WO2022202594A1 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
WO2022202594A1
WO2022202594A1 PCT/JP2022/012192 JP2022012192W WO2022202594A1 WO 2022202594 A1 WO2022202594 A1 WO 2022202594A1 JP 2022012192 W JP2022012192 W JP 2022012192W WO 2022202594 A1 WO2022202594 A1 WO 2022202594A1
Authority
WO
WIPO (PCT)
Prior art keywords
collision
vehicle
air pressure
ground clearance
prediction unit
Prior art date
Application number
PCT/JP2022/012192
Other languages
English (en)
French (fr)
Inventor
尚彦 井口
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2022202594A1 publication Critical patent/WO2022202594A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/085Taking automatic action to adjust vehicle attitude in preparation for collision, e.g. braking for nose dropping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions

Definitions

  • This disclosure relates to a vehicle control device.
  • the minimum ground clearance is increased to secure an approach angle.
  • the present disclosure was created in view of such circumstances, and its purpose is to provide a vehicle control device capable of enhancing the evaluation of the vehicle in the crash test.
  • a collision prediction unit for predicting a vehicle collision
  • an air pressure adjusting device for adjusting the air pressure of tires of the vehicle
  • a control unit configured to control the air pressure regulator to reduce air pressure in the tire when the collision prediction unit predicts a collision of the vehicle
  • the vehicle control device includes a collision detection unit that detects a collision of the vehicle, The control unit is When the collision of the vehicle is not detected by the collision detection unit after a predetermined time has passed since the collision of the vehicle is predicted by the collision detection unit, the air pressure adjustment device is controlled to increase the air pressure of the tire.
  • said control unit comprises: If the vehicle collision is detected by the collision detection unit before the predetermined time elapses after the vehicle collision is predicted by the collision detection unit, the air pressure adjustment device is controlled to continue reducing the air pressure of the tire. .
  • the collision prediction unit outputs an ON signal for a predetermined period of time when the collision of the vehicle is predicted
  • the collision detection unit outputs an ON signal when detecting a collision of the vehicle
  • the control unit includes an OR circuit that outputs an on signal or an off signal based on a combination of on and off of the output signals of the collision prediction unit and the collision detection unit, and the on signal or the off signal from the OR circuit is Based on this, the operation mode of the air pressure adjusting device is switched.
  • the control unit controls a second ground clearance lower than the first ground clearance of the present disclosure for a vehicle front portion of the vehicle.
  • the air pressure regulator may be controlled to reduce the air pressure of the tire as reduced by the present disclosure.
  • the control unit controls the minimum ground level of the front portion of the vehicle.
  • the air pressure regulator may be controlled to increase air pressure in the tire such that height is returned to the first ground clearance of the present disclosure.
  • control unit detects the collision of the vehicle when the collision of the vehicle is detected by the collision detection unit before the predetermined time elapses after the collision of the vehicle is predicted by the collision prediction unit.
  • the air pressure regulator may be controlled to continue reducing the air pressure in the tire so that the ground clearance of the front of the vehicle is maintained at the ground clearance of the present disclosure until terminated.
  • FIG. 1 is a schematic right side view showing the vehicle of this embodiment.
  • FIG. 2 is a schematic right side view showing the vehicle at the moment it started colliding with the moving barrier in the collision test.
  • FIG. 3 is a diagram for explaining the control of this embodiment.
  • FIG. 4 is a diagram for explaining the control of this embodiment.
  • FIG. 5 is a diagram for explaining the control of this embodiment.
  • FIG. 1 is a schematic right side view showing the front end of a vehicle to which the vehicle control device of this embodiment is applied.
  • the vehicle 1 is a vehicle having a relatively high minimum ground clearance, and is a pickup truck in this embodiment.
  • the type, type, application, etc. of the vehicle are not particularly limited, and the vehicle may be, for example, an SUV (Sports Utility Vehicle).
  • the front, rear, left, right, up and down directions of the vehicle are as shown in the figure.
  • a vehicle 1 has a front bumper 3 on its front part 2 .
  • the vehicle 1 also has left and right front wheels 4 (only the right side is shown) for steering.
  • the front wheel 4 has wheels 5 and tires 6 .
  • the vehicle 1 of this embodiment includes an air pressure adjusting device 7 for adjusting the air pressure of the tires 6 .
  • the air pressure adjusting device 7 is connected to an air pressure source (not shown) (for example, an air tank) and has a valve for switching air supply/exhaust to/from the tire 6 .
  • the air pressure adjusting device 7 has an air supply mode in which compressed air sent from an air pressure source is supplied to the tire 6 until the air pressure in the tire 6 reaches a predetermined standard air pressure, and an air exhaust mode in which air is discharged from the tire 6. It is possible to operate in two modes of operation.
  • the air pressure adjusting device 7 is controlled by an electronic control unit (referred to as an ECU (Electronic Control Unit)) 100 as a control unit mounted on the vehicle 1 .
  • ECU Electronic Control Unit
  • the vehicle 1 is also provided with a collision prediction unit 8 that predicts a collision of the vehicle 1 .
  • the collision prediction unit 8 includes a millimeter wave radar that detects information such as the distance and relative speed between the vehicle 1 and a forward obstacle by reflection of millimeter waves.
  • the collision prediction unit 8 also includes a collision possibility determination unit that determines whether or not there is a possibility that the vehicle 1 will collide with a forward obstacle based on information obtained from the millimeter wave radar.
  • the collision possibility determination unit is configured by an ECU separate from the ECU 100, but may be configured integrally with the ECU 100.
  • the collision possibility determination unit determines that there is no possibility of collision. Note that the relative velocity is positive when the vehicle 1 approaches an obstacle ahead.
  • the collision possibility determination unit outputs an ON signal when it determines that there is a possibility of collision, that is, predicts a collision, and outputs an ON signal when it determines that there is no possibility of collision, that is, predicts a collision. If not, an off (OFF) signal is output. In particular, the collision possibility determination unit outputs an ON signal for a predetermined time when predicting a collision.
  • the vehicle 1 is also provided with a collision detection unit 9 that detects a collision of the vehicle 1.
  • the collision detection unit 9 includes an acceleration sensor that detects forward acceleration of the vehicle 1 .
  • the collision detection unit 9 also includes a collision determination unit that determines whether or not the vehicle 1 has collided with a forward obstacle based on the acceleration acquired from the acceleration sensor.
  • the collision determination unit is also configured by an ECU separate from the ECU 100, but may be configured integrally with the ECU 100. For example, the collision determination unit determines that a collision has occurred when the acceleration detected by the acceleration sensor exceeds a predetermined threshold value, and otherwise determines that the collision has not occurred.
  • the collision determination unit outputs an ON signal when it determines that a collision has occurred, that is, when it detects a collision, and outputs an ON signal when it determines that there is no collision, that is, when it detects no collision, it outputs an OFF signal. Output a signal.
  • the collision prediction unit 8 and the collision detection unit 9 are connected to the ECU 100.
  • the ECU 100 is configured to control the air pressure adjustment device 7 based on output signals from the collision prediction unit 8 and the collision detection unit 9 .
  • the ECU 100 includes an OR circuit 10 that inputs the output signals of the collision prediction unit 8 and the collision detection unit 9 and outputs an ON or OFF signal based on the ON/OFF combination of these output signals.
  • the mode of the air pressure adjusting device 7 is switched based on the on/off signal from the OR circuit 10 .
  • the vehicle control device of this embodiment includes the collision prediction unit 8, the air pressure adjustment device 7, and the ECU 100, as well as the collision detection unit 9.
  • the minimum ground clearance is increased and the approach angle is ensured in anticipation of off-road driving.
  • FIG. 2 shows the vehicle 1 at the moment it started to collide with the moving barrier 11 in the MPDB collision test. As illustrated, the minimum ground clearance Hv of the vehicle front portion 2 is higher than the minimum ground clearance Hm of the moving barrier 11 .
  • the compatibility evaluation includes an item called the standard deviation SD of the amount of barrier deformation.
  • the standard deviation SD is represented by the following formula (1).
  • x i is the amount of deformation at measurement point i
  • n is the number of measurement points
  • is the average amount of deformation.
  • the average deformation amount ⁇ is represented by the following equation (2).
  • the formula for the standard deviation SD consists of the sum of the squares of the deviations of the barrier deformation amount (the amount of deformation in the depth direction or forward direction). is particularly important for the reduction of
  • the amount of deformation at the measurement point under the barrier that does not collide with the vehicle front portion 2 is suppressed. Therefore, it is difficult in principle to lower the SD.
  • Fig. 1 shows the normal state. Since the collision prediction unit 8 does not predict a collision at this time, it outputs an OFF signal. The collision detection unit 9 also outputs an OFF signal because it has not detected a collision.
  • the ECU 100 then outputs an OFF signal to the air pressure adjusting device 7 .
  • the air pressure adjusting device 7 is operated in the air supply mode, and the air pressure of the tire 6 is maintained at the standard air pressure suitable for normal running.
  • the minimum ground clearance of the vehicle front portion 2 is normal or standard minimum ground clearance Hv (an example of the first minimum ground clearance).
  • Fig. 3 shows a state when the collision prediction unit 8 has predicted a collision, but the collision detection unit 9 has not yet detected a collision. At this time, the collision prediction unit 8 outputs an ON signal, but the collision detection unit 9 outputs an OFF signal.
  • the ECU 100 outputs an ON signal to the air pressure adjusting device 7 for a predetermined period of time.
  • the air pressure adjusting device 7 is operated in the exhaust mode for a predetermined period of time to rapidly exhaust the air from the tire 6 .
  • the air pressure of the tire 6 is rapidly lowered from the standard air pressure, and the tire 6 is deformed so as to be crushed.
  • the minimum ground clearance of the vehicle front portion 2 is lowered from the normal minimum ground clearance Hv to a lower minimum ground clearance HvL (an example of a second minimum ground clearance).
  • the vehicle 1 collides with an obstacle in front, such as the moving barrier 11, the amount of deformation at the bottom of the barrier is increased, the barrier can be deformed more evenly, and the SD can be reduced. And the evaluation of the vehicle in the crash test can be enhanced.
  • FIG. 4 shows a state in which a collision actually occurs within the predetermined time immediately after the collision prediction unit 8 predicts a collision, and the collision detection unit 9 detects the collision. At this time, both the collision prediction unit 8 and the collision detection unit 9 output ON signals.
  • the ECU 100 then continues to output an ON signal to the air pressure adjusting device 7 .
  • the air pressure regulator 7 continues to operate in the exhaust mode and continues to exhaust air from the tire 6 .
  • the air pressure of the tire 6 continues to be lowered, and the deformed state of the tire 6 is maintained.
  • the minimum ground clearance of the vehicle front portion 2 is maintained at the low minimum ground clearance HvL.
  • a collision continues from the time it starts until the movement and deformation of the vehicle 1 and the forward obstacle are finished.
  • the minimum ground clearance of the vehicle 1 can be lowered not only at the start of the collision but also throughout the duration of the collision. Therefore, it is possible to prevent the forward obstacle from getting under the vehicle 1 during the entire collision period, thereby enhancing the safety.
  • Fig. 5 shows a state in which the collision prediction unit 8 predicted a collision, but no collision occurred even after the predetermined time passed, and the collision detection unit 9 did not detect the collision. In other words, it indicates the state when the collision prediction by the collision prediction unit 8 is erroneous (erroneous detection).
  • the output signal of the collision prediction unit 8 is switched from ON to OFF when the predetermined time has passed. Also, the output signal of the collision detection unit 9 is naturally off.
  • the ECU 100 switches the output signal to the air pressure adjusting device 7 from ON to OFF when the predetermined time has passed.
  • the air pressure adjusting device 7 is switched from the exhaust mode to the air supply mode to rapidly increase the air pressure of the tire 6 .
  • the air pressure of the tire 6 is quickly returned to the standard air pressure, and the minimum ground clearance of the vehicle front portion 2 is rapidly returned to the original minimum ground clearance Hv.
  • the collision prediction unit 8 makes an erroneous detection, the air pressure of the tires 6 and the minimum ground clearance of the front part 2 of the vehicle can be quickly restored to the original normal state. In addition, adverse effects on running of the vehicle 1 can be minimized.
  • the predetermined time it is preferable to set the predetermined time to be slightly longer than the time from when the collision prediction unit 8 predicted a collision to when the collision actually occurred.
  • the vehicle control device of the above embodiment may be modified so as to function at the time of a rear collision.
  • the collision prediction unit and the collision detection unit predict and detect collisions with rear obstacles
  • the air pressure regulator is modified to adjust the tire pressure of the rear wheels.
  • the present disclosure has the effect of improving the evaluation of the vehicle in the crash test, and is useful for vehicle control devices and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Vehicle Body Suspensions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

車両制御装置は、車両1の衝突を予測する衝突予測ユニット8と、車両のタイヤ6の空気圧を調整するための空気圧調整装置7と、衝突予測ユニットにより車両の衝突が予測されたときに、タイヤの空気圧を減少させるよう、空気圧調整装置を制御するように構成された制御ユニット100とを備える。

Description

車両制御装置
 本開示は車両制御装置に関する。
 オフロードを走ることを想定したピックアップトラック等の車両については、最低地上高を高くしてアプローチアングルを確保している。
日本国特開2011-68205号公報
 一方、欧州の新車アセスメントプログラム(Euro NCAP)では、車両をムービングバリア(MPDB)付き台車と衝突させる試験(MPDB衝突試験)が導入され、試験項目としてコンパティビリティ評価(相手車両への加害性評価)が追加されている。上記のような最低地上高が高い車両では、車両前面部の最低地上高がMPDB台車の最低地上高より高いため、高い評価を得ることが難しい。
 そこで本開示は、かかる事情に鑑みて創案され、その目的は、衝突試験において車両の評価を高めることができる車両制御装置を提供することにある。
 本開示の一の態様によれば、
 車両の衝突を予測する衝突予測ユニットと、
 前記車両のタイヤの空気圧を調整するための空気圧調整装置と、
 前記衝突予測ユニットにより前記車両の衝突が予測されたときに、前記タイヤの空気圧を減少させるよう、前記空気圧調整装置を制御するように構成された制御ユニットと、
 を備えたことを特徴とする車両制御装置が提供される。
 好ましくは、前記車両制御装置は、前記車両の衝突を検知する衝突検知ユニットを備え、
 前記制御ユニットは、
 衝突検知ユニットにより前記車両の衝突が予測されてから所定時間経過後に前記衝突検知ユニットにより前記車両の衝突が検知されなかった場合、前記タイヤの空気圧を増大させるよう、前記空気圧調整装置を制御する。
 好ましくは、前記制御ユニットは、
 衝突検知ユニットにより前記車両の衝突が予測されてから前記所定時間経過前に前記衝突検知ユニットにより前記車両の衝突が検知された場合、前記タイヤの空気圧を減少し続けるよう前記空気圧調整装置を制御する。
 好ましくは、前記衝突予測ユニットは、前記車両の衝突を予測したときに所定時間だけオン信号を出力し、
 前記衝突検知ユニットは、前記車両の衝突を検知したときにオン信号を出力し、
 前記制御ユニットは、前記衝突予測ユニットと前記衝突検知ユニットの出力信号のオンオフの組み合わせに基づいてオン信号またはオフ信号を出力するOR回路を備え、前記OR回路からの前記オン信号または前記オフ信号に基づいて前記空気圧調整装置の動作モードを切り替える。
 好ましくは、前記制御ユニットは、前記衝突予測ユニットにより前記衝突が予測されたときに、前記車両の車両前面部の最低地上高が第1の最低地上高本開示よりも低い第2の最低地上高本開示に低下されるように、前記タイヤの前記空気圧を減少させるよう前記空気圧調整装置を制御してもよい。
 好ましくは、前記制御ユニットは、前記衝突予測ユニットにより前記車両の衝突が予測されてから所定時間経過後に前記衝突検知ユニットにより前記車両の衝突が検知されなかった場合、前記車両前面部の前記最低地上高が前記第1の最低地上高本開示に戻されるように、前記タイヤの空気圧を増大させるよう前記空気圧調整装置を制御してもよい。
 好ましくは、前記制御ユニットは、前記衝突予測ユニットにより前記車両の衝突が予測されてから前記所定時間経過前に前記衝突検知ユニットにより前記車両の衝突が検知された場合、前記車両の衝突の検知が終了するまで、前記車両前面部の前記最低地上高が前記2の最低地上高本開示に維持されるように、前記タイヤの空気圧を減少し続けるよう前記空気圧調整装置を制御してもよい。
 本開示によれば、衝突試験において車両の評価を高めることができる。
図1は、本実施形態の車両を示す概略右側面図である。 図2は、衝突試験においてムービングバリアに衝突を開始した瞬間の車両を示す概略右側面図である。 図3は、本実施形態の制御を説明するための図である。 図4は、本実施形態の制御を説明するための図である。 図5は、本実施形態の制御を説明するための図である。
 以下、添付図面を参照して本開示の実施形態を説明する。なお本開示は以下の実施形態に限定されない点に留意されたい。
 図1は、本実施形態の車両制御装置が適用された車両の前端部を示す概略右側面図である。車両1は、最低地上高が比較的高い車両であり、本実施形態ではピックアップトラックである。但し車両の種類、形式、用途等は特に限定されず、例えば車両はSUV(Sports Utility Vehicle)等であってもよい。車両の前後左右上下の各方向は図示の通りである。
 車両1は、その前面部2にフロントバンパ3を備える。また車両1は、操舵のための左右の前輪4(右側のみ示す)を備える。前輪4は、ホイール5とタイヤ6を備える。
 本実施形態の車両1は、タイヤ6の空気圧を調整するための空気圧調整装置7を備える。空気圧調整装置7は、図示しない空圧源(例えばエアタンク)に接続されると共に、タイヤ6に対する空気の給排を切り替えるための弁を備える。空気圧調整装置7は、タイヤ6の空気圧が所定の標準空気圧になるまで、空圧源から送られてきた圧縮空気をタイヤ6に供給する給気モードと、タイヤ6から空気を排出する排気モードとの2つの動作モードで動作可能である。空気圧調整装置7は、車両1に搭載された制御ユニットとしての電子制御ユニット(ECU(Electronic Control Unit)という)100により制御される。
 また車両1には、車両1の衝突を予測する衝突予測ユニット8が設けられる。衝突予測ユニット8は、ミリ波の反射により車両1と前方障害物との距離、相対速度等の情報を検出するミリ波レーダを備える。また衝突予測ユニット8は、ミリ波レーダから取得した情報に基づき車両1が前方障害物に衝突する可能性があるか否かを判断する衝突可能性判定ユニットを備える。衝突可能性判定ユニットは前記ECU100とは別のECUで構成されるが、前記ECU100により一体的に構成されてもよい。例えば衝突可能性判定ユニットは、ミリ波レーダにより検出された距離が所定のしきい値以下になり、かつ、ミリ波レーダにより検出された相対速度が所定のしきい値以上になったとき、衝突する可能性があると判断し、そうでないときには衝突する可能性がないと判断する。なお相対速度は、車両1が前方障害物に接近するとき正である。
 衝突可能性判定ユニットは、衝突する可能性があると判断したとき、つまり衝突を予測したとき、オン(ON)信号を出力し、衝突する可能性がないと判断したとき、つまり衝突を予測してないときには、オフ(OFF)信号を出力する。特に衝突可能性判定ユニットは、衝突を予測したときには所定時間だけオン信号を出力する。
 また車両1には、車両1の衝突を検知する衝突検知ユニット9が設けられる。衝突検知ユニット9は、車両1の前向きの加速度を検出する加速度センサを備える。また衝突検知ユニット9は、加速度センサから取得した加速度に基づき車両1が前方障害物に衝突したか否かを判断する衝突判定ユニットを備える。衝突判定ユニットも前記ECU100とは別のECUで構成されるが、前記ECU100により一体的に構成されてもよい。例えば衝突判定ユニットは、加速度センサにより検出された加速度が所定のしきい値以上になったとき、衝突したと判断し、そうでないときには衝突していないと判断する。
 衝突判定ユニットは、衝突したと判断したとき、つまり衝突を検知したときには、オン(ON)信号を出力し、衝突していないと判断したとき、つまり衝突を検知してないときには、オフ(OFF)信号を出力する。
 衝突予測ユニット8と衝突検知ユニット9はECU100に接続されている。ECU100は、衝突予測ユニット8と衝突検知ユニット9の出力信号に基づいて空気圧調整装置7を制御するように構成されている。特にECU100は、衝突予測ユニット8と衝突検知ユニット9の出力信号を入力し、それら出力信号のオンオフの組み合わせに基づいて、オンまたはオフ信号を出力するOR回路10を備える。このOR回路10からのオンオフ信号に基づいて空気圧調整装置7のモードが切り替えられる。
 このように本実施形態の車両制御装置は、衝突予測ユニット8と空気圧調整装置7とECU100を備え、さらには衝突検知ユニット9も備える。
 さて、ピックアップトラックからなる本実施形態の車両1では、オフロード走行も想定して最低地上高を高くし、アプローチアングルを確保している。
 一方、欧州の新車アセスメントプログラム(Euro NCAP)では、車両をムービングバリア(MPDB)付き台車と衝突させる試験(MPDB衝突試験)が導入され、試験項目としてコンパティビリティ評価(相手車両への加害性評価)が追加されている。上記のような最低地上高が高い車両1では、車両前面部2の最低地上高がMPDB台車の最低地上高より高いため、高い評価を得ることが難しい。
 これを詳しく説明する。図2は、MPDB衝突試験においてムービングバリア11に衝突を開始した瞬間の車両1を示す。図示されるように、車両前面部2の最低地上高Hvはムービングバリア11の最低地上高Hmより高い。
 コンパティビリティ評価にはバリア変形量の標準偏差SDという項目がある。標準偏差SDは次式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 xは計測点iの変形量、nは計測点数、μは平均変形量である。平均変形量μは次式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 上式から理解されるように、標準偏差SDの式は、バリア変形量(奥行方向または前方への変形量)の偏差の2乗和で構成され、バリア領域をできるだけ均等に変形させることがSDの低下に特に重要である。しかし、車両前面部2の最低地上高Hvの高い車両1では,車両前面部2と衝突しないバリア下部の計測点の変形量が抑制される。そのため、SDの低下は原理的に難しい。 
 そこで本実施形態では、衝突予測ユニット8により車両1の衝突が予測されたときに、タイヤ6の空気圧を減少させることで車両前面部2の最低地上高を低下させ、バリア下部の変形量を増大させるようにしている。
 以下、本実施形態の制御を説明する。
 図1は、通常時の状態を示す。このとき衝突予測ユニット8は衝突を予測してないためオフ信号を出力する。また衝突検知ユニット9も衝突を検知してないためオフ信号を出力する。
 するとECU100は、空気圧調整装置7にオフ信号を出力する。これにより空気圧調整装置7は給気モードで動作され、タイヤ6の空気圧は通常走行に適した標準空気圧に維持される。車両前面部2の最低地上高は通常もしくは標準の最低地上高Hv(第1の最低地上高の一例)とされる。
 図3は、衝突予測ユニット8が衝突を予測したが、衝突検知ユニット9はまだ衝突を検知してないときの状態を示す。このとき、衝突予測ユニット8はオン信号を出力するが、衝突検知ユニット9はオフ信号を出力する。
 するとECU100は、空気圧調整装置7に所定時間だけオン信号を出力する。これにより空気圧調整装置7は所定時間だけ排気モードで動作され、タイヤ6から急速に空気を排出する。これによりタイヤ6の空気圧は標準空気圧から急速に低下され、タイヤ6が潰れるように変形する。これにより車両前面部2の最低地上高が、通常の最低地上高Hvからより低い最低地上高HvL(第2の最低地上高の一例)に低下される。
 仮にこの状態で車両1が前方障害物、例えばムービングバリア11に衝突した場合、バリア下部における変形量を増大し、バリアをより均等に変形させることができ、SDを低下させることができる。そして衝突試験における車両の評価を高めることができる。
 また、試験以外の実際の走行時にも、前方障害物(例えば相手車両)が車両1(自車両)の下に潜りこむのを抑制できる。そのため、車両衝突時の安全性を高めることができる。
 図4は、衝突予測ユニット8が衝突を予測した直後、前記所定時間内に衝突が実際に起こり、衝突検知ユニット9が衝突を検知したときの状態を示す。このとき、衝突予測ユニット8と衝突検知ユニット9はともにオン信号を出力する。
 するとECU100は、空気圧調整装置7にオン信号を出力し続ける。これにより空気圧調整装置7は継続して排気モードで動作され、タイヤ6から空気を排出し続ける。これによりタイヤ6の空気圧は低下され続け、タイヤ6の変形状態が維持される。これにより車両前面部2の最低地上高が、低い最低地上高HvLに維持される。
 衝突は、その開始時から、車両1および前方障害物の移動および変形が終了するまで継続する。本実施形態によれば、その衝突の開始時だけでなく、衝突の全期間に亘って車両1の最低地上高を下げておくことができる。そのため、衝突の全期間に亘って前方障害物が車両1の下に潜りこむのを抑制でき、安全性を高めることができる。
 一方、図5は、衝突予測ユニット8が衝突を予測したが、前記所定時間が経過しても衝突が起こらず、衝突検知ユニット9が衝突を検知しないときの状態を示す。つまり、衝突予測ユニット8による衝突予測が誤っていた(誤検知であった)ときの状態を示す。
 このとき、衝突予測ユニット8の出力信号は、前記所定時間が経過した時点でオンからオフに切り替えられる。また衝突検知ユニット9の出力信号は当然にオフである。
 するとECU100は、前記所定時間が経過した時点で空気圧調整装置7への出力信号をオンからオフに切り替える。これにより空気圧調整装置7は、排気モードから給気モードに切り替えられ、タイヤ6の空気圧を急速に増大させる。これによりタイヤ6の空気圧は急速に標準空気圧に戻され、車両前面部2の最低地上高は急速に元の最低地上高Hvに戻される。
 これにより、衝突予測ユニット8が誤検知した場合であっても、タイヤ6の空気圧と車両前面部2の最低地上高とを元の通常状態に急速に復帰させることができる。そして車両1の走行への悪影響を最小限に止めることができる。
 以上の説明から理解されるように、前記所定時間は、衝突予測ユニット8が衝突を予測した時点から実際に衝突が起こるまでの間の時間より僅かに長い時間に設定するのが好ましい。
 以上、本開示の実施形態を詳細に述べたが、本開示の実施形態および変形例は他にも様々考えられる。
 例えば、前記実施形態の車両制御装置を、後方衝突時に機能するよう変形してもよい。この場合、衝突予測ユニットおよび衝突検知ユニットは後方障害物との衝突を予測および検知し、空気圧調整装置は後輪のタイヤの空気圧を調整するよう変形される。
 本開示の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定される本開示の思想に包含されるあらゆる変形例や応用例、均等物が本開示に含まれる。従って本開示は、限定的に解釈されるべきではなく、本開示の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。
 本出願は、2021年3月22日付で出願された日本国特許出願(特願2021-047548)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示は、衝突試験において車両の評価を高めることができるという効果を有し、車両制御装置等に有用である。
1 車両
6 タイヤ
7 空気圧調整装置
8 衝突予測ユニット
9 衝突検知ユニット
10 OR回路
100 電子制御ユニット(ECU)

Claims (7)

  1.  車両の衝突を予測する衝突予測ユニットと、
     前記車両のタイヤの空気圧を調整するための空気圧調整装置と、
     前記衝突予測ユニットにより前記車両の衝突が予測されたときに、前記タイヤの空気圧を減少させるよう、前記空気圧調整装置を制御するように構成された制御ユニットと、
     を備えたことを特徴とする車両制御装置。
  2.  前記車両の衝突を検知する衝突検知ユニットを備え、
     前記制御ユニットは、
     前記衝突予測ユニットにより前記車両の衝突が予測されてから所定時間経過後に前記衝突検知ユニットにより前記車両の衝突が検知されなかった場合、前記タイヤの空気圧を増大させるよう、前記空気圧調整装置を制御する
     請求項1に記載の車両制御装置。
  3.  前記制御ユニットは、
     前記衝突予測ユニットにより前記車両の衝突が予測されてから前記所定時間経過前に前記衝突検知ユニットにより前記車両の衝突が検知された場合、前記タイヤの空気圧を減少し続けるよう前記空気圧調整装置を制御する
     請求項2に記載の車両制御装置。
  4.  前記衝突予測ユニットは、前記車両の衝突を予測したときに所定時間だけオン信号を出力し、
     前記衝突検知ユニットは、前記車両の衝突を検知したときにオン信号を出力し、
     前記制御ユニットは、前記衝突予測ユニットと前記衝突検知ユニットの出力信号のオンオフの組み合わせに基づいてオン信号またはオフ信号を出力するOR回路を備え、前記OR回路からの前記オン信号または前記オフ信号に基づいて前記空気圧調整装置の動作モードを切り替える
     請求項2または3に記載の車両制御装置。
  5.  前記制御ユニットは、
     前記衝突予測ユニットにより前記衝突が予測されたときに、前記車両の車両前面部の最低地上高が第1の最低地上高よりも低い第2の最低地上高に低下されるように、前記タイヤの前記空気圧を減少させるよう前記空気圧調整装置を制御する、
     請求項1に記載の車両制御装置。
  6.  前記制御ユニットは、
     前記衝突予測ユニットにより前記車両の衝突が予測されてから所定時間経過後に前記衝突検知ユニットにより前記車両の衝突が検知されなかった場合、前記車両前面部の前記最低地上高が前記第1の最低地上高に戻されるように、前記タイヤの空気圧を増大させるよう前記空気圧調整装置を制御する、
     請求項5に記載の車両制御装置。
  7.  前記制御ユニットは、
     前記衝突予測ユニットにより前記車両の衝突が予測されてから前記所定時間経過前に前記衝突検知ユニットにより前記車両の衝突が検知された場合、前記車両の衝突の検知が終了するまで、前記車両前面部の前記最低地上高が前記2の最低地上高に維持されるように、前記タイヤの空気圧を減少し続けるよう前記空気圧調整装置を制御する、
     請求項5に記載の車両制御装置。
PCT/JP2022/012192 2021-03-22 2022-03-17 車両制御装置 WO2022202594A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021047548A JP2022146541A (ja) 2021-03-22 2021-03-22 車両制御装置
JP2021-047548 2021-03-22

Publications (1)

Publication Number Publication Date
WO2022202594A1 true WO2022202594A1 (ja) 2022-09-29

Family

ID=83395741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012192 WO2022202594A1 (ja) 2021-03-22 2022-03-17 車両制御装置

Country Status (2)

Country Link
JP (1) JP2022146541A (ja)
WO (1) WO2022202594A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060013138A (ko) * 2004-08-06 2006-02-09 현대자동차주식회사 타이어의 공기압 조절 시스템
JP2009061945A (ja) * 2007-09-06 2009-03-26 Toyota Motor Corp 走行路判定装置および車両走行制御装置
JP2009184471A (ja) * 2008-02-05 2009-08-20 Toyota Motor Corp 車両制御装置
JP2011068205A (ja) * 2009-09-24 2011-04-07 Daimler Ag 車高制御による潜り込み防止装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060013138A (ko) * 2004-08-06 2006-02-09 현대자동차주식회사 타이어의 공기압 조절 시스템
JP2009061945A (ja) * 2007-09-06 2009-03-26 Toyota Motor Corp 走行路判定装置および車両走行制御装置
JP2009184471A (ja) * 2008-02-05 2009-08-20 Toyota Motor Corp 車両制御装置
JP2011068205A (ja) * 2009-09-24 2011-04-07 Daimler Ag 車高制御による潜り込み防止装置

Also Published As

Publication number Publication date
JP2022146541A (ja) 2022-10-05

Similar Documents

Publication Publication Date Title
US8527149B2 (en) Passenger protection device
US7565234B2 (en) Automotive collision mitigation apparatus
US7689359B2 (en) Running support system for vehicle
JP5083404B2 (ja) プリクラッシュセーフティシステム
JP2008518831A (ja) レーダーセンサと視覚センサとを有するセンサシステム
CN108340864B (zh) 用于车辆的乘员保护装置和用于车辆的乘员保护方法
JP2006008108A (ja) 車体強度制御装置
JP2011105250A (ja) 衝突被害軽減装置
JP3912163B2 (ja) 車両の衝突対策システム
CN112009412B (zh) 碰撞预测判断装置、以及交通弱势者保护系统
JP2008518830A (ja) 切迫する衝突を感知して安全装置の展開を調節するためのシステム
US6477466B1 (en) Device for adjusting the height positioning of the body of a vehicle
US20180170368A1 (en) Driving assistance apparatus and driving assistance method
JP2008514496A (ja) 乗員保護手段の駆動制御方法および乗員保護手段の駆動制御装置
US9358977B2 (en) Vehicle control apparatus
JP4873186B2 (ja) 衝突軽減装置
JP5455602B2 (ja) 衝突被害軽減装置
WO2022202594A1 (ja) 車両制御装置
JP2005178622A (ja) 車両用安全制御装置
JP2011068205A (ja) 車高制御による潜り込み防止装置
CN107776525A (zh) 车辆防碰撞系统、车辆及其防碰撞方法
US20210001842A1 (en) Apparatus and Method for Controlling Safety Equipment of Vehicle
CN104691628A (zh) 自动弹出式汽车b柱、控制系统及汽车
JP2014133448A (ja) 車両用衝突検知装置
JP7056692B2 (ja) 車両用乗員保護装置及び車両用乗員保護方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775382

Country of ref document: EP

Kind code of ref document: A1