester constituting the hard segment in the polyester elastomer (A) used in the present invention is produced in advance and then copolymerized with the soft segment component, the aromatic polyester is a normal polyester can be easily obtained according to the manufacturing method of Moreover, such polyester preferably has a number average molecular weight of 10,000 to 40,000.
 本発明に用いられるポリエステルエラストマー(A)のソフトセグメントは、脂肪族ポリエステル、脂肪族ポリカーボネートから選ばれる少なくとも1種である。 The soft segment of the polyester elastomer (A) used in the present invention is at least one selected from aliphatic polyesters and aliphatic polycarbonates.
 脂肪族ポリエステルとしては、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペートなどが挙げられる。これらの中では、弾性特性から、ポリ(ε-カプロラクトン)、ポリブチレンアジペートが好ましい。 Aliphatic polyesters include poly(ε-caprolactone), polyenantholactone, polycaprylollactone, and polybutylene adipate. Among these, poly(ε-caprolactone) and polybutylene adipate are preferred in terms of elastic properties.
 脂肪族ポリカーボネートは、主として炭素数2~12の脂肪族ジオール残基からなるものであることが好ましい。これらの脂肪族ジオールとしては、例えば、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、2,2-ジメチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオールなどが挙げられる。特に、得られるポリエステルエラストマーの柔軟性や低温特性の点より炭素数5~12の脂肪族ジオールが好ましい。これらの成分は、以下に説明する事例に基づき、単独で用いてもよいし、必要に応じて2種以上を併用してもよい。 The aliphatic polycarbonate preferably consists mainly of aliphatic diol residues having 2 to 12 carbon atoms. Examples of these aliphatic diols include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2, 2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8- octanediol and the like. In particular, aliphatic diols having 5 to 12 carbon atoms are preferred from the viewpoint of the flexibility and low-temperature properties of the resulting polyester elastomer. These components may be used alone, or two or more of them may be used in combination according to the cases described below.
 本発明におけるポリエステルエラストマー(A)のソフトセグメントを構成する、低温特性が良好な脂肪族ポリカーボネートジオールとしては、融点が低く(例えば、70℃以下)かつ、ガラス転移温度が低いものが好ましい。一般に、ポリエステルエラストマーのソフトセグメントを形成するのに用いられる1,6-ヘキサンジオールからなる脂肪族ポリカーボネートジオールは、ガラス転移温度が-60℃前後と低く、融点も50℃前後となるため、低温特性が良好なものとなる。その他にも、上記脂肪族ポリカーボネートジオールに、例えば、3-メチル-1,5-ペンタンジオールを適当量共重合して得られる脂肪族ポリカーボネートジオールは、元の脂肪族ポリカーボネートジオールに対してガラス転移点が若干高くなるものの、融点が低下もしくは非晶性となるため、低温特性が良好な脂肪族ポリカーボネートジオールに相当する。また、例えば、1,9-ノナンジオールと2-メチル-1,8-オクタンジオールからなる脂肪族ポリカーボネートジオールは融点が30℃程度、ガラス転移温度が-70℃前後と十分に低いため、低温特性が良好な脂肪族ポリカーボネートジオールに相当する。 As the aliphatic polycarbonate diol having good low-temperature properties, which constitutes the soft segment of the polyester elastomer (A) in the present invention, one having a low melting point (for example, 70°C or lower) and a low glass transition temperature is preferred. Aliphatic polycarbonate diols composed of 1,6-hexanediol, which is generally used to form the soft segment of polyester elastomers, have a low glass transition temperature of around -60°C and a melting point of around 50°C. will be good. In addition, an aliphatic polycarbonate diol obtained by copolymerizing an appropriate amount of, for example, 3-methyl-1,5-pentanediol with the above aliphatic polycarbonate diol has a glass transition point higher than that of the original aliphatic polycarbonate diol. is slightly higher, but the melting point is lowered or becomes amorphous. For example, an aliphatic polycarbonate diol composed of 1,9-nonanediol and 2-methyl-1,8-octanediol has a melting point of about 30° C. and a glass transition temperature of about −70° C., which are sufficiently low. corresponds to a good aliphatic polycarbonate diol.
 ポリエステルエラストマー(A)のソフトセグメントとしては、ポリエステルエラストマー樹脂組成物の耐熱老化性の観点から、脂肪族ポリカーボネートジオールが好ましい。特に、テレフタル酸、1,4-ブタンジオール及び脂肪族ポリカーボネートジオールを主たる成分とする、150~230℃の融点を有する共重合体であることが好ましい。この時、ポリエステルエラストマー(A)を構成する全ジカルボン酸成分に対して、テレフタル酸は70モル%以上であることが好ましく、全ジオール成分に対して、1,4-ブタンジオール及び脂肪族ポリカーボネートジオールの合計は70モル%以上であることが好ましい。ポリエステルエラストマー(A)の融点は、190~220℃であることがより好ましく、200~218℃であることがさらに好ましい。 From the viewpoint of heat aging resistance of the polyester elastomer resin composition, aliphatic polycarbonate diol is preferable as the soft segment of the polyester elastomer (A). In particular, a copolymer containing terephthalic acid, 1,4-butanediol and aliphatic polycarbonate diol as main components and having a melting point of 150 to 230° C. is preferred. At this time, the content of terephthalic acid is preferably 70 mol % or more based on the total dicarboxylic acid components constituting the polyester elastomer (A), and 1,4-butanediol and aliphatic polycarbonate diol based on the total diol components. is preferably 70 mol % or more. The melting point of the polyester elastomer (A) is more preferably 190 to 220°C, even more preferably 200 to 218°C.
 本発明で使用するポリエステルエラストマー(A)において、ハードセグメントとソフトセグメントの質量比は、一般に、ハードセグメント:ソフトセグメント=30:70~95:5であることが好ましく、より好ましくは40:60~90:10、さらに好ましくは45:55~90:10、特に好ましくは50:50~90:10、最も好ましくは60:40~80:20の範囲である。 In the polyester elastomer (A) used in the present invention, the mass ratio of the hard segment to the soft segment is generally preferably from 30:70 to 95:5, more preferably from 40:60. 90:10, more preferably 45:55 to 90:10, particularly preferably 50:50 to 90:10, most preferably 60:40 to 80:20.
 一般的に、熱可塑性ポリエステルエラストマーにおいては、ハードセグメント比率が大きくなるほど耐熱老化性および耐酸性が良好になるが、その一方で、ハードセグメント比率が大きいということは高い材料硬度を有することと同義であり、材料硬度が高すぎるとエラストマーの重要特性である柔軟性や低温特性損なわれてしまう。そのため、ポリエステルエラストマーにおける、ハードセグメントとソフトセグメントの質量比は先述の範囲が好ましい。 Generally, in thermoplastic polyester elastomers, the higher the hard segment ratio, the better the heat aging resistance and acid resistance. However, if the material hardness is too high, the important properties of elastomers such as flexibility and low-temperature properties will be impaired. Therefore, the mass ratio of the hard segment to the soft segment in the polyester elastomer is preferably within the range described above.
 本発明で使用するポリエステルエラストマー(A)は、ハードセグメントとソフトセグメントが結合している。ここで、結合しているとは、ハードセグメントとソフトセグメントがイソシアネート化合物などの鎖延長剤で結合されるのではなく、ハードセグメントやソフトセグメントを構成する単位が直接エステル結合やカーボネート結合で結合されている状態が好ましい。たとえば、ハードセグメントを構成するポリエステル、ソフトセグメントを構成するポリカーボネートを溶融下、一定時間のエステル交換反応及び解重合反応を繰返しながら得ることが好ましい。 In the polyester elastomer (A) used in the present invention, hard segments and soft segments are bonded. Here, "bonded" means that the hard segment and soft segment are not bonded by a chain extender such as an isocyanate compound, but the units that make up the hard segment or soft segment are directly bonded by an ester bond or a carbonate bond. It is preferable that For example, it is preferable to obtain the polyester constituting the hard segment and the polycarbonate constituting the soft segment by repeating transesterification reaction and depolymerization reaction for a certain period of time while melting.
 本発明に用いられるポリエステルエラストマー(A)は、公知の方法で製造することができる。例えば、ジカルボン酸の低級アルコールジエステル、過剰量の低分子量グリコール、およびソフトセグメント成分を触媒の存在下エステル交換反応せしめ、得られる反応生成物を重縮合する方法、あるいはジカルボン酸と過剰量のグリコールおよびソフトセグメント成分を触媒の存在下エステル化反応せしめ、得られる反応生成物を重縮合する方法、また、あらかじめハードセグメントのポリエステルを作っておき、これにソフトセグメント成分を添加してエステル交換反応によりランダム化せしめる方法、ハードセグメントとソフトセグメントを鎖連結剤でつなぐ方法、さらにポリ(ε-カプロラクトン)をソフトセグメントに用いる場合は、ハードセグメントにε-カプロラクトンモノマーを付加反応させるなど、いずれの方法をとってもよい。 The polyester elastomer (A) used in the present invention can be produced by a known method. For example, a lower alcohol diester of a dicarboxylic acid, an excess amount of a low molecular weight glycol, and a soft segment component are transesterified in the presence of a catalyst, and the resulting reaction product is polycondensed, or a dicarboxylic acid and an excess amount of glycol and A method in which a soft segment component is subjected to an esterification reaction in the presence of a catalyst and the resulting reaction product is polycondensed. Alternatively, a hard segment polyester is prepared in advance, a soft segment component is added to this, and a random reaction is performed by transesterification. A method of converting the hard segment and the soft segment with a chain linking agent, and when poly(ε-caprolactone) is used for the soft segment, addition reaction of ε-caprolactone monomer to the hard segment can be used. good.
 本発明に用いるポリエステルエラストマー(A)が、テレフタル酸、1,4-ブタンジオール及び脂肪族ポリカーボネートジオールを主たる成分とするポリエステルエラストマーの場合、その製造は、特許第4244067号公報(上記特許文献5)に記載の方法を採用できる。この方法により製造したポリエステルエラストマー(A)は、示差走査熱量計を用いて昇温速度20℃/分で室温から300℃に昇温し、300℃で3分間保持した後に、降温速度100℃/分で室温まで降温するサイクルを3回繰り返した時の一回目の測定で得られる融点(Tm1)と3回目の測定で得られる融点(Tm3)との融点差(Tm1-Tm3)が0~50℃であると言う特徴を有する。 When the polyester elastomer (A) used in the present invention is a polyester elastomer containing terephthalic acid, 1,4-butanediol and aliphatic polycarbonate diol as main components, its production is described in Japanese Patent No. 4244067 (Patent Document 5 above). The method described in can be adopted. The polyester elastomer (A) produced by this method was heated from room temperature to 300°C at a temperature increase rate of 20°C/min using a differential scanning calorimeter, held at 300°C for 3 minutes, and then cooled at a temperature decrease rate of 100°C/min. The melting point difference (Tm1-Tm3) between the melting point (Tm1) obtained in the first measurement and the melting point (Tm3) obtained in the third measurement when the cycle of cooling to room temperature in minutes is repeated three times is 0 to 50. °C.
[未変性のオレフィン系エラストマー(B)]
 本発明における未変性のオレフィン系エラストマー(B)のオレフィン系エラストマーとは、オレフィン化合物を構成成分として含むブロック共重合体のことを指す。ここでオレフィン化合物は、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、9-メチル-1-デセン、11-メチル-1-ドデセン、12-エチル-1-テトラデセンなどのα-オレフィン、ブタジエン、イソプレンなどの共役ジエンなどである。該オレフィン系エラストマーは、オレフィン化合物以外に、スチレン、メチルスチレン、ジメチルスチレン、エチルスチレンなどのビニル芳香族単量体、アクリロニトリルなどのシアン化ビニル単量体、メチルアクリレート、エチルアクリレート、メチルメタクリレート、エチルメタクリレートなどの(メタ)アクリル酸エステル系単量体を構成成分として含んでも良い。
 ここで「未変性」とは、上記構成成分で得られたオレフィン系エラストマーが、ポリエステルエラストマー(A)の末端官能基であるカルボキシル基、水酸基と反応するカルボキシル基、酸無水物基、エポキシ基、水酸基、カルボジイミド基、オキサゾリン基等の官能基を含む化合物で変性されていない、つまり前記官能基を含む化合物を共重合していないことを意味する。オレフィン系エラストマー中に残る二重結合への水素添加は、変性には含まれない。以下、「未変性のオレフィン系エラストマー(B)」を「オレフィン系エラストマー(B)」と称することもある。
[Unmodified olefinic elastomer (B)]
The olefinic elastomer of the unmodified olefinic elastomer (B) in the present invention refers to a block copolymer containing an olefinic compound as a constituent component. Here, the olefin compounds include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1- Pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl- α-olefins such as 1-hexene, 9-methyl-1-decene, 11-methyl-1-dodecene and 12-ethyl-1-tetradecene; and conjugated dienes such as butadiene and isoprene. In addition to olefin compounds, the olefinic elastomer includes vinyl aromatic monomers such as styrene, methylstyrene, dimethylstyrene and ethylstyrene, vinyl cyanide monomers such as acrylonitrile, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl A (meth)acrylic acid ester-based monomer such as methacrylate may be included as a constituent component.
Here, the term “unmodified” means that the olefin-based elastomer obtained from the above constituents has a carboxyl group that is a terminal functional group of the polyester elastomer (A), a carboxyl group that reacts with a hydroxyl group, an acid anhydride group, an epoxy group, It means that it is not modified with a compound containing a functional group such as a hydroxyl group, a carbodiimide group, or an oxazoline group, that is, it is not copolymerized with a compound containing the above functional group. Modification does not include hydrogenation of the remaining double bonds in the olefinic elastomer. Hereinafter, "unmodified olefinic elastomer (B)" may be referred to as "olefinic elastomer (B)".
 また、本発明に用いる未変性のオレフィン系エラストマー(B)は、スチレンを共重合成分として含むエラストマー、いわゆるスチレン系エラストマーであることがより好ましい。スチレン系エラストマーとは、スチレン-共役ジエンブロック共重合体の水素添加物(水添スチレン-ジエンブロック共重合体)である。スチレン-共役ジエンブロック共重合体とは、スチレンブロックとジエンブロックとからなるブロック共重合体であり、ジブロック共重合体、トリブロック共重合体、ラジアルブロック共重合体などがある。また、ジエンブロック成分としてはブタジエンブロック、イソプレンブロックが挙げられる。水添スチレン-ジエンブロック共重合体の具体例としては、スチレン-ブタジエン-スチレンブロック共重合体(SBS)の水素添加物であるスチレン-エチレン・ブチレン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)の水素添加物であるスチレン-エチレン・プロピレン-スチレンブロック共重合体(SEPS)、スチレン-ブタジエン/イソプレン-スチレンブロック共重合体(SBIS)の水素添加物であるスチレン-エチレン・エチレン・プロピレン-スチレンブロック共重合体(SEEPS)などが挙げられる。
 本発明に用いるスチレン系エラストマーの数平均分子量は、30000~80000が好ましく、40000~60000がより好ましい。
Further, the unmodified olefinic elastomer (B) used in the present invention is more preferably an elastomer containing styrene as a copolymerization component, a so-called styrene elastomer. A styrene elastomer is a hydrogenated styrene-conjugated diene block copolymer (hydrogenated styrene-diene block copolymer). A styrene-conjugated diene block copolymer is a block copolymer composed of a styrene block and a diene block, and includes diblock copolymers, triblock copolymers, radial block copolymers, and the like. Moreover, a butadiene block and an isoprene block are mentioned as a diene block component. Specific examples of hydrogenated styrene-diene block copolymers include styrene-butadiene-styrene block copolymer (SBS) hydrogenated styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene- Styrene-ethylene/propylene-styrene block copolymer (SEPS), which is a hydrogenated product of isoprene-styrene block copolymer (SIS), hydrogenated product of styrene-butadiene/isoprene-styrene block copolymer (SBIS) styrene-ethylene-ethylene-propylene-styrene block copolymer (SEEPS).
The number average molecular weight of the styrene elastomer used in the present invention is preferably 30,000 to 80,000, more preferably 40,000 to 60,000.
 オレフィン系エラストマー(B)が未変性である理由は、後述する酸末端封鎖剤(C)との反応を生じさせないためである。酸変性されたオレフィン系エラストマーを配合してしまうと、酸末端封鎖剤(C)とオレフィン系エラストマーの酸変性部、また酸末端封鎖剤(C)とポリエステルエラストマー(A)の酸末端の反応が複合的に生じ、極度の粘度上昇およびゲル化の発生を引き起こしてしまうため、押出成形品における外観悪化が生じることとなり、好ましくない。 The reason why the olefinic elastomer (B) is unmodified is that it does not react with the acid end-blocking agent (C), which will be described later. If the acid-modified olefinic elastomer is blended, the reaction between the acid end-blocking agent (C) and the acid-modified portion of the olefinic elastomer, or between the acid end-blocking agent (C) and the acid end of the polyester elastomer (A) will occur. This is not preferable because it occurs in a complex manner and causes an extreme increase in viscosity and the occurrence of gelation, which results in deterioration of the appearance of the extruded product.
 本発明においては、ポリエステルエラストマー(A)と未変性のオレフィン系エラストマー(B)の合計を100質量部としたとき、ポリエステルエラストマー(A)と未変性のオレフィン系エラストマー(B)の質量割合((A)/(B))は、90/10~50/50であることが好ましい。本発明の効果を顕著に奏するためには、この質量割合は、80/20~55/45が好ましく、75/25~55/45がより好ましく、70/30~55/45がさらに好ましく、70/30~60/40が特に好ましい。オレフィン系エラストマー(B)の含有量が小さい場合は、耐酸性が不足し、大きい場合は、ポリエステルエラストマー樹脂組成物の耐熱老化性、押出成形性が不十分となる。 In the present invention, the mass ratio (( A)/(B)) is preferably 90/10 to 50/50. In order to exhibit the effect of the present invention remarkably, the mass ratio is preferably 80/20 to 55/45, more preferably 75/25 to 55/45, further preferably 70/30 to 55/45, and 70 /30 to 60/40 is particularly preferred. If the content of the olefinic elastomer (B) is small, the acid resistance will be insufficient, and if it is large, the heat aging resistance and extrusion moldability of the polyester elastomer resin composition will be insufficient.
[酸末端封鎖剤(C)]
 本発明に用いられる酸末端封鎖剤(C)とは、前記ポリエステルエラストマー(A)の末端官能基と反応しうる官能基を有する化合物である。前記ポリエステルエラストマー(A)の末端官能基とは、カルボキシル基及び/または水酸基である。また、ポリエステルエラストマー(A)の酸末端官能基と反応しうる官能基としては、カルボキシル基、酸無水物基、エポキシ基、水酸基、カルボジイミド基、オキサゾリン基等が挙げられる。これらのうち、溶融滞留時の溶融粘度変化やポリエステルエラストマー(A)の酸末端官能基との反応性から、酸末端封鎖剤(C)の官能基は、エポキシ基またはカルボジイミド基が好ましい。よって、酸末端封鎖剤(C)は、エポキシ化合物及び/またはカルボジイミド化合物であることが好ましい。
[Acid terminal blocker (C)]
The acid terminal blocking agent (C) used in the present invention is a compound having a functional group capable of reacting with the terminal functional group of the polyester elastomer (A). The terminal functional groups of the polyester elastomer (A) are carboxyl groups and/or hydroxyl groups. Moreover, the functional group capable of reacting with the acid terminal functional group of the polyester elastomer (A) includes a carboxyl group, an acid anhydride group, an epoxy group, a hydroxyl group, a carbodiimide group, an oxazoline group, and the like. Among these, the functional group of the acid end-blocking agent (C) is preferably an epoxy group or a carbodiimide group in view of change in melt viscosity during melt retention and reactivity with the acid end functional group of the polyester elastomer (A). Therefore, the acid terminal blocking agent (C) is preferably an epoxy compound and/or a carbodiimide compound.
 酸末端封鎖剤(C)として用いるエポキシ化合物には、後記するエポキシ基含有ポリオレフィン(D)とは異なる化合物であり、ポリオレフィン骨格を有さない化合物であり、その分子量が10,000以下であることが好ましい。
 エポキシ化合物としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリセリンテトラグリシジルエーテル等の脂肪族エポキシ化合物、ジシクロペンタジエンジオキサイド、エポキシシクロヘキセンカルボン酸エチレングリコールジエステル、3,4-エポキシシクロヘキセニルメチル-3’-4’-エポキシシクロヘキセンカルボキシレート、1,2:8,9-ジエポキシリモネン等の脂環族エポキシ化合物、ビスフェノールF型ジエポキシ化合物、ビスフェノールA型ジエポキシ化合物、ポリフェノール化合物とエピクロルヒドリンとの反応によって得られるエポキシ化合物及びその水添化合物、フタル酸ジグリシジルエステル、トリグリシジルイソシアヌレート等の芳香族又は複素環式エポキシ化合物、シリコーンオイルの末端にエポキシ基を有する化合物やアルコキシシランとエポキシ基を有する化合物等が挙げられる。
The epoxy compound used as the acid end-blocking agent (C) is a compound different from the epoxy group-containing polyolefin (D) described later, is a compound having no polyolefin skeleton, and has a molecular weight of 10,000 or less. is preferred.
Epoxy compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, hexanediol diglycidyl ether, glycerin diglycidyl ether. Aliphatic epoxy compounds such as glycidyl ether, trimethylolpropane triglycidyl ether, diglycerin tetraglycidyl ether, dicyclopentadiene dioxide, epoxycyclohexenecarboxylic acid ethylene glycol diester, 3,4-epoxycyclohexenylmethyl-3'-4' - alicyclic epoxy compounds such as epoxycyclohexene carboxylate, 1,2:8,9-diepoxylimonene, bisphenol F-type diepoxy compounds, bisphenol A-type diepoxy compounds, epoxy compounds obtained by reacting polyphenol compounds with epichlorohydrin, and Hydrogenated compounds thereof, aromatic or heterocyclic epoxy compounds such as diglycidyl phthalate and triglycidyl isocyanurate, compounds having an epoxy group at the end of silicone oil, compounds having an alkoxysilane and an epoxy group, and the like.
 エポキシ化合物としては、反応制御と押出成形性付与の観点より、ジエポキシ化合物であることが好ましい。モノエポキシ化合物には鎖延長の作用がなく押出成形性の付与効果は乏しい。また、揮発温度も低いものが多く、成形時のガス等が問題となることがある。また、3官能以上のエポキシ化合物では、溶融粘度の付与効果こそ大きいものの、反応制御および流動性保持が困難な場合がある。 The epoxy compound is preferably a diepoxy compound from the viewpoint of reaction control and extrusion moldability. Monoepoxy compounds have no effect of chain elongation and are poor in the effect of imparting extrudability. In addition, many of them have a low volatilization temperature, and gas, etc. during molding may pose a problem. In addition, an epoxy compound having a functionality of 3 or more is highly effective in imparting melt viscosity, but it may be difficult to control the reaction and maintain the fluidity.
 エポキシ化合物としては、ビスフェノールF型ジエポキシ化合物が好ましい。ビスフェノールF型エポキシ化合物は、他のエポキシ化合物と比較して、エポキシ当量と低揮発性のバランスに優れているため、ポリエステルエラストマー(A)の末端官能基との反応性を保持しながら、分解ガスおよびそれに付随する外観不良等の問題が生じ難い。更に常温常圧環境下で液体であるものに関しては、鎖延長の作用を生じながら、可塑効果も同時に発現するため、流動性を保持しながら屈曲疲労性を発現しやすい利点があり、これらの化合物を用いることが好ましい。このようなエポキシ化合物としては、DIC株式会社製のエピクロン830、三菱ケミカル株式会社製のjER4004P、jER4005P、jER4010Pなどが使用可能である。 As the epoxy compound, a bisphenol F type diepoxy compound is preferable. Bisphenol F-type epoxy compounds have an excellent balance between epoxy equivalent and low volatility compared to other epoxy compounds, so that while maintaining reactivity with the terminal functional groups of the polyester elastomer (A), decomposition gas and problems associated with it, such as poor appearance, are less likely to occur. Furthermore, those that are liquid under normal temperature and normal pressure have the advantage of exhibiting a plasticizing effect at the same time as the effect of chain elongation, so they tend to exhibit bending fatigue resistance while maintaining fluidity. is preferably used. Epiclon 830 manufactured by DIC Corporation, jER4004P, jER4005P, and jER4010P manufactured by Mitsubishi Chemical Corporation can be used as such an epoxy compound.
 本発明で用いるカルボジイミド化合物とは、分子内に少なくともひとつの(-N=C=N-)で表されるカルボジイミド基を有する化合物であり、ポリエステルエラストマー(A)の末端基と反応できるものである。 The carbodiimide compound used in the present invention is a compound having at least one carbodiimide group represented by (-N=C=N-) in the molecule and capable of reacting with the terminal group of the polyester elastomer (A). .
 カルボジイミド化合物の例としては、ジフェニルカルボジイミド、ジ-シクロヘキシルカルボジイミド、ジ-2,6-ジメチルフェニルカルボジイミド、ジイソプロピルカルボジイミド、ジオクチルデシルカルボジイミド、ジ-o-トルイルカルボジイミド、ジ-p-トルイルカルボジイミド、ジ-p-ニトロフェニルカルボジイミド、ジ-p-アミノフェニルカルボジイミド、ジ-p-ヒドロキシフェニルカルボジイミド、ジ-p-クロルフェニルカルボジイミド、ジ-o-クロルフェニルカルボジイミド、ジ-3,4-ジクロルフェニルカルボジイミド、ジ-2,5-ジクロルフェニルカルボジイミド、p-フェニレン-ビス-o-トルイルカルボジイミド、p-フェニレン-ビス-ジシクロヘキシルカルボジイミド、p-フェニレン-ビス-ジ-p-クロルフェニルカルボジイミド、2,6,2’,6’-テトライソプロピルジフェニルカルボジイミド、ヘキサメチレン-ビス-シクロヘキシルカルボジイミド、エチレン-ビス-ジフェニルカルボジイミド、エチレン-ビス-ジ-シクロヘキシルカルボジイミド、N,N’-ジ-o-トルイルカルボジイミド、N,N’-ジフェニルカルボジイミド、N,N’-ジオクチルデシルカルボジイミド、N,N’-ジ-2,6-ジメチルフェニルカルボジイミド、N-トルイル-N’-シクロヘキシルカルボジイミド、N,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミド、N,N’-ジ-2,6-ジ-tert-ブチルフェニルカルボジイミド、N-トルイル-N’-フェニルカルボジイミド、N,N’-ジ-p-ニトロフェニルカルボジイミド、N,N’-ジ-p-アミノフェニルカルボジイミド、N,N’-ジ-p-ヒドロキシフェニルカルボジイミド、N,N’-ジ-シクロヘキシルカルボジイミド、N,N’-ジ-p-トルイルカルボジイミド、N,N’-ベンジルカルボジイミド、N-オクタデシル-N’-フェニルカルボジイミド、N-ベンジル-N’-フェニルカルボジイミド、N-オクタデシル-N’-トルイルカルボジイミド、N-シクロヘキシル-N’-トルイルカルボジイミド、N-フェニル-N’-トルイルカルボジイミド、N-ベンジル-N’-トルイルカルボジイミド、N,N’-ジ-o-エチルフェニルカルボジイミド、N,N’-ジ-p-エチルフェニルカルボジイミド、N,N’-ジ-o-イソプロピルフェニルカルボジイミド、N,N’-ジ-p-イソプロピルフェニルカルボジイミド、N,N’-ジ-o-イソブチルフェニルカルボジイミド、N,N’-ジ-p-イソブチルフェニルカルボジイミド、N,N’-ジ-2,6-ジエチルフェニルカルボジイミド、N,N’-ジ-2-エチル-6-イソプロピルフェニルカルボジイミド、N,N’-ジ-2-イソブチル-6-イソプロピルフェニルカルボジイミド、N,N’-ジ-2,4,6-トリメチルフェニルカルボジイミド、N,N’-ジ-2,4,6-トリイソプロピルフェニルカルボジイミド、N,N’-ジ-2,4,6-トリイソブチルフェニルカルボジイミドなどのモノ又はジカルボジイミド化合物、ポリ(1,6-ヘキサメチレンカルボジイミド)、ポリ(4,4’-メチレンビスシクロヘキシルカルボジイミド)、ポリ(1,3-シクロヘキシレンカルボジイミド)、ポリ(1,4-シクロヘキシレンカルボジイミド)、ポリ(4,4’-ジフェニルメタンカルボジイミド)、ポリ(3,3’-ジメチル-4,4’-ジフェニルメタンカルボジイミド)、ポリ(ナフチレンカルボジイミド)、ポリ(p-フェニレンカルボジイミド)、ポリ(m-フェニレンカルボジイミド)、ポリ(トルイルカルボジイミド)、ポリ(ジイソプロピルカルボジイミド)、ポリ(メチル-ジイソプロピルフェニレンカルボジイミド)、ポリ(トリエチルフェニレンカルボジイミド)、ポリ(トリイソプロピルフェニレンカルボジイミド)などのポリカルボジイミドなどが挙げられる。なかでもN,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミド、2,6,2’,6’-テトライソプロピルジフェニルカルボジイミド、ポリカルボジイミドが好ましく、より好ましくは、ポリ(1,6-ヘキサメチレンカルボジイミド)、ポリ(4,4’-メチレンビスシクロヘキシルカルボジイミド)、ポリ(1,3-シクロヘキシレンカルボジイミド)、ポリ(1,4-シクロヘキシレンカルボジイミド)、ポリ(4,4’-ジフェニルメタンカルボジイミド)、ポリ(3,3’-ジメチル-4,4’-ジフェニルメタンカルボジイミド)、ポリ(ナフチレンカルボジイミド)、ポリ(p-フェニレンカルボジイミド)、ポリ(m-フェニレンカルボジイミド)、ポリ(トルイルカルボジイミド)、ポリ(ジイソプロピルカルボジイミド)、ポリ(メチル-ジイソプロピルフェニレンカルボジイミド)、ポリ(トリエチルフェニレンカルボジイミド)、ポリ(トリイソプロピルフェニレンカルボジイミド)などのポリカルボジイミドなどが挙げられる。これらの内、耐熱老化性および耐加水分解性の向上効果、酸末端との反応性の観点から、ポリカルボジイミドが好ましく、特に好ましくは、ポリ(1,4-シクロヘキシレンカルボジイミド)、ポリ(トリイソプロピルフェニレンカルボジイミド)である。 Examples of carbodiimide compounds include diphenylcarbodiimide, di-cyclohexylcarbodiimide, di-2,6-dimethylphenylcarbodiimide, diisopropylcarbodiimide, dioctyldecylcarbodiimide, di-o-toluylcarbodiimide, di-p-toluylcarbodiimide, di-p- Nitrophenylcarbodiimide, di-p-aminophenylcarbodiimide, di-p-hydroxyphenylcarbodiimide, di-p-chlorophenylcarbodiimide, di-o-chlorophenylcarbodiimide, di-3,4-dichlorophenylcarbodiimide, di-2 ,5-dichlorophenylcarbodiimide, p-phenylene-bis-o-toluylcarbodiimide, p-phenylene-bis-dicyclohexylcarbodiimide, p-phenylene-bis-di-p-chlorophenylcarbodiimide, 2,6,2',6 '-tetraisopropyldiphenylcarbodiimide, hexamethylene-bis-cyclohexylcarbodiimide, ethylene-bis-diphenylcarbodiimide, ethylene-bis-di-cyclohexylcarbodiimide, N,N'-di-o-toluylcarbodiimide, N,N'-diphenylcarbodiimide , N,N'-dioctyldecylcarbodiimide, N,N'-di-2,6-dimethylphenylcarbodiimide, N-toluyl-N'-cyclohexylcarbodiimide, N,N'-di-2,6-diisopropylphenylcarbodiimide, N,N'-di-2,6-di-tert-butylphenylcarbodiimide, N-toluyl-N'-phenylcarbodiimide, N,N'-di-p-nitrophenylcarbodiimide, N,N'-di-p -aminophenylcarbodiimide, N,N'-di-p-hydroxyphenylcarbodiimide, N,N'-di-cyclohexylcarbodiimide, N,N'-di-p-toluylcarbodiimide, N,N'-benzylcarbodiimide, N- Octadecyl-N'-phenylcarbodiimide, N-benzyl-N'-phenylcarbodiimide, N-octadecyl-N'-toluylcarbodiimide, N-cyclohexyl-N'-toluylcarbodiimide, N-phenyl-N'-toluylcarbodiimide, N- benzyl-N'-toluylcarbodiimide, N,N'-di-o-ethylphenylcarbodiimide, N,N'-di-p-ethylphenylcarbodiimide, N,N'-di-o-isopropylphenylcarbodiimide diimide, N,N'-di-p-isopropylphenylcarbodiimide, N,N'-di-o-isobutylphenylcarbodiimide, N,N'-di-p-isobutylphenylcarbodiimide, N,N'-di-2, 6-diethylphenylcarbodiimide, N,N'-di-2-ethyl-6-isopropylphenylcarbodiimide, N,N'-di-2-isobutyl-6-isopropylphenylcarbodiimide, N,N'-di-2,4 ,6-trimethylphenylcarbodiimide, N,N'-di-2,4,6-triisopropylphenylcarbodiimide, N,N'-di-2,4,6-triisobutylphenylcarbodiimide, and other mono- or dicarbodiimide compounds; poly(1,6-hexamethylenecarbodiimide), poly(4,4'-methylenebiscyclohexylcarbodiimide), poly(1,3-cyclohexylenecarbodiimide), poly(1,4-cyclohexylenecarbodiimide), poly(4, 4'-diphenylmethanecarbodiimide), poly(3,3'-dimethyl-4,4'-diphenylmethanecarbodiimide), poly(naphthylenecarbodiimide), poly(p-phenylenecarbodiimide), poly(m-phenylenecarbodiimide), poly( toluylcarbodiimide), poly(diisopropylcarbodiimide), poly(methyl-diisopropylphenylenecarbodiimide), poly(triethylphenylenecarbodiimide), poly(triisopropylphenylenecarbodiimide) and the like. Among them, N,N'-di-2,6-diisopropylphenylcarbodiimide, 2,6,2',6'-tetraisopropyldiphenylcarbodiimide and polycarbodiimide are preferable, and more preferably poly(1,6-hexamethylenecarbodiimide ), poly(4,4′-methylenebiscyclohexylcarbodiimide), poly(1,3-cyclohexylenecarbodiimide), poly(1,4-cyclohexylenecarbodiimide), poly(4,4′-diphenylmethanecarbodiimide), poly( 3,3′-dimethyl-4,4′-diphenylmethanecarbodiimide), poly(naphthylenecarbodiimide), poly(p-phenylenecarbodiimide), poly(m-phenylenecarbodiimide), poly(toluylcarbodiimide), poly(diisopropylcarbodiimide) , poly(methyl-diisopropylphenylenecarbodiimide), poly(triethylphenylenecarbodiimide), and poly(triisopropylphenylenecarbodiimide). Among these, polycarbodiimide is preferred from the viewpoint of improving heat aging resistance and hydrolysis resistance, and reactivity with acid terminals, and particularly preferred are poly(1,4-cyclohexylenecarbodiimide) and poly(triisopropyl). phenylene carbodiimide).
 酸末端封鎖剤(C)を添加する場合、含有割合はポリエステルエラストマー(A)と未変性のオレフィン系エラストマー(B)の合計100質量部に対して0.1~5質量部であることが好ましく、より好ましくは0.1~4質量部であり、さらに好ましくは0.5~3.5質量部である。本成分は、耐加水分解性の向上や鎖延長による屈曲疲労性の向上を目的に添加されるものであるが、0.1質量部未満では、それらの向上効果が不十分であり、一方で、5質量部を超えると、難燃性の低下や異物効果による機械特性の低下等が生じる場合がある。なお、ポリエステルエラストマー(A)として、鎖延長の必要が無い高分子量のポリエステルエラストマー(A)を用いた場合や、末端酸価が十分に小さいポリエステルエラストマー(A)を用いた場合は、酸末端封鎖剤(C)は0質量部であっても良い。 When the acid end-blocking agent (C) is added, the content is preferably 0.1 to 5 parts by mass with respect to the total 100 parts by mass of the polyester elastomer (A) and the unmodified olefinic elastomer (B). , more preferably 0.1 to 4 parts by mass, more preferably 0.5 to 3.5 parts by mass. This component is added for the purpose of improving hydrolysis resistance and bending fatigue resistance due to chain elongation. , and if it exceeds 5 parts by mass, the flame retardancy may be lowered and the mechanical properties may be lowered due to foreign matter effects. As the polyester elastomer (A), when a high-molecular-weight polyester elastomer (A) that does not require chain extension is used, or when a polyester elastomer (A) having a sufficiently small terminal acid value is used, the acid end-blocking The agent (C) may be 0 parts by mass.
[エポキシ基含有ポリオレフィン(D)]
 本発明に用いられるエポキシ基含有ポリオレフィン(D)は、ポリオレフィン系樹脂がエポキシ変性されたものであり、エポキシ価は0.01~0.5meq/gのものが好ましい。エポキシ基含有ポリオレフィン(D)は、酸末端封鎖剤(C)のエポキシ化合物と同様に、ポリエステルエラストマー(A)の末端基と反応して、ポリエステルエラストマー(A)と未変性のオレフィン系エラストマー(B)を相溶化させる相溶化剤の役割を果たす。また、エポキシ基含有ポリオレフィン(D)は、その適度なエポキシ価より、樹脂組成物の溶融滞留時の溶融粘度の安定化にも寄与している。エポキシ基含有ポリオレフィン(D)のエポキシ価は、より好ましくは0.05~0.5meq/gであり、さらに好ましくは0.1~0.5meq/gである。エポキシ価が0.01meq/g未満であると、ポリエステルエラストマー(A)との相溶性が低下し、相溶化剤としての役割が不十分で、押出成形時の脈動を引き起こす場合がある。エポキシ価が0.5meq/gを超えると、熱滞留時に溶融粘度が増加し、次第にそれら自身が粗大な架橋点となり、ゲル化を引き起こす場合がある。
[Epoxy group-containing polyolefin (D)]
The epoxy group-containing polyolefin (D) used in the present invention is an epoxy-modified polyolefin resin, and preferably has an epoxy value of 0.01 to 0.5 meq/g. The epoxy group-containing polyolefin (D) reacts with the terminal groups of the polyester elastomer (A) to form the polyester elastomer (A) and the unmodified olefinic elastomer (B ) as a compatibilizing agent. In addition, the epoxy group-containing polyolefin (D) contributes to stabilization of the melt viscosity of the resin composition during melt retention due to its moderate epoxy value. The epoxy value of the epoxy group-containing polyolefin (D) is more preferably 0.05 to 0.5 meq/g, still more preferably 0.1 to 0.5 meq/g. When the epoxy value is less than 0.01 meq/g, the compatibility with the polyester elastomer (A) is lowered, and the role as a compatibilizer is insufficient, which may cause pulsation during extrusion molding. When the epoxy value exceeds 0.5 meq/g, the melt viscosity increases during heat retention, and they themselves gradually become coarse cross-linking points, which may cause gelation.
 エポキシ基含有ポリオレフィン(D)としては、α-オレフィン、α-オレフィン以外の不飽和化合物およびα,β-不飽和酸のグリシジルエステルからなる3元共重合体が好ましい。α-オレフィンとしては、エチレン、プロピレン、ブテン-1などが挙げられるが、なかでもエチレンが好ましく使用される。また、α-オレフィン以外の不飽和化合物としては、ビニルエーテル類、酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類、アクリル酸およびメタクリル酸のメチル、エチル、プロピル、ブチルなどのエステル類、アクリロニトリルおよびスチレンなどが挙げられるが、なかでもアクリル酸ブチルエステル、アクリル酸メチルエステル、メタクリル酸メチルエステルが好ましく使用される。さらに、α,β-不飽和酸のグリシジルエステルとしては、アクリル酸グリシジルエステル、メタクリル酸グリシジルエステル、およびエタクリル酸グリシジルエステルなどが挙げられるが、なかでもメタクリル酸グリシジルエステルが好ましく使用される。 As the epoxy group-containing polyolefin (D), a terpolymer composed of an α-olefin, an unsaturated compound other than the α-olefin, and a glycidyl ester of an α,β-unsaturated acid is preferable. Examples of the α-olefin include ethylene, propylene, butene-1, etc. Among them, ethylene is preferably used. Examples of unsaturated compounds other than α-olefins include vinyl ethers, vinyl esters such as vinyl acetate and vinyl propionate, esters of acrylic acid and methacrylic acid such as methyl, ethyl, propyl and butyl, acrylonitrile and styrene. Among them, butyl acrylate, methyl acrylate and methyl methacrylate are preferably used. Further, glycidyl esters of α,β-unsaturated acids include glycidyl acrylate, glycidyl methacrylate, and glycidyl ethacrylate, among which glycidyl methacrylate is preferably used.
 エポキシ基含有ポリオレフィン(D)を添加する場合、配合(含有)量はポリエステルエラストマー(A)と未変性のオレフィン系エラストマー(B)の合計100質量部に対して、1~10質量部が好ましく、より好ましくは1~9質量部、さらに好ましくは2~8質量部、特に好ましくは3~7質量部である。配合量が1質量部未満であると相溶化剤としての効果を示さず、10質量部を超えると、滞留時にポリエステルエラストマー(A)の酸末端とエポキシ基とが反応し、ゲル化を引き起こす場合がある。また、エポキシ基含有ポリオレフィン(D)を添加しない場合、オレフィン系エラストマー(B)の種類や添加量によっては押出成形が不可能なレベルではないものの、押出成形条件次第で若干の脈動現象などが見られる例があるが、エポキシ基含有ポリオレフィン(D)を1~10質量部併用することにより、押出成形性を改善することができ、オレフィン系エラストマー(B)の種類や添加量の影響を大幅に軽減することができる。 When the epoxy group-containing polyolefin (D) is added, the compounding (content) amount is preferably 1 to 10 parts by mass with respect to a total of 100 parts by mass of the polyester elastomer (A) and the unmodified olefinic elastomer (B). It is more preferably 1 to 9 parts by mass, still more preferably 2 to 8 parts by mass, and particularly preferably 3 to 7 parts by mass. If the amount is less than 1 part by mass, the effect as a compatibilizing agent is not exhibited, and if the amount exceeds 10 parts by mass, the acid terminal of the polyester elastomer (A) reacts with the epoxy group during retention, causing gelation. There is When the epoxy group-containing polyolefin (D) is not added, depending on the type and amount of the olefin elastomer (B) added, extrusion molding is not impossible, but a slight pulsation phenomenon is observed depending on the extrusion molding conditions. However, by using 1 to 10 parts by mass of the epoxy group-containing polyolefin (D) in combination, the extrusion moldability can be improved, and the type and amount of the olefin elastomer (B) to be added significantly affect the can be mitigated.
[難燃剤]
 本発明のポリエステルエラストマー樹脂組成物には、必要に応じてハロゲン系難燃剤、および非ハロゲン系難燃剤のいずれかを使用してもよい。
[Flame retardants]
Either a halogen flame retardant or a non-halogen flame retardant may be used in the polyester elastomer resin composition of the present invention, if desired.
[臭素系難燃剤(E)]
 本発明に用いられるハロゲン系難燃剤の例としては、臭素系難燃剤(E)が挙げられる。臭素系難燃剤(E)としては、ヘキサブロモシクロドデカン、デカブロモジフェニルオキサイド、オクタブロモジフェニルオキサイド、テトラブロモビスフェノールA、ビス(トリブロモフェノキシ)エタン、ビス(ペンタブロモフェノキシ)エタン、テトラブロモビスフェノールAエポキシ樹脂、テトラブロモビスフェノールAカーボネート、エチレン(ビステトラブロモフタル)イミド、エチレンビスペンタブロモジフェニル、トリス(トリブロモフェノキシ)トリアジン、ビス(ジブロモプロピル)テトラブロモビスフェノールA、ビス(ジブロモプロピル)テトラブロモビスフェノールS、臭素化ポリフェニレンエーテル(ポリ(ジ)ブロモフェニレンエーテルなどを含む)、臭素化ポリスチレン(ポリジブロモスチレン、ポリトリブロモスチレン、架橋臭素化ポリスチレンなどを含む)、臭素化架橋芳香族重合体、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、臭素化スチレン-無水マレイン酸重合体、テトラブロモビスフェノールS、トリス(トリブロモネオペンチル)ホスフェート、ポリブロモトリメチルフェニルインダン、トリス(ジブロモプロピル)-イソシアヌレートなどが挙げられる。中でも、ポリエステルエラストマー(A)との相溶性の点では臭素化ポリスチレンが好ましい。
[Brominated flame retardant (E)]
Brominated flame retardants (E) may be mentioned as examples of the halogen-based flame retardants used in the present invention. Brominated flame retardants (E) include hexabromocyclododecane, decabromodiphenyl oxide, octabromodiphenyl oxide, tetrabromobisphenol A, bis(tribromophenoxy)ethane, bis(pentabromophenoxy)ethane, and tetrabromobisphenol A. Epoxy resin, tetrabromobisphenol A carbonate, ethylene (bistetrabromophthal)imide, ethylenebispentabromodiphenyl, tris(tribromophenoxy)triazine, bis(dibromopropyl)tetrabromobisphenol A, bis(dibromopropyl)tetrabromobisphenol S, brominated polyphenylene ether (including poly(di)bromophenylene ether, etc.), brominated polystyrene (including polydibromostyrene, polytribromostyrene, crosslinked brominated polystyrene, etc.), brominated crosslinked aromatic polymer, bromine modified epoxy resin, brominated phenoxy resin, brominated styrene-maleic anhydride polymer, tetrabromobisphenol S, tris(tribromoneopentyl) phosphate, polybromotrimethylphenylindane, tris(dibromopropyl)-isocyanurate, etc. be done. Among them, brominated polystyrene is preferable in terms of compatibility with the polyester elastomer (A).
[難燃助剤(F)]
 本発明で、難燃助剤(F)としては、酸化アンチモン化合物が好ましく用いられる。酸化アンチモン化合物としては、三酸化アンチモン、五酸化アンチモン、又はアンチモン酸ナトリウム等が挙げられる。
 臭素系難燃剤(E)及び難燃助剤(F)の含有量は、両者の合計で、ポリエステルエラストマー(A)と未変性のオレフィン系エラストマー(B)の合計100質量部に対して、5~30質量部であることが好ましい。かかる範囲の量の臭素系難燃剤(E)及び難燃助剤(F)を用いることにより、難燃性が特に優れるポリエステルエラストマー樹脂組成物を調製することができる。
[Flame retardant aid (F)]
In the present invention, an antimony oxide compound is preferably used as the auxiliary flame retardant (F). Antimony oxide compounds include antimony trioxide, antimony pentoxide, sodium antimonate, and the like.
The total content of the brominated flame retardant (E) and the flame retardant auxiliary (F) is 5 parts per 100 parts by mass of the polyester elastomer (A) and the unmodified olefin elastomer (B). It is preferably to 30 parts by mass. By using the amount of the brominated flame retardant (E) and the auxiliary flame retardant (F) within this range, a polyester elastomer resin composition having particularly excellent flame retardancy can be prepared.
[リン系難燃剤(G)]
 本発明に用いられる非ハロゲン系難燃剤の例としては、リン系難燃剤が挙げられる。
 一般的に、リン系難燃剤には有機リン系化合物と無機リン系化合物が存在する。本発明に用いられるリン系難燃剤(G)は、有機リン系化合物と無機リン系化合物に大別される。有機リン化合物の例としては、ホスフェート類、ホスホネート類、ホスフィネート類、ホスファイト類があり、具体的にはトリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリブトキシエチルホスフェート、オクチルジフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、トリフェニルホスフェート、トリキシレニルホスフェート、トリス・イソプロピルフェニルホスフェート、ジエチル-N,N-ビス(2-ヒドロキシエチル)アミノメチルホスホネート、ビス(1,3-フェニレンジフェニル)ホスフェートなどが挙げられる。中でも、難燃性の観点からホスフィン酸金属塩が好ましく、ホスフィン酸アルミニウム塩が特に好ましい。無機リン化合物の例としては、赤リン系化合物や(ポリ)リン酸アンモニウム、(ポリ)リン酸メラミン、(ポリ)リン酸ピペラジン等の無機リン酸塩化合物がある。
[Phosphorus flame retardant (G)]
Examples of non-halogen flame retardants used in the present invention include phosphorus flame retardants.
Generally, phosphorus-based flame retardants include organic phosphorus-based compounds and inorganic phosphorus-based compounds. The phosphorus-based flame retardant (G) used in the present invention is roughly classified into organic phosphorus-based compounds and inorganic phosphorus-based compounds. Examples of organic phosphorus compounds include phosphates, phosphonates, phosphinates, phosphites, specifically trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, octyldiphenyl phosphate, tri cresyl phosphate, cresyl diphenyl phosphate, triphenyl phosphate, trixylenyl phosphate, tris-isopropylphenyl phosphate, diethyl-N,N-bis(2-hydroxyethyl)aminomethylphosphonate, bis(1,3-phenylenediphenyl) Phosphate and the like. Among these, from the viewpoint of flame retardancy, metal phosphinates are preferred, and aluminum phosphinates are particularly preferred. Examples of inorganic phosphorus compounds include red phosphorus compounds and inorganic phosphate compounds such as ammonium (poly)phosphate, melamine (poly)phosphate, and piperazine (poly)phosphate.
 リン系難燃剤(G)としては、平均粒子径D50が20μm以下、且つ15質量%以上のリン濃度を有するリン系難燃剤を用いることができる。平均粒子径D50に関しては、粒子径が大きいものを使用すると押出成形品の表面平滑性が悪化する傾向がある。リン濃度に関しては、リン濃度の低い難燃剤は難燃性付与効果に乏しい傾向があるため、多量添加が必要となり、難燃性とその他特性の両立が困難となる。平均粒子径D50は、メジアン径とも呼ばれるもので、レーザー回折式粒度分布計により測定解析でき、リン濃度は、ICP発光分光分析法によって測定(算出)できる。平均粒子径D50は、16μm以下が好ましく、12μm以下がより好ましい。平均粒子径D50の下限は、特に制限はないが、0.1μm以上であることが好ましい。リン濃度は、18質量%以上が好ましく、20質量%以上がより好ましい。リン濃度の上限は、特に制限はないが、30質量%以下であることが好ましい。 As the phosphorus-based flame retardant (G), a phosphorus-based flame retardant having an average particle diameter D50 of 20 μm or less and a phosphorus concentration of 15% by mass or more can be used. Regarding the average particle size D50, the use of particles with a large particle size tends to deteriorate the surface smoothness of the extruded product. As for the phosphorus concentration, flame retardants with a low phosphorus concentration tend to be poor in the effect of imparting flame retardancy, so a large amount must be added, making it difficult to achieve both flame retardancy and other properties. The average particle diameter D50, which is also called median diameter, can be measured and analyzed by a laser diffraction particle size distribution meter, and the phosphorus concentration can be measured (calculated) by ICP emission spectrometry. The average particle diameter D50 is preferably 16 μm or less, more preferably 12 μm or less. Although the lower limit of the average particle diameter D50 is not particularly limited, it is preferably 0.1 μm or more. The phosphorus concentration is preferably 18% by mass or more, more preferably 20% by mass or more. Although the upper limit of the phosphorus concentration is not particularly limited, it is preferably 30% by mass or less.
 リン系難燃剤(B)の含有量としては、ポリエステルエラストマー(A)と未変性のオレフィン系エラストマー(B)の合計100質量部に対して、5~50質量部であることが好ましく、8~40質量部がより好ましく、10~35質量部がさらに好ましく、15~30質量部が特に好ましい。リン系難燃剤(B)の含有量が、5質量部未満では難燃性が不十分であり、含有量が50質量部を超えると機械的特性が低下する等の問題が生じる場合がある。
 また、本発明のポリエステルエラストマー樹脂組成物には、必要に応じてリン系難燃剤以外の非ハロゲン系難燃剤を含有してもよい。リン系難燃剤以外の非ハロゲン系難燃剤の種類としては、窒素系難燃剤、シリコン系難燃剤、金属水酸化物、金属ホウ酸化物等が挙げられる。
The content of the phosphorus-based flame retardant (B) is preferably 5 to 50 parts by mass with respect to a total of 100 parts by mass of the polyester elastomer (A) and the unmodified olefinic elastomer (B). 40 parts by mass is more preferable, 10 to 35 parts by mass is more preferable, and 15 to 30 parts by mass is particularly preferable. If the content of the phosphorus-based flame retardant (B) is less than 5 parts by mass, flame retardancy is insufficient, and if the content exceeds 50 parts by mass, problems such as deterioration of mechanical properties may occur.
Moreover, the polyester elastomer resin composition of the present invention may contain a non-halogen flame retardant other than the phosphorus flame retardant, if necessary. Types of non-halogen flame retardants other than phosphorus flame retardants include nitrogen flame retardants, silicon flame retardants, metal hydroxides, metal borates, and the like.
[ポリエステルエラストマー樹脂組成物]
 本発明のポリエステルエラストマー樹脂組成物中のカルボキシル基濃度は、10eq/tоn以下である。カルボキシル基濃度は、7eq/tоn以下が好ましく、5eq/tоn以下がより好ましい。ポリエステルエラストマー樹脂組成物中のカルボキシル基濃度が0eq/tоnであることも好ましい態様である。カルボキシル基濃度は、10eq/tоnを超えると、耐加水分解性が損なわれるため好ましくない。
[Polyester elastomer resin composition]
The carboxyl group concentration in the polyester elastomer resin composition of the present invention is 10 eq/ton or less. The carboxyl group concentration is preferably 7 eq/ton or less, more preferably 5 eq/ton or less. It is also a preferred embodiment that the carboxyl group concentration in the polyester elastomer resin composition is 0 eq/ton. If the carboxyl group concentration exceeds 10 eq/ton, the hydrolysis resistance is impaired, which is not preferable.
 本発明のポリエステルエラストマー樹脂組成物には、必要に応じて、芳香族アミン系、ヒンダードフェノール系、リン系、硫黄系などの汎用の酸化防止剤を配合してもよい。 The polyester elastomer resin composition of the present invention may optionally contain general-purpose antioxidants such as aromatic amine-based, hindered phenol-based, phosphorus-based, and sulfur-based antioxidants.
 さらに本発明のポリエステルエラストマー樹脂組成物に耐候性を必要とする場合は、紫外線吸収剤および/またはヒンダードアミン系化合物を添加することが好ましい。例えば、ベンゾフェノン系、ベンゾトリアゾール系、トリアゾール系、ニッケル系、サリチル系光安定剤が使用可能である。具体的には、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、p-t-ブチルフェニルサリシレート、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-アミル-フェニル)ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’、5’-ビス(α,α-ジメチルベンジルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンアゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)-5-クロロベンゾチリアゾール、2,5-ビス-〔5’-t-ブチルベンゾキサゾリル-(2)〕-チオフェン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル燐酸モノエチルエステル)ニッケル塩、2-エトキシ-5-t-ブチル-2’-エチルオキサリックアシッド-ビス-アニリド85~90%と2-エトキシ-5-t-ブチル-2’-エチル-4’-t-ブチルオキサリックアシッド-ビス-アニリド10~15%の混合物、2-〔2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル〕-2H-ベンゾトリアゾール、2-エトキシ-2’-エチルオキサザリックアシッドビスアニリド、2-〔2’-ヒドロオキシ-5’-メチル-3’-(3’’,4’’,5’’,6’’-テトラヒドロフタルイミド-メチル)フェニル〕ベンゾトリアゾール、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2-ヒドロキシ-4-i-オクトキシベンゾフェノン、2-ヒドロキシ-4-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-オクタデシルオキシベンゾフェノン、サリチル酸フェニルなどの光安定剤を挙げることができる。含有量は、ポリエステルエラストマー樹脂組成物の質量基準で、0.1質量%以上5質量%以下が好ましい。 Furthermore, when the polyester elastomer resin composition of the present invention requires weather resistance, it is preferable to add an ultraviolet absorber and/or a hindered amine compound. For example, benzophenone-based, benzotriazole-based, triazole-based, nickel-based, and salicyl-based light stabilizers can be used. Specifically, 2,2′-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, pt-butylphenyl salicylate, 2,4-di-t-butylphenyl-3, 5-di-t-butyl-4-hydroxybenzoate, 2-(2'-hydroxy-5'-methylphenyl)benzotriazole, 2-(2'-hydroxy-3',5'-di-t-amyl- phenyl)benzotriazole, 2-[2'-hydroxy-3',5'-bis(α,α-dimethylbenzylphenyl)benzotriazole, 2-(2'-hydroxy-3'-t-butyl-5'- methylphenyl)-5-chlorobenztriazole, 2-(2'-hydroxy-3',5'-di-t-butylphenyl)-5-chlorobenzothiriazole, 2,5-bis-[5'- t-butylbenzoxazolyl-(2)]-thiophene, bis(3,5-di-t-butyl-4-hydroxybenzyl phosphate monoethyl ester) nickel salt, 2-ethoxy-5-t-butyl-2 a mixture of 85-90% '-ethyl oxalic acid-bis-anilide and 10-15% 2-ethoxy-5-t-butyl-2'-ethyl-4'-t-butyl oxalic acid-bis-anilide; 2-[2-hydroxy-3,5-bis(α,α-dimethylbenzyl)phenyl]-2H-benzotriazole, 2-ethoxy-2′-ethyloxazalic acid bisanilide, 2-[2′-hydroxy -5'-methyl-3'-(3'',4'',5'',6''-tetrahydrophthalimido-methyl)phenyl]benzotriazole, bis(5-benzoyl-4-hydroxy-2-methoxyphenyl ) methane, 2-(2′-hydroxy-5′-t-octylphenyl)benzotriazole, 2-hydroxy-4-i-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, 2-hydroxy-4- Light stabilizers such as octadecyloxybenzophenone and phenyl salicylate may be mentioned. The content is preferably 0.1% by mass or more and 5% by mass or less based on the mass of the polyester elastomer resin composition.
 本発明のポリエステルエラストマー樹脂組成物には、その他各種の添加剤を配合することができる。添加剤としては、ポリエステルエラストマー(A)以外の樹脂、無機フィラー、安定剤、及び老化防止剤を本発明の特徴を損なわない範囲で添加することができる。また、その他の添加剤として、着色顔料、無機、有機系の充填剤、カップリング剤、タック性向上剤、クエンチャー、金属不活性化剤等の安定剤、難燃剤等を添加することもできる。本発明のポリエステルエラストマー樹脂組成物は、ポリエステルエラストマー(A)、未変性のオレフィン系エラストマー(B)、酸末端封鎖剤(C)、エポキシ基含有ポリオレフィン樹脂(D)の合計(酸末端封鎖剤(C)及びエポキシ基含有ポリオレフィン樹脂(D)は任意成分である)で、75質量%以上を占めることが好ましく、80質量%以上を占めることがより好ましく、90質量%以上を占めることがさらに好ましい。 Various other additives can be added to the polyester elastomer resin composition of the present invention. As additives, resins other than the polyester elastomer (A), inorganic fillers, stabilizers, and anti-aging agents can be added within limits that do not impair the characteristics of the present invention. Further, as other additives, coloring pigments, inorganic and organic fillers, coupling agents, tackiness improvers, quenchers, stabilizers such as metal deactivators, flame retardants, and the like can also be added. . The polyester elastomer resin composition of the present invention is the sum of the polyester elastomer (A), the unmodified olefinic elastomer (B), the acid terminal blocking agent (C), and the epoxy group-containing polyolefin resin (D) (acid terminal blocking agent ( C) and the epoxy group-containing polyolefin resin (D) are optional components) preferably occupy 75% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more. .
 本発明により得られたポリエステルエラストマー樹脂組成物は、優れた耐酸性と耐熱老化性を有し、さらにポリエステルエラストマー本来の可撓性、成形加工性、耐薬品性、耐屈曲疲労性、耐磨耗性、電気特性、その他特性を保持する事が可能なため、電気製品の各種部品、ホース、チューブ、ケーブル被覆材など広い範囲に応用することができる。特に、ケーブル被覆用への展開が有用である。また、本発明により得られたポリエステルエラストマー樹脂組成物は、押出成形以外にも、射出成形やトランスファー成形、ブロー成形等によって種々の形状に成形することができる。 The polyester elastomer resin composition obtained by the present invention has excellent acid resistance and heat aging resistance, as well as flexibility inherent in polyester elastomers, moldability, chemical resistance, bending fatigue resistance, and abrasion resistance. Since it is possible to maintain properties, electrical properties, and other properties, it can be applied to a wide range of applications, such as various parts of electrical products, hoses, tubes, and cable covering materials. In particular, development for cable coating is useful. In addition to extrusion molding, the polyester elastomer resin composition obtained by the present invention can be molded into various shapes by injection molding, transfer molding, blow molding, and the like.
 本発明をさらに詳細に説明するために以下に実施例を挙げるが、本発明は実施例によってなんら限定されるものではない。尚、実施例に記載された各測定値は次の方法によって測定したものである。 Examples are given below to describe the present invention in more detail, but the present invention is not limited by the examples. In addition, each measured value described in an Example is measured by the following method.
[融点]
 セイコー電子工業株式会社製の示差走査熱量分析計「DSC220型」にて、測定試料5mgをアルミパンに入れ、蓋を押さえて密封し、一度250℃で5分ホールドして試料を完全に溶融させた後、液体窒素で急冷して、その後-150℃から250℃まで、20℃/minの昇温速度で測定した。得られたサーモグラム曲線から、吸熱ピーク温度を融点とした。
[Melting point]
Using a differential scanning calorimeter "DSC220 type" manufactured by Seiko Electronics Industry Co., Ltd., 5 mg of the measurement sample is put in an aluminum pan, the lid is pressed and sealed, and the sample is completely melted by holding it at 250 ° C. for 5 minutes. After that, it was quenched with liquid nitrogen and then measured from -150°C to 250°C at a heating rate of 20°C/min. From the obtained thermogram curve, the endothermic peak temperature was taken as the melting point.
[還元粘度]
 試料0.05gを25mLの混合溶媒(フェノール/テトラクロロエタン=60/40(質量比))に溶かし、オストワルド粘度計を用いて30℃で測定した。
[Reduced viscosity]
0.05 g of a sample was dissolved in 25 mL of a mixed solvent (phenol/tetrachloroethane=60/40 (mass ratio)) and measured at 30° C. using an Ostwald viscometer.
[末端酸価]
 ポリエステルエラストマー(A)の末端酸価(eq/t)は、十分に乾燥させた試料(ポリエステルエラストマー)200mgを熱ベンジルアルコール10mLに溶解させ、得られた溶液を冷却した後、クロロホルム10mLとフェノールレッドとを加え、1/25規定のKOHのエタノール溶液で滴定する溶解滴定法により求めた。
[Terminal acid value]
The terminal acid value (eq/t) of the polyester elastomer (A) was obtained by dissolving 200 mg of a sufficiently dried sample (polyester elastomer) in 10 mL of hot benzyl alcohol, cooling the resulting solution, and adding 10 mL of chloroform and phenol red. was added, and titration was performed with a 1/25 N KOH ethanol solution.
 実施例で使用した原料は以下の通りである。
[ポリエステルエラストマー(A)]
(ポリエステルエラストマーA-1)
 脂肪族ポリカーボネートジオール(宇部興産社製カーボネートジオールUH-CARB200、分子量2000、1,6-ヘキサンジオールタイプ)100質量部とジフェニルカーボネート8.9質量部とをそれぞれ仕込み、温度205℃、130Paで反応させた。2時間後、内容物を冷却し、脂肪族ポリカーボネートジオール(数平均分子量12000)を得た。この脂肪族ポリカーボネートジオール(PCD)43質量部と、数平均分子量30000を有するポリブチレンテレフタレート(PBT)57質量部とを、230℃~245℃、130Pa下で1時間攪拌し、樹脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリエステルエラストマーを製造した。このポリエステルエラストマーA-1の融点は207℃、還元粘度は1.21dl/g、末端酸価は44eq/tonであった。
Raw materials used in the examples are as follows.
[Polyester elastomer (A)]
(Polyester elastomer A-1)
100 parts by mass of aliphatic polycarbonate diol (carbonate diol UH-CARB200, molecular weight 2000, 1,6-hexanediol type manufactured by Ube Industries, Ltd.) and 8.9 parts by mass of diphenyl carbonate were charged and reacted at a temperature of 205° C. and 130 Pa. rice field. After 2 hours, the content was cooled to obtain an aliphatic polycarbonate diol (number average molecular weight: 12,000). 43 parts by mass of this aliphatic polycarbonate diol (PCD) and 57 parts by mass of polybutylene terephthalate (PBT) having a number average molecular weight of 30,000 were stirred at 230° C. to 245° C. under 130 Pa for 1 hour, and the resin became transparent. After confirming that, the content was taken out and cooled to produce a polyester elastomer. This polyester elastomer A-1 had a melting point of 207° C., a reduced viscosity of 1.21 dl/g, and a terminal acid value of 44 eq/ton.
(ポリエステルエラストマーA-2)
 脂肪族ポリカーボネートジオール(宇部興産社製カーボネートジオールUH-CARB200、分子量2000、1,6-ヘキサンジオールタイプ)100質量部とジフェニルカーボネート8.9質量部とをそれぞれ仕込み、温度205℃、130Paで反応させた。1時間後、内容物を冷却し、脂肪族ポリカーボネートジオール(数平均分子量12000)を得た。この脂肪族ポリカーボネートジオール(PCD)43質量部と、数平均分子量30000を有するポリブチレンテレフタレート(PBT)57質量部とを、230℃~245℃、130Pa下で1時間攪拌し、樹脂が透明になったことを確認し、内容物を取り出した。取出したペレットを170~180℃にて加熱し、固相重縮合を行うことで、ポリエステルエラストマーを製造した。このポリエステルエラストマーA-2の融点は208℃、還元粘度は1.21dl/g、末端酸価は7eq/tonであった。
(Polyester elastomer A-2)
100 parts by mass of aliphatic polycarbonate diol (carbonate diol UH-CARB200, molecular weight 2000, 1,6-hexanediol type manufactured by Ube Industries, Ltd.) and 8.9 parts by mass of diphenyl carbonate were charged and reacted at a temperature of 205° C. and 130 Pa. rice field. After 1 hour, the content was cooled to obtain an aliphatic polycarbonate diol (number average molecular weight: 12,000). 43 parts by mass of this aliphatic polycarbonate diol (PCD) and 57 parts by mass of polybutylene terephthalate (PBT) having a number average molecular weight of 30,000 were stirred at 230° C. to 245° C. under 130 Pa for 1 hour, and the resin became transparent. I checked and took out the contents. The obtained pellets were heated at 170 to 180° C. to carry out solid phase polycondensation to produce a polyester elastomer. This polyester elastomer A-2 had a melting point of 208° C., a reduced viscosity of 1.21 dl/g, and a terminal acid value of 7 eq/ton.
(ポリエステルエラストマーA-3)
 脂肪族ポリカーボネートジオール(宇部興産社製カーボネートジオールUH-CARB200、分子量2000、1,6-ヘキサンジオールタイプ)100質量部とジフェニルカーボネート8.6質量部とをそれぞれ仕込み、温度205℃、130Paで反応させた。2時間後、内容物を冷却し、脂肪族ポリカーボネートジオール(数平均分子量10000)を得た。この脂肪族ポリカーボネートジオール(PCD)30質量部と、数平均分子量30000を有するポリブチレンテレフタレート(PBT)70質量部とを、230℃~245℃、130Pa下で1時間攪拌し、樹脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリエステルエラストマーを製造した。このポリエステルエラストマーA-3の融点は212℃、還元粘度は1.20dl/g、末端酸価は41eq/tonであった。
(Polyester elastomer A-3)
100 parts by mass of aliphatic polycarbonate diol (carbonate diol UH-CARB200, molecular weight 2000, 1,6-hexanediol type manufactured by Ube Industries, Ltd.) and 8.6 parts by mass of diphenyl carbonate were charged and reacted at a temperature of 205° C. and 130 Pa. rice field. After 2 hours, the content was cooled to obtain an aliphatic polycarbonate diol (number average molecular weight: 10,000). 30 parts by mass of this aliphatic polycarbonate diol (PCD) and 70 parts by mass of polybutylene terephthalate (PBT) having a number average molecular weight of 30,000 were stirred at 230° C. to 245° C. under 130 Pa for 1 hour, and the resin became transparent. After confirming that, the content was taken out and cooled to produce a polyester elastomer. This polyester elastomer A-3 had a melting point of 212° C., a reduced viscosity of 1.20 dl/g, and a terminal acid value of 41 eq/ton.
(ポリエステルエラストマーA-4):比較用ポリエステルエラストマー
 テレフタル酸、1,4-ブタンジオール、ポリオキシテトラメチレングリコール(PTMG;数平均分子量1000)を構成成分とし、ハードセグメント(ポリブチレンテレフタレート)/ソフトセグメント(PTMG)=64/36(質量%)のポリエステルエラストマーを製造した。このポリエステルエラストマーA-4の融点は203℃、還元粘度は1.75dl/g、末端酸価は50eq/tonであった。
(Polyester elastomer A-4): Polyester elastomer for comparison Constituting terephthalic acid, 1,4-butanediol, and polyoxytetramethylene glycol (PTMG; number average molecular weight: 1000), hard segment (polybutylene terephthalate)/soft segment (PTMG) = 64/36 (% by mass) polyester elastomer was produced. This polyester elastomer A-4 had a melting point of 203° C., a reduced viscosity of 1.75 dl/g, and a terminal acid value of 50 eq/ton.
(ポリエステルエラストマーA-5)
 ポリブチレンテレフタレート100質量部とε-カプロラクトン46質量部とを250℃で加熱混合し、60分間反応缶内でラクトンを開環重合させつつエステル交換反応させることによって、ポリエステル・ポリエステルブロック共重合体(ポリエステルエラストマーA-5)を製造した。融点は214℃、還元粘度は1.30dl/g、末端酸価は60eq/tonであった。
 各ポリエステルエラストマーの物性値を表1に示す。
(Polyester elastomer A-5)
100 parts by mass of polybutylene terephthalate and 46 parts by mass of ε-caprolactone are heated and mixed at 250° C., and the lactone undergoes ring-opening polymerization and transesterification reaction in a reactor for 60 minutes to obtain a polyester/polyester block copolymer ( A polyester elastomer A-5) was produced. The melting point was 214° C., the reduced viscosity was 1.30 dl/g, and the terminal acid value was 60 eq/ton.
Table 1 shows the physical properties of each polyester elastomer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[オレフィン系エラストマー(B)]
(B-1)スチレン-エチレン・ブチレン-スチレンブロック共重合体:タフテックH1221、旭化成社製、スチレン/エチレン・ブチレン比=12/88(質量比)、MFR(190℃、2.16kg)=4.5g/10min
(B-2)無水マレイン酸変性のスチレン-エチレン・ブチレン-スチレンブロック共重合体:タフテックM1943、旭化成社製、スチレン/エチレン・ブチレン比=20/80(質量比)、MFR(190℃、2.16kg)=8.0g/10min、酸価=10eq/t、比較用オレフィン系エラストマー
(B-3)エチレン-メチルメタクリレート共重合体:ロトリル29MA03T、アルケマ社製、エチレン/メチルメタクリレート比=71/29(質量比)、MFR(190℃、2.16kg)=3.0g/10min
[Olefin-based elastomer (B)]
(B-1) Styrene-ethylene/butylene-styrene block copolymer: Tuftec H1221, manufactured by Asahi Kasei Corporation, styrene/ethylene/butylene ratio = 12/88 (mass ratio), MFR (190°C, 2.16 kg) = 4 .5g/10min
(B-2) Maleic anhydride-modified styrene-ethylene-butylene-styrene block copolymer: Tuftec M1943, manufactured by Asahi Kasei Corporation, styrene/ethylene-butylene ratio = 20/80 (mass ratio), MFR (190 ° C., 2 .16 kg) = 8.0 g/10 min, acid value = 10 eq/t, olefin elastomer for comparison (B-3) Ethylene-methyl methacrylate copolymer: Lotril 29MA03T, manufactured by Arkema, ethylene/methyl methacrylate ratio = 71/ 29 (mass ratio), MFR (190°C, 2.16 kg) = 3.0 g/10 min
[酸末端封鎖剤(C)]
(C-1)脂環族ポリカルボジイミド:カルボジライトHMV-15CA、日清紡ケミカル株式会社製
(C-2)ビスフェノールF型ジエポキシ化合物:エピクロン830、DIC株式会社製
[Acid terminal blocker (C)]
(C-1) Alicyclic polycarbodiimide: Carbodilite HMV-15CA, manufactured by Nisshinbo Chemical Co., Ltd. (C-2) Bisphenol F type diepoxy compound: Epiclon 830, manufactured by DIC Corporation
[エポキシ基含有ポリオレフィン(D)]
(D-1)エポキシ基含有オレフィン系共重合体:ボンドファーストBF-7M、住友化学社製、エポキシ価:0.4meq/g
[Epoxy group-containing polyolefin (D)]
(D-1) Epoxy group-containing olefin copolymer: Bondfast BF-7M, manufactured by Sumitomo Chemical Co., Ltd., epoxy value: 0.4 meq/g
[臭素系難燃剤(E)]
(E-1)臭素化ポリスチレン:PDBS-80、ランクセス株式会社製
[難燃助剤(F)]
(F-1)三酸化アンチモン:Twinkling Star、中国興業株式会社製
[Brominated flame retardant (E)]
(E-1) Brominated polystyrene: PDBS-80, manufactured by Lanxess Corporation [flame retardant aid (F)]
(F-1) Antimony trioxide: Twinkling Star, manufactured by Chugoku Kogyo Co., Ltd.
[リン系難燃剤(G)]
(G-1)ジエチルホスフィン酸アルミニウム:EXOLIT OP930、D50は4μm、リン濃度は23質量%、クラリアント株式会社製
(G-2)ジエチルホスフィン酸アルミニウム:EXOLIT OP1230、D50は30μm、リン濃度は23質量%、クラリアント株式会社製
 平均粒子径D50は、レーザー回折式粒度分布計により測定した値であり、リン濃度は、ICP発光分光分析法によって測定(算出)した値である。
[Phosphorus flame retardant (G)]
(G-1) Aluminum diethylphosphinate: EXOLIT OP930, D50 is 4 μm, phosphorus concentration is 23% by mass, manufactured by Clariant Co., Ltd. (G-2) Aluminum diethylphosphinate: EXOLIT OP1230, D50 is 30 μm, phosphorus concentration is 23 mass %, manufactured by Clariant Co., Ltd. The average particle diameter D50 is a value measured by a laser diffraction particle size distribution meter, and the phosphorus concentration is a value measured (calculated) by an ICP emission spectroscopic analysis method.
実施例1~13、比較例1~5
 上記原料をそれぞれ表2に記載の比率で、二軸スクリュー式押出機にて、混練し、ペレット化した。このポリエステルエラストマー樹脂組成物のペレットを用いて、下記の評価を行った。結果を表2に示した。
Examples 1-13, Comparative Examples 1-5
The above raw materials were kneaded and pelletized by a twin-screw extruder at the ratios shown in Table 2, respectively. Using pellets of this polyester elastomer resin composition, the following evaluations were carried out. Table 2 shows the results.
[押出成形性(脈動)]
 二軸押出機で溶融混練したペレットを再度、単軸押出機により丸ダイから押出し、直径3mmのストランドを吐出した。その状態から、押出成形性を下記の基準で評価した。
 ○:吐出量の変動が生じず、押出性が安定。
 △:引き取り機を用いて定速で引っ張っている際は安定だが、自重で垂らした状態だと、吐出量の変動が僅かにみられる。
 ×:吐出量の変動が大きく、引き取り不可。
[押出成形性(平滑性)]
 二軸押出機で溶融混練したペレットを再度、単軸押出機によりTダイから押出し、0.2mm厚のシート成形品を作製した。そのシート外観から、押出成形品における平滑性を下記の基準で評価した。
 ○:ザラツキや発泡の発生がなく、シート外観および表面平滑性が良好。
 △:シート凹凸(メルトフラクチャー)や発泡は生じないが、シボ加工のような均一なざらつきがある。
 ×:シート凹凸(メルトフラクチャー)や発泡が発生、シート外観が芳しくない。
[Extrudability (pulsation)]
The pellets melted and kneaded by the twin-screw extruder were again extruded through a round die by a single-screw extruder to discharge a strand with a diameter of 3 mm. From this state, extrusion moldability was evaluated according to the following criteria.
Good: Extrusion is stable with no change in discharge rate.
Δ: Stable when pulled at a constant speed using a take-up machine, but slightly fluctuates in the discharge amount when suspended by its own weight.
x: Discharge rate fluctuates greatly and cannot be taken back.
[Extrudability (smoothness)]
The pellets melted and kneaded by the twin-screw extruder were again extruded through the T-die by a single-screw extruder to produce a sheet molded article having a thickness of 0.2 mm. From the appearance of the sheet, the smoothness of the extruded product was evaluated according to the following criteria.
Good: Good sheet appearance and surface smoothness with no occurrence of roughness or foaming.
Δ: Sheet unevenness (melt fracture) and foaming do not occur, but there is uniform roughness like texturing.
x: Sheet unevenness (melt fracture) and foaming occur, sheet appearance is not good.
[170℃耐熱伸度半減期]
 JISダンベル状3号形の試験片を、170℃環境下にて、所定時間放置した後取り出し、JIS K6251:2010に準拠して引張破断伸度を測定した。試験片は、100℃で8時間減圧乾燥した樹脂組成物のペレットを、射出成形機(山城精機社製、model-SAV)を用いて、シリンダー温度(Tm+20℃)、金型温度30℃で、100mm×100mm×2mmの平板に射出成形した後、該平板よりダンベル状3号形の試験片を打ち抜いて製作した。
 以下の式にて引張破断伸度保持率を算出し、その値が50%となる時間(引張伸度半減期)を耐熱老化性の指標とした。初期引張破断伸度は、耐熱処理前の引張破断伸度である。
 引張破断伸度保持率(%)=耐熱処理後の引張破断伸度/初期引張破断伸度×100
[170°C heat elongation half-life]
A JIS dumbbell-shaped No. 3 test piece was left in a 170° C. environment for a predetermined time, then taken out, and the tensile elongation at break was measured according to JIS K6251:2010. The test piece was obtained by using an injection molding machine (manufactured by Yamashiro Seiki Co., Ltd., model-SAV) to obtain pellets of a resin composition dried under reduced pressure at 100 ° C. for 8 hours at a cylinder temperature (Tm + 20 ° C.) and a mold temperature of 30 ° C. After injection molding into a flat plate of 100 mm×100 mm×2 mm, a No. 3 dumbbell-shaped test piece was punched out from the flat plate.
The retention rate of tensile elongation at break was calculated by the following formula, and the time (tensile elongation half-life) when the value reached 50% was used as an index of heat aging resistance. The initial tensile elongation at break is the tensile elongation at break before heat treatment.
Retention rate of tensile elongation at break (%) = tensile elongation at break after heat treatment/initial tensile elongation at break x 100
[耐酸性]
 37%の硫酸水溶液を3mm厚の平板形状成形品に滴下、90℃×8時間の熱処理を行ったあと、再度同じ箇所に硫酸を滴下し、90℃×16時間の熱処理を行った。このサイクルを1サイクルとし、計2サイクルの処理を行った。滴下箇所では、熱処理により濃縮された硫酸により成形品の炭化が進行することとなるが、これにより生じた浸食の深さを断面から測定した。平板形状成形品は、100℃で8時間減圧乾燥した樹脂組成物のペレットを、射出成形機(山城精機社製、model-SAV)を用いて、シリンダー温度(Tm+20℃)、金型温度30℃で、100mm×100mm×3mmの平板に射出成形して得たものを用いた。
[Acid resistance]
A 37% aqueous solution of sulfuric acid was dropped onto a 3 mm-thick plate-shaped molded product, and heat treatment was performed at 90°C for 8 hours. This cycle was defined as 1 cycle, and a total of 2 cycles of treatment were performed. Carbonization of the molded article progressed at the dripping point due to the sulfuric acid concentrated by the heat treatment, and the depth of erosion caused by this was measured from the cross section. A flat plate-shaped molded product is obtained by using an injection molding machine (manufactured by Yamashiro Seiki Co., Ltd., model-SAV) to mold pellets of a resin composition dried under reduced pressure at 100 ° C. for 8 hours at a cylinder temperature (Tm + 20 ° C.) and a mold temperature of 30 ° C. , obtained by injection molding into a flat plate of 100 mm x 100 mm x 3 mm.
[カルボキシル基濃度]
 ポリエステルエラストマー樹脂組成物のカルボキシル基濃度(eq/t)は、ポリエステルエラストマー(A)の末端酸価と同様、十分に乾燥させた試料200mgを熱ベンジルアルコール10mLに溶解させ、得られた溶液を冷却した後、クロロホルム10mLとフェノールレッドとを加え、1/25規定のKOHのエタノール溶液で滴定する溶解滴定法により求めた。
[Carboxyl group concentration]
The carboxyl group concentration (eq/t) of the polyester elastomer resin composition was obtained by dissolving 200 mg of a sufficiently dried sample in 10 mL of hot benzyl alcohol and cooling the resulting solution, as with the terminal acid value of the polyester elastomer (A). After that, 10 mL of chloroform and phenol red were added, and it was determined by a dissolution titration method in which titration was performed with a 1/25 N KOH ethanol solution.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から明らかなように、実施例1~13に示した本発明のポリエステルエラストマー樹脂組成物は、優れた耐酸性と耐熱老化性を有しながら、押出成形性も兼ね備えていることが見て取れる。特に実施例2と実施例6の比較からは、ポリエステルエラストマーにおけるハードセグメント比率が高くなることにより、更なる耐酸性の改良効果が見て取れる。また、実施例8では、オレフィン系エラストマー(B)の種類によっては押出成形が不可能なレベルではないものの、若干の脈動現象が見られるものもあるという結果が示されているが、実施例9に示す通り、エポキシ基含有ポリオレフィン(D)を併用することにより、押出成形性を改善できることがわかる。また、実施例12では、若干の平滑性低下が見られているが、これは配合の組合せ由来ではなく、リン系難燃剤(G)の粒子径が大きいことにより、シボ加工のような均一なざらつきが多少見られることを示している。一方、本発明の条件を満たさない比較例1~5の組成物は、本発明の組成物と比較して、押出成形性、耐酸性、耐熱老化性のいずれかが劣っている。 As is clear from the results in Table 2, the polyester elastomer resin compositions of the present invention shown in Examples 1 to 13 have excellent acid resistance and heat aging resistance, and also have extrusion moldability. I can see it. Especially from the comparison of Examples 2 and 6, it can be seen that the effect of further improving the acid resistance is obtained by increasing the hard segment ratio in the polyester elastomer. Moreover, in Example 8, the result was that some pulsation phenomenon was observed, although the level was not such that extrusion molding was not possible depending on the type of olefinic elastomer (B). , it can be seen that by using the epoxy group-containing polyolefin (D) in combination, the extrusion moldability can be improved. Also, in Example 12, a slight decrease in smoothness is observed, but this is not due to the combination of formulations, but due to the large particle size of the phosphorus-based flame retardant (G), uniform smoothness like texturing This indicates that some roughness is observed. On the other hand, the compositions of Comparative Examples 1 to 5, which do not satisfy the conditions of the present invention, are inferior to the compositions of the present invention in extrusion moldability, acid resistance, or heat aging resistance.
 オレフィン系エラストマー(B)を添加していない比較例1では、耐酸性が劣っている。一方で、過剰量のオレフィン系エラストマー(B)が添加されている比較例2では、耐酸性が良好であるものの、押出成形時の脈動現象が生じていることに加え、耐熱老化性の大幅な低下が見られている。ソフトセグメントが脂肪族ポリエーテルからなるポリエステルエラストマーを使用している比較例3では、耐熱老化性が劣っている。酸変性されたオレフィン系エラストマーを使用している比較例4、5では、酸末端封鎖剤(C)の種類がエポキシ系、カルボジイミド系のいずれであっても押出成形品における平滑性が損なわれていることに加え、実施例2、3と比較して耐酸性もやや低下傾向にあることが見て取れる。 Comparative Example 1, in which the olefinic elastomer (B) is not added, is inferior in acid resistance. On the other hand, in Comparative Example 2, in which an excessive amount of the olefinic elastomer (B) was added, although the acid resistance was good, the pulsation phenomenon occurred during extrusion molding, and the heat aging resistance was greatly deteriorated. decline is seen. Comparative Example 3, which uses a polyester elastomer in which the soft segment is composed of an aliphatic polyether, is inferior in heat aging resistance. In Comparative Examples 4 and 5, in which an acid-modified olefin-based elastomer was used, the smoothness of the extruded product was impaired regardless of whether the type of acid end-blocking agent (C) was epoxy-based or carbodiimide-based. In addition, it can be seen that compared with Examples 2 and 3, the acid resistance tends to be slightly lower.
 このように、本発明のポリエステルエラストマー樹脂組成物は、耐酸性と耐熱老化性に優れながら、かつ押出成形においても良好な外径安定性と表面平滑性を有している。このため電気製品の各種部品、ホース、チューブ、ケーブル被覆材など広い範囲に応用することができる。また、これら以外にも本発明により得られた樹脂組成物は射出成形、トランスファー成形、ブロー成形等によって種々の形状に成形することができる。
 
Thus, the polyester elastomer resin composition of the present invention is excellent in acid resistance and heat aging resistance, and has good outer diameter stability and surface smoothness even in extrusion molding. Therefore, it can be applied to a wide range of parts such as various parts of electric appliances, hoses, tubes, and cable covering materials. In addition to these, the resin composition obtained by the present invention can be molded into various shapes by injection molding, transfer molding, blow molding and the like.

Claims (9)

  1.  芳香族ジカルボン酸と脂肪族及び/又は脂環族ジオールを構成成分とするポリエステルからなるハードセグメントと、脂肪族ポリエステル及び脂肪族ポリカーボネートから選ばれる少なくとも1種のソフトセグメントが結合してなるポリエステルエラストマー(A)50~90質量部、未変性のオレフィン系エラストマー(B)10~50質量部、さらに、ポリエステルエラストマー(A)と未変性のオレフィン系エラストマー(B)の合計100質量部に対して、酸末端封鎖剤(C)0~5質量部を含有しているポリエステルエラストマー樹脂組成物であって、該樹脂組成物中のカルボキシル基濃度が10eq/tоn以下であるポリエステルエラストマー樹脂組成物。 A polyester elastomer ( Acid A polyester elastomer resin composition containing 0 to 5 parts by mass of a terminal blocking agent (C), wherein the carboxyl group concentration in the resin composition is 10 eq/ton or less.
  2.  ポリエステルエラストマー(A)と未変性のオレフィン系エラストマー(B)の合計100質量部に対して、さらにエポキシ基含有ポリオレフィン(D)1~10質量部を含有している、請求項1に記載のポリエステルエラストマー樹脂組成物。 The polyester according to claim 1, further containing 1 to 10 parts by mass of an epoxy group-containing polyolefin (D) with respect to a total of 100 parts by mass of the polyester elastomer (A) and the unmodified olefinic elastomer (B). Elastomer resin composition.
  3.  前記未変性のオレフィン系エラストマー(B)が、スチレンを共重合成分として含むエラストマーである請求項1または2に記載のポリエステルエラストマー樹脂組成物。 The polyester elastomer resin composition according to claim 1 or 2, wherein the unmodified olefinic elastomer (B) is an elastomer containing styrene as a copolymer component.
  4.  前記ポリエステルエラストマー(A)が、テレフタル酸、1,4-ブタンジオール及び脂肪族ポリカーボネートジオールを主たる成分とする、150~230℃の融点を有する共重合体である請求項1~3のいずれかに記載のポリエステルエラストマー樹脂組成物。 4. Any one of Claims 1 to 3, wherein the polyester elastomer (A) is a copolymer having a melting point of 150 to 230°C and containing terephthalic acid, 1,4-butanediol and an aliphatic polycarbonate diol as main components. The polyester elastomer resin composition described.
  5.  ポリエステルエラストマー(A)と未変性のオレフィン系エラストマー(B)の合計100質量部に対して、さらに臭素系難燃剤(E)及び難燃助剤(F)の合計5~30質量部を含有している、請求項1~4のいずれかに記載のポリエステルエラストマー樹脂組成物。 A total of 5 to 30 parts by mass of a brominated flame retardant (E) and a flame retardant aid (F) is further added to a total of 100 parts by mass of the polyester elastomer (A) and the unmodified olefinic elastomer (B). The polyester elastomer resin composition according to any one of claims 1 to 4.
  6.  ポリエステルエラストマー(A)と未変性のオレフィン系エラストマー(B)の合計100質量部に対して、さらにリン系難燃剤(G)5~50質量部を含有している、請求項1~4のいずれかに記載のポリエステルエラストマー樹脂組成物。 Any one of claims 1 to 4, further containing 5 to 50 parts by mass of a phosphorus-based flame retardant (G) with respect to a total of 100 parts by mass of the polyester elastomer (A) and the unmodified olefinic elastomer (B). The polyester elastomer resin composition according to 1.
  7.  前記リン系難燃剤(G)が、平均粒子径D50が20μm以下であり、且つ15質量%以上のリン濃度を有する、請求項6に記載のポリエステルエラストマー樹脂組成物。 The polyester elastomer resin composition according to claim 6, wherein the phosphorus-based flame retardant (G) has an average particle size D50 of 20 µm or less and a phosphorus concentration of 15% by mass or more.
  8.  ケーブル被覆用である請求項1~7のいずれかに記載のポリエステルエラストマー樹脂組成物。 The polyester elastomer resin composition according to any one of claims 1 to 7, which is used for cable coating.
  9.  請求項1~7のいずれかに記載のポリエステルエラストマー樹脂組成物からなるケーブル被覆材。
     
    A cable covering material comprising the polyester elastomer resin composition according to any one of claims 1 to 7.
PCT/JP2022/012425 2021-03-23 2022-03-17 Polyester elastomer resin composition and cable cover material comprising same WO2022202629A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022555724A JPWO2022202629A1 (en) 2021-03-23 2022-03-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021048349 2021-03-23
JP2021-048349 2021-03-23

Publications (1)

Publication Number Publication Date
WO2022202629A1 true WO2022202629A1 (en) 2022-09-29

Family

ID=83395835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012425 WO2022202629A1 (en) 2021-03-23 2022-03-17 Polyester elastomer resin composition and cable cover material comprising same

Country Status (2)

Country Link
JP (1) JPWO2022202629A1 (en)
WO (1) WO2022202629A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253012A (en) * 2002-02-28 2003-09-10 Toyobo Co Ltd Method for securing polyester molded article
JP2010248405A (en) * 2009-04-17 2010-11-04 Toyobo Co Ltd Flame-retardant elastomer composition
JP2013501845A (en) * 2009-08-10 2013-01-17 ユニオン カーバイド ケミカルズ アンド プラスティックス テクノロジー エルエルシー Thermoplastic elastomer composition comprising an intumescent flame retardant and a non-phosphorous flame retardant synergist
JP2015164983A (en) * 2014-03-03 2015-09-17 東洋紡株式会社 Elastomer composition and molded article formed from the same
JP2015179154A (en) * 2014-03-19 2015-10-08 東レ株式会社 plastic optical fiber cord
WO2018155411A1 (en) * 2017-02-22 2018-08-30 東洋紡株式会社 Polyester elastomer resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253012A (en) * 2002-02-28 2003-09-10 Toyobo Co Ltd Method for securing polyester molded article
JP2010248405A (en) * 2009-04-17 2010-11-04 Toyobo Co Ltd Flame-retardant elastomer composition
JP2013501845A (en) * 2009-08-10 2013-01-17 ユニオン カーバイド ケミカルズ アンド プラスティックス テクノロジー エルエルシー Thermoplastic elastomer composition comprising an intumescent flame retardant and a non-phosphorous flame retardant synergist
JP2015164983A (en) * 2014-03-03 2015-09-17 東洋紡株式会社 Elastomer composition and molded article formed from the same
JP2015179154A (en) * 2014-03-19 2015-10-08 東レ株式会社 plastic optical fiber cord
WO2018155411A1 (en) * 2017-02-22 2018-08-30 東洋紡株式会社 Polyester elastomer resin composition

Also Published As

Publication number Publication date
JPWO2022202629A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
JP5786256B2 (en) Thermoplastic polyester elastomer resin composition and molded article containing the same
JP7063263B2 (en) Polyester elastomer resin composition
JP5581606B2 (en) Resin composition having excellent moldability and molded product thereof
WO2012020750A1 (en) Resin composition, coated metal body using same, and adhesive
WO2021172348A1 (en) Polyester elastomer resin composition
KR20150100492A (en) Thermoplastic elastomer resin composition and molding
JPWO2020100727A1 (en) Flame-retardant polybutylene terephthalate resin composition
WO2022202629A1 (en) Polyester elastomer resin composition and cable cover material comprising same
JP2022147198A (en) Polyester elastomer resin composition and cable covering material formed from the same
JP6506806B2 (en) Polybutylene terephthalate resin composition, molded article and composite
KR101506370B1 (en) Thermoplastic polyester elastomer resin composition for sheet forming
JP2015164983A (en) Elastomer composition and molded article formed from the same
WO2013008619A1 (en) Composite material and industrial endoscope
JP7139768B2 (en) Thermoplastic resin composition and molded article made therefrom
EP3932990A1 (en) Polybutylene terephthalate resin composition
JP2022150988A (en) Thermoplastic polyester elastomer resin composition
JP5434177B2 (en) Resin composition with excellent moldability
WO2021187474A1 (en) Polyester elastomer resin composition
WO2022215408A1 (en) Flame-retardant thermoplastic polyester elastomer resin composition and molded article obtained therefrom
JP6183082B2 (en) Resin composition for metal coating
JP2014136710A (en) Aromatic polycarbonate resin composition and molded product thereof
WO2023167108A1 (en) Thermoplastic polyester elastomer resin composition and molded article produced from same
WO2023033175A1 (en) Multi-layer body and molded article
WO2021020095A1 (en) Flame-retardant poly(butylene terephthalate) resin composition
TWI627228B (en) Resin composition for packaging electric and electronic parts, manufacturing method of electric and electronic part package, and electric and electronic part package

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022555724

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775417

Country of ref document: EP

Kind code of ref document: A1